

1 **Lasting alterations in monocyte and dendritic cell subsets in individuals after**
2 **hospitalization for COVID-19**

3
4 Francis R. Hopkins^{1#}, Melissa Govender^{1#}, Cecilia Svanberg¹, Johan Nordgren¹, Hjalmar Waller¹, Åsa
5 Nilsdotter-Augustinsson², Anna J. Henningsson², Marie Hagbom¹, Johanna Sjöwall³, Sofia Nyström^{1,4},
6 and Marie Larsson^{1†}

7
8 ¹Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping
9 University, 581 85 Linköping, Sweden, ²Clinical Microbiology, Jönköping, Region Jönköping County
10 and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
11 ³Department of Infectious Diseases, and Department of Biomedical and Clinical Sciences, Linköping
12 University, Linköping, Sweden, ⁴Department of Clinical Immunology and Transfusion Medicine, and
13 Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden

14 [#]These Authors contributed equally to this study

15 [†]Address correspondence to Marie Larsson, Molecular Medicine and Virology, Lab 1 Plan 13,
16 Department of Biomedicine and clinical Sciences, Linköping University 58 185 Linköping, Sweden.
17 Phone: +4613282987; E-mail: marie.larsson@liu.se

18
19 Running title: Long-term myeloid cell alterations following COVID-19

20
21
22
23

24 **ABSTRACT**

25 After more than two years the COVID-19 pandemic continues to burden healthcare systems and
26 economies worldwide, and it is evident that long-term effects of the disease can persist for months
27 post-recovery in some individuals. The activity of myeloid cells such as monocytes and dendritic cells
28 (DC) is essential for correct mobilization of the innate and adaptive responses to a pathogen. Impaired
29 levels and responses of monocytes and DC to SARS-CoV-2 is likely to be a driving force behind the
30 immune dysregulation that characterizes severe COVID-19. Here, we followed, for 6-7 months, a
31 cohort of COVID-19 patients hospitalized during the early waves of the pandemic. The levels and
32 phenotypes of circulating monocyte and DC subsets were assessed to determine both the early and
33 long-term effects of the SARS-CoV-2 infection. We found increased monocyte levels that persisted for
34 6-7 months, mostly attributed to elevated levels of classical monocytes. While most DC subsets
35 recovered from an initial decrease, we found elevated levels of cDC2/cDC3 at the 6-7 month timepoint.
36 Analysis of functional markers on monocytes and DC revealed sustained reduction in PD-L1 expression
37 but increased CD86 expression across almost all cell types examined. Finally, viral load and CRP
38 correlated to the appearance of circulating antibodies and levels of circulating DC and monocyte
39 subsets, respectively. By elucidating some of the long-term effects that SARS-CoV-2 infection has on
40 these key innate myeloid cells, we have shed more light on how the immune landscape remains
41 affected in the months following severe COVID-19.

42

43 INTRODUCTION

44 Since coronavirus disease 2019 (COVID-19) was declared a pandemic on March 11 2020, great
45 progress has been made in combating the disease. To date, more than ten vaccines have been
46 developed and granted emergency use listing by the World Health Organization ¹. As of July
47 2022, the mortality from the disease stands at 6.3 million deaths, with 550 million cumulative
48 cases worldwide ², although with different standards of testing worldwide, the true human
49 cost of the pandemic is likely to be much higher. The evolution of new variants indicate that
50 the pandemic is still far from over.

51 The innate and adaptive immune responses during severe acute respiratory syndrome
52 coronavirus 2 (SARS-CoV-2) infection have been extensively studied. Different pathways,
53 markers, and factors of interest for drug targets or vaccine development have been identified
54 and provide a better understanding of the impact of COVID-19 on the human host. While the
55 various T cell responses in COVID-19 have been delineated ^{3, 4} there is still much unknown
56 about other immune cells and their role in the disease.

57 The myeloid cell compartment consists of a variety of innate immune cell populations
58 including dendritic cells (DC) and monocytes ⁵. Monocytes can be divided into different
59 subsets based on their expression levels of CD14 and CD16 ⁶. Classical monocytes (cMo,
60 CD14⁺CD16⁻) are highly phagocytic and can upregulate proteins associated with anti-bacterial
61 activity, while non-classical monocytes (ncMo, CD14^{-/low}CD16⁺) have a less inflammatory
62 phenotype and are associated with wound healing ⁷. Intermediate monocytes (iMo,
63 CD14⁺CD16⁺) are not completely understood but display a capacity for both antigen
64 presentation and inflammatory responses ^{8, 9}. In addition to monocytes, there are also myeloid

65 derived suppressor cells (MDSC) that are strongly immunosuppressive, which increase in
66 numbers in settings such as chronic infections and cancers ¹⁰.

67 The pathogenic role of monocytes in respiratory viral infection has been demonstrated in
68 mouse models of influenza A infection, where inflammatory monocytes drive the virus-
69 induced damage to the lung ¹¹. Alterations to the monocyte compartment occur during SARS-
70 CoV-2 infection, with most findings showing strong inflammatory monocyte responses in
71 severe disease ^{12, 13}, whereas the opposite is found for mild disease ¹⁴. Indeed, it has been
72 shown that classical monocytes are drivers of the cytokine storm that frequently proves fatal
73 in SARS-CoV-2 infection ¹⁵.

74 The DC serve as a bridge between the innate and adaptive responses and are essential for the
75 development of an adaptive response ¹⁶. Like monocytes, DC can be classified into different
76 subsets with the ability to sense pathogens, produce cytokines and activate T cell responses
77 ¹⁷. Plasmacytoid DC (pDC) are defined by surface expression of CD303 (BDCA-2) and are the
78 main type I interferon (IFN) producers ^{18, 19}. Conventional DC (cDC) are further divided into
79 different subsets, with cDC1 having a high capacity to cross-present antigens and activate T
80 helper (Th)1 responses ^{17, 20}, while cDC2 activate a wider range of Th responses ¹⁷. Recent work
81 has divided cDC2 further, based on their CD5 expression, into a CD5^{high} population mainly
82 promoting Th1 responses, and a CD5^{low} population promoting Th2, Th17, Th22, and T
83 regulatory cell responses ²¹. In addition, within the traditionally defined cDC2 population the
84 most newly characterized populations are the two cDC3 populations ¹⁷.

85 Functionality of monocyte and DC subsets can be defined by their expression of surface
86 markers such as HLA-DR, CD86, CCR7 and PD-L1. In COVID-19 patients there is evidence of
87 lower HLA-DR expression on DC subtypes, but not monocytes, indicating an impaired ability

88 to activate T cells. Increased PD-L1 expression is also indicative of an impairment of the
89 effector function of DC²².

90 Studies of mild and severe COVID-19 patients have demonstrated an early overall decrease in
91 circulating DC populations, particularly the pDC^{23, 24}. Furthermore, in severe disease the
92 different DC subsets are impaired in their ability to sense pathogens, present antigens, and
93 stimulate T cell responses²⁵⁻²⁷. The importance of a functional DC compartment is illustrated
94 by the correlation between the activation of early and effective T cell responses, and a positive
95 clinical outcome in SARS-CoV-2 infection^{28, 29}. So far, there have been few longitudinal studies
96 investigating the effects of COVID-19 on myeloid cell subsets during the disease and after
97 recovery³⁰, and more data is needed to provide better insight into the long-term effects of
98 COVID-19.

99 Here, we have characterized the effects that severe COVID-19 exerts on circulating DC,
100 monocytes, and MDSC, in patients that needed hospitalization, using spectral flow cytometry.
101 Furthermore, the effects of several clinical markers on levels of myeloid cell subsets were
102 assessed.

103 In accordance with previous studies, all circulating DC subsets were decreased at inclusion,
104 during acute infection. While pDC and cDC1 subsequently returned to levels comparable to
105 healthy controls, the cDC2 and cDC3 combined subset was significantly elevated at the 6-7
106 month time point. We further found the frequencies of different monocyte subsets to be
107 altered. An initial increase of cMo and decrease of iMo and ncMo was observed, and this
108 profile was maintained long-term for cMo and iMo in comparison to healthy controls.
109 Additionally, the MDSC compartment remained elevated, confirming a long-term
110 immunosuppressive environment post-COVID-19. In addition, there was an alteration of

111 immunomodulatory markers, such as HLA-DR, CD86 and PD-L1, in all cell subsets. Together,
112 our findings highlight sustained long-term alterations in monocyte and DC subsets after
113 COVID-19, that could be linked to initial elevated circulating C-reactive protein (CRP) levels.

114

115 **MATERIALS AND METHODS**

116 **Clinical data and study design**

117 This study was approved by the Swedish Ethical Review Authority (Ethics No. 2020-02580).

118 The hospitalized COVID-19 patients were included at the Clinic of Infectious Diseases and the

119 Intensive Care Unit (ICU) at the Vrinnevi Hospital, Norrköping, Sweden. Furthermore, healthy

120 COVID-19 negative controls were enrolled among the staff at the same hospital. For this study

121 we used longitudinal samples from hospitalized COVID-19 patients (N=21; age range 32-83

122 years) and samples from healthy controls (N=16; age range 23-80 years). Sample collection

123 from COVID-19 patients was performed at four timepoints throughout the study: at enrolment

124 when the COVID-19 patients were admitted to the Department of Infectious Diseases and

125 after 2 weeks, 6 weeks, and 6-7 months post-enrolment. Both male and female participants

126 were included, and all individuals had provided written informed consent prior to enrolment.

127 This study was carried out in accordance with the International Conference on Harmonization

128 Guidelines and the Declaration of Helsinki. Clinical data is described in **Table 1**.

129 Data regarding the clinical symptoms related to COVID-19 and general health status were

130 collected from all participants included in the study. The information is summarized in **Table**

131 **1.** The severity of the disease was determined in the individuals hospitalized for COVID-19 as

132 per the criteria defined by the National Institutes of Health ³¹, i.e., estimated with regards to

133 maximum oxygen needed, and highest level of care provided. COVID-19 severity was classified

134 as: mild (admitted to pandemic department, no oxygen supplementation), moderate

135 (admitted to pandemic department, oxygen supplementation <5L/min), severe (admitted to

136 pandemic department or intermediate care unit, oxygen need ≥5L/min, supplemented by high

137 flow nasal oxygen therapy (HFNOT) and continuous positive airway pressure therapy (CPAP))
138 and critical (intensive care unit, with or without mechanical ventilation).

139 **Sample collection and processing**

140 Blood samples were collected from study subjects in EDTA-treated Vacutte® tubes (Griener
141 Bio-one GmbH, Kremsmünster, Austria) and peripheral blood mononuclear cells (PBMCs)
142 were isolated by density gradient centrifugation (Ficoll-Paque, GE Healthcare, ThermoFisher).
143 The PBMCs were washed and cryopreserved in freezing medium (8% DMSO in FBS) at -150°C
144 until use. Sera were isolated from whole blood samples that had been collected in 3.5 ml
145 Vacutte® tubes (Griener Bio-one GmbH, Kremsmünster, Austria), by centrifugation at 1000 g
146 for 10 minutes at room temperature. Sera were frozen and stored at -80°C until testing.

147 **Spectral Flow cytometry**

148 Cryopreserved PBMCs were thawed and washed in RPMI before resuspension in buffer (0.2%
149 FBS in PBS) at concentration of 1×10^6 cells/ml in FACS tubes (Falcon® Brand, VWR). Before
150 addition of the cocktail of 21 monoclonal antibodies, cells were blocked with a cocktail of FcγR
151 (1/15 dilution, Miltenyi), Novablock (Phitonex), and stained with live/dead violet viability dye
152 (**Supplementary Table 1 for the antibodies and spectral flow reagents**), for 20 mins at 4°C.
153 After washing, 30 µl of antibody cocktail was added to the cells, and the mix incubated for 30
154 minutes at 4°C. The stained PBMCs were washed and resuspended in 200 µl buffer and
155 samples acquired using a Cytek Aurora (USA) spectral flow cytometer. Data was processed
156 using OMIQ (California, USA).

157

158

159 **SARS-CoV-2 neutralizing antibodies**

160 To measure neutralizing antibodies, against the SARS-CoV-2, we utilized the TECO® SARS-CoV-
161 2 Neutralization Antibody Assay (TECOmedical AG, Sissach, Switzerland). The assay was
162 performed according to the protocol provided by the manufacturer. Briefly, serum samples
163 were diluted in sample buffer (1:10, 1:30, and 1:90) and incubated at 37°C for 30 minutes in a
164 96-well plate coated with ACE2 (provided in the kit). The plate was washed 3 times with
165 diluted wash buffer (provided in the kit) and incubated with (S)-RBD–horseradish peroxidase
166 conjugate for 15 minutes at 37°C. Finally, stop solution (provided in the kit) was added and
167 optical density measured within 5 minutes at 450 nm (SpectraMax iD3 Molecular Devices,
168 USA). The inhibition rate was calculated, and a positive value with the cutoff set at ≥20%.

169 **Data analysis and statistics**

170 Data analysis and statistical calculations were performed with GraphPad Prism v9 (GraphPad
171 Software, CA, USA). Differences among the study groups were analyzed with either unpaired,
172 parametric T test with Welch's correction, or Brown-Forsythe and Welch ANOVA tests, with
173 no correction for multiple comparisons. In addition, bivariate analysis with Spearman's
174 correlation coefficient was performed. All differences with p values of <0.05 were considered
175 statistically significant.

176

177 **RESULTS**

178 **Study outline and clinical parameters**

179 Patients suffering from COVID-19 and admitted to a hospital in Norrköping, Sweden were
180 recruited into our study from May 2020 and throughout 2021, during and after the first and
181 second waves of the pandemic in Sweden. Healthy controls who were confirmed SARS-CoV-2
182 negative by PCR and antibody tests, and had no prior history of COVID-19, were also recruited
183 from within the hospital staff. Detailed clinical data were recorded for all individuals within
184 the hospitalized cohort (**Table 1**). Whole blood, serum, and nasal swabs were collected at
185 inclusion, and patients were followed up for further sample collection at 2 weeks, 6 weeks,
186 and 6-7 months post-inclusion (**Figure 1A**). For this study, we have utilized longitudinal
187 samples from 21 hospitalized COVID-19 patients and 16 healthy controls. Disease severity was
188 defined according to the NIH guidelines, which are based largely on supplemental oxygen
189 requirements ³¹. An initial assessment, at study inclusion, was made of an array of clinical
190 parameters (**Figure 1B-C**), showing a significant decrease in lymphocytes, basophils,
191 eosinophils, and neutrophils in the COVID-19 patients. The CRP and lactate dehydrogenase
192 (LDH) levels were both significantly elevated in patients compared to healthy controls. All
193 patients developed neutralizing SARS-CoV-2-specific antibodies that, in most individuals,
194 lasted until the end of the study, even if the levels of neutralizing antibodies were significantly
195 decreased at the 6-7 months timepoint compared to 2 and 6 weeks (**Figure 1D**). These findings
196 are in agreement with previous publications ³²⁻³⁶. We performed correlation analysis of clinical
197 parameters and found that CRP correlated with viral load at inclusion (**Supplementary Figure**
198 **1A**). Additional correlation analysis of clinical parameters and antibody levels revealed that
199 anti-spike IgG levels and neutralizing antibody titers were negatively correlated with viral load

200 at inclusion (**Supplementary Figure 1B**). The connection between viral load and both spike
201 and nucleocapsid antibody levels has been shown previously ^{37, 38}. Furthermore, there was
202 negative correlation of neutralizing antibody titers and anti-spike IgG levels to CRP at inclusion
203 (**Supplementary Figure 1C**). Following spectral flow data acquisition, lineage exclusion was
204 performed to remove T cells, B cells, NK cells and basophils (**Figure 1E**), and remaining cells
205 were defined as myeloid and used for further analysis of monocyte and DC populations. Major
206 immune cell types from within PBMCs, and their changing distributions over time were
207 visualized following dimensionality reduction analysis (**Figure 1F**).

208

209 **Increased levels of monocytes in the mononuclear myeloid compartment**
210 The proportion of total HLA-DR⁺ myeloid cells did not change significantly over the 6-7 months
211 of the study (**Figure 2A**). Within the myeloid compartment in COVID-19 patients, monocytes
212 were defined as CD88⁺ cells, with CD88 being exclusively expressed on blood monocytes ³⁹.
213 Monocytes increased significantly during the first 2 weeks after inclusion and reached a
214 plateau that was significantly higher at 6-7 months post COVID-19 compared to controls
215 (**Figure 2B**). The proportion of CD14⁺HLA-DR⁻ MDSC was raised compared to healthy controls
216 at inclusion and at 2 weeks and 6-7 months follow up, but surprisingly, there was a significant
217 dip at the 6 week time point (**Figure 2C**). Compared to the healthy controls there was a shift
218 towards the non-monocytes, i.e., CD88⁻ cells, in the myeloid compartment following COVID-19
219 (**Figure 2D**). Together our results show that there is a sustained shift in the balance of cell
220 types within the myeloid compartment (**Figure 2D**), despite the total level of myeloid cells
221 remaining the same (**Figure 2A**).

222

223 **Long term changes in classical and intermediate monocytes post COVID-19.**

224 The CD14⁺CD16⁻ cMo, CD14⁺CD16⁺ iMo and CD14^{-/lo}CD16⁺ ncMo were examined to compare
225 COVID-19 patients to healthy controls (**Figure 3**). The CD14⁺ and CD16⁺ cell levels within the
226 myeloid compartment were initially low and increased over the 6-7 months (**Figure 3A**). The
227 proportion of cMo at inclusion was significantly higher than in healthy controls and remained
228 significantly elevated even after 6-7 months (**Figure 3B**). The iMo were reduced for the entire
229 duration of the study (**Figure 3C**). A drastic reduction in ncMo at inclusion was observed in
230 patients, but had already returned by 2 weeks to a level comparable to controls (**Figure 3C**).
231 Together these data revealed that there was a sustained effect on the proportion of cMo and
232 iMo in COVID-19 patients, while the change in ncMo was restored within 2 weeks.

233

234 **Circulating conventional DC subsets and plasmacytoid DC levels recovered after initial
235 depletion**

236 We assessed the different circulating DC subsets (**Figure 4A-B**) and found decreased levels of
237 all DC subsets in the patients at study inclusion. The proportion of pDC were significantly
238 reduced in COVID-19 patients at inclusion and that these cells started to recover already at
239 two weeks (**Figure 4A**). The pDC fraction amongst the CD88⁻ myeloid cell compartment clearly
240 increased until it reached a similar level to healthy controls (**Figure 4C**). The level had
241 increased significantly by 2 weeks but did not fully return to normal until 6 weeks (**Figures 4A-
242 C-D**). Next, we explored the different cDC subsets in COVID-19 patients. Among the cDC,
243 CD141⁺ cDC1 constitute a very small fraction ¹⁷. This DC subset (**Figure 4A**) was significantly
244 reduced at inclusion but throughout the 6-7 months studied, returned to a level comparable
245 to controls (**Figure 5A**). Here, we analyzed cDC2 and cDC3 as one combined population due to
246 the contrasting methods used by different groups to further define distinct cDC
247 subpopulations within classical cDC2. While the proportion of the cumulative cDC2 and cDC3

248 subset was significantly reduced at inclusion, this recovered over the study period and even
249 significantly surpassed the levels found in healthy controls and at 6-7 months (**Figure 5B**).
250 Following this, cDC2 and cDC3 were further divided based on their expression of CD5 and
251 CD14, respectively. Interestingly, neither the CD5⁺ cDC2 nor the CD5⁻ cDC2 were significantly
252 altered at any of the study timepoints (**Figure 5C**). There was a significant increase in CD14⁺
253 cDC3 at the 2 week and 6-7 month time points, but no change in the CD14⁻ cDC3 (**Figure 5D**).
254 Together, we found that both pDC and cDC1 recovered from initial reductions during the
255 study. Additionally, there were major alterations over time in the combined cDC2 and cDC3
256 population, though the proportions of the subpopulations within these DC subsets were
257 unaffected.

258

259 **Prolonged decrease in PD-L1 and elevated CD86 and HLA-DR expression levels on monocyte
260 subsets**

261 The expression levels of functional surface markers were examined on monocyte subsets and
262 MDSC (**Figure 6A, Supplementary Figure 2**). The clearest pattern was the decreased PD-L1
263 expression, which was observed at all time points on the monocyte subsets and the MDSC
264 (**Figure 6A-B, Supplementary Figure 2**). In addition, there were increased CD86 and HLA-DR
265 levels from the 2 week timepoint onwards on the monocyte subsets (**Figure 6A-C-D**). The iMo
266 were selected to represent the PD-L1 expression pattern seen across all monocytic cell types,
267 which was significantly reduced at all time points compared to healthy controls (**Figure 6B**). A
268 detailed look at CD86 expression levels revealed a significant increased expression from 2
269 weeks onwards in iMo and ncMo, from 6 weeks onwards in MDSC, but not until 6 months in
270 cMo (**Figure 6C**). HLA-DR expression was initially reduced in cMo before reverting to levels
271 found in healthy controls at the 2 week time point. At the same time, there were increased

272 HLA-DR levels from the 2 week time point onwards in iMo. HLA-DR expression on ncMo was
273 similar at all time points (**Figure 6D**).

274

275 **Prolonged decrease in PD-L1 expression on all DC subsets and elevated CD86 levels on**
276 **conventional DC subsets**

277 The DC subsets were assessed for the expression levels of functional surface markers (**Figure**
278 **7A-B, Supplementary Figure 3**). There was a clear reduction in CD83 at 6 months and a
279 decrease in PD-L1 at all time points, across all DC subsets (**Figure 7A**). The pDC and cDC3 were
280 found to have decreased expression of CCR7 at the 6-7 month time point (**Figure 7A**,
281 **Supplementary Figure 3**). PD-L1 was significantly decreased during the entire study across all
282 DC subtypes studied (**Figure 7A, Supplementary Figure 3**). CD86 expression on pDC was
283 significantly increased at inclusion but returned, by 2 weeks, to a comparable level to controls
284 and remained so for the remainder of the 6-7 months post-COVID-19. On cDC1, CD86 was
285 increased at both inclusion and the 6-7 month time point, but not in the intervening period.
286 In the cumulative cDC2 and cDC3 population, CD86 expression increased to a significantly
287 higher level than controls at 6 weeks and 6-7 months (**Figure 7D**). Only cumulative cDC2 and
288 cDC3 showed any significant changes to HLA-DR expression, with a significant increase over
289 time, until the expression from 6 weeks onwards showed no significant difference to healthy
290 controls (**Figure 7E**). Taken together these data show that COVID-19 elicited lasting alterations
291 in PD-L1 and CD86 expression levels on DC subsets.

292

293 **CRP at inclusion correlated with alterations in monocyte and DC subsets in COVID-19**
294 **patients**

295 To determine if the initial inflammatory response to the SARS-CoV-2 infection affected the
296 myeloid cell compartment in the COVID-19 patients, we assessed correlations between clinical
297 parameters and myeloid cell populations. We found that the proportion of iMo at inclusion
298 positively correlated with CRP (**Figure 8A**), and negative correlations were found with CRP and
299 all DC subtypes, both at 2 and 6 weeks post-inclusion (**Figure 8B**).

300 **DISCUSSION**

301 To address the lack of knowledge concerning myeloid cells in COVID-19 we have investigated
302 the effects that SARS-CoV-2 infection exerts, both initially and long-term, on monocyte and
303 DC subsets. Decreased frequencies of all DC subsets were found during acute COVID-19 with
304 the levels subsequently returning to normal for all except the cDC2 and cDC3 combined
305 subset, which still had higher levels at 6-7 months follow up. There were major alterations in
306 monocyte subsets, with elevated levels of cMo that were still present at the long-term follow
307 up. Notably, MDSC levels were still elevated at the 6-7 month timepoint. Additionally, our
308 phenotypic assessment of functional markers showed elevated levels of CD86 on the
309 monocyte subsets and MDSC at the final time point. On all cells HLA-DR expression was either
310 unaffected or showed an initial decrease followed by recovery, except for iMo that had
311 elevated HLA-DR from the second week and throughout the study period. Regarding CD86,
312 the level at acute infection was elevated, especially on pDC, and high levels were sustained
313 long term on cDC1 and cDC2/cDC3. HLA-DR expression was unaffected or low at inclusion on
314 DC subsets and stayed low on the cDC2 and cDC3 combined subset. A lower expression of
315 HLA-DR could be indicative of an initial suppressed functionality of amongst these DC.
316 Here we present a well-characterized, representative cohort, with clinical features commonly
317 observed in hospitalized COVID-19 patients, as highlighted by marked lymphopenia, elevated
318 serum CRP and LDH, and changes in the polymorphonuclear leukocytes, all in accordance with
319 current knowledge ^{32-35, 40}. Previous studies have illustrated a reduction of many of the
320 myeloid cell subsets in COVID-19 ^{23, 24, 27, 41}. Monocyte frequencies have been found to be
321 lower during acute COVID-19 compared to patients in convalescence ⁴². In line with this, the
322 levels of overall monocytes in the patients in our study were significantly decreased at
323 inclusion, when compared to the later time points. The three subpopulations of monocytes

324 are distinguished primarily by their expression of CD14 and CD16, but also by other cell surface
325 markers, including CD36 and CCR2 for cMo, CCR5 and CD74 for iMo, and CXCR4 and CX3CR1
326 for nCMo. These markers aid in the wide range of functions of monocytes, including their
327 antiviral activity ⁴³. Our observed sustained increase in cMo in COVID-19 patients in
328 comparison to healthy controls is consistent with previously published data ²³. Key roles of
329 cMo include tissue repair and anti-apoptotic functions ^{44, 45}, and the elevated levels of these
330 cells at 6-7 months could be part of the host resolving long-term effects of the SARS-CoV-2
331 infection. We saw an initial drastic drop in the level of ncMo, which recovered in
332 convalescence, consistent with other reports ^{23, 46}. Different patterns are seen in severe
333 compared to mild COVID-19 in the levels of circulating iMo, with decreased levels in severe
334 disease when measured during active disease ²⁴. We found decreased levels of these cells
335 compared to healthy controls and that they failed to reach the levels of the healthy controls
336 before the 6-7 month follow up, indicating a long-lasting effect. In some COVID-19 patients
337 with post-acute sequelae, i.e., long COVID, levels of ncMo and iMo were increased even 15
338 months post SARS-CoV-2 infection ⁴¹. From acute infection to convalescence, there was a
339 decrease in cMo and an increase in ncMo ⁴⁷. The decreased ncMo in severe COVID-19 patients
340 during acute disease has been suggested to occur due to the recruitment of CD16⁺ myeloid
341 cells to inflamed lung tissue during infection ^{24, 48, 49}. In mouse models of acute lung injury and
342 in acute respiratory distress syndrome, as seen in severe COVID-19, circulating monocytes
343 have been shown to play a pivotal role in driving inflammation ⁵⁰. Another factor affecting the
344 levels of monocyte subsets could be virus-mediated cell death during COVID-19, since they all
345 express the SARS-CoV-2 receptor, ACE2 ⁴², and there is evidence of viral antigens present
346 within ncMo for over a year after initial infection ⁴¹. In addition, CD16⁺ monocytes can also be
347 infected in an ACE2-independent manner, leading to inflammatory cell death ⁵¹.

348 Recent studies, through single-cell resolution methods, point to the expansion of suppressive
349 myeloid cells in the blood as a hallmark of severe COVID-19 ^{14, 23}, as confirmed by our data.
350 These cells (MDSC) are a heterogeneous population of myeloid cells spanning granulocytes,
351 macrophages and DC and these cells exist during normal conditions at diverse frequencies at
352 different tissue ⁵². The levels of MDSC have been found to correlate to impaired T cell
353 responses ^{53, 54}. This sustained elevation suggests a long-lasting suppressive state, which we
354 have found to be reflected in the suppressive T cell phenotypes defined in our COVID-19
355 cohort ⁵⁵.

356 In line with other studies, we found that COVID-19 had a major impact on circulating DC
357 subpopulations ²³, with major reductions during active disease for pDC ¹⁴, cDC1 ²⁴, and
358 combined cDC2/cDC3 ⁵⁶. Of note, the low level of pDC was independent of the study
359 participants' age and sex, which is in line with previous findings ⁵⁷. Indeed, the reason for the
360 reduction seen in pDC and cDC1 at inclusion could be due to several factors. A redirection of
361 circulating pDC and cDC1 to lymphoid tissue has been well documented ^{25, 58} and cDC2
362 subtypes have been shown to be recruited into the lung tissue, though this is not seen for pDC
363 and cDC1 ^{24, 59}. The myeloid DC populations, cDC1 and cDC2/cDC3 returned to normal levels
364 within 2 weeks. Of note, there were long-lasting effects, with higher levels of combined
365 cDC2/cDC3 compared to healthy controls. A lasting effect with higher levels of HLA-DR⁺CD11c⁺
366 DC has been noted in individuals needing hospitalization, whereas normal levels of CD141⁺
367 DC, i.e., cDC1 were observed ³⁰. Regarding pDC, we found these cells to be affected for a longer
368 time, and to not fully return to the level found in healthy controls until the 6 week time point.
369 Conversely, at 7 months in the study by Pérez-Gómez ³⁰ the pDC levels were still not restored
370 to normal.

371 Increased levels of CD163⁺CD14⁺ DC3 could play a role in COVID-19 mediated inflammation⁵⁶.

372 In addition, the elevated levels of these cells could indicate an ongoing long-term systemic

373 inflammation due to the damage inflicted by COVID-19 on the host. In addition to relocation

374 from circulation, the observed decreases in DC might depend on the killing of immune cells by

375 direct or indirect viral effects. Contrary to monocytes, circulating DC lack expression of ACE2.

376 However, other DC receptors such as CD147 and DC-SIGN can facilitate SARS-CoV-2 binding

377 and entry^{60,61} and this might enable their infection. This interaction has been shown to induce

378 pro-apoptotic p53 pathways in pDC²⁵. Almost all DC functions are affected during COVID-19

379²⁵ with probable consequences for the progression and outcome of the illness. Initial type I

380 and III IFN responses are essential to the resolution of viral infection and are found to be

381 impaired in severe COVID-19⁶². One possible explanation for this may be the reduction of

382 pDC, which are a major source of type I IFN. Given the importance of DC for the initial

383 activation of T cell responses, their depletion or tissue relocation could hamper the

384 subsequent T cell response⁶³. Additionally, the long-lasting alteration in the DC compartment

385 could explain the sustained T cell dysfunction seen following COVID-19^{55,64}.

386 In different diseases such as cancer and severe infections, the phenotype and functionality of

387 circulating monocyte and DC subsets are altered^{65,66}. Our phenotypic assessment for

388 functional markers affecting cellular activation and suppression showed little to no decrease

389 in CD86 expression during acute disease, on monocyte subsets and MDSC. This was followed

390 by elevated CD86 levels on all these cells at the long-term follow up. Previous studies have

391 shown that monocyte subsets, and especially iMo, have decreased CD86 during acute

392 infection^{67,68}. HLA-DR expression on monocyte subsets had a similar initial decrease as found

393 for CD86, with a recovery to levels in healthy controls. The exception to this was iMo, that had

394 elevated HLA-DR from the second week and throughout the study period. The decreased HLA-

395 DR levels in acute infection for cMo, ncMo are in accordance with previous studies ^{14, 46, 67, 69,}
396 ⁷⁰. The iMo have been found to have downregulated HLA-DR during severe acute COVID-19 ^{14,}
397 ^{46, 69}, which differs to our observation of no effect on HLA-DR compared to healthy control at
398 inclusion. For HLA-DR a more pronounced decrease has been connected to severe disease ⁶⁹.
399 In severe COVID-19, HLA-DR has previously been found to be reduced across all circulating DC
400 besides cDC1 ²³. In our study HLA-DR was only significantly altered on cDC2/3 where it was
401 reduced at early time points before returning to levels found in controls, which is in agreement
402 with Marongiu et al. who showed a reduction of HLA-DR in cDC2 and cDC3 subsets ⁷¹. The
403 observed initial low expression of HLA-DR on cDC1, cDC2/cDC3, cMo, and ncMo could be a
404 sign of immunosuppression in these cells) ^{26, 69, 72, 73}. Interestingly, the elevated levels on iMo
405 found after a few weeks and throughout the study period could be an indication of an ongoing
406 inflammatory environment due to residual effects of the disease ^{8, 9}.
407 Regarding the costimulatory molecule CD86 on DC, we found an increased level of expression
408 on pDC and cDC1 at inclusion but not cDC2/cDC3. The elevated CD86 levels on pDC have been
409 documented during acute SARS-CoV-2 infection ⁵⁷. However, other studies found no effect on
410 pDC, nor did they find decreased CD86 expression on HLA-DR⁺CD11c⁺ DC ^{27, 70}, or on other
411 myeloid DCs subsets in acute disease ^{7, 56}. The expression of CD86 returned to levels
412 comparable to healthy controls quickly for pDC but remained elevated on cDC1 and cDC2 and
413 cDC3 subsets at 6-7 months. This contrasts with a previously published study which showed
414 long-term reduction in CD86 expression on pDC and HLA-DR⁺CD11c⁺ DC subsets in hospitalized
415 COVID-19 patients ³⁰. Elevated CD86 expression was found on ki67⁺ cDC2 and cDC3 subsets,
416 i.e., a similar pattern as we have seen for these DC subsets, highlighting that the level seems
417 to be connected to the time that they have been in circulation ⁵⁶. CD86 is found to be elevated

418 in cancer and chronic infections such as HIV-1, and the increased CD86 we see could be
419 another indicator of ongoing, low-level systemic inflammation from lung repair following
420 COVID-19⁷⁴. The differences between our and other results could be due to the method of
421 defining DC subsets, with many studies assessing CD14⁻HLA-DR⁺CD11c⁺ DC and not the
422 different cDC subsets we have used in our study.

423 In our study we observed a consistently lower PD-L1 surface expression across pDC and cDC
424 subsets, in keeping with gene and protein expression levels in hospitalized patients during
425 acute disease^{30, 75, 76}. This decrease of PD-L1 has not been seen in other studies, rather an
426 increased surface expression of PD-L1 has been seen when examining the bulk monocytes^{70,}
427⁷⁷, HLA-DR⁺CD11c⁺ DC, and pDC^{57, 70}. Interestingly, on cDC1 and cDC2 recently entering
428 circulation (ki67⁺ cells), the levels of PD-L1 were decreased in COVID-19 patients compared to
429 controls⁵⁶. In our data this reduced expression of PD-L1 persisted for the entire duration of
430 the study, as was seen also in a previous study at 7 months post-COVID-19³⁰. Furthermore,
431 PD-L1 expression was reduced on monocyte subsets when compared to the healthy controls
432 throughout the 6-7 month period of our study. The loss of PD-L1 might be due to shedding of
433 soluble PD-L1, which is found to be elevated in the serum of COVID-19 patients⁷⁵. Of note,
434 the severity of disease seems to correlate to the level of soluble PD-L1 in circulation⁷⁵. The
435 lasting reduction that we observe in PD-L1 expression across all myeloid cell subsets requires
436 further study to explore if it plays any role in COVID-19 pathogenesis.

437 Concerning the migratory receptor CCR7, there was little change in the DC and monocyte
438 subsets during acute disease compared to healthy controls, while long-term effects included
439 decreased CCR7 on cMo, pDC and the two cDC3 populations. This decrease is in accordance
440 with previous findings for cDC at 7 months³⁰, but not for pDC, which had long-term increased
441 CCR7³⁰, though this study measured the percentage of positive cells whereas we measured

442 level of expression. CD83 expression has been explored at gene level in DC in COVID-19 ^{14, 78},
443 however, not much is known regarding surface protein expression. We did not find any major
444 alterations in the surface expression of CD83 across DC, which concurs with Venet et al. ⁷⁶.
445 Overall, we identified marked alterations to the expression of surface markers across myeloid
446 cell types following COVID-19. The long-term changes to the surface expression of these
447 proteins on monocytes and DC may be due to epigenetic changes resulting from severe
448 COVID-19 ⁷⁹, possibly altering progenitors in the bone marrow.
449 COVID-19 severity has been linked to an array of clinical parameters such as the level of
450 soluble urokinase plasminogen activator receptor (suPAR), CRP, and viral load ⁸⁰⁻⁸³. In this
451 study, the viral load correlated positively with the CRP levels and negatively with anti-spike
452 IgG and neutralizing SARS-CoV-2 antibody levels, at inclusion. In addition, the COVID-19
453 patients with high CRP levels had lower levels of anti-spike IgG and neutralizing antibodies at
454 inclusion. This negative association between CRP and antibody levels early on during SARS-
455 CoV-2 infection has, to our knowledge, not yet been made. It has previously been shown that
456 higher levels of specific antibodies during convalescence correlated with initial higher CRP
457 levels ⁸⁴, though we did not see this. During acute disease, the levels of pDC, cDC2, and
458 CD163⁺CD14⁻ cDC3 were negatively correlated to CRP levels ^{56, 69}, which we confirm in our
459 study to be the case for all circulating DC subsets, i.e., a faster DC recovery could be predicted
460 by lower initial levels of CRP. Conversely, during mild disease a positive correlation of pDC
461 proportions with CRP has been shown ³⁰. The levels of all monocyte subsets were previously
462 found to negatively correlate to CRP in acute disease ⁸⁵, while we found a positive correlation
463 for iMo levels in our study. The failure to induce a strong type I IFN response in COVID-19 leads
464 to a prolonged high viral load and induces a highly inflammatory environment that includes

465 raised CRP ⁸⁶. This in turn might have long-term effects on monocyte and DC subsets, which
466 our data strongly supports.

467 A potential limitation of our study is the imperfect age and sex matching of the controls to the
468 patients. This is of particular importance for some DC subsets such as pDC, which are
469 decreased in older (>40 years) healthy individuals, whereas there are no significant effects on
470 cDC ^{87, 88}. Given that the levels of pDC returned to the levels of healthy controls we do not
471 believe this is an issue. While biological sex does not seem to play a role for the levels of MDSC
472 in general, their levels could be influenced during disease. A study of MDSC in mild to severe
473 COVID-19 found higher levels of monocytic MDSC in males than in females ⁸⁹. The increase we
474 found of MDSC in blood from hospitalized COVID-19 patients did not correlate with biological
475 sex or age, however, our cohort was relatively small and did not contain cases of mild disease,
476 so a larger cohort may be needed to observe these associations. The MDSC levels increase
477 with age and highly elevated levels are seen in severe infections and cancers ⁹⁰⁻⁹⁶. For instance,
478 there are increased conventional CD33⁺HLA-DR⁻CD45⁺ MDSC in older adults compared to
479 younger adults. A general problem, not specific for our study, when comparing data from
480 different COVID-19 studies is the definition of disease severity, that diverges depending on
481 country. We defined severity according to the NIH guidelines, which are based largely on
482 supplemental oxygen requirements ³¹, as opposed to the WHO scale ⁹⁷.

483 In conclusion, given the long-lasting changes in the monocyte, DC and MDSC compartments,
484 as seen in the altered frequencies of cell populations and expression levels of various surface
485 markers, it is evident that COVID-19 imprints the development and fate of these cells. Further
486 studies will be required to determine for exactly how long these alterations persist after
487 severe COVID-19, and if they affect the type and quality of immune responses elicited against
488 future infections.

489 **Authorship contribution**

490 F.R.H., M.G., C.S., J.N., and H.W. conducted experiments. F.R.H., M.G., C.S., J.N., H.W., S.N.,
491 and M.L. analyzed the data. F.R.H., M.G., and M.L were involved in the writing of the initial
492 manuscript, and F.R.H., M.G., C.S., J.N., A.N., A.J.H., M.H., J.S., S.N., and M.L helped in the
493 revision of the manuscript. M.L. designed the experiments. A.N., A.J.H., M.H., J.S., S.N., and
494 M.L. were involved in establishing the cohort study. All authors read and approved the final
495 manuscript.

496

497 **Acknowledgements**

498 We are grateful for all patients and healthy donors who participated in this cohort study. We
499 thank all individuals involved in the study, including coordinators, and all healthcare personnel
500 from the Clinic of Infectious Diseases, and the Intensive Care Unit at the Vrinnevi Hospital,
501 Norrköping, Sweden. Our sincere thanks to Annette Gustafsson for helping with the study
502 coordination and sample collection. We would like to thank Mario Alberto Cano Fiestas and
503 Robin Göransson for their assistance with sample processing. We appreciate the assistance
504 from Jörgen Adolfsson and the Core Facility Flow Cytometry Unit at Linkoping University.
505 Finally, we thank the staff at the Flow Cytometry Unit at Clinical Immunology and Transfusion
506 Medicine, Region Östergötland.

507

508 **Funding**

509 This work has been supported by grants through: ML SciLifeLab/KAW COVID-19
510 Research Program, Swedish Research Council project grant 201701091, COVID-19 ALF

511 (Linköping University Hospital Research Fund), Region Östergötland ALF Grant, RÖ935411 (JS);

512 Regional ALF Grant 2021 (ÅN-A and JS), Vrinnevi Hospital in Norrköping).

513

514 **Competing interest/conflict**

515 The authors declare no competing interest/conflict.

516 References

- 517 1. WHO. COVID-19 advice for the public: Getting vaccinated: World Health Organization;
518 2022 [Available from: <https://www.who.int/emergencies/diseases/novel-coronavirus-2019/covid-19-vaccines/advice>].
- 519 2. WHO. WHO Coronavirus (COVID-19) Dashboard Geneva2022 [updated 1 March.
520 Website]. Available from: <https://covid19.who.int/>.
- 521 3. Moss P. The T cell immune response against SARS-CoV-2. *Nat Immunol.* 2022;23(2):186-
522 93.
- 523 4. Chen Z, John Wherry E. T cell responses in patients with COVID-19. *Nat Rev Immunol.*
524 2020;20(9):529-36.
- 525 5. Bassler K, Schulte-Schrepping J, Warnat-Herresthal S, Aschenbrenner AC, Schultze JL.
526 The Myeloid Cell Compartment—Cell by Cell. *Annual Review of Immunology.* 2019;37(1):269-93.
- 527 6. Kapellos TS, Bonaguro L, Gemund I, Reusch N, Saglam A, Hinkley ER, et al. Human
528 Monocyte Subsets and Phenotypes in Major Chronic Inflammatory Diseases. *Front Immunol.*
529 2019;10:2035.
- 530 7. Anbazhagan K, Duroux-Richard I, Jorgensen C, Apparailly F. Transcriptomic network
531 support distinct roles of classical and non-classical monocytes in human. *Int Rev Immunol.*
532 2014;33(6):470-89.
- 533 8. Lee J, Tam H, Adler L, Ilstad-Minnihan A, Macaubas C, Mellins ED. The MHC class II
534 antigen presentation pathway in human monocytes differs by subset and is regulated by cytokines.
535 *PLoS One.* 2017;12(8):e0183594.
- 536 9. Tolouei Semnani R, Moore V, Bennuru S, McDonald-Fleming R, Ganesan S, Cotton R, et
537 al. Human monocyte subsets at homeostasis and their perturbation in numbers and function in filarial
538 infection. *Infect Immun.* 2014;82(11):4438-46.
- 539 10. Veglia F, Sanseviero E, Gabrilovich DI. Myeloid-derived suppressor cells in the era of
540 increasing myeloid cell diversity. *Nature Reviews Immunology.* 2021;21(8):485-98.
- 541 11. Coates BM, Staricha KL, Koch CM, Cheng Y, Shumaker DK, Budinger GRS, et al. Inflammatory
542 Monocytes Drive Influenza A Virus-Mediated Lung Injury in Juvenile Mice. *J Immunol.*
543 2018;200(7):2391-404.
- 544 12. Leon J, Michelson DA, Olejnik J, Chowdhary K, Oh HS, Hume AJ, et al. A virus-specific
545 monocyte inflammatory phenotype is induced by SARS-CoV-2 at the immune–epithelial
546 interface. *Proceedings of the National Academy of Sciences.* 2022;119(1):e2116853118.
- 547 13. Haschka D, Petzer V, Burkert FR, Fritsche G, Wildner S, Bellmann-Weiler R, et al.
548 Alterations of blood monocyte subset distribution and surface phenotype are linked to infection
549 severity in COVID-19 inpatients. *Eur J Immunol.* 2022.
- 550 14. Schulte-Schrepping J, Reusch N, Paclik D, Bassler K, Schlickeiser S, Zhang B, et al. Severe
551 COVID-19 Is Marked by a Dysregulated Myeloid Cell Compartment. *Cell.* 2020;182(6):1419-40 e23.
- 552 15. Vanderbeke L, Van Mol P, Van Herck Y, De Smet F, Humbert-Baron S, Martinod K, et al.
553 Monocyte-driven atypical cytokine storm and aberrant neutrophil activation as key mediators of
554 COVID-19 disease severity. *Nat Commun.* 2021;12(1):4117.
- 555 16. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. *Nature.*
556 1998;392(6673):245-52.
- 557 17. Collin M, Bigley V. Human dendritic cell subsets: an update. *Immunology.* 2018;154(1):3-
558 20.
- 559 18. Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, et al. Nomenclature
560 of monocytes and dendritic cells in blood. *Blood.* 2010;116(16):e74-80.
- 561 19. Bao M, Liu YJ. Regulation of TLR7/9 signaling in plasmacytoid dendritic cells. *Protein Cell.*
562 2013;4(1):40-52.
- 563

564 20. Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X, Angel CE, et al. Human CD141+
565 (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell
566 antigens. *J Exp Med.* 2010;207(6):1247-60.

567 21. Yin X, Yu H, Jin X, Li J, Guo H, Shi Q, et al. Human Blood CD1c+ Dendritic Cells Encompass
568 CD5high and CD5low Subsets That Differ Significantly in Phenotype, Gene Expression, and Functions. *J*
569 *Immunol.* 2017;198(4):1553-64.

570 22. Peng Q, Qiu X, Zhang Z, Zhang S, Zhang Y, Liang Y, et al. PD-L1 on dendritic cells
571 attenuates T cell activation and regulates response to immune checkpoint blockade. *Nature*
572 *Communications.* 2020;11(1):4835.

573 23. Kvedaraite E, Hertwig L, Sinha I, Ponzetta A, Hed Myrberg I, Lourda M, et al. Major
574 alterations in the mononuclear phagocyte landscape associated with COVID-19 severity. *Proc Natl*
575 *Acad Sci U S A.* 2021;118(6).

576 24. Sanchez-Cerrillo I, Landete P, Aldave B, Sanchez-Alonso S, Sanchez-Azofra A, Marcos-
577 Jimenez A, et al. COVID-19 severity associates with pulmonary redistribution of CD1c+ DCs and
578 inflammatory transitional and nonclassical monocytes. *J Clin Invest.* 2020;130(12):6290-300.

579 25. Saichi M, Ladjemi MZ, Korniotis S, Rousseau C, Ait Hamou Z, Massenet-Regad L, et al. Single-cell RNA sequencing of blood antigen-presenting cells in severe COVID-19 reveals multi-process
580 defects in antiviral immunity. *Nat Cell Biol.* 2021;23(5):538-51.

581 26. Winheim E, Rinke L, Lutz K, Reischer A, Leutbecher A, Wolfram L, et al. Impaired function
582 and delayed regeneration of dendritic cells in COVID-19. *PLOS Pathogens.* 2021;17(10):e1009742.

583 27. Zhou R, To KK, Wong YC, Liu L, Zhou B, Li X, et al. Acute SARS-CoV-2 Infection Impairs
584 Dendritic Cell and T Cell Responses. *Immunity.* 2020;53(4):864-77 e5.

585 28. Rydzynski M, Moderbacher C, Ramirez SI, Dan JM, Grifoni A, Hastie KM, Weiskopf D, et al. Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and
586 Disease Severity. *Cell.* 2020;183(4):996-1012.e19.

587 29. Calistri P, Amato L, Puglia I, Cito F, Di Giuseppe A, Danzetta ML, et al. Infection sustained
588 by lineage B.1.1.7 of SARS-CoV-2 is characterised by longer persistence and higher viral RNA loads in
589 nasopharyngeal swabs. *Int J Infect Dis.* 2021;105:753-5.

590 30. Pérez-Gómez A, Vitallé J, Gasca-Capote C, Gutierrez-Valencia A, Trujillo-Rodriguez M,
591 Serna-Gallego A, et al. Dendritic cell deficiencies persist seven months after SARS-CoV-2 infection.
592 *Cellular & Molecular Immunology.* 2021;18(9):2128-39.

593 31. NIH. COVID-19 Treatment Guidelines Panel. *Coronavirus Disease 2019 (COVID-19)*
594 *Treatment Guidelines.* National Institutes of Health. 2020 [Available from:
595 <https://www.covid19treatmentguidelines.nih.gov/>].

596 32. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected
597 with 2019 novel coronavirus in Wuhan, China. *Lancet.* 2020;395(10223):497-506.

598 33. Laing AG, Lorenc A, del Molino del Barrio I, Das A, Fish M, Monin L, et al. A dynamic
599 COVID-19 immune signature includes associations with poor prognosis. *Nature Medicine.*
600 2020;26(10):1623-35.

601 34. Reusch N, De Domenico E, Bonaguro L, Schulte-Schrepping J, Baßler K, Schultze JL, et al. Neutrophils in COVID-19. *Frontiers in Immunology.* 2021;12.

602 35. Xie G, Ding F, Han L, Yin D, Lu H, Zhang M. The role of peripheral blood eosinophil counts
603 in COVID-19 patients. *Allergy.* 2021;76(2):471-82.

604 36. Lourda M, Dzidic M, Hertwig L, Bergsten H, Palma Medina LM, Sinha I, et al. High-
605 dimensional profiling reveals phenotypic heterogeneity and disease-specific alterations of
606 granulocytes in COVID-19. *Proc Natl Acad Sci U S A.* 2021;118(40).

607 37. Thomopoulos TP, Rosati M, Terpos E, Stellas D, Hu X, Karaliota S, et al. Kinetics of
608 Nucleocapsid, Spike and Neutralizing Antibodies, and Viral Load in Patients with Severe COVID-19
609 Treated with Convalescent Plasma. *Viruses.* 2021;13(9).

610 38. Röltgen K, Powell AE, Wirz OF, Stevens BA, Hogan CA, Najeeb J, et al. Defining the
611 features and duration of antibody responses to SARS-CoV-2 infection associated with disease severity
612 and outcome. *Sci Immunol.* 2020;5(54):eabe0240.

616 39. Mair F, Liechti T. Comprehensive Phenotyping of Human Dendritic Cells and Monocytes.
617 Cytometry Part A. 2021;99(3):231-42.

618 40. Lourda M, Dzidic M, Hertwig L, Bergsten H, Medina LMP, Sinha I, et al. High-dimensional
619 profiling reveals phenotypic heterogeneity and disease-specific alterations of granulocytes in COVID-
620 19. Proceedings of the National Academy of Sciences. 2021;118(40):e2109123118.

621 41. Patterson BK, Francisco EB, Yogendra R, Long E, Pise A, Rodrigues H, et al. Persistence
622 of SARS CoV-2 S1 Protein in CD16+ Monocytes in Post-Acute Sequelae of COVID-19 (PASC) up to 15
623 Months Post-Infection. Front Immunol. 2021;12:746021.

624 42. Rutkowska-Zapala M, Suski M, Szatanek R, Lenart M, Weglarczyk K, Olszanecki R, et al.
625 Human monocyte subsets exhibit divergent angiotensin I-converting activity. Clin Exp Immunol.
626 2015;181(1):126-32.

627 43. Kapellos TS, Bonaguro L, Gemünd I, Reusch N, Saglam A, Hinkley ER, et al. Human
628 Monocyte Subsets and Phenotypes in Major Chronic Inflammatory Diseases. Frontiers in Immunology.
629 2019;10.

630 44. Wong KL, Tai JJ-Y, Wong W-C, Han H, Sem X, Yeap W-H, et al. Gene expression profiling
631 reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets.
632 Blood. 2011;118(5):e16-e31.

633 45. Wong KL, Yeap WH, Tai JJY, Ong SM, Dang TM, Wong SC. The three human monocyte
634 subsets: implications for health and disease. Immunologic Research. 2012;53(1):41-57.

635 46. Gatti A, Radrizzani D, Vigano P, Mazzone A, Brando B. Decrease of Non-Classical and
636 Intermediate Monocyte Subsets in Severe Acute SARS-CoV-2 Infection. Cytometry A. 2020;97(9):887-
637 90.

638 47. Rajamanickam A, Kumar NP, Pandiarajan AN, Selvaraj N, Munisankar S, Renji RM, et al.
639 Dynamic alterations in monocyte numbers, subset frequencies and activation markers in acute and
640 convalescent COVID-19 individuals. Sci Rep. 2021;11(1):20254.

641 48. Carvelli J, Demaria O, Vély F, Batista L, Chouaki Benmansour N, Fares J, et al. Association
642 of COVID-19 inflammation with activation of the C5a–C5aR1 axis. Nature. 2020;588(7836):146-50.

643 49. Gatti A, Radrizzani D, Vigano P, Mazzone A, Brando B. Decrease of Non-Classical and
644 Intermediate Monocyte Subsets in Severe Acute SARS-CoV-2 Infection. Cytometry Part A.
645 2020;97(9):887-90.

646 50. Dhaliwal K, Scholefield E, Ferenbach D, Gibbons M, Duffin R, Dorward DA, et al.
647 Monocytes Control Second-Phase Neutrophil Emigration in Established Lipopolysaccharide-induced
648 Murine Lung Injury. American Journal of Respiratory and Critical Care Medicine. 2012;186(6):514-24.

649 51. Junqueira C, Crespo A, Ranjbar S, de Lacerda LB, Lewandrowski M, Ingber J, et al.
650 FcγR-mediated SARS-CoV-2 infection of monocytes activates inflammation. Nature. 2022.

651 52. Youn JI, Nagaraj S, Collazo M, Gabrilovich DI. Subsets of myeloid-derived suppressor
652 cells in tumor-bearing mice. J Immunol. 2008;181(8):5791-802.

653 53. Serafini P, Mgebroff S, Noonan K, Borrello I. Myeloid-derived suppressor cells promote
654 cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res. 2008;68(13):5439-49.

655 54. Veglia F, Perego M, Gabrilovich D. Myeloid-derived suppressor cells coming of age. Nat
656 Immunol. 2018;19(2):108-19.

657 55. Govender M, Hopkins FR, Göransson R, Svanberg C, Shankar EM, Hjorth M, et al. Long-
658 term T cell perturbations and waning antibody levels in individuals needing hospitalization for COVID-
659 19. bioRxiv. 2022:2022.03.17.484640.

660 56. Winheim E, Rinke L, Lutz K, Reischer A, Leutbecher A, Wolfram L, et al. Impaired function
661 and delayed regeneration of dendritic cells in COVID-19. PLoS Pathog. 2021;17(10):e1009742.

662 57. Severa M, Diotti RA, Etna MP, Rizzo F, Fiore S, Ricci D, et al. Differential plasmacytoid
663 dendritic cell phenotype and type I Interferon response in asymptomatic and severe COVID-19
664 infection. PLoS Pathog. 2021;17(9):e1009878.

665 58. Liu C, Martins AJ, Lau WW, Rachmaninoff N, Chen J, Imberti L, et al. Time-resolved
666 systems immunology reveals a late juncture linked to fatal COVID-19. Cell. 2021;184(7):1836-57 e22.

667 59. Campana P, Parisi V, Leosco D, Bencivenga D, Della Ragione F, Borriello A. Dendritic Cells
668 and SARS-CoV-2 Infection: Still an Unclarified Connection. *Cells*. 2020;9(9).

669 60. Wang K, Chen W, Zhang Z, Deng Y, Lian JQ, Du P, et al. CD147-spike protein is a novel
670 route for SARS-CoV-2 infection to host cells. *Signal Transduct Target Ther*. 2020;5(1):283.

671 61. Thepaut M, Luczkowiak J, Vives C, Labiod N, Bally I, Lasala F, et al. DC/L-SIGN recognition
672 of spike glycoprotein promotes SARS-CoV-2 trans-infection and can be inhibited by a glycomimetic
673 antagonist. *PLoS Pathog*. 2021;17(5):e1009576.

674 62. Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Smith N, et al. Impaired type I
675 interferon activity and inflammatory responses in severe COVID-19 patients. *Science*.
676 2020;369(6504):718-24.

677 63. Sallusto F, Lanzavecchia A. The instructive role of dendritic cells on T-cell responses.
678 *Arthritis Res*. 2002;4 Suppl 3:S127-32.

679 64. Yang J, Zhong M, Zhang E, Hong K, Yang Q, Zhou D, et al. Broad phenotypic alterations
680 and potential dysfunction of lymphocytes in individuals clinically recovered from COVID-19. *J Mol Cell*
681 *Biol*. 2021;13(3):197-209.

682 65. Kiss M, Caro AA, Raes G, Laoui D. Systemic Reprogramming of Monocytes in Cancer.
683 *Front Oncol*. 2020;10:1399.

684 66. Miller E, Bhardwaj N. Dendritic cell dysregulation during HIV-1 infection. *Immunol Rev*.
685 2013;254(1):170-89.

686 67. Laing AG, Lorenc A, Del Molino Del Barrio I, Das A, Fish M, Monin L, et al. A dynamic
687 COVID-19 immune signature includes associations with poor prognosis. *Nat Med*. 2020;26(10):1623-
688 35.

689 68. Arunachalam PS, Wimmers F, Mok CKP, Perera R, Scott M, Hagan T, et al. Systems
690 biological assessment of immunity to mild versus severe COVID-19 infection in humans. *Science*.
691 2020;369(6508):1210-20.

692 69. Peruzzi B, Bencini S, Capone M, Mazzoni A, Maggi L, Salvati L, et al. Quantitative and
693 qualitative alterations of circulating myeloid cells and plasmacytoid DC in SARS-CoV-2 infection.
694 *Immunology*. 2020;161(4):345-53.

695 70. Parackova Z, Zentsova I, Bloomfield M, Vrabcova P, Smetanova J, Klocperk A, et al.
696 Disharmonic Inflammatory Signatures in COVID-19: Augmented Neutrophils' but Impaired Monocytes'
697 and Dendritic Cells' Responsiveness. *Cells*. 2020;9(10).

698 71. Marongiu L, Protti G, Facchini FA, Valache M, Mingozi F, Ranzani V, et al. Maturation
699 signatures of conventional dendritic cell subtypes in COVID-19 suggest direct viral sensing. *Eur J*
700 *Immunol*. 2022;52(1):109-22.

701 72. Mudd PA, Crawford JC, Turner JS, Souquette A, Reynolds D, Bender D, et al. Distinct
702 inflammatory profiles distinguish COVID-19 from influenza with limited contributions from cytokine
703 storm. *Science Advances*. 2020;6(50):eabe3024.

704 73. Spinetti T, Hirzel C, Fux M, Walti LN, Schober P, Stueber F, et al. Reduced Monocytic
705 Human Leukocyte Antigen-DR Expression Indicates Immunosuppression in Critically Ill COVID-19
706 Patients. *Anesth Analg*. 2020;131(4):993-9.

707 74. Polidoro RB, Hagan RS, de Santis Santiago R, Schmidt NW. Overview: Systemic
708 Inflammatory Response Derived From Lung Injury Caused by SARS-CoV-2 Infection Explains Severe
709 Outcomes in COVID-19. *Front Immunol*. 2020;11:1626.

710 75. Sabbatino F, Conti V, Franci G, Sellitto C, Manzo V, Pagliano P, et al. PD-L1 Dysregulation
711 in COVID-19 Patients. *Front Immunol*. 2021;12:695242.

712 76. Venet M, Sa Ribeiro M, Décembre E, Bellomo A, Joshi G, Villard M, et al. Severe COVID-
713 19 patients have impaired plasmacytoid dendritic cell-mediated control of SARS-CoV-2-infected cells.
714 *medRxiv*. 2021:2021.09.01.21262969.

715 77. Rutkowska E, Kwiecien I, Klos K, Rzepecki P, Chcialowski A. Intermediate Monocytes
716 with PD-L1 and CD62L Expression as a Possible Player in Active SARS-CoV-2 Infection. *Viruses*.
717 2022;14(4).

718 78. Cai G, Du M, Bosse Y, Albrecht H, Qin F, Luo X, et al. SARS-CoV-2 Impairs Dendritic Cells
719 and Regulates DC-SIGN Gene Expression in Tissues. *Int J Mol Sci.* 2021;22(17).

720 79. Cheong J-G, Ravishankar A, Sharma S, Parkhurst CN, Nehar-Belaid D, Ma S, et al.
721 Epigenetic Memory of COVID-19 in Innate Immune Cells and Their Progenitors. *bioRxiv.*
722 2022:2022.02.09.479588.

723 80. Sadeghi-Haddad-Zavareh M, Bayani M, Shokri M, Ebrahimpour S, Babazadeh A,
724 Mehraeen R, et al. C-Reactive Protein as a Prognostic Indicator in COVID-19 Patients. *Interdisciplinary
725 Perspectives on Infectious Diseases.* 2021;2021:5557582.

726 81. Malik P, Patel U, Mehta D, Patel N, Kelkar R, Akrmah M, et al. Biomarkers and outcomes
727 of COVID-19 hospitalisations: systematic review and meta-analysis. *BMJ Evidence-Based Medicine.*
728 2021;26(3):107-8.

729 82. Enocsson H, Idoff C, Gustafsson A, Govender M, Hopkins F, Larsson M, et al. Soluble
730 Urokinase Plasminogen Activator Receptor (suPAR) Independently Predicts Severity and Length of
731 Hospitalisation in Patients With COVID-19. *Front Med (Lausanne).* 2021;8:791716.

732 83. Chen W, Xiao Q, Fang Z, Lv X, Yao M, Deng M. Correlation Analysis between the Viral
733 Load and the Progression of COVID-19. *Computational and Mathematical Methods in Medicine.*
734 2021;2021:9926249.

735 84. Guo J, Li L, Wu Q, Li H, Li Y, Hou X, et al. Detection and predictors of anti-SARS-CoV-2
736 antibody levels in COVID-19 patients at 8 months after symptom onset. *Future Virol.* 2021;0(0).

737 85. Emsen A, Sumer S, Tulek B, Cizmecioğlu H, Vatansev H, Goktepe MH, et al. Correlation
738 of myeloid-derived suppressor cells with C-reactive protein, ferritin and lactate dehydrogenase levels
739 in patients with severe COVID-19. *Scand J Immunol.* 2022;95(1):e13108.

740 86. Ramasamy S, Subbian S. Critical Determinants of Cytokine Storm and Type I Interferon
741 Response in COVID-19 Pathogenesis. *Clinical Microbiology Reviews.* 2021;34(3):e00299-20.

742 87. Vora R, Bernardo D, Durant L, Reddi D, Hart AL, Fell JM, et al. Age-related alterations in
743 blood and colonic dendritic cell properties. *Oncotarget.* 2016;7(11):11913-22.

744 88. Jing Y, Shaheen E, Drake RR, Chen N, Gravenstein S, Deng Y. Aging is associated with a
745 numerical and functional decline in plasmacytoid dendritic cells, whereas myeloid dendritic cells are
746 relatively unaltered in human peripheral blood. *Hum Immunol.* 2009;70(10):777-84.

747 89. Falck-Jones S, Vangeti S, Yu M, Falck-Jones R, Cagigi A, Badolati I, et al. Functional
748 monocytic myeloid-derived suppressor cells increase in blood but not airways and predict COVID-19
749 severity. *J Clin Invest.* 2021;131(6).

750 90. Chi N, Tan Z, Ma K, Bao L, Yun Z. Increased circulating myeloid-derived suppressor cells
751 correlate with cancer stages, interleukin-8 and -6 in prostate cancer. *Int J Clin Exp Med.*
752 2014;7(10):3181-92.

753 91. Huang A, Zhang B, Yan W, Wang B, Wei H, Zhang F, et al. Myeloid-derived suppressor
754 cells regulate immune response in patients with chronic hepatitis B virus infection through PD-1-
755 induced IL-10. *J Immunol.* 2014;193(11):5461-9.

756 92. Lv J, Zhao Y, Zong H, Ma G, Wei X, Zhao Y. Increased Levels of Circulating Monocytic-
757 and Early-Stage Myeloid-Derived Suppressor Cells (MDSC) in Acute Myeloid Leukemia. *Clin Lab.*
758 2021;67(3).

759 93. Sacchi A, Grassi G, Notari S, Gili S, Bordoni V, Tartaglia E, et al. Expansion of Myeloid
760 Derived Suppressor Cells Contributes to Platelet Activation by L-Arginine Deprivation during SARS-CoV-
761 2 Infection. *Cells.* 2021;10(8).

762 94. Tcyganov EN, Hanabuchi S, Hashimoto A, Campbell D, Kar G, Slidel TW, et al. Distinct
763 mechanisms govern populations of myeloid-derived suppressor cells in chronic viral infection and
764 cancer. *J Clin Invest.* 2021;131(16).

765 95. Yaseen MM, Abuharfeil NM, Darmani H. Myeloid-derived suppressor cells and the
766 pathogenesis of human immunodeficiency virus infection. *Open Biol.* 2021;11(11):210216.

767 96. Bowdish DM. Myeloid-derived suppressor cells, age and cancer. *Oncoimmunology.*
768 2013;2(7):e24754.

769 97. WHO Working Group on the Clinical Characterisation and Management of COVID-19
770 Infection-. A minimal common outcome measure set for COVID-19 clinical research. Lancet Infect Dis.
771 2020;20(8):e192-e7.

772

773 **Figure legends**

774 **Figure 1. Study outline and experimental design.**

775 PBMCs and serum were collected from 21 COVID-19 patients and 16 healthy donors over a 6-
776 7 month period. **(A)** Design of COVID cohort study illustrating timepoints for sample collection
777 and experimental outputs, created with BioRender.com. Initial clinical assessments of **(B)**
778 blood cell counts, **(C)** plasma C-reactive protein (CRP) and lactate dehydrogenase (LDH), and
779 **(D)** neutralizing SARS-CoV-2 antibody titers. **(E)** Representative gating strategy to demonstrate
780 live/dead gating and lineage exclusion, to leave myeloid cell populations for further analysis.
781 **(F)** tSNE plots showing distinct clustering of all live cells, with 17 patients overlaid, and 16
782 controls overlaid. Data is represented as mean with 95% CI, with significance of *p ≤ 0.05,
783 ****p ≤ 0.0001, determined using Brown-Forsythe and Welch ANOVA tests. Inc = Study
784 inclusion, 2W = 2 weeks, 6W = 6 weeks, 6M = 6-7 months, HC = healthy control. Mo =
785 monocytes; cMo = classical iMo = intermediate, ncMo = non-classical, MDSC = myeloid-
786 derived suppressor cells, DC = dendritic cells; pDC = plasmacytoid, cDC1/2/3 = conventional.

787

788 **Figure 2. Dysregulation in the frequency of myeloid compartments persists for 6 months in**
789 **hospitalized COVID-19 patients.**

790 PBMCs obtained from 21 COVID-19 patients and 16 healthy donors over a 6-7 month period
791 were stained with monoclonal antibodies and assessed by flow cytometry to identify the
792 myeloid cell subsets. Percentage of the cells comprising **(A)** the total HLA-DR⁺Lin⁻ myeloid
793 compartment and **(B)** CD88⁺ monocytes. **(C)** Representative gating and percentage of
794 CD14⁺HLA⁻DR-Lin⁻ MDSC. **(D)** Ratio of CD88⁺ monocytes to CD88⁻ myeloid cells. Data is
795 represented as mean with 95% CI, with significance of *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001,

796 ***p ≤ 0.0001, determined using Brown-Forsythe and Welch ANOVA tests. Inc = Study
797 inclusion, 2W = 2 weeks, 6W = 6 weeks, 6M = 6-7 months, HC = healthy control.

798

799 **Figure 3. Classical and intermediate monocyte cells subsets remain altered in COVID-19**
800 **patients at 6 months.**

801 PBMCs were collected from COVID-19 patients that required hospitalization (N=21) and
802 healthy controls (N=16) over a 6-7-month period. Cells were stained with antibodies for flow
803 cytometry to define the monocyte subsets. (A) tSNE plots displaying myeloid cell clusters,
804 colored according to their intensity of CD14 and CD16 expression. (B) Representative plots
805 illustrating how monocyte subsets were defined. (C) Frequencies of the CD14⁺CD16⁻ cMo,
806 CD14⁺CD16⁺ iMo, and CD14⁻CD16⁻ ncMo. Data is represented as mean with 95% CI, with
807 significance of *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ***p ≤ 0.0001, determined using Brown-
808 Forsythe and Welch ANOVA tests. Inc = Study inclusion, 2W = 2 weeks, 6W = 6 weeks, 6M = 6-
809 7 months, HC = healthy control.

810

811 **Figure 4. Plasmacytoid DCs in COVID-19 patients are severely depleted in blood during**
812 **COVID-19.**

813 PBMCs collected from hospitalized COVID-19 patients (N = 21) and healthy controls (N = 16),
814 were stained for flow cytometry to observe the effect of SARS-CoV-2 on the overall DC
815 compartment. (A) tSNE plots illustrating the changing distribution of DC within CD88⁻ myeloid
816 cells. (B) Gating strategy for DC subsets. (C) Ratio of CD303⁻ cells to pDC during COVID-19. (D)
817 Percentages CD303⁺ pDC. Data are presented as mean with 95% CI, with significance of *p ≤

818 0.05, ***p ≤ 0.001, **** p ≤ 0.0001, determined using Brown-Forsythe and Welch ANOVA
819 tests. Inc = Study inclusion, 2W = 2 weeks, 6W = 6 weeks, 6M = 6-7 months, HC = healthy
820 control.

821

822 **Figure 5. Initial depletion of classical DC populations during COVID-19.**

823 PBMCs from hospitalized COVID-19 patients (N = 21) and healthy donors (N = 16), were stained
824 for flow cytometry to observe changes in the composition of the cDC compartment during
825 COVID-19. Proportions of (A) CADM1⁺CD141⁺ cDC1, (B) CD11c⁺FCεR1a⁺ cDC2 and cDC3
826 combined, (C) CD5⁺CD163⁻ cDC2 and CD5⁻CD163⁻ cDC2, and (D) CD5⁻CD14⁺CD163⁺ cDC3 and
827 CD5⁻CD14⁺CD163⁺ cDC3 are shown. Data is presented as mean with 95% CI, with significance
828 of *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001, determined using Brown-Forsythe and
829 Welch ANOVA tests. Inc = Study inclusion, 2W = 2 weeks, 6W = 6 weeks, 6M = 6-7 months, HC
830 = healthy control.

831

832 **Figure 6. Long-term changes in the phenotype of blood monocyte subsets and myeloid
833 derived suppressor cells in COVID-19 patients.**

834 PBMCs were collected from hospitalized COVID-19 patients (N=21) and healthy controls (N =
835 16) over a 6-7 month period. (A) Heatmaps showing the mean fluorescence intensity (MFI) of
836 CCR7, PD-L1, CD86, and HLA-DR on monocyte subsets and MDSC, from all donors. (B)
837 Representative graph of PD-L1 on iMo. MFI of (C) CD86 and (D) HLA-DR on monocyte subsets
838 and MDSC. Data is represented as mean with 95% CI, with significance of *p ≤ 0.05, **p ≤ 0.01,

839 ***p ≤ 0.001, ****p ≤ 0.0001., determined using Brown-Forsythe and Welch ANOVA tests. Inc

840 = Study inclusion, 2W = 2 weeks, 6W = 6 weeks, 6M = 6-7 months, HC = healthy control.

841

842 **Figure 7. Altered phenotype of circulating dendritic cell subsets in COVID-19 patients.**

843 PBMCs collected from hospitalized COVID-19 patients (N = 21) and healthy controls (N = 16)

844 over a 6-7 months period, were assessed for phenotypical changes. (A) Heatmaps showing the

845 mean fluorescence intensity (MFI) of CD83, CCR7, PD-L1, CD86, and HLA-DR on different DC

846 subsets. (B) tSNE plots showing CD88⁻ myeloid cells, colored according to intensity of PD-L1,

847 CD86, and HLA-DR expression. (C) Representative graph of PD-L1 on pDC. MFI of (D) CD86 and

848 (E) HLA-DR on DC subsets. Data is represented as mean with 95% CI, with significance of

849 *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001., determined using Brown-Forsythe and

850 Welch ANOVA tests. Inc = Study inclusion, 2W = 2 weeks, 6W = 6 weeks, 6M = 6-7 months, HC

851 = healthy control.

852 **Figure 8. CRP levels correlated negatively with various monocyte and DC subsets.**

853 Bivariate analysis with Spearman's correlation coefficient was performed using an array of

854 clinical parameters and myeloid cell types. Significant correlations shown for (A) iMo at

855 inclusion and (B) circulating DC subsets at 2 and 6 weeks post-inclusion, all against CRP. The p

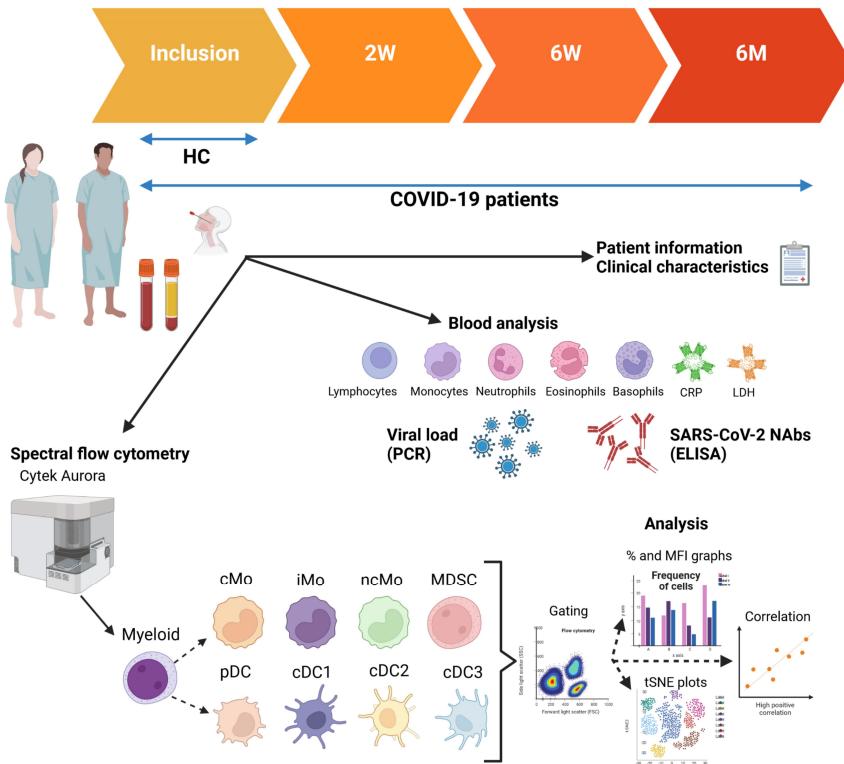
856 value and Spearman's correlation coefficient (R) are shown for each analysis. N = 21. Inc =

857 Study inclusion, 2W = 2 weeks, 6W = 6 weeks, 6M = 6-7 months, HC = healthy control.

858

Table 1. Clinical and-demographical characteristics of hospitalized COVID-19 patients.

Variable	Clinical data	Reference range
Number of patients	21	
Age, median (range)	56 (32–83)	
Body mass index, median (range)	30.7 (23.7–45.2)	
Biological sex, % (N)	38.1 F/61.9 M (8F/13M)	
Days in hospital, median (range)	9 (4-34)	
ICU/pandemic Ward %, (N)	14.3/85.7 (3/18)	
Days with symptoms before inclusion, median (range)	11 (5-30)	
Spike IgG antibody positive at inclusion, % (N)	76.2 (16)	
Nucleocapsid IgG antibody positive at inclusion, % (N)	76.2 (16)	
Viral load at inclusion, median (range)(copies/ml)	3589 (1071-111 x 10 ⁶)	
Antiviral treatment, % (N)	42.9 (9)	
Corticosteroid treatment, % (N)	76.2 (16)	
No/oxygen/HFNOT:CPAP¹/mechanical ventilation, % (N)	4.8/38.1/52.3/4.8 (1/8/11/1)	
Cardiovascular disease, % (N)	52.4 (11)	
Pulmonary disease, % (N)	28.6 (6)	
Diabetes mellitus, % (N)	19 (4)	
Two of the underlying conditions, % (N)	19 (4)	
Three of the underlying conditions, % (N)	9.5 (2)	
Disease score: moderate/severe, % (N)	85.7 (18)/14.3 (3)	
Smoker/snus, % (N)	19 (4)	
Previous history of smoking/snus, % (N)	47.6 (10)	
Leukocytes (x 10⁹/L), median (range)	6.6 (3.5–20.4)	3.5–8.8
Thrombocytes (x 10⁹/L), median (range)	275 (151–476)	150–400
Lymphocytes (x 10⁹/L), median (range)	0.9 (0.2–2.8)	1.1–4.8
Monocytes (x 10⁹/L), median (range)	0.4 (0.1–1.33)	0.1–1
Lactate dehydrogenase (μKat/L), median (range)	7.4 (3.9–16)	>70 years <3.5, <70 years < 4.3
C-reactive protein (mg/L), median (range)	86 (14–295)	0–10


¹High flow nasal oxygen therapy (HFNOT), continuous positive airway pressure therapy (CPAP).

859

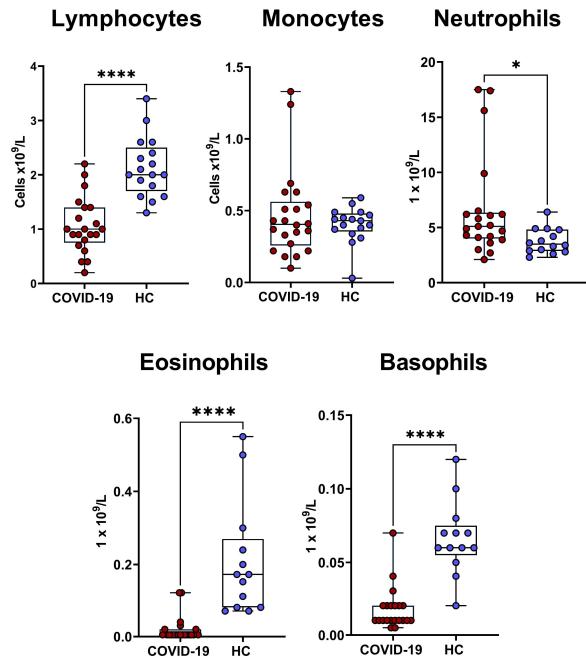
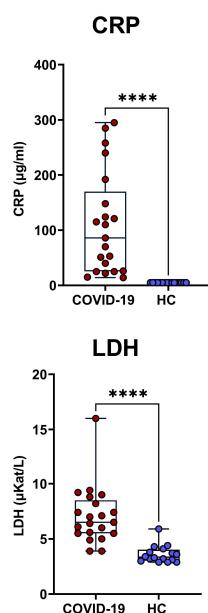
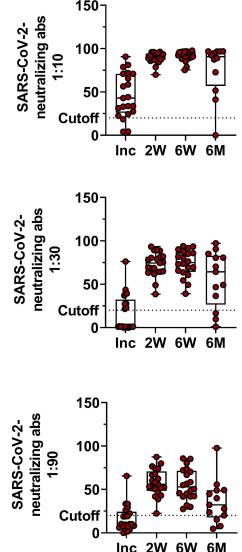
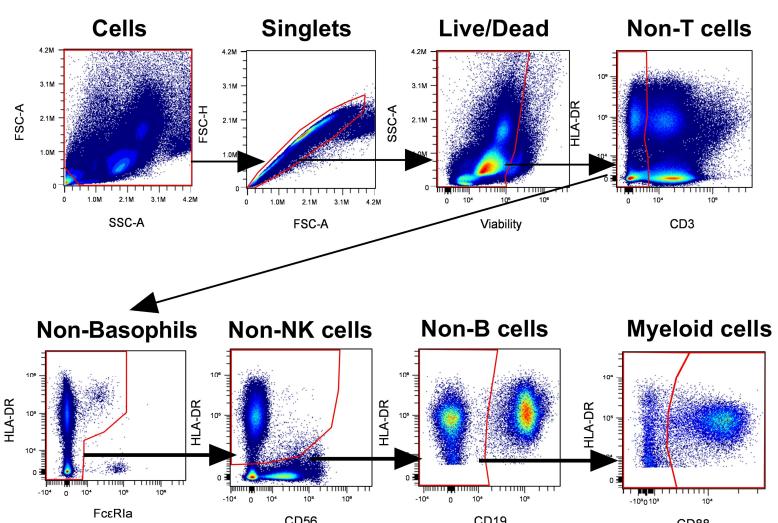

860 Diabetes mellitus, cardiovascular, and chronic pulmonary diseases defined by the individuals being medicated for these
861 conditions.

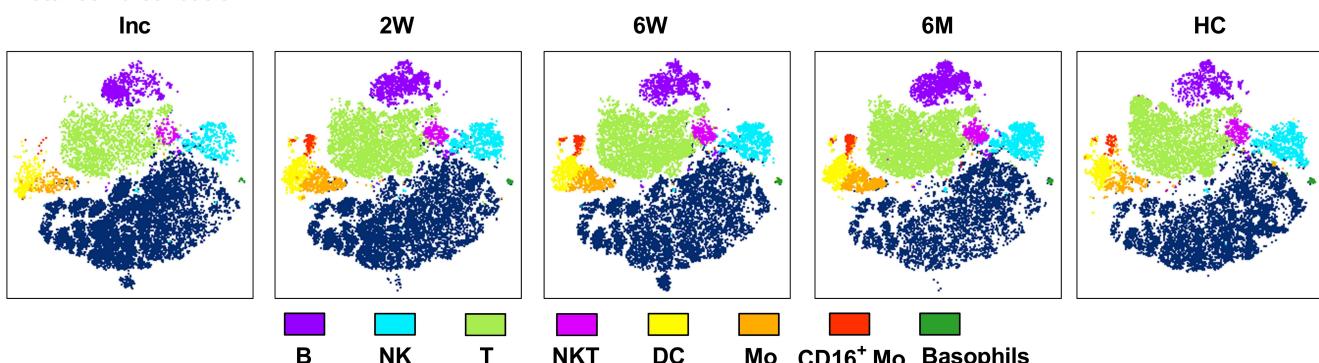
Figure 1


A


B


C

D



E

F

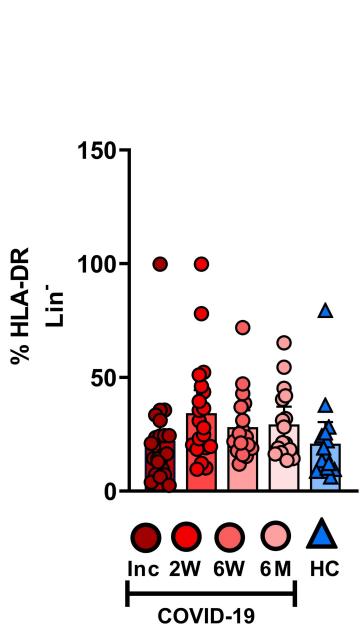
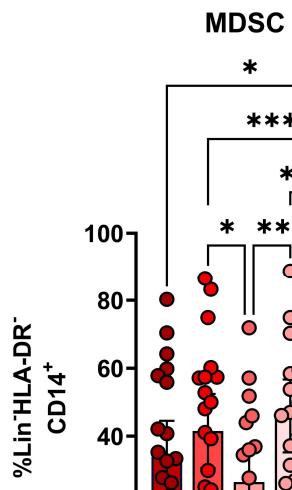
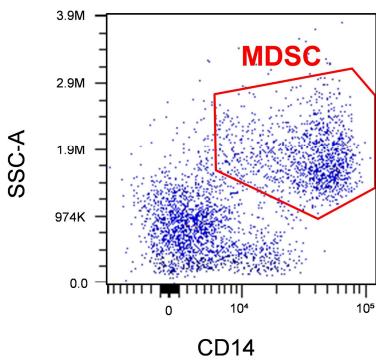

Total cell distribution

Figure 2

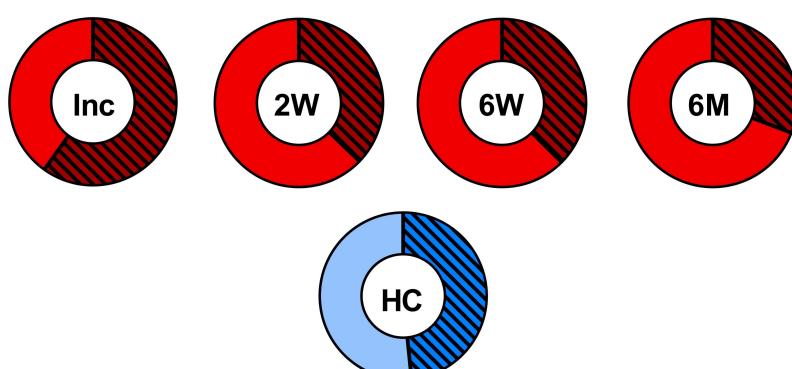
A

Total myeloid

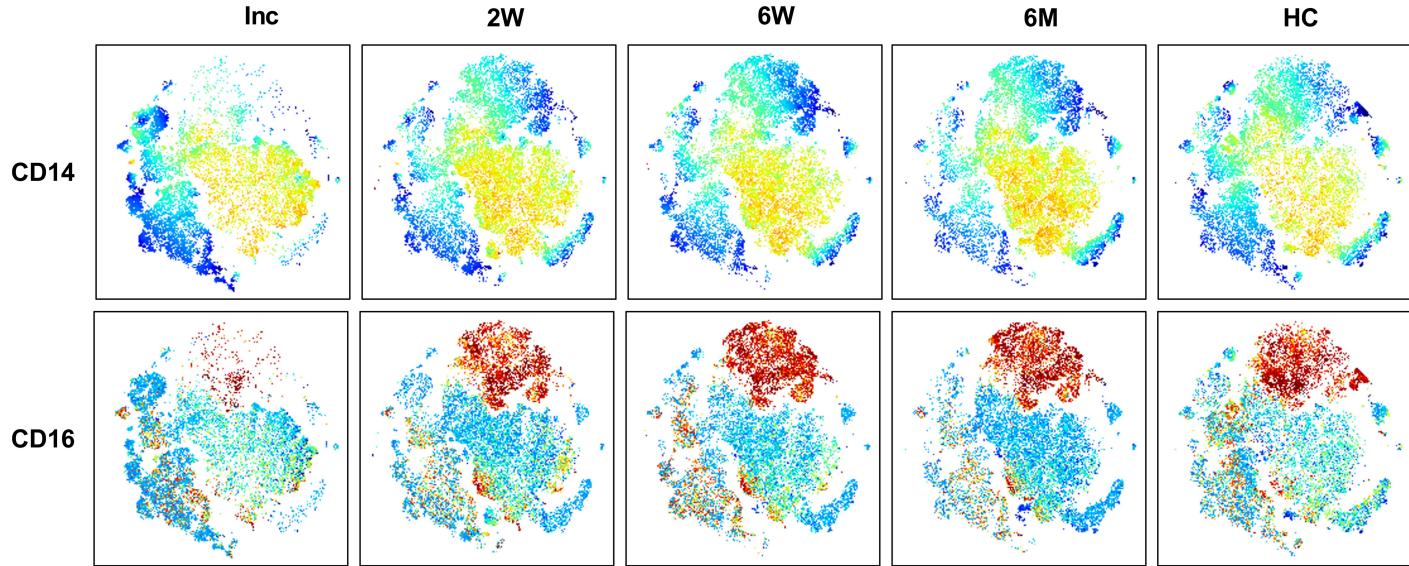


B

CD88⁺ monocytes

C


MDSC

D


CD88⁺ Monocytes

CD88⁻ Myeloid cells

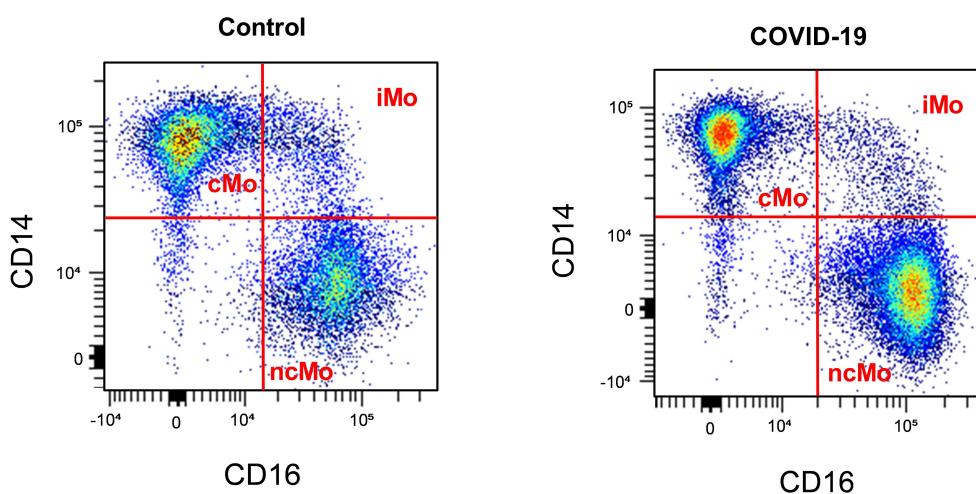
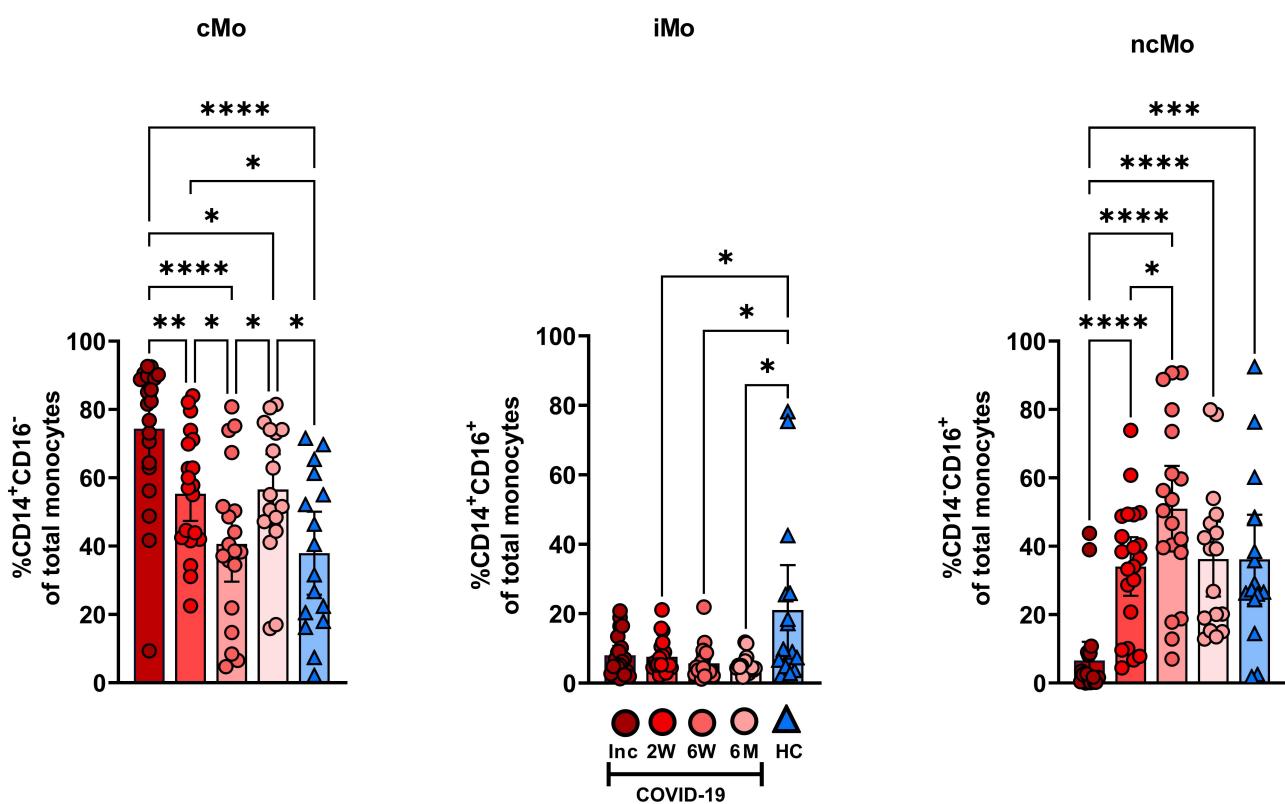
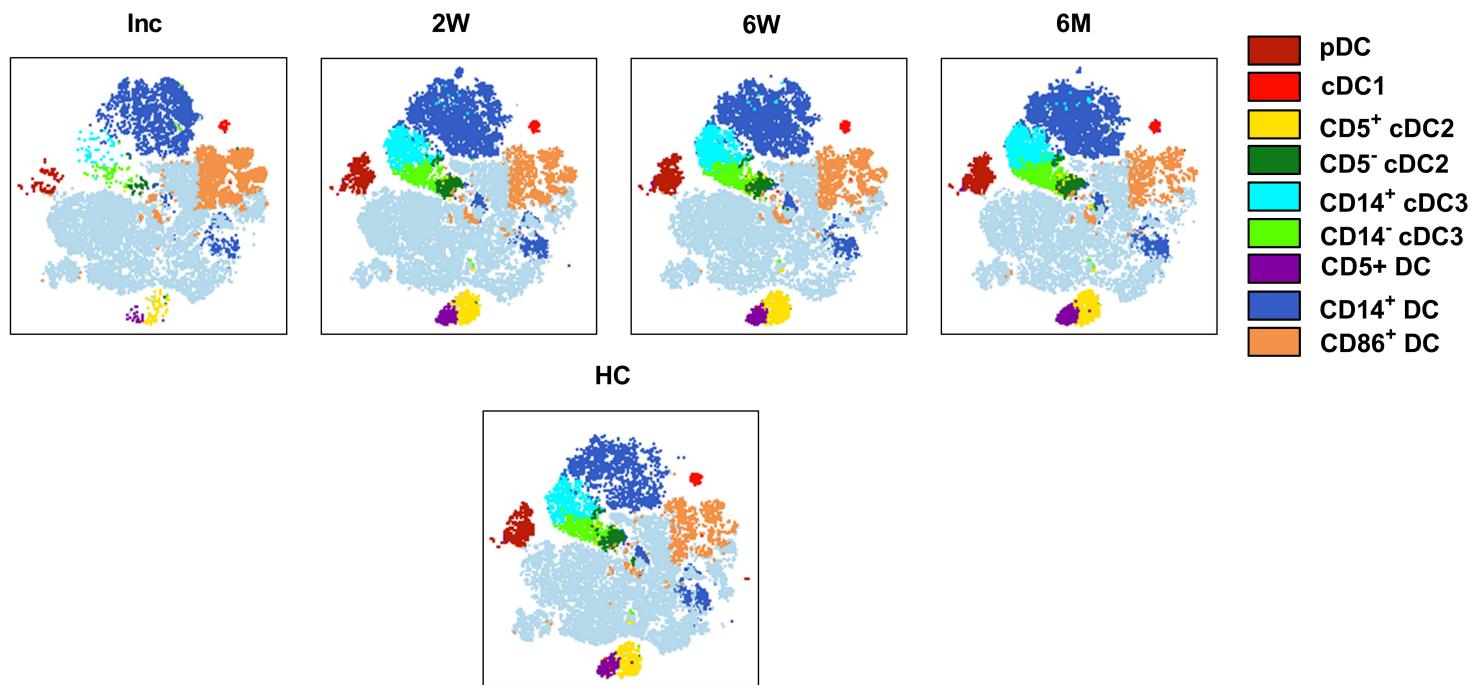
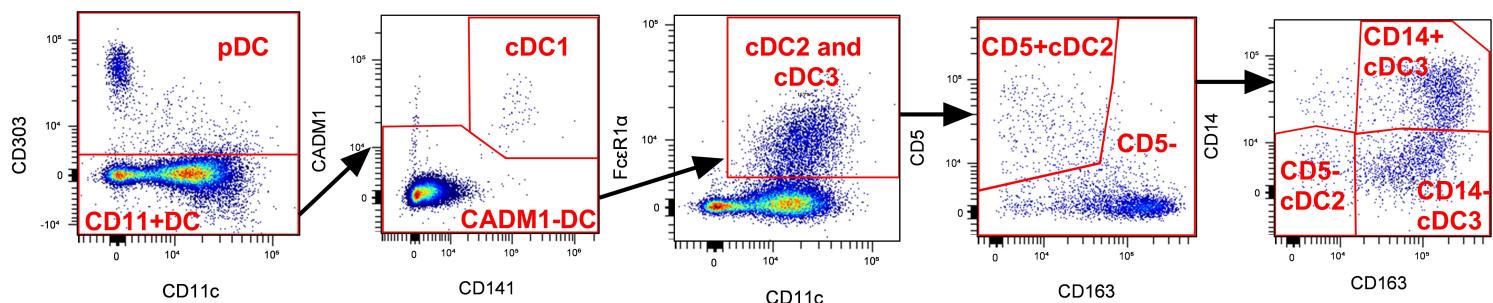


Figure 3

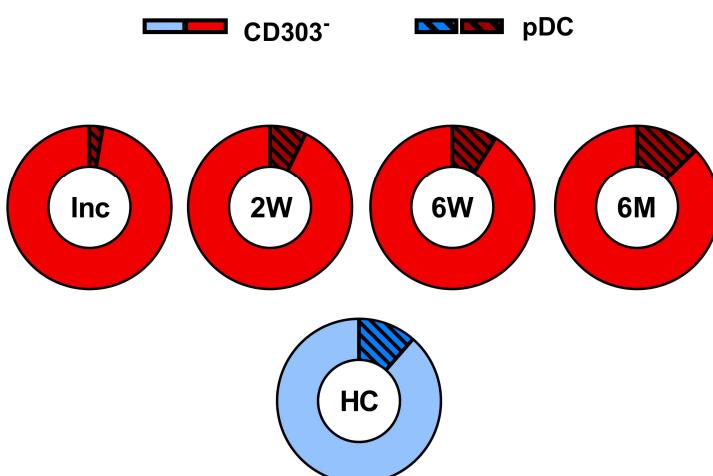

A

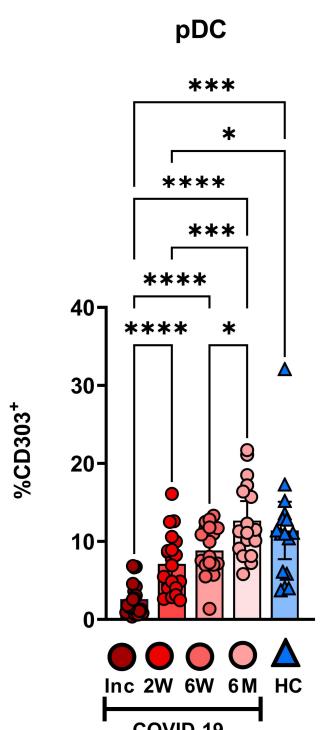
B


C

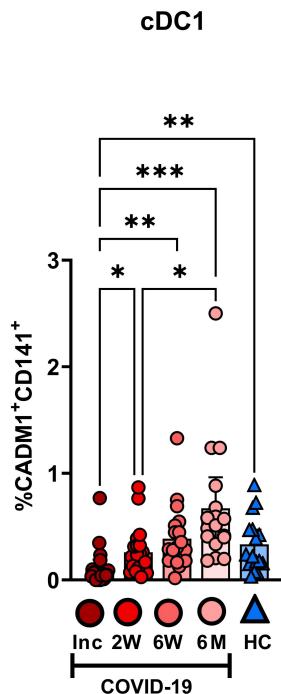

Figure 4

A


DC clusters


B

C



D

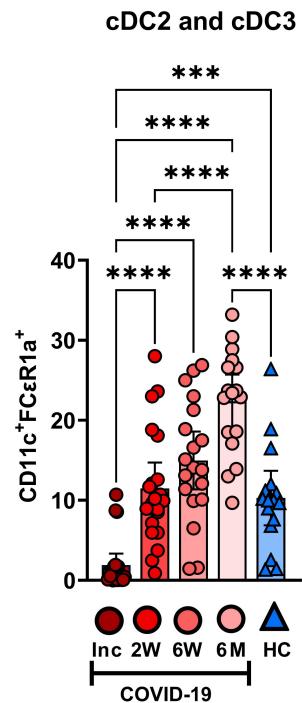
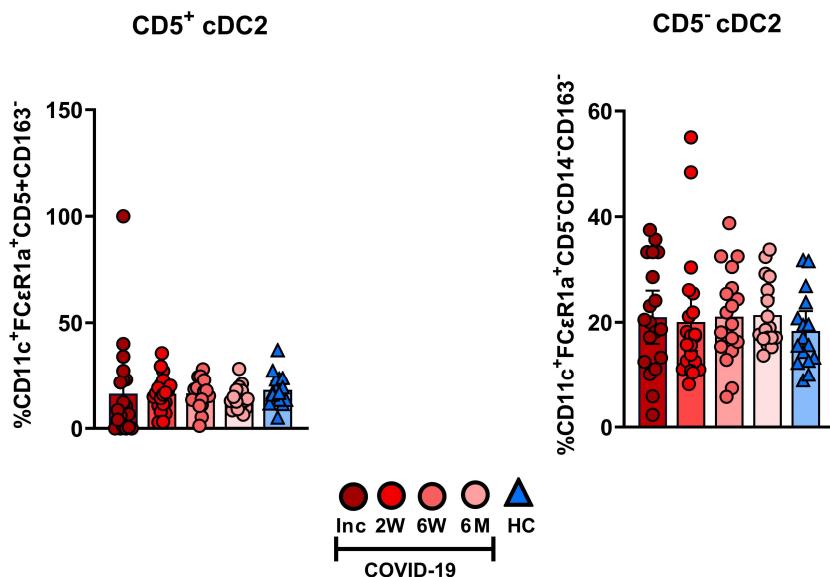
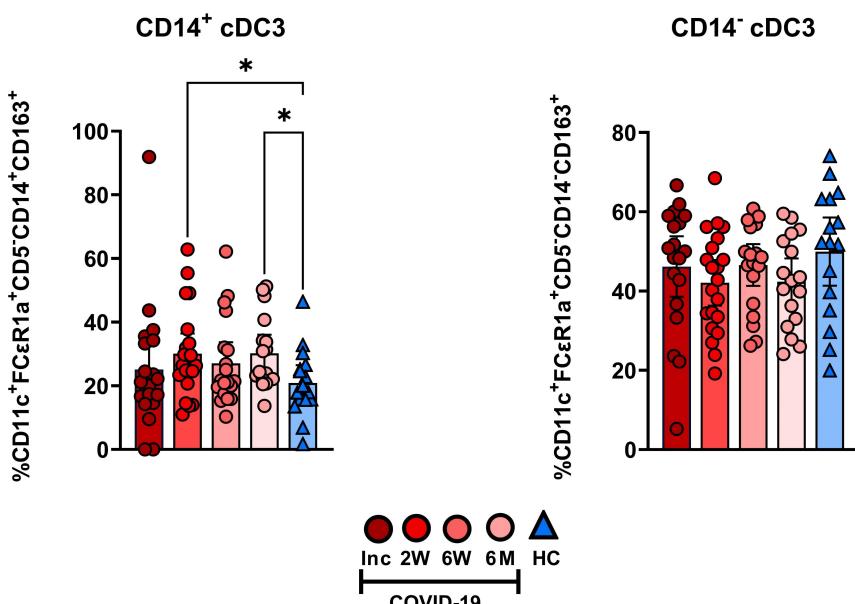
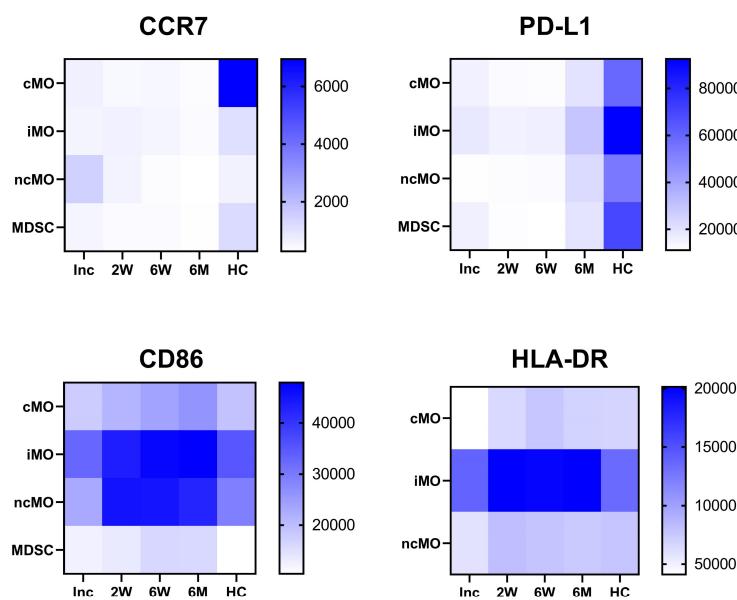


Figure 5


A


B

C



D

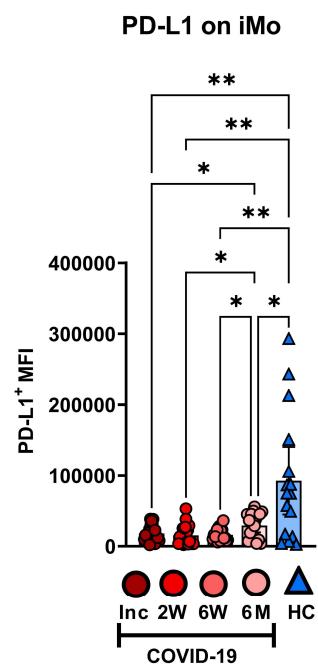
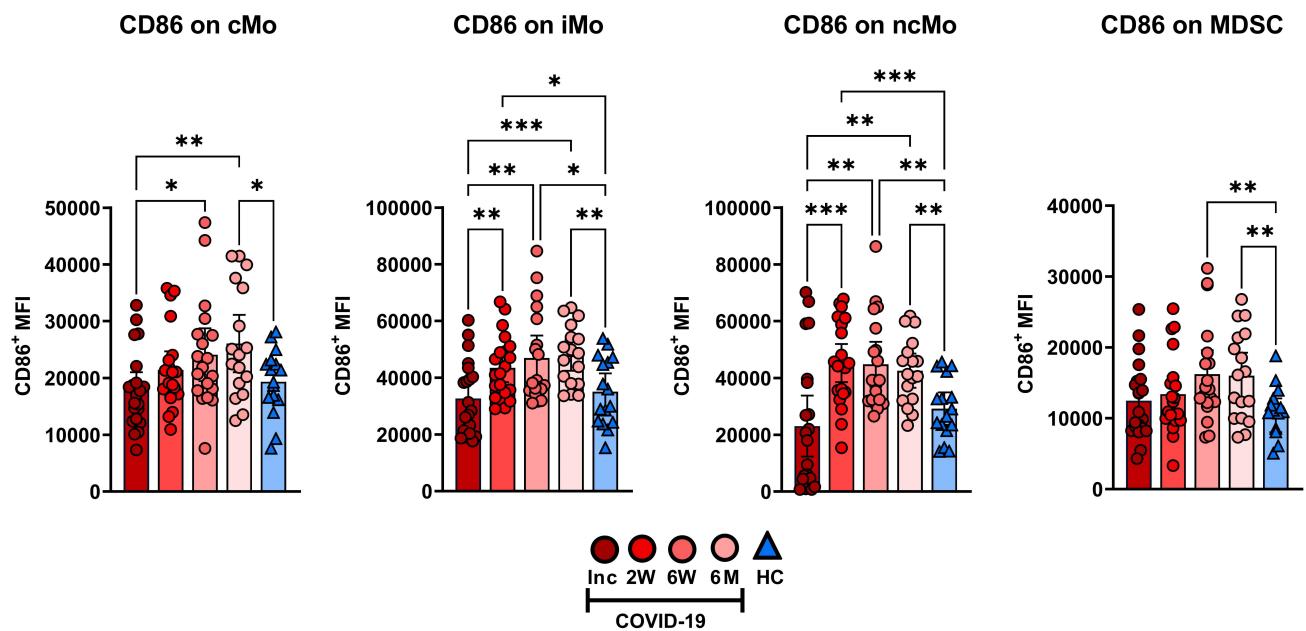
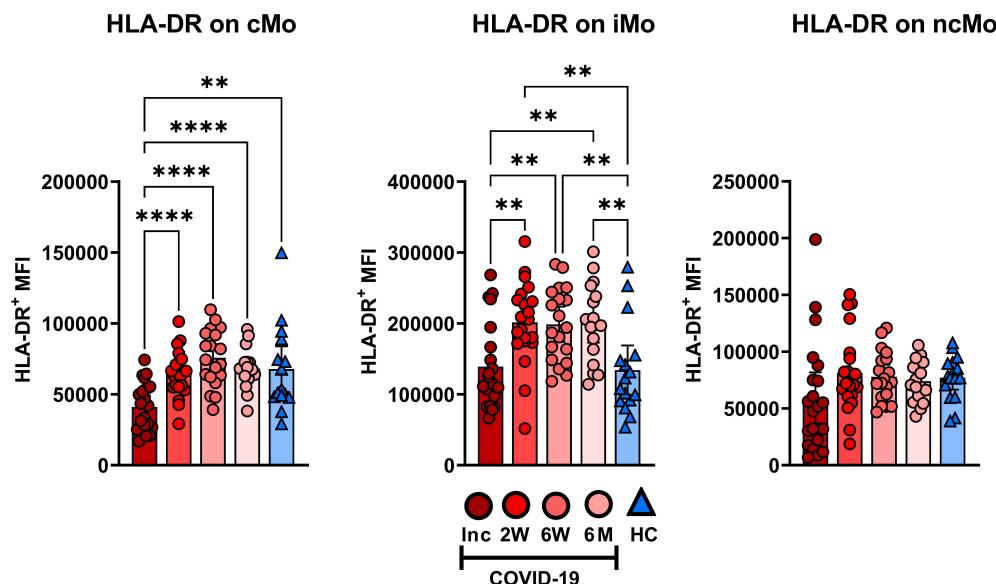
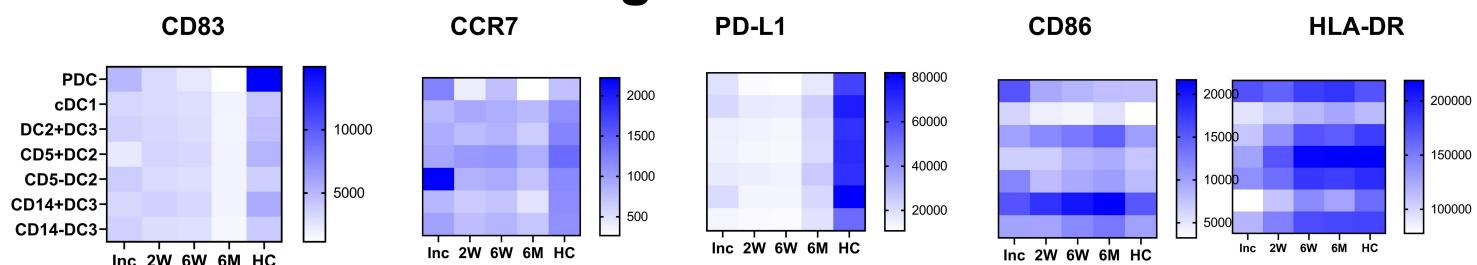


Figure 6


A


B

C



D

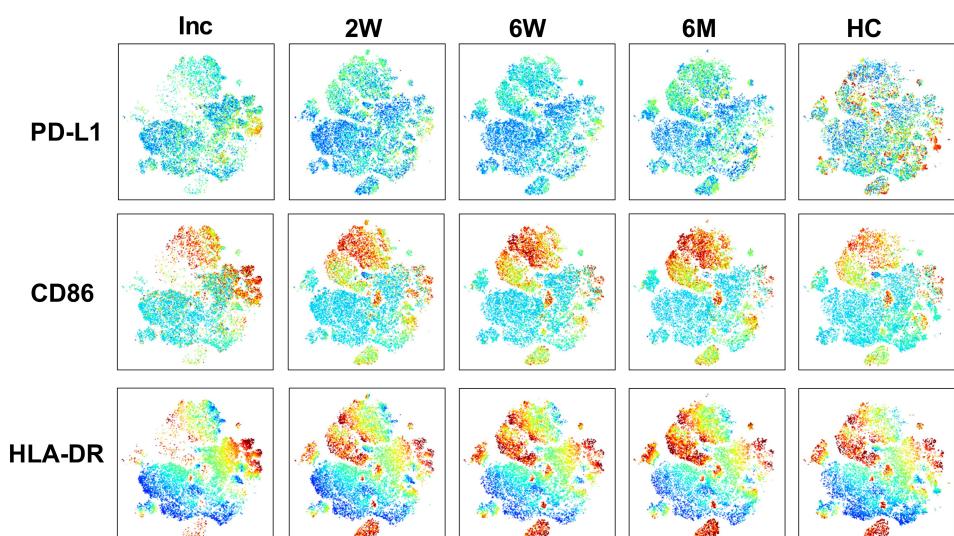
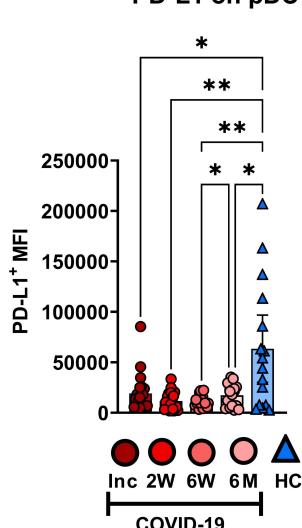
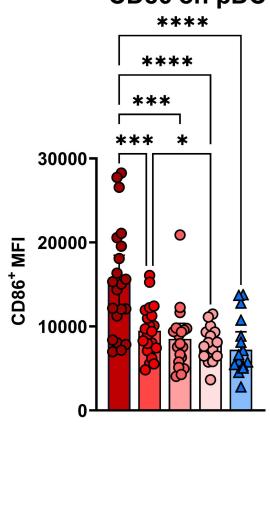


Figure 7

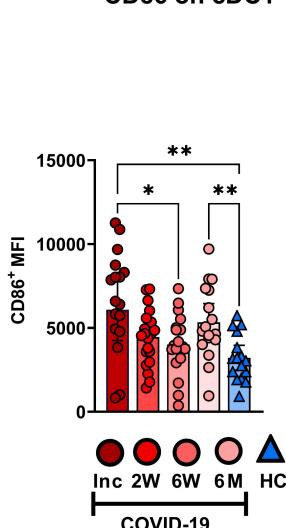
A



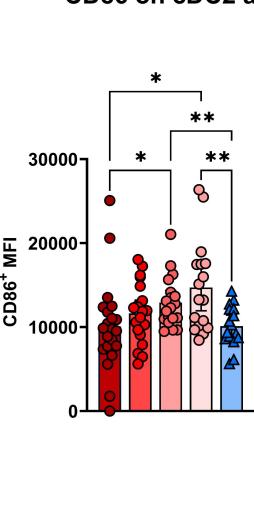
B


C

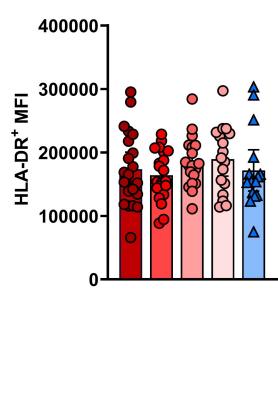
PD-L1 on pDC



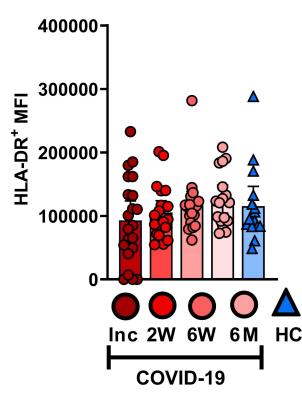
D


CD86 on pDC

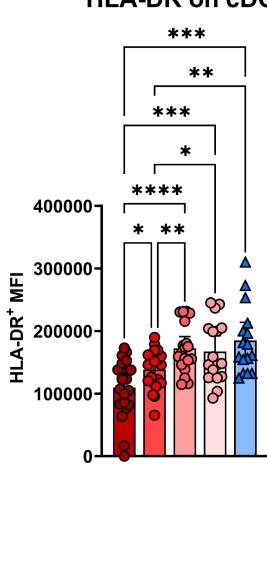
CD86 on cDC1



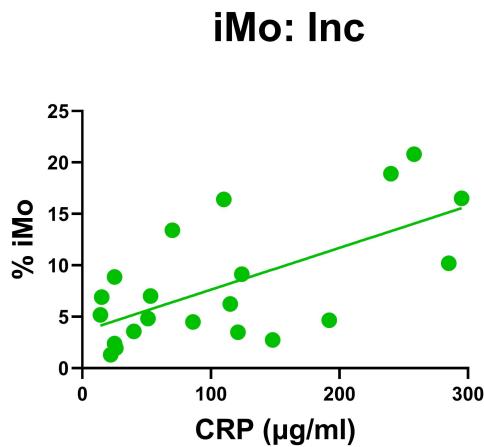
CD86 on cDC2 and cDC3



E


HLA-DR on pDC

HLA-DR on cDC1


HLA-DR on cDC2 and cDC3

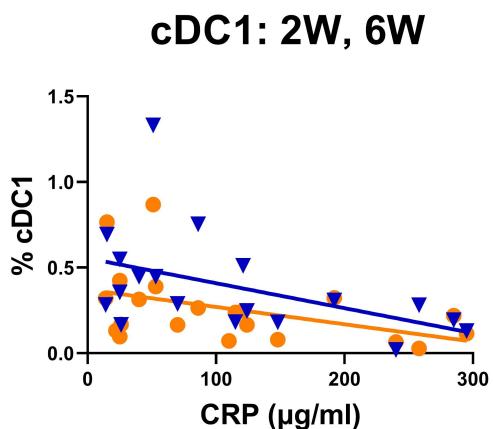
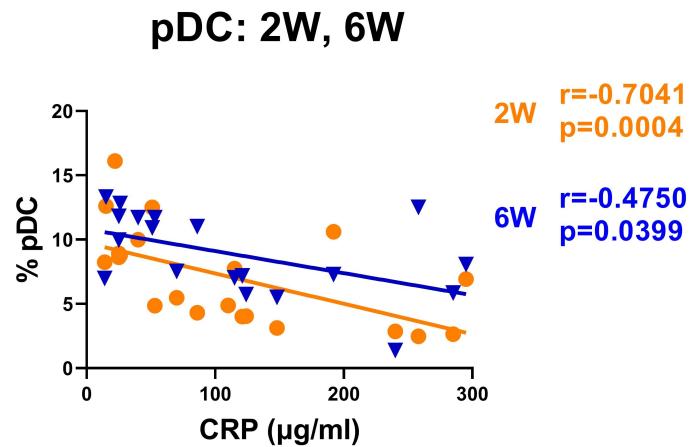
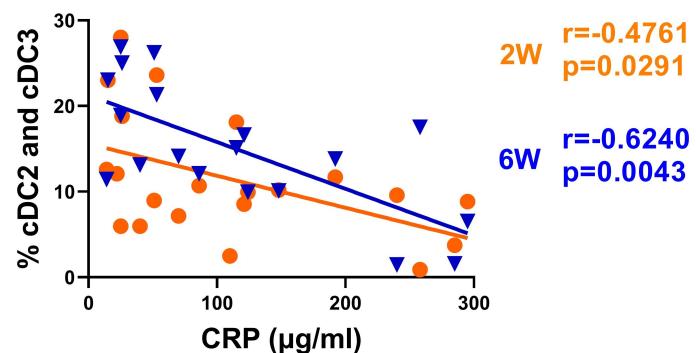


COVID-19

Figure 8


A

B

cDC2 and cDC3: 2W, 6W

