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Abstract

Zebrafish possess a remarkable regenerative capacity, which is mediated by the induction of
various genes upon injury. Injury-dependent transcription is governed by the tissue
regeneration enhancer elements (TREESs). Here, we utilized leptin b (lepb), an injury-specific
factor, and its TREE to dissect heterogeneity of non-cardiomyocytes (CMs) in regenerating
zebrafish hearts. Our single-cell RNA sequencing (scRNA-seq) analysis demonstrated that
the endothelium/endocardium(EC) is activated to induce distinct subpopulations upon cardiac
injury. We demonstrated that lepb can be utilized as a regeneration-specific marker to subset
injury-activated ECs. lepb* ECs robustly induce pro-regenerative factors, implicating lepb*
ECs as a signaling center to interact with other cardiac cells. Our scRNA-seq analysis
identified that lepb is also produced by specific subpopulation of epicardium (Epi) and
epicardium-derived cells (EPDCs). To determine lepb labels injury-emerging non-CM cells,
we tested the activity of lepb-linked regeneration enhancer (LEN) with chromatin accessibility
profiles and transgenic lines. While non-detectable in uninjured hearts, LEN directs EC and
Epi/EPDC expression upon injury. The endogenous LEN activity was assessed using LEN
deletion lines, demonstrating that LEN deletion abolished injury-dependent expression of
lepb, but not other nearby genes. Our integrative analyses identify regeneration-emerging cell

types and factors, leading to the discovery of regenerative features of hearts.
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INTRODUCTION

Adult mammals poorly regenerate damaged hearts, resulting in high morbidity and mortality
from cardiac diseases. In contrast, zebrafish possess a remarkable ability to regenerate
injured hearts. Heart regeneration studies across animal species identified multiple
regeneration-driving genes and signaling pathways, which are highly conserved between
mammals and zebrafish '. These results suggest that a key difference between mammals
and zebrafish is not the presence or absence of regeneration-driving genes but in the
mechanisms controlling expression of these genes after injury 2. Dissecting the regulatory
mechanism governing zebrafish heart regeneration will provide insights into understanding
the molecular basis of cardiac regeneration.

Heart regeneration is a complex process, in which cardiomyocytes (CMs) and non-
CMs cooperatively play roles to trigger regenerative programs. As CMs are muscular cells
that ensure cardiac functions to circulate blood throughout the body, an essential event for
heart regeneration is to activate CM proliferation. Non-CMs, such as endocardium,
epicardium (Epi), and immune cells, are also crucial cardiac tissues that respond to cardiac
injury to initiate regenerative process. Endocardium and Epi in zebrafish are rapidly activated
within several hours and one day post-injury, respectively, contributing to heart regeneration
in multiple aspects®®. For instance, cardiac injury-activated endocardium and Epi produces
paracrine factors to stimulate CM proliferation®’ and extracellular matrix proteins (ECMs) to
construct the regenerative niche/environment'®!1, Activated endocardium and Epi are
thought to be heterogenous’?'5, but molecular identity representing diverse subgroups of
these cardiac tissues in regenerating hearts is relatively unexplored.

Tissue regeneration enhancer elements (TREEs) are key regulatory elements that
relay injury signals to direct gene expression 31620, We previously identified the first cardiac
TREE in zebrafish, the leptin b (lepb)-linked regeneration enhancer (LEN) 7. LEN and lepb,
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the target gene of LEN, are not active during development but are robustly activated upon
injury?!, highlighting their regeneration-specific characteristics. Here, we dissect lepb-
expressing cell populations at the single-cell level to infer dynamic changes of non-CM
populations in injured hearts. Further studies of epigenome profiles, enhancer assays, and
LEN deletion mutant analysis determine the regeneration-dependent specificity of LEN in
non-CMs. Overall, our comprehensive analyses of multiple transcriptomic and epigenomic
profiles of injured hearts identify novel molecular and cellular targets for heart regeneration

and provide insights into the regeneration-specific features of the hearts.

RESULTS

scRNA-seq analysis combined with lepb, a regeneration-specific marker, enhances
classification of heterogenous non-CM populations into subgroups

Injury-induced genes can be utilized for representing cell types emerging upon injury. Our
previous work demonstrated that /lepb exhibits regeneration-specific expression in
endocardial cells?, indicating the potential advantage of lepb as a regeneration marker. To
investigate transcriptomic changes at the single cell level in adult hearts, we analyzed
available single cell sequencing (scRNA-seq) datasets generated with ventricular cells sorted
for either runx1P2:Citrine or kdrl:mCherry?2. runx1P2:Citrine expressed in a wide range of
cells in injured hearts, including CMs, Epi, endocardium, and blood cells and kdrl:mCherry
labelled endothelium/endocardium in the hearts?2. Datasets obtained from wild-type uninjured
and 3 days post-cryo-injury (dpi) hearts were used for unsupervised clustering, identifying 23
different clusters (Fig. 1A, B and S1A, B). To determine cell types composing these clusters,
we annotated each cluster with known marker genes (Fig. 1A, C and S1A, C): CMs with
tnnt2a and myl72324; epicardial cells (Epi) and cardiac fibroblasts (cFB) with tcf21, fn1b,

col1ala, tagln, and col5a1'%>2527; endocardial/endothelial cells (ECs) with cdh5, kdrl, and
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flt128.2°; coronary endothelial cells (cEC) composing blood vessels in hearts with cdh5, kdrl,
fit1, and aplnra'?; mesenchyme-like cells (Mes) with mgp, angptl7, and rspo13037;
thrombocytes (throm) with itga2b and gp71bb3233; neutrophils (Neu) with mpx and lyz3435;
macrophages (MC) with mfap4, c1qa, and mpeg1.136-38; leukocytes (leu) with mhc2a, coro1a,
and cxcr4b 3%4(Table 1).

To determine clusters emerging upon injury, we assess the enriched cell composition
for the injury. EC, Epi/cFB, MC, and throm were clearly distinguished by the injury status,
identifying injury-induced subgroups (Fig. 1B and Table 1). We next focused on clusters
enriched with lepb expression. lepb is detectable in the cells of injured but nearly undetectable
in the uninjured hearts, indicating a regeneration-specific feature of lepb (Fig. 1D and S1D).
The major clusters expressing lepb are the activated/injured EC. Interestingly, we found that
lepb expression is high in some, but not all, activated EC clusters, revealing the heterogeneity
of ECs in injured hearts. Although lepb expression in ECs was previously reported 72142 our
analysis identified additional /epb expressing cell type that one of the activated Epi/cFB
clusters have the notable number of lepb expressing cells. This lepb™ Epi/cFB cluster
displayed higher expression of tcf21, a well-defined Epi and epicardial-derived cell (EPDC)
marker*3, compared to another activated Epi/cFB cluster. In addition, some of the less well-
defined clusters, including ECs containing uninjured cells and leukocytes, are combined.
Collectively, our scRNA-seq analysis identified 15 distinct clusters representing various

cardiac cell types and the injury-induced status (Fig. 1A).

Identification of lepb* EC subgroup that directs injury-induced expression of secreted
factors
The lepb expression level can separate the activated ECs into subgroups (Fig. 2A), prompting

us to dissect the molecular basis of distinctly activated ECs. To end this, we analyzed
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differentially expressed genes between lepb* and lepb- activated ECs (Supplementary Data
S1). Our analysis identified 80 genes with significant changes in expression levels (p-value
<0.05 and fold change > 2), including 47 and 33 genes with increased and decreased
expression, respectively. Gene Ontology (GO) analysis of these downregulated genes
(representing lepb- activated ECs) indicated enrichment in regulation of transcription by RNA
polymerase Il and cell differentiation, while upregulated genes (representing lepb* activated
ECs) were enriched for responses to stress, response to biotic stimulus, response to stimulus,
and response to chemical (Fig. S2A). Consistent with GO analysis, gene set enrichment
analysis (GSEA) demonstrated a significant increase of components for stress response (Fig.
S2B). A major category of highly expressed genes in lepb- activated ECs is transcription
factors (TFs), including the injury-responsive AP-1 complex (fos and jun family TFs)* and
endothelial/endocardial TFs (k/f2a and kif6a)*>46. However, further analysis to visualize cells
expressing these factors demonstrated that a significant number of /lepb* activated ECs
expresses these TFs (Fig. S2C). A possible explanation is that these TFs are commonly
expressed in both clusters, but the limited sequencing capacity causes biased reading.
Another possible explanation is that the highly induced genes likely dampen the relative
expression levels of these TFs in lepb* activated EC cluster.

A sizable portion (18 of 47) of enriched genes (p-value <0.05 and fold change > 2) in
lepb* activated ECs are secreted factors or genes related to synthesize secreted factors.
lepb* activated ECs are also characterized by enrichment of regenerative factors or injury-
inducible cytokines/chemokines, including serpine18, inhbaa*’, fn1a%%, hbegfa®®, Igals2a*,
timp2b%0, tnfaip2b, cxcl8a®!, and cxcl18b% (Fig. 2B, 2C and S2C). Notably, two natriuretic
peptides, nppb and nppc, are highly enriched in lepb* activated ECs; in fact, nppc was the
most highly enriched gene in lepb* activated ECs. nppb and nppc are robustly induced in

diseased and injured hearts%3-%, providing additional evidence for lepb* ECs being an injury-
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activated cell population. Potent neutrophil recruitment chemokines, including cxcl8a and
cxcl18b, were also highly enriched %2, indicating that lepb* activated ECs produce
chemokines to direct migration of immune cells to the wound site. We also noticed that two
key prostaglandin E2 (PGE2) synthesis enzymes, including prostaglandin-endoperoxide
synthase 2b (ptgs2b, also known as cox2b) and prostaglandin E synthase 3b (ptges3b), are
enriched in lepb* activated ECs. PGEZ2 is an acute inflammatory signaling molecules that
promote heart regeneration®”-%8, implicating lepb* activated ECs as a source producing pro-
regenerative factors. Therefore, our analysis highlights lepb* activated ECs as a signaling
center that senses cardiac injury signals, produces signaling molecules to interact with other
cardiac cells, such as immune cells, and secretes pro-regenerative factors to promote heart

regeneration.

Heterogenous Epi/EPDC lineages in regenerating hearts

Our scRNA-seq analysis defined two Epi/cFB clusters displaying signatures of cardiac
fibroblasts, such as col1aa, col1a1b, colba1, fn1a, and tagin. As the number of cells derived
from the uninjured hearts was considerably low (10% and 2%, Table1), these two clusters
appear to emerge upon injury. In zebrafish, cFBs arise from tcf21* Epi upon injury?%5°,
indicating that these two cFB clusters are derived from Epi. We analyzed major TFs governing
central epicardial events, such as Epi formation, epicardial epithelial-to-mesenchymal
transition (EMT), and EPDC lineage specification®® and found evident differences in the
number of cells expressing tcf21, tbx18a, snai2, twist1a, twist1b, and hand2. Cells expressing
these Epi-related TFs are high in the tcf21sh Epi/cFB cluster (Fig. 3B). Notably, tcf21high
Epi/cFB cluster also contains more lepb expressing cells than the tcf21/ov cluster (Fig. 3B).
We next compared tcf21hsh and tcf21'ov clusters and identified 131 genes with significant

changes in expression levels (p-value <0.05 and fold change > 2), including 63 and 68 genes
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with increased and decreased expression, respectively (Fig. 3C and Supplementary Data
$2). GO analysis of the significantly downregulated genes (enriched in the tcf21/ov activated
Epi/cFBs) indicated enrichment in regulation of localization, ion transmembrane transport,
and cell morphogenesis involved in differentiation, whereas upregulated genes (enriched in
the tcf21hish activated Epi/cFBs) were associated with cell adhesion, defense response,
wound healing, ECM, response to hormone (Fig. S3A). Consistent with GO analysis, GSE
analysis indicated a significant increasement of components for cell adhesion, ECM
organization and wound healing in tcf21"9" activated Epi/cFBs (Fig. S3B). Thus, our data
suggested that two molecularly distinct subpopulations are present in the Epi/EPDC lineage
upon injury.

The majority of enriched genes (p-value <0.05 and fold change > 2) in tcf21hioh
activated Epi/cFBs consists of ECM-related genes, including fn1b26, dpt6?, dcn®2, hapin1a®?,
postnb??, pcolce2b®, lum®®, loxa®, mxra8a, vim®, timp2a, and timp2b% (Fig. 3C). Higher
expression of ECM genes indicates that tcf21high activated Epi/cFBs are the major cell-type
producing ECM and ECM-modifying enzymes upon injury, implying that this cluster potentially
remodels extracellular environments in @ manner favorable for heart regeneration. tcf21high
activated Epi/cFBs are also characterized by several signaling factors, including dkk3b (wnt
antagonists)”®, cfd (adipsin)’®, and ccn2a’’, and angiogenic factors, including f3b
(coagulation factor Ill, cd142b)’? and angptl2a’3. These factors are considered to be pro-
regenerative factors in injured tissues, implicating the paracrine signaling roles of tcf21high
activated Epi/cFBs. In contrast, tcf21'ow activated Epi/cFBs are enriched with smooth muscle
markers, such as myh11a, mylka and acta2, indicating that these cells are likely vascular
smooth muscle cells derived from epicardium. Thus, our analysis indicates that Epi/cFBs
exhibit heterogeneity upon injury with a unique molecular feature of key TF and lepb

expressing subpopulation.


https://doi.org/10.1101/2022.07.14.500053
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.14.500053; this version posted July 15, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Sun and colleagues recently published a report to analyze tcf21* sorted epicardial cells
at the single cell level, demonstrating that Epi/EPDCs are the heterogenous populations in
regenerating zebrafish hearts’s. As their scRNA-seq analysis used substantial numbers of
epicardial cells (around 4,000 cells for each uninjured and regenerating hearts), we utilized
this high-quality scRNA-seq data to further dissect lepb enriched tcf21* Epi/EPDCs. lepb*
tcf21* clusters are expected to be unique based on the fact of low numbers of lepb* tcf21*
cells, and thus we increased UMAP resolution to separate Epi/EPDC clusters explicitly and
identified 16 clusters (Fig. 4A and Table S1). Similar to Sun and colleagues report, we found
cell cycle gene-enriched cluster (Cluster 13 characterized with mki67, fen1, mecm2, PCNA,
and rpaZ2), defense-responsive cluster (Cluster 6 characterized with mxb, rsad2 and saa),
crabp1a* and Frzb* cluster (Clusters 8 and 14) and cxcl12b* cluster (Cluster 12) (Fig. S4).
Our analysis subdivided the largest cell-contained and immune responsive clusters in the
original report into multiple clusters. Interestingly, lepb expression is higher in regenerating
samples of the Cluster 10 (Fig. 4B and C). This lepb* Epi/EPDC cluster is characterized with
chemokine and inflammation-related genes, such as cxcl8b.174, ¢3a.375, and steap47¢ (Fig.
4C), postulating their roles in the immune response. Overall, our approach demonstrates that
scRNA-seq analysis combined with regeneration-specific gene profiles can subset the

heterogenous clusters to identify unique subpopulations.

Epi/cFB-specific epigenomic profiles indicate LEN is active in a subset of Epi/cFBs
upon injury.

LEN was identified as an enhancer directing regeneration-specific expression in hearts, which
is regulated by a ~300 bp sequence at the proximal end of LEN (cardiac LEN or cLEN)'". Our
previous work demonstrated that cLEN can direct injury-induced expression in a subset of

EC 2", which is likely the lepb* EC cluster defined by our scRNA-seq analysis as lepb is the
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target gene of LEN. scRNA-seq analysis also demonstrated /epb expressing cells in tcf21high
Epi/cFBs and the Cluster 10 of tcf27* Epi/EPDCs, but LEN activity in Epi/EPDCs has not been
assessed. We first examined lepb expression levels with RNA-seq profiles of Epi/EPDCs
generated by tcf21:EGFP* cells sorted from 0, 3 and 7 days post amputation (dpa) hearts 2.
Compared to the 0 dpa sample, lepb RNA levels were sharply elevated at 3 and 7 dpa with a
2.69 and 3.86 fold change (Fig. 5A), respectively, indicating injury-inducible lepb expression.
To determine whether LEN is accessible in Epi/EPDCs upon injury, we used Assay for
Transposase-Accessible Chromatin using sequencing (ATAC-seq) of tcf21:EGFP* cells
sorted from 0, 3 and 7 dpa hearts. ATAC-seq profiles of tcf21* cells showed LEN accessibility
is increased by 1.62 fold in 3 dpa samples (FDR = 0.001008207), compared to 0 dpa (Fig.
5A), indicating that LEN is activated in Epi/EPDC cells upon injury.

We next asked whether LEN can direct injury-dependent expression in Epi/ EPDC in
vivo. LENP2:EGFP transgenic fish carry enhancer reporter constructs, in which LEN is
coupled with the 2 kb upstream minimal promoter of lepb (P2). To assess injury-dependent
activity, we amputated the apex of ventricles, collected hearts at 3 dpa, and immunostained
cardiac section samples with a Raldh2 antibody. While Raldh2 was detected only in the
outermost Epi in the uninjured hearts, cardiac injury expanded Raldh2 expression to the EC,
Epi and EPDCs®>’’. LENP2:EGFP has no EGFP expression in uninjured adult hearts but are
robustly induced EGFP at 3 dpa (Fig. 5B). As previously reported'”?!, we observed strong
EGFP signals in Raldh2* EC cells near the amputation site and a subset of EC cells inside of
the ventricle at 3 dpa (Fig. 5B). In uninjured hearts, tcf21* Epi cells are restricted to the
outermost ventricular layer, but a subset of tcf27* Epi emerges in the cortical myocardial
layers to generate cFBs and other EPDC lineages?®. We identified that LENP2:EGFP are also
highly detectable in Raldh2* and tcf21:mCherry* Epi/EPDCs in the cortical muscle of

ventricles, confirming LEN activity in Epi/EPDC (Fig. 5B-D). Thus, our results demonstrate
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that LEN drives injury-dependent expression in EC and Epi/EPDCs, two major non-

cardiomyocyte cells.

LEN deletion abolishes injury-dependent /epb induction in the hearts, but not other
surrounding genes.

Recent advent of genome editing allows to delete enhancers to assess their functional
significance. To determine whether LEN is required for injury-induced lepb expression in
hearts, we established LEN deletion mutants (LEN2), in which 3.7 kb surrounding LEN is
removed by CRISPR/Cas9 (Fig. $5)"8. LEN deletion animals are viable, and we did not detect
any noticeable overt phenotype, such as obesity, under the standard husbandry condition.
To examine whether LEN deletion causes defects in heart regeneration, we quantified CM
proliferation at 7 dpa and fibrotic scar resolution at 30 dpa after partial ventricular resection.
LENA2 mutants exhibited normal injury-induced CM proliferation and were able to resolve
fibrotic scar similar to that of controls (Fig. 6A-C). These results are in agreement with our
previously discovery that lepb mutants regenerate heart normally 7.

To examine the requirement of LEN in control of endogenous lepb expression upon
injury, we performed RNA-seq analysis with uninjured and 3 dpa hearts of control and LENAA
mutants. lepb transcript level is sharply upregulated with a 36-fold increase at 3 dpa control
hearts compared to uninjured control hearts (Fig. 6D-F). Notably, transcriptome analyses
revealed no detectable elevation of lepb at 3 dpa of LENA2 hearts (Fig. 6E, F). These results
suggest that injury-induced /lepb expression is governed by LEN and there is no alternative
enhancer element to redundantly regulate lepb expression at this locus. To determine
whether LEN can control injury-dependent expression of multiple genes, we surveyed
expression of neighboring genes, including si:dkey-31f5.8 (85kb downstream), and snd1

(359kb upstream). Injury-dependent gene expression of these genes was hardly affected by
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LEN deletion in 3 dpa hearts (Fig. 6D-F). RNA-seq analysis demonstrated that si:dkey-3175.8
and snd71 are induced upon injury in control hearts with 7.77 and 1.83 fold change,
respectively. In LENYA hearts, these genes are also induced upon injury with 9.96 and 2.10
fold change, respectively (Fig. 6E, F). si:dkey31f5.11 and impdh1b, other two genes in close
proximity to lepb, are not differentially expressed upon injury, indicating they are not cardiac
injury-responsible genes (Fig. 6E). Next, we validated our RNA-seq results using quantitative
reverse transcription PCR (RT-qPCR) analysis. Our RT-gPCR analysis also demonstrated
that si:dkey-31f5.8 was upregulated at 3 dpa of WT and LENA2 hearts and that robust lepb
induction was abrogated in LENA2 | but not WT, hearts (Fig. 6G). snd7 was not upregulated
in both WT and LENA2 in our RT-gPCR analysis (Fig. 6G). Collectively, our results
demonstrate that LEN specifically governs injury-induced lepb expression, but not other

neighboring genes.

DISCUSSION

The heart is a complex tissue comprising of multiple cell types, of which intercellular
interaction is crucial for heart repair. Here, we analyzed scRNA-seq data of uninjured and
injured hearts and utilized lepb, a regeneration-specific gene, to enhance analysis power to
identify unique cell subpopulations. Interestingly, lepb specifies EC and Epi/EPDC linages
into distinct populations in the injured hearts. The prominent feature of lepb* ECs is the over-
representation of secreted factors, which are known to act as regenerative factors. In
zebrafish hearts, ECs are the most rapidly responding cell types to injury cues by changing
their morphology and activating expression of secreted factors within hours of injury. As ECs
are in direct contact with CMs, ECs are considered to be the most effective cell types to
interact with CMs 57°. LEN activity is restricted to the wound area?'!, suggesting that lepb*

ECs emerge at the wound area upon injury and serve as a paracrine signaling center to trigger
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CM proliferation. lepb* ECs are enriched with cxcl8a and cxcl18b (immune cell attractant
chemokines®2%), and lepb-enriched Epi/EPDCs are characterized with high expression of
cxcl8b.1, c3a.3, and steap4 (immune-related genes’#76), highlighting their roles for
immunomodulation at the wound area.

Leptin, encoded by the obese (ob) gene, is a well-characterized adipocytokine
controlling feeding and energy balance regulation®. In addition to these obesity-related
effects, multiple studies demonstrated regeneration-associated roles of Leptin. In mammals,
Leptin levels are elevated in cardiovascular disease like myocardial infarction (M1)8182 and in
skin upon injury®3, revealing Leptin as an injury-inducible factor across vertebrates. Leptin
also exerts pro-regenerative functions in multiple tissues, including skin and hearts®%. For
instance, Leptin mutant mice (ob) showed higher mortality after cardiac injury, whereas
administration of Leptin in ob mice yielded improved cardiac function and survival rate2.8485,
Zebrafish have two leptin homologs: lepa and lepb. Although roles for zebrafish leptin
signaling in the regulation of the feeding and obesity are unclear due to contradicting
observation of the obese phenotype?”:88, their involvement in tissue regeneration has been
suggested. In eyes, lepa and lepb are robustly induced upon injury and administration of
Leptin can stimulate eye regeneration through the Jak/Stat pathway®®. The same study also
revealed that il6 family cytokines, including /11 and cntf, were able to stimulate eye
regeneration via the Jak/Stat pathway. While LEN deletion and lepb mutant'” fish can
regenerate their hearts, lepb regenerative roles may be compensated by il11 signaling as
both /11 and leptin signaling share downstream effectors, such as Jak/Stat. Our
transcriptomic analysis indicates that li/m17, il11 family gene, is upregulated upon injury in
both control and LENA2 hearts (Fig. S6). Recent study reported that il11 receptor a (il11ra)
mutant fish displayed impaired heart regeneration by failed scar resolution and decreased

CM proliferation at the later phase of hear regeneration®. However, this work indicated that
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CM proliferation at 7 dpa is likely normal, suggesting that i/1 1 signaling on CM proliferation at
the early phase of heart regeneration may be compensated by Leptin signaling.

TREEs are crucial for triggering injury-dependent expression in a tissue-specific
manner and directing gene expression stably during regeneration. Much research in recent
years have been performed to identify TREE or regeneration enhancer candidates using
genome-wide analysis. in vivo activity of several candidates, including LEN, have been
confirmed via transgenic assays*'920.7891 |n addition to the typical transgenic assay, we
validated the LEN activity directing regeneration-dependent gene expression using the
enhancer deletion line. Importantly, we demonstrated that LEN deletion completely abrogated
injury-inducible expression of lepb in hearts without affecting other nearby genes. This implies
that one class of TREES selectively regulates expression of a single gene within a short range.
Exploring 3D chromatin conformational change of this short-ranged TREE and nearby regions
upon injury will be interesting future work to understand how 3D genome architecture change
affects regeneration-dependent transcription.

Heart regeneration is a highly complicated process governed by diverse cell
populations with various transcriptional programs. Our integrative analyses of multiple
sequencing data and genetic animal models characterize regeneration-emerging cell types
and regulatory elements, leading to discovery of novel regeneration features, such as cells,

factors, and cis-regulatory elements.

MATERIALS AND METHODS

Zebrafish maintenance and procedures

Wild-type or transgenic male and female zebrafish of the outbred Ekkwill (EK) strain ranging
up to 18 months of age were used for all zebrafish experiments. The water temperature was

maintained at 26°C for animals unless otherwise indicated. Partial ventricular resection
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surgery was performed as described previously %2, in which ~20% of the cardiac ventricle
was removed at the apex. For expression patterns to determine enhancer activity, at least
four hearts were examined per experiment. To define LEN and cLEN activity,
Tg(LENP2:EGFP)rI130 and Tg(tcf21:mCherry-NTR)P4198 were used. LENA/API?8T was created
using CRISPR/Cas9 as described in 8 using
acgATTTAGGTGACACTATAGAatgtatccgtataccata GTTTTAGAGCTAGAAAtagc and
acgATTTAGGTGACACTATAGAgaacccaattaggattta GTTTTAGAGCTAGAAAtagc  oligos.
Work with zebrafish species was performed in accordance with University of Wisconsin-

Madison guidelines.

Histology and imaging

Hearts were fixed with 4% paraformaldehyde overnight at 4°C or for 1 h at room temperature.
Cryosectioning and immunohistochemistry were performed as described previously 2. Hearts
were cryosectioned at 10 ym thickness. Heart sections were equally distributed onto four or
five serial slides such that each slide contained sections representing all areas of the ventricle.
A solution comprising 5% goat serum, 1% bovine serum albumin, 1% dimethyl sulfoxide and
0.1% Tween-20 was used for blocking and antibody staining. The primary and secondary
antibodies used in this study were as follows: anti-myosin heavy chain (mouse; F59;
Developmental Studies Hybridoma Bank; 1:50), anti-EGFP (rabbit; A11122; Life
Technologies; 1:200), anti-EGFP (chicken; GFP-1020; Aves Labs; 1:2000), anti-Ds-Red
(rabbit; 632496; Clontech; 1:500), anti-Raldh2 (rabbit; GTX124302; Genetex; 1:200), anti-
MHC (mouse; F59; Developmental Studies Hybridoma Bank), Alexa Fluor 488 (mouse, rabbit
and chicken; A11029, A11034 and A11039; Life Technologies; 1:500) and Alexa Fluor 594
(mouse and rabbit; A11032 and A11037; Life Technologies; 1:500). anti-MEF2 (rabbit, sc-

313, Santa Cruz Biotechnology), anti-PCNA (mouse, P8825, Sigma), Alexa Fluor 488 (mouse

Shin et al., 15


https://doi.org/10.1101/2022.07.14.500053
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.14.500053; this version posted July 15, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

and rabbit; Life Technologies), Alexa Fluor 594 (mouse and rabbit; Life Technologies).
Cardiac section images were acquired using BZ-X810 fluorescence microscope (Keyence),
LSM 700 confocal microscope (Zeiss), A1R-s confocal microscope (Nikon). Image stitching
was automatically processed using BZ-X800 analyzer. Further image processing was carried
out manually using Photoshop or FlJl/Imaged software. For AFOG staining, cardiac
cryosection slides were fixed with Bouin’s solution for 2 hours at 60°C and stained as
described previously °2. Imaging was performed using Eclipse Ti-U inverted compound

microscope (Nikon) and processed by Photoshop.

RNA isolation and qPCR

RNA was isolated from uninjured and partly resected hearts using TriReagent
(ThermoFisher). Complementary DNA (cDNA) was synthesized using a NEB ProtoScript Il
first strand cDNA synthesis kit (NEB, E6560). Quantitative PCR was performed using the
gPCRBIO SyGreen Blue Mix Separate-ROX (Genesee Scientific, 17-507) and a Bio-Rad CFX
Connect system. All samples were analyzed in at least biological quadruplicate with two
technical repeats. The sequences of the primers used are listed in Table S1. Transcript levels

were normalized to actb2 levels in all experiments.

RNA-seq and ATAC-seq analyses

For RNA-sequencing, total RNA was prepared from uninjured and 3 dpa resected hearts of
wild-type siblings and LEN4A, Generation of mRNA libraries and sequencing were performed
at the Duke Center for Genomic and Computational Biology using lllumina HiSeg4000 with
50bp single read runs. Adapter sequences were trimmed by Cutadapt. Sequences were
aligned to the zebrafish genome (genome assembly GRCz11, Ensembl gene annotation

release 104) using HISAT2%. Gene counts were obtained by featureCounts and Transcripts
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Per Kilobase Million (TPM) was used to calculate fold-change. For epicardium, we used RNA-
seq and ATAC-seq datasets of GSE89444, which were aligned to the GRCz11 using HISAT2.
IGV genome browser was used to browser track images. Accession numbers for

transcriptome data sets are GSE199697.

scRNA-seq analysis
For scRNA-seq analysis of uninjured and injured hearts, we obtained original sequencing files
from GSE138181 22 and reanalyzed this profile using 10x Genomics cloud service

(https://cloud.10xgenomics.com/cloud-analysis). The Danio_rerio. GRCz11 (release 104)

version of the zebrafish reference genome and annotation files were downloaded from
Ensemble database (ensembl.org). Raw counts of wild-type uninjured and injured hearts
were used for scRNA-seq analysis with the Seurat package®. Low quality cells (nUMI < 500,
nGene < 250, mitoRatio > 0.15, log10GenesPerUMI < 1.7) were filtered out. After careful
inspection, the 40 principal components (PCs) of the PCA with resolution 1 were used for
clustering. Differential expression (DE) analysis was performed using the FindMarkers
function of the Seurat package. GO-term and GSEA analyses were done by the enrichGo
and gseGO functions of clusterProfiler®>. Volcano plot was generated by the
EnhancedVolcano package %.

For scRNA-seq analysis of Epi/EPDC cells, we obtained raw count files from
GSE172511" and reanalyzed it. Low quality cells (nUMI < 500, nGene < 250, mitoRatio >
0.15, log10GenesPerUMI < 1.0) were filtered out. Nonepicardial cells (myl7, flila, or Icp1
positive cells) and tcf21- cells were filtered out. After careful inspection, the 40 principal
components (PCs) of the PCA with resolution 1.4 and integration were used for clustering

using the Seurat package®.
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DATA AND MATERIALS AVAILABILITY: Sequencing data have been deposited in GEO

under accession code GSE199697. Reviewer token is kjstgswcbrgpncz.
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Figure 1. Heterogenous cell clusters in injured hearts of adult zebrafish. (A) Clustering assignments of runx1P2:Citrine or
kdrl:mCherry expressing cells collected from uninjured and injured hearts. Uniform Manifold Approximation and Projection
(UMAP) axes were calculated by unsupervised clustering method. throm, thrombocyte. EC, endocardial/endothelial cells. Epi,

epicardial cells. cFB, cardiac fibroblasts. Mes, mesenchyme-like cells. MC, macrophages. (B) Clustering assignments for
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uninjured and injured hearts. dpi, days post-injury. (C) Differential expression of the key marker genes to identify cell types shown

as a dot plot. (D) Injury-dependent expression of lepb depicted by UMAP plot.
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expression of cardiac fibroblast marker genes in tcf21°% and tcf21h9" activated Epi/cFB. (B)

Enrichment of cells expressing key epicardial transcription factors (TFs) and lepb in tcf21high

activated Epi/cFB. (C) Differentially expressed genes between tcf21/ow and tcf21m9" activated

Epi/cFB shown as a volcano plot. (D, E) Highly expressed ECM-related genes (D) and pro-

regenerative factors (E) in tcf21"9h activated Epi/cFB. (F) Highly expressed smooth muscle

genes in tcf21'ov activated Epi/cFB.
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Figure 4. lepb marks a specific subpopulation of tcf27* Epi/EPDCs. (A) Clustering assignments of tcf217* Epi/EPDCs collected
from uninjured and injured hearts. (B) Injury-dependent expression of lepb depicted by UMAP plot. (C) Enrichment of cells

expressing the Cluster 10 specific genes (TFs), including lepb, cxcl8b.1, c3a.3 and steap4.
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Figure 5. LEN directs injury-induced Epi/EPDC expression. (A) Genome browser tracks
of the genomic region near lepb showing the transcripts and chromatin accessibility profiles
in the Epi/EPDC. The whole-ventricle H3K27Ac profile of the uninjured and regenerating heart
is shown at the bottom. Gray box and red arrow indicate LEN. (B-D) Immunostained section
images of transgenic fish carrying LENP2:EGFP. (B) Raldh2 antibody is used to label EC and
Epi/EPDC. Uninjured heart shows one single Raldh2* cell layer outlining the cardiac chamber.
Raldh2 signal emerges in the ECs at the wound area and EPDCs in the cortical layers upon
injury, which are co-labelled with LENP2:EGFP (Arrows). The boxed areas are enlarged at
the bottom panels. (C) Myosin heavy chain (MHC) antibody is used to label CMs. (D)
tcf21:mCherry is used for Epi/EPDC expression. While LENP2:EGFP rarely colocalizes with
MHC* CMs (Arrowheads), a subset of LENP2:EGFP co-localizes with tcf21:mCherry
(Arrows). Note that asterix indicates CM expression as a basal expression of the P2 minimal
promoter. At least five hearts for uninjured and injured samples were examined and all

animals displayed a similar expression pattern.
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Figure 6. LEN is essential for injury-dependent /epb induction during heart regeneration. (A) Representative images of
PCNA/Mef2 staining quantified in (B). (B) Quantification of adult ventricular CM proliferation indices for 7 dpa wild-type sibling

(control) and LENAA hearts. n = 10 and 5 for control and LENA2 hearts. 3 sections per heart were used. (C) Representative
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images of AFOG staining for 30 dpa control and LENA4 hearts. n = 6 for control and LENA2 hearts. 3 sections per heart were
used. (D) Genomic region surrounding LEN. snd1, lepb, si:dkey-31f5.8 and rap1b are induced during heart regeneration. (E)
Transcripts Per Kilobase Million (TPM) for lepb and its surrounding genes. (F) RNA-seq of uninjured and 3 dpa wild-type (WT)
and LENAA hearts. Tracks indicate an absence of lepb expression at 3 dpa in LENA2 fish, whereas snd71 and si:dkey-31f5.8
transcript levels are increased similarly in both wild type and LENA4 upon heart injury. (F) RT-gPCR analysis of snd7, lepb, and
si:dkey-31f5.8 transcript levels in WT and LENAA hearts. lepb is undetectable in 3 dpa injured LENA4 hearts. unpaired two-tailed
t-tests were performed to indicate significance. (n=8, 5, 5, and 4 for WT uninjured, LENA2 uninjured, WT 3dpa, and LENA2 3dpa,

respectively). Data are mean + s.d.
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Table 1. Cell number of injured and uninjured clusters identified by scRNA-seq

analysis
Injured o Total cell
Cluster . Uninjured Marker genes
(3dpi) number
EC (uninjured) 225 1940 2165 cdhb, kdrl, fit1
lepb activated EC 315 8 323 cdhb, kdrl, flt1
lepb* activated EC 740 128 868 cdhb, kdrl, fit1, lepb
Activated/uninjured EC 119 69 188 cdhb, kdrl, fit1
coronary EC (cEC) 41 19 60 cdhb, kdrl, flt1, aplnra
tcf21'ow activated tcf21, fn1b, col1ata,
Epi/cFB 177 4 181 tagin, colba1
tcf21Hish activated tcf21, fn1b, col1ata,
Epi/cFB 381 44 425 tagin, colba1
CM/EC 57 149 206 tnnt2a and myl7
Mes 24 10 34 mgp, angptl7, rspo1
Uninjured thromcyte 180 792 972 itga2b, gp1bb
Activated thromcyte 636 10 646 itga2b, gp1bb
Activated Macrophage 540 32 572 mfap4, c1qa, mpeg1.1
Neutrophil 176 41 217 mpx, lyz
mhc2a, coro1a,
Macrophage/Leukocytes 91 41 132 cxcrdb, mpeg1.1
Leukocytes | 118 370 488 | Mhe2a, corota,
cxcr4b
Total 3820 3657 7477
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SUPPLEMENTARY MATERIAL

Supplementary Figures S1-S6

Supplementary Table S1. Cell number of tcf21+ Epi/EPDC clusters in the uninjured and
injured hearts identified by scRNA-seq analysis

Supplementary Data S1. Differentially expressed gene list in lepb* and lepb” ECs.
Supplementary Data S2. Differentially expressed gene list in tcf219h and tcf21'ov

Epi/cFBs.
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Figure S1. Heterogenous cell clusters of adult zebrafish. (A) Raw data of clustering assignments of runx1P2:Citrine or
kdrl:mCherry expressing cells collected from uninjured and injured hearts. In Fig. 1A, the less well-defined clusters, including
ECs, leukocytes, are combined. throm, thrombocyte. EC, endocardial/endothelial cells. Epi, epicardial cells. cFB, cardiac
fibroblasts. Mes, mesenchyme-like cells. MC, macrophages. (B) Clustering assignments for uninjured and injured hearts. dpi,
days post-injury. (C) Differential expression of the key marker genes to identify cell types shown as a dot plot. (D) Injury-dependent

expression of lepb depicted by a dot plot.
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Figure S2. Differential gene expression analysis between lepb* and lepb- activated ECs.
(A) Top GO terms for genes enriched in lepb* (Red) and lepb- (Blue) activated ECs. (B) GSE
analysis plot of response to stress and transcription by RNA polymerase Il. NE score,
normalized enrichment score. (C) Genes enriched in lepb* and lepb- activated ECs shown as

a violin plot. Inj, injured. Un, uninjured.
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Figure S3. Differential gene expression analysis between tcf21"9h and tcf21'ov
Epi/cFBs. (A) Top GO terms for genes enriched in tcf21"9" (Red) and tcf21/ow (Blue) activated
ECs. (B) GSE analysis plots of cell adhesion, extracellular matrix organization, Wound
healing, regulation of localization, ion transmembrane transport, and cell morphogenesis

involved in differentiation. NE score, normalized enrichment score.
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Figure S4. Violin plot comparing the expression of nrg1, mki67, fen1, mcm2, PCNA, rpa2, mxb, rsad2, saa, crabp1a, Frzb,

and cxcl12b to label distinct subpopulations of tcf27* Epi/EPDCs.


https://doi.org/10.1101/2022.07.14.500053
http://creativecommons.org/licenses/by-nc-nd/4.0/

Chr4: 19042107-19042130
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5" gRNA
CRISPR/Cas9
LENA gtccaccact gaatgtatccgtat CCGTATCCGTA tta taaatggactgttaatc
Insertion

Figure S5. Guide RNA sequences and genomic coordinates of LEN deletion (LEN4) generated by CRISPR/Cas9. Injury-

dependent expression of regenerative factors generated by lepb* activated ECs. Inj, injured. Un, uninjured.
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Figure S6. liffm17 is upregulated upon injury in wild-type and LEN%2 hearts. (A) RNA-seq of uninjured and 3 dpa wild-type
(WT) and LENAA hearts. Tracks indicate liffm17 transcript level is increased similarly in both wild type and LENA2 upon heart

injury. (B) RT-gPCR analysis of liffm17transcript level in WT and LENA4 hearts. Data are mean + s.d.
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Supplementary Table S1. Cell number of tcf21* Epi/EPDC clusters in the uninjured and

injured hearts identified by scRNA-seq analysis

Cluster | Uninjured Injured Total
0 366 515 881
1 370 437 807
2 424 382 806
3 601 201 802
4 374 313 687
5 266 412 678
6 407 258 665
7 526 40 566
8 125 332 457
9 252 190 442
10 206 176 382
11 126 167 293
12 57 98 155
13 138 11 149
14 40 106 146
15 10 8 18
Total 4288 3646 7934
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