

1 **TITLE**

2 **Multisite gating in tonic sensory circuits integrates multimodal context to**
3 **control persistent behavioral states**

4

5 **AUTHORS/AFFILIATIONS**

6 Saurabh Thapliyal^{1*}, Isabel Beets² and Dominique A. Glauser^{1,*#}

7

8 ¹ Department of Biology, University of Fribourg, 17000 Fribourg, Switzerland

9 ² Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, 3000, Leuven, Belgium

10 [#]Correspondence: saurabh.thapliyal@unifr.ch, dominique.glauser@unifr.ch ; [#] Lead author

11

12 **ABSTRACT**

13 Maintaining or shifting between behavioral states according to context is essential for animals to
14 implement fitness-promoting strategies. How integration of internal state, past experience and sensory
15 inputs orchestrate persistent multidimensional behavior changes remains poorly understood. Here, we
16 show that *C. elegans* integrates food availability and environment temperature over different
17 timescales to engage in persistent dwelling, scanning, global or glocal search strategies matching
18 thermoregulatory and feeding needs. Transition between states, in each case, requires lifting multiple
19 regulatory gates including AFD or FLP tonic sensory neurons activity, neuropeptide expression and
20 downstream circuit responsiveness. State-specific FLP-6 or FLP-5 neuropeptide signaling acts on a
21 distributed set of inhibitory receptors to promote scanning or glocal search, respectively, bypassing
22 dopamine and glutamate-dependent behavioral state control. Multisite gating-dependent behavioral
23 switch by GPCRs in tonic sensory circuits might represent a conserved regulatory logic for persistent
24 behavioral state transitions enabling a flexible prioritization on the valance of multiple inputs.

25

26

27

28 **INTRODUCTION**

29
30 Animals continuously integrate information from external environment with their past experience and
31 internal states to generate adaptive behavioral states. This context-dependent modification of
32 behavioral states in turn impacts sensory processing, sensory integration and animal's response to the
33 environment (Berridge and Waterhouse, 2003; Bramham and Srebro, 1989; Dave et al., 1998).
34 Animals show transient or persistent modifications in the behavioral state based on shift in integrated
35 valance of the context to ensure survival and maximizes their fitness (Gibson et al., 2015; Jo et al.,
36 2020; Sorrells et al., 2022). E.g. animals will use multiple sources of information in order to select
37 between different foraging strategies balancing the risks and benefits of local resource exploitation
38 versus long-range exploration. Failure to execute behavioral state transitions will cause reduced
39 behavioral flexibility, which can impact ecological performance, alter physiology and which is a
40 hallmark of many in human pathologies such as autism spectrum disorders and mood disorders
41 (Devineni and Scaplen, 2021; Lea et al., 2020; Shaw et al., 2002; Uddin, 2021). Recently, several
42 studies in mammals, vertebrates and fruit fly have highlighted function and mechanisms of transition
43 to distinct transient or persistent behavioral states (Andalman et al., 2019; Fu et al., 2022; Jung et al.,
44 2020). However, several questions still remain largely unanswered. (i) How past and current
45 experience of a single cue integrates with context to trigger behavioral state transitions that may persist
46 for hours? (ii) How continuous integration of state-specific signals coordinate multi-dimensional
47 behavioral responses to generate sophisticated and coherent navigation strategy? Due to the relatively
48 complex architecture of their nervous systems, the integrative studies needed to understand the
49 underlying circuit, cellular and molecular mechanisms are challenging in these models.
50

51 *C. elegans* has become a popular animal model to understand behavioral state transitions with tools
52 and techniques available to gain multi-layered mechanistic insights (see Flavell et al., 2020 for a
53 review). Previous studies have addressed multiple behavioral states in *C. elegans* based on differential
54 locomotion, egg laying, mate search in response to diverse sensory and physiological cues. In the
55 presence of food, worms show roaming and dwelling states, whereas without food, execute local or
56 global search (Flavell et al., 2013; Fujiwara et al., 2002; Gray et al., 2005; Hills et al., 2004; Shtonda
57 and Avery, 2006). Each of these behavioral states is characterized by a specific locomotory pattern in
58 order to promote a specific exploitation/exploration strategy. E.g., global search combines elevated
59 speed and infrequent turns to increase animal dispersal. Egg laying impacts reproductive fitness and
60 worms display temporal variations in bouts of egg laying activity, which are impacted by feeding
61 status and other sensory cues (Cermak et al., 2020; Waggoner et al., 1998). Sleep and wakefulness are
62 one of the vastly studied behavioral states. Similar to mammals, worms also display sleep-like
63 behavior as 'lethargus' during larval stage transitions and 'sickness-induced sleep' in response to
64 external physiological stress (Hill et al., 2014; Raizen et al., 2008). Transitions between these diverse
65 behavioral states in response to various environmental cues ensure cellular homeostasis with
66 physiological and reproductive fitness (Skora et al., 2018).
67

68 Behavioral states and transitions are characterized based on multi-dimensional phenotypic differences.
69 These are readily quantified with machine-vision-based approach in *C. elegans*, capturing behavioral
70 nuances which are difficult to detect by manual examination and enabling high throughput behavioral
71 state measurement under different conditions (Javer et al., 2018b; Swierczek et al., 2011; Yemini et
72 al., 2013). Moreover, neuron activity recording *in vivo* and manipulation tools allowing mechanistic
73 dissection at circuit levels can link distinct neuronal activity patterns with different behavioral states
74 (Busch et al., 2012; Ji et al., 2021; Kato et al., 2015; Nichols et al., 2017; Venkatachalam et al., 2016).
75 Genetic analyses in different studies revealed the role of conserved neuromodulatory pathways as
76 dopamine, serotonin, tyramine, octopamine and neuropeptide signaling in mediating behavioral state

77 transitions (Bhardwaj et al., 2018; Bhat et al., 2021; Churgin et al., 2017; Flavell et al., 2013; Oranth et
78 al., 2018).

79
80 *C. elegans* can sense and modulate behavioral states in response to wide range of sensory and
81 physiological cues such as touch, odors, light, sound, oxygen, CO₂, and temperature from the
82 environment (Bargmann, 2006; Bretscher et al., 2008; Ghosh et al., 2021; Goodman and Sengupta,
83 2019; Gray et al., 2004; Iliff et al., 2021). For our study, we chose temperature as
84 sensory/physiological cue because past and current thermosensory sensory experience can be precisely
85 controlled by varying cultivation temperature and performing temperature shifts. *C. elegans* senses a
86 wide range of temperature, and execute thermotaxis to stay at a preferred temperature in the
87 ‘innocuous range’ of 13-25°C, while avoiding extreme ‘noxious’ temperatures (Aoki and Mori, 2015;
88 Schild and Glauser, 2013; Xiao and Xu, 2021). Based on context, distinct sensory neurons encode
89 temperature information in phasic and tonic neuronal responses and generate appropriate behavioral
90 outputs (Glauser, 2022). Whereas short-lasting processes (second-minutes timescale) underlying
91 temperature-dependent navigation in spatial thermogradient has been extensively studied, we know
92 surprisingly little on temperature-dependent persistent behavioral states and transitions over longer
93 timescales.

94
95 Here, we demonstrate that temperature history and current environmental temperature interact with
96 feeding status to drive persistent behavioral changes, to bring animals in two newly described states
97 (*scanning* and *glocal search*, respectively) with unique foraging and thermoregulatory benefits. Each
98 state is controlled by specific neuropeptide-based signaling from two separate tonic thermosensory
99 pathways. In order to compute contextual inputs over time and modalities, a similar logic is used in
100 each pathway, relying on concerted lifting of multiple molecular gates, which occurs only when a
101 specific combination of environmental/internal signals are achieved. Given the conservation of the
102 molecular players involved, we speculate multimodal context processing via multi-site gating
103 mechanisms along tonic sensory pathway might be a widespread regulatory solution mediating
104 persistent behavioral transitions in other species or sensory modalities and its malfunction could
105 underlie human behavioral flexibility disorders.

106

107

108

109 **RESULTS**

110

111 **An analytic framework for dissecting temperature and food-dependent behavioral states and**
112 **transitions**

113 To investigate how multimodal context is processed to orchestrate behavioral state transition and
114 maintenance, we systematically analyzed the behavior of *C. elegans* while varying thermosensory
115 history (growth temperature at 15 versus 25°C), current thermosensory inputs (with thermal shifts from
116 15 to 25 or from 25 to 15°C) and food availability (in fed versus starved animals). We recorded
117 behavioral state snapshots in isothermal environments (Fig. S1A) and compared multiple timepoints to
118 highlight behavioral transition and persistent states. We then performed detailed quantification of *C.*
119 *elegans* posture and locomotion, focusing on a set of 47 interpretable behavioral parameters (Fig S1C),
120 and visualized behavioral states in a common multiparametric space from a single Principal
121 component analysis (PCA) gathering all the conditions examined in the present study for wild type
122 (Fig 1 A, D, G, J). Below, we sequentially describe the impact of long-term growth temperature, of
123 current thermosensory inputs and the interaction between temperature and food availability.

124

125 **Worms on food are in a dwelling state regardless of their growth temperature**

126 To address the impact of growth temperature, we recorded behavioral snapshots over 6 h of animals
127 cultivated at 15 or 25°C without changing their temperature (Fig 1A). Somewhat surprisingly, we
128 found that animals at different temperatures on food show very similar behavioral states (Lower left
129 quadrant in PCA space, Fig 1B-C). This trend was also confirmed when we separately analyzed the
130 motion and the posture of the animals in two separate PCA analyses (Fig. S1.3 and S1.4). This
131 common behavioral state corresponds to the previously described dwelling state (Flavell et al., 2013;
132 Fujiwara et al., 2002; Shtonda and Avery, 2006; Stern et al., 2017), where animals move slowly and
133 spend most of their time with paused locomotion to feed (Fig 2). Hence, fed animals maintained on
134 food at a constant temperature are in a similar dwelling state regardless of their growth temperature.

135

136 **Cooling transiently reinforces dwelling, while warming promotes a persistent scanning state**

137 Next, to understand how current thermosensory inputs impact behavioral states, we analyzed the
138 behavior of animals grown at 25°C and shifted to 15°C at the onset of the recordings for 6 h (Fig. 1D).
139 In response to cooling, animals underwent a transient transition into a reinforced dwelling state
140 (deeper into the PCA lower left quadrant, Fig. 1E-F), with decreased forward and backward
141 locomotion frequency and concomitantly increased pausing duration and foraging amplitude (Fig.
142 S1.2).

143 Next, we conducted the reverse experiments and examined the impact of warming, by shifting the
144 animals from 15 to 25°C (Fig. 1D). Animals underwent a long-lasting transition to a new steady state
145 (shift toward the PCA upper left quadrant, Fig1 E-F). Warming modulated both postural (with e.g.,
146 reduced tail bending) and motion aspects (Fig. 1M, 1N, S1.3 and S1.4). While keeping low speed
147 when moving, animals increased their foraging speed, reduced pausing time and persistently increased
148 reversals (backward frequency, Fig. S1.2) enabled animals to regularly change their direction. We
149 examined the geometry of 1-min individual trajectories (Fig. 2A) and quantified the displacement of
150 animals (distance from the start and the end of the path, Fig. 2B) and total distance covered
151 (cumulative distance along the path, Fig. 2C). As compared to animals held at 15 or 25°C, animals
152 shifted from 15 to 25 covered more distance, but kept the same low displacement values. Therefore,
153 warming promotes a specific behavioral state, where animals frequently swap between forward and
154 backward motion to more actively scan their local environment while feeding, without dispersing
155 much faster. We will call this new state: scanning.

156 What could be the advantage of the scanning state? We hypothesized that, in contrast to dwelling
157 animals that barely move, scanning animals may better detect and respond to thermal gradients in
158 order to thermotax while feeding. Indeed, it might be metabolically costly for worm to adapt their
159 physiology to new temperature (Cedergreen et al., 2016) and beneficial to thermotax toward previous

160 growth temperature as a thermoregulatory strategy (Hedgecock and Russell, 1975). We devised an on-
161 food thermotaxis assay in which worms initially held in an isothermal environment at 25°C are
162 exposed to a smoothly appearing thermal gradient (0.5 °C/cm, 22–25°C, Fig 2D). Both animals
163 dwelling at 25 and scanning after warming from 15 to 25°C moved back to 25°C, but the latter drifted
164 much faster (Fig 2E, F).

165 In summary, shifting worms from 15 to 25°C on food causes them to switch from a dwelling to a
166 scanning state, in which worms adopt a distinct posture and produce short-range movements linked to
167 better thermotactic performances and thermoregulation.

168

169 **Starved animals engage in global search at 15°C but glocal search at 25°C**

170 To examine the joint impact of animal feeding status and temperature, we recorded the behavior of
171 starved animals cultivated at 15 and 25°C. In line with the well-documented starvation-evoked shift
172 from dwelling to food-search navigation mode (Gray et al., 2005; Hills et al., 2004; Wakabayashi et
173 al., 2004), starvation at either temperature caused rapid and persistent behavioral changes, affecting
174 both postural and motion parameters (Fig. 1G-I, 3A, A1.3 and S1.4) and causing a right shift in our
175 PCA space (with increasing PC1 value, Fig. 3B). Regardless of temperature, starvation produced a
176 rapid decrease in pausing time and dwelling, with concomitant increase in the time spent in forward
177 locomotion, as well as a progressive increase in reversal duration and postural alterations (Fig. S1.2),
178 consistent with a global search state.

179 Very interestingly, however, current temperature had a strong impact to steer worms into distinct
180 behavioral states at 15 or 25°C (lower and upper right quadrants in PCA space, Fig. 1I-L, S1.3).
181 Distinctively after starvation at 25°C, worms increased speed, foraging speed, angular speed, omega
182 turn and crawling frequency and produced longer and more twisty trajectories, contrasting with the
183 shallowly curving radial trajectories at 15°C (Fig. 2A). The worm displacement at 25°C was similar to
184 that at 15°C, however, indicating that the increased locomotory activity at 25°C did not enhance
185 dispersal (Fig. 2B-C). We obtained similar results with Monte-Carlo simulations emulating worm
186 dispersal with empirically measured speed and turn frequency values (Fig. S2). These observations are
187 consistent with a model in which starved worms at 15°C are in a global search state, dispersing
188 relatively fast to find food without exhaustively sampling the local area along their path, whereas
189 worms at 25°C disperse equally fast, but cover a larger area around their path with concomitant
190 elevation of speed and omega turns. Therefore, starved worms at 25°C are in a state enabling both
191 local and global search, which we will call glocal search.

192 In addition to increasing the area covered during exploration, we further hypothesized that fast moving
193 animals in glocal search state would more efficiently detect and reach food sources in their
194 surroundings. As an empirical test, we designed an assay in which a food drop was added onto a plate
195 of searching worms and their progression monitored (Fig. 2G). We found that animals in glocal search
196 state at 25°C performed better than animals in global search state at 15°C (Fig. 2H-I).

197 Collectively, our data indicate that, based on current temperature, starved worms operate
198 multidimensional behavioral changes to select between global or glocal search states, which tunes the
199 efficacy and exhaustiveness of food-seeking exploration.

200

201 **Gating mechanisms prevent behavioral transitions except in specific multimodal contexts**

202 As a whole, the analyses reported so far provide a comprehensive picture of how food and
203 temperature-associated contexts can steer worms into four distinct steady behavioral states (separate
204 quadrants in our PCA analysis), each corresponding to a exploitation/exploration strategy with its
205 respective advantages for environment sampling and navigation (Fig. 3B). Whereas in our PCA
206 analysis, PC1 mostly reflects the impact of food availability and PC2 the impact of temperature, these
207 two factors do not produce simple additive effects, but rather interact, which opens new questions.
208 What gating mechanisms prevent scanning entry on food unless a recent warming occurred? How
209 temperature impact is un gated upon starvation for animals to commit into global or glocal search?

210 Below, we dissect the cellular and molecular gating/ungating mechanisms controlling these specific
211 behavioral states.

212

213 **Scanning is controlled by AFD, which encodes recent warming as tonic calcium signals**

214 To identify neurons required for warming-evoked transition to scanning on food, we genetically
215 ablated candidate thermosensory neurons (AFD, FLP, AWC and ASI) and quantified backward
216 frequency and tail bending, which are two hallmarks of scanning (Fig 4A and S4A). Changes in both
217 parameters were still observed when ablating AWC, ASI or FLP, but strongly inhibited by the ablation
218 of AFD (Fig 4B and S4B), suggesting a major role for AFD in the persistent behavioral switch to
219 scanning. Blocking synaptic transmission from AFD using Tetanus toxin also abolished the backward
220 frequency and tail bending modulation (Fig 4B and S4B), confirming the importance of
221 neurotransmission from AFD for warming-evoked scanning entry.

222 AFD neurons can encode thermal history as absolute intracellular calcium levels and simultaneously
223 respond to short-lasting thermosensory inputs with fast-adapting calcium transients (Glauser, 2022;
224 Hawk et al., 2018; Ippolito et al., 2021). To investigate if AFD calcium dynamics could encode
225 information of behavioral state transition, we imaged AFD calcium levels using a ratiometric YC2.3
226 calcium sensor and compared animals grown at 15°, grown at 25° or exposed to warming (15 to 25°C
227 shift). We measured resting calcium levels (baseline at constant temperature, Fig. 4D) and thermal
228 responsiveness to short-lasting 10 °C thermal up-steps (Fig 4E). Consistent with previous studies, we
229 observed that AFD (i) produced rapid calcium transients in response to thermal up-steps, regardless of
230 growth temperature (Fig. 4C, E) and (ii) showed higher resting calcium levels in animals grown at
231 15°C compared to 25°C (Fig. 4C, D). A 6 h shift from 15 to 25°C did not alter the magnitude of AFD
232 responses to short-lasting stimuli (Fig 4C, E), but significantly increased the resting calcium level as
233 compared to animals constantly kept at 15 or 25°C (Fig. 5C). These results highlight that absolute
234 calcium level in AFD is tonically modulated over an hour timescale and that this level is particularly
235 high in animals in the scanning state 6 h after warming.

236

237 **Warming up-regulates *flp-6* neuropeptide expression in AFD to promote scanning and enhance 238 thermotaxis on food**

239 Since the transition to scanning after warming is linked to a tonic AFD activation and requires
240 neurotransmission, we next wanted to identify the relevant communication molecules released by
241 AFD. AFD produces glutamate and several neuropeptides (Ohnishi et al., 2011; Taylor et al., 2021).
242 We thus tested if warming-evoked scanning entry was affected in *eat-4* mutants with impaired
243 glutamate signaling (Lee et al., 1999) and *egl-3* mutants with impaired neuropeptide production
244 (Husson et al., 2006). *eat-4* mutation had no impact, but *egl-3* prevented backward frequency increase
245 and tail bending decrease in response to 6 h warming (Fig. 4F and S4C). These results suggest that
246 neuropeptide not glutamate signaling is required to shift from dwelling to scanning after warming. To
247 uncover the neuropeptide signal, we tested *flp-6* mutants. We chose this candidate because it is the
248 most abundantly expressed neuropeptide gene in AFD (Taylor et al., 2021), its transcription is
249 regulated by temperature and its tonic release mediates temperature-dependent regulation on life span
250 by AFD (Chen et al., 2016). We found that *flp-6* was required to shift both backward frequency and
251 tail bending in response to warming (Fig 4F and S4C). This effect was significantly rescued by a
252 *[Pgcy-8::flp-6]* transgene selectively restoring *flp-6* expression in AFD (Fig. 4F, S4C). While not
253 ruling out additional mechanisms, these data suggest that FLP-6 signal originating from AFD makes
254 an important contribution to the warming-evoked transition to scanning.

255 Because FLP-6 neuropeptide is essential to modify key parameters responsible for the scanning state,
256 which increase thermotactic performances, we then predicted that *flp-6* mutants would not perform
257 well in locating and responding to thermogradient on food. According to our prediction, we found that,
258 even after 1 h in a gradient, *flp-6* mutants failed to navigate to warmer side of the plate while N2
259 navigate within 20 min (Fig. 2F and 4J, K). These data show that the behavioral disruption caused by
260 the lack of FLP-6 alters scanning execution and ensuing thermoregulatory benefits.

261 Since temperature was previously shown to affect *flp-6* transcription in AFD (Chen et al., 2016), we
262 next used a transcriptional reporter to test if *flp-6* transcription was actually increased in animals in the
263 warming-evoked scanning state. We found that the fraction of animal with detectable *flp-6* reporter
264 signal was significantly higher in animals raised at 25°C or shifted to 25°C as compared to animal
265 raised at 15°C (Fig. 4H). Furthermore, the signal intensity was significantly stronger after the 15-25°C
266 shift (Fig. 4G).

267 Collectively, our results suggest that warming-evoked transition to scanning on food is controlled by
268 AFD and FLP-6-dependent signaling. A thermal shift from 15 to 25 is linked to a unique AFD state
269 that combines elevated FLP-6 expression and tonic AFD activity concomitant to chronically elevated
270 calcium levels (Fig. 4L). Reduced calcium and low *flp-6* expression represent potential gating
271 mechanism (red traffic lights in the model in Fig. 4L) preventing scanning entry at constant
272 temperature. This multisite gating will only be lifted in response to recent warming, in order for AFD
273 to signal via FLP-6 and promote scanning only when this specific behavioral state is needed to jointly
274 reach feeding and thermoregulation goals.

275

276 **Different FLP-6 receptors regulate reversal and tail bending during scanning**

277 *C. elegans* neuropeptides function through GPCRs to generate neuromodulatory effects lasting across
278 timescales. To identify receptors mediating FLP-6-dependent scanning entry *in vivo*, we examined the
279 impact of the loss of *egl-6*, *dmsr-1* and *dmsr-7* receptor genes, coding for FLP-6 candidate receptors
280 identified in an *in vitro* ligand-receptor screen (Beets et al. in prep.). We found that *egl-6* not *dmsr-1*
281 or *dmsr-7* mutants failed to increase backward frequency, while all three mutants failed to decrease tail
282 bending (Fig. 4I, S4D). We further rescued defects in *egl-6* mutants by expressing EGL-6 under its
283 native promotor. Bypassing the lack of *flp-6* by overexpressing EGL-6 under its own promoter in *flp-6*
284 mutants was sufficient to restore their backward frequency, but not their tail bending phenotype (Fig.
285 4I and S4D). Taken together, these results suggest that FLP-6 signaling might use a distributed set of
286 receptors to orchestrate the multi-dimensional behavioral changes linked to scanning.

287

288 **FLP thermosensory neurons are essential for glocal search**

289 Our systematic characterization of food and temperature-dependent behavioral states (Fig. 1-3)
290 showed that the temperature influence is gated on food to maintain dwelling, but that temperature
291 strongly impacts the choice between global and glocal search. Since speed and omega turn up-
292 regulation are distinctive characteristics of glocal search (Fig. S1.2, 5A and S5A) and suffice to
293 recapitulate the main navigational features of this exploration strategy in simulations (Fig. S2), we
294 focus on these two parameters for further analyses.

295 To identify neurons required for the transition to glocal search at 25°C, we genetically ablated
296 candidate thermosensory neurons (Fig. 5B and S5B). Ablation of FLP neurons caused severe, while
297 ASI ablation caused moderate impairment of both speed and omega turns. AFD and AWC ablation
298 caused moderate impairment of only speed not omega turn frequency. Blocking synaptic transmission
299 with Tetanus toxin expression in FLP also prevented the elevation of both speed and omega turn
300 frequency. These results highlight a major contribution of FLP neurons in shifting speed and omega
301 turns for transition to glocal search.

302

303 **Food and temperature affect tonic calcium activity in FLP and downstream circuit 304 responsiveness**

305 FLPs are non-adapting phasic and tonic thermosensory neurons (Saro et al., 2020). To examine if FLP
306 neurons could jointly encode food and thermal information, we performed *in vivo* calcium imaging of
307 FLP using the ratiometric YC2.3 sensor. Consistent with our previous work (Saro et al., 2020), we
308 found that FLP encodes information of absolute temperature (15°C and 25°C) as resting baseline
309 calcium levels (Fig. 5C, D). Starvation also increased resting calcium in FLP, having an additive effect
310 with temperature. Maximal levels were thus observed in animals in glocal search state after starvation
311 at 25°C. In contrast, we found that responses of FLP to 2-min, 10°C up- or down-steps were neither

312 affect by starvation, nor by temperature (Fig. 5C, E). These results indicate that starvation and
313 temperature independently modulate resting calcium levels (not thermal responsiveness) of FLP
314 neurons, which could partially encode information of distinct behavioral states.
315 To examine if the responsiveness of components downstream of FLP depolarization are modulated in
316 specific states, we monitored the changes in speed evoked by the optogenetic activation of FLP as a
317 function of temperature and feeding state. Consistent with our previous work (performed in animals
318 starved at 23°C, (Saro et al., 2020)), we found that optogenetic FLP activation first triggered an abrupt
319 speed change associated with a high reversal phase (60-90s), which was followed by a tonic speed
320 induction phase (90-360s) persisting throughout the stimulation (Fig. 6F). Both fed and starved
321 animals at 15°C produced a relatively low tonic speed elevation with a slow decay after reaching max
322 speed (Fig. 6F and G). Fed animals at 25°C produced a more pronounced increase compared to
323 animals at 15°C (Fig. 6F and 6G), but this speed elevation in the tonic phase underwent fast decay
324 (resulting in low average tonic speed measures Fig. 6H). Starved animals at 25°C showed further
325 increase in maximum tonic speed compared to animals on food with minimal decay (Fig. 6F and 6G),
326 resulting in elevated average tonic speed (Fig. 6H).
327 Collectively, results from calcium imaging and optogenetic analyses suggest a model in which the
328 temperature and starvation-dependent sustained speed increase underlying glocal search could result
329 from a concomitant increase in FLP tonic activity and enhanced responsiveness of downstream
330 components. In corollary, the lower speed observed in dwelling and global search states seems to
331 result from the gating of the FLP-dependent speed-promoting pathway by food and low temperature.
332

333 **Dopamine prevents search behavior on food at high temperature**

334 Dopamine signaling was shown to modulate food-dependent behaviors (Cermak et al., 2020; Hill et
335 al., 2014; Oranthal et al., 2018). Next, we tested if dopamine signaling gates temperature-dependent
336 behaviors on food. Unlike wild type, *cat-2* mutants defective for dopamine synthesis had increased
337 speed and omega turn frequency at 25°C compared to 15°C even on food (Fig. 6A and S6A).
338 Moreover, the fast speed decay observed during FLP optogenetic stimulation at 25°C on food was also
339 revoked in *cat-2* mutants (Fig. 6B-D). These results suggest that active dopamine signaling on food
340 normally inhibits high temperature-evoked behaviors and functions as an important food gate in the
341 context of the transition from dwelling to search behaviors.
342

343 **Glutamate signal from FLP hinders speed increase during global search at 15°C**

344 Next, we hypothesized that one or more signals from FLP could modulate speed and omega turns after
345 starvation, keeping in mind that such signals could either act by inhibiting the response at 15°C or
346 stimulating it at 25°C. Since FLP produces glutamate, we first examine starved *eat-4* mutants and
347 found they displayed increased speed at 15°C (Fig. 6E). A [*Pmec-3::eat-4*] transgene restoring *eat-4*
348 expression in FLP neurons could revert the speed to values that were even below those in wild type,
349 potentially due to *eat-4* over-expression (Fig. 6E). The *eat-4* mutation also potentiated the tonic speed
350 elevation during optogenetic stimulation of FLP neurons, with an increase in max and average tonic
351 speed at 15°C (Fig. 6F-H). These results suggest that glutamate signaling in the FLP-dependent
352 neuronal pathway functions as temperature-dependent inhibitory drive for speed after starvation and
353 might be relevant to prevent maximal speed elevation at 15°C, staying at an appropriate level for
354 global search.
355

356 **FLP-5 and other neuropeptides from FLP promotes glocal search**

357 Next, we analyzed the contribution of neuropeptide-based signaling. *egl-3* mutation prevented both the
358 increase in speed (Fig. 7A) and in omega turn frequency (Fig. S7A) after starvation at 25°C, indicating
359 requirement of neuropeptide signaling. We performed a biased screen for neuropeptide-encoding
360 genes expressed in FLP neurons and found that the up-regulation of speed requires *flp-5*, while that of
361 omega turns requires *flp-5*, *flp-13* and *nlp-14* (Fig. 7A and S7A). Both *egl-3* and *flp-5* mutations
362 significantly impaired the tonic speed elevation evoked by FLP optogenetic stimulation (Fig. 7B-D).

363 Both speed and omega turn defects were rescued by a [*Pmec-3::flp-5*] transgene, driving *flp-5*
364 expression in FLP (Fig. 7E and S7B). Moreover, overexpression of *flp-5* under its native promoter or
365 in FLP using the *mec-3* promoter caused further increase in speed and omega turn frequency compared
366 to wild type (Fig. 7E, and S7B). While our data suggest several neuropeptides plays a role and do not
367 rule out additional sources for FLP-5, they indicate that FLP-originating FLP-5 represents a relevant
368 signal promoting the transition to glocal search.
369

370 ***flp-5* transcription is controlled by temperature in FLP**

371 Since FLP-5 is a speed promoting signal from FLP, we next asked if *flp-5* transcription depends on
372 temperature and/or feeding status. When imaging a [*Pflp-5::mNeonGreen*] transcriptional reporter line
373 in FLP, we observed a bimodal distribution of signal intensity among cells with detectable expression
374 that was similar in all conditions (Fig. 7F), but the fraction of animals with detectable *flp-5* reporter
375 expression was significantly higher at 25°C compared to 15°C regardless of feeding status (Fig. 7G).
376 Considering that *flp-5* overexpression with *mec-3* promoter was sufficient to up-regulate speed and
377 omega turns (Fig. 7E and S7B), we propose that reduced *flp-5* transcription in FLP at 15°C may be
378 one of the gating mechanisms preventing the transition to glocal search at this temperature.
379

380 **FLP-5/DMSR-1 signaling is essential for glocal search**

381 *In vitro* ligand screen data indicate that FLP-5 is a potent ligand of EGL-6 and DMSR-7 and activates
382 DMSR-1 with lower potency (Beets et al., in prep). To identify functional FLP-5 receptors *in vivo*, we
383 tested *egl-6*, *dmsr-7* and *dmsr-1* mutants. Speed and omega turn frequency was increased in *egl-6* and
384 *dmsr-7* loss-of-function mutants, which is opposite to the effect in *flp-5* mutant (Fig. 7H and S7C),
385 suggesting that EGL-6 and DMSR-7 are relevant for these phenotypes, but are unlikely to directly
386 mediate the glocal search-promoting effects of FLP-5. In contrast, *dmsr-1* loss-of-function mutants
387 displayed decrease speed and omega turns frequency. *flp-5*; *dmsr-1* double mutants did not
388 significantly differ from *dmsr-1* single mutants. Additionally, the speed and omega turn frequency
389 increase caused by *flp-5* over-expression in FLP was blocked in a *dmsr-1* mutant background (Fig.
390 7H). We also confirmed the importance of FLP-5/DMSR-1 signaling for glocal search with our food
391 drop assay, and showed that, as expected based on the marked impact on both speed and omega turn,
392 the double *flp-5*; *dmsr-1* mutants performed very poorly (Fig. 7I-J). Taken together, these results are
393 compatible with a model in which FLP-5 neuropeptide functions through DMSR-1 receptor to shift
394 speed and omega turn frequency in order to support an efficient glocal search strategy.
395

396 **DMSR-1 and -7 function as inhibitory receptors *in vivo***

397 Next, we wanted to address if FLP-5 receptors work as excitatory or inhibitory receptors. EGL-6 is a
398 well-established inhibitory receptor (Ringstad and Horvitz, 2008) and recent studies suggests an
399 inhibitory role for DMSR-7 (Marquina-Solis et al., 2022) and DMSR-1 (Iannaccone et al., 2017) as
400 well. However, the two isoforms encoded by *dmsr-1* vary at their C-termini and could potentially
401 activate different G-protein subtypes, calling for further analyses. We designed experiments to
402 compare the effect of DMSR-1a/b and DMSR-7 to that of EGL-6. *egl-6(n4537)* loss-of-function
403 mutation increased, whereas *egl-6(n592)* gain-of-function mutation decreased speed and omega turn
404 frequency after starvation at 25°C (Fig. 7K, S7D). Overexpression of *egl-6* under its own promoter
405 was also sufficient to down-regulate speed and omega turns. These results indicate that overexpressing
406 an inhibitory receptor in *egl-6*-expressing cells negatively impacts speed and omega turn, hence
407 providing a way to test if other receptors have the same inhibitory effect. The over-expression of
408 DMSR-1a, DMSR-1b, as well as DMSR-7 all produced an inhibitory impact similar to EGL-6 over-
409 expression (Fig. 7K and S7D). Therefore, the FLP-5 receptors identified *in vitro* (EGL-6, DMSR-1
410 and DMSR-7) display inhibitory activity *in vivo* when over-expressed in the circuit relevant for glocal
411 search control.
412

413 **DMSR-1 activity in AVA command interneuron promotes speed elevation**

414 Our next goal was to determine the locus of action of DMSR-1 receptor in controlling the speed
415 elevation during glocal search. DMSR-1 is broadly expressed in the nervous system (Taylor et al.,
416 2021), including in forward locomotion-promoting neurons (like AVB, RIB and DVA), as well as
417 backward locomotion-promoting neurons (like AVA, whose activation was also shown to reduce
418 animal speed (Schmitt et al., 2012)). Based on these observations, we made two predictions. First,
419 since DMSR-1 is expressed in neurons with antagonistic impact on speed, then the FLP-5 signal
420 relevant for the speed increase is unlikely to have a broad impact that generally affects all DMSR-1-
421 expressing neurons. Consistent with this view, overexpressing DMSR-1a or b with its endogenous
422 promoter failed to up-regulate speed and actually reduced it, suggesting that FLP-5 must act via a
423 narrower subset of target cells in order to elevate speed. Second, since DMSR-1 is a low-affinity
424 receptor and is inhibitory, its relevant place of action downstream of FLP-5 is likely to be speed-
425 inhibiting neurons that are post-synaptic to FLP. AVA command interneuron was our top candidate
426 and we found that AVA-specific overexpression of DMSR-1 primarily in AVA with the *lgc-39*
427 promoter was indeed sufficient to increase speed (Fig. 7L). Taken together, these results elucidate an
428 important signaling mechanism participating in the orchestration of the behavioral transition to glocal
429 search, which involves the FLP-5/DMSR-1-dependent regulation of AVA by FLP.
430
431

432 DISCUSSION

433 The ability to engage in persistent behavioral states and to switch between different states in response
434 to external and internal multimodal cues is an essential animal capability to improve growth and
435 survival via the execution of context-dependent behavioral strategies. Owing to the complexity of the
436 signaling involved and of the behavioral responses themselves, we still know very little about the
437 neural and molecular mechanisms that orchestrate coherent and long-lasting multidimensional
438 changes, which permit to implement these behavioral strategies. Here, we systematically decode how
439 food availability is integrated with past and recent thermosensory experience and show how these
440 factors interact, leading the animal to select between different strategies. We confirmed previously
441 described persistent behavioral states (dwelling and global search), highlighted novel exploitation and
442 exploration states (scanning and glocal search, respectively) and illustrate their potential ecological
443 benefits. Our dissection of the neural and molecular pathways involved provides two separate
444 examples in which food and/or temperature signals converge to lift gates at multiple sites. This allows
445 for tonic neuropeptide signaling by specific sensory neurons (AFD and FLP, respectively) to be only
446 engaged when several conditions are met. The system dynamics might be tuned to cause animals to
447 ignore short-lasting stimuli when committing to persistent behavioral states. But quite remarkably, the
448 system still allows for a parallel control of short-term behavioral responses via phasic signaling by
449 these same sensory neurons. The similarities between the two examples in AFD and FLP, respectively,
450 suggest a potentially general regulatory logic through which sensory pathways integrate multimodal
451 context to control behavioral responses over different timescales.
452
453

454 **Multimodal context-dependent exploitation/exploration strategies**

455 Like in previous studies (Gallagher et al., 2013; Martineau et al., 2020), our results suggest that
456 behavioral states under different contexts can be represented as a unique code of *C. elegans*
457 locomotion and posture. On food, worms are in a dwelling state (Flavell et al., 2013; Fujiwara et al.,
458 2002; Shtonda and Avery, 2006), regardless of the growth temperature. Thus, responses to different
459 long-term temperature history are gated on food. Over a shorter timeframe, however, worms
460 transiently enhanced dwelling state in response to cooling, while they persistently transition to a
461 scanning state in response to warming. The asymmetry in the nature and duration of the responses to
462 cooling and warming, respectively, reveals differential prioritization of environmental cues and
463 specific behavioral strategies affecting the exploitation-exploration trade-off when adapting to a
464 changing environment.

465 The scanning state during which animals produce more frequent bouts of slow forward and backward
466 locomotion is different from the roaming behavior in which animals move faster and down-regulate
467 reversals (Flavell et al., 2020). Whereas transition to scanning is less drastic than the transition to off-
468 food search modes, animals in the scanning state sample their local environment more exhaustively
469 than dwelling animals and, when confronted to a thermal gradient, produce more efficient thermotaxis.
470 We speculate that short motion bouts during scanning may improve gradient detection, because
471 motion-evoked thermal changes are the primary inputs through which worms decode their thermal
472 environment (Clark et al., 2007). In previous studies, animal fitness was reduced when exposed to
473 cycling temperature regimes, demonstrating that physiological adaption to new temperatures is not
474 costless (Cedergreen et al., 2016). With little energy invested in locomotion and without disrupting
475 local food exploitation, the scanning state could facilitate the detection of thermal gradients and help
476 reach previous growth temperature in a slow-developing thermotactic drift that will limit the need for
477 long-term physiological adaptations.

478 After prolonged starvation, current temperature influenced the persistent transition to previously
479 known global search at 15 or to a new glocal search state at 25°C. During global search, animals
480 increase forward movement at an intermediate speed and suppress turns, resulting in a long-range
481 navigation with straight trajectories to locate food. During glocal search, concerted up-regulation of
482 speed and omega turns results in a specific exploration strategy, where animals exhaustively sample
483 local environment by making frequent turns while still performing long-range navigation due to
484 marked speed increase. Glocal search enables finding food faster than global search, but is
485 energetically expensive. We speculate that worm physiology and metabolism at 25°C puts worms
486 under a higher time pressure, justifying the allocation of more resources for exploration.

487 As a whole, our study (i) expands the repertoire of described exploitation/exploration strategies in *C.*
488 *elegans*, (ii) confirms the importance and efficacy of specific strategies, (iii) emphasizes the need for
489 context-dependent transition between them, and (iv) expands our understanding of their
490 multidimensional nature by comprehensively characterizing their underlying behavioral codes.
491

492 **Multisite gating in tonic sensory pathways integrates multimodal context**

493 Although our data also suggest that additional pathways are involved, it is quite remarkable that the
494 food and thermal contexts are largely encoded within AFD and FLP-dependent pathways. These
495 mediate the transitions to scanning and to glocal search, respectively, and control both fast- and
496 progressively-developing responses. Tonic signaling in these pathways, via specific neuropeptides,
497 seems to have an instructive role and to be sufficient to trigger changes in many behavioral
498 parameters. It is therefore important that robust gating mechanisms prevent their action under
499 conditions where these strategies should not be engaged.

500 The transition to scanning requires AFD, which signals via FLP-6 neuropeptide. In scanning animals,
501 AFD thermal responsiveness to short thermal stimuli is not affected, but AFD is in a particular state
502 combining (i) sustained tonic activity (with high resting calcium levels) and (ii) increased *flp-6*
503 expression. During dwelling at constant temperature, neither increased AFD resting calcium (at 15°C),
504 nor increased *flp-6* transcript levels (at 25°C) seem sufficient to trigger scanning entry. Only after a
505 recent warming, does AFD shows synergistic increases in steady state calcium and *flp-6* transcript
506 levels (green lights in Fig. 4L). Whereas our data do not rule out additional modulation mechanisms
507 downstream of AFD, they are consistent with a model in which multiple intracellular gates located at
508 the sensory neuron level need to be lifted in order for the animal to shift its behavioral state (Fig. 4L
509 and S8).

510 The transition to glocal search is promoted by FLP, via FLP-5 and most likely also via additional
511 unidentified neuropeptides. The FLP-pathway integrates temperature and food signals to promote the
512 transition to glocal search only at high temperature and in the absence of food. Like for AFD, the FLP
513 thermal responsiveness to short stimuli was not different between behavioral states, indicating that the
514 distinction between states is encoded downstream of the FLP thermo-detection process. Glocal search
515 was associated with (i) a very high resting calcium level in FLP, (ii) elevated *flp-5* transcription and

516 (iii) increased responsiveness of the circuit downstream of FLP activation (Fig. 7M). Given the likely
517 instructive role that tonic FLP-5 signaling from FLP has in the transition to glocal search, each of
518 these three processes might represent a potential gate able to prevent this transition (Fig. 7M). Indeed,
519 in dwelling animals at 15°C on food, all three gates are closed with low baseline FLP calcium, low *flp-*
520 5 transcript and low responsiveness of components downstream of FLP. In animals performing global
521 search at 15°C off-food, we only observed a partial increase in FLP steady-state calcium levels, while
522 the rest of the gates were unchanged compared to dwelling animals on food at 15°C. Furthermore,
523 glutamate signaling from FLP contributes to prevent speed increase. Several neurons (ASI, ASK, AIA,
524 AVK) (Gray et al., 2005; Lopez-Cruz et al., 2019; Oranah et al., 2018) have been implicated in
525 transition to global search and probably FLP signals information of low temperature in this context. In
526 dwelling animals at 25°C on food, we observed a partial increase in FLP resting calcium levels and an
527 increase in *flp-5* transcript, but dopamine signaling reduced the responsiveness of components
528 downstream of FLP, which might be the most important gate in this context in order to block the high
529 temperature signal. Ultimately, the glocal search mode is associated with a unique state in the FLP
530 pathway where food absence and recent temperature signals converge to lift all the cellular gates in
531 order to produce context-specific persistent behavioral transitions (Fig. 7M).
532 Taken together, the two examples of AFD- and FLP-dependent behavioral transitions described here,
533 suggest a generally applicable regulatory logic, where multisite gates, qualitatively and quantitatively
534 affecting tonic signaling and its reading in sensory circuits, function as “relay boards” for temporal
535 and multimodal integration of signals. The system will thus enable behavioral transitions to occur only
536 in response to coherent and sustained changes in the environment.
537

538 **A distributed network of inhibitory GPCR(s) orchestrates behavioral transitions**

539 The progressive increase in complexity throughout our study limited our ability to dissect all the
540 downstream molecular and cellular components of the entire behavioral code that is modulated during
541 different behavioral state transitions. However, the sequential implementation of a reductionist
542 analytical approach allowed us to test directed hypotheses and identify functional receptors for FLP-6
543 and FLP-5 as well as one relevant cellular locus of action for the latter, hence providing a partial, yet
544 suggestive picture of the downstream effector functional logic.

545 Tonic FLP-6 signaling from AFD was previously shown to mediate the temperature effect on lifespan
546 via unknown receptors (Chen et al., 2016). Here we show that FLP-6 might promote the transition to
547 scanning, through at least three inhibitory GPCRs broadly expressed in the nervous system: EGL-6,
548 known to regulate egg-laying (Ringstad and Horvitz, 2008), DMSR-1, known to regulate stress-
549 induced sleep (Iannaccone et al., 2017), and DMSR-7, recently proposed to control sickness behavior
550 (Marquina-Solis et al., 2022). Our data suggest that FLP-6 mediates a progressive increase in
551 backward frequency through EGL-6 and a fast decrease in tail bending through DMSR-7, DMSR-1,
552 and EGL-6. Therefore, different FLP-6 receptors contribute to regulate different behavioral parameters
553 over different timescales to ensure transition and maintenance of the scanning state.

554 Our study also sheds light on some downstream mediators of the FLP pathways. During transition to
555 glocal search, FLP-5 functions through inhibitory DMSR-1 by inhibiting AVA and unidentified
556 neurons to increase speed and omega turns, respectively. Interestingly, speed up-regulation entails the
557 inhibition of an inhibitory pathway, suggesting that the animal default state under favorable conditions
558 would be a metabolically inexpensive low arousal state. Moreover, fine-tuning the neural circuit
559 activity by modulating the inhibition of the key command interneuron AVA (Kato et al., 2015; Liu et
560 al., 2020) can enable the transition to a metabolically expensive but adaptive persistent behavioral
561 state.

562
563 In conclusion, our study suggests that *C. elegans* continuously weights the sensory valence of
564 temperature in distinct tonic thermosensory neurons, based on past experience, as well as internal and
565 external contexts. In the thermosensory circuit, multi-site cellular and molecular gatings act in concert
566 to generate physiologically adaptive behavioral states by balancing exploration-exploitation strategies.

567 Moreover, only in specific contexts does the GPCR(s) dependent fine-tuning of excitation-inhibition
568 balance mediate persistent behavioral state transitions. Given the prevalence of tonic sensory
569 signaling, the widespread expression of GPCRs and their emerging functions in brain state pathologies
570 (i.e., anxiety, depression, schizophrenia) (Belzeaux et al., 2020; Magalhaes et al., 2010; Matsumoto et
571 al., 2008), we propose that similar multi-site gating-dependent integration mechanisms converging on
572 GPCRs might mediate persistent behavioral state transitions in response to a variety of internal and
573 external cues and in additional species.

574

575

576 **ACKNOWLEDGMENTS**

577 The authors thank Lisa Schild and Laurence Bulliard for technical support; Gabriella Saro for help
578 with calcium imaging; Andrei-Stefan Lia for help in setting-up the optogenetic device; Andre Brown
579 for help with the Tierpsy tracker; Yaïleen Bonvin, Wayne Davis, Miriam Goodman, Marc
580 Hammarlund, Domenica Ippolito, Andreina Rueda, Bill Schafer and Piali Sengupta for the gift of
581 strains and plasmids; Elise-Dan-Glauser, Simon Sprecher, and Arjit Kant Gupta for comment on the
582 manuscript. Some strains were provided by the CGC, which is funded by NIH Office of Research
583 Infrastructure Programs (P40 OD010440). The study was supported by the Swiss National Science
584 Foundation (IZCNZ0_174703/SBFI_C16.0013, BSSGI0_155764 and PP00P3_150681 to D.A.G) and
585 by the Research Foundation – Flanders (FWO G093419N to I.B.).

586

587

588 **AUTHOR CONTRIBUTIONS**

589 Study conceptualization and experiment design (ST, DAG), methodology development (ST, DAG),
590 execution of all experiments (ST) except for *in vitro* neuropeptide GPCR interaction analyses (IB),
591 data analysis and interpretation (ST, DAG), article writing (ST, DAG), supervision (DAG), funding
592 acquisition (DAG, IB).

593

594

595 **CONFLICTS OF INTEREST DECLARATION**

596 The authors declare no competing interests.

597

598 **FIGURE LEGENDS**

599 **Fig. 1. Current and past temperature interact with food availability to set worms in distinct**
600 **behavioral states**

601 Behavioral states of young adult *C. elegans* exposed to defined thermal and feeding regimen/shifts (as
602 depicted in **A, D, G** and **J**) presented as projections over the two main PCA components from a single
603 analysis of postural and motion parameters over all conditions (**B, C, E, F, H, I, K, L, O**). Behavioral
604 transition unfolding over 6 h presented (i) as its evolution in this PCA space (left panels in **B, E, H, K**,
605 endpoint as larger data mark, first hour changes as arrow) and (ii) as a time courses of the distance
606 between each time point and the starting point ($t=0$) (right panels). Steady states reached after 6 h of
607 the indicated thermal and/or feeding shifts (**C, F, I, L**). Average and individual replicate positions as
608 large and small data marks, resp. 95% CI as colored ellipses. Each replicate as a separate worm
609 population with ≥ 40 animals. Summary of the four main steady behavioral states adopted by animals
610 in various thermal and feeding contexts (**O**). Similar representations as in **O** for the result of separate
611 PCA focusing on postural (**M**) and motion (**N**) parameters, resp.

612

613 **Fig. 2. Food and temperature-dependent behavioral states underly different navigation**
614 **strategies with different food seeking and thermoregulatory performances**

615 One-minute worm trajectories recorded in isothermal environments (35 for each condition) and plotted
616 from a single starting (0,0) coordinate (**A**). Enlarged representation for worms in dwelling and
617 scanning (inset). Average \pm s.e.m. and individual data points for animal displacement (**B**,
618 corresponding to how far animals moved from their starting point) and covered distance (**C**,
619 corresponding to the path length). $n \geq 30$ animals **, $p < .01$ versus 15°C Fed condition, # $p < .05$ and ##,
620 $p < .01$ versus the indicated control by Bonferroni posthoc tests. On-food thermotaxis assay in fed
621 animal revealing a faster thermotactic movement toward recent growth temperature in scanning
622 animals (6h after warming) as compared to dwelling animals held at 25°C (**D, E, F**). Schematic of the
623 assay unfolding (**D**), overlayed worm positions over multiple assays (**E**), on-food thermotaxis index
624 time course (average \pm s.e.m., **F**). $n \geq 10$ assays each with ≥ 50 worms. Food drop assay in which
625 starved animals in glocal search mode at 25°C perform better than animals in global search mode at
626 15°C (**G, H, I**). Schematic of the assay unfolding (**G**), overlayed worm positions over multiple assays
627 (**H**), time course of the fraction of successful worms (average \pm s.e.m., **I**). ##, $p < .01$ versus the other
628 condition at the same time point.

629

630 **Fig. 3. Distinct food and temperature-dependent behavioral codes underlie specific behavioral**
631 **exploitation/exploration strategies**

632 Behavioral steady-states after 6 h in the indicated food and temperature-dependent condition. Heat-
633 map of behavioral parameters of z -scores across the indicated conditions and hierarchical clustering
634 trees based on Euclidian distances (**A**). 25-15 (cooling), 15-25 (warming), and 15-15 or 25-25
635 (temperature left unchanged). Behavioral state representation as in Fig. 1O, with behavioral state
636 interpretation annotations and illustration of the corresponding exploitation/exploration strategies (**B**).

637

638 **Fig. 4. Multisite ungating in AFD thermosensory neurons controls FLP-6-dependent scanning**
639 **entry**

640 Time course of worm backward frequency increase after warming from 15 to 25°C (**A**). Backward
641 frequency at $t=0$ and $t=6$ h following warming in the indicated genotypes (**B, F, I**). Mean \pm s.e.m. of

642 *n*≥4 assays each with ≥50 worms. *Pgcy-8::TeTx*, transgene blocking synaptic transmission in AFD
643 (**B**); *Pgcy-8::flp-6*, transgene for AFD-specific *flp-6* rescue (**F**); *Pegl-6::egl-6*, transgene for *egl-6*
644 over-expression and *flp-6* mutation by-pass analyses in *egl-6* and *flp-6* mutant background,
645 respectively (**I**). Cameleon YFP/CFP ratio in AFD reporting the absolute intracellular calcium levels at
646 rest and following a 2-min 10°C thermal up-step in animals grown at 15°C, grown at 25°C or shifted
647 from 15 to 25°C for 6 h (**C-E**). Mean ± s.e.m. of *n*≥15 traces (**C**), resting calcium levels (**D**) and
648 temperature-evoked relative calcium changes (**E**). *flp-6* transcriptional reporter quantification
649 comparing mean intensity (**G**) and fraction of AFD neurons with detectable signal (**H**). Result of on-
650 food thermotaxis assays after 1 h as in Fig. 2E-F, showing impaired temperature-dependent drift in *flp-*
651 6 mutants (**J-K**). **, *p*<.01 versus 15°C Fed condition, # *p*<.05 and ##, *p*<.01 versus the indicated
652 control by Bonferroni posthoc tests and ++, *p*<.01 versus 15°C Fed condition by Fisher's exact test for
653 contingency comparisons. ns, not significant. Schematic of the multisite gating model controlling
654 scanning entry (with gates as traffic lights, **L**). In dwelling animals, at least one gate is closed (red
655 light), whereas they are all lifted (green lights) after warming to promote scanning entry.

656

657 **Fig. 5. Temperature and feeding states are encoded in FLP neural pathway to control tonic**
658 **speed elevation during glocal search**

659 Speed increase time course after starvation at 15 or 25°C and in corresponding controls left on food
660 (**A**). Mean ± s.e.m. of *n*=6 assays, each with ≥50 worms. Speed measured after 6h of starvation at
661 25°C in wild type (N2), in transgenic lines with ablated neurons, or in animals carrying a *Pmec-*
662 3::*TeTx* transgene blocking neurotransmission in FLP (**B**). FLP absolute intracellular calcium levels at
663 rest and following 2-min 10°C thermal up- or down-steps (**C-E**), reported as in Fig. 4C-E and showing
664 FLP encodes temperature and food signals as resting calcium levels without modulating thermal
665 responses to short stimuli. Impact of temperature and food on speed elevations caused by a 5-min
666 tonic optogenetic activation of FLP (**F-H**). Mean speed elevation profiles (± s.e.m. of *n*= 6 assays,
667 each scoring ≥30 worms) with a first spike corresponding to an initial high reversal period (*t*=60-90 s)
668 and a second tonic elevation period (90-360 s) (**F**). Max (**G**) and average speed (**H**) during the tonic
669 speed elevation period. *, *p*<.05 and **, *p*<.01 versus 15°C Fed condition; # *p*<.05 and ##, *p*<.01
670 versus the indicated condition by Bonferroni posthoc tests. ns, not significant.

671

672 **Figure 6. Speed elevation is inhibited by dopamine in fed animals at 25°C and by glutamate**
673 **signaling in starved animals at 15°C**

674 Impact of a *cat-2* mutation blocking dopamine biosynthesis (**A-D**) on the speed of fed animals at 15 or
675 25°C (**A**), and on the tonic speed response evoked by a 5-min optogenetic activation of FLP in animal
676 maintained at 25°C (**B-D** scored and reported as in Fig. 5). Similar analyses for an *eat-4* mutation
677 affecting glutamatergic signaling in starved animals at 15°C (blue) or 25°C (orange) (**E-H**). Data as
678 average ± s.e.m. of *n*≥ 5 assays, each scoring ≥30 worms. *, *p*<.05 and **, *p*<.01 versus 15°C Fed
679 condition or respective N2 control; # *p*<.05 and ##, *p*<.01 versus the indicated condition by Bonferroni
680 posthoc tests. ns, not significant.

681

682 **Figure 7. Multi-site ungating of tonic neuropeptide signaling in the FLP pathway controls speed**
683 **elevation during glocal search**

684 Impact of neuropeptide-affecting mutations on the speed of starved animals at 25°C (**A**) and after a
685 tonic optogenetic FLP stimulation reported as in Fig. 5 (**B, C, D**). Impact of *flp-5* mutation, over-
686 expression, and rescue/over-expression with *Pmec-3::flp-5* transgene expressed in FLP (**E**) and of

687 mutations affecting FLP-5 receptors (**H**) on the speed of starved animals at 25°C. *flp-5* transcriptional
688 reporter analysis reported as in Fig. 4 (**F-G**). Food drop assays reported as in Fig. 2 showing reduced
689 food-reaching performances in *flp-5*; *dmsr-1* (**I, J**). Impact of gain-of-function (gf) and loss-of-
690 function (lf) mutations in *egl-6*, as well as FLP-5 receptor over-expression in *egl-6*-expressing cells,
691 revealing that EGL-6, DMSR-1a, DMSR-1b and DMSR-7 have a similar inhibitory effect on the speed
692 of starved animals at 25°C (**K**). Opposite impact of broad DMSR-1 overexpression in *dmsr-1*-
693 expressing cells or AVA-specific overexpression, respectively, on the speed of starved animals at
694 25°C (**L**). *, $p < .05$ and **, $p < .01$ versus 15°C Fed condition or respective N2 control; # $p < .05$ and ##,
695 $p < .01$ versus the indicated condition by Bonferroni posthoc tests. +, $p < 0.05$ and ++, $p < .01$ versus 15°C
696 Fed or indicated condition by Fisher's exact test for contingency comparisons. ns, not significant.
697 Model for food and temperature-dependent control of exploitation/exploration strategies via multi-site
698 gating mechanisms (traffic lights, **M**). On food, animals dwell regardless of temperature with one or
699 more gates closed in the FLP-pathway (red lights). During global search after starvation at 15°C, only
700 parts of the gates are lifted (green lights), still preventing the up-regulation of omega turn and of
701 speed, the latter being also hindered by FLP glutamate signaling. After starvation at 25°C, all gates are
702 lifted and FLP tonically signals via FLP-5/DMSR-1 to elevate speed and omega turns and orchestrate
703 gloocal search.

704

705 **METHODS**

706

707 ***C elegans* growth, maintenance and synchronization**

708 *C. elegans* strains were maintained according to standard techniques on nematode growth medium
709 (NGM) agar plates seeded with OP50. Animal synchronization was made by treating gravid adult with
710 standard hypochlorite-based procedure. Strain List section below includes a list of strains used in the
711 present study.

712

713 **Behavior analyses**

714 An overview of the device and pipeline for behavioral recording and analyses is presented in Fig. S1A
715 and B, and detailed below.

716

717 **Behavioral recordings**

718 *Video recordings*- Behavior of animal populations crawling on solid medium plates was recorded in a
719 custom-made temperature, vibration and illumination-controlled platform (Figure S1A). High-
720 resolution (2448×2048 pixels), 3-min movies (~50 animals/movie) were recorded using
721 DMK33UX250 camera (The Imaging Source), at 10 frames per second as a snapshot of the behavioral
722 state in given condition using IC Capture software (The Imaging Source) and saved as .avi files. All
723 the behavioral recordings across conditions and genotypes were performed in young adult animals
724 (~800 µm in length). Each condition and genotype were recorded on at least 3 separate days with
725 multiple replicates each day. All the behavioral experiments were performed in standard 6-cm NGM
726 petri dishes (with or without *E. coli* food lawn) in a lid-on setting unless otherwise mentioned.

727

728 *Steady-state behavior*- Animals were grown and recorded without changing the temperature
729 throughout life for steady-state/baseline behavior at 15°C or 25°C, respectively. For detailed
730 behavioral state characterization young-adult wild type animals were recorded at 15°C from 93-99hr,
731 and at 25°C from 49-55hr for 6 hours. For mutants, steady state baseline behavior was recorded once
732 in young adult animals.

733

734 *Temperature shift experiments*- For temperature shift experiments, animals were moved to the
735 recording device pre-set at target temperature just before the recording. Target temperature of 15°C or
736 25°C was achieved within 45 minutes after temperature shift. Duration of transition was counted from
737 the time of plate shift. Wild-type animals for detailed behavioral state characterization were recorded
738 every hour for 6 hours. Mutants were only recorded after 6hr of temperature shift to focus on steady
739 state behavioral states.

740

741 *Starvation experiments*- Fed animals were washed 3 times in the 1.5mL collection tube with distilled
742 water (pre-equilibrated at growth temperature of worms) to remove OP50. During washes worms were
743 left to settle to the bottom of the plates by gravity. About 50-80 animals were then plated on NGM
744 plates with a drop of water and left to air dry for 5 minutes. Total duration of wash and drying was ~10
745 min per plate. Duration of starvation was considered from the time of start of the wash. Wild-type
746 animals for detailed behavioral state characterization were recorded every hour for 6 hours. Mutants
747 were only recorded after 6hr of starvation shift to focus on steady state behavioral states.

748

749 *Preparing transgenic animals for behavioral recordings*- Transgenic animals were picked 24 h before
750 recordings and placed to equilibrate in the recording device.

751

752 **Behavioral parameter extraction from behavioral movies**

753 Recorded movie files were analysed using the Tierpsy tracker v1.4 for detailed quantification of
754 locomotion and posture (Javer et al., 2018a). The output feature file contains average value for ~700
755 behavioral parameters for all tracked worms. Previous work recommended using a smaller parameter

756 subset with 256 Tierpsy features for balancing power and interpretability (Javer et al., 2018b). We
757 reasoned that this list of 256 parameters is suitable for the studies where high-power is required to
758 capture all the possible phenotypic difference (e.g. genetic or drug screens). However, this total
759 number of is still relatively large to handle in a study performing multiple subsequent mechanistic
760 dissections and still contains many parameters which are either (i) difficult to interpret, (ii) inherently
761 noisy, or (ii) still redundant with others. We used an alternative approach to decrease the list of
762 Tierpsy v1.4 parameters (~700) using the following reasoning:

- 763 1) Include all the parameters accounting for major postural and locomotion variations and likely
764 to have a neural basis and an interpretable ecological impact (bending of posture at different
765 body parts, eigen projections, speed, omega turns, reversals, forward and pause locomotion)
- 766 2) Remove redundancy wherever possible (only used abs value and excluded positive and
767 negative value of the same parameter)
- 768 3) Remove noisy parameters with empty values for most datapoints (as upsilon turn frequency).
- 769 4) Keep sufficient parameters to grasp complete information about a behavioral cluster
770 (backward frequency, backward time, inter backward time, backward time ratio)
- 771 5) Further remove redundant parameters of a behavioral cluster likely to have same mechanistic
772 basis (removed backward distance, inter backward distance, backward distance ratio based on
773 the logic that backward time and distance parameters might have same underlying
774 mechanism)
- 775 6) Only keep information of a behavioral parameter for individual body part where required (e.g.,
776 all the bending parameters kept for individual body part) else only information of midbody is
777 used (e.g., only keep midbody speed but not tail speed).
- 778 7) Length normalized speed was introduced later in the study to control for growth/age
779 dependent variations across conditions and genotypes.

780
781 Applying the reasoning, we focused on a set of 47 (17 postural, and 30 motion, as described in Fig.
782 S1C) readily interpretable behavioral parameters, which we reasoned best explain all the changes,
783 likely to have a directly addressable mechanistic basis and can represent behavioral states of the
784 animals.

785 786 **PCA and Hierarchical clustering**

787 We performed a global Principal component analysis (PCA) on raw average values of 47 behavioral
788 parameters examined across all the wild type conditions in our study. PCA on motion only was
789 performed on 30 parameters and on posture only was performed on 17 postural parameters (Figure
790 S1C). Phenotypic clustering was performed on z -score normalized values of each parameter across all
791 conditions for all the behavioral parameters. PCA and hierarchical clustering was performed using
792 Clustvis webtool (Metsalu and Vilo, 2015). This integrated quantitative comparison across all the
793 conditions allowed us to map behavioral states in a common multidimensional space.

794 795 **Optogenetics**

796 Optogenetics experiments in temperature-controlled environment, were performed using a custom-
797 made plug-in device attached to our high-content behavioral recording platform (Fig. S1A).
798 Homogeneous blue light stimuli were delivered through a ring of blue LED (460 ± 10 nm). Power was
799 adjusted with an optocoupler-based system and the delivered light intensity (15 W/m^2) was determined
800 with a portable spectrophotometer (USB4000, OceanOptics). Animals were grown on all-trans-retinal
801 (ATR) plates as previously described (Schild and Glauser, 2015). We previously published control
802 experiment in the absence of ATR showing no behavioral response at this light intensity (Saro et al.,
803 2020). Animals were recorded for 600 s (60 s baseline, 300 s light-stimulation, 240 s recovery).
804 Maximum and average tonic speed elevation were calculated only during for the time span between
805 $t=90$ and 360 s in order to exclude the first phase of reversal bursts observed at the onset of FLP
806 stimulation. The speed data for optogenetic experiments were obtained as Tierpsy timeseries feature

807 output ‘abs midbody speed’ and represents absolute average speed (in forward or backward
808 locomotion) of all the animals at each timepoint.
809

810 **Locomotion trajectory analysis and simulation**

811 Real locomotion trajectories (1 min) were calculated based on x-y coordinate data of 35 randomly
812 sampled animals in each behavioral state. Trajectory Monte-Carlo simulations were performed with
813 previously published custom-made Excel sheets (Schild and Glauser, 2013), emulating an isothermal
814 environment by simply setting the spatial thermal gradient slope to 0. Distance represents summed
815 path travelled over 1 min and displacement represents the length of a linear path between starting and
816 end point of the trajectory.
817

818 **On-food thermotaxis assay**

819 The on-food thermotaxis assay is a modified version of previously described thermotaxis assays on
820 linear gradient usually carried out on food-free plates, with freshly food-deprived animals and lasting
821 < 1 h (Goodman et al., 2014). Here, experiments were performed on food, without worm transfer
822 procedure and lasted longer (up to 3 h). Animals were transferred to experimental NGM plates
823 completely and evenly covered with OP50 24 h before recordings. Animals maintained at mentioned
824 isothermal conditions were gently transferred to a stable linear thermal gradient (0.5°C/cm) created on
825 an aluminium plate with a previously described custom-made thermalized system (Schild and Glauser,
826 2013). Following the plate transfer, the thermal gradient was established within 10 min. Movement
827 was captured once before and at multiple timepoints after transfer using DMK 21BU04 camara (The
828 imaging source). The entire experiment was performed in a lid-off setting to monitor temperature in
829 the gradient using an infrared thermometer. Coordinate data of worms were obtained by manually
830 spotting in each image using ImageJ. On-food thermotaxis index was calculated as the mean of the
831 population distribution normalized to the plate size (values ranging from 0 to 1). An index value of 0
832 would correspond to an extreme cryophilic bias with all the worms at the cool end of the plate; a value
833 of 1 would correspond to an extreme thermophilic bias with all the worms at the warm end of the
834 plate; a value, 0.5 corresponds to an even distribution on both side of the plate center (like at the start
835 of each experiment).
836

837 **Food drop assay**

838 Animals were starved at 15°C or 25°C on 6-cm NGM plates as described above. After 6 h of
839 starvation a dense 20 µL drop of OP50 (OD600 after 1:100 dilution: 0.57A) was dropped at the center
840 of the plate. Experiments were performed in lid-on settings and lid was only removed once to add the
841 OP50 drop. Snapshots of worm distribution were taken before and after at desired timepoints.
842 Coordinate data of worms was obtained by manually spotting worms in each image using ImageJ.
843 Region of success was defined as a circular region of 1.6 cm diameter around the food drop. Animals
844 already present at the region of success before dropping the food were discarded from the analysis.
845 Fraction of successful food search was calculated using the following formula:
846

847 Fraction of successful food search = Worms in region of success/Total number of worms
848

849 **Calcium imaging**

850 Calcium imaging experiments in AFD and FLP were performed in a temperature-controlled
851 environment and analysed as previously described (Ippolito et al., 2021; Saro et al., 2020). YFP/CFP
852 ratio of a YC2.3 cameleon indicator was used to compare resting calcium levels across conditions, as
853 well as relative changes in response to short-lasting stimuli. When the impact of starvation and thermal
854 shift were examined, recordings were made 6 h after the condition changes.
855

856 **Microscopy and reporter expression analysis**

857 Images to quantify *flp-5* and *flp-6* reporter expression in FLP and AFD respectively, were acquired in
858 a Zeiss Axioplan2 fluorescence microscope, with a 40× (air, NA = 0.95) objective and constant
859 illumination parameters.

860

861 Statistical tests

862 D'Agostino & Pearson test ($p < 0.01$) was used to test normality of distributions. Comparisons giving
863 significant effects ($p < 0.05$) with ANOVAs were followed by Bonferroni posthoc tests. Dunn's test
864 was used as non-parametric test whenever the normality assumption criterion was not fulfilled. In
865 every figure, statistical significance is represented as ns, not significant, *, $p < 0.05$ and **, $p < 0.01$ for
866 comparison with N2 15 fed or respective N2 controls and #, $p < 0.05$ and ##, $p < 0.01$ for indicated
867 comparison. The χ^2 and Fisher's exact tests were performed for discrete event contingency
868 comparisons and statistical significance is represented as ns, not significant, +, $p < 0.05$ and ++, $p < 0.01$.
869 Bimodal distribution was represented as violin plot and the rest of the data is represented as bar graph
870 with individual datapoints overlaid.

871 Transgene construction and transgenesis

872 DNA prepared with a GenElute HP Plasmid miniprep kit (Sigma) was microinjected in the gonad to
873 generate transgenic lines according to a standard protocol (Evans, 2006). We used a [*unc-122p::GFP*]
874 (gift from Piali Sengupta; Addgene plasmid # 8937 (Miyabayashi et al., 1999)) co-injection marker to
875 identify transgenic animals. The concentration of co-marker and for expression plasmids in the
876 injection mixes are indicated in the strain list.

877 Promoter plasmids (MultiSiteGateway slot 1)

878 Entry plasmids containing specific promoters were constructed by PCR from N2 genomic DNA with
879 primers flanked with attB4 and attB1r recombination sites and cloned into pDONR-P4-P1R vector
880 (Invitrogen) by BP recombination. Primer sequences were the following:

881 dg507 [slot1 Entry gcy-8p]

882 attB4gcy-8_F: ggggacaacttttatagaaaagttgATAGCAAAGGGCGTCGATTATCT

883 attB1rgcy-8_R: ggggactgctttttgtacaaacttgTTTGATGTGGAAAAGGTAGAACATCGAA

884 dg867 [slot1 Entry egl-6p]

885 attB4egl-6_F: ggggacaacttttatagaaaagttgATTTTCCAGAGAGAACAGAGTCC

886 attB1regl-6_R: ggggactgctttttgtacaaacttgTTGCTGAAAAGCTGTCATTGTG

887 dg868 [slot1 Entry flp-5p]

888 attB4flp-5_F: ggggacaacttttatagaaaagttgATCGAATTGTCGCCGATCTGTTACA

889 attB1rflp-5_R: ggggactgctttttgtacaaacttgTAGTTGCGAGGAATGACTGTTCG

890 dg865 [slot1 Entry dmsr-1p]

891 attB4dmsr-1_F: ggggacaacttttatagaaaagttgATCAGACGTCGTTGGAAGTAG

892 attB1rdmsr-1_R: ggggactgctttttgtacaaacttgTTTGTTGCTGTTCCCTCTGTT

893 dg1015 [slot1 Entry lgc-39p]

894 attB4lgc-39_F: ggggacaacttttatagaaaagttgATCGCTATCGTCTCCAAATCG

895 attB1rlgc-39_R: ggggactgctttttgtacaaacttgTCGATGATTCACATCAGGGATGC

896 The generation of dg68 [slot1 Entry mec-3p] was previously described (Schild et al., 2014).

897 Coding sequence plasmids (MultiSiteGateway slot 2)

898 Entry plasmids containing specific coding DNA sequences (cds) or genomic sequence (gs) were
899 constructed by PCR from N2 cDNA or N2 genomic DNA with primers flanked with attB1 and attB2
900 recombination sites and cloned into pDONR_221 vector (Invitrogen) by BP recombination. Primer
901 sequences were the following:

902 dg1014 [slot2 Entry flp-6cds]

903 attB1flp-6_F: ggggacaagttgtacaaaaaaggcaggctTAATGAACCTCTCGTGGGTTGATTTGA
904 attB2flp-6_R: ggggaccactttgtacaagaaagctgggtCTTATCGTCCGAATCTCATGTATGCT
905 dg872 [slot2 Entry egl-6gs]
906 attB1egl-6_F: ggggacaagttgtacaaaaaaggcaggctTAATGAATGACACACTGATCTGTACA
907 attB2egl-6_R: ggggaccactttgtacaagaaagctgggtCTAAGACCCGACATATGAGCTTG
908 dg875 [slot2 Entry flp-5cds]
909 attB1flp-5_F: ggggacaagttgtacaaaaaaggcaggctTAATGAGCAGCCGAAGCACCAC
910 attB2flp-5_R: ggggaccactttgtacaagaaagctgggtCTAGCCGAATCGGATGAATTGGCT
911 dg871 [slot2 Entry dmsr-7cds]
912 attB1dmsr-7_F: ggggacaagttgtacaaaaaaggcaggctTAATGGAATGTCCGCACGATGC
913 attB2dmsr-7_R: ggggaccactttgtacaagaaagctgggtCTAAAGTTGATGTTCTACTGCTG
914 dg869 [slot2 Entry dmsr-1Acds]
915 attB1dmsr-1a_F: ggggacaagttgtacaaaaaaggcaggctTAATGGAGTTACCGAATGCAAAAC
916 attB2dmsr-1a_R: ggggaccactttgtacaagaaagctgggtCTAAATGTTGAAAGTGTCCACG
917 dg870 [slot2 Entry dmsr-1Bcds]
918 attB1dmsr-1b_F: ggggacaagttgtacaaaaaaggcaggctTAATGGAGTTACCGAATGCAAAAC
919 attB2dmsr-1b_R: ggggaccactttgtacaagaaagctgggtCTTATTCCGTACTGTTCTCGTAC
920
921 dg88 [slot2 Entry TeTxcds] (aka pWD157) was a gift of Wayne Davis. The generation of dg651 [slot2
922 Entry egl-13NLS::wrnScarlet], of dg353 [slot2 Entry mNeongreen cds] and dg650 [slot2 Entry
923 NLS_ceBFPcds] were described in (Marques et al., 2019), (Hostettler et al., 2017) and (Ippolito et al.,
924 2021) respectively.

925 **3' UTR and tagging plasmids (Multi-site Gateway slot3)**
926 mg277 [SL2::mCherry] was previously described (Schild et al., 2014). mg211 [EntrySlot3unc-
927 54UTR] (aka pMH473) was a gift from Marc Hammarlund.

928 Expression plasmids used for transgenesis

929 dg931 [gcy-8p::QF::unc-54UTR] was created through a LR recombination reaction between dg507,
930 dg240, mg211, and pDEST-R4-P3.
931 dg899 [egl-6p::QF::unc-54UTR] was created through a LR recombination reaction between dg867,
932 dg240, mg211, and pDEST-R4-P3.
933 dg243 [mec-3p::QF::unc-54UTR] was created through a LR recombination reaction between dg68,
934 dg240, mg211, and pDEST-R4-P3.
935 dg898 [flp-5p::QF::unc-54UTR] was created through a LR recombination reaction between dg868,
936 dg240, mg211, and pDEST-R4-P3.
937 dg900 [dmsr-1p::QF::unc-54UTR] was created through a LR recombination reaction between dg865,
938 dg240, mg211, and pDEST-R4-P3.
939 dg1017 [lgc-39p::QF::unc-54UTR] was created through a LR recombination reaction between
940 dg1015, dg240, mg211, and pDEST-R4-P3.
941 dg255 [QUASp::TeTxcds::SL2::mCherry] was created through a LR recombination reaction between
942 dg229, dg88, mg277, and pDEST-R4-P3.
943 dg839 [QUASp::flp-6cds::SL2::mCherry] was created through a LR recombination reaction between
944 dg229, dg827, mg277, and pDEST-R4-P3.
945 dg894 [QUASp::egl-6gs::SL2::mCherry] was created through a LR recombination reaction between
946 dg229, dg872, mg277, and pDEST-R4-P3.

947 dg838 [QUASp::eat-4cds::SL2::mCherry] was created through a LR recombination reaction between
 948 dg229, dg713, mg277, and pDEST-R4-P3.
 949 dg893 [QUASp::flp-5cds::SL2::mCherry] was created through a LR recombination reaction between
 950 dg229, dg875, mg277, and pDEST-R4-P3.
 951 dg895 [QUASp::dmsr-7cds::SL2::mCherry] was created through a LR recombination reaction
 952 between dg229, dg871, mg277, and pDEST-R4-P3.
 953 dg897 [QUASp::dmsr-1Acds::SL2::mCherry] was created through a LR recombination reaction
 954 between dg229, dg869, mg277, and pDEST-R4-P3.
 955 dg896 [QUASp::dmsr-1Bcds::SL2::mCherry] was created through a LR recombination reaction
 956 between dg229, dg870, mg277, and pDEST-R4-P3.
 957 dg373 [QUASp::mNeongreencds::unc-54UTR] was created through a LR recombination reaction
 958 between dg229, dg353, mg211, and pDEST-R4-P3.
 959 dg996 [QUASp::wrnScarletcds::unc-54UTR] was created through a LR recombination reaction
 960 between dg229, dg353, mg211, and pDEST-R4-P3.
 961 dg653 [mec-3p::NLS_CeBFPcds::unc-54UTR] was created through a LR recombination reaction
 962 between dg68, dg650, mg211, and pDEST-R4-P3.

963 Strain List:

Strain Name	Genotype	Comments
N2	Wild type	Wild type (WT)
GN112	<i>pgIs2</i> [<i>gcy-8p::TU#813</i> + <i>gcy-8p::TU#814</i> + <i>unc-122p::GFP</i> + <i>gcy-8p::mCherry</i> + <i>gcy-8p::GFP</i> + <i>tx-3p::GFP</i>]	AFD ablation (gift from Miriam B. Goodman). (Glauser et al., 2011) Fig. 4B, 5B, S4B, S5B
PY7505	<i>gpa-4p::TU318</i> ; <i>gcy-27p::TU814</i> ; <i>gcy-27p::GFP</i> coelp::dsRED	ASI ablation (Gift from Piali Sengupta). (Beverly et al., 2011) Fig. 4B, 5B, S4B, S5B
PY7502	<i>ceh-36delp::TU#813</i> ; <i>ceh-36delp::TU#814</i> ; <i>srtx-1p::gfp</i> ; <i>Coelomycte::dsRED</i>	AWC ablation (Gift from Piali Sengupta). (Beverly et al., 2011) Fig. 4B, 5B, S4B, S5B
DAG340	<i>domEx303</i> [<i>mec-3p::CZcasp3</i> , <i>flp-4p::QF</i> , QUAS:: <i>casp3NZ::SL2mCherry</i> , <i>unc-122p::RFP</i>]	FLP ablation. (Schild et al., 2014) Fig. 4B, 5B, S4B, S5B
DAG1642-1644	<i>domEx1642-1644</i> [<i>gcy-8p::QF</i> 20 ng/ul, QUASp:: <i>TeTxcds::SL2mcherry</i> 40 ng/ul, <i>unc122p::GFP</i> 20 ng/ul]	Tetnus toxin expression with <i>gcy-8</i> promoter driving TeTx coding sequence (CDS). Fig. 4B
DAG1513	<i>domEx1513</i> [<i>tx-1prom::QF</i> , QUAS:: <i>YC2.3</i>]	Expression of YC2.3 cameleon in AFD. (Ippolito et al., 2021) Fig. 4C, D, E
DAG1682	<i>oyIs17</i> (<i>pgcy-8::GFP</i>); <i>domEx1682</i> [<i>flp-6p::QF</i> 10 ng/ul, QUASp:: <i>wrnScarlet</i> 10 ng/ul]	<i>flp-6</i> transcriptional reporter. Fig. 4G, H
MT6308	<i>eat-4(ky5) III</i>	Obtained from CGC. Fig. 4F, 6E, S4C, S6B
VC461	<i>egl-3(gk238) V</i>	Obtained from CGC. Fig. 4F, 7A, S4C, S7A
VC2324	<i>flp-6(ok3056) V</i>	Obtained from CGC. Fig. 4, 7A, S4C, S4D
DAG1648-1649	<i>flp-6(ok3056) V</i> ; <i>domEx1648-1649</i> [<i>gcy-8p::QF</i> 20 ng/ul, QUASp:: <i>flp-6cds::SL2mcherry</i> 20 ng/ul, <i>unc122p::GFP</i> 20 ng/ul]	<i>flp-6</i> rescue with <i>gcy-8</i> promoter driving <i>flp-6</i> coding sequence (cds). Fig. 4F, S4C

NQ915	<i>dmsr-1(qn45) V</i>	Obtained from CGC. Fig. 4I, 7H, 7L S4D, S7C, S7E
DAG37	<i>dmsr-7(syb2359)</i>	1202bp deletion mutation made by genome editing (SunyBiotech, China). Fig. 4I, 7H, S4D, S7C
MT14666	<i>egl-6(n4537) X</i>	Obtained from CGC. Fig. 4I, 7H, 7K S4D, S7C, S7D
DAG1712-1713	<i>egl-6(n4537) X; domEx1712-1713 [egl-6p::QF 30 ng/ul, QUASp::egl-6gs::SL2mcherry 30 ng/ul, unc122p::GFP 20 ng/ul]</i>	<i>egl-6</i> rescue with <i>egl-6</i> promoter driving <i>egl-6</i> genomic sequence (gs). Fig. 4I, S4D
DAG1716-1717	<i>flp-6(ok3056) V; domEx1716-1717 [egl-6p::QF 30 ng/ul, QUASp::egl-6gs::SL2mcherry 30 ng/ul, unc122p::GFP 20 ng/ul]</i>	<i>egl-6</i> overexpression with <i>egl-6</i> promoter driving <i>egl-6</i> genomic sequence (gs) in <i>flp-6</i> mutants (<i>flp-6</i> bypass through <i>egl-6</i> overexpression). Fig. 4I, S4D
DAG1505	<i>domEx1505 [mec-3p::QF 20 ng/ul, QUASp::TeTxcds::SL2mcherry 40 ng/ul, unc122p::GFP 20 ng/ul]</i>	Expression of Tetnus toxin in <i>mec-3</i> cells. Fig. 5B, S5B
AQ2145	<i>ljEx19[egl-46p::YC2.3; lin15(+)]</i>	Camelon in FLP (Gift from Bill Schafer). (Chatzigeorgiou et al., 2010) Fig. 5C-E
DAG356	<i>domIs355 [mec-3p::QF, mec-4p::QS, QUASp::CoChR::GFP, unc122p::RFP]</i>	[FLP::CoChR] FLP optogenetic background. Fig. 5-7
CB1112	<i>cat-2(e1112) II</i>	Obtained from CGC. Fig. 6A, S6A
DAG1079-1080	<i>eat-4(dom15) III; domIs355; domEx1079-1080 [mec-3p_eat-4CDS,SL2mCherry_ unc122p::GFP]</i>	Rescue of <i>eat-4</i> mutation with <i>mec-3</i> promoter driving <i>eat-4</i> coding sequence (cds) Fig. 6E, S6B
DAG1556	<i>domIs355; cat-2(e1112) II</i>	<i>cat-2</i> mutant in FLP optogenetic background. Fig. 6B-D
DAG411	<i>domIs355; eat-4(ky5) III</i>	<i>eat-4</i> mutant in FLP optogenetic background. Fig. 6F-H
RB982	<i>flp-21(ok889) V</i>	Obtained from CGC. Fig. 7A, S7A
tm1880	<i>nlp-14(tm1880) X</i>	Obtained from NBRP Japan. Fig. 7A, S7A
tm2427	<i>flp-13(tm2427) IV</i>	Obtained from NBRP Japan. Fig. 7A, S7A
tm12132	<i>flp-5(tm12132) X</i>	Obtained from NBRP Japan. Fig. 7, S7
DAG1400	<i>domIs355; flp-5(tm12132) X</i>	<i>flp-5</i> mutant in FLP optogenetic background. Fig. 7B-D
DAG1558	<i>domIs355; egl-3(gk238) V</i>	<i>egl-3</i> mutant in FLP optogenetic background. Fig. 7B-D
DAG1506-1507	<i>domEx1506-1507 [flp-5p::QF 30 ng/ul, QUASp::flp-5cds::SL2mcherry 30 ng/ul, unc122p::GFP 20 ng/ul]</i>	<i>flp-5</i> overexpression with <i>flp-5</i> promoter driving <i>flp-5</i> coding sequence (cds). Fig. 7E, S7B
DAG1683-1684	<i>flp-5(tm12132) X; domEx1683-1684 [mec-3p::QF 30 ng/ul, QUASp::flp-5cds::SL2mcherry 30 ng/ul, unc122p::GFP 20 ng/ul]</i>	<i>flp-5</i> rescue with <i>mec-3</i> promoter driving <i>flp-5</i> coding sequence (cds). Fig. 7E, S7B
DAG1508-1509	<i>domEx1508-1509 [mec-3p::QF 20 ng/ul, QUASp::flp-5cds::SL2mcherry 20 ng/ul, unc122p::GFP 20 ng/ul]</i>	<i>flp-5</i> overexpression with <i>mec-3</i> promoter driving <i>flp-5</i> coding sequence (cds). Fig. 7E, S7B
DAG1510-1511	<i>dmsr-1(qn45) V; domEx1510-1511 [mec-3p::QF 20 ng/ul, QUASp::flp-5cds::SL2mcherry 20 ng/ul, unc122p::GFP 20 ng/ul]</i>	<i>flp-5</i> overexpression with <i>mec-3</i> promoter driving <i>flp-5</i> coding sequence (cds) in <i>dmsr-1</i> mutant background. Fig. 7H, S7C
DAG1568	<i>flp-5(tm12132) X; dmsr-1(qn45) V</i>	<i>flp-5; dmsr-1</i> double mutant.

		Fig. 7H-J, S7C
MT1222	<i>egl-6(n592) X</i>	Obtained from CGC. Fig. 7K, S7D
DAG1514-1515	<i>domEx1514-1515 [egl-6p::QF 30 ng/ul, QUASp::egl-6gs::SL2mcherry 30 ng/ul, unc122p::GFP 20 ng/ul]</i>	<i>egl-6</i> overexpression with <i>egl-6</i> promoter driving <i>egl-6</i> genomic sequence (gs). Fig. 7K, S7D
DAG1565-1567	<i>domEx1565-1567 [egl-6p::QF 30 ng/ul, QUASp::dmsr-7cds::SL2mcherry 30 ng/ul, unc122p::GFP 20 ng/ul]</i>	<i>dmsr-7</i> overexpression with <i>egl-6</i> promoter driving <i>dmsr-7</i> coding sequence (cds). Fig. 7K, S7D
DAG1561-1562	<i>domEx1561-1562 [egl-6p::QF 30 ng/ul, QUASp::dmsr-1Acds::SL2mcherry 30 ng/ul, unc122p::GFP 20 ng/ul]</i>	<i>dmsr-1A</i> overexpression with <i>egl-6</i> promoter driving <i>dmsr-1A</i> coding sequence (cds). Fig. 7K, S7D
DAG1563-1564	<i>domEx1563-1564 [egl-6p::QF 30 ng/ul, QUASp::dmsr-1Bcds::SL2mcherry 30 ng/ul, unc122p::GFP 20 ng/ul]</i>	<i>dmsr-1B</i> overexpression with <i>egl-6</i> promoter driving <i>dmsr-1B</i> coding sequence (cds). Fig7K, S7D
DAG1520-1521	<i>domEx1520-1521 [dmsr-1p::QF 20 ng/ul, QUASp::dmsr-1Acds::SL2mcherry 20 ng/ul, unc122p::GFP 20 ng/ul]</i>	<i>dmsr-1A</i> overexpression with <i>dmsr-1</i> promoter driving <i>dmsr-1A</i> coding sequence (cds). Fig. 7L, S7E
DAG1595-1596	<i>domEx1595-1596 [lgc-39p::QF 30 ng/ul, QUASp::dmsr-1Acds::SL2mcherry 20 ng/ul, unc122p::GFP 20 ng/ul]</i>	<i>dmsr-1A</i> overexpression with <i>lgc-39</i> promoter driving <i>dmsr-1A</i> coding sequence (cds). Fig. 7L, S7E

964

965

966 REFERENCES

967

968 Andalman, A.S., Burns, V.M., Lovett-Barron, M., Broxton, M., Poole, B., Yang, S.J., Grosenick, L.,
969 Lerner, T.N., Chen, R., Benster, T., *et al.* (2019). Neuronal Dynamics Regulating Brain and
970 Behavioral State Transitions. *Cell* *177*, 970-985 e920.

971 Aoki, I., and Mori, I. (2015). Molecular biology of thermosensory transduction in *C. elegans*. *Curr*
972 *Opin Neurobiol* *34*, 117-124.

973 Bargmann, C.I. (2006). Chemosensation in *C. elegans*. *WormBook*, 1-29.

974 Belzeaux, R., Gorgievski, V., Fiori, L.M., Lopez, J.P., Grenier, J., Lin, R.X., Nagy, C., Ibrahim, E.,
975 Gascon, E., Courtet, P., *et al.* (2020). GPR56/ADGRG1 is associated with response to antidepressant
976 treatment. *Nature Communications* *11*.

977 Berridge, C.W., and Waterhouse, B.D. (2003). The locus coeruleus-noradrenergic system: modulation
978 of behavioral state and state-dependent cognitive processes. *Brain Res Brain Res Rev* *42*, 33-84.

979 Beverly, M., Anbil, S., and Sengupta, P. (2011). Degeneracy and neuromodulation among
980 thermosensory neurons contribute to robust thermosensory behaviors in *Caenorhabditis elegans*. *J*
981 *Neurosci* *31*, 11718-11727.

982 Bhardwaj, A., Thapliyal, S., Dahiya, Y., and Babu, K. (2018). FLP-18 Functions through the G-
983 Protein-Coupled Receptors NPR-1 and NPR-4 to Modulate Reversal Length in *Caenorhabditis*
984 *elegans*. *J Neurosci* *38*, 4641-4654.

985 Bhat, U.S., Shahi, N., Surendran, S., and Babu, K. (2021). Neuropeptides and Behaviors: How Small
986 Peptides Regulate Nervous System Function and Behavioral Outputs. *Front Mol Neurosci* *14*, 786471.

987 Bramham, C.R., and Srebro, B. (1989). Synaptic plasticity in the hippocampus is modulated by
988 behavioral state. *Brain Res* *493*, 74-86.

989 Bretscher, A.J., Busch, K.E., and de Bono, M. (2008). A carbon dioxide avoidance behavior is
990 integrated with responses to ambient oxygen and food in *Caenorhabditis elegans*. *Proc Natl Acad Sci*
991 *U S A* *105*, 8044-8049.

992 Busch, K.E., Laurent, P., Soltesz, Z., Murphy, R.J., Faivre, O., Hedwig, B., Thomas, M., Smith, H.L.,
993 and de Bono, M. (2012). Tonic signaling from O₂ sensors sets neural circuit activity and behavioral
994 state. *Nat Neurosci* *15*, 581-591.

995 Cedergreen, N., Norhave, N.J., Svendsen, C., and Spurgeon, D.J. (2016). Variable Temperature Stress
996 in the Nematode *Caenorhabditis elegans* (Maupas) and Its Implications for Sensitivity to an Additional
997 Chemical Stressor. *PLoS One* 11, e0140277.

998 Cermak, N., Yu, S.K., Clark, R., Huang, Y.C., Baskoylu, S.N., and Flavell, S.W. (2020). Whole-
999 organism behavioral profiling reveals a role for dopamine in state-dependent motor program coupling
1000 in *C. elegans*. *Elife* 9.

1001 Chatzigeorgiou, M., Yoo, S., Watson, J.D., Lee, W.H., Spencer, W.C., Kindt, K.S., Hwang, S.W.,
1002 Miller, D.M., 3rd, Treinin, M., Driscoll, M., *et al.* (2010). Specific roles for DEG/ENaC and TRP
1003 channels in touch and thermosensation in *C. elegans* nociceptors. *Nat Neurosci* 13, 861-868.

1004 Chen, Y.C., Chen, H.J., Tseng, W.C., Hsu, J.M., Huang, T.T., Chen, C.H., and Pan, C.L. (2016). A *C.*
1005 *elegans* Thermosensory Circuit Regulates Longevity through *crh-1/CREB*-Dependent *flp-6*
1006 Neuropeptide Signaling. *Dev Cell* 39, 209-223.

1007 Churgin, M.A., McCloskey, R.J., Peters, E., and Fang-Yen, C. (2017). Antagonistic Serotonergic and
1008 Octopaminergic Neural Circuits Mediate Food-Dependent Locomotory Behavior in *Caenorhabditis*
1009 *elegans*. *J Neurosci* 37, 7811-7823.

1010 Clark, D.A., Gabel, C.V., Gabel, H., and Samuel, A.D. (2007). Temporal activity patterns in
1011 thermosensory neurons of freely moving *Caenorhabditis elegans* encode spatial thermal gradients. *J*
1012 *Neurosci* 27, 6083-6090.

1013 Dave, A.S., Yu, A.C., and Margoliash, D. (1998). Behavioral state modulation of auditory activity in a
1014 vocal motor system. *Science* 282, 2250-2254.

1015 Devineni, A.V., and Scaplen, K.M. (2021). Neural Circuits Underlying Behavioral Flexibility: Insights
1016 From *Drosophila*. *Front Behav Neurosci* 15, 821680.

1017 Evans, T. (2006). Transformation and microinjection (April 6, 2006), WormBook, ed. The *C. elegans*
1018 Research Community, WormBook, doi/10.1895/wormbook. 1.108. 1.

1019 Flavell, S.W., Pokala, N., Macosko, E.Z., Albrecht, D.R., Larsch, J., and Bargmann, C.I. (2013).
1020 Serotonin and the neuropeptide PDF initiate and extend opposing behavioral states in *C. elegans*. *Cell*
1021 154, 1023-1035.

1022 Flavell, S.W., Raizen, D.M., and You, Y.J. (2020). Behavioral States. *Genetics* 216, 315-332.

1023 Fu, X., Teboul, E., Weiss, G.L., Antonoudiou, P., Borkar, C.D., Fadok, J.P., Maguire, J., and Tasker,
1024 J.G. (2022). Gq neuromodulation of BLA parvalbumin interneurons induces burst firing and mediates
1025 fear-associated network and behavioral state transition in mice. *Nat Commun* 13, 1290.

1026 Fujiwara, M., Sengupta, P., and McIntire, S.L. (2002). Regulation of body size and behavioral state of
1027 *C. elegans* by sensory perception and the EGL-4 cGMP-dependent protein kinase. *Neuron* 36, 1091-
1028 1102.

1029 Gallagher, T., Bjorness, T., Greene, R., You, Y.J., and Avery, L. (2013). The geometry of locomotive
1030 behavioral states in *C. elegans*. *PLoS One* 8, e59865.

1031 Ghosh, D.D., Lee, D., Jin, X., Horvitz, H.R., and Nitabach, M.N. (2021). *C. elegans* discriminates
1032 colors to guide foraging. *Science* 371, 1059-1063.

1033 Gibson, W.T., Gonzalez, C.R., Fernandez, C., Ramasamy, L., Tabachnik, T., Du, R.R., Felsen, P.D.,
1034 Maire, M.R., Perona, P., and Anderson, D.J. (2015). Behavioral responses to a repetitive visual threat
1035 stimulus express a persistent state of defensive arousal in *Drosophila*. *Curr Biol* 25, 1401-1415.

1036 Glauser, D.A. (2022). Temperature sensing and context-dependent thermal behavior in nematodes.
1037 *Curr Opin Neurobiol* 73, 102525.

1038 Glauser, D.A., Chen, W.C., Agin, R., Macinnis, B.L., Hellman, A.B., Garrity, P.A., Tan, M.W., and
1039 Goodman, M.B. (2011). Heat avoidance is regulated by transient receptor potential (TRP) channels
1040 and a neuropeptide signaling pathway in *Caenorhabditis elegans*. *Genetics* 188, 91-103.

1041 Goodman, M.B., Klein, M., Lasse, S., Luo, L., Mori, I., Samuel, A., Sengupta, P., and Wang, D.
1042 (2014). Thermotaxis navigation behavior. WormBook, 1-10.

1043 Goodman, M.B., and Sengupta, P. (2019). How *Caenorhabditis elegans* Senses Mechanical Stress,
1044 Temperature, and Other Physical Stimuli. *Genetics* 212, 25-51.

1045 Gray, J.M., Hill, J.J., and Bargmann, C.I. (2005). A circuit for navigation in *Caenorhabditis elegans*.
1046 *Proc Natl Acad Sci U S A* 102, 3184-3191.

1047 Gray, J.M., Karow, D.S., Lu, H., Chang, A.J., Chang, J.S., Ellis, R.E., Marletta, M.A., and Bargmann,
1048 C.I. (2004). Oxygen sensation and social feeding mediated by a *C. elegans* guanylate cyclase
1049 homologue. *Nature* 430, 317-322.

1050 Hawk, J.D., Calvo, A.C., Liu, P., Almoril-Porras, A., Aljobeh, A., Torruella-Suarez, M.L., Ren, I.,
1051 Cook, N., Greenwood, J., Luo, L., *et al.* (2018). Integration of Plasticity Mechanisms within a Single
1052 Sensory Neuron of *C. elegans* Actuates a Memory. *Neuron* 97, 356-367.e354.
1053 Hedgecock, E.M., and Russell, R.L. (1975). Normal and mutant thermotaxis in the nematode
1054 *Caenorhabditis elegans*. *Proc Natl Acad Sci U S A* 72, 4061-4065.
1055 Hill, A.J., Mansfield, R., Lopez, J.M., Raizen, D.M., and Van Buskirk, C. (2014). Cellular stress
1056 induces a protective sleep-like state in *C. elegans*. *Curr Biol* 24, 2399-2405.
1057 Hills, T., Brockie, P.J., and Maricq, A.V. (2004). Dopamine and glutamate control area-restricted
1058 search behavior in *Caenorhabditis elegans*. *J Neurosci* 24, 1217-1225.
1059 Hostettler, L., Grundy, L., Kaser-Pebernard, S., Wicky, C., Schafer, W.R., and Glauser, D.A. (2017).
1060 The Bright Fluorescent Protein mNeonGreen Facilitates Protein Expression Analysis In Vivo. *G3*
1061 (Bethesda) 7, 607-615.
1062 Husson, S.J., Clynen, E., Baggerman, G., Janssen, T., and Schoofs, L. (2006). Defective processing of
1063 neuropeptide precursors in *Caenorhabditis elegans* lacking proprotein convertase 2 (KPC-2/EGL-3):
1064 mutant analysis by mass spectrometry. *J Neurochem* 98, 1999-2012.
1065 Iannacone, M.J., Beets, I., Lopes, L.E., Churgin, M.A., Fang-Yen, C., Nelson, M.D., Schoofs, L., and
1066 Raizen, D.M. (2017). The RFamide receptor DMSR-1 regulates stress-induced sleep in *C. elegans*.
1067 *Elife* 6.
1068 Iliff, A.J., Wang, C., Ronan, E.A., Hake, A.E., Guo, Y., Li, X., Zhang, X., Zheng, M., Liu, J., Grosh,
1069 K., *et al.* (2021). The nematode *C. elegans* senses airborne sound. *Neuron* 109, 3633-3646 e3637.
1070 Ippolito, D., Thapliyal, S., and Glauser, D.A. (2021). Ca(2+)/CaM binding to CaMKI promotes IMA-3
1071 importin binding and nuclear translocation in sensory neurons to control behavioral adaptation. *Elife*
1072 10.
1073 Javer, A., Currie, M., Lee, C.W., Hokanson, J., Li, K., Martineau, C.N., Yemini, E., Grundy, L.J., Li,
1074 C., Ch'ng, Q., *et al.* (2018a). An open-source platform for analyzing and sharing worm-behavior data.
1075 *Nat Methods* 15, 645-646.
1076 Javer, A., Ripoll-Sanchez, L., and Brown, A.E.X. (2018b). Powerful and interpretable behavioural
1077 features for quantitative phenotyping of *Caenorhabditis elegans*. *Philos Trans R Soc Lond B Biol Sci*
1078 373.
1079 Ji, N., Madan, G.K., Fabre, G.I., Dayan, A., Baker, C.M., Kramer, T.S., Nwabudike, I., and Flavell,
1080 S.W. (2021). A neural circuit for flexible control of persistent behavioral states. *Elife* 10.
1081 Jo, Y.S., Namboodiri, V.M.K., Stuber, G.D., and Zweifel, L.S. (2020). Persistent activation of central
1082 amygdala CRF neurons helps drive the immediate fear extinction deficit. *Nat Commun* 11, 422.
1083 Jung, Y., Kennedy, A., Chiu, H., Mohammad, F., Claridge-Chang, A., and Anderson, D.J. (2020).
1084 Neurons that Function within an Integrator to Promote a Persistent Behavioral State in *Drosophila*.
1085 *Neuron* 105, 322-333 e325.
1086 Kato, S., Kaplan, H.S., Schrodel, T., Skora, S., Lindsay, T.H., Yemini, E., Lockery, S., and Zimmer,
1087 M. (2015). Global brain dynamics embed the motor command sequence of *Caenorhabditis elegans*.
1088 *Cell* 163, 656-669.
1089 Lea, S.E.G., Chow, P.K.Y., Leaver, L.A., and McLaren, I.P.L. (2020). Behavioral flexibility: A
1090 review, a model, and some exploratory tests. *Learn Behav* 48, 173-187.
1091 Lee, R.Y., Sawin, E.R., Chalfie, M., Horvitz, H.R., and Avery, L. (1999). EAT-4, a homolog of a
1092 mammalian sodium-dependent inorganic phosphate cotransporter, is necessary for glutamatergic
1093 neurotransmission in *caenorhabditis elegans*. *J Neurosci* 19, 159-167.
1094 Liu, P., Chen, B., and Wang, Z.W. (2020). GABAergic motor neurons bias locomotor decision-
1095 making in *C. elegans*. *Nat Commun* 11, 5076.
1096 Lopez-Cruz, A., Sordillo, A., Pokala, N., Liu, Q., McGrath, P.T., and Bargmann, C.I. (2019). Parallel
1097 Multimodal Circuits Control an Innate Foraging Behavior. *Neuron* 102, 407-419 e408.
1098 Magalhaes, A.C., Holmes, K.D., Dale, L.B., Comps-Agrar, L., Lee, D., Yadav, P.N., Drysdale, L.,
1099 Poulter, M.O., Roth, B.L., Pin, J.P., *et al.* (2010). CRF receptor 1 regulates anxiety behavior via
1100 sensitization of 5-HT2 receptor signaling. *Nat Neurosci* 13, 622-629.
1101 Marques, F., Saro, G., Lia, A.S., Poole, R.J., Falquet, L., and Glauser, D.A. (2019). Identification of
1102 avoidance genes through neural pathway-specific forward optogenetics. *PLoS Genet* 15, e1008509.

1103 Marquina-Solis, J., Vandewyer, E., Hawk, J., Colón-Ramos, D.A., Beets, I., and Bargmann, C.I.
1104 (2022). Peptidergic signaling controls the dynamics of sickness behavior in *Caenorhabditis*
1105 *elegans*. *bioRxiv*, 2022.2004.2016.488560.

1106 Martineau, C.N., Brown, A.E.X., and Laurent, P. (2020). Multidimensional phenotyping predicts
1107 lifespan and quantifies health in *Caenorhabditis elegans*. *PLoS Comput Biol* *16*, e1008002.

1108 Matsumoto, M., Straub, R.E., Marenco, S., Nicodemus, K.K., Matsumoto, S., Fujikawa, A., Miyoshi,
1109 S., Shobo, M., Takahashi, S., Yarimizu, J., *et al.* (2008). The evolutionarily conserved G protein-
1110 coupled receptor SREB2/GPR85 influences brain size, behavior, and vulnerability to schizophrenia.
1111 *Proc Natl Acad Sci U S A* *105*, 6133-6138.

1112 Metsalu, T., and Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of multivariate data
1113 using Principal Component Analysis and heatmap. *Nucleic Acids Res* *43*, W566-570.

1114 Miyabayashi, T., Palfreyman, M.T., Sluder, A.E., Slack, F., and Sengupta, P. (1999). Expression and
1115 function of members of a divergent nuclear receptor family in *Caenorhabditis elegans*. *Dev Biol* *215*,
1116 314-331.

1117 Nichols, A.L.A., Eichler, T., Latham, R., and Zimmer, M. (2017). A global brain state underlies *C.*
1118 *elegans* sleep behavior. *Science* *356*.

1119 Ohnishi, N., Kuhara, A., Nakamura, F., Okochi, Y., and Mori, I. (2011). Bidirectional regulation of
1120 thermotaxis by glutamate transmissions in *Caenorhabditis elegans*. *EMBO J* *30*, 1376-1388.

1121 Oranth, A., Schultheis, C., Tolstenkov, O., Erbguth, K., Nagpal, J., Hain, D., Brauner, M., Wabnig, S.,
1122 Steuer Costa, W., McWhirter, R.D., *et al.* (2018). Food Sensation Modulates Locomotion by
1123 Dopamine and Neuropeptide Signaling in a Distributed Neuronal Network. *Neuron* *100*, 1414-1428
1124 e1410.

1125 Raizen, D.M., Zimmerman, J.E., Maycock, M.H., Ta, U.D., You, Y.J., Sundaram, M.V., and Pack,
1126 A.I. (2008). Lethargus is a *Caenorhabditis elegans* sleep-like state. *Nature* *451*, 569-U566.

1127 Ringstad, N., and Horvitz, H.R. (2008). FMRFamide neuropeptides and acetylcholine synergistically
1128 inhibit egg-laying by *C. elegans*. *Nat Neurosci* *11*, 1168-1176.

1129 Saro, G., Lia, A.S., Thapliyal, S., Marques, F., Busch, K.E., and Glauser, D.A. (2020). Specific Ion
1130 Channels Control Sensory Gain, Sensitivity, and Kinetics in a Tonic Thermonociceptor. *Cell Rep* *30*,
1131 397-408 e394.

1132 Schild, L.C., and Glauser, D.A. (2013). Dynamic switching between escape and avoidance regimes
1133 reduces *Caenorhabditis elegans* exposure to noxious heat. *Nat Commun* *4*, 2198.

1134 Schild, L.C., and Glauser, D.A. (2015). Dual Color Neural Activation and Behavior Control with
1135 Chrimson and CoChR in *Caenorhabditis elegans*. *Genetics* *200*, 1029-1034.

1136 Schild, L.C., Zbinden, L., Bell, H.W., Yu, Y.V., Sengupta, P., Goodman, M.B., and Glauser, D.A.
1137 (2014). The balance between cytoplasmic and nuclear CaM kinase-1 signaling controls the operating
1138 range of noxious heat avoidance. *Neuron* *84*, 983-996.

1139 Schmitt, C., Schultheis, C., Pokala, N., Husson, S.J., Liewald, J.F., Bargmann, C.I., and Gottschalk, A.
1140 (2012). Specific expression of channelrhodopsin-2 in single neurons of *Caenorhabditis elegans*. *PLoS*
1141 One *7*, e43164.

1142 Shaw, P.J., Tononi, G., Greenspan, R.J., and Robinson, D.F. (2002). Stress response genes protect
1143 against lethal effects of sleep deprivation in *Drosophila*. *Nature* *417*, 287-291.

1144 Shtonda, B.B., and Avery, L. (2006). Dietary choice behavior in *Caenorhabditis elegans*. *J Exp Biol*
1145 *209*, 89-102.

1146 Skora, S., Mende, F., and Zimmer, M. (2018). Energy Scarcity Promotes a Brain-wide Sleep State
1147 Modulated by Insulin Signaling in *C. elegans*. *Cell Rep* *22*, 953-966.

1148 Sorrells, T.R., Pandey, A., Rosas-Villegas, A., and Vosshall, L.B. (2022). A persistent behavioral state
1149 enables sustained predation of humans by mosquitoes. *Elife* *11*.

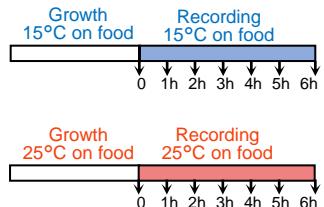
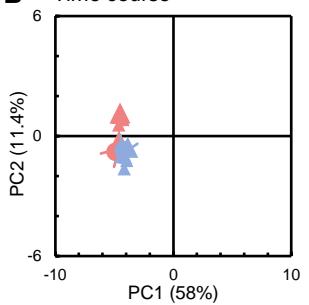
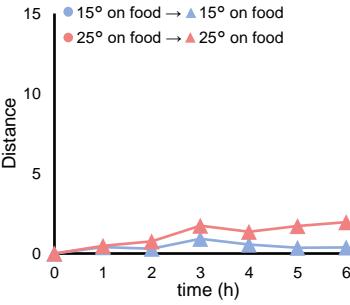
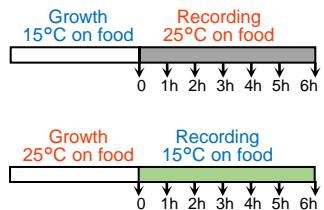
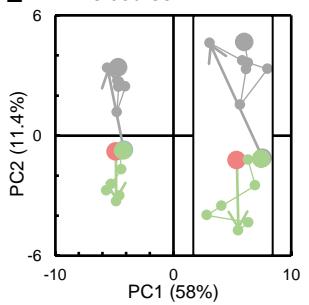
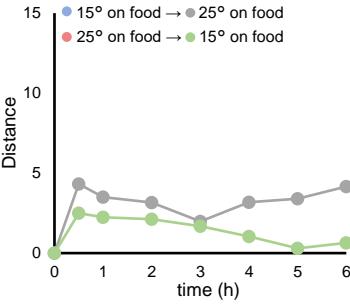
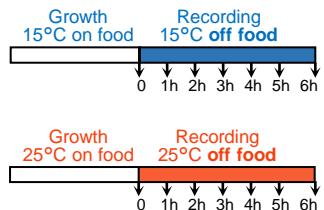
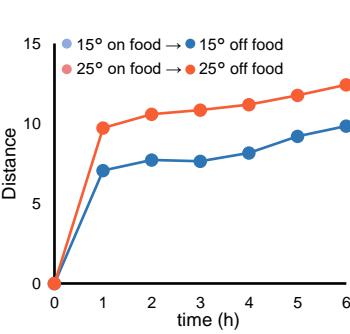
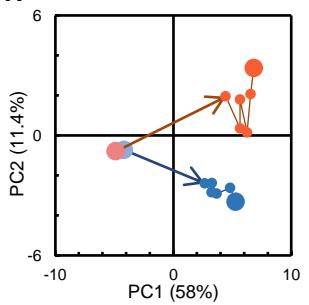
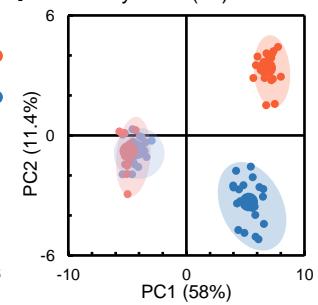
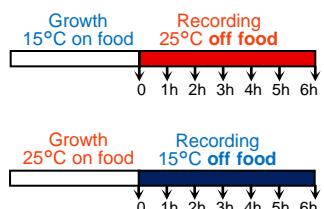
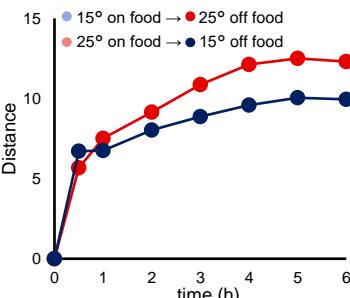
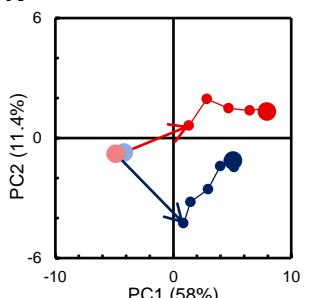
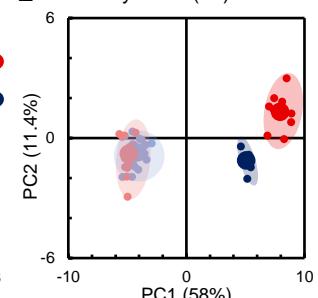
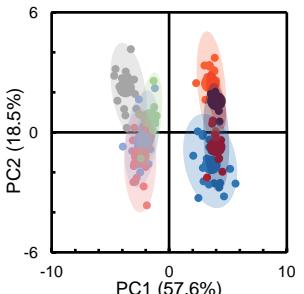
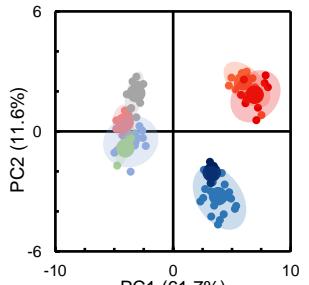
1150 Stern, S., Kirst, C., and Bargmann, C.I. (2017). Neuromodulatory Control of Long-Term Behavioral
1151 Patterns and Individuality across Development. *Cell* *171*, 1649-1662 e1610.

1152 Swierczek, N.A., Giles, A.C., Rankin, C.H., and Kerr, R.A. (2011). High-throughput behavioral
1153 analysis in *C. elegans*. *Nat Methods* *8*, 592-598.

1154 Taylor, S.R., Santpere, G., Weinreb, A., Barrett, A., Reilly, M.B., Xu, C., Varol, E., Oikonomou, P.,
1155 Glenwinkel, L., McWhirter, R., *et al.* (2021). Molecular topography of an entire nervous system. *Cell*
1156 *184*, 4329-4347.e4323.

1157 Uddin, L.Q. (2021). Cognitive and behavioural flexibility: neural mechanisms and clinical
1158 considerations. *Nat Rev Neurosci* *22*, 167-179.

1159 Venkatachalam, V., Ji, N., Wang, X., Clark, C., Mitchell, J.K., Klein, M., Tabone, C.J., Florman, J., Ji,
1160 H., Greenwood, J., *et al.* (2016). Pan-neuronal imaging in roaming *Caenorhabditis elegans*. *Proc Natl
1161 Acad Sci U S A* *113*, E1082-1088.

1162 Waggoner, L.E., Zhou, G.T., Schafer, R.W., and Schafer, W.R. (1998). Control of alternative
1163 behavioral states by serotonin in *Caenorhabditis elegans*. *Neuron* *21*, 203-214.

1164 Wakabayashi, T., Kitagawa, I., and Shingai, R. (2004). Neurons regulating the duration of forward
1165 locomotion in *Caenorhabditis elegans*. *Neurosci Res* *50*, 103-111.

1166 Xiao, R., and Xu, X.Z.S. (2021). Temperature Sensation: From Molecular Thermosensors to Neural
1167 Circuits and Coding Principles. *Annu Rev Physiol* *83*, 205-230.

1168 Yemini, E., Jucikas, T., Grundy, L.J., Brown, A.E., and Schafer, W.R. (2013). A database of
1169 *Caenorhabditis elegans* behavioral phenotypes. *Nat Methods* *10*, 877-879.

1170

A Impact of growth temperature**B Time course****C Steady state (6h)****D Impact of temperature shift****E Time course****F Steady state (6h)****G Interaction between growth temperature and feeding status****H Time course****I Steady state (6h)****J Interaction between temperature shift and feeding status****K Time course****L Steady state (6h)****M States only on posture****N States only on motion****O Unique steady behavioural states****Figure 1**

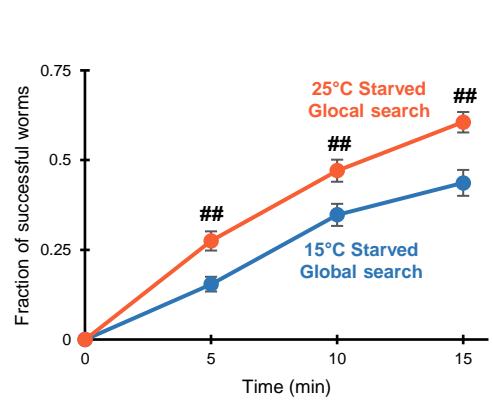
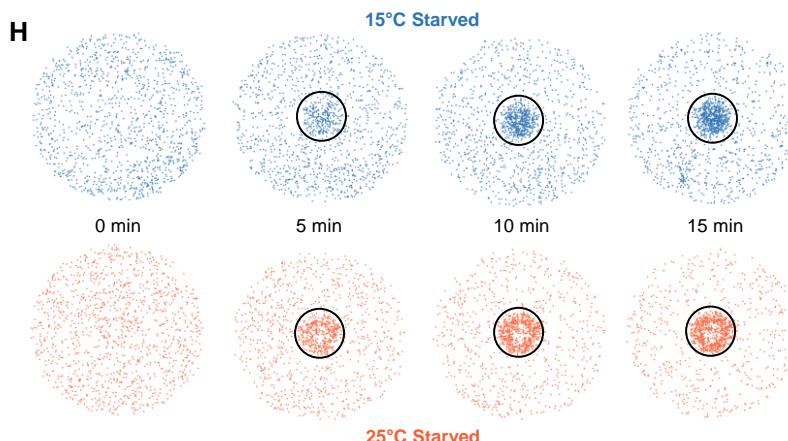
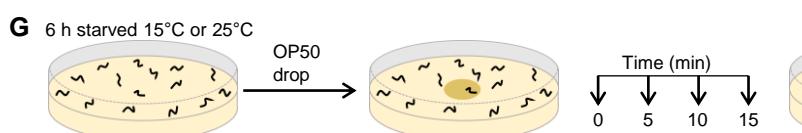
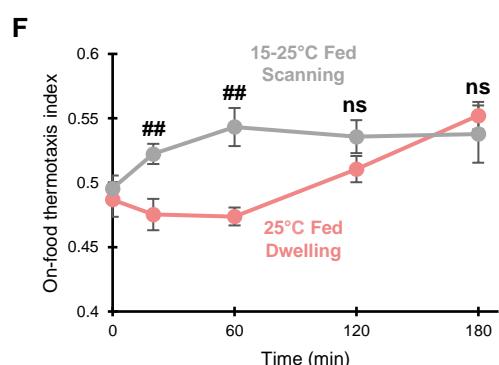
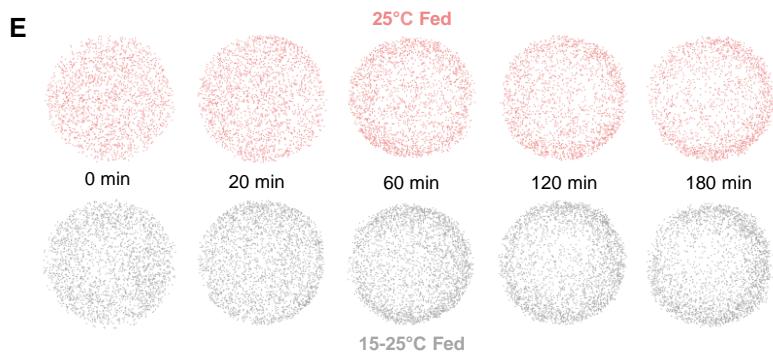
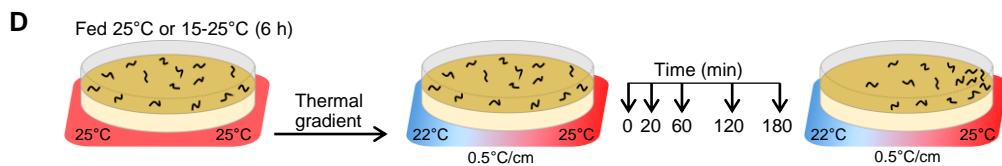
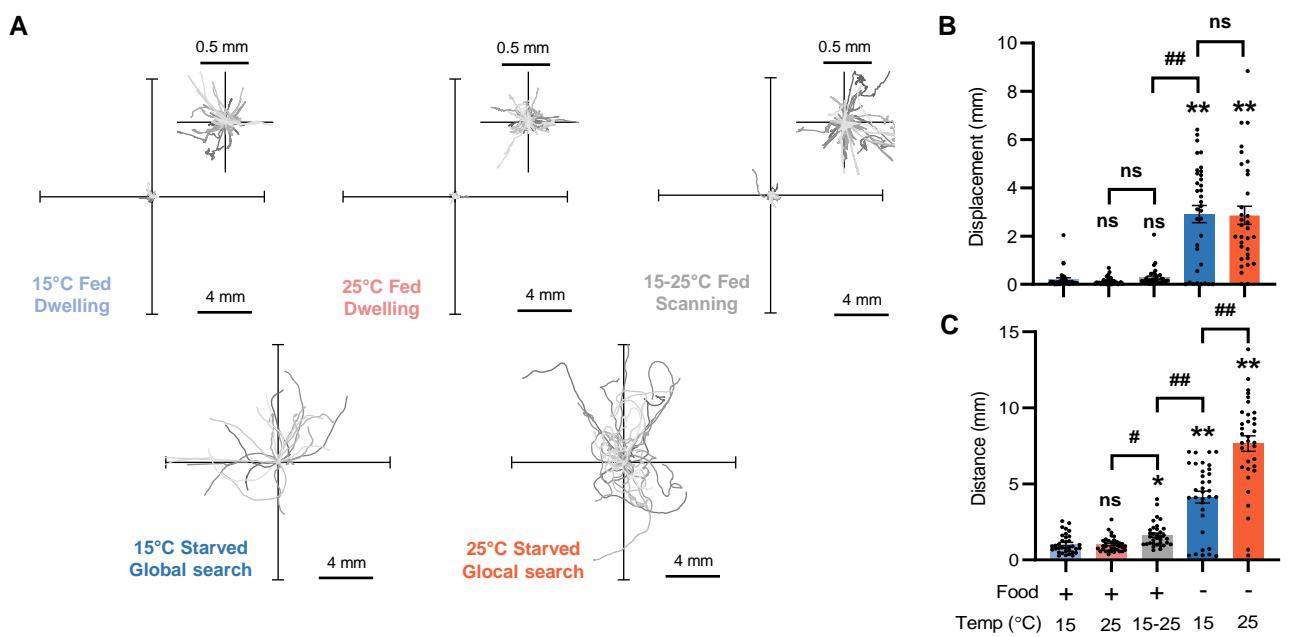
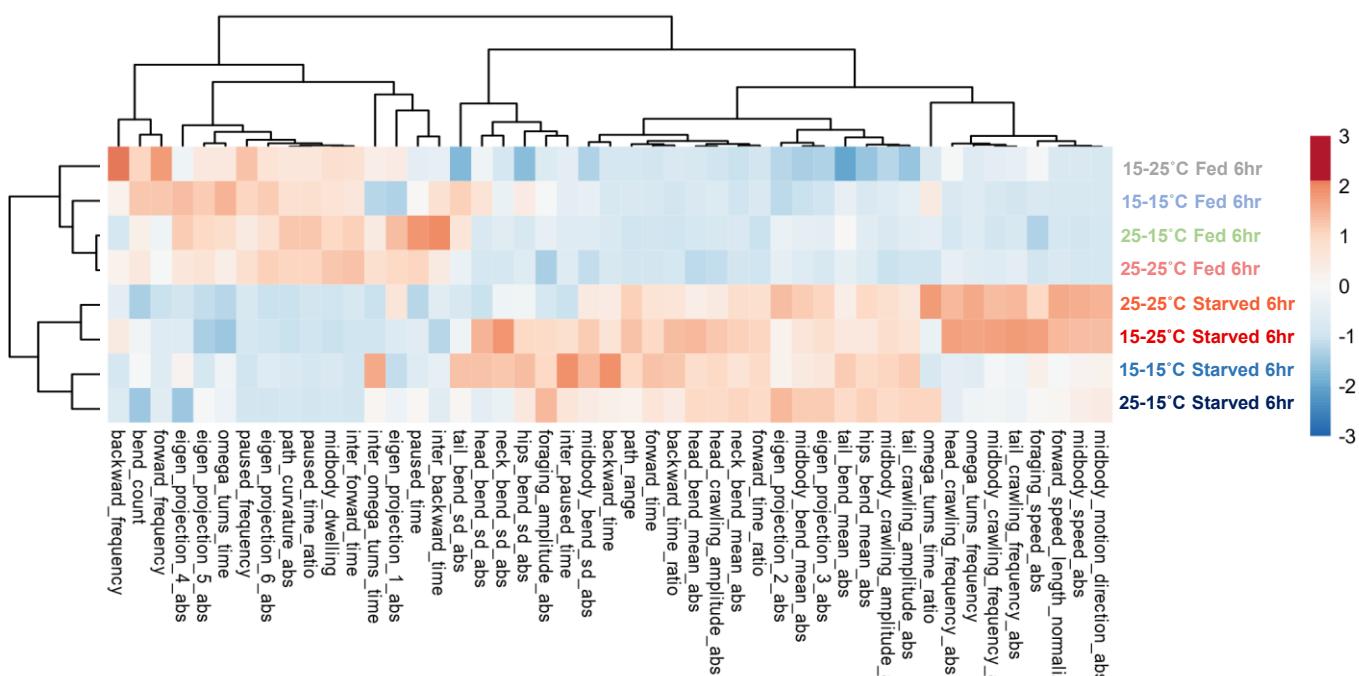
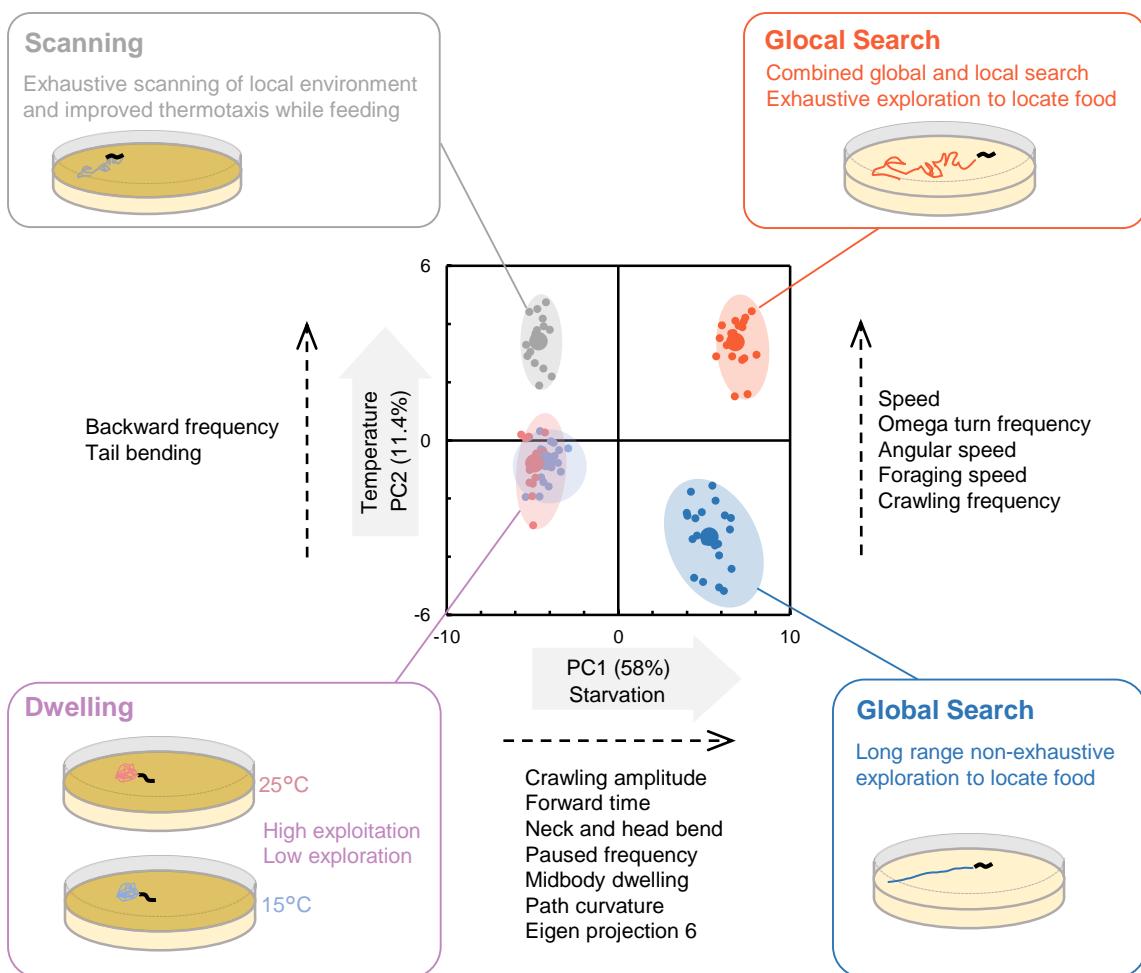










Figure 2

A**B****Figure 3**

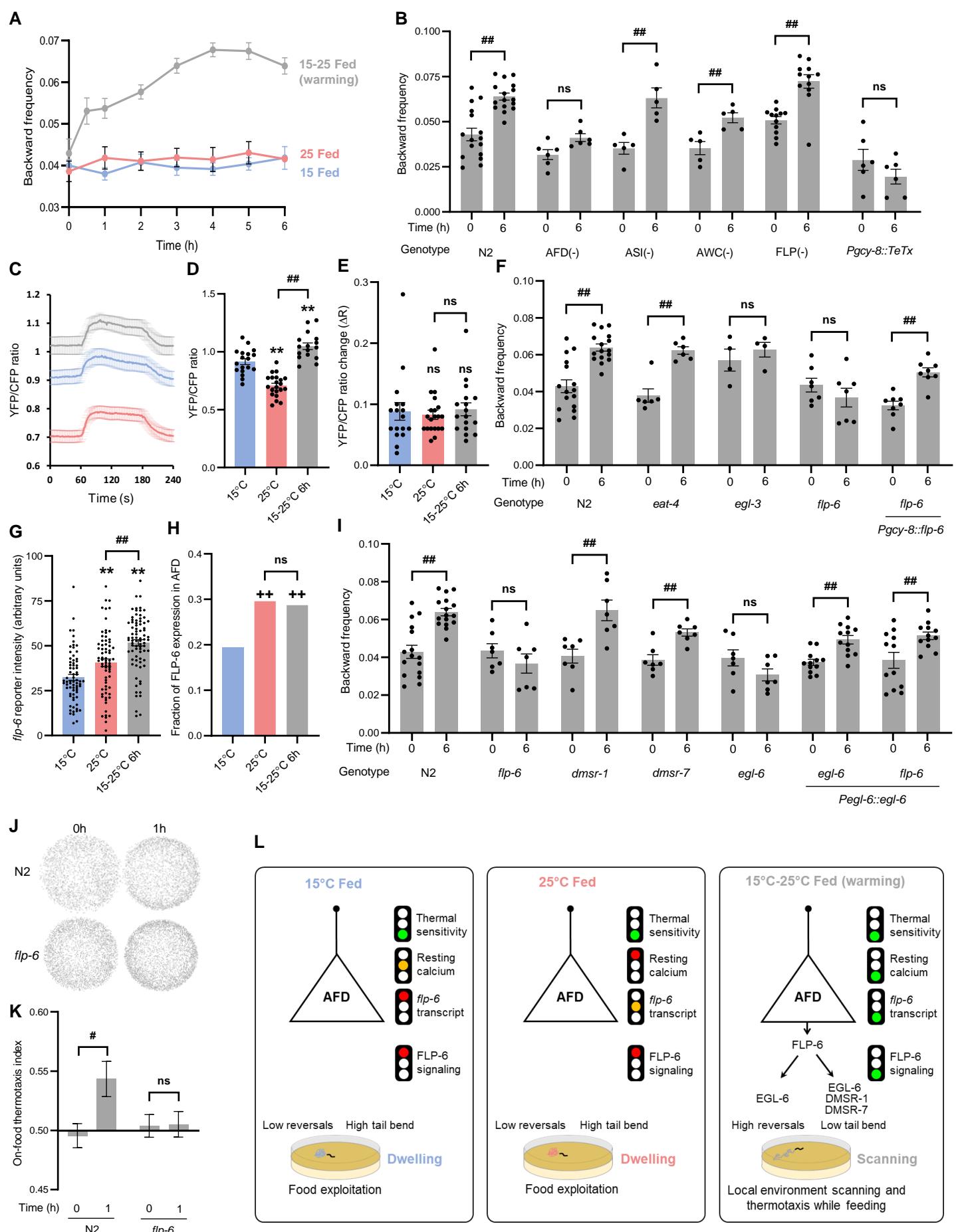


Figure 4

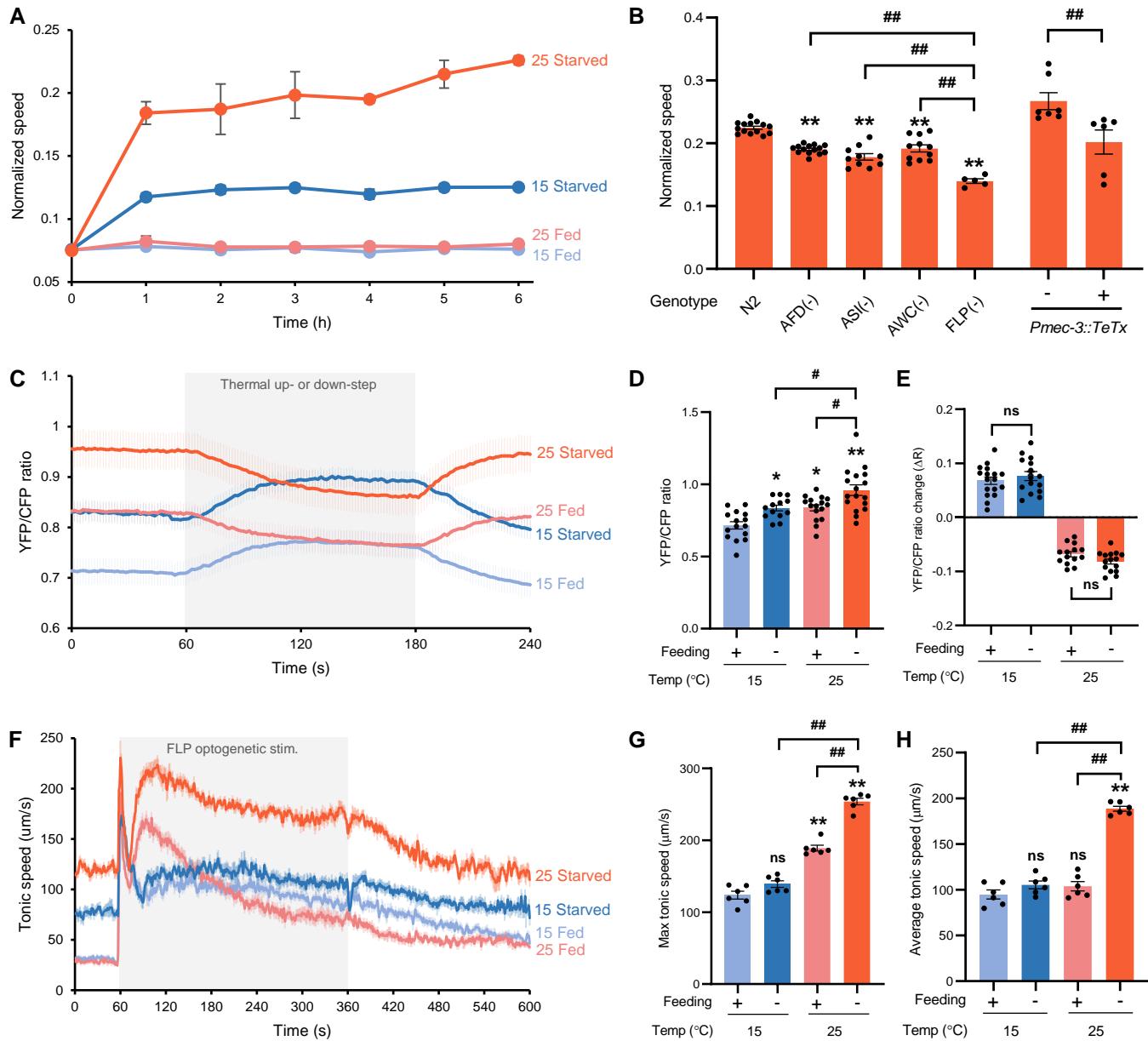
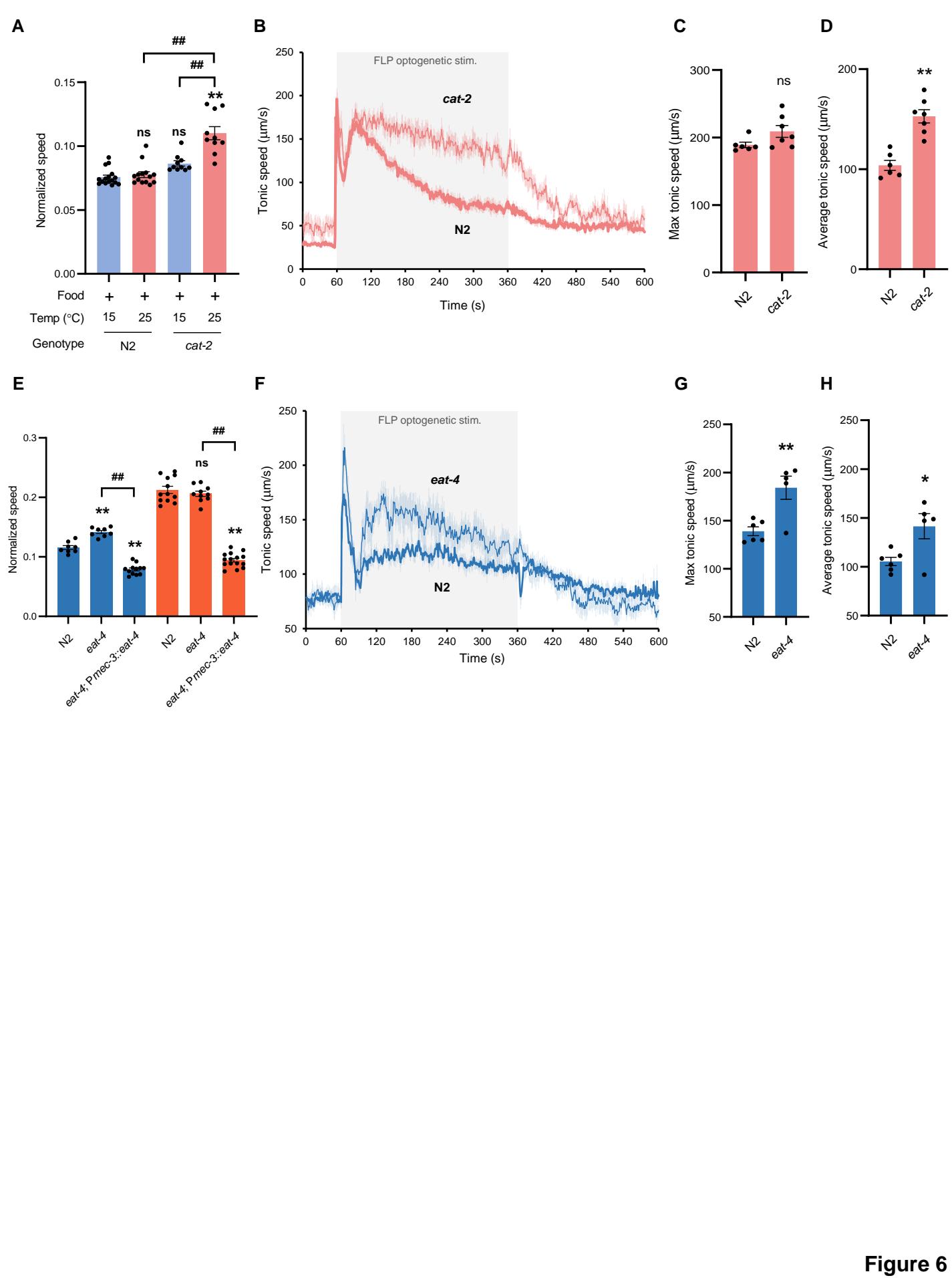
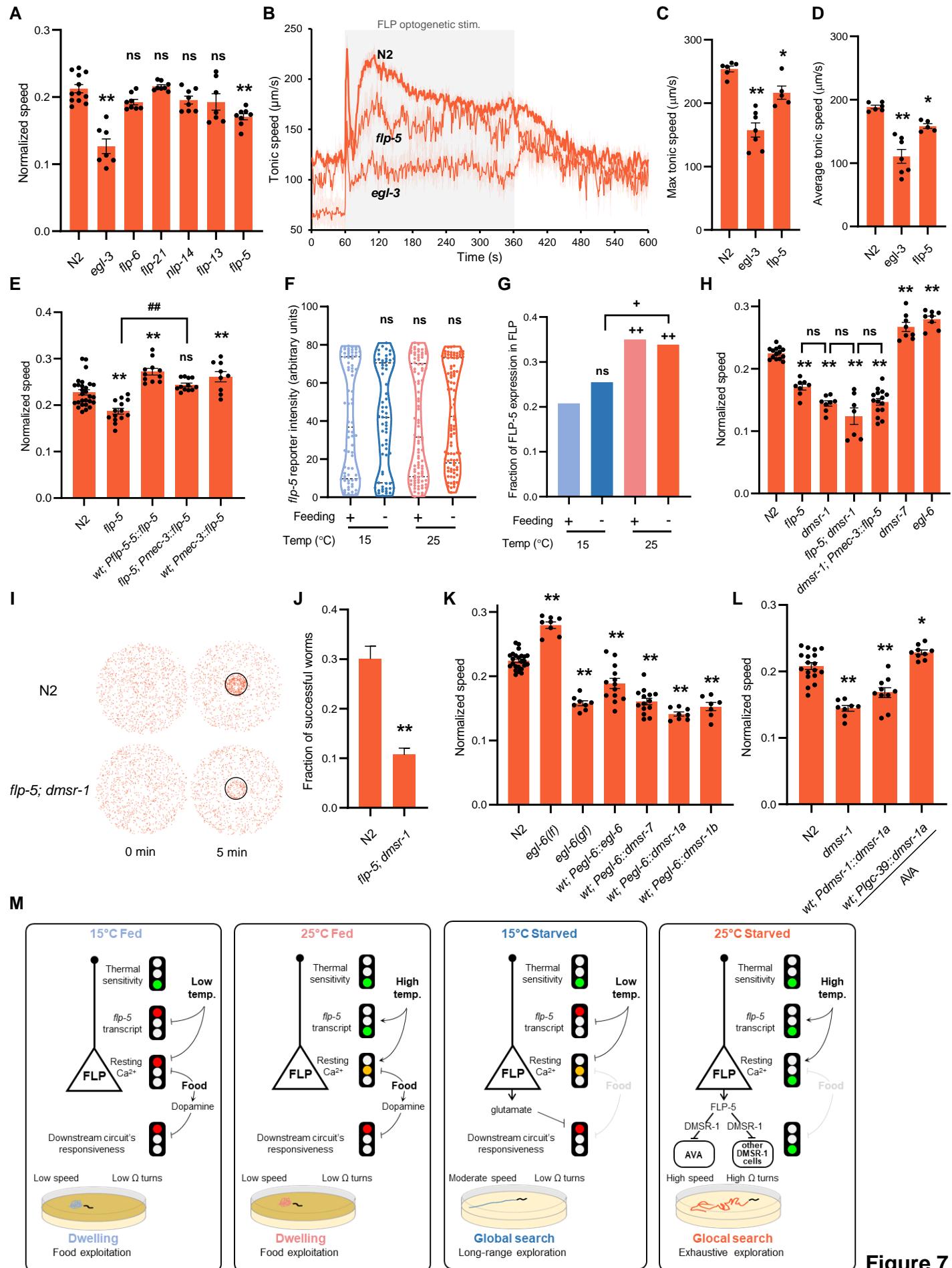




Figure 5

