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Abstract  

Trust and transparency are critical for deploying deep learning (DL) models into the clinic. 

DL application poses generalisation obstacles since training/development datasets often have 

different data distributions to clinical/production datasets that can lead to incorrect 

predictions with underestimated uncertainty. To investigate this pitfall, we benchmarked one 

pointwise and three approximate Bayesian DL models used to predict cancer of unknown 

primary with three independent RNA-seq datasets covering 10,968 samples across 57 

primary cancer types. Our results highlight simple and scalable Bayesian DL significantly 

improves the generalisation of uncertainty estimation (e.g., p-value = 0.0013 for calibration). 

Moreover, we demonstrate Bayesian DL substantially improves accuracy under data 

distributional shifts when utilising ‘uncertainty thresholding’ by designing a prototypical 

metric that evaluates the expected (accuracy) loss when deploying models from development 

to production, which we call the Area between Development and Production curve (ADP). In 

summary, Bayesian DL is a hopeful avenue of research for generalising uncertainty, which 

improves performance, transparency, and therefore safety of DL models for deployment in 

real-world. 
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Recent advances in deep learning (DL) have led to the rapid development of diagnostic and 

treatment support applications in various aspects of healthcare, including oncology [1]–[4]. 

The proposed applications of DL utilise a range of data modalities, including MRI scans [5], 

CT scans [6], histopathology slides [7], genomics [8], transcriptomics [9], [10], and most 

recently, integrated approaches with various data types [11], [12]. In general, studies using 

DL show excellent predictive performance, providing hope for successful translation into 

clinical practice [13], [14]. However, prediction accuracy in DL comes with potential pitfalls 

which need to be overcome before wider adoption can be eventuated [15].  

The lack of transparency over prediction reliability is one challenge for implementing DL 

[16]. One approach to overcome this is by providing uncertainty estimates about a model’s 

prediction [17, p. 20], [18], enabling better-informed decision making. Another obstacle 

relates to the assumptions made about data when transitioning from training to real-world 

applications. In standard DL practice, during the ‘development’ stage, models are trained and 

validated on data prepared to satisfy the assumption of independent and identically 

distributed (IID) data, meaning that model would be applied to make predictions on the data 

that are independently drawn and come from the same distribution as the training data. 

However, this assumption is frequently violated when models are deployed in ‘production’ 

(i.e. real-world application), when confounding variables cause distributional shifts that push 

data out-of-distribution (OOD) [19]. For oncology applications, such confounding variables 

can include technical differences in how the data are collected (e.g. batch effects, differences 

in sequencing depth or library choice for genomic and transcriptomic data; differences in 

instrumentation and imaging settings for medical imaging data), as well as biological 

differences (e.g. differences in patient demographics or a data class unseen during model 

development). The consequences from OOD data include inaccurate predictions coupled with 

underestimated uncertainties, which together result in the model’s overconfidence from 

distributional shifts, or what we call ‘shift-induced’ overconfidence [20]–[22]. Consequently, 

implementation of DL into clinical practice (i.e., production) requires that models are robust 

(i.e., generalise) to distributional shifts and provide correct predictions with calibrated 

uncertainties.  

Methods to address DL overconfidence in production exist, albeit with different limitations. 

Repeated retraining of deployed models on new production data is beneficial for accuracy, 

but introduces new risks such as over-computation or catastrophic forgetting, whereby DL 

models lose performance on original training/development data [23], [24]. Using tracking 
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metrics such as accuracy can help inform ML engineers about the DL reliability, although 

such metrics are only available retrospectively. A key pitfall for these methods are that they 

are reactive and not proactive.  

One proactive approach for managing risks from DL overconfidence in production is with 

‘uncertainty thresholding’, whereby only predictions with uncertainties below a threshold are 

accepted (to increase accuracy). Importantly, a DL model’s uncertainty threshold is 

established with development (IID) data. Thus, when the model is deployed to (OOD) 

production data it becomes overconfident. Therefore, the uncertainty threshold (established in 

development) corresponds to higher error-rate in production, which is a problem if 

expectations (between healthcare professionals and engineers) are set during the development 

phase of a project’s life cycle. To address this problem, post-hoc methods exist that calibrate 

uncertainty (e.g., with ‘Temperature scaling’; [25]). However, while post-hoc calibration 

effectively controls overconfidence in IID data [25], it fails to do so (proactively) in OOD 

data [21], [22]. Despite the notable theoretical and empirical research towards generalising 

DL uncertainties from OOD data [26], [27], shift-induced overconfidence is yet to be 

sufficiently addressed in practice.  

In this study, we aim to address the safety and performance concerns of shift-induced 

overconfidence (i.e., the generalisation of uncertainty). We establish theoretical and empirical 

evidence of the phenomenon using a case study that predicts cancer of origin with 

transcriptomic data. Cancer of origin prediction has been an active application area for DL 

[24], [28]–[30], since accurate diagnosis is critical for the treatment of cancers of unknown 

primary (CUP), i.e. metastatic cancers in which the primary cancer site cannot be reliably 

determined. We investigate this case study’s dataset, with simple and accessible (i.e. relevant) 

DL techniques that help generalise uncertainty. Finally, we establish a prototypical metric, 

ADP, alongside a small discussion about how it may be helpful in a clinical setting.  
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Results 

Bayesian model benchmarking approach to predict cancer of unknown primary 

The primary DL task was to predict the tissue of origin (primary cancer type) of cancer 

samples using transcriptomic data. We used transcriptomic data from TCGA of primary 

cancer samples corresponding to 32 primary cancer types as model ‘development’ data: 

training (n=8,202; [31]) and validation IID data (n=1,434; Supplementary Table 1). The test 

data were OOD (representing ‘production’), providing a platform for benchmarking 

resilience to overconfidence, and included TCGA metastatic samples (n=392; [32]), Met500 

metastatic samples (n=479; [33]), and a combination of primary and metastatic samples from 

our own independent internal custom dataset, i.e. ICD (n=461; [34]–[42]; Fig. 1a, 

Supplementary Fig. 1). The distributional shifts in the test data were likely to be caused by 

several factors, including dataset batches, sample metastasis status (metastatic or primary) 

and whether the cancer type was absent during training (‘unseen’).  

We aimed to evaluate if three simple ‘distribution-wise’ (e.g. Bayesian) DL models (with 

Resnet architecture) improve performance and reduce shift-induced overconfidence 

compared to a pointwise baseline model (with identical Resnet architecture). To achieve this, 

we performed controlled benchmarking of the models over IID and OOD data (Fig. 1b). The 

Bayesian models were Monte Carlo Dropout approximation (‘MCD’) [43] , MCD with 

smoothness and sensitivity constraints (‘Bilipschitz’) [44], [45], and an ensemble of 

Bilipschitz models (‘Ensemble’) [45]. The ways in which models differed were canonical: 

MCD modified Resnet by keeping Dropout during prediction, Bilipschitz modified MCD 

with spectral normalisation, Ensemble modified Bilipschitz by combining multiple models.  
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Figure 1. Overview of the study design. a Simplified study workflow. TCGA primary cancer types comprised the training 

and IID validation data. OOD test data comprised of the TCGA (metastatic cancer types), Met500 and ICD datasets, which 
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included primary, metastatic and ‘unseen’ cancer types. b Schematic overview of the four tested models: pointwise Resnet 

(Resnet), Resnet extended with Monte Carlo Dropout (MCD), MCD extended with bi-Lipschitz constraint (Bilipschitz), and 

an ensemble of Bilipschitz models (Ensemble). Note, Resnet represents a single point in function space (blue dot), while two 

Bayesian models (MCD and Bilipschitz ) represent a distribution within a single region in function space (green dots). The 

Ensemble represents a collection of distributions centred around different modes (red dots). 

 

Approximate Bayesian inference reduces shift-induced overconfidence for ‘seen’ classes in 

a primary cancer site context  

The predictive performance of each model to predict primary tissue was assessed using 

micro-F1 (equivalent to Accuracy; abbreviated F1). For the IID validation data, the difference 

between the highest and lowest ranking models was 0.28% (97.07% for Resnet and 96.79% 

for Ensemble, respectively; Fig. 2a, Supplementary Fig. 2-5). As expected, F1 scores dropped 

for the OOD test set across all four models, with a 1.74% difference between the highest and 

lowest ranking models (82.04% for Ensemble and 80.30% for Resnet, respectively; Fig. 2b, 

Supplementary Fig. 6-9). All models had higher predictive uncertainties (Shannon’s entropy 

) for OOD, relative to IID data (Fig. 2b). Uncertainties were significantly higher for all 

approximate Bayesian models (MCD, Bilipshitz, and Ensemble) relative to (pointwise) 

Resnet (P < 0.0001). Moreover, overconfidence in OOD data was evident for the Resnet and 

MCD models since their binned accuracies (i.e. the correct classification rates within bins 

delineated by the confidence scores) were consistently lower than corresponding confidence 

scores (Fig. 2c). The expected calibration errors (ECEs) for OOD data ranged between 5% 

for Ensemble and Bilipschitz and 16% for Resnet (Fig. 2c). Estimation of overconfidence as 

an absolute error was negligible across all models for IID data, with high amounts of 

overconfidence for OOD data, highlighting the shift-induced overconfidence when 

transitioning from IID to OOD data (Fig. 2d). Furthermore, Resnet had significantly higher 

overconfidence than MCD (p-value < 0.01), Bilipschitz (p-value < 0.001), and Ensemble (p-

value < 0.001) for OOD data but not IID data. This shows that the shift-induced 

overconfidence in pointwise DL models can be reduced with simple (approximate) Bayesian 

inference.  
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Figure 2. Out-of-distribution overconfidence of a pointwise baseline Resnet model and three simple Bayesian models 

on ‘seen’ data. a Micro-F1 score (i.e. Accuracy) of all models on the IID validation data (left) and on ‘seen’ OOD data 

(right). Accuracy for (IID) validation data was controlled with early stopping. b Box plot of each model’s predictive 

uncertainty (Shannon’s Entropy, H) for individual samples on IID data (left) and on ‘seen’ OOD data (right). Sample median 

is depicted by horizontal line, while the sample mean is depicted by the grey star. Statistical significance (single-sided 

Wilcoxon rank-sum) between baseline and each Bayesian model are marked with denoted *, **, ***, for p-value < 0.05, p-

value < 0.01, and p-value < 0.001, respectively. c Each model’s confidence vs accuracy of each ECE-bin on ‘seen’ OOD 

data. The black diagonal lines illustrate perfect calibration, i.e., no overconfidence. ECE value for each model shown in 

parentheses. The residuals are colour-coded by the (left) colour scale and represent the difference between confidence and 

accuracy for each bin. d Box plot of each model’s absolute calibration error of individual samples on IID data (left) and 

‘seen’ OOD data (right). Statistical significance (single-sided Wilcoxon rank-sum) between baseline and each Bayesian 

model are marked with denoted *, **, ***, for p-value < 0.05, p-value < 0.01, and p-value < 0.001, respectively. 

 

Prediction overconfidence for 'unseen' classes explained by related primary cancer types 

Classes absent from training (‘unseen’) cannot have correct predictions, and prediction 

uncertainties should be higher compared to ‘seen’ classes. As expected, mean total 

uncertainties were higher for ‘unseen’ classes for all models (Fig. 3a). Moreover, 
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approximate Bayesian models were significantly more uncertain with ‘unseen’ classes 

compared to Resnet (p-value < 0.01; Fig 3a). However, exceptions occurred across all 

models, where total uncertainty values were low, at both, class level, where predictions for a 

whole ‘unseen’ class consistently had low uncertainty, and sample level, where predictions 

for only some samples from a class had low uncertainty (Fig. 3b). We wanted to investigate 

whether any of the exceptions could be examples of ‘silent catastrophic failure’ 

(Supplementary Information – S4.2), a phenomenon where data are far from the training 

data’s support, resulting in incorrect yet extremely confident predictions [44]–[46]. 

 

‘Unseen’ classes (i.e. cancer types) with low levels of uncertainty (averaged within the class) 

corresponded to ‘seen’ classes that either (biologically) related to the predicted primary 

cancer type, or were from a similar tissue or cell of origin. For example, all acral melanoma 

(ACRM) samples (n=40), a subtype of melanoma that occurs on soles, palms and nail beds, 

were predicted to be cutaneous melanoma (MEL) by all four models (Supplementary Fig. 6-

9) with the smallest median total uncertainty for all four models (Fig. 3b). All three 

fibrolamellar carcinoma (FLC) samples, a rare type of liver cancer, were predicted to be 

hepatocellular carcinomas (HCC), although the median uncertainty was much higher for 

Bilishpitz and Ensemble models compared to Resnet and MCD (1.8, 1.5, 0.1 and 0.29 

Shannon’s Entropy , respectively). Two bladder squamous cell carcinomas (BLSC) showed 

different examples of class-level exceptions with one sample predicted as a bladder 

adenocarcinoma (BLCA), with the same primary tissue site as BLSC, or a lung squamous 

carcinoma (LUSC), with similar cell of origin. For the ‘unseen’ class pancreatic 

neuroendocrine tumours (PANET) we saw a wide spread of uncertainty values (Fig. 3b). 

Interestingly, only PANET samples that were predicted as another subtype of pancreatic 

cancer, pancreatic adenocarcinomas (PAAD), had low prediction uncertainty across all 

models compared to other incorrectly predicted PANET samples (Supplementary Fig. 10). 

Overall, since most of the incorrect predictions with low uncertainties had a reasonable 

biological explanation for the prediction, we concluded that we did not find evidence of 

catastrophic silent failure in this case study.  
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Figure 3. Total uncertainties for out-of-distribution data with cancer types ‘seen’ and ‘unseen’ in training. a Box plot 

of each model’s predictive uncertainty (Shannon’s Entropy, H) on OOD data with cancer types ‘seen’ (LHS) and ‘unseen’ 

(RHS) during training. Statistical significance (two-sided Wilcoxon rank-sum) between baseline and each Bayesian model 

are marked with denoted *, **, ***, for p-value < 0.05, p-value < 0.01, and p-value < 0.001, respectively. Stars denoted 

mean, the horizontal centre lines denoted median, and notches – the 95% confidence interval of the median total uncertainty. 

b Total uncertainty values for the ‘unseen’ classes. The horizontal red lines denoted median total uncertainty values. 

 

Robustness to shift-induced overconfidence is integral for production inference  

To evaluate the robustness of the models’ accuracy, as well as the uncertainty’s correlation 

with the error-rate (abbreviated “uncertainty’s error-rate correlation”) we used the F1-

Retention Area Under the Curve (F1-AUC) [47]. Evaluation was carried out on ‘seen’ and 

‘unseen’ OOD data (i.e., ‘production data’). All models yielded similar results, with only a 

0.45% percent decrease between the highest and lowest ranking models (F1-AUC of 93.67% 

for Bilipschitz and 93.25% for MCD, respectively; Fig. 4a). The performance difference 

between all models was marginal as F1-AUC doesn’t capture the lost calibration caused by 

the distributional shift when transitioning from IID to (‘seen’ and ‘unseen’) OOD. In other 

words, the F1-AUC metric did not detect effects caused by the shift-induced overconfidence. 

This was evident from the following observations: i) inter-model accuracies were similar 

within IID, as well as OOD data (Fig. 2a); ii) calibration errors (i.e. overconfidence) were not 

different for IID (p-value > 0.05), but different for OOD (p-value < 0.01; Fig. 2d); and iii) 

F1-AUC scores were similar for all models, which implies ‘uncertainty’s error-rate 

correlation’ must have been similar (since F1-AUC encapsulates accuracy and ‘uncertainty’s 

error-rate correlation’ [47]). While F1-AUC encapsulated accuracy and ‘uncertainty’s error-

rate correlation’, which are important components of robustness when deploying DL in 

production, F1-AUC does not encapsulate robustness to shift-induced overconfidence.  
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Figure 4. Evaluation of model generalisability from development to production. a F1-Retention Curves and 

corresponding F1-AUC scores. The F1-Retention curve of the (baseline) Resnet model and three approximate Bayesian 

models (MCD, Bilipschitz, Ensemble). As the retention fraction decreases, more of the most uncertain predictions are 

replaced with the ground truth. Thus, steeper curves require stronger correlation between uncertainty and the error-rate. The 

F1-Retention Area Under the Curve (F1-AUC) for each model are detailed in the legend. The F1-AUC is a function of both 

predictive performance (micro-F1), and the uncertainty error-rate correlation. b Development and Production F1-Uncertainty 

curves for each model. Illustrates the development F1(IID)-Uncertainty curves (continuous lines), as well as the production 

F1(OOD)-Uncertainty curves (dashed lines). Black lines illustrate the F1 decrease from a single development F1 score with 

F1dev=98.5 % for all models. The Area Between the Development and Production Curve (ADP) is shown as the coloured 

region. c Area Between the Development and Production Curves (ADP) bar plot with bootstrapped confidence intervals. 

ADP is the averaged F1 decrease calculated between F1dev= 97.5 % and F1dev= 99.0 % at intervals of 0.001 %. Steps for 

calculating the ADP are detailed in the Methods. 
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To overcome the limitation of the F1-AUC metric’s insensitivity to shift-induced 

overconfidence, we developed a new (prototypical) metric called the Area between the 

Development and Production curve (ADP), which depends on both IID (i.e. ‘development’) 

data, as well as the (‘seen’ and ‘unseen’) OOD (i.e. ‘production’) data. The ADP may be 

interpreted as “the expected decrease in accuracy when transitioning from development to 

production if uncertainty thresholding is utilised to boost reliability”. Furthermore, the ADP 

complements F1-AUC in the context of deploying models from training/development data 

(IID) to production test data (OOD). The ADP was calculated by averaging the set of 

decreases in F1, from development (IID) to production (OOD) datasets, at multiple different 

uncertainty thresholds (a single F1-decrease is demonstrated in Fig. 4b; refer to the Methods 

for details).  

The ADP metric detected effects from shift-induced overconfidence, with an inter-model 

percent decrease that was two orders of magnitude larger than F1-AUC (Fig. 4c). The percent 

decrease between the top and bottom ranking models was 53.68%. The top-ranking model 

was Bilipschitz with an ADP of 4.28%, and the bottom ranking model was Resnet with ADP 

of 9.24% (Fig. 4c). This highlights that ADP may be relevant when evaluating the 

performance of models that are deployed in production by encapsulating shift-induced 

overconfidence, which is inevitable in an oncological setting. 

  

Discussion 

A major barrier to using DL in clinical practice is the shift-induced overconfidence 

encountered when deploying a DL model from development to production. Reducing and 

accounting for shift-induced overconfidence with appropriate models and relevant metrics 

should make the models more transparent and trustworthy for translation into practice. Our 

work herein shows that marked progress can be made with simple Bayesian DL models 

deployed in conjunction with uncertainty thresholding. However, the performance of models 

deployed in production can be difficult to evaluate without a suitable metric, therefore we 

developed ADP to directly measure shift-induced overconfidence. 

Three Bayesian models with canonical extensions, namely MCD, Bilipschitz, Ensemble, 

were chosen to test whether simple modifications applicable to any DL architecture can 

improve performance in production. The Bayesian models were selected according to the 
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following three criteria: (1) simplicity, for wider accessibility; (2) ubiquity, to ensure models 

were accepted and tested methods; and (3) already demonstrated as robust to shift-induced 

overconfidence [22], [48], [49]. Our prior expectations were that each canonical extension 

would further improve generalisation of both accuracy and uncertainty quality, albeit at the 

cost of increased complexity. Those expectations were mostly in line with our benchmarking 

results, since the most complex model (Ensemble) went from worst-performing in IID to 

best-performing model in OOD in terms of accuracy. Furthermore, while inspection into 

overconfidence presented no significant inter-model differences within IID data, the OOD 

overconfidence differences were significant, whereby added complexity corresponded to less 

shift-induced overconfidence. Using the ADP statistic, improvements in robustness to shift-

induced overconfidence were shown to have a large impact on the accuracy in production 

when rejecting unreliable predictions above an acceptable uncertainty threshold. Hence, any 

DL architecture’s accuracy in production can be substantially improved with simple and 

scalable approximate Bayesian modifications. This phenomenon is sometimes referred to as 

“turning the Bayesian crank”  [50].  

We restricted our uncertainty statistics to predictive (or total) uncertainties, since it was not 

possible to estimate the sub-divisions of uncertainty with the baseline Resnet model. In future 

work, a richer picture may be understood by focusing only on distribution-wise models to 

inspect the two sub-divisions of the predictive uncertainty: epistemic (model) uncertainty and 

aleatoric (inherent) uncertainty. Epistemic uncertainty is dependent on the model 

specification and may be reduced with more data or informative priors. Aleatoric uncertainty 

is dependent on data’s inherent noise and can be reduced with more data features that explain 

variance caused by confounding variables (e.g., patient age, cancer stage, batch effect). 

Epistemic and aleatoric uncertainties present the potential for further insights, including 

whether a data point’s predictive uncertainty will reduce with either more examples or by an 

altered model design (epistemic uncertainty), or more features (aleatoric uncertainty) [51]–

[54]. 

This study addressed distributional shift effects on uncertainties with parametric models, 

which assume parameters are sufficient to represent all training data. Non-parametric models 

relax that assumption, which is arguably crucial to detect when data are outside the domain of 

training data (‘out-of-domain’) and for avoiding extreme overconfidence, i.e. ‘silent 

catastrophic failure’. In future work, non-parametric models, for example Gaussian 
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Processes, capable of measuring uncertainties about ‘out-of-domain’ data, should also be 

explored [44]–[46], [55]. 

Our work suggests that considerations of robustness to distributional shifts must encapsulate 

uncertainty and prediction to improve performance in production. While this study focused 

on the quality of uncertainty, it is important to note that other DL components are worth 

consideration too. These include model architecture (i.e. inductive bias), which can be 

tailored to ignore redundant data-specific aspects of a problem via invariant or equivariant 

model representations [56], data-augmentation strategies [57], and/or structural causal models 

[58]–[60]. Such tailored models can further improve data efficiency [56], robustness to 

distributional shifts [27], and are central to an appropriate model specification that challenges 

DL deployment [61]. The importance of tailored inductive biases is supported by the prolific 

advances in fields beyond clinical diagnostics in computer vision (e.g. CNN’s translational 

equivariance [56]), and biology (e.g. how Alpha Fold 2 [62] solved the Critical Assessment 

of protein Structure Prediction (CASP; [63]). These studies show that a wide array of DL 

components can improve generalisation and thus DL performance in production. Our study 

argues uncertainty calibration as an important element in that array; hence, improving the 

quality of uncertainty can lead to improved DL reliability, in production.  

In practice, we hope the community considers utilising uncertainty thresholding as a 

proactive method to improve accuracy and safety of DL applications, deployed in the clinic. 

This may involve (iterative) consultation between ML engineer and medical professionals to 

agree on a ‘minimally acceptable accuracy’ for production (deem this �����1����. The ML 

engineer may then use development data to train an approximate Bayesian DL model and 

produce Development F1-Uncertainty curves (with validation data). The engineer then, with 

another independent dataset, can proceed to develop an ADP estimate (as described in the 

methods) to help communicate (in context of available dataset differences) what the expected 

accuracy decrease may be when the model is deployed to production, which helps manage 

expectations and facilitate trust. Importantly, with the (prototypical) ADP, the team may 

better judge which uncertainty quantification techniques are most effective for boosting 

accuracy under the ‘uncertainty thresholding’ risk-management regime. This procedure, as 

well as the ADP statistic, is of course prototypical and only suggestive. We leave 

improvement, and clarification of this for future work. 
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In summary, we undertook this study to highlight the difficulties of DL deployment in 

practice, using clinical oncology as an example. We highlighted approaches for quantifying 

and improving robustness to shift-induced overconfidence with simple and accessible DL 

methods. We justified our approach with mathematical and empirical evidence, biological 

interpretation, and a new metric, the ADP, that is complementary to F1-AUC by 

encapsulating shift-induced overconfidence – a crucial aspect that needs to be considered 

when deploying DL in real-world production. Moreover, the ADP is directly interpretable as 

proxy to expected accuracy loss when deploying DL models from development to 

production. Although we have addressed the shift-induced overconfidence by utilising first-

line solutions, work remains to bridge DL from theory to practice. We must account for data 

distributions, evaluation metrics, and modelling assumptions as all equally important and 

necessary considerations to see safe translation of DL into clinical practice.  

 

 

Methods 

Prediction task and datasets 

The task was to predict a patient's primary cancer type, which we cast under the supervised 

learning framework by learning the map , with  denoting the primary cancer category, 

and  denoting a patient’s sampled bulk gene expression signature. 

Three independent datasets were used: our own independent Internal Custom Dataset, ICD 

[34]–[42], TCGA [31], and Met500 [33]. All datasets were preprocessed and partitioned into 

groups (i.e. strata) that uniquely proxied different distribution shifts. Proxies of 

approximately unique shifts were assumed to be governed by their respective intervention 

(i.e. unique shift), as deemed by values of four presumed hidden variables influencing the 

modelled map . Those variables were ‘Batch’ (indicating source dataset label, e.g., 

‘TCGA’), ‘State-of-Metastases’ (valued ‘Primary’, or ‘Metastatic’), and ‘Seen’ (indicating 

whether a target value y was seen during training) (Supplementary Table 1). Training and 

validation data comprised of the Strata ID 
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since we believed it to be approximately independent and identically distributed (IID) data. 

All other strata were assumed out-of-distribution (OOD) due to distribution shifts caused by 

confounding variables. As a result, the training and validation data were IID, while the test 

data were OOD.  

Benchmarked models 

Four models were benchmarked in this study – the baseline pointwise Resnet, MCD, 

Bilipschitz, and Ensemble. All models shared identical model architecture and 

hyperparameter settings (including early stopping), respectively controlling the inductive bias 

and accuracy from confounding overconfidence.   

Baseline Resnet model  

Resnet architecture had four hidden layers, each with 1024-neurons, Mish activations [64], 

batch normalisation [65], and standard residual connections from the first hidden layer up to 

the final hidden ‘logit-space’ layer, which was then normalised using the SoftMax function to 

yield probability vector , where the prediction’s class index, 

 

indicates the primary cancer site’s label . Specifically, a batch  with  

individual samples is first transformed by the input layer , with affine 

transform parameters , non-linear activations , and output representation . 

Hidden layers have residual connections  where  

  denotes the hidden layer index (  in this case). The final output layer is a 

pointwise (mean estimate) function in logit-space  where 

 are the final output (affine) transformation parameters. Finally, softmax 

normalisation yields a K-vector . All other hyperparameter settings are 

defined in Supplementary Table 2. This baseline Resnet model architecture was inherited by 

all other models in this study to control inductive biases. 

Approximate Bayesian inference  

Bayesian inference may yield a predictive distribution about sample  ,   , from the 

likelihood of an assumed parametric model , an (approximate) parametric posterior 
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, and potentially Monte Carlo Integration (MCI) technique, also referred to as Bayesian 

model averaging: 

 

Most neural networks are parametric models, which assume  can perfectly represent . As a 

result, the model likelihood  is often replaced with .The main 

differentiating factor among all Bayesian deep learning inference methods lies in how the 

parametric posterior  is approximated.  

Resnet extended with Monte Carlo Dropout  

The MCD model approximates the parametric posterior  by keeping dropout activated 

during inference [43]. Dropout randomly ‘switches off’ a subset of neurons to zero-vectors at 

each iteration. Hence, a collection of dropout configurations  are samples from the 

(approximate) posterior . For more information, refer to the Appendix of [43] where an 

approximate dual connection between Monte Carlo Dropout neural networks and Deep 

Gaussian processes is established. 

The MCD also extends the Resnet model architecture by including an additional output layer 

to estimate a data-dependent variance function  in addition to the 

(now stochastic) mean function . Both final output layers had a 

shared input , but unique parameters  and . Together, the stochastic 

mean  and variance  specify a Gaussian distribution in the logit-space, which was 

then sampled once  and normalised with the Softmax 

function .  represents a single sample from the model likelihood 

, from which  samples are averaged for Monte Carlo integration: 

 

Finally,  estimates the cancer primary site label , the predictive uncertainties , and 

 for each individual sample in data batch .  

MCD extended with a bi-Lipschitz constraint  

The BiLipschitz model shared all the properties of the MCD model with an additional bi-

Lipschitz constraint: 
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where scalars  and  respectively control the tightness of the lower- and upper-bound. 

Norm operators  are over the data space  and function space . The effect of the 

bi-Lipschitz constraint is such that the changes in input data  (e.g. distribution 

shifts) are proportional to the changes in the output, . These changes are within 

a bound determined by  (controlling sensitivity) and  (controlling smoothness). 

Interestingly, recent studies have established that bi-Lipschitz constraints are beneficial to the 

robustness of the neural network under distributional shifts [44], [45]. Sensitivity (i.e. ) is 

controlled with residual connections [66], [67], which allows   to avoid arbitrarily small 

changes, especially in the presence of distributional shifts in those regions of  with no 

(training data) support [44]. Sensitivity (i.e. ) is controlled with spectral normalisation on 

parameters    [44], [68] and batch-normalisation functions [45], which allow  to avoid 

arbitrarily large changes (under shifts) that induce feature collapse and extreme 

overconfidence [44]–[46]. 

Deep ensemble of BiLipschitz models 

The Ensemble model was a collection of eight independently trained BiLipschitz models with 

unique initial parameter configurations. Each Bayesian model in the Ensemble model is 

sampled  times and then pooled to control for Monte Carlo integration between the 

‘Ensemble’ and all other models. 

Models in deep ensembles yield similarly performant (low-loss) solutions, but are diverse and 

distant in parameter- and function-space [69]. This allows the ensemble to have an 

(approximate) posterior  with multiple modes, which was not the case for the Resnet, 

MCD, and Bilipschitz models. We believe the ensemble modelled  with the highest 

fidelity to the true parametric posterior  due to empirical evidence from other studies' 

results [27], [48], [70], [71]. 

Model efficacy assessment 

Model efficacy was assessed using several metrics with practical relevance in mind 

(justification provided in the Supplementary Information – S1.2). Predictive performance, the 

predictive uncertainties and the total overconfidence were, respectively, measured with the 

micro-F1 score, Shannon’s Entropy  , and Expected Calibration Error (ECE). F1-AUC was 

used to evaluate the robustness of the predictive performance and the uncertainty’s error-rate 
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correlation. The Area between Development and Production (ADP) metric was designed to 

complement F1-AUC by evaluating robustness to shift-induced overconfidence. This may be 

interpreted as the expected predictive loss during a model’s transition from development 

inference (IID) to production inference (OOD) while controlling for the uncertainty 

threshold.  

Quantifying predictive uncertainty  

A predictive uncertainty (or total uncertainty) indicates the likelihood of an erroneous 

inference , with a probability vector , normalising operator 

, pointwise softmax function in logit-space, , and an gene expression vector 

 The ideal predictive uncertainties depend on the combination of many factors 

including the training data , model specification (e.g. model architecture, 

hyperparameters, etc.), inherent noise in data, model parameters , test data inputs   (if 

modelling heteroscedastic noise), and hidden confounding variables causing distribution 

shifts. Consequently, there are many statistics, each explaining different phenomena, which 

make up the predictive uncertainty. Given that some sub-divisions of uncertainty are 

exclusive to distribution-wise predictive models [72], we restricted ourselves to uncertainties 

that are accessible to both pointwise and distribution-wise models, namely, the confidence 

score, , and Shannon’s Entropy . 

A model’s confidence score w.r.t. sample , is defined by the largest element from the 

softmax vector, 

 

where  and  denotes the matrix-induced infinity norm of the vector 

. Confidence scores approximately quantify the probability of being correct and thus they 

are often used for rejecting ‘untrustworthy’ predictions (recall ‘uncertainty thresholding’ 

from the Introduction). Moreover, an average  is comparable to the accuracy metric, 

which allows for evaluating the overconfidence via ECE, which we will shortly detail. 

Another notion of predictive uncertainty is that of Shannon’s Entropy, i.e., 

 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 16, 2022. ; https://doi.org/10.1101/2022.07.14.500142doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.14.500142
http://creativecommons.org/licenses/by/4.0/


where  is the dot product operator. Recall that  is maximised when  encodes a 

uniform distribution. 

Defining out-of-distribution data and the DL effects 

The IID assumption on data implies true causal mechanisms (i.e. structural causal model) 

where the underlying data generating process is immutable across observations, and hence 

the samples are independently generated from the same distribution [58]. The OOD 

assumption, however, underpins a different setting where the underlying causal mechanisms 

are affected (e.g. via interventions), thus the distribution of data changes [73]. There are 

many different types of distributional shifts, all of which negatively affect model 

performance. Deep learning models can degrade under distribution shifts as the IID 

assumption is necessary for most optimisation strategies (Supplementary Information – S4.1). 

Furthermore, it is worth noting that the resulting overconfidence can be extreme, whereby 

arbitrary model predictions correspond with maximal confidence scores  [45] 

(Supplementary Information – S4.2).  

Evaluation in OOD using ECE 

The Expected Calibration Error was determined by binning each model’s confidence scores 

into  bins. The absolute difference between each bin’s accuracy and average maximum 

softmax score is averaged to weigh the bins proportionally with sample count. The ECE is 

defined as follows: 

, 

where  is the number of predictions in bin ,  is the total number of samples, and  

and  are the accuracy and confidence scores of bin , respectively. 

Evaluation in OOD using the Area under the F1-Retention Curve (F1-AUC) 

Area under the F1-Retention Curve (F1-AUC) was used to evaluate model performance in 

OOD, as it accounts for both predictive accuracy and an uncertainty’s error-rate correlation 

[47]. High F1-AUC values result from high accuracy (reflected by vertical shifts in F1-

Retention curves) and/or high uncertainty error-rate correlation (reflected by the gradient of 

the F1-Retention curves). An uncertainty’s error-rate correlation is important in the 

production (OOD) context as higher correlations imply more discarded erroneous predictions. 
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F1-AUC was quantified according to the following method.  

1. Predictions were sorted by their descending order of uncertainty.   

2. All predictions were iterated over in order once, while at each iteration, F1 and 

retention (initially 100 %) were calculated before replacing the current prediction with 

ground truth, hence decreasing the retention. 

3. The increasing F1 scores and the corresponding decreasing retention rates determined 

the F1-Retention curve. 

4. Approximate integration of the F1-Retention curve determined F1-AUC. 

F1-Retention curves and F1-AUC metrics were quantified for all models on OOD data, 

including samples with classes that were not seen during training. 

Using ADP for evaluating models in OOD data relative to IID data 

The Area between the Development and Production Curve (ADP) aimed to complement F1-

AUC, especially in the context of deploying models from development inference (IID) to 

production inference (OOD). Thus, ADP was designed to capture (in OOD data, relative to 

IID) three aspects of a model’s robustness relating to the accuracy, uncertainty error-rate 

correlation, and shift-induced overconfidence. This is because benchmarked inter-model 

performance can reduce similarly in terms of robustness to accuracy and uncertainty’s error-

rate correlation (as measured by F1-AUC), but significantly differ by their uncertainty 

calibration (as measured by ADP).  

ADP was calculated according to the following method: 

1. Development and Production F1-Uncertainty curves were produced by iteratively 

calculating F1 and discarding (not replacing) samples by their descending order of 

uncertainty.   

2. A nominal F1 target range of  was 

selected, based on the Development F1-Uncertainty curve; with  denoting 

a point on the Development F1-Uncertainty curve at uncertainty threshold .  

3.  was incremented at intervals of 1e-5 from  to 

, with the per cent decrease in F1, from development to production, recalculated at 

each step, 

.  
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4. The set of recalculated  values was averaged to approximate the 

Area between the Development and Production curves (ADP). 

The ADP may be interpreted as “the expected decrease in accuracy when transitioning from 

development to production if uncertainty thresholding is utilised to boost reliability”. 

It is important to note that our method for selecting the range  was 

not arbitrary and required two checks for each model’s Development F1-Uncertainty curve. 

The first check was to ensure the sample size corresponding to  was sufficiently 

large (see Supplementary Table 3).  The second check was to ensure that  was 

large enough to satisfy production needs. Failing to undertake these checks may result in the 

ADP statistic to mislead explanations about the expected loss when deploying models to 

production. 

ADP is practically relevant by relating to the uncertainty thresholding technique for 

improving reliability in production (recall introduction). This is because 

 first depends on a nominated target performance , which selects 

corresponding  from the Development F1-Uncertainty Curve. Predictions with 

uncertainties below  are accepted in production, with performance denoted  by . As 

far as the authors are aware, no other metric monitors the three robustness components of 

accuracy, uncertainty’s error-rate correlation, and shift-induced overconfidence. 

Data availability 

This project used RNA-seq data, which was previously published or available at European 

Genome-Phenome Archive (EGA) - EGAS00001002864. TCGA data was accessed from 

the National Cancer Institute Genomic Data Commons data portal (downloaded on 23rd Mar 

2020), Met500 data was accessed from the University of California Santa Cruz 

Xena (downloaded 10th Oct 2020), and ICD data is available at EGA under study accession 

numbers EGAS00001000397, EGAS00001001552, EGAS00001003438, 

EGAS00001000154, EGAS00001001732, EGAS00001004619 and EGAS00001002864. 
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Code availability 

Code available upon request. 
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