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Cortical neurons exhibit temporally irregular spiking patterns and heterogeneous firing rates.
These features arise in model circuits operating in a 'fluctuation-driven regime’, in which fluctuations
in membrane potentials emerge from the network dynamics. However, it is still unclear whether the
cortex operates in this regime. We evaluated the fluctuation-driven hypothesis by analyzing spiking
and sub-threshold membrane potentials of neurons in the sensory and frontal cortex recorded during
a decision-making task. Standard fluctuation-driven models account for spiking statistics but fail to
capture the heterogeneity in sub-threshold activity. We address this issue by effectively incorporating
dendritic conductances into the standard models. Our model suggests that the frontal cortex operates
in a fluctuation-driven regime. In contrast, excitatory neurons in layer 4 of the barrel cortex are
not fluctuation-driven; they spike in response to occasional synchronous inputs. Our work reveals
fundamental differences between cortical areas, suggesting that they operate in different dynamical

regimes.

Introduction

The cortex operates in a noisy dynamical regime. Cortical neurons spike at irregular times, with statistics
that can be approximated by a Poisson process [ , ,

]. In addition, neuronal firing rates are highly heterogeneous, with some that fire at
high rates while a large number of neurons that are almost quiescent | ,

, , ]. Ongoing research in system neuroscience
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is directed at understanding this operating regime of cortex [ ], in which spiking

irregularity and rate heterogeneity are ubiquitous.

Sensory input and movement can contribute to irregular spiking and heterogeneous spike rates

[ , ]. However, substantial contribution to the variability and het-

erogeneity likely results from the recurrent network dynamics. Indeed, theoretical studies have shown

that these features can emerge from the non-linear recurrent dynamics of cortical networks, if they oper-

ate in a ‘fluctuation-driven regime’ in which excitatory and inhibitory currents are both large compared
to the rheobase of the neurons but approximately balance each other |

, , , ]. The net input can be sub-threshold, on

average, while action potentials are driven by fluctuations in synaptic inputs | ]

Theoretical studies of the fluctuation-driven regime are foundational to our quantitative un-
derstanding of spiking statistics in the cortex | ,
, , , , ]. However,
it is still debated whether the cortex operates in this regime [ ]. For example,
fluctuation-driven networks can quantitatively account for feature selectivity in the cortex |
, , ] and are consistent with
cortical responses to perturbation experiments in sensory and frontal areas | ,

, ]. On the other hand, similar perturbation experiments in layer 4 neurons
of the barrel cortex are inconsistent with a fluctuation-driven hypothesis | . Fur-
thermore, while some modeling studies suggest that recurrent and external inputs to cortical neurons are
large [ , , ], it has been argued
that feedforward thalamic inputs to the visual cortex are too weak to be approximately balanced by a

strong recurrent inhibition | ]

Classical models of networks that operate in the fluctuation-driven regime, in which synaptic
interactions are mediated by variations in the synaptic conductance, predict that neuronal membrane
potential should hover close to the neuronal threshold | | and, as we will show, with
limited heterogeneity in mean voltage across neurons. In this study, we tested the fluctuation-driven
regime hypothesis by analyzing the supra- and sub-threshold activity of populations of excitatory and
inhibitory neurons in the anterior lateral motor cortex (ALM) and in the vibrissal somatosensory area
(vS1, or barrel cortex) in behaving mice that perform a decision-making task. Does the same mechanism
for explaining spiking statistics in cortex accounts for the variability and heterogeneous sub-threshold

voltage activity?

We show that fluctuation-driven networks can account for spiking statistics in ALM. However,
they fail to reproduce the large level of voltage heterogeneity observed in the data due to the strong
excitatory and inhibitory synaptic inputs that induce a large increase in the neuronal input conductance.
We resolve this discrepancy by introducing a phenomenological network model of ’extended-like’ point

neurons with synapses that mimic dendritic integration, thus including a key aspect of neuronal biophysics
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that is often neglected in models of recurrent neural networks [ ]. This model suggests
that neurons in ALM are fluctuation-driven. This is also the case for the inhibitory neurons in the
barrel cortex. In contrast, our modeling and analysis show that excitatory neurons in layer 4 of the
barrel cortex are not fluctuation-driven. Their mean voltage is far from the threshold and they spike in
response to occasional synchronous input. We therefore suggest that layer 4 neurons in the barrel cortex
are only partially-balanced, meaning that the excitatory neurons are unbalanced and are dominated by
inhibition, while the thalamic excitatory and recurrent inhibitory currents to the inhibitory neurons
are approximately balanced. Our work suggests that during decision making cortical excitatory neurons
closer to the periphery are not balanced and they fire due to strong and correlated external drive, whereas
neurons in other populations hover closer to their thresholds, their currents are approximately balanced,

and they operate in a fluctuation-driven regime.

Results

Spiking and sub-threshold activity in ALM

Mice were engaged in a sensorimotor task: they responded to an instruction cue, presented during a
sample epoch, by licking for a water reward following a second-long delayed epoch (Fig.1, |

]). We analyzed the supra (spiking) and sub-threshold activity (membrane potential) of individual
excitatory and inhibitory cells | , ]. In ALM a large proportion of

recorded neurons exhibited preparatory activity that predicts licking direction [ ].

Consistent with previous recordings in other brain areas and species | ,

], we found that spiking statistics of putative-pyramidal (PYR) and fast-

spiking (F'S) neurons exhibited large temporal irregularities, high trial-to-trial variability, heterogeneous
spike rates and diverse selective responses. Distributions of firing rates of pyramidal neurons were approxi-
mately log-normal (Fig.1B-C). Spiking activity exhibited wide inter-spike-interval (ISI) distributions, with
average coefficient of variations of the ISIs that varied between behavioral states (Fig.1B, CV;sr = 0.9
during sample, and CV;g; = 1.2 during delay; paired Student t-test p < 0.001), but were close to one
(for comparison, neurons that fire regularly have low C'Vigy, while for a Poisson neuron CVigr = 1).
Importantly, the C'V;g; was large for neurons of both low and high spike rates. FS neurons fired, on
average, at higher rates than pyramidal neurons and their rate distribution was also well-approximated
by a log-normal distribution. Similarly, their spiking activity was highly variable, with C'V;g; that was
slightly higher than the CVig of the pyramidal neurons. Neurons in both populations exhibited a high
level of variability across trials (Fig.S5B). This activity was selective to licking direction and was diverse

across the population (] |; Fig.S5B).

We next examined membrane potential measurements from whole-cell recordings of ALM neu-
rons (Fig.1D-G; | , ). The sub-threshold fluctuations of most of the
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Figure 1: Supra- and sub-threshold statistics of ALM pyramidal neurons in mice performing
a delayed-response task. A. Top: behavioral task. Bottom: recording area. B. CV;gr against neuronal
firing rates for putative pyramidal (PYR) and fast-spiking (FS) inhibitory neurons (FS). C. Probability density
function (pdf) of the log-rates is well-approximated by a Gaussian distribution (solid lines). D. Left: Activity
of four example neurons during the first 0.5 second of delay period, together with an illustration of the inter-
spike-interval. Right: Sub-threshold voltage distribution (excluding spikes) of one of the neurons. Solid line:
fit to a Gaussian distribution. Purple line and shaded areas: neuronal threshold (mean+ SD). ov: SD of the
single-neuron fluctuations. E. pdf of mean voltage of the n = 47 recorded ALM neurons. Solid line: fit to a
Gaussian distribution. Purple line and dashed area around it: average threshold across the population and its
SD (—34 £ 3mV) F. Firing rates vs. mean voltage. Crosses: auditory instruction (28 neurons). Circles: tactile
instruction (19 neurons) (see Methods). G. SD of single-neuron voltage fluctuations against the mean voltage.
Red line: linear regression. In all panels the data is analyzed for correct lick-right trials during delay period. In

(B-C) Extracellular recordings (silicon probes). In (D-G) whole-cell recordings.
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recorded neurons were well-approximated by a Gaussian distribution (excluding their spikes, example in
Fig.1D; skewness of distribution was 0.5 +0.44, mean+ SD; Fig.S2; | ). The time-average
voltage across the population was —50mV (range: —64.5mV to —33.5mV’). There was a large level of
heterogeneity around this average value (Fig.1E-G), with only a small fraction of the neurons that were
close to their threshold (threshold was —34 + 3mV’). We quantified this heterogeneity in sub-threshold
statistics by the standard deviation of the time-average voltages across the population, Ay, which was
around 6mV for ALM neurons. For neurons that spiked (n = 35/47 neurons), when compared to their
thresholds, the mean voltage ranged from 6mV to 25mV below threshold (with mean of 13mV and SD
of 4mV).

The level of fluctuations of sub-threshold activity of neurons around their temporal-averaged
value varied across the population (standard deviation of voltage fluctuations, oy, is in the range
1.2 — 4.5mV). Neurons close to threshold exhibited a larger level of voltage fluctuations. The level
of fluctuations and mean voltage were positively correlated across the population (Fig.1G). Finally, the
mean voltage of neurons was selective to licking direction. Similarly to the supra-threshold selectivity,

such selectivity at the level of the average voltage was diverse as well (Fig.S5B-C).

Spiking and sub-threshold activity in vS1

We then analyzed the supra- and sub-threshold activity of neurons in the vibrissal somatosensory area
(vS1) during the sampling period in a similar decision making task (a Go/NoGo task lacking a delay
period, Fig.2A, | ]). We excluded periods of touch, as the activity of neurons in vS1 varied

substantially when a whisker touched an object.

Similar to neurons in ALM, neurons in vS1 fired with high CV;g;. Their firing rate statistics were
well-approximated by a log-normal distribution, and F'S neurons fired at higher rates than the excitatory
neurons (Fig.2B-D, Fig.S1B-D). When considering the sub-threshold activity of the excitatory population
of vS1, we found that their resting state was much more hyperpolarized than the excitatory neurons in
ALM (Fig.2D top, Fig.2E; Student t-test, p < 0.01). Separating the excitatory neurons in vS1 to layer
4 (L4E) and layer 5 (L5E) neurons, we found that L4E neurons were much more hyperpolarized than
ALM and L5E neurons (Fig.2E, Fig.S1E). The distance to threshold of L4E neurons was 21mV + TmV
(for n = 19/37 cells that fired action potentials; threshold was —39mV + 5mV) and 17mV + TmV for
L5E neurons (for n = 29/38 cells that fired action potentials; threshold was —35 + 5mV’). As a result
of their large distance to threshold, L4E neurons spiked at extremely low rates and almost exclusively
as a result of touch (] |; Fig.2B). In contrast to ALM neurons, distributions of voltage
fluctuations of the excitatory neurons in vS1 tended to deviate from a Gaussian distribution (example
of distribution in Fig.2D; average skewness of distribution was 1.0 &+ 0.6 for L4E neurons and 0.9 &+ 0.6
for L5E neurons). Skewness of the distribution and resting potential, especially for L4E neurons, were
anti-correlated (Fig.S2B), with positively skewed voltage distributions of neurons that were farther from
threshold.
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Figure 2: Supra- and sub-threshold statistics of vS1 neurons in mice performing a Go/NoGo task
A. Top: behavioral task. Bottom: recording area. B. C'V;s; against neuronal firing rates for neurons in layer
4. Most of the excitatory neurons were quiescent (only 19/95 neurons that spiked are presented). C. Probability
density function (pdf) of the log-rates. Solid lines: fit to a Gaussian distribution. D. Top: Examples of layer 4
excitatory neurons. Bottom: Fast-spiking neurons. Left: Activity of example neurons during the first half-second
of a whisking episode. Right: Sub-threshold voltage distribution of one of the neurons. Solid line: fit to a Gaussian
distribution. E. Left: Probability density function (pdf) of time-average voltage for all recorded neurons. Solid
lines: fit to a Gaussian distribution. Right: SD of (single neuron) voltage fluctuations for all recorded neurons.
F. Firing rates vs. mean voltage for the excitatory neurons. G. SD of (single neuron) voltage fluctuations against
the mean voltage. Top: layer 4 excitatory neurons. Bottom: Fast-spiking neurons in layer 4 and Layer 5. Red
line: linear regression. In (B-C) Extracellular and intracellular recordings. In (D-G) whole-cell recordings. In

(B-C,E-G) analysis during non-whisking periods.
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Besides the differences in the resting state, sub-threshold activity of excitatory neurons in ALM
and vS1 also shared common features. First, as with ALM neurons, there was a large level of heterogeneity
in the mean voltage of the neurons (large Ay ), with some neurons much closer to their threshold than
others. Second, we found that both in ALM and vS1 the level of fluctuations was quite similar (Fig.2E,
Student t-test, p > 0.05) and their voltage SDs and means were positively correlated across the population
(Fig.2G-top, Fig.S1G).

In vS1 we were also able to record the sub-threshold activity of 13 FS neurons (combining
eight layer 4 and five layer 5 FS neurons). We compared their activity to the sub-threshold activity of
excitatory neurons in vS1. FS neurons were more depolarized than the excitatory neurons, and their
voltage fluctuations were larger, which contributed to their higher spike rate. When compared with ALM
neurons, we found that the mean voltages of FS neurons in vS1 were not significantly different than the
mean voltages of pyramidal neurons in ALM (Fig.2E-left, distance to threshold: 12mV + 5mV, Student
t-test, p > 0.05, threshold —37mV £ 4 mV) and the distribution of their voltage fluctuations were also
well-fitted by a Gaussian distribution (skewness of 0.3 £ 0.3). However, F'S neurons exhibited a larger
level of voltage fluctuations (Fig.2E-right) than ALM. Finally, in contrast to the excitatory populations,

FS neurons exhibited negative correlations between their SDs and mean voltages (Fig.2G-bottom).

Spiking network models that operate in a fluctuation-driven regime are incon-

sistent with the sub-threshold statistics of cortical neurons

We next asked if network models that operate in the fluctuation-driven regime could account for the
spiking as well as the sub-threshold activity of neurons in the data. To answer this question, we considered
a network consisting of excitatory and inhibitory integrate-and-fire neurons, where cells were randomly
and sparsely connected to each other (Fig.3). The post-synaptic neuronal voltage, V(t), evolved in time
and changed in response to synaptic currents. These currents were modeled as Iy, (t) = —gs(t)(V(t)—E),
with E being the synaptic reversal potential, g was the change in synaptic conductance induced by a
pre-synaptic spike, and s(t) was a filtered version of the pre-synaptic spikes (see Methods for a complete
description of the model). These type of network models are known in the literature as conductance-based

networks because variations in synaptic inputs lead to changes in the conductance of the neuron |

) ) i }'

The distributions of firing rates for both excitatory and inhibitory populations were well ap-
proximated by a log-normal distribution (Fig.3B-C; | , ). We chose
the synaptic parameters such that the distributions of neuronal firing rates in the populations fit well
the spiking data of ALM neurons. In particular, the firing rate of the inhibitory population was larger
than the excitatory one. With these parameters, the size of the excitatory and inhibitory post-synaptic
potentials were within the physiological range (Fig.3A). Neurons in both populations fired irregularly
and with CVigr = 1, as shown in the data. It was slightly higher for the inhibitory neurons than the
excitatory one. This variability was self-generated by the network. The fact that the C'V;g; was large
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Figure 3: A network of one-compartment integrate-and-fire neurons is consistent with irregular
spiking statistics in ALM but fails to reproduce sub-threshold voltage statistics A. Left: Diagram of
the recurrent neural network. Synapses in the network are mediated by variations in the synaptic conductances.
Right: excitatory and inhibitory post-synaptic potentials in the network. Cyan: Inh-to-Exc connection. Blue:
Exc-to-Exc. Red: Exc-to-Inh. Orange: Inh-to-Inh. B. CV;gr vs. firing rate for excitatory (blue) and inhibitory
(orange) neurons in the network. C. Distributions of firing rates in the network. D. Left: Activity of four example
neurons. Right: Sub-threshold voltage distribution (excluding spikes) of one of the neurons. Solid line: fit to a
Gaussian distribution. Purple line: neuronal threshold. E. Distribution of time-average voltage, plotted as the
distance to threshold (purple line) of all neurons in a network with an average of 1200 (blue) and 4800 (cyan)
pre-synaptic inputs per neuron (total synaptic connections: K; + 2Kg; Methods). Threshold in simulations was
at —40mV. ALM data from Figure Fig.1E is re-plotted here as the distance to neuronal threshold for comparison.
F. Firing rate vs. mean voltage for all neurons in the network of a total 1200 pre-synaptic inputs. G. Voltage
heterogeneity vs. number of average pre-synaptic inputs. Crosses: network simulations. Diamonds: predictions
using of a passive neuron (first term in Eq.(1)). Circles: predictions using an integrate-and-fire neuron, including

threshold (full expression in Eq.(1)). g
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for both neurons that fired at low and high rates is a hallmark of the fluctuation-driven regime, where

fluctuations are driving the spikes | ]

We next investigated the sub-threshold statistics of the simulated neurons. In contrast to the
spiking statistics of neurons in the network, we found that the network model failed to reproduce the
sub-threshold statistics of ALM neurons. Specifically, the time-average voltage of all neurons in the model
was close to their threshold, with very small standard deviation (SD) around the average value (Fig.3D-E;
mean voltage of —45mV with threshold at —40mV and SD of Ay = 1mV). Similarly, the amplitude
of the temporal voltage fluctuations across the population was narrowly distributed (o ~ 2mV for all
neurons). This is in contrast to the large heterogeneity in mean voltages and SDs across the ALM neurons
(Fig.3E-F, Fig.1E,G).

How is it that firing rates in the simulated networks were so heterogeneous while the time-
average voltage distribution was so narrow? We found that this effect was a direct outcome of the
high-conductance regime in which the network operated. Indeed, opening of a synaptic channel increases
the effective conductance— the ‘leak’; of the neuron. Due to a large number of open synaptic channels, the
neuron becomes very leaky and its time-average voltage is clamped to an effective reversal. This effective
reversal depends on the time-average conductances and reversal potentials of its excitatory and inhibitory
synapses. Moreover, with voltage fluctuations of ~ 2mV, this time-average voltage must be very close
to threshold in order for the neuron to fire. The fact that the firing rates are highly heterogeneous is
remarkable, and it results from the large gain of the firing-voltage curve in these models ([

], Fig.3F).

To make this argument quantitative, we studied analytically the heterogeneity in the sub-
threshold activity of one-compartment leaky integrate-and-fire neurons. We used a mean-field theory
to determine the response of a population of non-interacting neurons to inputs from populations of ex-
citatory and inhibitory neurons ([ , ], Methods and Supplementary
materials). Pre-synaptic inputs were modeled as Poisson processes, with heterogeneous rate distribution
(e.g., log-normal distribution). We determined the distribution of the voltage of the non-interacting neu-
rons as a function of the number, strength and rate distribution of their pre-synaptic inputs. Using this

approach, the time-average voltage of a post-synaptic neuron, V;, is (see Methods):

Vi = Vpas,i — TpasiViV— (1)
with v; being the firing rate of the ¢’th neuron and V_ = V}j, — V,. is the difference between the threshold
(Vi) and the resetting voltage (V). The level of sub-threshold heterogeneity is thus a result of two
terms; the first term in Eq.(1), Vpgsii, is a result of bombarding a passive neuron with a large number of
synapses that ‘shunts’ the soma and clamps the neurons to the same resting state. In large networks it is
not very different across neurons (Methods). The second term of Eq.(1) depends on the neuronal firing
rate, which varies considerably across neurons in the network. Each spike results in resetting the voltage
from the neuronal threshold to its reset value, contributing to the voltage a factor of 7pes;V_, With Tpes i

being the neuronal effective timescale. This timescale depends on the network state and it is small when
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the number of pre-synaptic inputs to the neuron is large (see Methods). Taken together, the distribution
of mean voltages across the population in such networks is expected to be very narrow. It vanishes with

increasing number of synaptic inputs (Figure 3E,G).

To conclude, classic network models that operate in the fluctuation-driven regime were consistent
with spiking statistics in the cortex, but fundamentally failed to account for heterogeneity in sub-threshold
statistics. The low level of voltage heterogeneity across neurons was an inevitable result of the high-
conductance regime in which the network operated that clamped the voltage of all the neurons to more

or less the same effective reversal.

A phenomenological point neuron model that mimics an effective dendritic

morphology

In the previous section we considered a recurrent network consisting of neurons modeled as single-
compartment elements (point neurons) | ) , ]
Because of this simplification, all activated synapses contributed the same amount of change to the neu-
ronal conductance. When many synapses were active at the same time, all neurons in the network were
clamped to more or less the same value of membrane potential. However, in reality, neurons exhibit ex-
tended spatial structures and the effect of synaptic inputs on somatic membrane conductance depends on
, ]. We hypothesized that

the shunting effect that led to the narrow voltage distribution in our networks would be less pronounced

their proximity to the soma | )

if the neuronal model took into account the neuronal morphology.

Most of the putative pyramidal cells we recorded in ALM were layer 5 neurons. Thus, to test

our hypothesis, we first simulated a reconstructed layer 5 pyramidal neuron | ,
| (Fig.4A-B), in which the spiking activities of its pre-synaptic neurons were Poisson. For each
pre-synaptic excitatory (inhibitory) neuron we sampled its spike rate from the log-normal distribution of
ALM pyramidal (fast-spiking) neurons (see Fig.1B,C). We repeated this process 5000 times, each time
sampling a set of pre-synaptic neurons with different spike rates from the log-normal rate distribution,
and used it to calculate the distribution of mean voltages over the population of 5000 neurons. When
localizing all synapses on the soma (Fig.4A) we found that, similarly to what happens in a network of
point neurons, the distribution of mean voltages across the 5000 realizations of the pyramidal neuron
was extremely narrow (Fig.4C). Voltage fluctuations (o), as well as voltage heterogeneity (Ay) both
decreased with increasing number of synaptic inputs (gray lines in Fig.4D). However, when distributing
the same number of synapses on the dendritic tree (Fig.4B), we observed that the width of the time-
averaged voltage distribution increased significantly (Fig.4C). Both the voltage heterogeneity and the
size of the fluctuations weakly depended on the number of synaptic inputs (black lines Fig.4D). These
results suggest that voltage heterogeneity can be significant in large model networks that operate in a

fluctuation-driven regime, provided that one takes into account the neuronal morphology.
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Encouraged by the single neuron simulations, we introduced a phenomenological network model
of ‘extended-like’ point neurons that incorporated the effect of distributing synapses on the dendrites
(Methods). It is known that changes in the neuronal conductance and currents, as measured at the
soma, depend on the proximity of the synapse to the soma ([ , ,

, ], Fig.S7). We thus assumed that pre-synaptic action potentials affected the

single neuron dynamics in two ways. The first was by changing the current arriving to the soma:
Lsoma(t) = gas(t)(Vi — E) (2)

where, as before, s(t) was a filtered version of the pre-synaptic spikes due to the synaptic time constant, V;
was the reversal potential of the leak current, g the synaptic strength and « was the attenuation parameter
that modeled the decay in current change with the distance to the soma. The second contribution was

an effective change in the neuronal conductance:

9soma (t) =01+ grs(t) (3)

with the leak conductance g;. The wisibility parameter, I', captured the change in somatic conductance
as a result of opening of the synapse on the dendrite | |. Thus, in this extended-like
neuronal model all synapses were placed on a somatic compartment, but it effectively accounted for their
location on the dendrites by changing their visibility and attenuation parameters. The case in which
I' = 1 corresponds to a pure ‘conductance-based model’ of a synapse, while if I' = 0 the activation of a
synapse induces a change in somatic currents but not in the neuron input conductance (‘current-based
model’) [ , ]

We thus expect that as I" decreases the clamp of the voltage membrane potential to the effective
voltage becomes looser. As a consequence, the time-average membrane potential becomes more hetero-
geneous across neurons. To show this, we investigated networks of spiking extended-like neurons and
analyzed the effect of changing the visibility parameter (Fig.S3). For simplicity, we assumed the same
values of the visibility and attenuation parameters for all the neurons. Simulating networks with different
levels of T', while maintaining the average firing rates of the excitatory and inhibitory populations, we

found that for smaller visibility parameter the mean-voltage distribution was wider (Fig.S3B-C).

We next estimated the parameters «,I' for each synapse by directly measuring the change
in somatic conductance and currents upon activating a synapse on a dendrite in a multi-compartment
neuronal model, and comparing it to the same variations in the phenomenological point model (Fig.4E-F,
Fig.S6-7). This procedure is explained in detail in Methods and is illustrated in Fig.4E and Fig.S6A.
We found that the average value of the visibility parameter, as estimated from the layer 5 pyramidal
neuronal model, was in the range of values that could account for the large C'V;g; and heterogeneous
mean voltages we observed in ALM (Fig.S3D-F; Fig.54).

Further investigation of the distributions of «, I' showed that they depended on the morphology
of the cells. For example, the estimated values of a and I' for inhibitory Basket cells, which are electron-

ically more compact than pyramidal neurons, were larger with respect to the estimated parameters in a
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Figure 4: Sub-threshold heterogeneity and the effect of distribution of synaptic inputs in a multi-
compartment model of layer 5 pyramidal neuron. A. Simulations of a layer 5 pyramidal neuron with all
AMPA (blue) and GABAA (orange) synapses located on the soma. Pre-synaptic Poisson neurons are simulated
with firing rates sampled from the log-normal rate distribution of the pyramidal (blue) and fast-spiking (orange)
ALM neurons. 75% excitatory and 25% inhibitory pre-synaptic neurons are simulated for each cell. B. Same as
(A) but when synapses are uniformly distributed along the dendritic tree. C. pdf of mean voltage, estimated from
simulations of 1000 realizations of neurons with ~ 2000 excitatory and inhibitory pre-synaptic neurons in total,
for each neuron. Solid line: fit to a Gaussian distribution. D. Top: Voltage heterogeneity against the number
of synaptic connections. Bottom: SD of single neuron fluctuations against the number of synaptic connections.
Gray: all synapses are on the soma. Black: synapses are distributed on the dendritic tree. Synaptic conductance
in C-D was 1nS. E. Modeling a network of point neurons that incorporate the location of the synapse along the
dendritic tree (see main text, Methods and Fig.S6 for details). (i) Measuring the current and conductance changes
at the soma of a simulated layer 5 pyramidal neuron, when activating a synapse on a dendrite. For each synapse
we extract the attenuation (a) and visibility (I') parameters. (ii) An extended-like point neuron. The thicker
the synapse is the larger its «, while the visibility parameter is color coded. (iii) The empirical distribution of
{a,T'}, estimated for each cell type, is then used to simulate a network model of spiking neurons that interact
through Eq.(12). F. Top: Attenuation vs. the distance of the synapse from soma for the cell in (E). Red line: fit
to an exponential decay. Bottom: Same as top, but for the visibility parameter. Note that the decay rate of the
visibility is around twice the decay rate of the attenuation parameter.
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simulated pyramidal neuron (Fig.4F and Fig.S6D). Importantly, while indeed the visibility and attenua-
tion parameters decayed with the distance of the synapse from the soma, the visibility was always lower
than the attenuation (Fig.S6D-E, Fig.4F, Fig.S7C). As a result, while synapses that were sufficiently far
from the soma did not contribute much to the shunting of the soma, they still affected the total somatic
current (see Methods) and were thus contributing to sub-threshold voltage heterogeneity. This effect can
be understood through the passive cable theory. For example, in an infinite cylinder both the visibility
and the attenuation parameters decay exponentially with the distance to the soma, but the former decays
twice as fast than the latter (Fig.S7C). Intuitively, this is because a current that is injected at the soma

(to measure the conductance change) must propagate to the synapse and then back to the soma |

!

Networks of extended-like neurons that operate in a fluctuation-driven regime

can account for the supra- and sub-threshold statistics of ALM neurons

Equipped with the estimated distributions of «, I' for a layer 5 pyramidal neuron and for a basket cell, we
next simulated a network model of point neurons that interacted through the effective synapses (Eq.(2)-(3)
and Eq.(12)). The attenuation and visibility parameters were randomly selected from the joint distri-
bution, P(«a,T), which we estimated using the multi-compartmental models (Fig.4F, Fig.S6D). Similarly
to networks that neglected the neuronal morphology (Fig.3), the spiking statistics of the extended-like
neurons resembled ALM activity (Fig.5B-C). However, in these models, in contrast, the sub-threshold
voltage distribution was wider (Fig.5D and compare Fig.5] and Fig.3E) and resembled the sub-threshold
voltage statistics of ALM neurons (Fig.1E).

Specifically, neurons were no longer clamped to an effective reversal and a distribution of time-
average voltage in the network was observed. Furthermore, similarly to pyramidal neurons in ALM, the
mean voltage and SDs across the excitatory population in the network were positively correlated (compare
blue circles in Fig.5E with Fig.1G). This was in contrast to the inhibitory neurons that exhibited a higher
level of voltage fluctuations, which were slightly negatively correlated with their mean voltage. In fact,

their activity was similar to the fast-spiking putative inhibitory neurons in vS1 (Fig.2G).

This difference in correlations of mean voltage and SDs for excitatory and inhibitory neurons
can be understood through a threshold effect. In particular, we derived the sub-threshold statistics for
the limiting case of purely current-based models (I' = 0) and found that these correlations originated
from a non-linear effect that depended on the level of fluctuations in the inputs to the neurons (see
Methods). The correlations were positive in a low current noise regime, and negative for larger noise levels
(Fig.5J). Interestingly, due to the strong recurrent inhibition in the network, the current fluctuations to
an inhibitory neuron in our simulations were larger than the fluctuations to an excitatory neuron. As a
result, we observed a positive correlation for the excitatory population, but a negative or small correlation

for the inhibitory population (Fig.5E).
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Finally, by introducing a structured recurrent motif to the unstructured recurrent connectivity
that supported bistability in the network (see | | and [ |, Supple-
mentary materials), the network was also able to generate selective responses to licking direction during
a delay period, without relying on external stimuli (Fig.S5D). Due to the combination of randomness and
structure in the connectivity, neurons in the network model, as in the data, also exhibited heterogeneous

selective responses in both their supra- and sub-threshold responses (Fig.S5E-F).
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Figure 5: Supra- and sub-threshold statistics of neurons in networks of extended-like point neurons
are consistent with the data. A. Diagram of an ALM network model with attenuation and visibility parameters
estimated from multi-compartment models of layer 5 pyramidal (blue) and Basket (orange) cells. B. CVigr vs.
firing rate in the network for excitatory (blue) and inhibitory (orange) neurons. C. Distribution of the log-rates
in the network is well-approximated by a Gaussian distribution (solid lines). D. Left: Activity of four example
neurons. Right: Sub-threshold voltage distribution (excluding spikes) of one of the neurons. Solid line: fit to a
Gaussian distribution. Purple line: neuronal threshold. E. Voltage SD against mean voltage across the population
for excitatory (blue) and inhibitory (orange) neurons. Red: linear fit with a slope (c; mean-SD correlation) and
goodness-of-fit (R?). F-H. Same as (A) and (D-E), but for a layer 4 vS1 network. The difference with the
network in (A) is in the weak external drive to the excitatory population, which lead to an unbalanced excitatory
population. Excitatory neurons fired as a result of short 10ms synchronous external drive to all neurons (cyan in
G). Note that the excitatory neurons in the model fire only as a result of the synchronous drive. I. Probability
density function (pdf) of time-average voltage for the neurons in the networks. J. Left: Theoretical predication
for the correlation between SD and mean voltage across the population in the case of current-based (Eq. (12),
I' = 0) integrate-and-fire neurons, plotted against the voltage SD (Eq.(21)-(22)). Right: Same as left, but for
simulations of extended-like networks, as in (A-E). Each point corresponds to a network simulation with network

parameters that keep the rate constant, but varies the voltage SD of the neurons.

Differences in external drive can explain variations in average membrane po-

tentials of excitatory neurons in ALM and of vS1

We showed that a network model consisting of extended-like point neurons could explain the supra and
sub-threshold statistics of ALM neurons. Layer 4 excitatory neurons in vS1, on the other hand, were
much more hyperpolarized than ALM neurons. We next investigated the reason for these differences in

the resting state of neurons in the two populations.

A majority of the recorded excitatory cells in ALM were layer 5 neurons that are mostly pyra-
midal, while in layer 4 of vS1 these are spiny satellite cells. Therefore, variations in the distance of the
neurons from their threshold in vS1 and ALM could potentially result from morphological differences be-
tween these two populations. However, although their morphology differs significantly (Fig.4A, Fig.S6C),
we found that the estimated average visibility parameter for spiny stellate neurons and pyramidal neurons
was not dramatically different (average visibility of 0.26 and 0.23 for spiny stellate and layer 5 pyramidal
neurons, respectively). Indeed, the statistics of sub-threshold activity was not very different than the
statistics in the ALM network when we simulated the same network of Fig.5A, but with the estimated

parameters for spiny stellate cells from Fig.S6C-D instead of layer 5 pyramidal cells (Fig.S8).

Instead, we hypothesized that the two excitatory populations operated in different dynamical
regimes that originated from variations in their network connectivity. Specifically, we conjectured that
while ALM operated in a fluctuation-driven regime, in which both excitatory and inhibitory sub-networks
were balanced, layer 4 of the barrel cortex was only partially-balanced. In this regime, the external

excitatory currents and the recurrent inhibition into the inhibitory population are balancing each other,
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but those for the excitatory population are not.

In the case of two populations (with I' = 0), reducing the external drive to the excitatory popu-
lation below a certain value leads to a quiescent excitatory population while maintaining the excitatory-
inhibitory balance for the inhibitory population (Methods, | ). We
therefore simulated a network with similar parameters as the ALM network in Fig.5A-C, but reduced
the external drive to the excitatory population (Fig.5F, Methods). As a result, excitatory neurons in
the model were hyperpolarized and unbalanced due to a weak external drive to the excitatory neurons
in the model. Their mean voltage was about 20mV below their threshold (Fig.5G,I) and, similarly to
the data, their voltage mean and SDs were positively correlated (here, in contrast to ALM network, the
positive mean-SD correlations were due to the reversal potential of the inhibitory synapses and not the
neuronal threshold). As a result, excitatory neurons in the network did not fire unless they received
an additional synchronous external input (Fig.5G). Interestingly, the sub-threshold fluctuations of the
simulated neurons were well-approximated by a Gaussian distribution, and were positively skewed as in

the data only when a synchronous external drive was added (Fig.S9A-B).

Finally, while the excitatory population were quiescent, the recurrent inhibition and the external
feedforward excitation to the inhibitory population in the model were still approximately balanced; in-
hibitory neurons fired at a few Hertz, with an average voltage of —50mV (around 10mV below threshold;
Fig.5G,I). Thus, with this architecture, the supra- and sub-threshold activity of neurons in the network
were consistent with the activity of neurons in layer 4 network of vS1 (compare Fig.5B-C with Fig.2E H-
I). This result suggested that, similar to the pyramidal neurons of ALM, uncorrelated spiking activity
within layer 4 of vS1 was sufficient to drive the inhibitory neurons to fire. This was not the case for layer

4 excitatory neurons in vS1, which fired due to strong synchronous drive.

Discussion

Spiking activity in the cortex is irregular and heterogeneous across neurons. Intrinsic recurrent network

dynamics can account for these features by hypothesizing that excitatory and inhibitory inputs to a

neuron are strong but they approximately balanced | ,

, ]. The net input current and its fluctuations are then of the same

order. As a result, in this fluctuation-driven regime, fluctuations in synaptic inputs can drive neurons to
fire action potentials irregularly with spike rates that vary across neurons |

, , ]. Does the ‘balance hypothesis’ also explain

the voltage statistics of the neurons?

We investigated this question by focusing on the anterior lateral motor cortex (ALM), as well as
on the vibrissal somatosensory area (vS1). Combining modeling and analysis of intracellular recordings
in mice performing decision-making tasks, we found that in ALM the balance hypothesis can explain

not only the spiking statistics but also the voltage statistics, provided that one takes into account the
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morphology of cortical neurons. In contrast, our work suggests that in layer 4 of vS1 the inputs to the

excitatory neurons are not balanced, while the fast-spiking inhibitory neurons are.

Comparison between ALM, vS1 and fluctuation-driven networks

Consistent with previous studies | , , 1,
and in line with previous modeling works [ ,

, ], neurons in all our data sets exhibited Poisson-like, temporally irregular
spike patterns, with a rate distribution that was well-approximated by a log-normal distribution. As ex-
pected, network models in which neurons received a relatively large number of pre-synaptic excitatory
and inhibitory inputs that were located on the neuronal somatic compartment and balanced each other,
could account for the super-threshold spiking statistics of the recorded cortical neurons. These models
failed, however, in explaining the large sub-threshold voltage heterogeneity. This was because excitatory
and inhibitory inputs induced a large increase in the neuron input conductance; this led the voltage of
neurons in the model to fluctuate around an effective reversal potential close to threshold. The value
of these reversal potentials was nearly equal for all the neurons. This was in contrast to our analysis
of intracellular recordings. Alternatively, in real neurons, synapses are distributed along the dendritic
tree. As we showed, synapses that are farther from the soma lead to current flow into the soma without
a large increase in the neuronal conductance (Fig.4F, Fig.S7C). Therefore, incorporating an effective
morphology of cells into the network allowed to capture the heterogeneity in the means and standard
deviations of the membrane potentials across neurons in the network, as well as the correlations between
them (Fig.5E,H,J).

Average membrane potentials of ALM excitatory neurons and vS1 fast-spiking (F'S) inhibitory
neurons were typically around 10 — 12mV below their threshold, which together with their fluctuations
and their rate distribution was consistent with the hypothesis that the excitatory and inhibitory inputs
to these populations were approximately balanced. Similar to the ALM network, the mean voltages of
excitatory neurons in vS1 was also heterogeneous, and their sub-threshold fluctuations were comparable
to those in ALM neurons (average SD of 2 —3mV’). However, excitatory neurons in vS1 were much more

hyperpolarized compared to ALM neurons.

In fact, excitatory neurons in layer 4 vS1 network (L4E) were so far from their threshold that
they barely spiked. This suggested that their excitatory inputs were not strong enough to balance their
inhibitory inputs. On the other hand, we found that the distribution of mean voltages of the F'S neurons
in vS1 was very similar to the one of excitatory neurons in ALM. We thus posit that in the inhibitory
population in layer 4 vS1 network the feedforward excitation was approximately balanced by the mutual

inhibition.

We have shown in our simulations that a spiking neuronal network can operate in such a partially-

balanced regime if the ratio between the feedforward drive to the excitatory and inhibitory populations was
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too small with respect to the recurrent interactions ( | ,
| and Methods). We thus posit that the thalamic excitation to inhibitory neurons
was significantly stronger than for excitatory neurons. This hypothesis is consistent with experimental

results on the thalamic input to layer 4 neurons in vS1 cortex [ ,

; I

Finally, in contrast to L4E neurons, layer 5 excitatory neurons in vS1 (L5E) spiked at similar
rates as ALM neurons (a majority of which were also layer 5 neurons). Consistent with this observation,
the mean voltages of these layer 5 excitatory neurons were closer to their thresholds than L4E neurons.
However, they were on average still more hyperpolarized than ALM neurons. With respect to the model,
we note that a clear distinction between a fluctuation- and a non-fluctuation-driven regime (or a fully-
and partially-balanced regime) is well-defined only in the theoretical limit of an infinite number of inputs
per neuron. In finite networks, in which the balance can only be approximated, the transition between
these two regimes becomes less clear. In this sense, L5E neurons might operate on the border of the two

regimes such that recurrent inhibition is only partially-balanced by the feedforward excitation.

Relations to previous studies

Consistent with previous recordings in auditory | ] and visual [ ]
cortices, we found that the membrane potentials of neurons in vS1 were more positively skewed than those
of excitatory neurons in the ALM and inhibitory FS neurons in vS1 (Fig.S2). However, the observation
of deviations from Gaussianity of the membrane potential of cortical neurons (measured, e.g., by the
skewness of the distribution) is not per se an unequivocal test of the balance hypothesis. This is because,
although it predicts that synaptic currents to a neuron should be approximately Gaussian, the distribution
of the voltage can be positively or negatively skewed due to proximity to threshold, to the reversal of

chloride channels, or other non-linear effects (Fig.S9).

A stronger test to assess this hypothesis is provided by the distribution of the mean voltage

(or distance to threshold) across the population. As previously reported in visual | ] and

auditory | ] cortices, the voltage of excitatory neurons exhibits synchronous

fluctuations, about 20mV below threshold during spontaneous activity. This suggests that, at least in
this condition, the neurons are driven by strong and synchronized external synaptic inputs |

]. This is similar to our findings in layer 4 excitatory neurons of vS1, which we suggest operated in

a partially-balanced regime.

Comparing sub-threshold voltage dynamics in models of recurrent networks with recorded neu-
rons requires extra care in the way synaptic interactions are modeled. Previous studies showed that
cortical-like spiking dynamics emerge in networks of neurons interacting through realistic synapses, in
which a pre-synaptic spike leads to a transient change in the post-synaptic conductance, |

, , ]. However, in contrast to our network models that
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account for the proximity of the synapses to the somatic compartment, in these previous studies all
synapses influenced the soma in the same way; we showed that this leads to small voltage heterogeneities
across neurons in the network. A possible way to increase the voltage heterogeneity in these networks of
one-compartment neurons is to consider wider distributions of the in-degree connectivity [

, ]. However, we found that incorporating such large heterogeneous in-degree dis-
tributions in our networks that fit well the activity of ALM neurons, only slightly increased the voltage

heterogeneity before the firing rate distribution started to deviate significantly from its log-normal shape.

Perspectives

An interesting future direction would be to investigate our model, which combines a mixture of conduc-
tance and current synapses in the mean-field limit of a large number of connections. Indeed, one of the
problems in a model of conductance-based synapses that are all localized on the soma is that by using
the synaptic scaling of balanced networks to keep the current fluctuations finite, it makes the neurons
very leaky due to the very large conductances. Alternatively, in a model with a mixture of current and
conductance synapses that mimics the distribution of synapses on the dendrites, one can obtain a finite
conductance and finite current fluctuations by scaling the average visibility of the synapses, I', instead
of scaling directly the connection strengths. Specifically, scaling I' with the inverse of the number of
pre-synaptic connections in the network (and thus « with the inverse of the square root of the num-
ber of pre-synaptic connections) guarantees that both the effective neuronal conductance and current

fluctuations are finite for large networks. Analytical study of such scaling is outside the scope of this

paper.

We studied whether fluctuations in a cortical network were consistent with a mechanism in which
they emerged from the recurrent network dynamics. In reality, membrane fluctuations are a combination
of external and recurrent fluctuations, and the relative proportion can vary between areas, populations and
behavioral states. Therefore, some of the variance in voltage fluctuations could be potentially attributed
to non-local recurrent connections, as we argued, for example, for vS1 neurons. It would be interesting
to control for such unobserved external inputs for local cortical networks while measuring the neuronal
membrane potential. This will potentially require multi-brain area recordings with voltage measurements
to determine the respective contributions of feedforward and recurrent connectivity to membrane potential

fluctuations of neurons.

There are other, non-inclusive, mechanisms that can contribute to the increase of voltage hetero-
geneity that we did not include in our network models. For instance, we modeled the effect of activating

simple AMPA/GABA synapses in multi-compartment models on the soma, but cortical neurons consist

of non-linear NMDA synapses | , ], voltage-gated mechanisms that
affect the input resistance [ ], as well as active non-linear ion channels that can lead to
localized spike-like activity [ , ]. Incorporating such active channels

in network models is an important future direction.
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Functional implications

Finally, we speculate why one cortical region is more fluctuation-driven than another. We suggest that
a partially-balanced operating regime might be beneficial for detection tasks. In this case, excitatory
neurons that are hyperpolarized will be insensitive to external and internal fluctuations and this could
reduce the false-positive detection rates. They will also be less prone to weak, but synchronous, variations
in the external drive if the inhibitory neurons are balanced. Indeed, in this regime the inhibitory neurons
react very fast to external stimuli, as there are many neurons that are ready to fire (a phenomenon known
as ‘fast tracking’ | ). This will keep the excitatory population far
from their threshold, unless they receive a synchronous drive that, at least instantaneously, will be
stronger than the external drive to the inhibitory neurons. This might be achieved through a ‘window
of opportunity’, based on a delay between the two populations [ , ].
This type of operating regime might be suitable for areas involved in stimulus detection, such as the

somatosensory and the auditory cortices.

In contrast, strong and balanced excitation and inhibition may be needed for neurons to generate
selective responses that are robust to noise or generate stable memory states | ], as in
ALM | |.  Furthermore, neurons that are driven by fluctuations in their synaptic
inputs are also very sensitive to heterogeneities in the network activity and connectivity |

, , , ]. This
feature is beneficial in networks that undergo synaptic reorganization, as it allows the neurons to develop

task-related activity during learning with minimal synaptic modifications [ ]

In the near future, advances in technologies will allow simultaneous recording of the sub-
threshold activity of many cortical neurons (e.g., | , ). Un-
derstanding the statistics of these measurements and how they vary with the dynamical regime of the
cortex will be an important step towards deciphering the operating regime of cortex and its functional

implications.
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Methods

Data analysis

Spiking statistics for ALM neurons were analyzed based on extracellular recordings using silicon probes
of 667 putative pyramidal neurons and 74 putative fast-spiking neurons | ]. Inter-spike-
intervals (ISI) were calculated for the delay or sample periods in each of the trials and were combined
together in order to calculate the coefficient of variation of the inter-spike-intervals (ISI) of the neurons,
which were calculated as the standard deviation of the ISI divided by the mean of the ISI distribution.

Spiking statistics for vS1 neurons were analyzed in a similar way. They were based on juxtacel-

lular recordings of 95 regular spiking neurons and 43 putative fast-spiking neurons in layer 4 |
], and 53 regular spiking neurons and 22 putative fast-spiking neurons in layer 5 | 1,
with some of the fast-spiking neurons that were also identified as inhibitory neurons through optogenetic
tagging [ ]. Inter-spike-intervals (ISI) were calculated for each non-whisking epoch and were
combined together in order to calculate the coefficient of variation of the inter-spike-intervals (ISI) of the

neurons.

Membrane potentials of ALM and vS1 neurons were obtained based on whole-cell recordings.
The recording details for ALM neurons are given in | , | and for vS1
neurons in | ]. For ALM neurons, we combined two datasets from auditory and tactile
delayed response task (crosses and circles in Fig.1F-G, respectively). We analyze the membrane potential
of neurons that exhibited stationary membrane potentials during the delay period (47/89 recorded neu-
rons). For vS1 we had 37 L4E neurons and 38 L5E neurons. The mean voltage of the five F'S interneurons
of layer 5 and the eight layer 4 FS interneurons in vS1 were similar and we thus combined them for the

analysis.

Spike threshold was defined as the moment when dV/dt first crossed 33% of its maximal value
during the trial | ]. Spikes were removed by interpolating the pre-spike (-15 ms for ALM

neurons, 0.5ms for vS1 neurons) and post-spike (15 ms and 10ms, respectively) voltage.

Mean and standard deviation (SD) of threshold were then calculated for each cell that spiked
and mean and SD of the population threshold was calculated based on the cell-specific mean thresholds.
To obtain the distance of ALM neurons to their threshold, we subtracted the mean threshold from the
mean voltage of each neuron. For neurons that did not spike, we used the minimal threshold across all

recorded ALM neurons as their spike threshold.

We then calculated the moments of the single-cell voltage distribution. Specifically, we concate-
nated all the non-whisking periods for neurons in the vS1, or during delay response periods for ALM
neurons, after we subtracted the mean voltage at each epoch/period. We then calculated the SD and

the skewness of these concatenated and mean-subtracted voltage traces for each neuron. To calculate the
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mean activity, we averaged the mean values of all epochs/periods. For neurons in vS1 we also corrected
for possible drift in the mean voltage by first regressing the mean voltage per trial against the trial

number, and then subtracting the slope of the regression from the voltage trace.

Limitations in estimating voltage heterogeneity in the data. We found that the time-average
voltage of neurons had a wide distribution across neurons, with SD that could go up to 6 — 8mV. We
note that this estimate was probably an upper bound for the real voltage distribution for several reasons;
1) Although we tried to control for the state of the network, for example by analyzing only non-whisking
epochs or delay periods, the network state could still change over the course of recordings and between
subjects. 2) There were inherent biases in the recordings. For example, in some cases the mean voltage
was drifting over time. While we corrected for the drift, this might have been imperfect. 3) We used
blind recordings, which were presumably targeting the soma, however it might be that in some cases the

recordings were at dendrites or axons.

Mapping synapses on dendrites to synapses on an extended-like point neuron

Multi-compartment single neuron model. We used NEURON | | (Fig.4,
Fig.S6, Fig.S7) to simulate multi-compartmental models from the morphological reconstructions of three
different cells from the mouse. motor cortex layer 5 pyramidal cell, visual cortex layer 4 basket cell,
and somatosensory layer 4 spiny stellate cell | , , ]
(neuromorpho IDs: NMO161366, NMO130658 and NMO02484 respectively).

Input resistances differ between in vitro to in vivo conditions, presumably due to the constant
synaptic load which is much lower in a slice. For estimating «, I we simulated in vivo conditions, assuming
that the effect of a single synapse should be measured while others are active. In contrast, for exploring
the voltage distribution in Fig.4, we simulated in vitro conditions, where no synapses were active. We
then activated the synapses by simulating pre-synaptic Poisson neurons with firing rates sampled from

the log-normal rate distribution of the pyramidal and fast-spiking ALM neurons.

For in vitro conditions the specific membrane resistivity (Rm) for the pyramidal cell was set to
8,000Qcm?, for the basket cell to 14,0002cm?, and for the spiny stellate cell to 10,000Qcm?. This yielded
an input resistance (Rin) of 164, 141, 302M (2, respectively. These values are within the experimental range
measured in vitro | , , ]. For in vivo conditions,
Rm for the pyramidal cell was set to 3500€2cm?, for the basket cell to 3000Q2c¢m?, and for the spiny stellate
cell to 1000Qcm?. This yielded an input resistance (Rin) of 57, 36,45 M, respectively. These values are

within the experimental range measured in vivo | , , ]

All multi-compartmental models had an axial resistance (Ra) of 100 Qc¢m, and specific membrane

capacitance (C) of 1uF/cm?. Unless specified otherwise, synaptic conductance in the models was set to
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0.5nS, with reversal potential of 0OmV and —80mV for the excitatory and inhibitory synapses, respectively.

Estimating the change in somatic conductance and somatic current upon activation of one
synapse in a multi-compartment model. Opening of a synapse on a dendrite results in variations
in the neuronal conductance, as measured at the soma, as well as the current flowing into the soma. The
effectiveness of these changes reduces as a function of the distance of the synapse from the soma. Our
goal was to construct a one-compartment model of the soma, in which all synapses are located on the
same compartment, but that also effectively accounts for their location on the dendrites. To this end, we
used a multi-compartment model and opened a synapse on a dendrite while measuring the conductance
and current changes at the soma. We then constructed a one-compartment model and parameterized
its synapses such that activating a synapse on the the neuronal compartment would result in the same

amount of conductance and current changes as the synapse in the multi-compartment model

Specifically, let us consider a synapse of conductance g located on the dendrite of a neuron. We
first measured the somatic voltage change, AVSiyn, upon activating the ¢’th synapse on the dendrite (static
response; Fig.S6A). We then measured the somatic voltage change, AV}, in response to an additional
current step injected at the soma, I. We calculated the somatic conductance:

: I
¢ = V- 4
Ysoma AVI»L ( )

and defined the visibility of the synapse that captured the change in somatic conductance, normalized

by the maximal possible change | |:

1—\1_ _ Agimna _ ggoma — i (5)
g g

with the neuronal conductance, g;, measured before the activation of the synapse.

We next approximated the current arriving at the soma upon activating the synapse on the
dendrite, I? AV}

toma = JhomalAViy,, and defined the attenuation parameter, a;, which approximated the

decay in current, normalized by the maximal possible current that the ¢’th synapse could inject as:

o = giomaAVsiyn (6)
—g(Vi—E)

Here, F is the reversal potential of the synapse and V; the reversal potential of the leak current. Both
the visibility and attenuation parameters decay with the electrotonic distance of the synapse from the
soma (Fig.S7TA-C).

We determined the spatial dependence of the attenuation and of the visibility parameters by
performing this calculation for each synapse while changing the location of the synapse on the dendritic
tree. This provided us with the empirical distribution of {c;, I';} for each of the multi-compartment model
considered. Importantly, we found that the visibility parameter decayed with the distance of the synapse
from the soma much faster than the attenuation parameter. For example, the visibility parameter in an

e—Qr/A

infinite cylinder with small synaptic conductance followed I'(x) o , with A the space constant and
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x the distance of the synapse from the soma. On the other hand, the attenuation parameter decayed
more slowly, a(z) < e=*/* (Fig.S7C, | D.

An extended-like point neuron model. For the effective one-compartment model, we considered a

neuron in which its membrane potential followed:

AV (t)

O = ~Ghoma )V () = Vi) = Ligpa(t) = 1 )

with C,V, being the capacitance and reversal membrane potential, I was the current injected into the

compartment, and where we omitted the post-synaptic index to simplify notations.

We modeled the change in neuronal conductance due to opening of the i’th synapse to be linear
in the synaptic conductance:

Gioma(t) = g1 + gLisi(t) (8)

with the leak conductance, ¢;. The change in synaptic conductance induced by a pre-synaptic spike was
g, and s;(t) was a filtered version of the pre-synaptic spike. The visibility parameter, I';, was estimated

from the multi-compartment model (see above).

The effective change in current arriving at the compartment due to the opening of a synapse
was modeled as:
Lioma(t) = gaisi(t)(Vi — E) (9)

with E being the synaptic reversal potential. The attenuation parameter, «;, which modeled the decay
in somatic potentials when activating synapses that are far from the soma, was estimated from the

multi-compartment model.

This choice of modeling guaranteed that opening the i’th synapse with its estimated a;,I'; in
the effective one-compartment model and on the dendrite of the multi-compartment model would lead
to comparable changes (at least at steady state) in somatic currents and conductance in both models
(Fig.S7B,D,F).

Inserting Eqs.(8) and (9) into Eq.(7), rearranging, and omitting the synaptic index to simplify

notations yields:

oM (v @)~ Vi) — DSV (1) — B) + gTs(1)(Vi — E) ~ gas()(Vi ~ )~ 1 (10)

We next wrote I' = ap and rewrote Eq.(10) as:

where
Loyn(t) = gas(t) {p(V(t) — E) + (1 — p)((Vi — E))} (12)
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With this formulation, the parameter p interpolated between a fully ‘conductance-based’ model
of the synapse (p = 1), in which a pre-synaptic spike led to a transient change in the post-synaptic con-
ductance, and a fully ‘current-based’ model (p = 0), in which post-synaptic conductance was independent
of pre-synaptic spikes | , , ]. We

thus refer to p as the mizing parameter.

Finally, we note that the average mixing parameter that we estimated using the multi-compartment
model only weakly depended on g. However, the average attenuation parameter decreased with g. Yet,
any change in the average attenuation could be compensated through increasing the strengths of the
synapses in our network models in a way that best fit the sub-threshold fluctuations. It is thus sufficient

to estimate a, p from the multi-compartment model only for one fixed value of g.

Spiking neuronal network

We consider a network of Ny excitatory and Nj inhibitory neurons randomly connected. We denote by
A the adjacency matrix of the network connectivity, defined as A“b = 1 with probability p, = K,/N, and
Aab = 0 otherwise. Here, a,b € {E,I} and i,j = 1...N, . Thus, each neuron thus receives, on average,

Kpg and K synaptic inputs.
Neurons are modeled as leaky integrate-and-fire elements. The membrane potential of neuron
(i,a), V*(t), obeys

dV.e(t
C th( ) = _Il )i Igec 7.( ) Igzt K (13)

where C' is the capacitance, I}!; = g;(V,*(t) — V) is the leak current whose reversal potential is V; and g,

the leak conductance. Whenever the voltage reaches a threshold, V;*(t) = Vi, it is reset to V,2(¢) =V, .

Following the reduction procedure explained above, the recurrent input, I, ;(t), into neuron

(i,a) is modeled as
ab _ab b a ab
Tt = S (v~ B+ (- )0~ ) (14)

with Ej being the synaptic reversal potential and sg (t):

ds? (1)
TsynT )+ Z5t—t1b
{t_‘lb}
Here, 74y, is the synaptic time constant and the sum is over all spikes emitted by neuron (j,b) at times

tip <t.

As in Eq.(11), the parameter 0 < p“b < 1 interpolates the synapses from being fully conductance
synapses (pgf = 1) to fully current synapses (pij = 0). The parameter 0 < oﬂb < 1 models the attenuation

of the synaptic activity as a function of its distance from the soma, with small o b for synapses that are
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far from the soma. Note that results of multi-compartment simulations shows that a?}’ and pg‘;’ are
ab
ij
neurons within a population (Fig.3), we absorb the parameter « into the synaptic strengths, gup.

correlated. Yet, in the homogeneous case, for which p a?}’ and synaptic strengths are the same for all

Finally, we model the external input, I¢,, ;(t), as

gxt,i(t) = ( KEI_e:vt,a + Qext,aziext) (pezt(Via(t) - EE) + (1 - pea:t)(w - EE)) (15)

with zf””t being a Gaussian random variable with zero mean and unity variance and fem,a isof O(1) |
]. Here, to simplify simulations, we modeled the feed-forward synapses

with an average parameter p.,: and absorbed the attenuation parameter into the input strength.

Choice of network parameters. We chose the parameters of the network connectivity and external
drive such that the distributions of neuronal firing rates in the populations fit well the data. For layer 4
model of vS1 we chose parameters such that the excitatory neurons are quiescent, while the inhibitory
neurons are not. In a network of current-based synapses (I' = 0) this is achieved by breaking the
inequalities that determine the existence and stability of the balance state. Specifically, in a current-based

network a partially-balanced regime, in which the inhibitory neurons are balanced and the excitatory

_ 7 _
88 and levr o gen |
9IE Tewt,1 grr

]. The conditions for quiescent excitatory neurons in networks consisting of a mixture

neurons are unbalanced and quiescent, appears when % >

of current and conductance-based synapses are more involve. However, we find in simulations that

Ifzt,E

excitatory neurons become silent when decreasing the fraction . This is the main difference between

ext,
the parameters of the ALM model network and vS1 layer 4 model network (see Table 1). Interestingly,
in the context of the supra-stabilized networks (SSN) | |, this partially-balanced regime
is related to the supersaturation phenomenon in which the external drive to the excitation is too small,

resulting in a quiescent excitatory population, with active inhibitory neurons [ ].

To model the synchronous external drive of layer 4 vS1 network we added to VK fezt’a in Eq.(15)
another brief external drive of /KT with I}, p = 0.075 and I}, ; = 0.125, for 10ms.

ext,a’ ext,

27


https://doi.org/10.1101/2022.07.14.500004
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.14.500004; this version posted July 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Neuron parameters Fig.3 Fig.5-ALM  Fig.5-S1
dt simulation time step 0.5 ms 0.5 ms 0.1 ms
gi neuronal conductance 0.1mS/cm?

C neuronal capacitance 1uF/em?
Vin spike threshold -40mV
V. voltage reset after spike -52mV
Vi voltage reset after spike -556mV
Eg reversal potential of exc synapses OmV
Er reversal potential of inh synapses -80mV

Network parameters

Tsyn synaptic time constant 3 ms

N number of neurons 10000

Ng number of excitatory neurons N/2

N number of inhibitory neurons N/2

Kg average number of exc synapses to a neuron 400

Kr average number of inh synapses to a neuron 400

Da connection probability K,/N,

ger  exc to exc synaptic weight 0.00133m.S/cm? 0.0026 0.0026
JgiE exc to inh synaptic weight 0.02m.S/cm? 0.039 0.039
grr inh to inh synaptic weight 0.133m.S/em? 0.22 0.28
GET inh to exc synaptic weight 0.08m.S/cm? 0.156 0.225
a?}’ attenuation parameter 1 estimated  estimated
pgjb mixing parameter 1 estimated  estimated
fext,E external input to exc 0.00533uA 0.0028 0.001
femu external input to inh 0.00747uA 0.006 0.006
Gext,e  disorder in external input to exc 0.008uA 0.008 0.008
Qext,;  disorder in external input to inh 0.005A 0.005 0.005
Peat average mixing parameter of ext inputs 1 0 0

Table 1: Network simulation parameters for figures in main text.
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Mean-field analysis of sub-threshold statistics of integrate-and-fire neurons

Current-based integrate-and-fire neurons. In this section we obtain the statistics of the time-
averaged voltage and its SD across neurons in the network. We consider the homogeneous case of a
current-based integrate-and-fire neuron (I' = p = 0, and we absorb « into gu,). We assume that the
network is asynchronous and follow standard mean-field approach to describe the total input to a neuron,

If () = 17 (t) + L5, (t) + 12, ;(), by a Gaussian process:

rec,i ext,i
o ,i(t) = pi + oani (t) (16)

where u¢ is the time-average input, o, is the SD and 7¢(¢) is a white-noise term (assuming 7,, < C/g,
[ ). The input SD, o, is the same for all neurons in the population (see below). In contrast,
the mean input, pf, is different across neurons due to variations in the pre-synaptic spike rates and
the number of synapses per neuron. In large networks the statistics of this time-average input, which
determines the heterogeneity of the mean input currents across the population, is Gaussian. We thus write
1 = pg + qozf, with random variables, z{, that are drawn independently from a Gaussian distribution

with mean 0 and variance 1.

The total input to a neuron of population a under this mean-field analysis is thus fully described
by three sufficient statistics, sq = {fta, Ga, 0o }- With this input statistics, the voltage dynamics of a neuron
with the inputs of Eq.(16) is reflecting a realization of a typical neuron in the network. Inserting Eq.(16)
into Eq.(13) leads to a Langevin equation. The voltage dynamics is thus given by a Fokker-Plank (FP)
equation, from which it is possible to calculate the transfer function that relates the mean input and its

fluctuations to the mean firing rate | , ]:
Vinas ,
Via = du(uls00) =7 [ dwe er fe(—w)] ! (17)
Vimin

with 7= C/gla Vinin = ((Vr - M;’l)/gl - ‘/l)/o'a and Vier = ((Vth - ,U'?)/gl - ‘/l)/Ua

Using the equilibrium distribution of the FP equation, one can also calculate the moments of
the voltage distribution [ ]. For example, the time-average voltage of a

neuron (i,a) is:

Via = by (pi,00) = ‘/;JaS(M?>Ua) =7, (g, 0a) V- (18)

with V_ = Vi =V, and Vyus (4§, 04) = Vi + L5 Similarly, the voltage SD yields:

J\Qf,ia = ¢0‘2/ (IU‘?V Ja) = Jgas,a(aa) - V*Tgbl/(ﬂ“?? Ua)(¢v(,11,?7 Ja) - V+) (19)
with V; = YetVe and 62, = %,

The equations for the mean and SD of the voltage are simple to understand. The first term
in Eq.(18) and Eq.(19) results from bombarding a passive neuron with Poissonian inputs. The second
term in these equations results from the spiking mechanism and mainly affects neurons that are close to

threshold. It is proportional to the rate of the events (7v) and the size of the reset, V_.
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Using Egs.(17)-(19) we can then calculate the mean and the variance of the voltage and rate

distributions across the population by averaging over the neurons:

X, = / D (1a(2), 0) (20)
AXZ = / D286 (ja(2). 0)

_ 22
with X € {v,V,0v} and 8¢x = ¢x — Xa, fta(2) = ta + Gaz, 2 € N(0,1), Dz = <24z,

Correlations between voltage mean and SD across neurons in the network. Both in ALM
and vS1 data, as well as in our network simulations, we observed that the voltage mean and SDs of
neurons can be positively or negatively correlated, depending on the network state. We use the mean

field analysis for I' = 0 to explain this correlation structure.

Equation (19) shows that for neurons that are far from threshold, the voltage SD is governed by

the term o2

bas,as Which only depends on the input fluctuations, o,. Thus, fluctuations of these neurons

are the same, independent of their mean voltage. When the mean input current is sufficiently large, both
the mean voltage and the SD saturate (due to the threshold). Thus, we expect that the input noise (o)

will determine the correlations strength (and its sign) between the voltage SD and its mean.

To show the dependence of the mean-SD correlation on the input SD (or similarly, the voltage
SD), we fix the mean rates and SDs of the neurons to be in the range of the pyramidal neurons in ALM
(6 = 8Hz), and numerically invert Egs.(20) with X = v, while changing o, to obtain u, and ¢,. We then

used the sufficient statistics, s, = {1ta, 4a, 0a}, to plot the correlations between the mean and voltage SD:

J D20y (pa(2), 0a)0¢0y (Ha(2): 0a)

Corr(o,) = — — 21
) = D50 (aale), 00) | D002, (rale”),00) 21

against the average voltage SD (Fig.5J, left), given by
7t = [ Doty (mal2). ) (22)

This analysis shows that correlations in the mean-SD voltage across the population is determined by the
level of the input SD.

Finally, the inhibitory neurons in our network simulations operate in a regime in which they fire
at higher rates than the excitatory neurons. This, together with the strong recurrent interactions to the
inhibitory neurons, lead to higher input SD for the inhibitory neurons than for the excitatory neurons
in the network (see parameters). As a result, the mean and voltage SDs of the excitatory neurons are
positively correlated, while they are less, and even negatively, correlated for the inhibitory population
(Fig.5E,J).

Conductance-based integrate-and-fire neurons. Here we obtain the statistics of the time-averaged

voltage for the homogeneous case of a conductance-based integrate-and-fire neuron (I' = p = 1, and
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we absorb « into g.). In contrast to the case of current-based neurons, for which we only need
(tha-Ga, 0q) to describe the distributions of the input to the neurons and thus the rate and voltage dis-
tributions of the population, in the case of conductance-based synapses we need six sufficient statistics,
o = {laE, QaE, OaE, lhals dal; 0ar }- These are the statistics that define the Gaussian input of the total

excitatory and total inhibitory synaptic conductances to a neuron (i,a):

Z gaE E V Iewt a + Qext aze'rt) ~ ,U/?E + UaEniE(t) (23)
Z gl si(t) ~ pi" + oarni (1)

with u2® = pap+qapz?, 22 ~ N(0,1) and o2, is the variance of the white noise term ¢, with <773(t)77§?(t’)> =
0ij0ap0(t — t'). For simplicity of notations we write the statistics in vector notations, s, = {fta,qa, 00}

and pf.

Similarly to the case of current based neurons, it is possible to use a FP formalism to analytically
describe the firing rate and membrane potential distribution of a conductance-based neuron |
]. We can then use the equilibrium FP distribution to calculate the moments of the distribution (see

Supplementary materials). For example, the time-average voltage of a neuron (i,a) yields:

V;Ja = vaas,i(”/(il) - V*Tpas,i(ﬂg)yi(ulia Ua) (24)
with

(25)

Tpas,i =

1+ 7(pef + pet)

Vpasz Tpas, z(W/T+M1 EE +M IEI)) (26)

Thus, the mean of the voltage for conductance-based integrate-and-fire neurons have the same
form as the mean voltage of the current-based integrate-and-fire neurons (Eq.(24)). It consists of the
mean of a passive neuron, bombarded by Poissonian inputs, together with another term that results from
the threshold.

Equations (24)-(26) show why the amount of voltage heterogeneity in conductance-based net-
works are low for large networks. In contrast to networks of current-based integrate-and-fire neurons, for
which the currents can be dynamically balanced such that ;. and g, are both O(1) [

], for conductance-based neurons there is no balancing of the conductances |
]. As a result, the average conductances, p,, dominate the quenched disorder, g,, which due
to the central limit theorem is always a /K order of magnitude smaller than p,. In the large K limit,

we obtain that to the leading order:
1
Tpas,i ~ —————— (27)
HaE + Harl
and
paeEE + parEr

Vioas.i =
past HaE + Hal

(28)
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Thus, the first term of Eq.(24) only depends on the mean conductances, p,, and the synaptic reversals;
it is the same for all neurons in the network. Importantly, this result is independent of the scaling of the
connectivity. Heterogeneity in firing rates can, in principle, contribute to voltage heterogeneity due to
the second term in Eq.(24). However, it only affects neurons that are close to the threshold, and does not
seem to increase the voltage heterogeneity in simulations (Fig.3G). To verify the applicability of Eq.(24)
to our network simulations even though 7y, was not much smaller than 7 (see Tablel), we used the
estimated conductances and firing rates from the simulations, together with Eqs.(24)-(26) to calculate
the SD of the time-averaged voltage distribution across the neurons (Ay ). These are the theoretical lines
in Fig.3G. This analysis explains why neurons in conductance-based networks are all clamped to more
or less the same mean voltage, with a narrow distribution around this number. Similar arguments also
hold for the voltage SD.

Quantification and statistical analysis

Simulations were done using C*+ and NEURON 7.8. Analyses of simulations and data were done using
Matlab (Mathworks), Python and NumPy. Data are presented as mean =+ standard deviation (SD),

unless otherwise noted.
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Figure S 1: Supra and sub-threshold statistics of layer 5 S1 neurons in mice performing a Go/NoGo
task A. Top: behavioral task. Bottom: recording area. B. C'V;sr against neuronal firing rates for neurons in layer
5. C. Probability density function (pdf) of the log-rates. Solid lines: fit to a Gaussian distribution. D. Example
of layer 5 excitatory neurons. Left: Activity of example neurons during the first 0.5 second of a whisking episode.
Right: Sub-threshold voltage distribution of one of the neurons. Solid line: fit to a Gaussian distribution. E. Left:
Probability density function (pdf) of time-average voltage for all recorded neurons, including layer 5 excitatory
neurons in vS1. Solid lines: fit to a Gaussian distribution. Right: SD of (single neuron) voltage fluctuations
for all recorded neurons. F. Firing rates vs. mean voltage for the excitatory neurons. G. SD of (single neuron)
voltage fluctuations against the mean voltage. Red line: linear regression. In (B-C) Extracellular and intracellular

recordings. In (D-G) whole-cell recordings. In (B-C,E-F) analysis during non-whisking periods.
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the voltage of a neuron, V;(t), defined as SK; = ( TIZ‘(VI(O Vi) 2)
VE S VO,

vS1 neurons (B-D). Population-average skewness, SK = % > SK;, of each population is given in the title.

3, against the mean voltage for ALM (A) and
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Figure S 3: The effect of the visibility of the conductance on sub-threshold heterogeneity and
spiking irregularity in a recurrent network A. A cartoon of a network of integrate-and-fire neurons with a
mixture of current and conductance synapses. The case in which I' = 1 corresponds to a pure conductance-based
synapse, while the case of I' = 0 is what is known in the literature as current-based synapses, in which synaptic
changes do not affect the conductance of the neuron (see Eq.(12) and Methods). The visibility parameter in this
figure is the same for all excitatory, inhibitory and external synapses and we merged the attenuation parameter
together with the synaptic strength (g in Eq. (12)). B. Distribution of time-average voltage of excitatory neurons
in a network with I' = 0.2 (cyan) and of pure conductance-based synapses, I' = 1 (magenta). Threshold at
—40mV C. Voltage heterogeneity vs. the visibility parameter. Colored circles are the SDs of the distributions
of the examples in (B). D-F. SD of (single neuron) voltage fluctuations (D), mean voltage (E) and coefficient of
variation of the inter-spike-intervals (C'Vrsr) (F) against the visibility parameter. Note that the SD of the voltage
and the C'Vigr varied with I' in opposite directions. In all panels the mean rate of the excitatory and inhibitory
neurons was kept constant (4Hz and 9H z, respectively) when changing the visibility parameter by adapting the

external inputs.
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Figure S 4: Visibility and network parameters in networks of extended-like point neurons that are
consistent with ALM data. Sweep of visibility and network parameters to find visibility parameters that are
consistent with ALM data. Solid lines: same figures as in Fig.S3C,D,F, but plotted against the SD of the voltage.
The value of each circle is obtained from a network simulation with a different visibility parameter (ranging from
zero to one, with jumps of 0.2). Dashed lines: same as solid lines but for a different set of network parameters.
To keep the average firing rate in the network constant, and consistent with ALM data, we increased the synaptic
strengths by a factor of 1.5 (1.5g.» and 1.5fezt,a of the parameters in Table 2). As a result, voltage fluctuations
in the network increased, while the mean rate was not changed. Dotted lines: Same as dashed lines but with a
0.75 factor. Cyan: mean+SD of the estimated voltage SD in the population of ALM neurons (see Fig.2E, right).
Large voltage heterogeneity is limited by the level of voltage fluctuations and the CV;sy of neurons in the network.
Large voltage heterogeneity together with high CVrsy in the range of the SD of the voltage of ALM neurons can
be achieved for ranges of I' = 0.2 — 0.4. Note that larger visibility parameters for oy &~ 2mV would decrease both
the voltage heterogeneity and the C'Vrgr to values that are inconsistent with ALM data. A. Voltage heterogeneity
against voltage SD. B. C'V;gr against voltage SD.
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Figure S 5: Supra and sub-threshold heterogeneity in selectivity of ALM neurons to licking direc-
tion in the experiment and model. ALM data in (A-C) and model in (D-F). A. Recording area. B. Raster
of the spikes (top), peri-stimulus time histogram (PSTH, middle) and average sub-threshold activity (excluding
spikes, bottom) for lick right (blue) and left (red) trials in 3 example ALM neurons. PSTHs were calculated
using a 10ms window. C. Distribution of sub-threshold selectivity to licking direction (SI; = |\7.L-R -Vt |, with
‘_/;.R/ " the average voltage for lick left/right of the i’th neuron). D. Cartoon of a network with extended-like point
neurons with visibility and attenuation parameters, estimated from multi-compartment simulations of layer 5 and
basket cells. The recurrent connectivity is a combination of a random component and a structured competitive
component from the inhibitory neurons that supports bistability in the network. This bistability is the reason for
the persistent and selective states in the network (see Methods and [Lebovich et al.. 2019]). E. Same as (B) but

for 3 examples of excitatory neurons in the model. F. Same as (C), but for excitatory neurons in the model.

42


https://doi.org/10.1101/2022.07.14.500004
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.14.500004; this version posted July 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

A Estimating synaptic attenuation and visibility B
Layer 5 neuron

‘Extended-like’ point neuron

-66 Synapse 2

100 um /;
avie) £
t
C—==-g OV -V)—-1 (O-1 &
Synapse 2 dt g.\'oma( )( ( ) l) .\()ma( ) s
)
I\'{)"lll(t) = g (l s(t)(vl - E) >
8, (=g +gIsw) 0 200 200
— >
Vv ,;-66 Synapse 1
S, & £
e ”ap & =
¥ \S"./ s 2 -68
A\ G
/\_/ > 70
Synapse 1 0 200 400
Time (ms)
C D B
17— y=x
100 i, - o 100 - g,/:Xz
< g = > 06
Wy 5 5 2 04
A 2 i< > 02
- 0
107 10 ~
50 um | 0 300 0 300 0 02 04 06 08 1

Attenuation (o)

Distance from soma (pm)

Figure S 6: Estimation of the attenuation and visibility for synapses in a multi-compartment model
A. Estimation of the attenuation and visibility parameters of the phenomenological point neuron model from a
simulation of a multi-compartment model. Left: reconstruction of the simulated layer 5 pyramidal neuron. B.
The voltage dynamics of the ‘extended-like’ point neuron. Right: The voltage traces of the two example synapses.
First, we activate a synapse in a multi-compartment model and measure the change in voltage at the soma
(AVsyn). We then inject a step current at the soma (AI) and measure the voltage change (AV;). The comparison
of AVyyn and AV; in the multi-compartment model and the point neuron is used to estimate the visibility (T")
and attenuation («) parameters; see Methods. We repeat this process for every synapse along the dendritic tree.
C. Same as in (A), but for a multi-compartment model of basket (orange) and spiny stellate (green) cells. D.
Left: Attenuation vs. the distance of the synapse from soma for the cell in (C). Red line: fit to an exponential
decay. Right: Same as left, but for the visibility parameter. Note that the decay rate of the visibility is around
twice the decay rate of the attenuation parameter. E. The estimated visibility against attenuation for synapses
in the three cell types. Note that the visibility always decays faster than the attenuation, and that for an infinite
cylinder T' =~ o? (Fig.S7C; [ D.
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Figure S 7: Mapping synaptic activity in an infinite cable and layer 5 neuron to activity of an
extended-like point neuron A. Left: a cartoon of the simulated infinite cylinder (with length and diameter of
9500 pm and 1.5um respectively, and specific membrane resistance of 10,000 Qcmz) with a synapse that is located
along the cylinder. Right: the extended-like point neuron. B. Four examples of the static response of the cable
(orange) to activating a synapse at different locations along the cable, and the corresponding mapped synapse
when activated on the point neuron (blue). C. The attenuation («) and visibility (I") of the synapse against the
location of the synapse. Note that in an infinite cylinder o oc e™*/» and T' x ¢/} and thus Ao = 2Ar [

). D. Four examples of the dynamic response of the cable (orange) to activating a synapse (alpha
function) at different locations along the cable, and the corresponding mapped synapse of the point neuron (blue).
Note that the differences in the voltage are a result of estimating «, I" using the static response of the neurons.

E. Mapping of the layer 5 neuron (as in main text). F. Same as (D), but for the layer 5 neuron in (E).

44


https://doi.org/10.1101/2022.07.14.500004
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.14.500004; this version posted July 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

5.

—~

> 4t

&

S~

& 3

<

=

o

> 2

3 o L5-ALM

) 1 Spiny-ALM

N o Basket-ALM

i Basket-Spiny-ALM

O L '

=70 -60 -50 -40 -30
Mean voltage (mV)

Figure S 8: Voltage statistics of neurons in a network of extended-like neurons is similar when
the visibility and attenuation parameters are estimated from a layer 5 pyramidal neuron or from
a spiny stellate neuron. SD of voltage fluctuations against the mean voltage of 500 neurons in a network with
layer 5-basket cells (green and orange) and spiny stellate-basket cells (purple and red). Same network parameters
as in Fig.5A-E.
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Figure S 9: Deviations from Gaussianity of voltage fluctuations in a model of layer 4 vS1 network.
A. Example of an excitatory neuron in layer 4 vS1 network model without (top-green) and with (bottom- purple)
synchronous external drive (see Methods). Without external drive the voltage distribution is well-fitted with a
Gaussian distribution (solid line; low skewness). B. Skewness of excitatory neurons without (green) and with
(purple) synchronous external drive. Red line: linear fit in a network without synchronous external drive. Cor-
relations between skewness and mean voltage of neurons in the network are low (small ¢). Purple line: linear fit
in a network with synchronous external drive. Skewness and mean voltage of neurons in the model is negatively
correlated (negative c). Note that the synchronous external drive mainly affects the hyperpolarized excitatory
neurons. C. Same as (B), but for the inhibitory population, which are more depolarized than the excitatory

neurons. The external drive only weakly affects the skewness of the neurons.
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Neuron parameters Fig.S 3-4 Fig.S 5 Fig.S9
dt simulation time step 0.5 ms 0.1 ms 0.1 ms
gi neuronal conductance 0.1mS/cm?

C neuronal capacitance 1uF/em?
Vin spike threshold -40mV
V. voltage reset after spike -52mV
Vi voltage reset after spike -556mV
Eg reversal potential of exc synapses OmV
Er reversal potential of inh synapses -80mV

Network parameters
Tsyn synaptic time constant 3 ms
N number of neurons 10000
Ng number of excitatory neurons 5000 8000 5000
Ny number of inhibitory neurons 5000 2000 5000
Kg average number of exc synapses to a neuron 400
Kr average number of inh synapses to a neuron 400
Pa connection probability K,/N,

JEE exc to exc synaptic weight 0.00133m.S/cm? 0.00347 0.0026
JgiE exc to inh synaptic weight 0.02m.S/cm? 0.05 0.039
grr inh to inh synaptic weight 0.133m.S/cem? 0.15 0.28
GET inh to exc synaptic weight 0.08m.S/cm? 0.10 0.225
a?}’ attenuation parameter 1 estimated estimated
pgjb mixing parameter varied estimated estimated
Iyt r external input to exc varied 0.0019uA/cm? 0.001
femu external input to inh varied ().O()éluA/cm2 0.006
Gext,e  disorder in external input to exc 0.008uA/ cm?

Qext,;  disorder in external input to inh 0.0054A/cm?

Pext average mixing parameter of ext inputs varied 0 0

Js selective inh-to-inh synapses 0 0.5mS/em? 0

I elm} g external input during delay period to exc 0 0.00045u.A/cm? 0
felxt, ;  external input during delay period to inh 0 0.0006pA/cm? 0

Table 2: Network simulation parameters for supplementary figures.
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Supplementary materials

Network architecture for a balanced network that supports persistent activity
through bistability

Neurons in ALM tend to exhibit persistent, or slow, dynamics during the delay period |

]. To model this, we add to the random connectivity of ALM network model additional structured
connections as in [ ]. These additional structured connections allowed the balanced
network to be bistable without breaking the EI balance.

We follow [ ] and model an additional selective feedforward input into each
population, excitatory or inhibitory, that consists of two subsets of neurons, namely left (L) and right
(R) selective neurons. Before the instruction appears this additional feedforward input, Igv,i(t), is zero
for all neurons. Upon presentation of a right stimulus, I g7i(t), into R-selective neurons is stronger than
for the L-selective neurons, and vice versa, while during delay period this input is constant, and equal,

to both L and R populations. Specifically, instead of Eq.(15) we take

gxm(t) = ( KEI_e:vt,a + Qemt,azz‘ext + Ig,i@)) (pezvt(via(t) - EE‘) + (1 - pewt)(w - EE))

with the input
Ig,i(t) = jelzt,a(l + 6®(t - Tl)@(T2 - t))

that is non-zero only during sample and delay periods (that last 2100ms). The parameter e is positive for
R trials and negative for L trials, ©(x) is the Heaviside function, 75 — T} is the sample duration (100ms
in simulations) and with I},, ,, I}, , = O(1). Thus, there is no selective feedforward input to neurons in

the model during delay period.

We denote the subset of R-selective (L-selective) neurons in population a by R* (L%). Neuron

(i,a) € R*if i = 1.8 and (i,a) € L if i = Nett + 1..N,.

The recurrent connectivity in this extended model has two components. One is functionally
specific and the other is not. The non-specific component is fully random, Erdés—Rényi (ER) graph, and
does not depend on the selectivity of the pre- and post-synaptic neurons. The competition between the left
(L) and the right (R) selective neurons is mediated by an additional set of connections. These connections
are specific and are much less numerous, but stronger than the unspecific ones. There are no specific
connections from the excitatory neurons to other neurons. The probability for a specific connection from
an inhibitory neuron to another excitatory or inhibitory neurons is p5 = %@ Therefore, each neuron
(excitatory as well as inhibitory) receives, on average, v/K connections from inhibitory neurons whose

selectivities are different from its own, and on average K non-selective inhibitory connections.

The strength of the specific connections depends solely on the neurons’ type, g.rgs, with gg

determining the strength of the selective synapses with respect to the non-selective, random, connections.
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Tt is non-zero only in the simulations of Fig.S5. The total current into neuron (¢, &) due to the recurrent

interactions follows Eq.(14), with the recurrent connections given by gfjl = (ga IA%I + 9sYa 1]\%] ), with

. . : K,
A?jl the adjacency matrix of an ER graph with p, = N

2V K,
N, °

and ]\?}’ the adjacency matrix of another ER

graph with p? =

With this architecture and feedforward input both the excitatory and inhibitory neurons in the
network are selective to the licking directions, both during sample, and without selective feedforward

input during delay period.

Mean-field analysis of sub-threshold statistics of conductance-based integrate-

and-fire neurons

Here we consider the case of a conductance-based integrate-and-fire neuron and calculate the distribution
of mean and voltage SD. By inserting Eqs (23) into (13), one can use a Fokker-Plank formalism to
analytically describe the firing rate and the membrane potential distribution of a conductance-based
neuron. We follow here | ], and add the neuronal index that arise due to the heterogeneity
in synaptic inputs. It is useful to first introduce several quantities, where to simplify notations we write

them without their postsynaptic population index:

-
Tpas,i = 29
P = T (e (2) T e (2) ®9)
Vias,i = Tpas,i Vi/T + bap(2F)EE + pa1 (2] Er)) (30)

that only weakly depend on the disorder in the network because the disorder is always an order v K
smaller than the mean pi4p. In fact, in the large K limit Eq.(29) goes to zero and Eq.(30) is independent
of K.

Furthermore, we also introduce two voltage quantities:
O'gEEE + GZIEI
X

E, =

Eq=o0450a1(Er — Er)x

and
1
X =73 2
OuE + Oar
which none of them depends on the quenched disorder. Finally, we also introduce the dimensionless
parameter v; = T2X -, which needs to be large in order for the Gaussianity assumption to hold.
pas,i

Using a linear change of variables from voltage to a dimensionless variable, x;:

Ty = (‘/z - Vpas,i)\/( gL (31)

V2. . —E)?+E3

pas,i
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with a4, and x, corresponding to placing V;;, and V. in Eq.(31). It is then possible to write the equilibrium
distribution of the FP equation for f(x;):

d
~VTpas,iO(T; — ) = %(a?xf —2a;b;v; + 1) f(2;) + @i f (24) (32)
s o 1 L Es—Vpas,i . . . . . n g
with a; = eri and b; = NS Integrating Eq.(32) after multiplying it with z}* gives, after

notorious algebra, the moments of the distribution. The first and second moments of the voltage yields:

Vi = Vpas,i(Sa) = Tpas,i(5a)Vi(5a) (33)
and
~ V. ; Es — Vias,i
2 2 + Vi s pas,i
OV = Opas.i(Sa) = Tpas,iViV_(Vi(8a) + — + 34
Vi = Ohnai(50) = Tpun Vo (Vi) + - (20) + 22z (34)
with the variance of a passive conductance-based IF neuron given by Ugas,i = % One

should note that as «; scales with the synaptic strength 1/gqs, we get that when g, is small, and for

which the Gaussianity assumption is valid, the leading order of the fluctuations takes the simple form
%5 = Opas,i(Sa) = Tpas,iviV-(Vi(sa) — ) (35)

Thus, both the mean and the SD of the voltage for conductance-based IF neurons (Eq.(33),(35)) have
the same form as the mean and SD of the current-based IF neurons. It is the mean or SD of the passive

neuron, together with another term that is proportional to the rate of the neuron.
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