

1
2
3

4 **Structural characterization of human RPA70N association with
5 DNA damage response proteins**

6
7
8
9

Yeyao Wu^{1#}, Ning Zang^{1#}, Wangmi Fu^{1#}, and Chun Zhou^{1*}

10
11
12

13 ¹ School of Public Health & Sir Run Run Shaw Hospital, Zhejiang University School of
14 Medicine, Zhejiang, China.

15
16

#These authors contributed equally.

17 *Correspondence: chunzhou@zju.edu.cn

18
19
20
21
22
23
24
25
26

27 **[Running title:** Structures of RPA70N-peptide complexes]
28

29 **Abstract**

30
31 **The heterotrimeric Replication protein A (RPA) is the ubiquitous eukaryotic single-stranded**
32 **DNA (ssDNA) binding protein and participates in nearly all aspects of DNA metabolism,**
33 **especially DNA damage response. The N-terminal OB domain of the RPA70 subunit**
34 **(RPA70N) is a major protein-protein interaction element for RPA. Previous crystallography**
35 **studies of RPA70N with p53, DNA2 and PrimPol fragments revealed that RPA70N binds to**
36 **amphipathic peptides that mimics ssDNA. NMR chemical-shift studies also provided**
37 **valuable information of RPA70N residues interacting with target sequences. However, it is**
38 **still not clear how RPA70N recognizes and distinguishes such a diverse group of proteins.**
39 **Here we present high resolution crystal structures of RPA70N in complex with peptides from**
40 **HelB, ATRIP, RMI1, WRN and BLM. The structures showed that in addition to the ssDNA**
41 **mimicry mode of interaction, RPA70N employs multiple ways to bind its partners, some of**
42 **which may serve to increase the avidity of RPA70N binding.**

43

44

45

46

47 **[Keywords: RPA70N, HELB, ATRIP, BLM, RMI, WRN]**

48

49

50

51

52

53 Introduction

54 Replication protein A (RPA) is a heterotrimeric protein complex composed of the RPA70,
55 RPA32 and RPA14 subunits (Fairman & Stillman, 1988; Wood *et al*, 1988). It is the major
56 eukaryotic single-stranded DNA (ssDNA) binding protein and has an affinity for ssDNA in the
57 range of 10^{-9} - 10^{-10} M (Blackwell & Borowiec, 1994; Iftode *et al*, 1999; Kim *et al*, 1994; Kim *et al*,
58 1992; Wold, 1997). Several oligonucleotide binding (OB) domains (RPA70A, 70B, 70C and
59 RPA32D) form the core ssDNA binding region (Bochkarev *et al*, 1997; Bochkareva *et al*, 2002;
60 Fan & Pavletich, 2012; Flynn & Zou, 2010; Murzin, 1993; Yates *et al*, 2018). Due to its high
61 affinity for ssDNA, RPA is involved in almost all aspects of DNA replication, repair, and
62 recombination(Caldwell & Spies, 2020; Chen & Wold, 2014; Fanning *et al*, 2006; Iftode *et al*,
63 1999; Marechal & Zou, 2015; Wold, 1997; Zou *et al*, 2006). It helps to protect ssDNA from
64 nucleolytic degradation and prevents ssDNA entanglement by removing DNA secondary
65 structures.

66 In addition to its ssDNA binding function, RPA also serves as a beacon to recruit a plethora
67 of protein factors involved in DNA metabolism mostly through the RPA70N and RPA32 winged-
68 helix domains(Awate & Brosh, 2017; Caldwell & Spies, 2020; Fanning *et al*, 2006; Marechal &
69 Zou, 2015). The RPA70N domain adopts an OB fold with a five-stranded anti-parallel beta-barrel
70 but has very weak ssDNA affinity (Jacobs *et al*, 1999). Its primary role is to mediate protein-
71 protein interaction with its basic and hydrophobic cleft as first shown by a series of studies of
72 RPA70N interacting with p53 (Abramova *et al*, 1997; Dutta *et al*, 1993; Li & Botchan, 1993).
73 RPA70N binds to p53 transactivation domain to coordinate DNA repair with the p53-dependent
74 checkpoint control. In the crystal structure of RPA70N-p53 complex, the acid-hydrophobic peptide
75 of p53 is shown to interact with the complementary basic and hydrophobic groove, mimicking
76 ssDNA binding to OB domains (Bochkareva *et al*, 2005). RPA70N also binds to the N-terminus
77 of ATRIP and is responsible for recruiting the ATR-ATRIP complex to DNA damage sites to
78 initiate cell-cycle checkpoint (Ball *et al*, 2005; Namiki & Zou, 2006; Zou & Elledge, 2003). In
79 addition, RPA70N mediates the interaction of RPA with the MRN complex and the 9-1-1 complex
80 to protect replication forks during DNA damage response, through binding to MRE11 and Rad9
81 (Oakley *et al*, 2009; Robison *et al*, 2004; Wu *et al*, 2005; Xu *et al*, 2008b). Besides cell cycle
82 regulatory proteins, many helicases involved in DNA repair interact with RPA70N as well (Awate
83 & Brosh, 2017). Both BLM (Sgs1) and DNA2 interact with RPA and form a complex to carry out

84 long range DNA resection during double strand DNA break repair (Cejka *et al.*, 2010; Gravel *et al.*,
85 2008; Nimonkar *et al.*, 2011; Zhu *et al.*, 2008). RPA was proposed to recruit both DNA2 and BLM
86 through RPA70N, stimulating the helicase activity of BLM while enhancing the nuclease activity
87 of DNA2 by removing DNA secondary structures (Brosh *et al.*, 2000; Doherty *et al.*, 2005;
88 Nimonkar *et al.*, 2011; Zhou *et al.*, 2015). WRN, HelB and FancJ also binds to RPA through
89 RPA70N and the presence of RPA greatly enhanced their helicase activities (Brosh *et al.*, 1999;
90 Doherty *et al.*, 2005; Guler *et al.*, 2012; Gupta *et al.*, 2007; Hormeno *et al.*, 2022; Shen *et al.*, 1998;
91 Shen *et al.*, 2003; Suhasini *et al.*, 2009; Tkac *et al.*, 2016). Moreover, many other proteins involved
92 in DNA repair and replication interact with RPA70N too. For example, the RMI1 component of
93 the BTR complex (BLM-Topo III α -RMI1-RMI2) and PrimPol (DNA primase and DNA
94 polymerase) directly associate with RPA70N (Dornreiter *et al.*, 1992; Guilliam *et al.*, 2017;
95 Shorrocks *et al.*, 2021; Wan *et al.*, 2013; Xue *et al.*, 2013).

96 In general, most of the proteins interacting with RPA70N utilize a motif around 20 amino
97 acids long with a mixture of acidic and hydrophobic residues (Shorrocks *et al.*, 2021). For these
98 motifs, the exact sequence doesn't share much homology despite the similarity in overall
99 composition, indicating each motif could bind to RPA70N differently. To better understand the
100 mechanism of RPA70N-mediated target protein recruitment, we set out to determine complex
101 structures of RPA70N with peptide motifs that bind to it. So far quite a few studies employed
102 NMR chemical shifts to probe the interaction sites of RPA70N with partner proteins (Guler *et al.*,
103 2012; Kang *et al.*, 2018; Liu *et al.*, 2011; Ning *et al.*, 2015; Xu *et al.*, 2008b; Yeom *et al.*, 2019).
104 While the NMR chemical shift information is useful in identifying potential residues involved in
105 binding, due to the transient nature of the interactions, the complex structures were not resolved
106 by NMR. Several crystal structures of RPA70N in complex with bound peptide were reported,
107 namely RPA70N-p53, RPA70N-DNA2, RPA70N-PrimePol and Rfa1N-Ddc2 (Bochkareva *et al.*,
108 2005; Deshpande *et al.*, 2017; Guilliam *et al.*, 2017; Zhou *et al.*, 2015). This is mainly due to the
109 weak affinity between RPA70N and the protein sequence it recognizes, crystallization attempts
110 often yield crystals of RPA70N itself without peptide bound. To overcome this problem, we fused
111 target sequence to the C-terminus of RPA70N with a flexible linker in between. By adjusting the
112 linker length, we managed to crystalize and determine the structure of RPA70N in complex with
113 HelB, ATRIP, RMI1, WRN and two BLM peptides (Supplemental Table S1-3).
114

115 **Results**

116 **Structure of the RPA70N-HelB peptide complex**

117 HelB is a conserved helicase involved in DNA replication initiation, replication stress
118 responses and negatively regulates DNA end-resection (Guler *et al.*, 2012; Hazeslip *et al.*, 2020;
119 Taneja *et al.*, 2002; Tkac *et al.*, 2016). It has an RPA binding motif located in the helicase domain
120 and its recruitment to chromatin correlates with the level of replication protein A (Guler *et al.*,
121 2012). We crystallized a human HelB helicase peptide (residues 496 to 519) with the human
122 RPA70N (residues 1 to 120) using the fusion strategy in space group P41212 and there is one
123 molecule in the asymmetry unit (Figure 1A and B, Supplemental Table S2). Crystal packing
124 analysis shows that the HelB peptide from one fusion protein is bound by a neighboring RPA70N
125 molecule (Supplemental Figure S1). The electron density of the fusion linker is not observed as it
126 is highly flexible. In the 1.6 Å structure, residues 496 to 517 of HelB form a 4-turn helix followed
127 by a β turn and a 3₁₀ helix (Figure 1B). The curved β sheet of RPA70 and the extending L12, L45
128 loops form a shallow groove where the amphipathic helix of HelB sits (Figure 1B and C). The
129 negatively charged residues E496, E499 and D506 of HelB formed hydrogen bond and salt bridges
130 with R81, T60, Q61 and R41 (Figure 1D). The hydrophobic residues V500, C504 and F507 of
131 HelB packs against a broad hydrophobic patch formed by I83, M97, I95, V93, L87 and M57
132 (Figure 1D). The mixed basic and hydrophobic character of the RPA70N groove complements the
133 acidic-hydrophobic nature of the HelB peptide (Figure 1C and D). The interacting residues
134 correlate well with previous NMR chemical shift analysis and mutation studies regarding the
135 charged and hydrophobic residues (Guler *et al.*, 2012). On the left side of the groove, W517 of
136 HelB fits into a well-defined pocket (named side-pocket thereafter) formed by RPA70 L45 and the
137 aliphatic portions of N29, R31, R43 and S54 (Figure 1E and F). HelB residues D510, E516 and
138 T519 were stabilized by hydrogen bonding or electrostatic interactions with the side chains of R31,
139 N29 and R91. In addition, R43 forms a hydrogen bond with the main chain carbonyl group of
140 W517, further stabilizing the folded-back conformation of the HelB peptide (Figure 1F). The
141 overall binding mode of HelB to RPA70N is similar to that of p53 and DNA2 (Figure 1G). The
142 amphipathic helix of HelB overlaps with one of the p53 peptides (Fig 1G, colored orange) and the
143 DNA2 helix while the β turn coincides with part of the other p53 peptide (Fig 1G, colored yellow)
144 and the β turn region of DNA2. All three peptides have a conserved hydrophobic residue that fits
145 into the side pocket (Figure 1G). ITC titration results showed that mutation of W517 in HelB to

146 alanine reduced the affinity between HelB peptide with RPA70N from around 4 μ M to 16 μ M
147 (Figure 1H, Supplemental Figure S3), highlighting the contribution of side-pocket interactions to
148 the overall binding strength.

149

150 **Structure of the RPA70N-ATRIP peptide complex**

151 ATR is a member of the PIKK kinase family and ATR-ATRIP complex is a key regulator
152 of DNA damage checkpoint, the complex is recruited to DNA damage sites by RPA coated ssDNA
153 through ATRIP (Ball *et al.*, 2005; Zou & Elledge, 2003). We crystallized RPA70N-ATRIP fusion
154 protein in P212121 space group with one molecule in the asymmetric unit (Supplemental Table
155 S2). ATRIP peptide binds to the RPA70N it fused to and the linker region is disordered. In the
156 structure, ATRIP residues 53-68 form a 3-turn helix with 2 short flanking loops (Figure 2A and B,
157 Supplemental Figure S2A). The hydrophobic side of the helix consisted of F55, L60, L63 and L66
158 packs against the broad hydrophobic patch of the RPA70N groove (Figure 2B). The N-terminus
159 loop region of the ATRIP peptide is coordinated by R43 and R91 which form salt-bridges and
160 hydrogen bonds with D54 and main chain carbonyl groups. At the C-terminus of the peptide,
161 RPA70N R41 forms a hydrogen bond with the carbonyl group of L63 while ATRIP E62 forms a
162 hydrogen bond with the main chain amide group of K88. The direction of the ATRIP peptide is
163 inverted compared to HelB or DNA2 (Figures 2C, 1G), instead it is the same as seen in *K. lactis*
164 Ddc2 (ATRIP)-Rfa1N complex (PDB: 5OMB)(Deshpande *et al.*, 2017), both of which use a
165 hydrophobic residue (F55 or I14) at the N-terminus to anchor the peptide at the groove (Figure
166 2C). Aiming to inhibit ATRIP-RPA70N interaction in cells and based on the structure of RPA70N-
167 p53 complex, Frank *et al.* engineered a stapled helix peptide that binds to RPA70N and determined
168 co-crystal structure of the synthetic helix with RPA70N (Frank *et al.*, 2014). In their structure
169 (PDB:4NB3), the peptide is in a reversed orientation compared to our structure or the Ddc2-Rfa1N
170 structure and employs a 3,4-dichloro-substituted phenylalanine (ZCL) to bind the hydrophobic
171 pocket where F55 in ATRIP binds (Figure 2D). Mutation of F55 to alanine greatly reduced the
172 affinity of ATRIP towards RPA70N (Figure 2E, Supplemental Figure S4), indicating the
173 hydrophobic interactions mediated by F55 is critical for maintaining ATRIP-RPA70N association.

174

175 **Structures of the RPA70N-BLM peptide complexes**

176 BLM helicase is a multifunctional RecQ family helicase, it is involved in DNA-end
177 resection, restart of stalled replication forks, dissolving Holliday junctions, and processing of ultra-
178 fine DNA bridges (Bythell-Douglas & Deans, 2021; Chu & Hickson, 2009; Croteau *et al.*, 2014;
179 Kitano, 2014; Shorrocks *et al.*, 2021). It has two RPA70N binding motifs in the N-terminal
180 disordered region, namely residues 146-165 (BLMp1) and residues 550-570 (BLMp2)(Doherty *et*
181 *al.*, 2005; Shorrocks *et al.*, 2021). We fused BLMp1 and BLMp2 separately to RPA70N and
182 determined their structures (Supplemental Table S2 and S3).

183 In the structure of RPA70N-BLMp2, BLM residues 550-564 are ordered and coordinated
184 by two RPA70N molecules (Figure 3A and B, Supplemental Figure S2B). The C-terminal part of
185 the kinked peptide fits onto the RPA70N groove, with F556, I558 and F561 making contacts with
186 the hydrophobic patch of RPA70N while RPA70N residues R41, K88, R91 and R43 form salt
187 bridges or hydrogen bonds with D560, D552, D562 and the main chain carbonyl group of F561
188 (Figure 3C). Interestingly, the N-terminal half of BLMp2 latches onto the α 1 region of a nearby
189 RPA70N (Figure 3D). K16' from RPA70N forms several ionic interactions with D554, D557 and
190 D559 to neutralize the negative charges. Q15' also contributes to the interaction by forming two
191 hydrogen bonds with BLM D557. Near the tip of the BLMp2 peptide, Y551 fits onto a small
192 hydrophobic surface formed by A9', A12', I13' and I21', its main chain amide group also forms a
193 hydrogen bond with the carbonyl group of E7' (Figure 3D). Overall, it appears BLMp2 promoted
194 Loop 12 of one RPA70N to interaction with α 1' of the other RPA70N and each RPA70N provides
195 some of the binding surface for BLMp2 (Figure 3D, Supplemental Figure S5A). With ITC, we
196 found that BLMp2 binds to RPA70N with a relatively weak K_D around 18 μ M (Figure 3E,
197 Supplemental Figure S6A).

198 In the structure of RPA70N-BLMp1, BLMp1 also adopts a kinked conformation and is
199 coordinated by two RPA70N molecules (Figure 3F, Supplemental Figure S2C). However, one
200 major difference is that BLMp1 binds to RPA70N in a reversed direction compared to BLMp2,
201 HelB or DNA2 (Figures 3F-G and 1G). The N-terminal part of BLMp1 forms a one-turn helix
202 followed by a γ turn (Figure 3G). BLM W154 inserts into a hydrophobic pocket formed by
203 RPA70N V93, I95, M57, I33 and the aliphatic part of R43 and stacks with M57. BLM L148 stacks
204 on top of W154 and BLM I151 packs onto the side chains of RPA70N I33, M57 and R41 (Figure
205 3G). At the middle of the BLMp1 peptide, D156 is coordinated by K88 and the peptide forms
206 another β turn. The C-terminal part of BLMp1 adopts an extended conformation, with F160

207 anchored in the side-pocket of a nearby RPA70N' (Figure 3H). The RPA70N' residues R43', R31'
208 also interact with D158 side chain and main chain oxygen atoms of D159 and M157. The K_D of
209 the BLMp1-RPA70N complex, determined by ITC, is around 16.7 μM , similar to BLMp2 (Figure
210 3I, Supplemental Figure S6B). Mutation of F160 to alanine greatly reduced the affinity between
211 BLMp1 and RPA70N, resulting in a K_D around 85 μM (Figure 3I, Supplemental Figure S6C). The
212 two RPA70N molecules are connected by the BLMp1 peptide but not making other contacts
213 (Figure 3F, Supplemental Figure S5B). We could also present the structure as one RPA70N bound
214 to two peptides as reported for the p53 peptide (Supplemental Figure S5C). As mentioned earlier,
215 the direction of the BLMp1 peptide in the groove is reversed compared to the p53 peptide, the
216 direction of the BLMp1' peptide bound to the side pocket is the same as p53' (Supplemental Figure
217 S5C).

218

219 **Structure of the RPA70N-RMI1 peptide complex**

220 RMI1 is another RPA partner, it is a subunit in the BTR complex and mainly mediates
221 protein-protein interaction (Shorrocks *et al.*, 2021; Wang *et al.*, 2010; Xu *et al.*, 2008a; Xue *et al.*,
222 2013). The RPA70N interaction motif is located between its two OB folds (Figure 4A). In the
223 RPA70N-RMI1 complex structure, RMI1 residues 243 and 259 form two short helices with a β
224 turn in the middle (Figure 4B, Supplemental Figure S2D). The overall arrangement is similar to
225 the complex of RPA70N-BLMp1 with the N-terminal helix in the groove and the C-terminal helix
226 binding to a neighboring RPA70N' (Figures 4B, 3F). RMI1 L247 of the N-terminal helix fits into
227 a hydrophobic pocket at the bottom of the RPA70N groove (Figure 4C). L248 and L251 interact
228 with the hydrophobic side chains of RPA70N I33, M57 and the aliphatic part of R41. RMI1 D244
229 and E246 are stabilized by electrostatic interactions with R31, R43 and R91. The folded-back C-
230 terminal helix also interacts with K88 by forming several hydrogen bonds (Figure 4C). RMI1 N254
231 inserts into the side-pocket of a neighboring RPA70N' and forms a few hydrogen bonds with N29'
232 and R31' side chains (Figure 4D). D252 also interacts with S54' and R43', further strengthening
233 the interaction (Figure 4D). Analogous to RPA70N-BLMp1, the two RPA70N molecules
234 coordinating RMI1 peptide aren't making any contacts (Supplemental Figure S5D). Superposition
235 of the two structures showed that F160 and N254 point to the same direction but not at the exact
236 same location, indicating the second RPA70N molecule could adjust to different peptide sequences
237 for binding (Figure 4E). ITC titration showed that RMI1 peptide binds to RPA70N with a K_D

238 around 14.5 μ M, mutation of N254 reduced the affinity between RMI1 and RPA70N to around
239 25.6 μ M (Figure 4F, Supplemental Figure S7), which suggests the side chain of N254 probably
240 doesn't make as much contribution to the binding affinity as hydrophobic residues at this position,
241 other interactions mediated by D252 or E256 might help to stabilize RMI1-RPA70N contacts
242 (Figure 4C and D).

243

244 **Structure of the RPA70N-WRN peptide complex**

245 WRN nuclease-helicase belongs to the RecQ family of DNA helicases and play important
246 roles in DNA repair and maintenance of genome integrity (Chu & Hickson, 2009; Croteau *et al.*,
247 2014; Kitano, 2014; Mukherjee *et al.*, 2018). WRN has two tandem RPA binding motifs with the
248 same sequence localized between its nuclease and helicase domains (Doherty *et al.*, 2005; Shen *et*
249 *al.*, 2003; Yeom *et al.*, 2019) (Figure 5A). We fused one WRN motif to RPA70N and the fusion
250 construct crystalized in space group P212121 with two molecules in the asymmetry unit
251 (Supplemental Table S3). In the structure, WRN 435 to 451 formed a continuous helix and inserts
252 into the amphipathic groove of a symmetry related RPA70N (Figure 5B). Most of the WRN helix
253 is coordinated by residues in the groove, specifically E439-R31'-D443-R43'-E442-R91'-E445
254 form a series of electrostatic interactions, and M446, L449 contact the hydrophobic patch formed
255 by L87', V97', I33', M57' and I95' (Figure 5C). The N-terminal part of the each WRN peptide
256 helix interacts with the RPA70N it fused to. Y436' fits into the side-pocket and forms two
257 hydrogen bonds with R31' (Figure 5D). Compared to the RPA70N-p53 structure, the direction of
258 the WRN peptide in the groove is reversed and the position of the residues (Y436 or M44) to
259 interact with the side pocket is quite different (Figure 5E). The direction of the other WRN' peptide
260 bound to the side pocket is the same as p53' (Figure 5E). ITC titration of WRN peptide with
261 RPA70N yielded a K_D around 11.6 μ M while M466A mutation increased K_D value to around 37.4
262 μ M (Figure 5F and G, Supplemental Figure S8).

263

264 **Discussion**

265 It is well established that RPA plays important roles in DNA replication, recombination
266 and repair (Caldwell & Spies, 2020; Chen & Wold, 2014; Fanning *et al.*, 2006; Iftode *et al.*, 1999;
267 Marechal & Zou, 2015; Wold, 1997; Zou *et al.*, 2006). Many of the RPA-protein interactions are
268 mediated by the flexibly tethered RPA70N domain. However, RPA70N-partner interactions are

269 often weak and highly dynamic (Caldwell & Spies, 2020; Fanning *et al.*, 2006). As a result, high
270 resolution structures of RPA70N bound to partner peptides are rare compared to the many protein
271 RPA70N interacts with. To overcome this problem, inspired by the fusion approach first employed
272 by Bochkareva *et al.* to solve the RPA70N-p53 complex structure (Bochkareva *et al.*, 2005), we
273 systematically screened RPA70N-partner fusion constructs for crystallization and determined 6
274 complex structures of proteins involved in DNA damage response (Supplemental Table S1). These
275 structures confirmed previous findings that RPA70N binds to a partner sequence through two
276 interfaces, one is the basic and hydrophobic groove, the other is the side-pocket which is also basic
277 and hydrophobic. The side-pocket is not always used as seen in the cases of ATRIP, BLMp2 and
278 Primpol. In theory, the empty side-pocket could be the binding site of another peptide which is
279 able to binds there. This second peptide could be a not-yet identified sequence in the protein
280 RPA70N bound to or from another molecule. More importantly, we found that RPA70N could
281 coordinate peptide binding to its two interfaces through diverse means, e.g., inverted direction,
282 rotation/tilt of the bound helix, kinked conformation, dimerization, etc. The versatile ways of
283 interaction are presumably customized to the different protein sequences RPA encounters. One
284 could imagine that RPA70N must be able to recruit different partners under different scenarios.

285 Of particular interest is that many of the partner peptides appear to be able to connect two
286 RPA70N domains (Supplemental Figures S5A, B and D). If we expand the dimer observed, we
287 could get a string of RPA70N connected by BLMp1, BLMp2 or RMI1. Intriguingly, some of these
288 partner proteins themselves (BTR complex, WRN, ATRIP, p53) are often dimers or oligomers
289 (Cho *et al.*, 1994; Compton *et al.*, 2008; Deshpande *et al.*, 2017; Hodson *et al.*, 2022). So there are
290 indeed multiple copies of partner peptide in close range. One RPA usually covers around 30nt
291 ssDNA (Kim *et al.*, 1994), for medium to long ssDNA there are multiple copies of RPA bound.
292 The bridge forming nature of the partner peptides in combination with many RPAs on ssDNA
293 could greatly enhance the efficiency of partner recruitment when needed, for example, in DNA
294 damage response (Figure 6).

295 The multivalent way of interaction could also serve as an intrinsic layer of regulation in
296 addition to signal transduction pathways like protein phosphorylation. Under normal conditions
297 RPA molecules are not clustered on ssDNA and have relative weak affinity for many DNA damage
298 response proteins as shown by the dissociation constant values measured in this study and previous
299 studies (Hegnauer *et al.*, 2012; Lee *et al.*, 2018; Souza-Fagundes *et al.*, 2012; Yeom *et al.*, 2019).

300 With DNA damage, RPAs nucleate on exposed ssDNA quickly due to their sub nanomolar affinity
301 for ssDNA and recruit corresponding proteins: with sufficient copies of RPA bound to ssDNA, the
302 weak affinity of monomeric RPA70N toward target protein is now overwhelmed by multiple
303 interaction interfaces (Figure 6). Shorrocks and coworkers reported that within 5 min RPA and
304 BLM proteins accumulated rapidly to laser lines but at relatively low levels, RPA microfoci
305 appeared in ~50% of irradiated cells after 15 min as a result of DNA end-resection in S and G2
306 cells, shortly after at 20 min BLM microfoci appeared and co-localized with RPA while a BLM
307 mutant lacking both BLMp1 and BLMp2 failed to form microfoci (Shorrocks *et al.*, 2021). Studies
308 carried out by Doherty *et al.* and Lee *et al.* showed that RPA stimulates WRN helicase activity in
309 a concentration dependent manner and the helicase activity of WRN requires the binding of
310 multiple RPAs (Doherty *et al.*, 2005; Lee *et al.*, 2018). In addition, a recent study revealed that all
311 ssDNA-dependent activities of HelB are greatly stimulated by RPA-ssDNA filaments (Hormeno
312 *et al.*, 2022).

313 Since the physical association of RPA70N with DNA damage response proteins are critical
314 for maintaining genome integrity, it is also subjected to negative regulation. The N-terminus of
315 RPA32 could be hyperphosphorylated by DNA-PK, ATM, and ATR, which in turn binds to
316 RPA70N and inhibits RPA70N mediated protein recruitment (Binz *et al.*, 2003; Binz & Wold,
317 2008; Lee *et al.*, 2020). Hyperphosphorylated RPA32 disrupted RPA-p53, RPA-MRN interactions
318 (Abramova *et al.*, 1997; Bochkareva *et al.*, 2005; Oakley *et al.*, 2009). In vitro analysis showed
319 that controlling access to RPA70N through phosphorylation of RPA32 by ATR after DNA damage
320 may be a mechanism for regulating cell cycle progression without impairing DNA repair (Lindsey-
321 Boltz *et al.*, 2012). A recent study carried out by Soniat *et al.* demonstrated that RPA70N binding
322 to phosphorylated RPA32 suppressed BLM helicase interaction and inhibited DNA end resection
323 (Soniat *et al.*, 2019). Similar mechanisms are highly likely to exist for other proteins that RPA70N
324 binds. It would be interesting to find out the detail mechanism of how phosphorylated RPA32
325 compete and abrogate RPA70N interactions with a variety of DNA damage response proteins in
326 the future.

327 In short summary, the structural snapshots and biochemical analysis we present here shed
328 light on the diverse modes of RPA70N interacting with DNA damage response proteins and these
329 interactions could serve to increase the avidity of RPA70N binding.

330

331 **Materials and Methods**

332 **Cloning, protein expression and purification**

333 The DNA sequences of human RPA70N (residue 1-120), HelB (residue 496-519), ATRIP
334 (residue 53-69), BLMp1 (residue 146-165), BLMp2 (residue 550-570), RMI1 (residue 243-262)
335 and WRN (residue 435-451) were cloned into a modified pRSFDuet-1 vector (Novagen) which
336 fuses an N-terminal 6-His-sumo tag to the target gene using ClonExpress II One Step Cloning Kit
337 (Vazyme). RPA70N-peptide fusion constructs were cloned into the same expression vector.
338 RPA70N, RPA70N-peptide fusion proteins and all peptides were expressed and purified with
339 similar steps. The recombinant plasmids were transformed into *E. coli* BL21(DE3) cells (Novagen),
340 which were grown in LB medium at 37°C until the OD 600 reached 0.6–0.8. Overexpression of
341 proteins were induced by addition of 0.5 mM isopropyl β-D-thiogalactopyranoside (IPTG),
342 followed by incubation at 20°C for 14 h. Cells were harvested by centrifugation, resuspended in
343 lysis buffer (20 mM Tris-HCl, 200 mM NaCl, 20 mM imidazole, 10% glycerol, 0.3 mM TCEP, pH
344 8.0), and lysed by a high-pressure homogenizer at 4°C. The cell lysate was centrifuged at 12000
345 rpm for 40 min to obtain soluble extract. After nickel affinity pull-down, 6-His-sumo tag was
346 cleaved off by Ulp1 protease and removed by a second nickel column. Flow-through was then
347 passed through a Source 15Q column (Cytiva) and eluted with a gradient of 0–1 M NaCl in a buffer
348 of 20 mM Tris-HCl, pH 8.0, 10% glycerol, 0.3 mM TCEP. Fractions containing target proteins
349 were pooled and concentrated, then further purified on a Superdex 75 increase gel filtration column
350 (Cytiva) in a buffer containing 20 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.3 mM TCEP. The
351 purified RPA70N-peptide fusion proteins were concentrated to around 20–25 mg/ml for
352 crystallization. RPA70N and all peptides were concentrated to suitable concentrations for ITC
353 titrations.

354 **Isothermal titration calorimetry (ITC)**

355 All ITC titrations were carried out using a MicroCal PEAQ-ITC instrument (Malvern) at
356 25°C with different peptides in the syringe and RPA70N in the cell. RPA70N and peptide samples
357 were dialyzed against a working buffer consisting of 20 mM HEPES, 100 mM NaCl, 1 mM DTT,
358 pH 7.5. Partner peptides at 1.0 mM were titrated into RPA70N at 0.1 mM in the well. Each titration
359 was carried out with 19 injections spaced 150s apart, with 0.4 µl used for the first and 2.4 µl used
360 for the rest. The acquired calorimetric titration data were analyzed with Origin 7.0 software using
361 the ‘One Set of Binding Sites’ fitting model.

362 **Crystallization**

363 For all the RPA70N-peptide fusion proteins, crystallization screenings were performed
364 using 96-well plates in a sitting drop mode at 4°C. The RPA70N-HeLB fusion protein crystallized
365 in 20% (w/v) PEG 3350, 200 mM calcium chloride. The RPA70N-BLMp1 fusion protein
366 crystallized in 100 mM sodium citrate pH 5.6, 2000 mM ammonium sulfate, 200 mM
367 potassium/sodium tartrate. RPA70N-BLMp2 fusion protein crystallized in 100 mM sodium
368 acetate pH 4.6, 8% (w/v) PEG 4000. The RPA70N-ATRIP fusion protein crystallized in 100 mM
369 Tris-HCl pH 8.5, 2400 mM ammonium sulfate. The RPA70-WRN fusion protein crystallized in
370 20% (w/v) PEG 3350, 200 mM ammonium sulfate. The RPA70N-RMI1 fusion protein crystallized
371 in 100 mM sodium acetate pH 4.6, 30% (w/v) PEG 2000 MME, 200 mM ammonium sulfate.
372 Crystals were cryo-protected in their respective well solutions supplemented with 20% ethylene
373 glycol and flash-frozen in liquid nitrogen.

374 **Structure determination and refinement**

375 Diffraction data were collected at Beamline stations BL17U1, BL18U1 and BL19U1 at
376 Shanghai Synchrotron Radiation Facility (SSRF, Shanghai, China). The data were integrated and
377 scaled using XDS, the CCP4 program Pointless and Aimless (Evans & Murshudov, 2013; Kabsch,
378 2010; Winn *et al*, 2011). The structures of RPA70N-peptide fusion constructs were determined by
379 molecular replacement using the RPA70N structure from PDB 5EAY as an initial searching model
380 with Phaser (McCoy *et al*, 2007). The structural model was built using Coot (Emsley & Cowtan,
381 2004) and refined using PHENIX (Liebschner *et al*, 2019). Figures were generated using PyMOL
382 (The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC). The statistics of the
383 data collection and refinement are shown in Supplemental Table S2 and S3.

384

385 **Data Availability**

386 Atomic coordinates and structure factors for the reported crystal structures have been deposited
387 with the Protein Data Bank under accession number: 7XUT, 7XUV, 7XUW, 7XV0, 7XV1 and
388 7XV4.

389

390 **Competing interest statement**

391 None declared.

392

393 **Acknowledgements**

394 We thank the staff at SSRF BL19U1, BL17U1 and BL18U1 for X-ray diffraction data collection.
395 We thank Yuyuan Zheng, Panyu Fei and all the members of Zhou Lab for their kind help. This
396 work was supported by National Natural Science Foundation of China (31971125 to C.Z.).

397

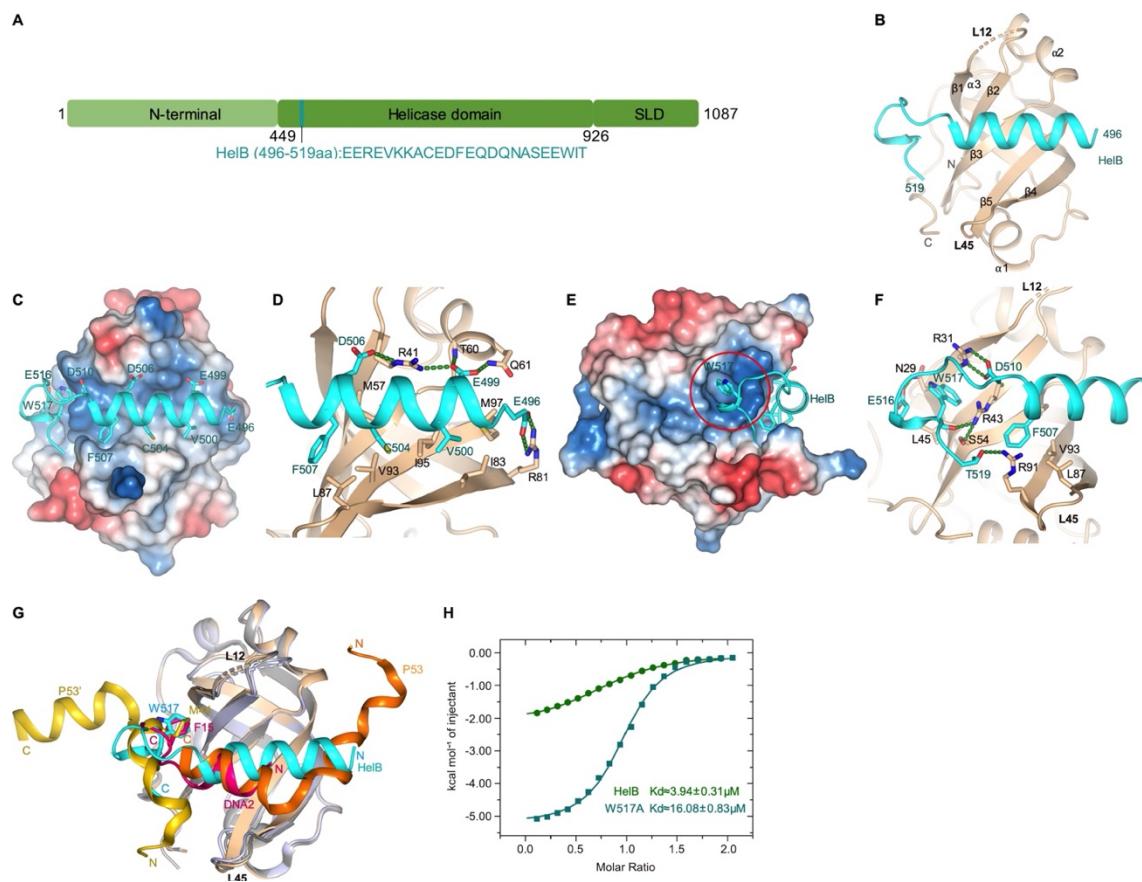
398 **Author contributions**

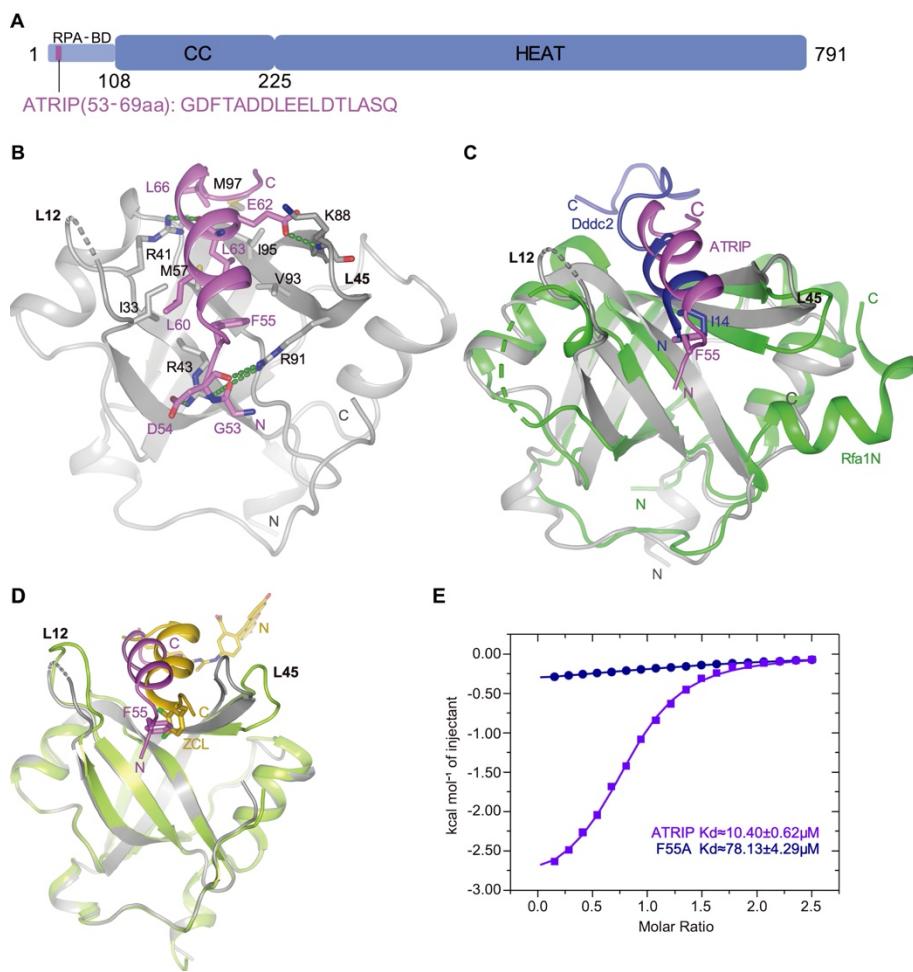
399 Y.W., N.Z. and W.F. cloned, expressed and purified proteins. Y.W. and W.F. performed ITC
400 titrations. Y.W., N.Z. and W.F. carried out crystallization experiments and collected the
401 crystallographic data. C.Z. carried out structural determination and analysis. C.Z. and Y.W. wrote
402 the manuscript.

403

404 **References**

- 405 Abramova NA, Russell J, Botchan M, Li R (1997) Interaction between replication protein A and p53 is
406 disrupted after UV damage in a DNA repair-dependent manner. *Proc Natl Acad Sci U S A* 94: 7186-7191
407 Awate S, Brosh RM, Jr. (2017) Interactive Roles of DNA Helicases and Translocases with the Single-Stranded
408 DNA Binding Protein RPA in Nucleic Acid Metabolism. *Int J Mol Sci* 18
409 Ball HL, Myers JS, Cortez D (2005) ATRIP binding to replication protein A-single-stranded DNA promotes
410 ATR-ATRIP localization but is dispensable for Chk1 phosphorylation. *Mol Biol Cell* 16: 2372-2381
411 Binz SK, Lao Y, Lowry DF, Wold MS (2003) The phosphorylation domain of the 32-kDa subunit of
412 replication protein A (RPA) modulates RPA-DNA interactions. Evidence for an intersubunit interaction. *J Biol
413 Chem* 278: 35584-35591
414 Binz SK, Wold MS (2008) Regulatory functions of the N-terminal domain of the 70-kDa subunit of replication
415 protein A (RPA). *J Biol Chem* 283: 21559-21570
416 Blackwell LJ, Borowiec JA (1994) Human replication protein A binds single-stranded DNA in two distinct
417 complexes. *Mol Cell Biol* 14: 3993-4001
418 Bochkarev A, Pfuetzner RA, Edwards AM, Frappier L (1997) Structure of the single-stranded-DNA-binding
419 domain of replication protein A bound to DNA. *Nature* 385: 176-181
420 Bochkareva E, Kaustov L, Ayed A, Yi GS, Lu Y, Pineda-Lucena A, Liao JC, Okorokov AL, Milner J,
421 Arrowsmith CH *et al* (2005) Single-stranded DNA mimicry in the p53 transactivation domain interaction with
422 replication protein A. *Proc Natl Acad Sci U S A* 102: 15412-15417
423 Bochkareva E, Korolev S, Lees-Miller SP, Bochkarev A (2002) Structure of the RPA trimerization core and its
424 role in the multistep DNA-binding mechanism of RPA. *EMBO J* 21: 1855-1863
425 Brosh RM, Jr., Li JL, Kenny MK, Karow JK, Cooper MP, Kureekattil RP, Hickson ID, Bohr VA (2000)
426 Replication protein A physically interacts with the Bloom's syndrome protein and stimulates its helicase
427 activity. *J Biol Chem* 275: 23500-23508
428 Brosh RM, Jr., Orren DK, Nehlin JO, Ravn PH, Kenny MK, Machwe A, Bohr VA (1999) Functional and
429 physical interaction between WRN helicase and human replication protein A. *J Biol Chem* 274: 18341-18350
430 Bythell-Douglas R, Deans AJ (2021) A Structural Guide to the Bloom Syndrome Complex. *Structure* 29: 99-
431 113
432 Caldwell CC, Spies M (2020) Dynamic elements of replication protein A at the crossroads of DNA replication,
433 recombination, and repair. *Crit Rev Biochem Mol Biol* 55: 482-507


- 434 Cejka P, Cannavo E, Polaczek P, Masuda-Sasa T, Pokharel S, Campbell JL, Kowalczykowski SC (2010) DNA
435 end resection by Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2. *Nature* 467: 112-
436 116
- 437 Chen R, Wold MS (2014) Replication protein A: single-stranded DNA's first responder: dynamic DNA-
438 interactions allow replication protein A to direct single-strand DNA intermediates into different pathways for
439 synthesis or repair. *Bioessays* 36: 1156-1161
- 440 Cho Y, Gorina S, Jeffrey PD, Pavletich NP (1994) Crystal structure of a p53 tumor suppressor-DNA complex:
441 understanding tumorigenic mutations. *Science* 265: 346-355
- 442 Chu WK, Hickson ID (2009) RecQ helicases: multifunctional genome caretakers. *Nat Rev Cancer* 9: 644-654
- 443 Compton SA, Tolun G, Kamath-Loeb AS, Loeb LA, Griffith JD (2008) The Werner syndrome protein binds
444 replication fork and Holliday junction DNAs as an oligomer. *J Biol Chem* 283: 24478-24483
- 445 Croteau DL, Popuri V, Opresko PL, Bohr VA (2014) Human RecQ helicases in DNA repair, recombination,
446 and replication. *Annu Rev Biochem* 83: 519-552
- 447 Deshpande I, Seeber A, Shimada K, Keusch JJ, Gut H, Gasser SM (2017) Structural Basis of Mec1-Ddc2-RPA
448 Assembly and Activation on Single-Stranded DNA at Sites of Damage. *Mol Cell* 68: 431-445 e435
- 449 Doherty KM, Sommers JA, Gray MD, Lee JW, von Kobbe C, Thoma NH, Kureekattil RP, Kenny MK, Brosh
450 RM, Jr. (2005) Physical and functional mapping of the replication protein A interaction domain of the Werner
451 and Bloom syndrome helicases. *J Biol Chem* 280: 29494-29505
- 452 Dornreiter I, Erdile LF, Gilbert IU, von Winkler D, Kelly TJ, Fanning E (1992) Interaction of DNA
453 polymerase alpha-primase with cellular replication protein A and SV40 T antigen. *EMBO J* 11: 769-776
- 454 Dutta A, Ruppert JM, Aster JC, Winchester E (1993) Inhibition of DNA replication factor RPA by p53. *Nature*
455 365: 79-82
- 456 Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. *Acta Crystallogr D Biol
457 Crystallogr* 60: 2126-2132
- 458 Evans PR, Murshudov GN (2013) How good are my data and what is the resolution? *Acta Crystallogr D Biol
459 Crystallogr* 69: 1204-1214
- 460 Fairman MP, Stillman B (1988) Cellular factors required for multiple stages of SV40 DNA replication in vitro.
461 *EMBO J* 7: 1211-1218
- 462 Fan J, Pavletich NP (2012) Structure and conformational change of a replication protein A heterotrimer bound
463 to ssDNA. *Genes Dev* 26: 2337-2347
- 464 Fanning E, Klimovich V, Nager AR (2006) A dynamic model for replication protein A (RPA) function in
465 DNA processing pathways. *Nucleic Acids Res* 34: 4126-4137
- 466 Flynn RL, Zou L (2010) Oligonucleotide/oligosaccharide-binding fold proteins: a growing family of genome
467 guardians. *Crit Rev Biochem Mol Biol* 45: 266-275
- 468 Frank AO, Vangamudi B, Feldkamp MD, Souza-Fagundes EM, Luzwick JW, Cortez D, Olejniczak ET,
469 Waterson AG, Rossanese OW, Chazin WJ *et al* (2014) Discovery of a potent stapled helix peptide that binds to
470 the 70N domain of replication protein A. *J Med Chem* 57: 2455-2461
- 471 Gravel S, Chapman JR, Magill C, Jackson SP (2008) DNA helicases Sgs1 and BLM promote DNA double-
472 strand break resection. *Genes Dev* 22: 2767-2772
- 473 Guilliam TA, Brissett NC, Ehlinger A, Keen BA, Kolesar P, Taylor EM, Bailey LJ, Lindsay HD, Chazin WJ,
474 Doherty AJ (2017) Molecular basis for PrimPol recruitment to replication forks by RPA. *Nat Commun* 8:
475 15222
- 476 Guler GD, Liu H, Vaithiyalingam S, Arnett DR, Kremmer E, Chazin WJ, Fanning E (2012) Human DNA
477 helicase B (HDHB) binds to replication protein A and facilitates cellular recovery from replication stress. *J
478 Biol Chem* 287: 6469-6481
- 479 Gupta R, Sharma S, Sommers JA, Kenny MK, Cantor SB, Brosh RM, Jr. (2007) FANCJ (BACH1) helicase
480 forms DNA damage inducible foci with replication protein A and interacts physically and functionally with the
481 single-stranded DNA-binding protein. *Blood* 110: 2390-2398
- 482 Hazele L, Zafar MK, Chauhan MZ, Byrd AK (2020) Genome Maintenance by DNA Helicase B. *Genes
483 (Basel)* 11
- 484 Heglauer AM, Hustedt N, Shimada K, Pike BL, Vogel M, Amsler P, Rubin SM, van Leeuwen F, Guenole A,
485 van Attikum H *et al* (2012) An N-terminal acidic region of Sgs1 interacts with Rpa70 and recruits Rad53
486 kinase to stalled forks. *EMBO J* 31: 3768-3783


- 487 Hodson C, Low JKK, van Twent S, Jones SE, Swuec P, Murphy V, Tsukada K, Fawkes M, Bythell-Douglas R,
488 Davies A *et al* (2022) Mechanism of Bloom syndrome complex assembly required for double Holliday
489 junction dissolution and genome stability. *Proc Natl Acad Sci U S A* 119
490 Hormeno S, Wilkinson OJ, Aicart-Ramos C, Kuppa S, Antony E, Dillingham MS, Moreno-Herrero F (2022)
491 Human HELB is a processive motor protein that catalyzes RPA clearance from single-stranded DNA. *Proc
492 Natl Acad Sci U S A* 119: e2112376119
493 Iftode C, Daniely Y, Borowiec JA (1999) Replication protein A (RPA): the eukaryotic SSB. *Crit Rev Biochem
494 Mol Biol* 34: 141-180
495 Jacobs DM, Lipton AS, Isern NG, Daughdrill GW, Lowry DF, Gomes X, Wold MS (1999) Human replication
496 protein A: global fold of the N-terminal RPA-70 domain reveals a basic cleft and flexible C-terminal linker. *J
497 Biomol NMR* 14: 321-331
498 Kabsch W (2010) Xds. *Acta Crystallogr D Biol Crystallogr* 66: 125-132
499 Kang D, Lee S, Ryu KS, Cheong HK, Kim EH, Park CJ (2018) Interaction of replication protein A with two
500 acidic peptides from human Bloom syndrome protein. *FEBS Lett* 592: 547-558
501 Kim C, Paulus BF, Wold MS (1994) Interactions of human replication protein A with oligonucleotides.
502 *Biochemistry* 33: 14197-14206
503 Kim C, Snyder RO, Wold MS (1992) Binding properties of replication protein A from human and yeast cells.
504 *Mol Cell Biol* 12: 3050-3059
505 Kitano K (2014) Structural mechanisms of human RecQ helicases WRN and BLM. *Front Genet* 5: 366
506 Lee M, Shin S, Uhm H, Hong H, Kirk J, Hyun K, Kulikowicz T, Kim J, Ahn B, Bohr VA *et al* (2018) Multiple
507 RPAs make WRN syndrome protein a superhelicase. *Nucleic Acids Res* 46: 4689-4698
508 Lee S, Heo J, Park CJ (2020) Determinants of replication protein A subunit interactions revealed using a
509 phosphomimetic peptide. *J Biol Chem* 295: 18449-18458
510 Li R, Botchan MR (1993) The acidic transcriptional activation domains of VP16 and p53 bind the cellular
511 replication protein A and stimulate in vitro BPV-1 DNA replication. *Cell* 73: 1207-1221
512 Liebschner D, Afonine PV, Baker ML, Bunkoczi G, Chen VB, Croll TI, Hintze B, Hung LW, Jain S, McCoy
513 AJ *et al* (2019) Macromolecular structure determination using X-rays, neutrons and electrons: recent
514 developments in Phenix. *Acta Crystallogr D Struct Biol* 75: 861-877
515 Lindsey-Boltz LA, Reardon JT, Wold MS, Sancar A (2012) In vitro analysis of the role of replication protein
516 A (RPA) and RPA phosphorylation in ATR-mediated checkpoint signaling. *J Biol Chem* 287: 36123-36131
517 Liu Y, Vaithiyalingam S, Shi Q, Chazin WJ, Zinkel SS (2011) BID binds to replication protein A and
518 stimulates ATR function following replicative stress. *Mol Cell Biol* 31: 4298-4309
519 Marechal A, Zou L (2015) RPA-coated single-stranded DNA as a platform for post-translational modifications
520 in the DNA damage response. *Cell Res* 25: 9-23
521 McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser
522 crystallographic software. *J Appl Crystallogr* 40: 658-674
523 Mukherjee S, Sinha D, Bhattacharya S, Srinivasan K, Abdisalaam S, Asaithamby A (2018) Werner Syndrome
524 Protein and DNA Replication. *Int J Mol Sci* 19
525 Murzin AG (1993) OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional
526 solution for non-homologous sequences. *EMBO J* 12: 861-867
527 Namiki Y, Zou L (2006) ATRIP associates with replication protein A-coated ssDNA through multiple
528 interactions. *Proc Natl Acad Sci U S A* 103: 580-585
529 Nimonkar AV, Genschel J, Kinoshita E, Polaczek P, Campbell JL, Wyman C, Modrich P, Kowalczykowski
530 SC (2011) BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection
531 machineries for human DNA break repair. *Genes Dev* 25: 350-362
532 Ning B, Feldkamp MD, Cortez D, Chazin WJ, Friedman KL, Fanning E (2015) Simian virus Large T antigen
533 interacts with the N-terminal domain of the 70 kD subunit of Replication Protein A in the same mode as
534 multiple DNA damage response factors. *PLoS One* 10: e0116093
535 Oakley GG, Tillison K, Opiyo SA, Glanzer JG, Horn JM, Patrick SM (2009) Physical interaction between
536 replication protein A (RPA) and MRN: involvement of RPA2 phosphorylation and the N-terminus of RPA1.
537 *Biochemistry* 48: 7473-7481
538 Robison JG, Elliott J, Dixon K, Oakley GG (2004) Replication protein A and the Mre11.Rad50.Nbs1 complex
539 co-localize and interact at sites of stalled replication forks. *J Biol Chem* 279: 34802-34810

- 540 Shen JC, Gray MD, Oshima J, Loeb LA (1998) Characterization of Werner syndrome protein DNA helicase
541 activity: directionality, substrate dependence and stimulation by replication protein A. *Nucleic Acids Res* 26:
542 2879-2885
543 Shen JC, Lao Y, Kamath-Loeb A, Wold MS, Loeb LA (2003) The N-terminal domain of the large subunit of
544 human replication protein A binds to Werner syndrome protein and stimulates helicase activity. *Mech Ageing
545 Dev* 124: 921-930
546 Shorrocks AK, Jones SE, Tsukada K, Morrow CA, Belblidia Z, Shen J, Vendrell I, Fischer R, Kessler BM,
547 Blackford AN (2021) The Bloom syndrome complex senses RPA-coated single-stranded DNA to restart
548 stalled replication forks. *Nat Commun* 12: 585
549 Soniat MM, Myler LR, Kuo HC, Paull TT, Finkelstein IJ (2019) RPA Phosphorylation Inhibits DNA
550 Resection. *Mol Cell* 75: 145-153 e145
551 Souza-Fagundes EM, Frank AO, Feldkamp MD, Dorset DC, Chazin WJ, Rossanese OW, Olejniczak ET, Fesik
552 SW (2012) A high-throughput fluorescence polarization anisotropy assay for the 70N domain of replication
553 protein A. *Anal Biochem* 421: 742-749
554 Suhasini AN, Sommers JA, Mason AC, Voloshin ON, Camerini-Otero RD, Wold MS, Brosh RM, Jr. (2009)
555 FANCJ helicase uniquely senses oxidative base damage in either strand of duplex DNA and is stimulated by
556 replication protein A to unwind the damaged DNA substrate in a strand-specific manner. *J Biol Chem* 284:
557 18458-18470
558 Taneja P, Gu J, Peng R, Carrick R, Uchiumi F, Ott RD, Gustafson E, Podust VN, Fanning E (2002) A
559 dominant-negative mutant of human DNA helicase B blocks the onset of chromosomal DNA replication. *J
560 Biol Chem* 277: 40853-40861
561 Tkac J, Xu G, Adhikary H, Young JTF, Gallo D, Escribano-Diaz C, Krietsch J, Orthwein A, Munro M, Sol W
562 *et al* (2016) HELB Is a Feedback Inhibitor of DNA End Resection. *Mol Cell* 61: 405-418
563 Wan L, Lou J, Xia Y, Su B, Liu T, Cui J, Sun Y, Lou H, Huang J (2013) hPrimpol1/CCDC111 is a human
564 DNA primase-polymerase required for the maintenance of genome integrity. *EMBO Rep* 14: 1104-1112
565 Wang F, Yang Y, Singh TR, Busygina V, Guo R, Wan K, Wang W, Sung P, Meetei AR, Lei M (2010) Crystal
566 structures of RMI1 and RMI2, two OB-fold regulatory subunits of the BLM complex. *Structure* 18: 1159-1170
567 Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG,
568 McCoy A *et al* (2011) Overview of the CCP4 suite and current developments. *Acta Crystallogr D Biol
569 Crystallogr* 67: 235-242
570 Wold MS (1997) Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for
571 eukaryotic DNA metabolism. *Annu Rev Biochem* 66: 61-92
572 Wood RD, Robins P, Lindahl T (1988) Complementation of the xeroderma pigmentosum DNA repair defect in
573 cell-free extracts. *Cell* 53: 97-106
574 Wu X, Shell SM, Zou Y (2005) Interaction and colocalization of Rad9/Rad1/Hus1 checkpoint complex with
575 replication protein A in human cells. *Oncogene* 24: 4728-4735
576 Xu D, Guo R, Sobeck A, Bachrati CZ, Yang J, Enomoto T, Brown GW, Hoatlin ME, Hickson ID, Wang W
577 (2008a) RMI, a new OB-fold complex essential for Bloom syndrome protein to maintain genome stability.
578 *Genes Dev* 22: 2843-2855
579 Xu X, Vaithiyalingam S, Glick GG, Mordes DA, Chazin WJ, Cortez D (2008b) The basic cleft of RPA70N
580 binds multiple checkpoint proteins, including RAD9, to regulate ATR signaling. *Mol Cell Biol* 28: 7345-7353
581 Xue X, Raynard S, Busygina V, Singh AK, Sung P (2013) Role of replication protein A in double Holliday
582 junction dissolution mediated by the BLM-Topo IIIalpha-RMI1-RMI2 protein complex. *J Biol Chem* 288:
583 14221-14227
584 Yates LA, Aramayo RJ, Pokhrel N, Caldwell CC, Kaplan JA, Perera RL, Spies M, Antony E, Zhang X (2018)
585 A structural and dynamic model for the assembly of Replication Protein A on single-stranded DNA. *Nat
586 Commun* 9: 5447
587 Yeom G, Kim J, Park CJ (2019) Investigation of the core binding regions of human Werner syndrome and
588 Fanconi anemia group J helicases on replication protein A. *Sci Rep* 9: 14016
589 Zhou C, Pourmal S, Pavletich NP (2015) Dna2 nuclease-helicase structure, mechanism and regulation by Rpa.
590 *Elife* 4
591 Zhu Z, Chung WH, Shim EY, Lee SE, Ira G (2008) Sgs1 helicase and two nucleases Dna2 and Exo1 resect
592 DNA double-strand break ends. *Cell* 134: 981-994

- 593 Zou L, Elledge SJ (2003) Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes.
594 *Science* 300: 1542-1548
595 Zou Y, Liu Y, Wu X, Shell SM (2006) Functions of human replication protein A (RPA): from DNA
596 replication to DNA damage and stress responses. *J Cell Physiol* 208: 267-273
597
- 598
- 599
- 600
- 601
- 602
- 603
- 604
- 605
- 606
- 607
- 608
- 609
- 610
- 611
- 612
- 613
- 614
- 615
- 616
- 617
- 618
- 619
- 620
- 621

622 **Figures**

644
645

Fig. 2: Structure of RPA70N-ATRIP complex.

646

A. Linear domain diagram of ATRIP showing the position and sequence of RPA70N interacting motif.

647
648
649

B. Ribbon representation of RPA70N-ATRIP crystal structure, ATRIP peptide is colored in violet and RPA70N in light grey. Important interacting residues are shown as sticks, green dashed lines indicate hydrogen bonds or salt bridges.

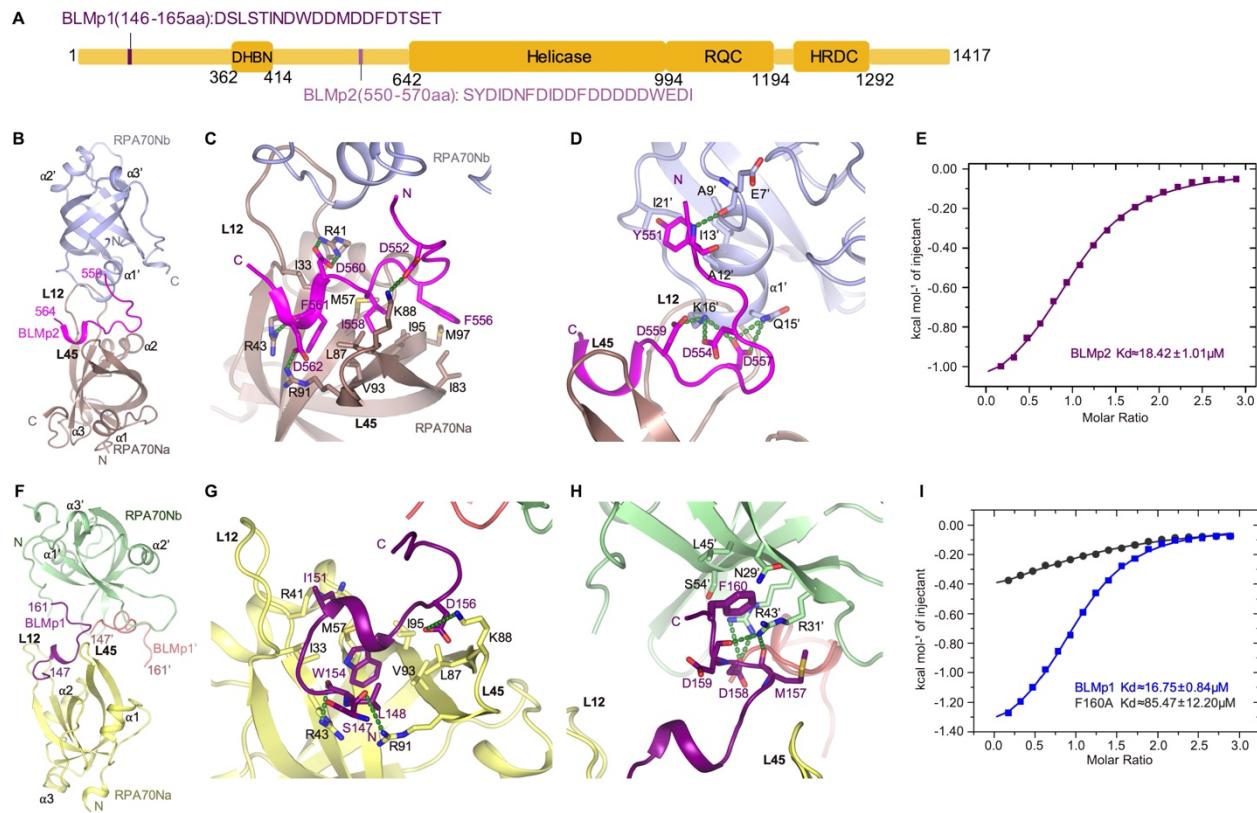
650
651
652

C. Alignment of RPA70N-ATRIP structure with Ddc2-Rfa1N structure (PDB: 5OMB) showing that ATRIP and Ddc2 bind to RPA70N in the same direction. RPA70N-ATRIP are colored as in B. Ddc2 is colored in green and Rfa1N is colored in blue.

653
654
655

D. Superposition of RPA70N-ATRIP structure with RPA70N-stapled peptide complex (PDB: 4NB3), for 4NB3 RPA70N is colored in light-green and the stapled peptide is colored in yellow. ZCL is 3,4-dichloro-substituted phenylalanine. The direction of the stapled peptide is reversed compared to ATRIP.

656
657
658


E. ITC titration results of WT ATRIP peptide (53-69aa) or F55A mutant peptide with RPA70N.

659

660
661

662

663

Fig. 3: Structures of two RPA70N-BLM complexes.

664
665

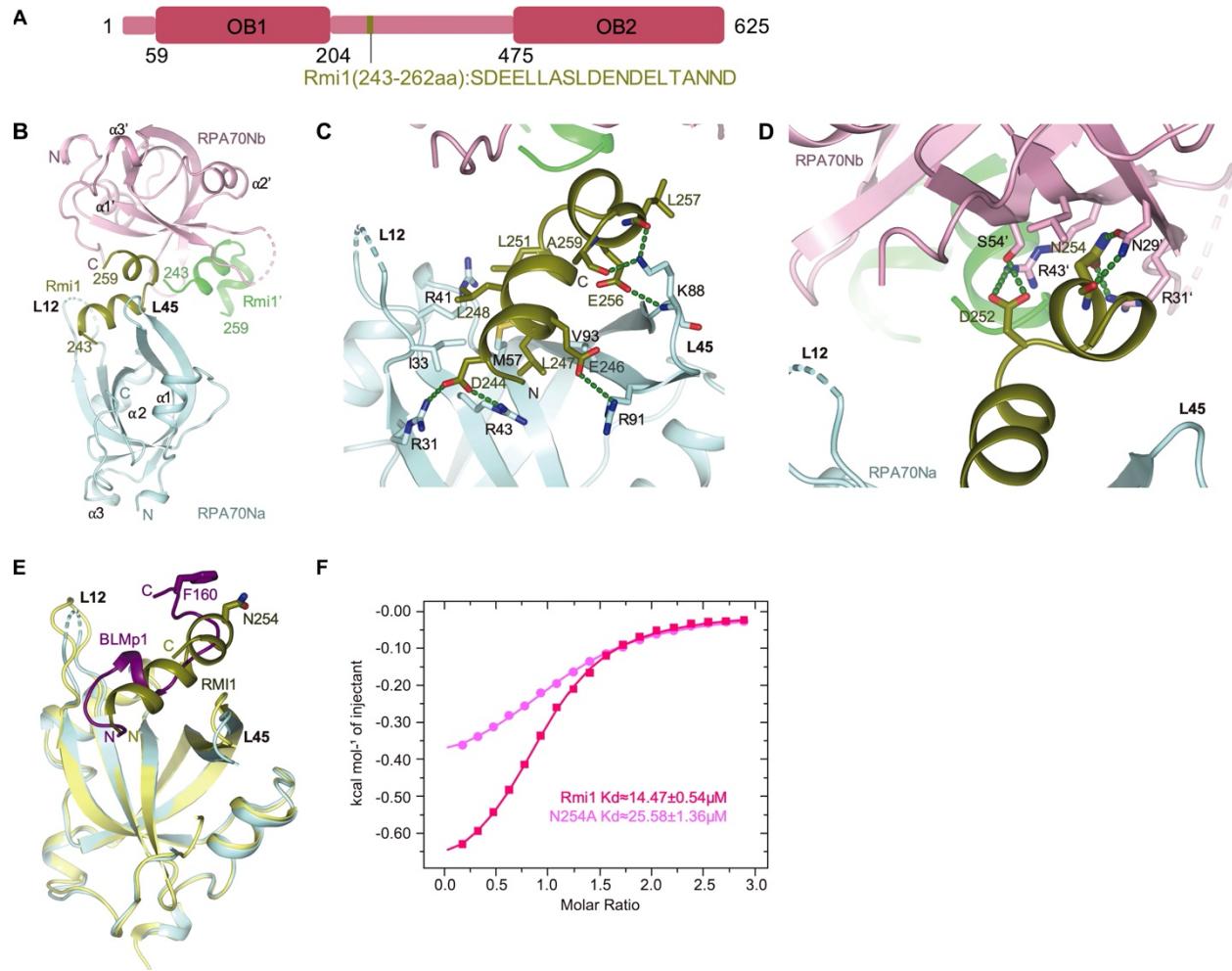
666 **A.** Linear domain diagram of BLM showing the position and sequence of RPA70N interacting
667 motifs.

668 **B.** Ribbon representation of RPA70N-BLMp2 crystal structure, the BLMp2 peptide is coordinated
669 by two RPA70N molecules. BLMp2 is colored in magenta and the two RPA70N molecules are
670 colored in chocolate and light-blue, respectively. The other BLMp2 peptide in RPA70Nb is
671 colored pink.

672 **C.** Close-up view of BLMp2 interacting with the RPA70Na groove, interacting residues are shown
673 as sticks, green dashed lines indicate hydrogen bonds or salt bridges.

674 **D.** Close-up view of BLMp2 interacting with RPA70Nb α 1, interacting residues are shown as
675 sticks, green dashed lines indicate hydrogen bonds or salt bridges.

676 **E.** ITC titration result of WT BLMp2 peptide (550-570aa) with RPA70N.


677 **F.** Ribbon representation of RPA70N-BLMp1 crystal structure, the BLMp1 peptide is coordinated
678 by two RPA70N molecules. BLMp1 is colored in purple and the two RPA70N molecules are
679 colored in yellow and light-green, respectively.

680 **G.** Close-up view of BLMp1 interacting with the RPA70Na groove, interacting residues are shown
681 as sticks, green dashed lines indicate hydrogen bonds or salt bridges.

682 **H.** Close-up view of BLMp1 interacting with RPA70Nb side-pocket, interacting residues are
683 shown as sticks, green dashed lines indicate hydrogen bonds or salt bridges.

684 **I.** ITC titration results of WT BLMp1 peptide (146-165aa) or F160A mutant peptide with RPA70N.

685
686
687

688
689

Fig. 4: Structure of RPA70N-RMI1 complex.

690

691

A. Linear domain diagram of RMI1 showing the position and sequence of RPA70N interacting motif.

692

B. Ribbon representation of RPA70N-RMI1 crystal structure, the RMI1 peptide is coordinated by two RPA70N molecules. RMI1 is colored in olive and the two RPA70N molecules are colored in pale-cyan and light-pink respectively. The other RMI1 peptide in RPA70Nb is colored green.

693

C. Close-up view of RMI1 interacting with the RPA70Na groove, interacting residues are shown as sticks, green dashed lines indicate hydrogen bonds or salt bridges.

694

D. Close-up view of RMI1 interacting with RPA70Nb side-pocket, interacting residues are shown as sticks, green dashed lines indicate hydrogen bonds or salt bridges.

695

E. Superposition of RPA70N-RMI1 structure with RPA70N-BLMp1 complex, RMI1 and BLMp1 interact with RPA70N in a similar manner.

696

F. ITC titration results of WT RMI1 peptide (243-262aa) or N254A mutant peptide with RPA70N.

697

698

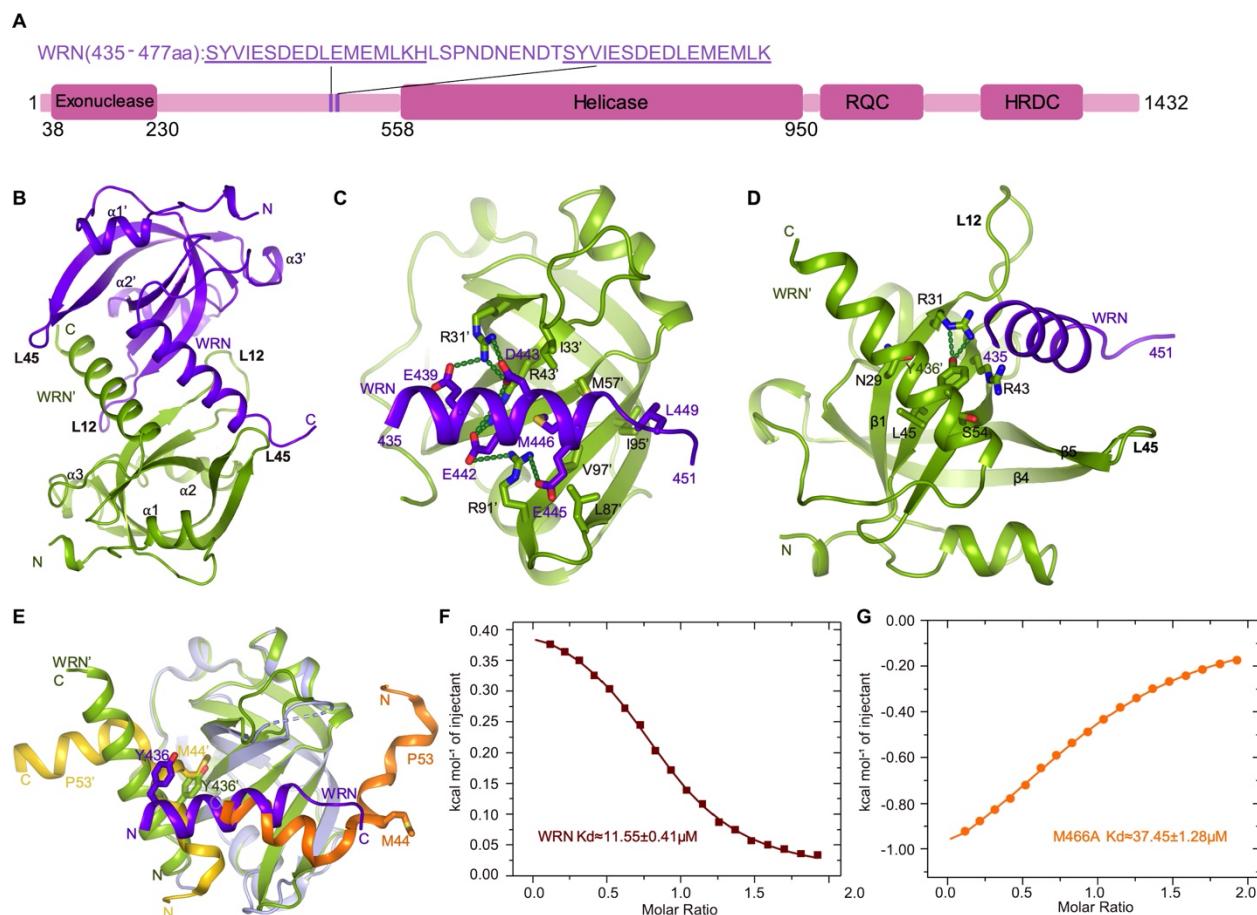
699

700

701

702

703


704

705

706

707

708

Fig. 5: Structure of RPA70N-WRN complex.

709

710

711

712

A. Linear domain diagram of WRN showing the position and sequence of RPA70N interacting motifs.

713

B. Ribbon representation of RPA70N-WRN crystal structure, the fused WRN peptide forms an α helix and inserts into the groove of the symmetry-related RPA70N molecule. The two RPA70N molecules and linked WRN peptides are colored in purple-blue and light-green, respectively.

714

C. Close-up view of WRN interacting with the RPA70N' groove, interacting residues are shown as sticks, green dashed lines indicate hydrogen bonds or salt bridges.

715

D. Close-up view of WRN' interacting with RPA70N' side-pocket, interacting residues are shown as sticks, green dashed lines indicate hydrogen bonds or salt bridges.

716

E. Superposition of RPA70N-WRN structure with RPA70N-p53 complex (PDB:2b3G), WRN' (Y436') binds to the side-pocket similarly to p53' (M44'), while Y436 in WRN and M44 in p53 are in different locations due to the inverted orientation of WRN and p53 in RPA70N groove.

717

F. ITC titration result of WT WRN peptide (435-451aa) with RPA70N, the titration appears to be endothermic.

718

G. ITC titration result of M466A mutant WRN peptide (435-451aa) with RPA70N.

719

720

721

722

723

724

725

726

727

728

729

730

731

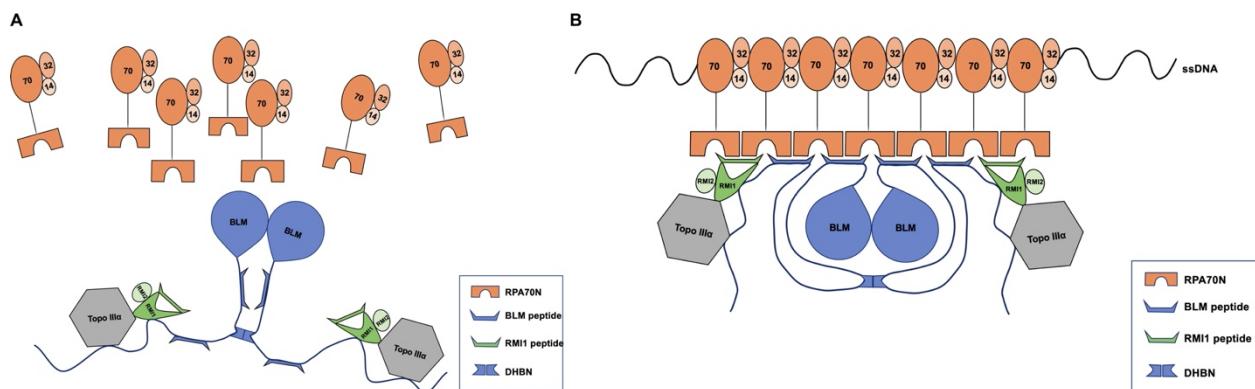


Fig. 6: A model of RPA-ssDNA mediated BTR complex recruitment.

732

733

734

735

736 **Fig. 6: A model of RPA-ssDNA mediated BTR complex recruitment.**

737

738 **A.** Without ssDNA, RPA molecules are not associated with the BTR complex due to relative weak
739 affinity between RPA70N and the interacting peptide sequences in the BTR complex.

740 **B.** Multiple RPA molecules nucleate on ssDNA, the increased avidity of RPA70N promotes BTR
741 peptides to bind, bound peptides in turn promotes RPA70N association.

742

743

744

745

746

747

748

749

750

751

752

753

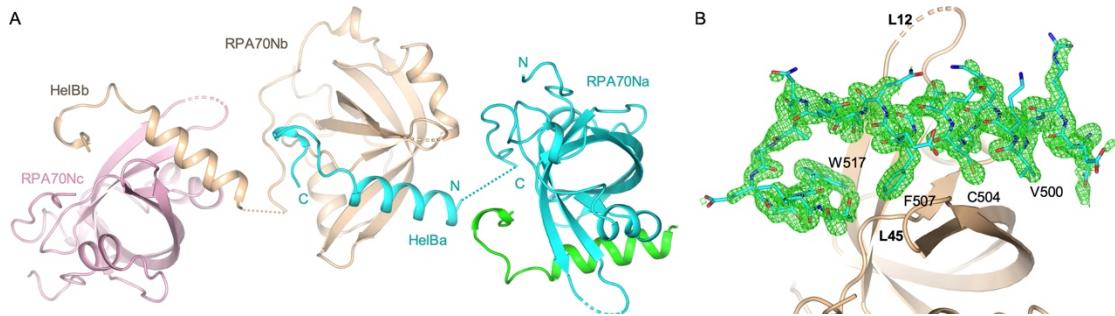
754

755

756

757

758 **Supplementary Information for:**


759
760
761

762 **Structural characterization of human RPA70N association with**
763 **DNA damage response proteins**

764

765 **Yeyao Wu^{1#}, Ning Zang^{1#}, Wangmi Fu^{1#}, and Chun Zhou^{1*}**

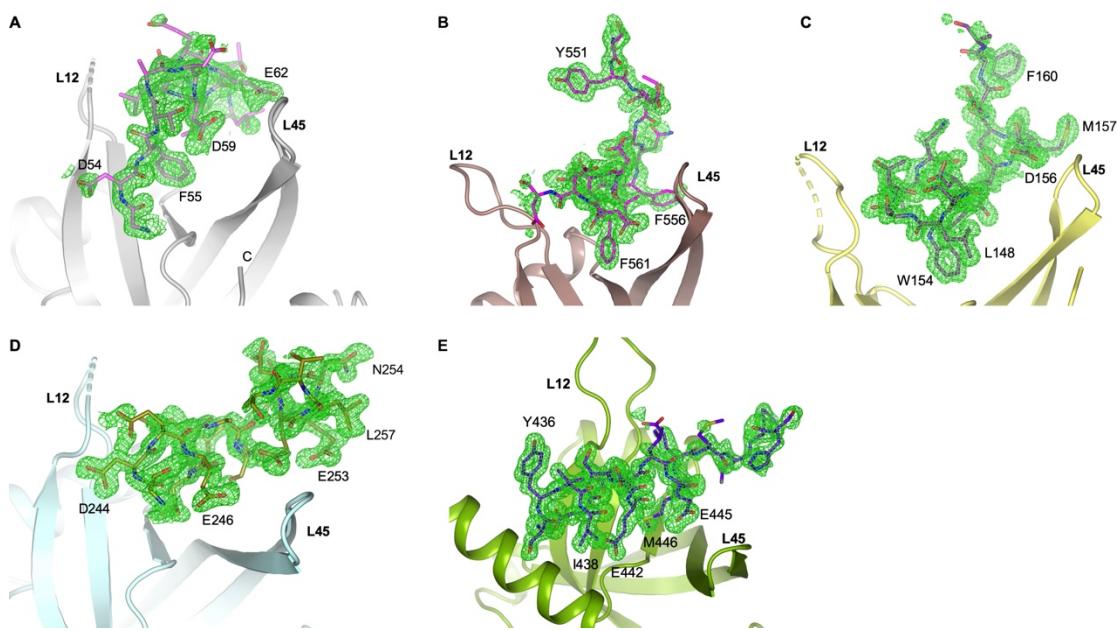
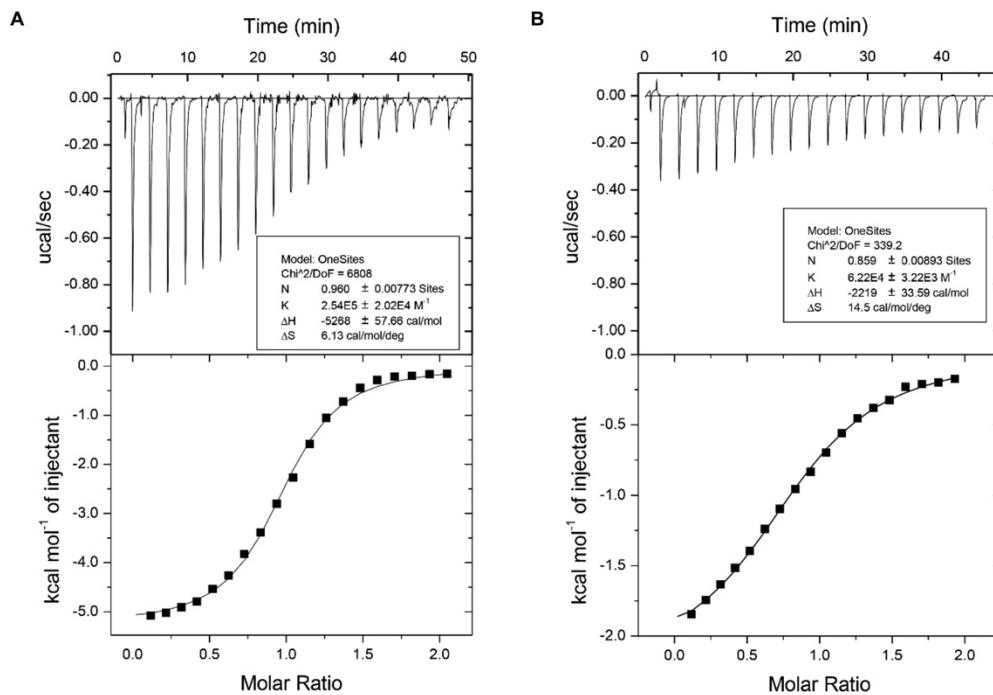

766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797

Fig. S1: Analysis of RPA70N-HelB complex structure.

A. Crystal packing analysis indicates that HelB peptide from one RPA70N-HelB fusion molecule binds to the RPA70N portion of a neighboring molecule in the crystal.

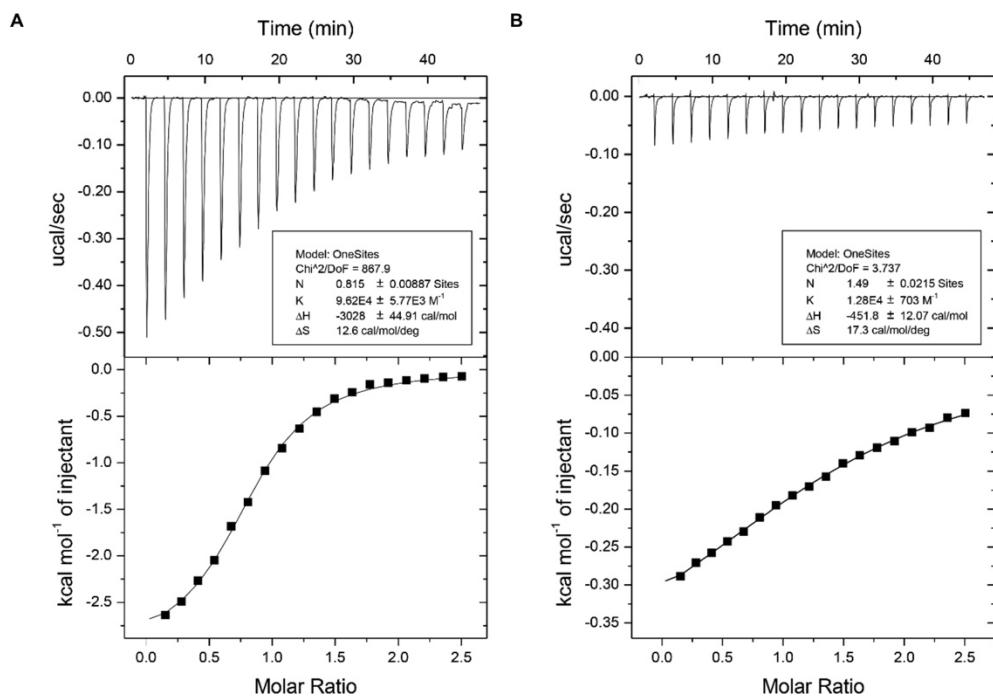
B. *mFo-DFc* electron density map (green mesh) of HelB peptide contoured at 2.0 σ .

Fig. S2: Electron density omit map of RPA70N-peptide complexes.


A. *mFo-DFc* electron density map (green mesh) of ATRIP peptide contoured at 2.0 σ .

B. *mFo-DFc* electron density map (green mesh) of BLMp2 peptide contoured at 2.0 σ .

C. *mFo-DFc* electron density map (green mesh) of BLMp1 peptide contoured at 2.0 σ .


D. *mFo-DFc* electron density map (green mesh) of RMI1 peptide contoured at 2.0 σ .

E. *mFo-DFc* electron density map (green mesh) of WRN peptide contoured at 2.0 σ .

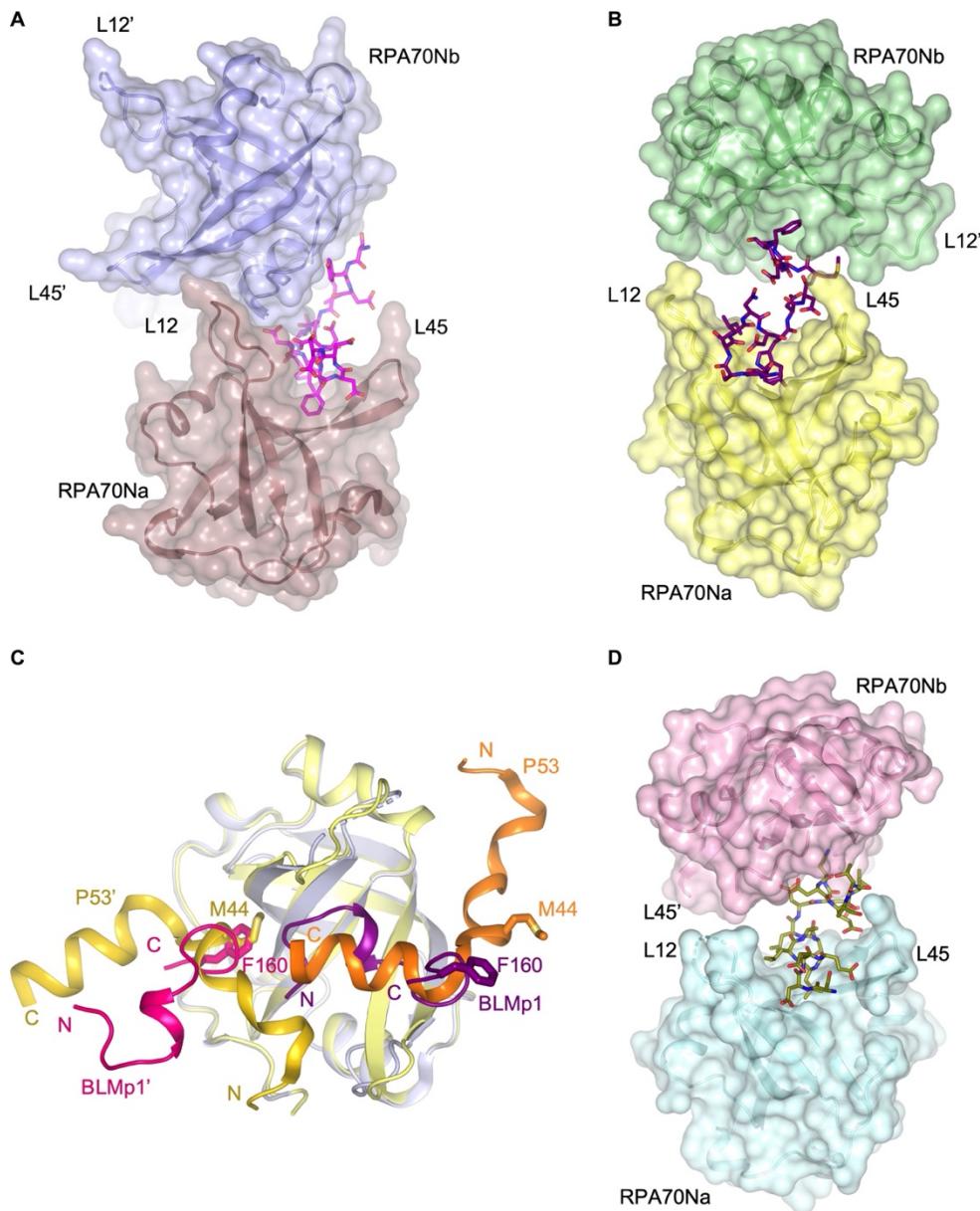
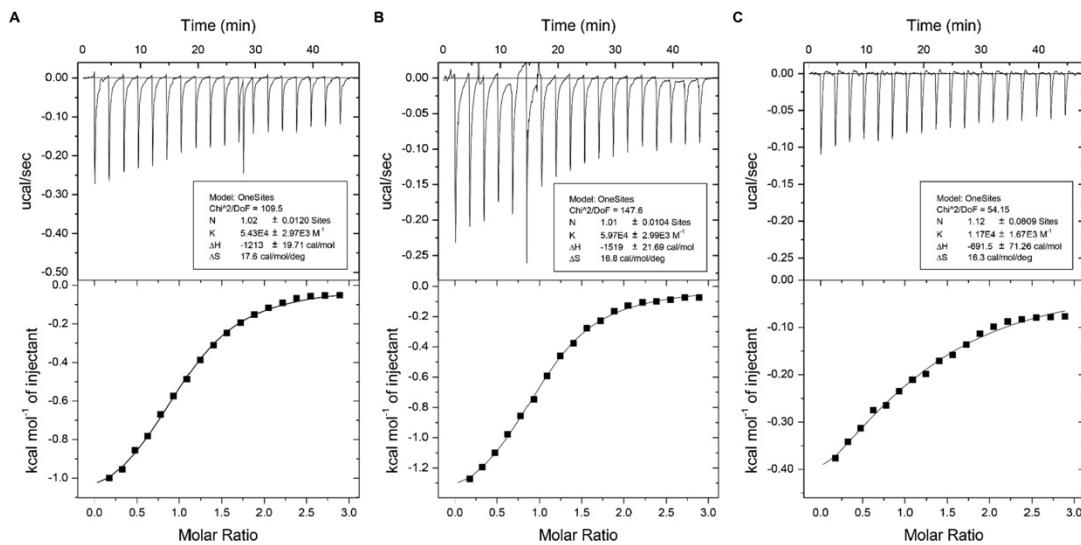

820
821
822
823
824

Fig. S3: ITC titration profiles of (A) WT HelB (496-519aa) peptide or (B) W517A mutant peptide with RPA70N.

825
826
827
828

Fig. S4: ITC titration profiles of (A) WT ATRIP peptide (53-69aa) or (B) F55A mutant peptide with RPA70N.



829

830

831 **Fig. S5: Analysis of BLM, RMI1 peptide-RPA70N complex structures.**

- 832 **A.** Surface representation of the two RPA70N molecules interacting with BLMp2 peptide which
833 is displayed as magenta-colored sticks.
- 834 **B.** Surface representation of the two RPA70N molecules interacting with BLMp1 peptide which
835 is displayed as purple-colored sticks.
- 836 **C.** Superposition of RPA70N-BLMp1 structure with RPA70N-p53 complex (PDB:2B3G),
837 showing one RPA70N with two peptides bound.
- 838 **D.** Surface representation of the two RPA70N molecules interacting with RMI1 peptide which is
839 displayed as olive-colored sticks.

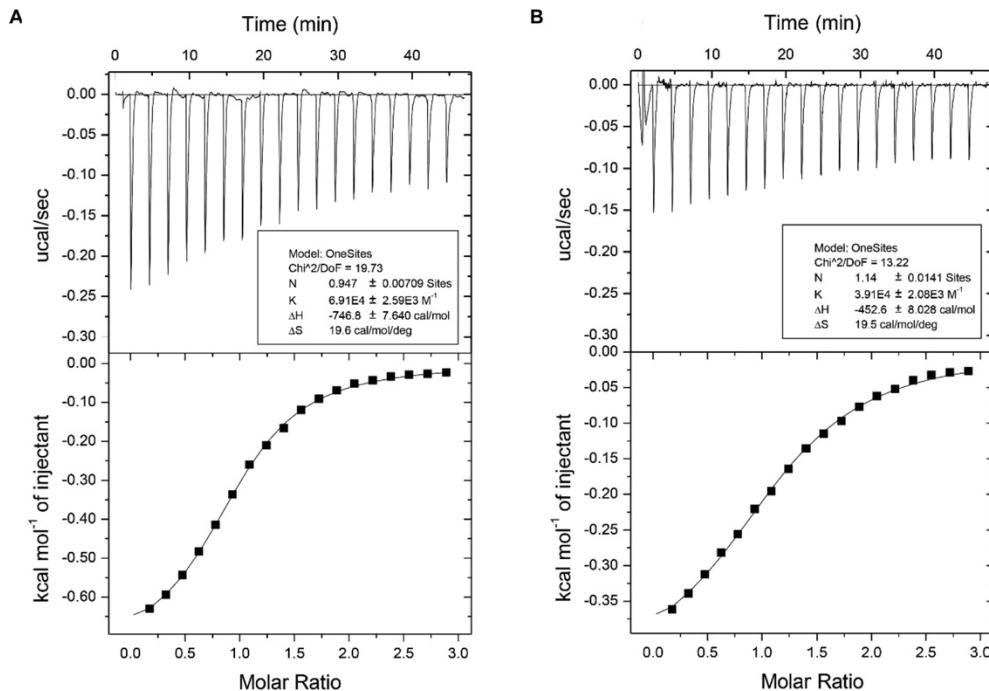

840

Fig. S6: ITC titration profiles of (A) WT BLMp2 peptide (550-570aa), (B) WT BLMp1 peptide (146-165aa) or (C) BLMp1 F160A mutant peptide with RPA70N.

841

842

843

844

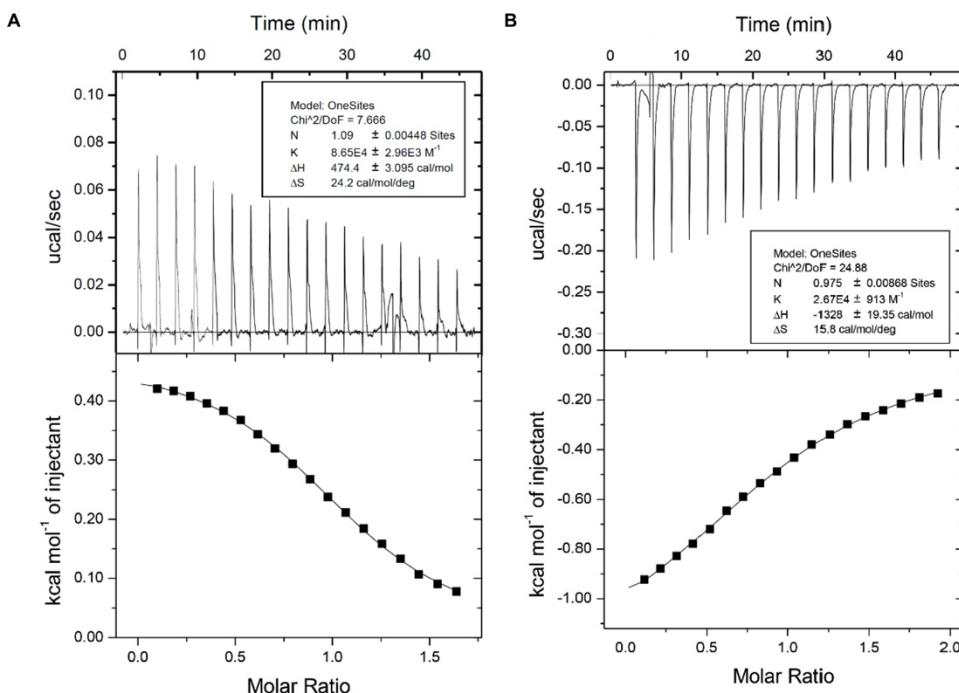
Fig. S7: ITC titration profiles of (A) WT RMI1 peptide (243-262aa) or (B) N254A mutant peptide with RPA70N.

845

846

847

848


849

850

851

852

853

854

855 **Fig. S8: ITC titration profiles of (A) WT WRN peptide (435-451aa) or (B) WRN M466A**
856 **mutant peptide with RPA70N.**

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882 **Table S1. Linker and peptide sequences used in RPA70N fusion constructs.**

Peptides	Linker	sequences
HelB	GTSSG	EEREVKKACEDFEQDQNASEEWIT
ATRIP	GTSS	GDFTADDLEELDTLASQ
BLMp2	GTSSG	SYDIDNFDIDDFDDDDWEDI
BLMp1	GTSSG	DSLSTINDWDDMDDFDTSET
RMI1	GTSSG	SDEELLASLDENDELTANND
WRN	GTS	SYVIESDEDLEMEMLKH

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

Table S2. Data Collection and Refinement Statistics part 1

Data Set	RPA70N-HelB	RPA70N-ATRIP	RPA70N-BLMp2
Data collection			
PDB code	7XV1	7XV4	7XUW
Space group	<i>P 41 21 2</i>	<i>P 21 21 21</i>	<i>P 41 21 2</i>
<i>a, b, c</i> (Å)	50.333 50.333 126.481	39.035 53.11 55.224	62.4761 62.4761 69.497
α, β, γ (°)	90, 90, 90	90, 90, 90	90, 90, 90
Resolution (Å)	22.6 - 1.8 (1.864 - 1.8)	38.28 - 1.6 (1.657 - 1.6)	25.92 - 1.8 (1.864 - 1.8)
Observed reflections	193,641 (19790)	197,641 (20518)	162,807 (16556)
Unique reflections	15,793 (1542)	15,720 (1555)	13,283 (1288)
R_{merge} (%)	6.153 (48.31)	3.727 (14.91)	13.12 (76.71)
R_{pim} (%)	1.881 (14)	1.094 (4.257)	3.932 (22.15)
$I/\sigma(I)$	26.49 (8.87)	43.83 (16.69)	13.60 (5.83)
$CC_{1/2}$	0.998 (0.982)	1 (0.995)	0.996 (0.954)
Completeness (%)	99.83 (100.00)	99.97 (100.00)	99.92 (100.00)
Multiplicity	12.3 (12.8)	12.6 (13.2)	12.3 (12.9)
Refinement			
$R_{\text{work}}/R_{\text{free}}$ (%)	19.99/22.09	19.83/22.28	19.31/21.70
No. protein atoms	1130	1008	1059
No. ligand atoms	0	0	0
No. solvent atoms	94	135	96
Average B-factor (Å ²)	35.38	22.85	26.81
Protein B-factor (Å ²)	34.89	21.71	26.32
Solvent B-factor (Å ²)	41.25	31.37	32.17
Rmsd bond lengths (Å)	0.008	0.009	0.007
Rmsd bond angles (°)	1.15	1.18	0.92
Ramachandran outliers (%)	0.00	0.00	0.00
Ramachandran favored (%)	97.86	98.40	97.79

924 Values in parentheses are for the highest-resolution shell.

925

926

927

928

929

930

931

Table S3. Data Collection and Refinement Statistics part 2

Data Set	RPA70N-BLMp1	RPA70N-RMI1	RPA70N-WRN
Data collection			
PDB code	7XV0	7XUV	7XUT
Space group	<i>P 21 21 21</i>	<i>P 21 21 21</i>	<i>P 21 21 21</i>
<i>a, b, c</i> (Å)	38.088 53.644 54.501	40.93 50.263 52.308	32.936 58.609 111.786
α, β, γ (°)	90, 90, 90	90, 90, 90	90, 90, 90
Resolution (Å)	31.22 - 1.5 (1.554 - 1.5)	27.13 - 1.6 (1.657 - 1.6)	31.44 - 1.6 (1.657 - 1.6)
Observed reflections	111,286 (10924)	60,739 (6230)	181,925 (18864)
Unique reflections	18,207 (1767)	13,228 (1355)	29,352 (2870)
R _{merge} (%)	3.1 (8.807)	6.908 (34.22)	9.657 (15.2)
R _{pim} (%)	1.362 (3.812)	3.173 (15.78)	4.187 (6.41)
I/σ(I)	34.45 (16.08)	13.80 (4.84)	13.82 (8.55)
CC _{1/2}	0.999 (0.996)	0.997 (0.953)	0.992 (0.98)
Completeness (%)	98.58 (98.44)	89.41 (93.11)	99.78 (100.00)
Multiplicity	6.1 (6.2)	4.6 (4.6)	6.2 (6.6)
Refinement			
R _{work} /R _{free} (%)	16.88/20.03	19.08/21.88	18.17/21.44
No. protein atoms	1050	1016	2137
No. ligand atoms	0	0	0
No. solvent atoms	132	110	249
Average B-factor (Å ²)	18.73	21.27	21.86
Protein B-factor (Å ²)	17.54	20.36	21.17
Solvent B-factor (Å ²)	28.19	29.65	27.76
Rmsd bond lengths (Å)	0.008	0.006	0.008
Rmsd bond angles (°)	0.92	1.00	1.02
Ramachandran outliers (%)	0.00	0.00	0.00
Ramachandran favored (%)	97.69	97.64	98.18

933

Values in parentheses are for the highest-resolution shell.

934

935

936

937