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Abstract

Trust and transparency are critical for deploying deep learning (DL) models into the clinic.
DL application poses generalisation obstacles since training/development datasets often have
different data distributions to clinical/production datasets that can lead to incorrect
predictions with underestimated uncertainty. To investigate this pitfall, we benchmarked one
pointwise and three approximate Bayesian DL models used to predict cancer of unknown
primary with three independent RNA-seq datasets covering 10,968 samples across 57
primary cancer types. Our results highlight simple and scalable Bayesian DL significantly
improves the generalisation of uncertainty estimation (e.g., p-value = 0.0013 for calibration).
Moreover, we demonstrate Bayesian DL substantially improves accuracy under data
distributional shifts when utilising ‘uncertainty thresholding’ by designing a prototypical
metric that evaluates the expected (accuracy) |oss when deploying models from development
to production, which we call the Area between Development and Production curve (ADP). In
summary, Bayesian DL is a hopeful avenue of research for generalising uncertainty, which
improves performance, transparency, and therefore safety of DL models for deployment in
real-world.
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Recent advances in deep learning (DL) have led to the rapid development of diagnostic and
treatment support applications in various aspects of healthcare, including oncology [1]-{4].
The proposed applications of DL utilise a range of data modalities, including MRI scans [5],
CT scans [6], histopathology slides [7], genomics [8], transcriptomics [9], [10], and most
recently, integrated approaches with various data types [11], [12]. In general, studies using
DL show excellent predictive performance, providing hope for successful translation into
clinical practice [13], [14]. However, prediction accuracy in DL comes with potential pitfalls

which need to be overcome before wider adoption can be eventuated [15].

The lack of transparency over prediction reliability is one challenge for implementing DL
[16]. One approach to overcome this is by providing uncertainty estimates about a model’s
prediction [17, p. 20], [18], enabling better-informed decision making. Another obstacle
relates to the assumptions made about data when transitioning from training to real-world
applications. In standard DL practice, during the ‘ development’ stage, models are trained and
validated on data prepared to satisfy the assumption of independent and identicaly
distributed (11D) data, meaning that model would be applied to make predictions on the data
that are independently drawn and come from the same distribution as the training data.
However, this assumption is frequently violated when models are deployed in ‘ production’
(i.e. real-world application), when confounding variables cause distributional shifts that push
data out-of-distribution (OOD) [19]. For oncology applications, such confounding variables
can include technical differences in how the data are collected (e.g. batch effects, differences
in sequencing depth or library choice for genomic and transcriptomic data; differences in
instrumentation and imaging settings for medical imaging data), as well as biological
differences (e.g. differences in patient demographics or a data class unseen during model
development). The consequences from OOD data include inaccurate predictions coupled with
underestimated uncertainties, which together result in the model’s overconfidence from
distributional shifts, or what we call ‘shift-induced’ overconfidence [20]-{22]. Consequently,
implementation of DL into clinical practice (i.e., production) requires that models are robust
(i.e,, generalise) to distributional shifts and provide correct predictions with calibrated
uncertainties.

Methods to address DL overconfidence in production exist, albeit with different limitations.
Repeated retraining of deployed models on new production data is beneficial for accuracy,
but introduces new risks such as over-computation or catastrophic forgetting, whereby DL

models lose performance on origina training/development data [23], [24]. Using tracking
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metrics such as accuracy can help inform ML engineers about the DL reliability, although
such metrics are only available retrospectively. A key pitfall for these methods are that they

are reactive and not proactive.

One proactive approach for managing risks from DL overconfidence in production is with
‘uncertainty thresholding’, whereby only predictions with uncertainties below a threshold are
accepted (to increase accuracy). Importantly, a DL model’s uncertainty threshold is
established with development (I1D) data. Thus, when the model is deployed to (OOD)
production data it becomes overconfident. Therefore, the uncertainty threshold (established in
development) corresponds to higher error-rate in production, which is a problem if
expectations (between healthcare professionals and engineers) are set during the development
phase of a project’s life cycle. To address this problem, post-hoc methods exist that calibrate
uncertainty (e.g., with ‘Temperature scaling’; [25]). However, while post-hoc calibration
effectively controls overconfidence in IID data [25], it fails to do so (proactively) in OOD
data [21], [22]. Despite the notable theoretical and empirical research towards generalising
DL uncertainties from OOD data [26], [27], shift-induced overconfidence is yet to be
sufficiently addressed in practice.

In this study, we aim to address the safety and performance concerns of shift-induced
overconfidence (i.e., the generalisation of uncertainty). We establish theoretical and empirical
evidence of the phenomenon using a case study that predicts cancer of origin with
transcriptomic data. Cancer of origin prediction has been an active application area for DL
[24], [28]-30], since accurate diagnosis is critical for the treatment of cancers of unknown
primary (CUP), i.e. metastatic cancers in which the primary cancer site cannot be reliably
determined. We investigate this case study’ s dataset, with simple and accessible (i.e. relevant)
DL techniques that help generalise uncertainty. Finally, we establish a prototypical metric,
ADP, aongside a small discussion about how it may be helpful in aclinical setting.
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Results
Bayesian model benchmarking approach to predict cancer of unknown primary

The primary DL task was to predict the tissue of origin (primary cancer type) of cancer
samples using transcriptomic data. We used transcriptomic data from TCGA of primary
cancer samples corresponding to 32 primary cancer types as model ‘development’ data:
training (n=8,202; [31]) and validation |ID data (n=1,434; Supplementary Table 1). The test
data were OOD (representing ‘production’), providing a platform for benchmarking
resilience to overconfidence, and included TCGA metastatic samples (n=392; [32]), Met500
metastatic samples (n=479; [33]), and a combination of primary and metastatic samples from
our own independent internal custom dataset, i.e. ICD (n=461; [34]{42]; Fig. 1la,
Supplementary Fig. 1). The distributional shifts in the test data were likely to be caused by
severa factors, including dataset batches, sample metastasis status (metastatic or primary)

and whether the cancer type was absent during training (‘ unseen’).

We aimed to evaluate if three simple ‘distribution-wise’ (e.g. Bayesian) DL models (with
Resnet architecture) improve performance and reduce shift-induced overconfidence
compared to a pointwise baseline model (with identical Resnet architecture). To achieve this,
we performed controlled benchmarking of the models over 11D and OOD data (Fig. 1b). The
Bayesian models were Monte Carlo Dropout approximation (‘MCD’) [43] , MCD with
smoothness and sensitivity constraints (‘Bilipschitz’) [44], [45], and an ensemble of
Bilipschitz models (‘Ensemble’) [45]. The ways in which models differed were canonical:
MCD modified Resnet by keeping Dropout during prediction, Bilipschitz modified MCD
with spectral normalisation, Ensemble modified Bilipschitz by combining multiple models.
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Figure 1. Overview of the study design. a Simplified study workflow. TCGA primary cancer types comprised the training
and 11D validation data. OOD test data comprised of the TCGA (metastatic cancer types), Met500 and ICD datasets, which
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included primary, metastatic and ‘unseen’ cancer types. b Schematic overview of the four tested models: pointwise Resnet
(Resnet), Resnet extended with Monte Carlo Dropout (MCD), MCD extended with bi-Lipschitz constraint (Bilipschitz), and
an ensemble of Bilipschitz models (Ensemble). Note, Resnet represents a single point in function space (blue dot), while two
Bayesian models (MCD and Bilipschitz ) represent a distribution within a single region in function space (green dots). The
Ensemble represents a coll ection of distributions centred around different modes (red dots).

Approximate Bayesian inference reduces shift-induced over confidence for ‘seen’ classesin
a primary cancer site context

The predictive performance of each model to predict primary tissue was assessed using
micro-F1 (equivalent to Accuracy; abbreviated F1). For the [1D validation data, the difference
between the highest and lowest ranking models was 0.28% (97.07% for Resnet and 96.79%
for Ensemble, respectively; Fig. 2a, Supplementary Fig. 2-5). As expected, F1 scores dropped
for the OOD test set across all four models, with a 1.74% difference between the highest and
lowest ranking models (82.04% for Ensemble and 80.30% for Resnet, respectively; Fig. 2b,
Supplementary Fig. 6-9). All models had higher predictive uncertainties (Shannon’s entropy
#) for OOD, relative to 11D data (Fig. 2b). Uncertainties were significantly higher for al
approximate Bayesian models (MCD, Bilipshitz, and Ensemble) relative to (pointwise)
Resnet (P < 0.0001). Moreover, overconfidence in OOD data was evident for the Resnet and
MCD models since their binned accuracies (i.e. the correct classification rates within bins
delineated by the confidence scores) were consistently lower than corresponding confidence
scores (Fig. 2c). The expected calibration errors (ECEs) for OOD data ranged between 5%
for Ensemble and Bilipschitz and 16% for Resnet (Fig. 2c). Estimation of overconfidence as
an absolute error was negligible across all models for 11D data, with high amounts of
overconfidence for OOD data, highlighting the shift-induced overconfidence when
transitioning from 11D to OOD data (Fig. 2d). Furthermore, Resnet had significantly higher
overconfidence than MCD (p-value < 0.01), Bilipschitz (p-value < 0.001), and Ensemble (p-
vaue < 0.001) for OOD data but not IID data. This shows that the shift-induced
overconfidence in pointwise DL models can be reduced with simple (approximate) Bayesian

inference.
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Figure 2. Out-of-distribution over confidence of a pointwise baseline Resnet model and three smple Bayesian models
on ‘seen’ data. a Micro-F1 score (i.e. Accuracy) of dl models on the 1D validation data (left) and on ‘seen’ OOD data
(right). Accuracy for (IID) validation data was controlled with early stopping. b Box plot of each model’s predictive
uncertainty (Shannon’s Entropy, H) for individual sasmpleson |1D data (left) and on ‘seen’ OOD data (right). Sample median
is depicted by horizontal line, while the sample mean is depicted by the grey star. Statistical significance (single-sided
Wilcoxon rank-sum) between baseline and each Bayesian model are marked with denoted *, **, *** for p-value < 0.05, p-
value < 0.01, and p-value < 0.001, respectively. ¢ Each model’s confidence vs accuracy of each ECE-bin on ‘seen’ OOD
data. The black diagonal lines illustrate perfect calibration, i.e., no overconfidence. ECE value for each mode shown in
parentheses. The residuals are colour-coded by the (Ieft) colour scale and represent the difference between confidence and
accuracy for each bin. d Box plot of each model’s absolute calibration error of individual samples on 11D data (left) and
‘seen’ OOD data (right). Statistical significance (single-sided Wilcoxon rank-sum) between baseline and each Bayesian
model are marked with denoted *, **, *** for p-value < 0.05, p-value < 0.01, and p-value < 0.001, respectively.

Prediction overconfidence for 'unseen' classes explained by related primary cancer types
Classes absent from training (‘unseen’) cannot have correct predictions, and prediction
uncertainties should be higher compared to ‘seen’ classes. As expected, mean total

uncertainties were higher for ‘unseen’ classes for al models (Fig. 3a). Moreover,
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approximate Bayesian models were significantly more uncertain with ‘unseen’ classes
compared to Resnet (p-value < 0.01; Fig 3a). However, exceptions occurred across all
models, where total uncertainty values were low, at both, class level, where predictions for a
whole ‘unseen’ class consistently had low uncertainty, and sample level, where predictions
for only some samples from a class had low uncertainty (Fig. 3b). We wanted to investigate
whether any of the exceptions could be examples of ‘silent catastrophic failure
(Supplementary Information — $4.2), a phenomenon where data are far from the training

data’ s support, resulting in incorrect yet extremely confident predictions [44]-{46].

‘“Unseen’ classes (i.e. cancer types) with low levels of uncertainty (averaged within the class)
corresponded to ‘seen’ classes that either (biologically) related to the predicted primary
cancer type, or were from a similar tissue or cell of origin. For example, al acral melanoma
(ACRM) samples (n=40), a subtype of melanoma that occurs on soles, palms and nail beds,
were predicted to be cutaneous melanoma (MEL) by all four models (Supplementary Fig. 6-
9) with the smallest median total uncertainty for al four models (Fig. 3b). All three
fibrolamellar carcinoma (FLC) samples, a rare type of liver cancer, were predicted to be
hepatocellular carcinomas (HCC), athough the median uncertainty was much higher for
Bilishpitz and Ensemble models compared to Resnet and MCD (1.8, 1.5, 0.1 and 0.29
Shannon’s Entropy &, respectively). Two bladder squamous cell carcinomas (BLSC) showed
different examples of class-level exceptions with one sample predicted as a bladder
adenocarcinoma (BLCA), with the same primary tissue site as BLSC, or a lung squamous
carcinoma (LUSC), with similar cell of origin. For the ‘unseen’ class pancreatic
neuroendocrine tumours (PANET) we saw a wide spread of uncertainty values (Fig. 3b).
Interestingly, only PANET samples that were predicted as another subtype of pancreatic
cancer, pancreatic adenocarcinomas (PAAD), had low prediction uncertainty across all
models compared to other incorrectly predicted PANET samples (Supplementary Fig. 10).
Overall, since most of the incorrect predictions with low uncertainties had a reasonable
biological explanation for the prediction, we concluded that we did not find evidence of

catastrophic silent failure in this case study.
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Figure 3. Total uncertainties for out-of-distribution data with cancer types ‘seen’ and ‘unseen’ in training. a Box plot
of each model’s predictive uncertainty (Shannon's Entropy, H) on OOD data with cancer types ‘seen’ (LHS) and ‘unseen’
(RHS) during training. Statistical significance (two-sided Wilcoxon rank-sum) between baseline and each Bayesian model
are marked with denoted *, **, *** for p-value < 0.05, p-vdue < 0.01, and p-value < 0.001, respectively. Stars denoted
mean, the horizontal centre lines denoted median, and notches — the 95% confidence interval of the median total uncertainty.

b Total uncertainty values for the ‘unseen’ classes. The horizonta red lines denoted median total uncertainty values.

Robustness to shift-induced overconfidence isintegral for production inference

To evaluate the robustness of the models' accuracy, as well as the uncertainty’s correlation
with the error-rate (abbreviated “uncertainty’s error-rate correlation”) we used the F1-
Retention Area Under the Curve (F1-AUC) [47]. Evauation was carried out on ‘seen’ and
‘unseen’ OOD data (i.e., ‘production data’). All models yielded similar results, with only a
0.45% percent decrease between the highest and lowest ranking models (F1-AUC of 93.67%
for Bilipschitz and 93.25% for MCD, respectively; Fig. 4a). The performance difference
between all models was marginal as F1-AUC doesn't capture the lost calibration caused by
the distributional shift when transitioning from [1D to (‘seen’ and ‘unseen’) OOD. In other
words, the F1-AUC metric did not detect effects caused by the shift-induced overconfidence.
This was evident from the following observations: i) inter-model accuracies were similar
within I1D, as well as OOD data (Fig. 2a); ii) calibration errors (i.e. overconfidence) were not
different for 11D (p-value > 0.05), but different for OOD (p-value < 0.01; Fig. 2d); and iii)
F1-AUC scores were similar for all models, which implies ‘uncertainty’s error-rate
correlation’ must have been similar (since F1-AUC encapsulates accuracy and ‘uncertainty’s
error-rate correlation’ [47]). While F1-AUC encapsulated accuracy and ‘uncertainty’s error-
rate correlation’, which are important components of robustness when deploying DL in

production, F1-AUC does not encapsulate robustness to shift-induced overconfidence.
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Figure 4. Evaluation of model generalisability from development to production. a Fl-Retention Curves and
corresponding F1-AUC scores. The F1-Retention curve of the (baseline) Resnet model and three approximate Bayesian
models (MCD, Bilipschitz, Ensemble). As the retention fraction decreases, more of the most uncertain predictions are
replaced with the ground truth. Thus, steeper curves require stronger correlation between uncertainty and the error-rate. The
F1-Retention Area Under the Curve (F1-AUC) for each model are detailed in the legend. The F1-AUC is a function of both
predictive performance (micro-F1), and the uncertainty error-rate correlation. b Development and Production F1-Uncertainty
curves for each model. Illustrates the development F1('-Uncertainty curves (continuous lines), as well as the production
F1(®°P).Uncertainty curves (dashed lines). Black lines illustrate the F1 decrease from a single development F1 score with
F14e,~98.5 % for al models. The Area Between the Development and Production Curve (ADP) is shown as the coloured
region. ¢ Area Between the Development and Production Curves (ADP) bar plot with bootstrgpped confidence intervals.
ADP is the averaged F1 decrease calculated between Flge,= 97.5 % and Flg,= 99.0 % at intervals of 0.001 %. Steps for
calculating the ADP are detailed in the M ethods.


https://doi.org/10.1101/2022.07.14.500142
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.14.500142; this version posted July 16, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

To overcome the limitation of the F1-AUC metric’'s insensitivity to shift-induced
overconfidence, we developed a new (prototypical) metric called the Area between the
Development and Production curve (ADP), which depends on both 11D (i.e. ‘development’)
data, as well as the (‘seen’ and ‘unseen’) OOD (i.e. ‘production’) data. The ADP may be
interpreted as “the expected decrease in accuracy when transitioning from development to
production if uncertainty thresholding is utilised to boost reliability”. Furthermore, the ADP
complements F1-AUC in the context of deploying models from training/development data
(I1D) to production test data (OOD). The ADP was calculated by averaging the set of
decreases in F1, from development (I11D) to production (OOD) datasets, at multiple different
uncertainty thresholds (a single F1-decrease is demonstrated in Fig. 4b; refer to the Methods
for details).

The ADP metric detected effects from shift-induced overconfidence, with an inter-model
percent decrease that was two orders of magnitude larger than F1-AUC (Fig. 4c). The percent
decrease between the top and bottom ranking models was 53.68%. The top-ranking model
was Bilipschitz with an ADP of 4.28%, and the bottom ranking model was Resnet with ADP
of 9.24% (Fig. 4c). This highlights that ADP may be relevant when evaluating the
performance of models that are deployed in production by encapsulating shift-induced
overconfidence, which isinevitable in an oncological setting.

Discussion

A magjor barrier to using DL in clinical practice is the shift-induced overconfidence
encountered when deploying a DL model from development to production. Reducing and
accounting for shift-induced overconfidence with appropriate models and relevant metrics
should make the models more transparent and trustworthy for translation into practice. Our
work herein shows that marked progress can be made with simple Bayesian DL models
deployed in conjunction with uncertainty thresholding. However, the performance of models
deployed in production can be difficult to evaluate without a suitable metric, therefore we

developed ADP to directly measure shift-induced overconfidence.

Three Bayesian models with canonical extensions, namely MCD, Bilipschitz, Ensemble,
were chosen to test whether simple modifications applicable to any DL architecture can

improve performance in production. The Bayesian models were selected according to the
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following three criteria: (1) simplicity, for wider accessibility; (2) ubiquity, to ensure models
were accepted and tested methods; and (3) aready demonstrated as robust to shift-induced
overconfidence [22], [48], [49]. Our prior expectations were that each canonical extension
would further improve generalisation of both accuracy and uncertainty quality, albeit at the
cost of increased complexity. Those expectations were mostly in line with our benchmarking
results, since the most complex model (Ensemble) went from worst-performing in 1D to
best-performing model in OOD in terms of accuracy. Furthermore, while inspection into
overconfidence presented no significant inter-model differences within I1D data, the OOD
overconfidence differences were significant, whereby added complexity corresponded to less
shift-induced overconfidence. Using the ADP statistic, improvements in robustness to shift-
induced overconfidence were shown to have a large impact on the accuracy in production
when rejecting unreliable predictions above an acceptable uncertainty threshold. Hence, any
DL architecture’s accuracy in production can be substantially improved with simple and
scalable approximate Bayesian modifications. This phenomenon is sometimes referred to as

“turning the Bayesian crank” [50].

We restricted our uncertainty statistics to predictive (or total) uncertainties, since it was not
possible to estimate the sub-divisions of uncertainty with the baseline Resnet model. In future
work, a richer picture may be understood by focusing only on distribution-wise models to
inspect the two sub-divisions of the predictive uncertainty: epistemic (model) uncertainty and
aleatoric (inherent) uncertainty. Epistemic uncertainty is dependent on the model
specification and may be reduced with more data or informative priors. Aleatoric uncertainty
is dependent on data’ s inherent noise and can be reduced with more data features that explain
variance caused by confounding variables (e.g., patient age, cancer stage, batch effect).
Epistemic and aeatoric uncertainties present the potential for further insights, including
whether a data point’s predictive uncertainty will reduce with either more examples or by an
atered model design (epistemic uncertainty), or more features (aleatoric uncertainty) [51]—
[54].

This study addressed distributional shift effects on uncertainties with parametric models,
which assume parameters are sufficient to represent al training data. Non-parametric models
relax that assumption, which is arguably crucia to detect when data are outside the domain of
training data (‘out-of-domain’) and for avoiding extreme overconfidence, i.e. ‘silent

catastrophic failure’. In future work, non-parametric models, for example Gaussian
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Processes, capable of measuring uncertainties about ‘out-of-domain’ data, should also be
explored [44]-46], [55].

Our work suggests that considerations of robustness to distributional shifts must encapsulate
uncertainty and prediction to improve performance in production. While this study focused
on the quality of uncertainty, it is important to note that other DL components are worth
consideration too. These include model architecture (i.e. inductive bias), which can be
tailored to ignore redundant data-specific aspects of a problem via invariant or equivariant
model representations [56], data-augmentation strategies [57], and/or structural causal models
[58]-{60]. Such tailored models can further improve data efficiency [56], robustness to
distributional shifts [27], and are central to an appropriate model specification that challenges
DL deployment [61]. The importance of tailored inductive biases is supported by the prolific
advances in fields beyond clinical diagnostics in computer vision (e.g. CNN’s translational
equivariance [56]), and biology (e.g. how Alpha Fold 2 [62] solved the Critical Assessment
of protein Structure Prediction (CASP; [63]). These studies show that a wide array of DL
components can improve generalisation and thus DL performance in production. Our study
argues uncertainty calibration as an important element in that array; hence, improving the

quality of uncertainty can lead to improved DL reliability, in production.

In practice, we hope the community considers utilising uncertainty thresholding as a
proactive method to improve accuracy and safety of DL applications, deployed in the clinic.
This may involve (iterative) consultation between ML engineer and medical professionals to
agree on a ‘minimally acceptable accuracy’ for production (deem this min(F1,4,.,). The ML
engineer may then use development data to train an approximate Bayesian DL model and
produce Development F1-Uncertainty curves (with validation data). The engineer then, with
another independent dataset, can proceed to develop an ADP estimate (as described in the
methods) to help communicate (in context of available dataset differences) what the expected
accuracy decrease may be when the model is deployed to production, which helps manage
expectations and facilitate trust. Importantly, with the (prototypical) ADP, the team may
better judge which uncertainty quantification techniques are most effective for boosting
accuracy under the ‘uncertainty thresholding’ risk-management regime. This procedure, as
well as the ADP dtatistic, is of course prototypica and only suggestive. We leave

improvement, and clarification of this for future work.
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In summary, we undertook this study to highlight the difficulties of DL deployment in
practice, using clinical oncology as an example. We highlighted approaches for quantifying
and improving robustness to shift-induced overconfidence with simple and accessible DL
methods. We justified our approach with mathematical and empirical evidence, biological
interpretation, and a new metric, the ADP, that is complementary to F1-AUC by
encapsulating shift-induced overconfidence — a crucial aspect that needs to be considered
when deploying DL in real-world production. Moreover, the ADP is directly interpretable as
proxy to expected accuracy loss when deploying DL models from development to
production. Although we have addressed the shift-induced overconfidence by utilising first-
line solutions, work remains to bridge DL from theory to practice. We must account for data
distributions, evaluation metrics, and modelling assumptions as all equally important and

necessary considerations to see safe translation of DL into clinical practice.

M ethods
Prediction task and datasets

The task was to predict a patient's primary cancer type, which we cast under the supervised
learning framework by learning the map {x — ¥}, with ¥ denoting the primary cancer category,

and x € R? denoting a patient’s sampled bulk gene expression signature.

Three independent datasets were used: our own independent Internal Custom Dataset, ICD
[34]-[42], TCGA [31], and Met500 [33]. All datasets were preprocessed and partitioned into
groups (i.e. strata) that uniquely proxied different distribution shifts. Proxies of
approximately unique shifts were assumed to be governed by their respective intervention
(i.e. unique shift), as deemed by values of four presumed hidden variables influencing the
modelled map {x —=+ »}. Those variables were ‘Batch’ (indicating source dataset label, e.g.,
‘TCGA), ‘Sate-of-Metastases' (valued ‘Primary’, or ‘Metastatic’), and ‘Seen’ (indicating
whether a target value y was seen during training) (Supplementary Table 1). Training and
validation data comprised of the Strata ID

l(‘Batch’, ‘State-of- Metastases’, ‘Sem’l = L(‘TCGA’, ‘Primary’, ﬂ}uel,
Btrate ID key kry value
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since we believed it to be approximately independent and identically distributed (11D) data.
All other strata were assumed out-of-distribution (OOD) due to distribution shifts caused by
confounding variables. As a result, the training and validation data were 11D, while the test
data were OOD.

Benchmarked models

Four models were benchmarked in this study — the baseline pointwise Resnet, MCD,
Bilipschitz, and Ensemble. All models shared identical model architecture and
hyperparameter settings (including early stopping), respectively controlling the inductive bias

and accuracy from confounding overconfidence.
Baseline Resnet model

Resnet architecture had four hidden layers, each with 1024-neurons, Mish activations [64],
batch normalisation [65], and standard residual connections from the first hidden layer up to
the final hidden ‘logit-space’ layer, which was then normalised using the SoftMax function to
yield probability vector p(x) =€ [0,1]* where the prediction’s class index,

¢=arg max { py,Py,---:Pxl” }1

indicates the primary cancer site's label ¥+ e Specificaly, a baich X ¢ R®*P with B
individual samples is first transformed by the input layer U = g{({X, W) + b® with affine
transform parameters {W9, 5@} non-linear activations g, and output representation UW®.
Hidden layers have residua  connectionsU® = g({U* D, W) + ™)+ UMY \yhere
1€1,2,...,L denotes the hidden layer index (£ =3 in this case). The final output layer is a
pointwise (mean estimate) function in logit-space HX)=g({U, W) + %), \yhere
{W®, b} e the fina output (affine) transformation parameters. Finally, softmax
normalisation yields a K-vector p(X) = Softmax(f(X)), All other hyperparameter settings are
defined in Supplementary Table 2. This baseline Resnet model architecture was inherited by

al other models in this study to control inductive biases.
Approximate Bayesian inference

Bayesian inference may yield a predictive distribution about sample x*, 2plx",P) , from the

likelihood of an assumed parametric model #{px*, 8} an (approximate) parametric posterior
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2(©|2?), and potentially Monte Carlo Integration (MCI) technique, also referred to as Bayesian

model averaging:
1 T
plplx", D) [ plplx", Oe(OID)O ~ 7 piplx’, 0.

Most neural networks are parametric models, which assume@ can perfectly represent . As a
result, the model likelihood #{plx*,D,8) is often replaced with #{ph<*,©).The main
differentiating factor among al Bayesian deep learning inference methods lies in how the

parametric posterior ¢(©|P} is gpproximated.
Resnet extended with Monte Carlo Dropout

The MCD model approximates the parametric posterior ¢{®|P) by keeping dropout activated
during inference [43]. Dropout randomly ‘switches off’ a subset of neurons to zero-vectors at
each iteration. Hence, a collection of dropout configurations {€:}:r are samples from the
(approximate) posterior #{8|P). For more information, refer to the Appendix of [43] where an
approximate dual connection between Monte Carlo Dropout neural networks and Deep

Gaussian processes is established.

The MCD also extends the Resnet model architecture by including an additional output layer
to estimate a data-dependent variance function s5(X) = g({U®, W) + ™) in addition to the
(now stochastic) mean functiorf(X) = g({U*™, W) + bf*). Both final output layers had a
shared input U, but unique parameters {W?, b} and {W§™?, b}, Together, the stochastic
mean &(X) and variance & (X) specify a Gaussian distribution in the logit-space, which was
then sampled once m(X) ~AN{n=£(X),Z? ==(X)"T) and normalised with the Softmax
function p«{X} = Softmax(u,(X)). p.{X) represents a single sample from the model likelihood

plplx, 8), from which T samples are averaged for Monte Carlo integration:
1 T
PX) =7 Y o pX).
=1
Finally, p(X} estimates the cancer primary site label », the predictive uncertainties Conf(.}, and
#(-) for each individual sample in data batch x.

MCD extended with a bi-Lipschitz constraint

The BiLipschitz model shared all the properties of the MCD model with an additional bi-

Lipschitz constraint:
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Lyl —=ma||, | F (21 )— F( 22l £ < Lall 21—l .

where scalars Ly and L, respectively control the tightness of the lower- and upper-bound.
Norm operators {ll-l: ll-ll=} are over the data space x and function space F. The effect of the
bi-Lipschitz constraint is such that the changes in input data llx: —=zllx (e.g. distribution
shifts) are proportional to the changes in the output, Ilftx.) — f{x=}ll>. These changes are within
a bound determined by I: (controlling sensitivity) and Ls (controlling smoothness).
Interestingly, recent studies have established that bi-Lipschitz constraints are beneficial to the
robustness of the neural network under distributional shifts [44], [45]. Sensitivity (i.e. £1) IS
controlled with residual connections [66], [67], which allows fx) to avoid arbitrarily small
changes, especialy in the presence of distributional shifts in those regions of x with no
(training data) support [44]. Sensitivity (i.e. La) is controlled with spectral normalisation on
parameters @ [44], [68] and batch-normalisation functions [45], which alow &x) to avoid
arbitrarily large changes (under shifts) that induce feature collapse and extreme

overconfidence [44]-{46].
Deep ensemble of BiLipschitzmodels

The Ensemble model was a collection of eight independently trained BiLipschitz models with
unique initial parameter configurations. Each Bayesian model in the Ensemble model is
sampled T/10(= 25} times and then pooled to control for Monte Carlo integration between the
‘Ensemble’ and all other models.

Models in deep ensembles yield similarly performant (low-loss) solutions, but are diverse and
distant in parameter- and function-space [69]. This alows the ensemble to have an
(approximate) posterior ¢(812) with multiple modes, which was not the case for the Resnet,
MCD, and Bilipschitz models. We believe the ensemble modelled #(8|P) with the highest
fidelity to the true parametric posterior 2(8[2) due to empirical evidence from other studies'
results [27], [48], [70], [71].

Modéd efficacy assessment

Model efficacy was assessed using several metrics with practical relevance in mind
(justification provided in the Supplementary Information — S1.2). Predictive performance, the
predictive uncertainties and the total overconfidence were, respectively, measured with the
micro-F1 score, Shannon’s Entropy# , and Expected Calibration Error (ECE). F1-AUC was

used to evaluate the robustness of the predictive performance and the uncertainty’s error-rate
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correlation. The Area between Development and Production (ADP) metric was designed to
complement F1-AUC by evaluating robustness to shift-induced over confidence. This may be
interpreted as the expected predictive loss during a model’s transition from development
inference (1ID) to production inference (OOD) while controlling for the uncertainty
threshold.

Quantifying predictive uncertainty

A predictive uncertainty (or total uncertainty) indicates the likelihood of an erroneous
inference p{x} = SoftMax(f(x)), with a probability vector p(x) =€ [0,1[* normalising operator
SoftMax(.), pointwise softmax function in logit-space, £.), and an gene expression vector
x cRP. The ideal predictive uncertainties depend on the combination of many factors
including the training dataPumm = {(x: w)}ey, Model specification (e.g. model architecture,
hyperparameters, etc.), inherent noisein data, model parameters g, test data inputs x € Dige (if
modelling heteroscedastic noise), and hidden confounding variables causing distribution
shifts. Consequently, there are many statistics, each explaining different phenomena, which
make up the predictive uncertainty. Given that some sub-divisions of uncertainty are
exclusive to distribution-wise predictive models [72], we restricted ourselves to uncertainties
that are accessible to both pointwise and distribution-wise models, namely, the confidence
score, Conf{x), and Shannon’s Entropy H{p(x}),

A model’s confidence score w.r.t. sample x, is defined by the largest element from the

softmax vector,

Canf{x) = ||P(%)||eo,

where p(x) = SoftMax(f{x}) and |lp(®)ll= denotes the matrix-induced infinity norm of the vector
pi{x). Confidence scores approximately quantify the probability of being correct and thus they
are often used for rejecting ‘untrustworthy’ predictions (recall ‘uncertainty thresholding’
from the Introduction). Moreover, an average Conf(x} is comparable to the accuracy metric,

which allows for evaluating the overconfidence via ECE, which we will shortly detail.

Another notion of predictive uncertainty is that of Shannon’s Entropy, i.e.,

K
H(p) = — 3 b Jog(p:) = —(p, log(p)),
=1
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where ¢, -} is the dot product operator. Recall that #(p) is maximised when p encodes a

uniform distribution.
Defining out-of-distribution data and the DL effects

The 11D assumption on data implies true causal mechanisms (i.e. structural causal model)
where the underlying data generating process is immutable across observations, and hence
the samples are independently generated from the same distribution [58]. The OOD
assumption, however, underpins a different setting where the underlying causal mechanisms
are affected (e.g. via interventions), thus the distribution of data changes [73]. There are
many different types of distributional shifts, all of which negatively affect model
performance. Deep learning models can degrade under distribution shifts as the 11D
assumption is necessary for most optimisation strategies (Supplementary Information — $4.1).
Furthermore, it is worth noting that the resulting overconfidence can be extreme, whereby
arbitrary model predictions correspond with maximal confidence scores &—+1 [45]

(Supplementary Information — $4.2).
Evaluation in OOD using ECE

The Expected Calibration Error was determined by binning each model’s confidence scores
into a bins. The absolute difference between each bin’s accuracy and average maximum
softmax score is averaged to weigh the bins proportionally with sample count. The ECE is

defined as follows:
| Bul
ECE = ,,.=El . |ace{By) — conf(Bm)l,

where By, is the number of predictions in bin m, » is the total number of samples, and ace(Be)

and eonf(B=) are the accuracy and confidence scores of bin m, respectively.
Evaluation in OOD using the Area under the F1-Retention Curve (F1-AUC)

Area under the F1-Retention Curve (F1-AUC) was used to evaluate model performance in
OOD, as it accounts for both predictive accuracy and an uncertainty’s error-rate correlation
[47]. High F1-AUC values result from high accuracy (reflected by vertical shifts in F1-
Retention curves) and/or high uncertainty error-rate correlation (reflected by the gradient of
the F1-Retention curves). An uncertainty’s error-rate correlation is important in the

production (OOD) context as higher correlations imply more discarded erroneous predictions.
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F1-AUC was quantified according to the following method.

1. Predictions were sorted by their descending order of uncertainty.

2. All predictions were iterated over in order once, while at each iteration, F1 and
retention (initially 100 %) were calculated before replacing the current prediction with
ground truth, hence decreasing the retention.

3. Theincreasing F1 scores and the corresponding decreasing retention rates determined
the F1-Retention curve.

4. Approximate integration of the F1-Retention curve determined F1-AUC.

F1-Retention curves and F1-AUC metrics were quantified for all models on OOD data,

including samples with classes that were not seen during training.
Using ADP for evaluating modelsin OOD datarelativeto 11D data

The Area between the Development and Production Curve (ADP) aimed to complement F1-
AUC, especiadly in the context of deploying models from development inference (11D) to
production inference (OOD). Thus, ADP was designed to capture (in OOD data, relative to
[1D) three aspects of a model’s robustness relating to the accuracy, uncertainty error-rate
correlation, and shift-induced overconfidence. This is because benchmarked inter-model
performance can reduce similarly in terms of robustness to accuracy and uncertainty’s error-
rate correlation (as measured by F1-AUC), but significantly differ by their uncertainty
calibration (as measured by ADP).

ADP was calculated according to the following method:

1. Development and Production F1-Uncertainty curves were produced by iteratively
calculating F1 and discarding (not replacing) samples by their descending order of
uncertainty.

2. A nomina F1 target range of was
selected, based on the Development F1-Uncertainty curve; with (Flses, Une=) denoting
apoint on the Development F1-Uncertainty curve at uncertainty threshold Voo,

3. FlayWasincremented at intervals of 1e-5 from Flee = min{Flae) t0 Flaw = max{Fli)
, with the per cent decrease in F1, from development to production, recalculated at

each step,

Decrease@ P (1.} = (Fliew — Flopad)/ Flypea % 100%.
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4. The set of recalculated Decrease®™*™*}{F1a,) yalues was averaged to approximate the

Area between the Development and Production curves (ADP).

The ADP may be interpreted as “the expected decrease in accuracy when transitioning from

development to production if uncertainty thresholding is utilised to boost reliability”.

It isimportant to note that our method for selecting the range was
not arbitrary and required two checks for each model’s Development F1-Uncertainty curve.
The first check was to ensure the sample size corresponding to was sufficiently
large (see Supplementary Table 3). The second check was to ensure that was
large enough to satisfy production needs. Failing to undertake these checks may result in the
ADP statistic to mislead explanations about the expected loss when deploying models to

production.

ADP is practicaly relevant by relating to the uncertainty thresholding technique for
improving reliability in  production (recall introduction). This is because
Decrease!™ 7™ (F14,) first depends on a nominated target performance Flam, which selects
corresponding et from the Development F1-Uncertainty Curve. Predictions with
uncertainties below Yeeem are accepted in production, with performance denoted by Flpred. AS
far as the authors are aware, no other metric monitors the three robustness components of

accuracy, uncertainty’s error-rate correlation, and shift-induced over confidence.
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