

1 **Vitamin C is an efficient natural product for prevention of**
2 **SARS-CoV-2 infection by targeting ACE2 in both cell and in**
3 **vivo mouse models**

4

5 Yibo Zuo,^{1,2} Zhijin Zheng,^{1,2} Yingkang Huang,⁵ Jiuyi He,^{1,2} Lichao Zang,⁴
6 Tengfei Ren,^{1,2} Xinhua Cao,^{1,2} Ying Miao,^{1,2} Yukang Yuan,^{1,2} Yanli Liu,³ Feng
7 Ma,⁵ Sheng Tian,³ Jianfeng Dai,^{1,2} Qiang Ding,⁶ Hui Zheng^{1,2,7,*}

8

9 ¹International Institute of Infection and Immunity, Institutes of Biology and Medical
10 Sciences, Suzhou

11 ²Jiangsu Key Laboratory of Infection and Immunity, Suzhou

12 ³College of Pharmaceutical Sciences, Suzhou

13 ⁴The Third Affiliated Hospital of Soochow University, Changzhou

14 Soochow University, Jiangsu 215123, China

15 ⁵CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Chinese Academy
16 of Medical Sciences and Peking Union Medical College, Beijing 10005; Suzhou
17 Institute of Systems Medicine, Jiangsu 215123, China

18 ⁶Center for Infectious Disease Research, School of Medicine, Beijing Advanced
19 Innovation Center for Structural Biology, Tsinghua University, Beijing 10084, China

20 ⁷Lead contact

21 *Correspondence: huizheng@suda.edu.cn

22

23

24

25 **SUMMARY**

26 ACE2 is a major receptor for cell entry of SARS-CoV-2. Despite advances in
27 targeting ACE2 to inhibit SARS-CoV-2's binding, how to efficiently and flexibly
28 control ACE2 levels for prevention of SARS-CoV-2 infection has not been
29 explored. Here, we revealed Vitamin C (VitC) administration as an effective
30 strategy to prevent SARS-CoV-2 infection. VitC reduced ACE2 protein levels in
31 a dose-dependent manner, while partial reduction of ACE2 can greatly restrict
32 SARS-CoV-2 infection. Further studies uncovered that USP50 is a crucial
33 regulator of ACE2 protein levels, and VitC blocks the USP50-ACE2 interaction,
34 thus promoting K48-linked polyubiquitination at Lys788 and degradation of
35 ACE2, without disrupting ACE2 transcriptional expression. Importantly, VitC
36 administration reduced host ACE2 and largely blocked SARS-CoV-2 infection
37 in mice. This study identified an *in vivo* ACE2 balance controlled by both
38 USP50 and an essential nutrient VitC, and revealed a critical role and
39 application of VitC in daily protection from SARS-CoV-2 infection.

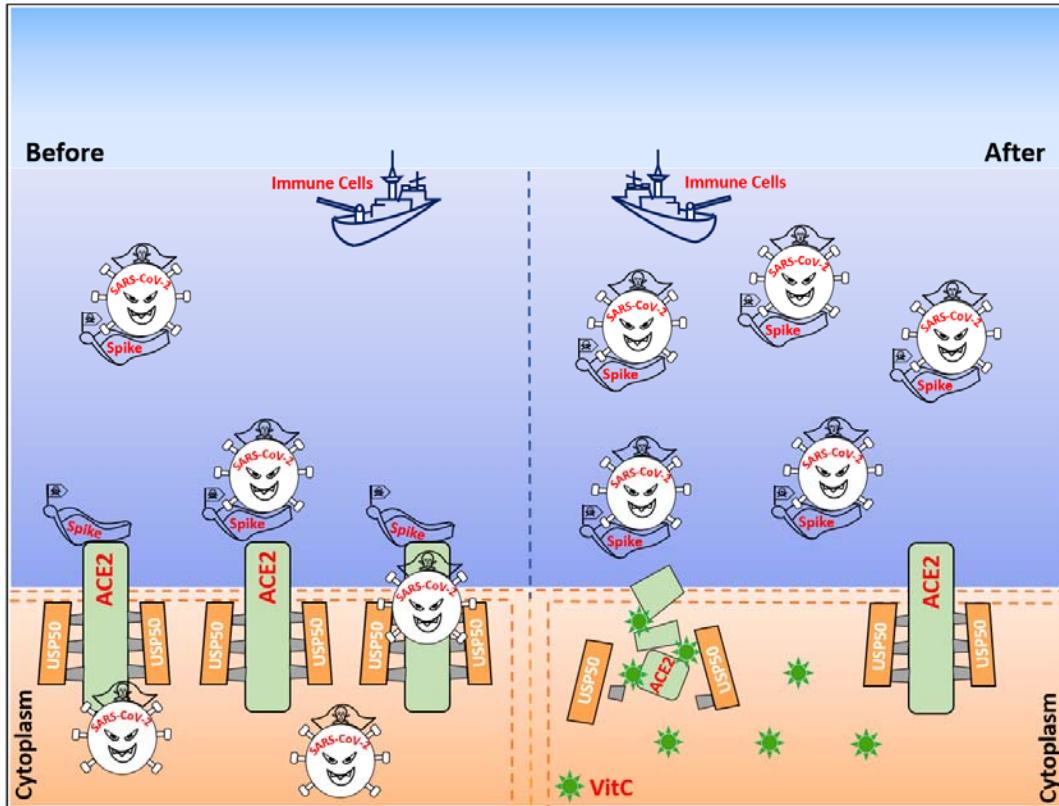
40

41 **Highlights**

42 ● VitC reduces ACE2 protein levels in a dose-dependent manner

43 ● VitC and USP50 regulate K48-linked ubiquitination at Lys788 of ACE2

44 ● VitC blocks the interaction between USP50 and ACE2


45 ● VitC administration lowers host ACE2 and prevents SARS-CoV-2 infection

46 *in vivo*

47

48

49

51

52 **The deubiquitinase USP50 controls ACE2 protein stability and levels,**
53 **while Vitamin C blocks the USP50-ACE2 interaction and therefore results**
54 **in ACE2 degradation, offering a flexible and efficient approach to**
55 **protection of the host from SARS-CoV-2 infection.**

56

57

58

59

60

61

62 INTRODUCTION

63 Angiotensin converting enzyme 2 (ACE2) is a regulator of the
64 renin-angiotensin-aldosterone system (RAAS) that maintains blood pressure
65 homeostasis, as well as fluid and salt balance (Donoghue et al., 2000; Krege
66 et al., 1995; Kuba et al., 2006). Recent studies have revealed that ACE2, as a
67 transmembrane glycoprotein, is the major entry receptor of some
68 coronaviruses, including severe acute respiratory syndrome coronavirus 2
69 (SARS-CoV-2) and SARS-CoV (Hoffmann et al., 2020). Particularly, ACE2 has
70 a 10-20-fold higher affinity to the Spike protein of SARS-CoV-2 than to that of
71 SARS-CoV (Wrapp et al., 2020), which could suggest the severity of
72 SARS-CoV-2-induced coronavirus disease 2019 (COVID-19). In addition, the
73 recently prevalent SARS-CoV-2 mutant Omicron has produced much stronger
74 infectivity, because the Spike trimer of Omicron (BA.2) exhibits 11-fold higher
75 potency in binding to human ACE2 than that of the wild-type (WT)
76 SARS-CoV-2 (Xu et al., 2022). Thus, ACE2 is the key target to control the
77 infection of SARS-CoV-2 and even its current and future mutants.

78 It has been proved that inhibition of the SARS-CoV-2-Spike recognition of
79 host ACE2 is efficient to block SARS-CoV-2 infection. For this purpose, the
80 current studies have been focused on inhibition of the binding between ACE2
81 and Spike proteins by two major strategies, including targeting either host
82 ACE2 or the Spike protein of SARS-CoV-2. For example, a small molecule
83 telmisartan can target ACE2 and therefore blocks SARS-CoV-2's binding

84 (Rothlin et al., 2020). Likewise, many small molecules that target the Spike
85 protein can inhibit ACE2-Spike binding (Wang et al., 2022). In addition,
86 monoclonal antibodies have also been studied to target different proteins for
87 inhibition of ACE2-Spike binding (Chavda et al., 2022). However, these two
88 strategies could be not feasible for timely application to daily prevention of
89 virus infection due to potential harmful side effects from small compounds or
90 antibodies. In addition, ACE2 levels can be upregulated in the elderly by
91 commonly used drugs (Ferrario et al., 2005; Messerli et al., 2018; Verdecchia
92 et al., 2010; Winkelmayer et al., 2005) and also be strongly elevated by
93 SARS-CoV-2 infection (Garvin et al., 2020; Ziegler et al., 2020), which make it
94 difficult to effectively target ACE2.

95 Based on the consideration for daily protection from SARS-CoV-2 infection,
96 we explored the possibility of partially reducing ACE2 levels as a new strategy
97 for prevention of SARS-CoV-2 infection. Attractively, we noticed that reducing
98 ACE2 protein levels by half can dramatically block SARS-CoV-2 infection.
99 Intriguingly, by screening we found that Vitamin C (VitC, L-ascorbic acid,
100 ascorbate) downregulated ACE2 protein levels in a dose-dependent manner.
101 VitC is an *in vivo* essential nutrient and a natural water-soluble antioxidant that
102 can safely be administered in very large amounts (such as 10 g daily) (Chen et
103 al., 2005). Thus, this study further revealed the mechanisms by which VitC
104 reduces ACE2 protein levels to prevent SARS-CoV-2 infection.

105

106 **Results**

107 **VitC effectively reduces ACE2 proteins and restricts cellular infection**
108 **with SARS-CoV-2**

109 ACE2 expresses in a wide variety of human tissues. For example, ACE2
110 shows the highest levels in the kidney, small intestine and adipose tissues, the
111 medium levels in the lung, colon and liver tissues, and the lowest levels in the
112 brain, bone marrow and blood (Li et al., 2020). Thus, we observed ACE2
113 protein levels in several cell lines from different tissues, including HEK293T
114 (kidney), A549 (lung) and Caco-2 (colon), as well as a human fibroblast cell
115 line (2fTGH) due to the reported expression of ACE2 in lung fibroblasts
116 (Mohamed et al., 2021), since these cell lines have been reported to be
117 functional for SARS-CoV-2 infection. We noticed that all these cell lines can
118 more or less express ACE2 proteins (Figure 1A). Given that ACE2 is essential
119 for cell entry of SARS-CoV-2, we first tested how important ACE2 reduction is
120 for protecting the cells from SARS-CoV-2 infection. The results showed that
121 reducing ACE2 levels by only half is enough to tremendously lower the ability
122 of SARS-CoV-2 to enter cells (Figure 1B), suggesting that even partial
123 reduction of ACE2 is able to provide great benefits for the prevention of
124 SARS-CoV-2 infection.

125 Given that new unknown compounds and even known clinical drugs are
126 generally not feasible for timely application to prevention of virus infection, we
127 considered whether some conventional supplements, such as metal elements

128 (Figure S1A) or vitamins (Figure 1C), could effectively downregulate ACE2 and
129 therefore greatly prevent SARS-CoV-2 infection. Interestingly, we found that
130 VitC at a concentration of 5 mM can decrease ACE2 protein levels by around
131 90% (Figure 1C). It has been reported that normal cells are unaffected by 20
132 mM VitC (Chen et al., 2005) and even a dose of 49 mM is still well tolerated
133 (Stephenson et al., 2013). Although the concentration of VitC in human plasma
134 is around 50-70 μ M under physiological conditions (Lykkesfeldt and
135 Tveden-Nyborg, 2019), the concentrations of VitC in various tissues are
136 dozens-fold higher than that in plasma, in the range of 0.5-10 mM (Lindblad et
137 al., 2013; Lykkesfeldt and Tveden-Nyborg, 2019). When additional VitC is
138 supplemented orally, the plasma concentrations of VitC can raise up to 220 μ M
139 (Levine et al., 1996; Lindblad et al., 2013), which could raise the
140 concentrations of VitC in different tissues to much higher than 0.5-10 mM after
141 oral VitC administration. Interestingly, we found that 1-5 mM VitC is enough to
142 strongly reduce ACE2 protein levels in all these cells, particularly in human
143 kidney cells HEK293T and human fibroblasts 2fTGH (Figure 1D). Therefore,
144 we mainly employed these two cell lines in the following studies. In fact, VitC
145 even if at lower concentrations (0.2 mM) can also obviously reduce ACE2
146 levels in a time-dependent manner (Figure 1E). In addition, by
147 immunofluorescence analysis we further confirmed the reduction of ACE2
148 proteins by VitC (Figure 1F). Importantly, not all cellular proteins were
149 downregulated by VitC at these concentrations. For example, the protein

150 levels of two commonly studied immune-related transcription factors, IRF3 and
151 STAT1, remained unchanged under 1-25 mM VitC treatment (Figure 1G).

152 Next, we employed a SARS-CoV-2 GFP/ΔN virus, in which a GFP reporter
153 gene is used to replace the viral nucleocapsid (N) gene in a complete
154 SARS-CoV-2 virus (Ju et al., 2021), to observe the effect of VitC on
155 SARS-CoV-2 infection. To this end, the Caco-2-N cells that stably express the
156 N protein of SARS-CoV-2 were pretreated with VitC, and then infected with the
157 viruses for 24 hrs. We noticed that VitC markedly inhibited infection of
158 SARS-CoV-2 but not the Vesicular Stomatitis Virus (VSV)-GFP virus (Figure
159 1H; Figure S1B). However, when the cells were first infected with SARS-CoV-2
160 and then treated with VitC, the SARS-CoV-2 replication in cells was not
161 significantly affected (Figure S1C). Furthermore, the Caco-2-N cells were
162 infected with SARS-CoV-2 GFP/ΔN viruses for only 2 hrs to observe the entry
163 of the viruses. Similarly, we found that VitC treatment strongly blocked cell
164 entry of SARS-CoV-2 but not VSV (Figure 1I). In addition, we also used a
165 SARS-CoV-2-S pseudovirus to study the viral infection mediated by the Spike
166 (S) protein of SARS-CoV-2. Consistently, the results showed that VitC but not
167 either VitB1 or VitD3 dramatically blocked SARS-CoV-2-S pseudovirus
168 infection (Figure S1D). Taken all together, these findings suggested that VitC
169 can greatly block cellular infection with SARS-CoV-2.

170

171 **VitC regulates K48-linked polyubiquitination and protein stability of**

172 **ACE2**

173 We next studied how VitC reduces ACE2 protein levels. Our data showed that
174 VitC did not significantly affect ACE2 mRNA levels (Figure 2A). Thus, we
175 further observed whether VitC regulates ACE2 at the protein level. A
176 cycloheximide (CHX) pulse chase assay demonstrated that VitC treatment
177 promoted ACE2 protein degradation (Figure 2B), suggesting that VitC lowered
178 ACE2 protein stability. Consistent with the above findings, the levels of
179 exogenously expressed Myc-ACE2 proteins were also reduced by VitC (Figure
180 2C). Furthermore, we determined which pathway ACE2 proteins degrade from.
181 To this end, a proteasome inhibitor (MG132) and a lysosome inhibitor
182 methylamine (MA) were utilized. The results showed that MA blocked
183 VitC-mediated downregulation of ACE2 proteins (Figure 2D), suggesting that
184 VitC promotes ACE2 protein degradation through the lysosome pathway.

185 Given that VitC promotes ACE2 protein degradation, we next analyzed
186 whether VitC regulates ACE2 ubiquitination. The results showed that VitC
187 treatment remarkably increased the ubiquitination levels of both exogenously
188 expressed ACE2 (Figure S2A) and endogenous ACE2 (Figure 2E; Figure S2B).
189 Furthermore, the analysis of ubiquitination types of ACE2 revealed that in
190 comparison to other types of polyubiquitination linkage, VitC largely promoted
191 K48-linked polyubiquitination of ACE2 (Figure 2F), which was in line with
192 increased degradation of ACE2 proteins, since K48-linked polyubiquitination
193 has been demonstrated to mainly induce protein degradation. Moreover, using

194 a specific anti-K48-ubiquitination antibody, we confirmed that VitC markedly
195 promoted K48-linked polyubiquitination of exogenously expressed ACE2
196 ([Figure 2G](#)) and endogenous ACE2 in multiple types of cells, including
197 HEK293T ([Figure 2H](#)), A549 and Caco-2 cells ([Figure S2C](#) and [Figure S2D](#)).
198 Collectively, these findings revealed that VitC reduces ACE2 protein levels by
199 inducing K48-linked polyubiquitination and lysosome-dependent degradation
200 of ACE2 proteins.

201

202 **VitC reduces ACE2 protein levels largely dependently on the**
203 **deubiquitinase USP50**

204 To identify the key molecule that mediates ACE2 ubiquitination induced by VitC,
205 we first utilized a pan-deubiquitinase inhibitor, PR619 ([Ritorto et al., 2014](#)). The
206 results showed that inhibition of the deubiquitinases substantially decreased
207 ACE2 proteins and blocked VitC-mediated downregulation of ACE2 ([Figure](#)
208 [3A](#)), suggesting that VitC could target certain deubiquitinases to reduce ACE2
209 proteins. Thus, a deubiquitinase-expressing library was used to identify the
210 potential deubiquitinase. We noticed that despite multiple deubiquitinases that
211 could be involved in regulation of ACE2 protein levels, the deubiquitinase
212 USP50 showed the strongest effect on ACE2 upregulation ([Figure 3B](#)). Further
213 analysis demonstrated that USP50 was able to interact with exogenously
214 expressed ACE2 ([Figure 3C](#)), and actually there was a constitutive interaction
215 between endogenous USP50 and ACE2 in cells ([Figure 3D](#); [Figure S3A](#)).

216 Moreover, USP50 overexpression upregulated ACE2 protein levels in a
217 dose-dependent manner (Figure 3E), while knockdown of USP50 by two
218 specific shRNAs dramatically reduced ACE2 levels (Figure 3F). Consistently,
219 USP50 overexpression increased the protein stability of ACE2 (Figure 3G).
220 The results from USP50 knockout cells confirmed that USP50 deficiency
221 reduced ACE2 protein levels (Figure 3H). Importantly, in USP50-deficient cells
222 VitC lost the efficiency to downregulate ACE2 levels (Figure 3I), suggesting
223 that USP50 is critical to VitC-induced ACE2 reduction.

224 Given the importance of USP50 in regulating ACE2 levels by VitC, we
225 further observed the role of USP50 in SARS-CoV-2 infection. Consistent with
226 USP50-mediated ACE2 upregulation, overexpression of USP50 significantly
227 promoted cellular infection with SARS-CoV-2 (Figure 3J). Conversely,
228 knockdown of USP50 inhibited SARS-CoV-2 infection (Figure S3B).
229 Importantly, USP50 knockout largely restricted the effect of VitC on inhibition of
230 SARS-CoV-2 infection (Figure 3K), suggesting that USP50 is crucial for VitC to
231 inhibit SARS-CoV-2 infection. Taken together, these findings demonstrated
232 that VitC regulates ACE2 levels and SARS-CoV-2 infection dependently on
233 USP50.

234

235 **VitC and USP50 regulate K48-linked polyubiquitination at Lys788 of**
236 **ACE2**

237 Next, we sought to determine the detailed mechanisms by which the

238 deubiquitinase USP50 regulates ACE2. We first found that a deubiquitinase
239 inactive mutant of USP50 (USP50-C53S) lost the ability to upregulate ACE2
240 protein levels (Figure S3C), suggesting that USP50 regulates ACE2 levels
241 dependently on its deubiquitinase activity. In line with this finding, USP50-wild
242 type (WT) but not the USP50-C53S mutant reduced the ubiquitination levels of
243 ACE2 (Figure 4A; Figure S3D), while USP50 knockdown increased ACE2
244 ubiquitination (Figure 4B). The analysis of ubiquitination types of ACE2
245 revealed that USP50 mainly reduced K48-linked polyubiquitination of ACE2,
246 compared to other types of ubiquitination linkage (Figure 4C), which is in
247 accord with USP50-mediated upregulation of ACE2 protein levels.
248 Furthermore, using a K48-linked ubiquitination antibody, we confirmed that
249 USP50 regulates K48-linked polyubiquitination of ACE2 (Figure 4D).

250 We further explored the key lysine (Lys) residue of ACE2 regulated by
251 USP50. From the PhosphoSitePlus database, we noticed that there are three
252 ubiquitinated lysine residues on ACE2, including Lys 625, 676, and 788 (Figure
253 4E). Then, each lysine (K) residue was mutated to arginine (R). We noticed
254 that mutation of the Lys788 residue largely lowered the K48-linked
255 polyubiquitination levels of ACE2 (Figure 4E; Figure S4A). Furthermore, when
256 the Lys788 residue of ACE2 was mutated, USP50 knockdown cannot regulate
257 both K48-linked polyubiquitination (Figure 4F) and protein levels (Figure S4B)
258 of ACE2 any longer, suggesting that USP50 regulates K48-linked
259 polyubiquitination at the Lys788 residue of ACE2. In addition, mutation of the

260 Lys788 residue increased the protein stability of ACE2 (Figure 4G). Importantly,
261 VitC-induced upregulation of ACE2 K48-linked polyubiquitination was
262 abolished by mutating the Lys788 residue of ACE2 (Figure 4H). Consistently,
263 VitC cannot reduce the protein levels of ACE2-K788R (Figure 4I). Taken all
264 together, these findings demonstrated that VitC and USP50 regulate
265 K48-linked polyubiquitination at Lys 788 of ACE2.

266

267 **VitC blocks the interaction between USP50 and ACE2**

268 Given that VitC has a similar effect as USP50 knockdown in regulating ACE2
269 ubiquitination, we hypothesized that VitC could inhibit USP50-mediated
270 regulation of ACE2. Thus, we employed an *in vitro* binding assay to observe
271 the potential interaction of VitC with USP50 or ACE2 (Figure 5A). The results
272 showed that Myc-ACE2 but not Flag-USP50 proteins can significantly bind
273 with VitC (Figure 5B), suggesting VitC could interact with ACE2. Furthermore,
274 we used a recombinant human ACE2 protein to analyze the binding of VitC to
275 the pure ACE2 proteins. The results confirmed the interaction between VitC
276 and pure ACE2 (Figure 5B). Next, our data demonstrated that the amino acid
277 201-400 domain of ACE2 is critical for binding of VitC (Figure 5C). Thus, we
278 further evaluated their binding conformation. Based on the Glide docking
279 module in the Schrödinger molecular simulation software package, we used
280 standard precision (SP) to dock VitC to the binding pocket of ACE2 (Figure 5D).
281 The docking diagram indicates that multiple amino acids of ACE2 was involved

282 in the interaction with VitC (Figure 5E).

283 Interestingly, further analysis revealed that the amino acid 201-400 domain
284 of ACE2 is also critical for the interaction of USP50 with ACE2 (Figure 5F),
285 suggesting that VitC could compete with USP50 to bind with ACE2. In line with
286 the speculation, VitC inhibited the interaction between Flag-USP50 and
287 Myc-ACE2 in cells in a dose-dependent manner (Figure 5G). In fact, VitC did
288 not affect USP50 protein levels (Figure S5). Similarly, VitC can also block the
289 interaction between endogenous USP50 and ACE2 (Figure 5H). An *in vitro*
290 binding assay demonstrated the competition between VitC and USP50 to
291 interact with ACE2 (Figure 5I). Moreover, using a recombinant human ACE2,
292 we confirmed that VitC can block the interaction between USP50 and ACE2 in
293 a dose-dependent manner (Figure 5J). Collectively, these findings suggested
294 that VitC competitively inhibits the USP50-ACE2 interaction.

295

296 **VitC administration reduces ACE2 and restricts SARS-CoV-2 infection *in*
297 *vivo***

298 To observe how VitC administration benefits prevention of SARS-CoV-2
299 infection *in vivo*, we employed a humanized ACE2 (hACE2) mouse model,
300 since the Spike protein of SARS-CoV-2 cannot target mouse ACE2. We
301 noticed that USP50 indeed interacts with ACE2 constitutively in all observed
302 tissues, including the lung, liver and kidney (Figure 6A; Figure S6A). It has
303 been reported that intraperitoneal (*i.p.*) administration of VitC (1 g/kg of body

304 weight) in mice can give maximum plasma concentration of 7 mM ([Vilchez et](#)
305 [al., 2018](#)). Thus, based on the used concentration of VitC (1-5 mM) in cell lines
306 in this study, we observed the *in vivo* effects of VitC administration (0.3 g/kg of
307 body weight) on ubiquitination and protein levels of ACE2, as well as
308 SARS-CoV-2-S infection. The results showed that VitC strongly blocked the
309 interaction between USP50 and ACE2 in lung tissues of mice ([Figure 6B](#)).
310 Consistently, the K48-linked polyubiquitination levels of endogenous ACE2 in
311 mouse tissues were remarkably upregulated by VitC administration ([Figure](#)
312 [6C](#)). As a consequence, VitC administration largely reduced the levels of ACE2
313 proteins in different tissues of mice ([Figure 6D and E](#); [Figure S6B](#)).

314 Given that VitC administration substantially lowers ACE2 levels, we further
315 utilized a SARS-CoV-2-S pseudovirus to study the SARS-CoV-2
316 Spike-mediated infection of the hACE2 mice. To this end, the mice were first
317 administrated with VitC (0.3 g/day/kg of body weight) for two days and then
318 were infected with the SARS-CoV-2-S viruses for 24 hrs. By immunostaining
319 the Spike proteins of SARS-CoV-2, we found that VitC markedly lowered the
320 levels of SARS-CoV-2 Spike proteins in various mouse tissues ([Figure 6F](#)),
321 suggesting that VitC inhibits infection of the SARS-CoV-2-S viruses *in vivo*.
322 Moreover, the analysis of the SARS-CoV-2-S RNA levels confirmed that VitC
323 administration significantly restricted SARS-CoV-2-S virus infection ([Figure](#)
324 [6G](#)). Taken all together, these findings demonstrated that VitC administration
325 effectively blocks SARS-CoV-2 infection by reducing ACE2 levels *in vivo*.

326

327 **DISCUSSION**

328 VitC administration is a flexible and easy way to be used according to daily
329 actual requirements. This study revealed that VitC, as a natural compound
330 from a wide range of sources, can efficiently reduce ACE2 protein levels in a
331 dose-dependent manner, thus providing great benefits to prevention of
332 SARS-CoV-2 infection ([Figure S7](#)). Besides a role in mediating SARS-CoV-2
333 cell entry, ACE2 also has some important physiological functions. ACE2 plays
334 a crucial role in the cardiovascular system by regulating the RAAS ([Crackower](#)
335 [et al., 2002; Donoghue et al., 2000](#)). Activation of ACE2-Ang I (1-7) axis
336 regulates inflammatory responses and protects against organ injury in many
337 diseases, such as cardiovascular disease, chronic kidney disease, obesity,
338 liver and lung injury ([Rodrigues Prestes et al., 2017](#)). It's well known that in
339 addition to respiratory symptoms, COVID-19 also results in some
340 extrapulmonary pathologies, including vasculature and myocardial
341 complications, kidney injury, and hepatic injury, because ACE2 is widely
342 expressed in many tissues ([Gupta et al., 2020](#)). These suggest that ACE2 is
343 actually important for protection from tissue injury at the late stage of
344 COVID-19. Thus, this study provided evidence that VitC could be not good for
345 the therapy of COVID-19 at the late stage of SARS-CoV-2 infection, which
346 many clinical therapeutic studies actually have been performing for COVID-19,
347 since VitC dramatically reduces ACE2 levels. Here, our study suggested that

348 VitC administration is an efficient strategy for daily protection from
349 SARS-CoV-2 infection, and also possibly for the therapy of early SARS-CoV-2
350 infection.

351 VitC has highly differential distribution in the body. Under physiological
352 conditions, the concentration of VitC in the plasma of healthy individuals is
353 50-80 μ M ([Lykkesfeldt and Tveden-Nyborg, 2019](#)). However, VitC
354 concentrations in various tissues are much higher than that in the plasma,
355 ranging from 0.2-10 mM under physiological conditions: 2-10 mM in the brain
356 and adrenal, about 1mM in the lung and liver, 0.3-0.5 mM in the kidney
357 ([Lindblad et al., 2013; Lykkesfeldt and Tveden-Nyborg, 2019](#)). When
358 administrating with VitC, it could result in great improvement in VitC
359 concentrations in both plasma and tissues. VitC has very big tolerated doses *in*
360 *vivo*. It has been reported that the tolerated oral dose of 3 g every 4 hours and
361 an intravenous dose of 50 g were predicted to give the peak plasma VitC
362 concentrations of 220 μ M and 13,400 μ M, respectively ([Padayatty et al., 2004](#)).
363 And a dose of VitC (2 g, three time/day) could result in a steady plasma
364 concentration of around 250 μ M ([Lykkesfeldt and Tveden-Nyborg, 2019](#);
365 [Nielsen et al., 2015](#)). Our study demonstrated that VitC at a concentration of
366 1-10 mM in both cell models and a mouse *in vivo* model, which is close to the
367 physiological concentrations of VitC in tissues and at least can be easily
368 achieved under VitC oral administration, lowered ACE2 protein levels in a
369 dose-dependent manner. Thus, we believe that sufficient VitC-containing daily

370 diets are necessary for maintaining efficient VitC concentrations in tissues to
371 restrict SARS-CoV-2 infection, while additional VitC oral administration can
372 provide greater benefits to the protection of the body from SARS-CoV-2
373 infection. Importantly, this study demonstrated that VitC did not affect normal
374 transcriptional expression of ACE2, suggesting that ACE2 expression is not
375 irreversibly disrupted in cells and will be recovered when VitC administration
376 stops or is restricted to lower dosages.

377 The elderly are the most serious victims of COVID-19. SARS-CoV-2 is
378 highly infective with considerable fatality rate in the elderly ([Uhler and](#)
379 [Shivashankar, 2020](#)). In fact, ACE2 levels often have a significant increase in
380 the elderly. For elderly patients with various diseases, such as refractory
381 hypertension, coronary artery disease, and heart failure, the angiotensin
382 converting enzyme inhibitors (ACEIs) and angiotensin II receptor blockers
383 (ARBs) are highly recommended for the management of cardiovascular
384 diseases ([Messerli et al., 2018](#); [Verdecchia et al., 2010](#)), as well as diabetes
385 and renal insufficiency ([Winkelmayer et al., 2005](#)). However, ACEIs and ARBs
386 can increase the numbers of ACE2 receptors in the cardiopulmonary
387 circulation ([Ferrario et al., 2005](#)). In addition, during RAAS overactivation,
388 ACE2 levels can be upregulated, which could promote SARS-CoV-2 cell entry
389 ([Edenfield and Easley, 2022](#)). It has been reported that patients with
390 COVID-19 infections, and most likely treated with ACEIs or ARBs, suffered
391 more severe disease outcomes ([Guan et al., 2020](#)). Interestingly, ACE2 is an

392 interferon (IFN)-stimulated gene (ISG) ([Ziegler et al., 2020](#)) Thus, Elevated
393 IFN during SARS-CoV-2 infection increases ACE2 expression in cells. ACE2
394 levels have been reported to increase 199-fold in cells in bronchoalveolar
395 lavage fluid (BALF) from COVID-19 patients ([Garvin et al., 2020](#)). Thus,
396 reducing excessive ACE2 is necessary to lower the risk of SARS-CoV-2
397 infection and alleviate the severity of COVID-19, in particular for the elderly.

398 Despite the importance of ACE2 in regulating RAAS and SARS-CoV-2 cell
399 entry, the regulation of ACE2 ubiquitination and protein stability remains largely
400 unexplored. The E3 ubiquitin ligase MDM2 ([Shen et al., 2020](#)) and Skp2
401 ([Wang et al., 2021](#)) were recently reported to induce ACE2 ubiquitination.
402 However, how the deubiquitinases control ACE2 ubiquitination and protein
403 levels is unknown. Our study for the first time identified the deubiquitinase
404 USP50 as a crucial regulator of ACE2 protein levels in cells. Knockdown of
405 USP50 or inhibition of the USP50 activity extremely reduced cellular levels of
406 ACE2 protein ([Figure 3A and 3F](#)). Recent studies showed that USP50 is
407 involved in fatty acid oxidation ([Li et al., 2022](#)) and erythropoiesis ([Cai et al.,](#)
408 [2018](#)). Our finding suggested the significances of USP50 in controlling both
409 SARS-CoV-2 infection and regulating RAAS, which could suggest a new target
410 for the therapy of certain viral infections and cardiovascular diseases. In
411 summary, this study establishes a link between an essential nutrient VitC and
412 cellular USP50-ACE2 regulation, and could provide an easy but efficient
413 strategy for daily protection of the body from SARS-CoV-2 infection.

414 **STAR METHODS**

415 Detailed methods are provided in the online version of this paper and include
416 the following:

417 • KEY RESOURCES TABLE

418 • CONTACT FOR REAGENT AND RESOURCE SHARING

419 • EXPERIMENTAL MODEL AND SUBJECT DETAILS

420 ○ Mice

421 • METHOD DETAILS

422 ○ Cell culture and reagents

423 ○ Plasmids and transfection

424 ○ Liver, lung and kidney histology

425 ○ VitC detection assay

426 ○ *In vitro* protein-protein binding assay

427 ○ CRISPR-Cas9 genome editing

428 ○ VitC docking with ACE2

429 ○ Immunoblotting (IB) and Immunoprecipitation (IP)

430 ○ RNA isolation and quantitative real-time PCR

431 ○ Virus and viral infection *in vitro*

432 ○ Viral infection *in vivo*

433 ○ Immunofluorescence microscopy

434 • QUANTIFICATION AND STATISTICAL ANALYSIS

435 ○ Statistical analysis

436 • DATA AND SOFTWARE AVAILABILITY

437

438

439 **STAR METHODS**

440 **KEY RESOURCES TABLE**

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Anti-ACE2	Affinity	Cat.# AF5165 RRID: AB_2837651
Anti-human ACE2	Cell Signaling Technology	Cat.# 74512
Anti-USP50	Affinity	Cat.# AF9225 RRID: AB_2843415
Anti-USP50	Proteintech	Cat.# 20374-1-AP RRID: AB_10973680
Anti-Myc	Abmart	Cat.# M20002H
Anti-Flag	Sigma	Cat.# F7425 RRID: AB_439687
Anti-HA	Abcam	Cat.# ab9110 RRID: AB_307019
Anti-STAT1	Cell Signaling Technology	Cat.# 9172 RRID: AB_2198300
Anti-Tyk2	Cell Signaling Technology	Cat.# 14193 RRID: AB_2798419
Anti-VSV-G	Santa Cruz	Cat.# sc-66180 RRID: AB_832793
Anti- β -Actin	Proteintech	Cat.# 66009-1-Ig RRID: AB_2687938
Anti-Tubulin	Proteintech	Cat.# 66031-1-Ig RRID: AB_11042766
Anti-Ubiquitin (Ub)	Santa Cruz	Cat.# sc-8017 RRID: AB_2762364
Anti-K48 Ub	Cell Signaling Technology	Cat.# 4289S RRID: AB_10557239

Anti-IRF3	Santa Cruz	Cat.# sc-33641 RRID: AB_627826
Anti-SARS-CoV-2-Spike	GeneTex	Cat.# GTX632604 RRID: AB_2864418
Bacterial and Virus Strains		
DH5α	Transgen Biotech	Cat # CD201
SARS-CoV-2 GFP/ΔN	Dr. Qiang Ding from Tsinghua University, China	N/A
SARS-CoV-2-S	Dr. Aihua Zheng from Chinese Academy of Sciences	N/A
VSV	Dr. Chen Wang from China Pharmaceutical University	N/A
VSV-GFP	Dr. Chunsheng Dong from Soochow University, China	N/A
Chemicals, and Recombinant Proteins		
Flag peptide	Sigma	Cat.# F3290
TRIzol reagent	TAKARA	Cat.# 9109
Vitamin C (VitC)	Sigma	Cat.# A7506
r-hACE2-IgG-Fc	GenScript	Z03516
Critical Commercial Assays		
QuickChange Lightning site-Directed Mutagenesis Kit	TIANGEN	Cat.# KM101
Vitamin-C Detection Kit	Elabscience	E-BC-K034-S
Experimental Models: Cell Lines		
HEK293T	American Type Culture Collection	N/A
A549	American Type Culture Collection	N/A
2fTGH	Dr. Serge Y. Fuchs from	N/A

	University of Pennsylvania, America	
Caco-2-N	Dr. Qiang Ding from Tsinghua University, China	N/A
Experimental Models: Organisms/Strains		
hACE2 mice	Cyagen Biosciences	N/A
C57BL/6 mice	Shanghai SLAC Laboratory Animals	N/A

441

442 **CONTACT FOR REAGENT AND RESOURCE SHARING**

443 Further information and requests for resources and reagents should be
444 directed to and will be fulfilled by the Lead Contact, Hui Zheng
445 (huizheng@suda.edu.cn).

446

447 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

448 **Mice**

449 Mice with human Ace2 gene in C57BL/6 background (hACE2 mice) were
450 generated by the Cyagen Biosciences Inc. (Guangzhou). Wild-type (WT)
451 C57BL/6 mice were purchased from the Shanghai SLAC Laboratory Animals.
452 All mice were maintained under specific-pathogen-free (SPF) conditions in the
453 animal facility of Soochow University. We used 6-8 weeks old mice in all
454 experiments. Animal care and use protocol adhered to the National
455 Regulations for the Administration of Affairs Concerning Experimental Animals.
456 All animal experiments have received ethical approval by the Ethics
457 Committee of the Soochow University, and were carried out in accordance with
458 the Laboratory Animal Management Regulations with approval of the Scientific
459 Investigation Board of Soochow University, Suzhou.

460

461 **METHOD DETAILS**

462 **Cell culture and reagents**

463 HEK293T, Caco-2 and A549 cells were obtained from ATCC. 2fTGH cells were
464 gifts from Dr. Serge Y. Fuchs (University of Pennsylvania). Caco-2-N cells that
465 stably express a SARS-CoV-2 nucleocapsid (N) gene were gifts from Dr. Qiang
466 Ding (Tsinghua University). All cells were cultured at 37 °C under 5% CO₂ in
467 DMEM (HyClone) supplemented with 10% FBS (GIBCO, Life Technologies),
468 100 unit/ml penicillin, and 100 µg/ml streptomycin. Vitamin B1, B6, B12, C, D3
469 and K1 were from Sigma. VitC-Na⁺ was made by Dr. Yibo Zuo (Soochow
470 University). Flag peptides (F3290), puromycin and other chemicals were
471 purchased from Sigma.

472

473 **Plasmids and transfection**

474 Flag-ACE2 plasmid was purchased from the Beyotime Biotechnology (D2949).
475 Myc-ACE2 and its deletion mutants were generated using PCR amplified from
476 Flag-ACE2 or Myc-ACE2. Flag-HA (FH)-tagged human DUBs, including
477 FH-USP50, were gifts from Dr. J. Wade Harper (Harvard Medical School,
478 Addgene plasmids). HA-Ub (K6, K11, K27, K29, K33, K48 and K63) were gifts
479 from Dr. Lingqiang Zhang (State Key Laboratory of Proteomics, China). All
480 plasmids were confirmed by sequencing. The shACE2 and shUSP50 was
481 constructed into the shX vector that is a gift from Dr. Jianfeng Dai (Soochow
482 University) with following sequences:

483 shACE2 (#1): GGACAAGTTAACCAACACGAAGC;
484 shACE2 (#2): GCAAACGGTTAACACACAATTG;
485 shUSP50 (#1): CCCGGAGAAGATCATATGA;
486 shUSP50 (#2): GTTTGAAGAGCAGCTCAAT.

487 All mutations were generated by the QuickChange Lightning site-Directed
488 Mutagenesis Kit (TIANGEN, KM101). Transient transfections for different cell
489 lines were carried out using the LongTrans (Ucallm, TF/07).

490

491 **Liver, lung and kidney histology**

492 Liver, lung and kidney tissues from mice administrated with or without VitC
493 (300 mg/kg of body weight) were fixed in 4% formaldehyde solution, and then
494 embedded into paraffin. Briefly, the paraffin sections were stained with
495 anti-human ACE2 antibodies, and then observed by light microscopy for
496 histological changes. In addition, mice were administrated with VitC (300
497 mg/day/kg of body weight) for two days and then infected with SARS-CoV-2-S
498 pseudoviruses (1x10⁶ PFU per gram body) for 24 hrs. Mouse lung and kidney
499 tissues were stained using antibodies against SARS-CoV-2-Spike (Genetex,
500 GTX632604). DAPI was used for nuclei staining. Representative images are
501 shown at 100x magnification.

502

503 **VitC detection assay**

504 HEK293T cells were transfected with either Flag-USP50 or Myc-ACE2 (WT or
505 its deletion mutants). After 48 hrs, Flag-USP50 or Myc-ACE2 proteins were
506 immunoprecipitated by either Flag (M2) beads or a Myc antibody with
507 Protein-G beads at 4 °C. After washing three times, the immunoprecipitates
508 (Flag-USP50 proteins with Flag beads or Myc-ACE2 proteins with Protein-G
509 beads) were mixed with VitC for binding for 2 hrs at 4°C. After centrifuging, the
510 supernatant was discarded, and the precipitates were washing and then
511 diluted in 1x PBS buffer for further determination of VitC concentrations by the
512 Vitamin-C Detection Kit (Elabscience, E-BC-K034-S).

513 In addition, recombinant human ACE2-IgG-Fc fragments (r-hACE2-Fc)
514 (GenScript, Z03516) were firstly incubated with the Protein-G agarose
515 (Millipore , 16-266) for 2 hrs. An anti-Tyk2 IgG protein (Cell Signaling
516 Technology, 14193) was used as a control for the VitC binding experiment.
517 After washing and centrifuging, the pellets were diluted in 1x PBS buffer and
518 then mixed with VitC for 2 hrs at 4 °C for binding. VitC concentrations were
519 measured by the Vitamin-C Detection Kit (Elabscience, E-BC-K034-S).

520

521 ***In vitro* protein-protein binding assay**

522 HEK293T cells were transfected with either Flag-USP50 or Myc-ACE2.
523 Flag-USP50 proteins were immunoprecipitated by Flag (M2) beads and then
524 eluted with the Flag peptides. Myc-ACE2 was pulled down by the Myc antibody
525 from HEK293T cells transfected with Myc-ACE2. Next, Flag-USP50 eluates
526 and the immunoprecipitation beads with Myc-ACE2 proteins were mixed with
527 or without VitC, and then vibrated for 2 hrs at 4 °C. After washing and
528 centrifuging, SDS-PAGE and immunoblotting were used to analyze
529 Flag-USP50 and Myc-ACE2 protein levels using anti-Flag or anti-Myc
530 antibodies.

531

532 **CRISPR-Cas9 genome editing**

533 The lenti-CRISPRv2 vector was a nice gift from Dr. Fangfang Zhou (Soochow
534 University, China). For gene knockout, small guide RNAs were firstly cloned
535 into the lenti-CRISPRv2 vector, and then transfected into HEK293T cells.
536 Forty-eight hours after transfection, the cells were cultured under puromycin
537 (1.5 µg/ml) selection for 2 weeks, and then cells were identified by
538 immunoblotting analysis. After that, cells were transferred to 96-well plates and
539 cultured for further experiments. The guide RNA sequences are as following:
540 human *Usp50*: 5'-CCCCATTTCAGGGTGTAC-3'.

541

542 **VitC docking with ACE2**

543 VitC docking with ACE2 was performed by Prof. Sheng Tian (Soochow
544 University). The binding pocket is defined by the centroid of amino acid
545 residues 200-400 of ACE2. Based on the glide docking module in the
546 Schrödinger molecular simulation software package, VitC was aligned to the
547 defined binding pocket using standard precision (SP), and the binding
548 conformation and its interaction were evaluated. The binding conformation and
549 interaction diagram of VitC and ACE2 are obtained based on SP docking
550 scoring function.

551

552 **Immunoblotting (IB) and Immunoprecipitation (IP)**

553 Cells were harvested using the lysis buffer containing 1% Nonidet P-40
554 (NP-40), 150 mM NaCl, Tris-HCl (20 mM, pH 7.4), 0.5 mM EDTA, PMSF (50
555 µg/ml) and protease inhibitor mixtures (Sigma). Proteins from whole cell
556 lysates were firstly subjected to SDS-PAGE, and then transferred to PVDF
557 membranes (Millipore). After blocking with 5% nonfat milk for 1 hr, the
558 membranes were incubated with the corresponding primary antibodies
559 overnight, followed by incubation with the secondary antibodies (Bioworld or
560 Abbkine). All immunoreactive bands were visualized with the NcmECL Ultra
561 (MCM Biotech, P10300).

562 Immunoprecipitation was firstly carried out using specific antibodies at 4 °C.
563 Protein G agarose beads (Millipore, #16-266) were then added and incubated
564 for 2 hrs on a rotor at 4°C. After washing five times with the lysis buffer, the
565 immunoprecipitates were eluted by heating at 95 °C with the loading buffer
566 containing β-mercaptoethanol for 10 min and then analyzed by SDS-PAGE
567 gels and subsequent immunoblotting.

568 The antibodies with the indicated dilutions were as follows: anti-human
569 ACE2 (Cell Signaling Technology, #74512, 1:1000), anti-ACE2 (Affinity,
570 AF5165, 1:1000), anti-USP50 (Affinity, AF9225, 1:1000), anti-USP50
571 (Proteintech, 20374-1-AP, 1:1000), anti-Flag (Sigma, F7425, 1:5000), anti-HA
572 (Abcam, ab9110, 1:3000), anti-Myc (Abmart, M20002H, 1:3000), anti-IRF3
573 (Santa Cruz, sc-33641, 1:1000), anti-STAT1 (Cell Signaling Technology, 9172,
574 1:1000), anti-Ubiquitin (Ub) (Santa Cruz, 12987-1-AP, 1:1000), anti-K48 Ub
575 (Cell Signaling Technology, 4289S, 1:1000), anti-VSV-G (Santa Cruz,
576 sc-66180, 1:2000) and anti-Tubulin (Proteintech, 66031-1-Ig, 1:3000).

577

578 **RNA isolation and quantitative real-time PCR**

579 Total RNAs were isolated from different cells or mouse tissues using a TRIzol
580 reagent (Invitrogen). The detailed procedures for RNA isolation and
581 quantitative real-time PCR (RT-qPCR) were as described previously (Zuo et al.,
582 2020; Zuo et al., 2022). Briefly, the cDNA was synthesized using 5× All-In-One

583 RT MasterMix (abm, #G490, Beijing). RT-qPCR was performed using a
584 StepOne Plus real-time PCR system (Applied Bioscience). The results from
585 three independent experiments were shown as the average mean \pm standard
586 deviation (s.d.). The primer sequences are as following:
587 human Ace2:
588 Forward: 5'-ACCACGAAGCCGAAGACCTGTT-3'
589 Reverse: 5'-TGGGCAAGTGTGGACTGTTCC-3';
590 SARS-CoV-2 GFP/ΔN:
591 Forward: 5'-GCTTGCTGGAAATGCCGTT-3'
592 Reverse: 5'-GGACTTGTGTGCCATCACC-3';
593 SARS-CoV-2-S:
594 Forward: 5'-ATGTCCTCCCTCAGTCAGCAC-3'
595 Reverse: 5'-TGACAAATGGCAGGAGCAGTTG-3';
596 VSV:
597 Forward: 5'-ACGGCGTACTTCCAGATGG-3'
598 Reverse: 5'-CTCGGTTCAAGATCCAGGT-3';
599 β -actin:
600 Forward: 5'-ACCAACTGGGACGACATGGAGAAA-3'
601 Reverse: 5'-ATAGCACAGCCTGGATAGCAACG-3'.
602

603 **Virus and viral infection *in vitro***

604 SARS-CoV-2 GFP/ΔN viruses were gifts from Dr. Qiang Ding (Tsinghua
605 University) ([Ju et al., 2021](#)). SARS-CoV-2-S pseudoviruses, which contain the
606 rVSV-eGFP-SARS-CoV-2 backbone with the VSV glycoprotein coding
607 sequence (3845–5380) being replaced by the SARS-CoV-2 Spike gene ([Li et](#)
608 [al., 2020](#)), were nice gifts from Dr. Aihua Zheng (Chinese Academy of
609 Sciences) and Dr. Jianfeng Dai (Soochow University, China). Vesicular
610 stomatitis virus (VSV) was a gift from Dr. Chen Wang (China Pharmaceutical
611 University). VSV-GFP viruses were gifts from Dr. Chunsheng Dong (Soochow
612 University, China). Cells were treated with VitC (5 mM) overnight. After
613 washing twice, cells were infected by either SARS-CoV-2, or VSV, or VSV-GFP

614 at a multiplicity of infection (MOI) of 0.1 for 24 hrs. Then cells were analyzed by
615 immunofluorescence, RT-qPCR or western blot.

616

617 **Viral infection *in vivo***

618 For *in vivo* viral infection studies, 8-week-old hACE2 mice were
619 intraperitoneally administrated with Vitamin C (300 mg/kg body weight, once a
620 day) for two days. Then mice were given intraperitoneal injections (*i.p.*) of
621 SARS-CoV-2-S pseudoviruses (1×10^6 PFU per gram body mouse).
622 Twenty-four hours after infection, mouse lung, liver, kidney and spleen tissues
623 were harvested. RT-qPCR was performed for the analysis of SARS-CoV-2-S
624 viral RNA levels.

625

626 **Immunofluorescence microscopy**

627 HeLa cells were firstly washed by 1x PBS and fixed in 4% paraformaldehyde
628 on ice. Then cells were permeabilized with Triton X-100 (0.5%) and blocked
629 with BSA (5%). Next, cells were incubated with two different anti-ACE2
630 antibodies overnight in 0.5% BSA. After washing three times with 1x PBS, cells
631 were stained with either 488 goat anti-mouse IgG (Alexa Fluor, A11001) or 594
632 goat anti-rabbit IgG (Alexa Fluor, A11012). Nucleus were stained with DAPI.
633 The fluorescent images were captured with the Nikon A1 confocal microscope.

634

641 **QUANTIFICATION STATISTICAL ANALYSIS**

642 **Statistical analysis**

643 Two-tailed unpaired Student's *t*-test was employed to compare the significance
644 between different groups. All differences were considered statistically
645 significant when $p < 0.05$. P values are indicated by asterisks in the figures as
646 follows: * $p < 0.05$, ** $p < 0.01$ and *** $p < 0.001$.

647

648 **DATA AND SOFTWARE AVAILABILITY**

649 All data generated or analyzed during this study are included in the Figures 1-6

650 and Supplementary Figures 1-7. Additional datasets that support the findings
651 of this study are available from the corresponding author upon reasonable
652 request.

653

654 REFERENCES

655 Ju, X., Zhu, Y., Wang, Y., Li, J., Zhang, J., Gong, M., Ren, W., Li, S., Zhong, J., Zhang, L., *et al.*
656 (2021). A novel cell culture system modeling the SARS-CoV-2 life cycle. *PLoS Pathog* *17*, e1009439.
657 Li, H., Zhao, C., Zhang, Y., Yuan, F., Zhang, Q., Shi, X., Zhang, L., Qin, C., and Zheng, A. (2020).
658 Establishment of replication-competent vesicular stomatitis virus-based recombinant viruses suitable
659 for SARS-CoV-2 entry and neutralization assays. *Emerg Microbes Infect* *9*, 2269-2277.
660 Zuo, Y., Feng, Q., Jin, L., Huang, F., Miao, Y., Liu, J., Xu, Y., Chen, X., Zhang, H., Guo, T., *et al.*
661 (2020). Regulation of the linear ubiquitination of STAT1 controls antiviral interferon signaling. *Nat
662 Commun* *11*, 1146.
663 Zuo, Y., He, J., Liu, S., Xu, Y., Liu, J., Qiao, C., Zang, L., Sun, W., Yuan, Y., Zhang, H., *et al.* (2022).
664 LATS1 is a central signal transmitter for achieving full type-I interferon activity. *Sci Adv* *8*, eabj3887.
665
666

667 SUPPLEMENTAL INFORMATION

668 Supplemental Information includes seven figures and can be found with this
669 article online.

670

671 ACKNOWLEDGMENTS

672 We thank Dr. Serge Y. Fuchs (University of Pennsylvania), Dr. J. Wade Harper
673 (Harvard Medical School), Dr. Lingqiang Zhang (National Center of Protein
674 Sciences, China), Dr. Chen Wang (China Pharmaceutical University), Dr.
675 Chunsheng Dong (Soochow University, China) and Dr. Aihua Zheng (Chinese
676 Academy of Sciences) for important reagents. This work is supported by the
677 National Natural Science Foundation of China (32100568, 31970846), the
678 National Key R&D Program of China (2018YFC1705500): 2018YFC1705505,
679 the Postdoctoral Science Foundation of China (2021M692351), and the

680 Priority Academic Program Development of Jiangsu Higher Education
681 Institutions (PAPD).

682

683 **AUTHOR CONTRIBUTIONS**

684 Y.Z., Z.Z., Y.H., J.H., L.Z., T.R., X.C and Y.M. performed the experiments. Z.Z.,
685 Y.H. and F.M. assisted with mouse experiments, tissue processing and
686 analysis. S.T. performed VitC docking analysis. Q.D. assisted with
687 SARS-CoV-2 GFP/ΔN experiments. H.Z. and Y.Z. designed experiments,
688 analyzed data and wrote the paper. Y.Y., Y.L., J.D., Q.D., S.T. and H.Z.
689 discussed the data and manuscript. H.Z. was responsible for research
690 supervision, coordination, and strategy.

691

692 **DECLARATION OF INTERESTS**

693 The authors declare no competing interests.

694

695 **REFERENCES**

696 Cai, J., Wei, J., Schrott, V., Zhao, J., Bullock, G., and Zhao, Y. (2018). Induction of deubiquitinating
697 enzyme USP50 during erythropoiesis and its potential role in the regulation of Ku70 stability. *J*
698 *Investig Med* 66, 1-6.

699 Chavda, V.P., Prajapati, R., Lathigara, D., Nagar, B., Kukadiya, J., Redwan, E.M., Uversky, V.N., Kher,
700 M.N., and Patel, R. (2022). Therapeutic monoclonal antibodies for COVID-19 management: an update.
701 *Expert Opin Biol Ther* 22, 763-780.

702 Chen, Q., Espey, M.G., Krishna, M.C., Mitchell, J.B., Corpe, C.P., Buettner, G.R., Shacter, E., and
703 Levine, M. (2005). Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a
704 pro-drug to deliver hydrogen peroxide to tissues. *Proc Natl Acad Sci U S A* 102, 13604-13609.

705 Crackower, M.A., Sarao, R., Oudit, G.Y., Yagil, C., Kozieradzki, I., Scanga, S.E., Oliveira-dos-Santos,
706 A.J., da Costa, J., Zhang, L., Pei, Y., *et al.* (2002). Angiotensin-converting enzyme 2 is an essential
707 regulator of heart function. *Nature* *417*, 822-828.

708 Donoghue, M., Hsieh, F., Baronas, E., Godbout, K., Gosselin, M., Stagliano, N., Donovan, M., Woolf,
709 B., Robison, K., Jeyaseelan, R., *et al.* (2000). A novel angiotensin-converting enzyme-related
710 carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. *Circ Res* *87*, E1-9.

711 Edenfield, R.C., and Easley, C.A.t. (2022). Implications of testicular ACE2 and the renin-angiotensin
712 system for SARS-CoV-2 on testis function. *Nat Rev Urol* *19*, 116-127.

713 Ferrario, C.M., Jessup, J., Chappell, M.C., Averill, D.B., Brosnihan, K.B., Tallant, E.A., Diz, D.I., and
714 Gallagher, P.E. (2005). Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor
715 blockers on cardiac angiotensin-converting enzyme 2. *Circulation* *111*, 2605-2610.

716 Garvin, M.R., Alvarez, C., Miller, J.I., Prates, E.T., Walker, A.M., Amos, B.K., Mast, A.E., Justice, A.,
717 Aronow, B., and Jacobson, D. (2020). A mechanistic model and therapeutic interventions for
718 COVID-19 involving a RAS-mediated bradykinin storm. *Elife* *9*.

719 Guan, W.J., Ni, Z.Y., Hu, Y., Liang, W.H., Ou, C.Q., He, J.X., Liu, L., Shan, H., Lei, C.L., Hui, D.S.C.,
720 *et al.* (2020). Clinical Characteristics of Coronavirus Disease 2019 in China. *N Engl J Med* *382*,
721 1708-1720.

722 Gupta, A., Madhavan, M.V., Sehgal, K., Nair, N., Mahajan, S., Sehrawat, T.S., Bikdeli, B., Ahluwalia,
723 N., Ausiello, J.C., Wan, E.Y., *et al.* (2020). Extrapulmonary manifestations of COVID-19. *Nat Med* *26*,
724 1017-1032.

725 Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kruger, N., Herrler, T., Erichsen, S., Schiergens, T.S.,
726 Herrler, G., Wu, N.H., Nitsche, A., *et al.* (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and
727 TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. *Cell* *181*, 271-280 e278.

728 Ju, X., Zhu, Y., Wang, Y., Li, J., Zhang, J., Gong, M., Ren, W., Li, S., Zhong, J., Zhang, L., *et al.*
729 (2021). A novel cell culture system modeling the SARS-CoV-2 life cycle. *PLoS Pathog* *17*, e1009439.

730 Krege, J.H., John, S.W., Langenbach, L.L., Hodgin, J.B., Hagaman, J.R., Bachman, E.S., Jennette, J.C.,
731 O'Brien, D.A., and Smithies, O. (1995). Male-female differences in fertility and blood pressure in
732 ACE-deficient mice. *Nature* *375*, 146-148.

733 Kuba, K., Imai, Y., and Penninger, J.M. (2006). Angiotensin-converting enzyme 2 in lung diseases.
734 *Curr Opin Pharmacol* *6*, 271-276.

735 Levine, M., Conry-Cantilena, C., Wang, Y., Welch, R.W., Washko, P.W., Dhariwal, K.R., Park, J.B.,

736 Lazarev, A., Graumlich, J.F., King, J., *et al.* (1996). Vitamin C pharmacokinetics in healthy volunteers:

737 evidence for a recommended dietary allowance. *Proc Natl Acad Sci U S A* *93*, 3704-3709.

738 Li, M.Y., Li, L., Zhang, Y., and Wang, X.S. (2020). Expression of the SARS-CoV-2 cell receptor gene

739 ACE2 in a wide variety of human tissues. *Infect Dis Poverty* *9*, 45.

740 Li, R., Li, X., Zhao, J., Meng, F., Yao, C., Bao, E., Sun, N., Chen, X., Cheng, W., Hua, H., *et al.* (2022).

741 Mitochondrial STAT3 exacerbates LPS-induced sepsis by driving CPT1a-mediated fatty acid oxidation.

742 *Theranostics* *12*, 976-998.

743 Lindblad, M., Tveden-Nyborg, P., and Lykkesfeldt, J. (2013). Regulation of vitamin C homeostasis

744 during deficiency. *Nutrients* *5*, 2860-2879.

745 Lykkesfeldt, J., and Tveden-Nyborg, P. (2019). The Pharmacokinetics of Vitamin C. *Nutrients* *11*.

746 Messerli, F.H., Bangalore, S., Bavishi, C., and Rimoldi, S.F. (2018). Angiotensin-Converting Enzyme

747 Inhibitors in Hypertension: To Use or Not to Use? *J Am Coll Cardiol* *71*, 1474-1482.

748 Mohamed, T., Abdul-Hafez, A., and Uhal, B.D. (2021). Regulation of ACE-2 enzyme by hyperoxia in

749 lung epithelial cells by post-translational modification. *J Lung Pulm Respir Res* *8*, 47-52.

750 Nielsen, T.K., Hojgaard, M., Andersen, J.T., Poulsen, H.E., Lykkesfeldt, J., and Mikines, K.J. (2015).

751 Elimination of ascorbic acid after high-dose infusion in prostate cancer patients: a pharmacokinetic

752 evaluation. *Basic Clin Pharmacol Toxicol* *116*, 343-348.

753 Padayatty, S.J., Sun, H., Wang, Y., Riordan, H.D., Hewitt, S.M., Katz, A., Wesley, R.A., and Levine, M.

754 (2004). Vitamin C pharmacokinetics: implications for oral and intravenous use. *Ann Intern Med* *140*,

755 533-537.

756 Ritorto, M.S., Ewan, R., Perez-Oliva, A.B., Knebel, A., Buhrlage, S.J., Wightman, M., Kelly, S.M.,

757 Wood, N.T., Virdee, S., Gray, N.S., *et al.* (2014). Screening of DUB activity and specificity by

758 MALDI-TOF mass spectrometry. *Nat Commun* *5*, 4763.

759 Rodrigues Prestes, T.R., Rocha, N.P., Miranda, A.S., Teixeira, A.L., and Simoes, E.S.A.C. (2017). The

760 Anti-Inflammatory Potential of ACE2/Angiotensin-(1-7)/Mas Receptor Axis: Evidence from Basic and

761 Clinical Research. *Curr Drug Targets* *18*, 1301-1313.

762 Rothlin, R.P., Vetulli, H.M., Duarte, M., and Pelorosso, F.G. (2020). Telmisartan as tentative

763 angiotensin receptor blocker therapeutic for COVID-19. *Drug Dev Res* *81*, 768-770.

764 Shen, H., Zhang, J., Wang, C., Jain, P.P., Xiong, M., Shi, X., Lei, Y., Chen, S., Yin, Q., Thistlethwaite,

765 P.A., *et al.* (2020). MDM2-Mediated Ubiquitination of Angiotensin-Converting Enzyme 2 Contributes
766 to the Development of Pulmonary Arterial Hypertension. *Circulation* 142, 1190-1204.

767 Stephenson, C.M., Levin, R.D., Spector, T., and Lis, C.G. (2013). Phase I clinical trial to evaluate the
768 safety, tolerability, and pharmacokinetics of high-dose intravenous ascorbic acid in patients with
769 advanced cancer. *Cancer Chemother Pharmacol* 72, 139-146.

770 Uhler, C., and Shivashankar, G.V. (2020). Mechano-genomic regulation of coronaviruses and its
771 interplay with ageing. *Nat Rev Mol Cell Biol* 21, 247-248.

772 Verdecchia, P., Angeli, F., Mazzotta, G., Ambrosio, G., and Rebaldi, G. (2010). Angiotensin converting
773 enzyme inhibitors and angiotensin receptor blockers in the treatment of hypertension: should they be
774 used together? *Curr Vasc Pharmacol* 8, 742-746.

775 Vilchez, C., Kim, J., and Jacobs, W.R., Jr. (2018). Vitamin C Potentiates the Killing of Mycobacterium
776 tuberculosis by the First-Line Tuberculosis Drugs Isoniazid and Rifampin in Mice. *Antimicrob Agents*
777 *Chemother* 62.

778 Wang, G., Zhao, Q., Zhang, H., Liang, F., Zhang, C., Wang, J., Chen, Z., Wu, R., Yu, H., Sun, B., *et al.*
779 (2021). Degradation of SARS-CoV-2 receptor ACE2 by the E3 ubiquitin ligase Skp2 in lung epithelial
780 cells. *Front Med* 15, 252-263.

781 Wang, L., Wu, Y., Yao, S., Ge, H., Zhu, Y., Chen, K., Chen, W.Z., Zhang, Y., Zhu, W., Wang, H.Y., *et*
782 *al.* (2022). Discovery of potential small molecular SARS-CoV-2 entry blockers targeting the spike
783 protein. *Acta Pharmacol Sin* 43, 788-796.

784 Winkelmayr, W.C., Fischer, M.A., Schneeweiss, S., Wang, P.S., Levin, R., and Avorn, J. (2005).
785 Underuse of ACE inhibitors and angiotensin II receptor blockers in elderly patients with diabetes. *Am J*
786 *Kidney Dis* 46, 1080-1087.

787 Wrapp, D., Wang, N., Corbett, K.S., Goldsmith, J.A., Hsieh, C.L., Abiona, O., Graham, B.S., and
788 McLellan, J.S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation.
789 *Science* 367, 1260-1263.

790 Xu, Y., Wu, C., Cao, X., Gu, C., Liu, H., Jiang, M., Wang, X., Yuan, Q., Wu, K., Liu, J., *et al.* (2022).
791 Structural and biochemical mechanism for increased infectivity and immune evasion of Omicron BA.2
792 variant compared to BA.1 and their possible mouse origins. *Cell Res.*

793 Ziegler, C.G.K., Allon, S.J., Nyquist, S.K., Mbano, I.M., Miao, V.N., Tzouanas, C.N., Cao, Y., Yousif,
794 A.S., Bals, J., Hauser, B.M., *et al.* (2020). SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated

795 Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. *Cell*
796 *181*, 1016-1035 e1019.

797

798

799 **Legends**

800 **Figure 1. VitC effectively reduces ACE2 proteins and restricts cellular**
801 **infection with SARS-CoV-2**

802 **(A)** Western blot analysis of endogenous ACE2 in various types of cell lines,
803 including HEK293T transfected with either control shRNAs (shCtrl) or shRNAs
804 against ACE2 (shACE2), 2fTGH, Caco-2 and A549 cells.

805 **(B)** HEK293T cells were transfected with shCtrl or increasing amounts of
806 shACE2. Then cells were subjected to RT-qPCR analysis of *Ace2* mRNA
807 levels (right), or were infected with SARS-CoV-2 GFP/ΔN (MOI = 0.1) for 2 hrs.
808 RT-qPCR was used to analyze SARS-CoV-2 RNA levels (left).

809 **(C)** Western blot analysis of ACE2 in Caco-2 cells treated with vitamin (Vit)
810 compounds (VitB1, 500 μM; VitB6, 500 μM; VitB12, 50 nM; VitC, 5 mM; VitD3,
811 25 μM; VitK1, 0.5 μM) for 24 hrs.

812 **(D)** Western blot analysis of ACE2 in HEK293T, 2fTGH, Caco-2 and A549 cells
813 treated with VitC at indicated concentrations for 24 hrs.

814 **(E)** Western blot analysis of ACE2 in HEK293T cells treated with 5 mM or 0.2
815 mM of VitC for different durations.

816 **(F)** Immunofluorescence analysis of ACE2 proteins in HeLa cells treated with
817 VitC (5 mM) for 24 hrs. DAPI was used for the nucleus. Scale bars, 1 μm.

818 **(G)** Western blot analysis of ACE2, IRF3 and STAT1 in A549 cells treated with
819 VitC at indicated concentrations for 24 hrs.

820 **(H)** Fluorescence microscopy of the SARS-CoV-2 GFP/ΔN or VSV-GFP

821 viruses in Caco-2-N cells pretreated with VitC (5 mM and 10 mM) for 24 hrs,
822 and then infected with SARS-CoV-2 GFP/ΔN (MOI = 0.1) or VSV-GFP (MOI =
823 0.1) viruses for 24 hrs. Scale bar: 100 μ m.

824 **(I)** RT-qPCR analysis of SARS-CoV-2 GFP/ΔN or VSV RNA levels in Caco-2
825 cells pretreated with VitC as (H), and then infected with SARS-CoV-2 GFP/ΔN
826 (MOI = 0.1) or VSV (MOI = 0.1) for 2 hrs.

827 Data are representative of three independent experiments (A, C-F), or are
828 shown as mean and s.d. of three biological replicates (B, I). N.S, not significant,
829 * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$ (two-tailed unpaired Student's *t*-test).

830 See also Figure S1.

831

832 **Figure 2. VitC regulates K48-linked polyubiquitination and protein
833 stability of ACE2**

834 **(A)** RT-qPCR analysis of Ace2 mRNA in 2fTGH cells treated with VitC (5 mM)
835 as indicated.

836 **(B)** Western blot analysis of ACE2 in 2fTGH cells pretreated with ddH₂O (Ctrl)
837 or VitC (5 mM) for 12 hrs and then treated with CHX (50 μ M) for 6 and 12 hrs.

838 **(C)** Western blot analysis of Myc-ACE2 levels in HEK293T cells transfected
839 with Myc-ACE2 and then treated with VitC at indicated concentrations for 12
840 hrs.

841 **(D)** Western blot analysis of ACE2 in HEK293T cells pretreated with MG132
842 (10 μ M) or MA (10 μ M) for 2 hrs, followed by VitC treatment (5 mM) for 6 hrs.

843 **(E)** Immunoprecipitation (IP)-immunoblotting (IB) analysis of ubiquitination (Ub)
844 of endogenous ACE2 in 2fTGH cells treated with VitC at indicated
845 concentrations for 12 hrs.

846 **(F)** IP-IB analysis of ubiquitination types of Myc-ACE2 in HEK293T cells

847 cotransfected with Myc-ACE2 and different types of HA-Ub, and then treated
848 with VitC (5 mM) for 12 hrs.

849 **(G)** IP-IB analysis of K48-linked polyubiquitination (K48-Ub) of Myc-ACE2 in
850 HEK293T cells transfected with Myc-ACE2 and then treated with VitC (2.5 mM
851 and 5 mM) for 12 hrs, using a specific anti-K48-Ub antibody.

852 **(H)** IP-IB analysis of K48-Ub of endogenous ACE2 in 2fTGH cells treated with
853 VitC (2.5 mM and 5 mM) for 12 hrs.

854 Data are representative of three independent experiments (B-H), or are shown
855 as mean and s.d. of three biological replicates (A, B). N.S, not significant, ** $p <$
856 0.01 (two-tailed unpaired Student's t -test).

857 See also Figure S2.

858

859 **Figure 3. VitC reduces ACE2 levels largely dependently on the**
860 **deubiquitinase USP50**

861 **(A)** Western blot analysis of ACE2 in HEK293T cells pretreated with PR619
862 (50 μ M, 2 hrs) and then treated with VitC (5 mM) for 12 hrs.

863 **(B)** HEK293T cells were individually transfected with the plasmids from the
864 human DUBs expression library. Western blot was used to identify the key
865 deubiquitinase that significantly increases ACE2 levels.

866 **(C)** IP-IB analysis of the interaction between Flag-USP50 and Myc-ACE2 in
867 HEK293T cells cotransfected with these two constructs.

868 **(D)** Immunoprecipitation analysis of the interaction between endogenous
869 USP50 and ACE2 in 2fTGH cells.

870 **(E)** Western blot analysis of ACE2 in HEK293T cells transfected with
871 increasing amounts of Flag-USP50.

872 **(F)** Western blot analysis of ACE2 in HEK293T cells transfected with shCtrl or

873 shUSP50 (#1 or #2).

874 **(G)** Western blot analysis of ACE2 in HEK293T cells transfected with
875 Flag-USP50 and then treated with CHX (50 μ M) as indicated.

876 **(H)** Western blot analysis of ACE2 in *Usp50^{+/+}* and *Usp50^{-/-}* HEK293T cells.

877 **(I)** Western blot analysis of ACE2 in *Usp50^{+/+}* and *Usp50^{-/-}* HEK293T cells
878 treated with VitC (5 mM) for 12 hrs.

879 **(J)** RT-qPCR analysis of SARS-CoV-2 GFP/ΔN RNA levels in HEK293T cells
880 transfected with Flag-USP50 and then infected with the SARS-CoV-2 GFP/ΔN
881 virus (MOI = 0.1) for 24 hrs.

882 **(K)** Fluorescence microscopy of the SARS-CoV-2-S pseudovirus in *Usp50^{+/+}*
883 and *Usp50^{-/-}* HEK293T cells pretreated with or without VitC (5 mM) for 12 hrs,
884 followed by infection with SARS-CoV-2-S pseudovirus (MOI = 0.1) for 24 hrs.

885 Scale bar: 100 μ m.

886 Data are representative of three independent experiments (A-I), or are shown
887 as mean and s.d. of three biological replicates (J, K). N.S, not significant, * $p <$
888 0.05, *** $p < 0.001$ (two-tailed unpaired Student's *t*-test).

889 See also Figure S3.

890

891 **Figure 4. USP50 regulates K48-linked polyubiquitination at Lys788 of**
892 **ACE2**

893 **(A)** IP-IB analysis of ubiquitination of Myc-ACE2 in HEK293T cells transfected
894 with Myc-ACE2, together with Flag-USP50 (WT) or its deubiquitinase inactive
895 mutant (C53S).

896 **(B)** IP-IB analysis of ubiquitination of endogenous ACE2 in HEK293T cells
897 transfected with either shCtrl (-) or shUSP50 (#1, #2).

898 **(C)** IP-IB analysis of ubiquitination types of Myc-ACE2 in HEK293T cells

899 cotransfected with Myc-ACE2, Flag-USP50 and different types of HA-Ub.
900 **(D)** IP-IB analysis of K48-Ub of endogenous ACE2 in HEK293T cells
901 transfected with shCtrl (-) or shUSP50 (#1, #2).
902 **(E)** Putative ubiquitination sites of ACE2 in the PhosphoSitePlus database
903 (Upper). Myc-ACE2 K48-linked ubiquitination was analyzed by IP-IB in
904 HEK293T cells cotransfected with Myc-ACE2 (WT or its mutants) and
905 HA-K48-Ub (Lower).
906 **(F)** IP-IB analysis of Myc-ACE2 K48-linked ubiquitination in HEK293T cells
907 cotransfected with Myc-ACE2 (WT or K788R) and HA-K48, together with
908 shCtrl or shUSP50.
909 **(G)** Western blot analysis of Myc-ACE2 in HEK293T cells transfected with
910 Myc-ACE2 (WT or K788R) and then treated with CHX (50 µM) as indicated.
911 **(H)** IP-IB analysis of K48-Ub of Myc-ACE2 in HEK293T cells transfected with
912 Myc-ACE2 (WT or K788R) and then treated with VitC (5 mM) for 12 hrs, by a
913 specific anti-K48-Ub antibody.
914 **(I)** Western blot analysis of Myc-ACE2 in HEK293T cells transfected with
915 Myc-ACE2 (WT or K788R) and then treated with VitC (5 mM) as indicated.
916 Data are representative of three independent experiments (A-I).
917 See also Figure S3 and S4.
918

919 **Figure 5. VitC blocks the interaction between USP50 and ACE2**
920 **(A)** The procedure for analysis of the binding of VitC to Flag-USP50 or
921 Myc-ACE2 (left) can be seen detailedly in the Methods. The concentrations of
922 VitC that binds with either Flag-USP50 (middle) or Myc-ACE2 (right) proteins
923 were measured by the Vitamin-C Detection Kit.
924 **(B)** Recombinant human ACE2-IgG-Fc proteins (r-hACE2-Fc) or anti-Tyk2 IgG

925 proteins were incubated with protein-G beads for 2 hrs, and then VitC was
926 added for binding. After washing and centrifuging, the concentrations of VitC
927 that binds to anti-Tyk2 proteins or r-hACE2-Fc proteins were detected as (A).
928 **(C)** The concentrations of VitC that binds to Myc-ACE2 (WT) or its deletion
929 mutants were detected as (A).
930 **(D)** VitC docking to the binding pocket of ACE2 by standard precision (SP)
931 using the Glide docking module in the Schrödinger molecular simulation
932 software.
933 **(E)** The docking diagram between amino acids of ACE2 and VitC based on the
934 SP docking scoring function.
935 **(F)** IP-IB analysis of the interaction between USP50 and Myc-ACE2 (WT) or its
936 deletion mutants (Δ 19-200, Δ 201-400, Δ 401-600 and Δ 601-805) in HEK293T.
937 **(G)** IP-IB analysis of the interaction between Flag-USP50 and Myc-ACE2 in
938 HEK293T cells transfected with these two constructs and then treated with
939 VitC (2.5 mM and 5 mM) for 12 hrs.
940 **(H)** IP-IB analysis of the *in vivo* interaction between endogenous USP50 and
941 ACE2 in 2fTGH cells treated with VitC (5 mM) for 12 hrs.
942 **(I)** Myc-ACE2 and Flag-USP50 proteins were immunoprecipitated from
943 HEK293T cells transfected with either Myc-ACE2 or Flag-USP50. Flag-USP50
944 proteins were eluted by the Flag (M2) agarose. After washing, Flag-USP50
945 proteins were mixed with the Myc beads with Myc-ACE2, together with or
946 without VitC (5 mM) for 2 hrs. After centrifuging, Flag-USP50 proteins
947 interacting with Myc-ACE2 were analyzed by immunoblotting.
948 **(J)** Flag-USP50 proteins were obtained as (I). Flag-USP50 and r-hACE2
949 proteins were mixed, together with increasing amounts of VitC or with VitC- Na^+
950 (20 mM). HCl is a pH control (pH = 4). After 2 hrs incubation, ACE2 proteins

951 were analyzed by immunoblotting by a specific anti-ACE2 antibody.
952 Data are representative of three independent experiments (F-J), or are shown
953 as mean and s.d. of three biological replicates (A-C). N.S, not significant. *** p
954 < 0.001 (two-tailed unpaired Student's t -test).

955 See also Figure S5.

956

957 **Figure 6. VitC administration reduces ACE2 and restricts SARS-CoV-2**
958 **infection *in vivo***

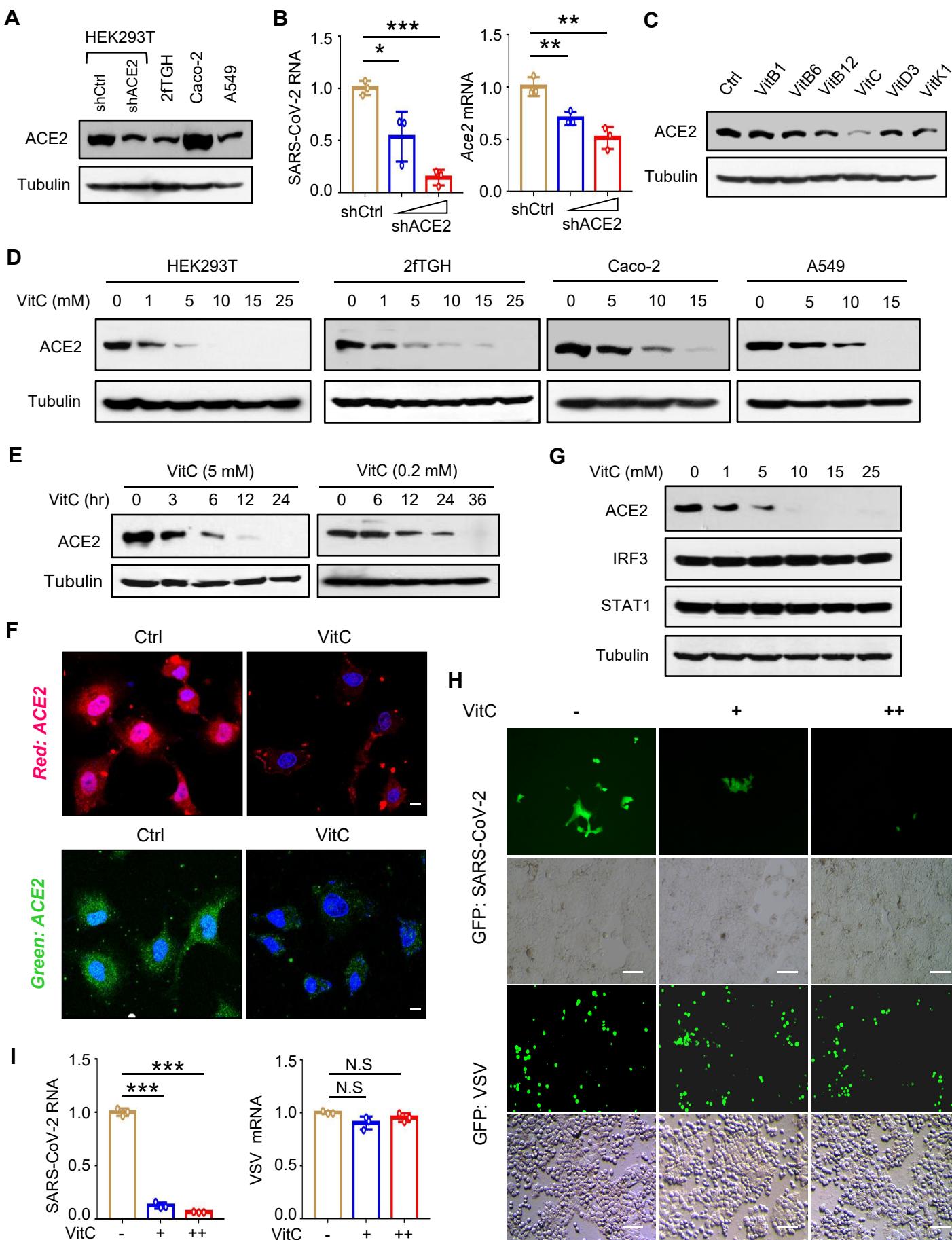
959 **(A)** IP-IB analysis of the interaction between endogenous hACE2 and USP50
960 in the lung and liver tissues of hACE2 mice.

961 **(B)** The hACE2 mice were intraperitoneally administrated with VitC (300
962 mg/day/kg body weight) for two days. The interaction between USP50 and
963 hACE2 in mouse lung tissues was analyzed by IP-IB.

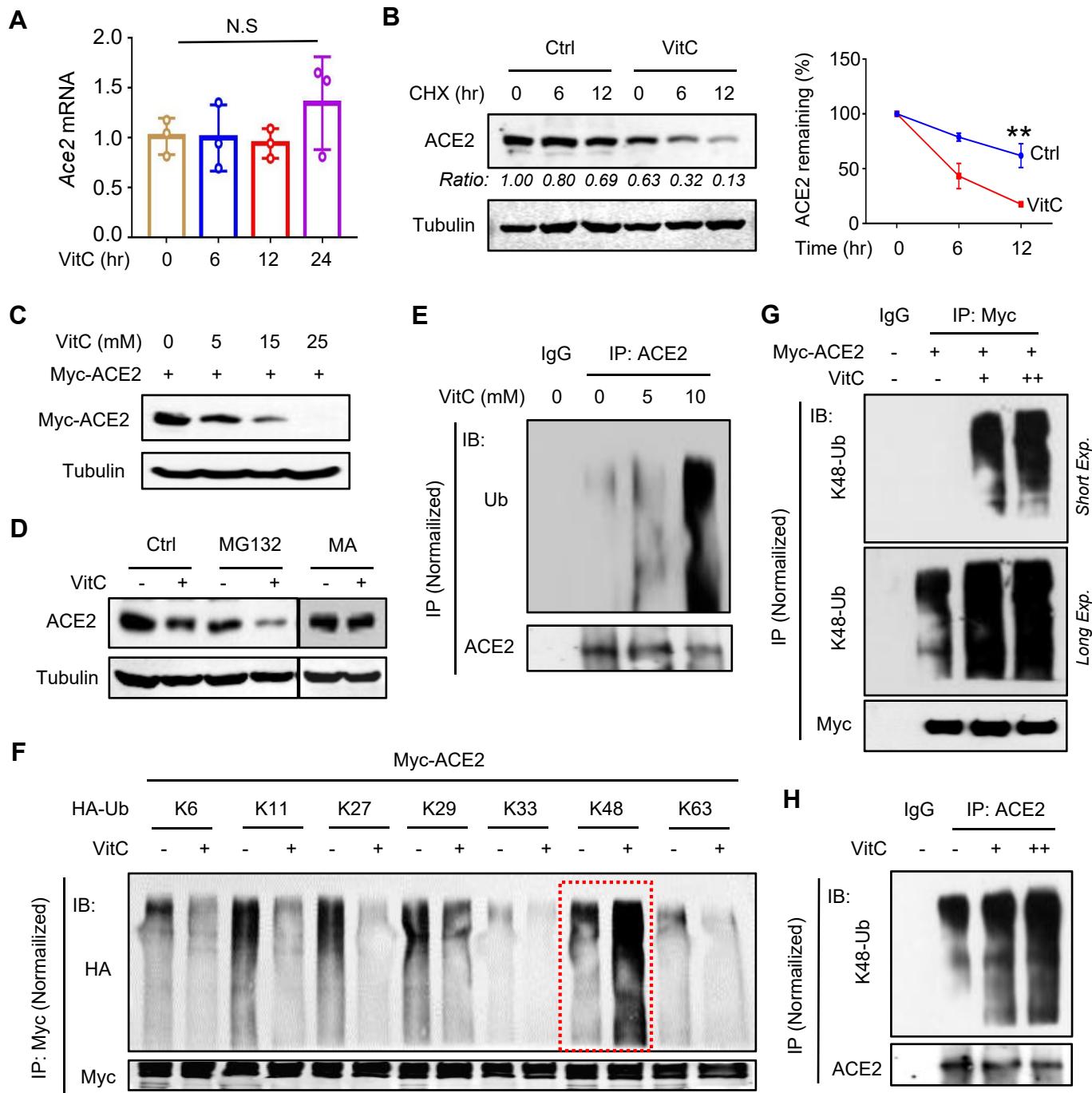
964 **(C)** IP-IB analysis of K48-Ub of hACE2 in mouse lung tissues from (B).

965 **(D)** Western blot analysis of hACE2 levels in lung tissues of hACE2 mice
966 administrated with VitC as (B).

967 **(E)** Immunohistochemical staining of hACE2 protein in the lung, kidney and
968 liver tissues from (B).


969 **(F)** The hACE2 mice were administrated with VitC as (B). Mice were then
970 given intraperitoneal injections of SARS-CoV-2-S pseudoviruses (1×10^6 PFU
971 per gram body). After 24 hrs, immunohistochemical staining was performed to
972 analyze the SARS-CoV-2 Spike proteins in mouse lung and kidney tissues.

973 Scale bar: 100 μ m.


974 **(G)** RT-qPCR analysis of the SARS-CoV-2 Spike mRNA levels in lung, kidney,
975 liver and spleen tissues of hACE2 mice treated with VitC and SARS-CoV-2-S
976 pseudoviruses as (F).

977 Data are representative of three independent experiments (A-D). All graphs
978 show the mean \pm SEM for five individual mice (G). *** p < 0.001 (two-tailed
979 unpaired Student's *t*-test).
980 See also Figure S6 and S7.

Fig. 1. Zuo Y. et al.

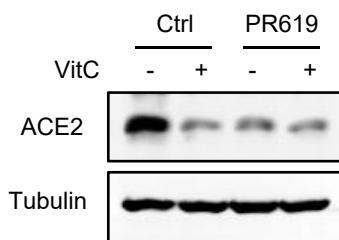


Fig. 2. Zuo Y. et al.

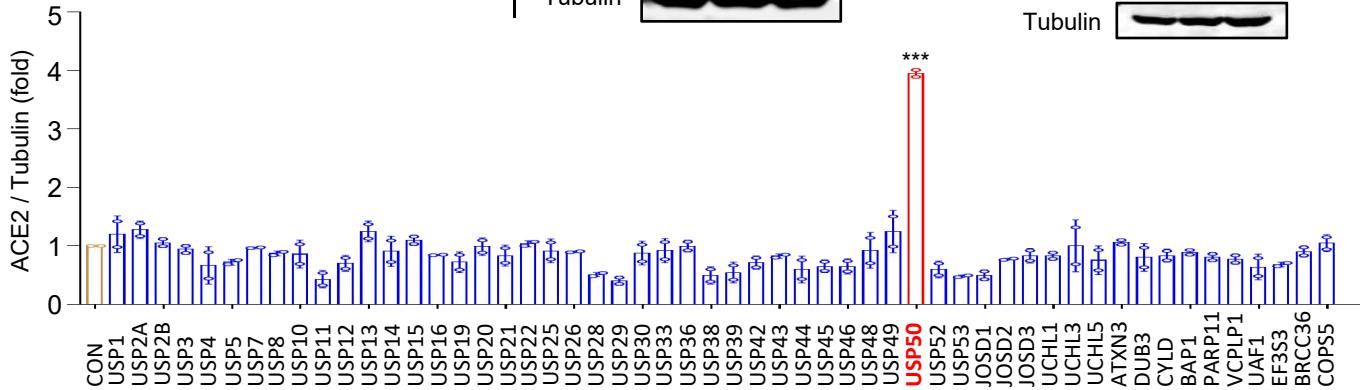
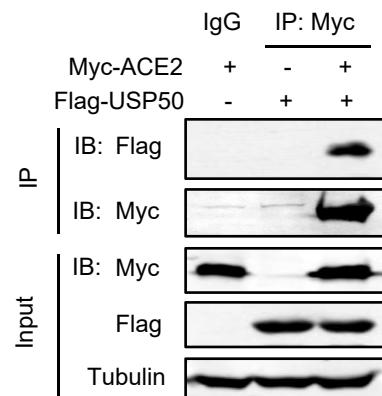
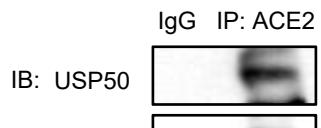
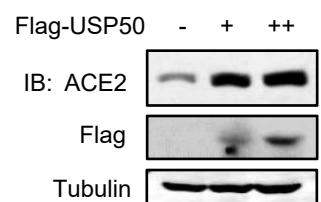


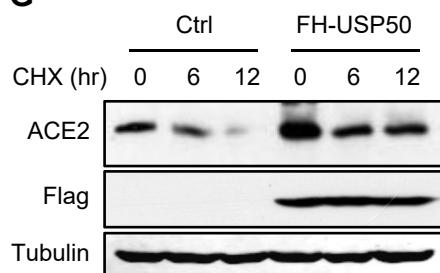
Fig. 3. Zuo Y. et al.

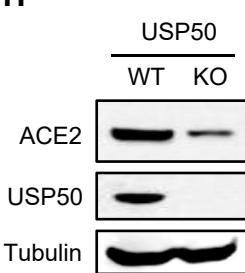

A

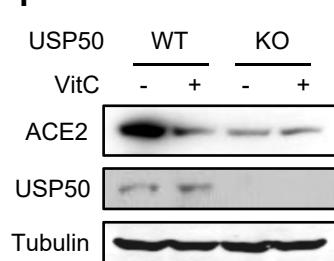

B

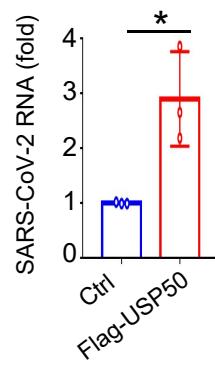

C

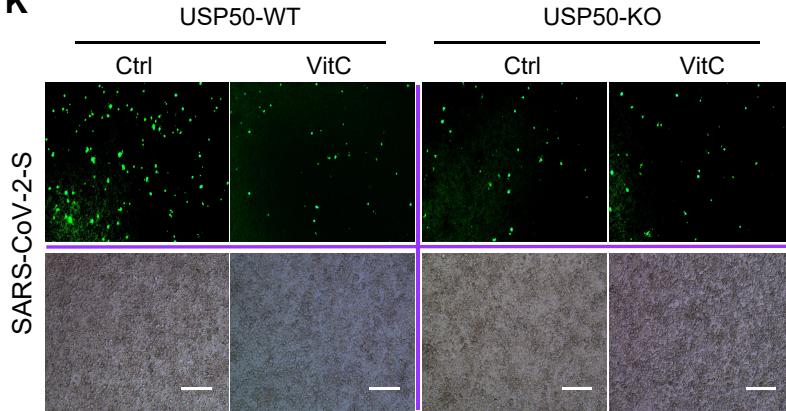
D

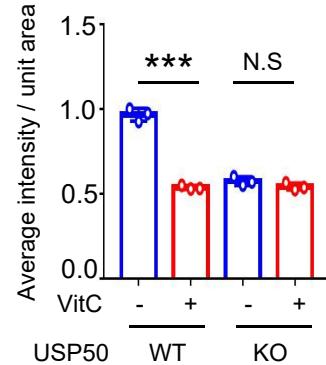

E

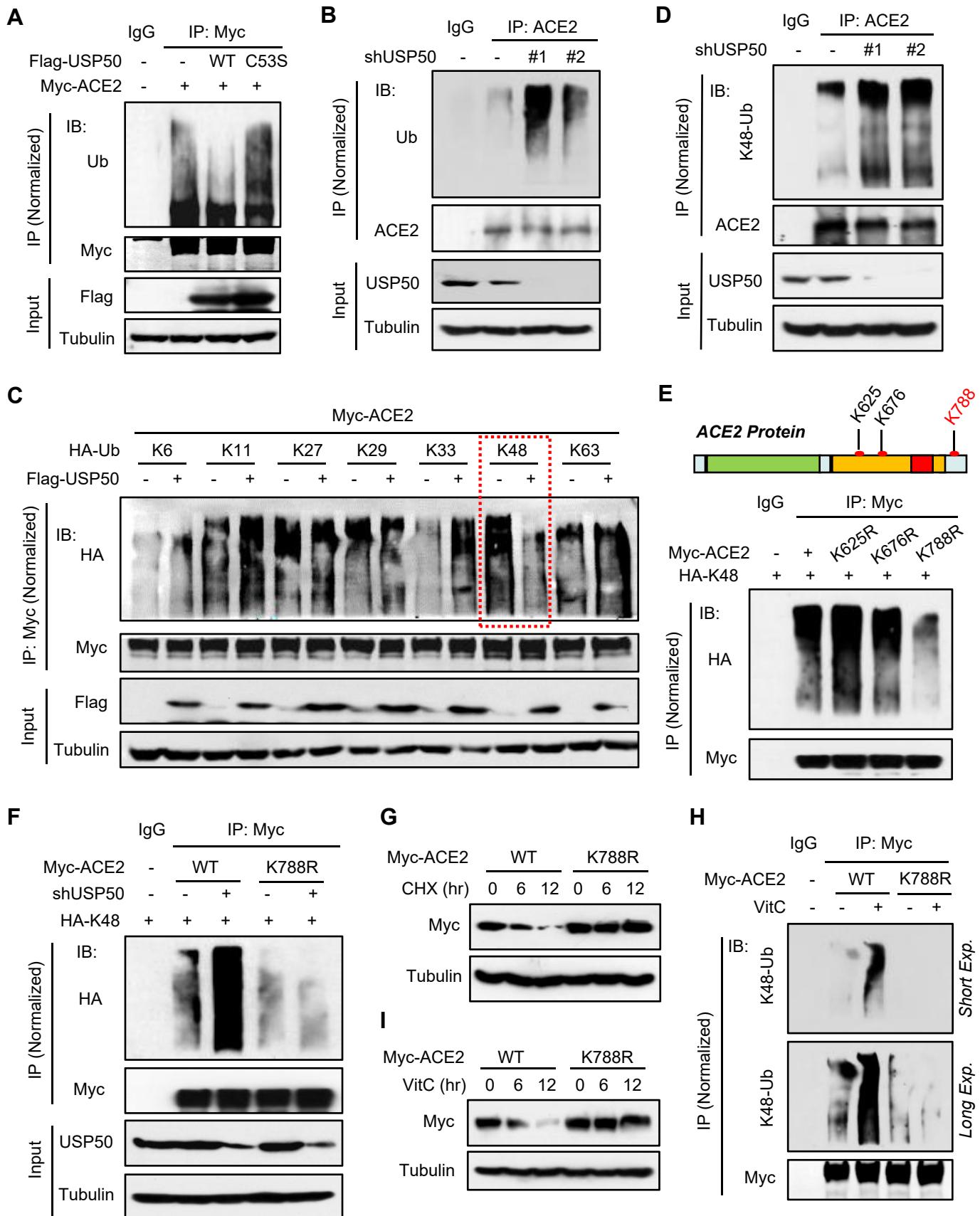

F

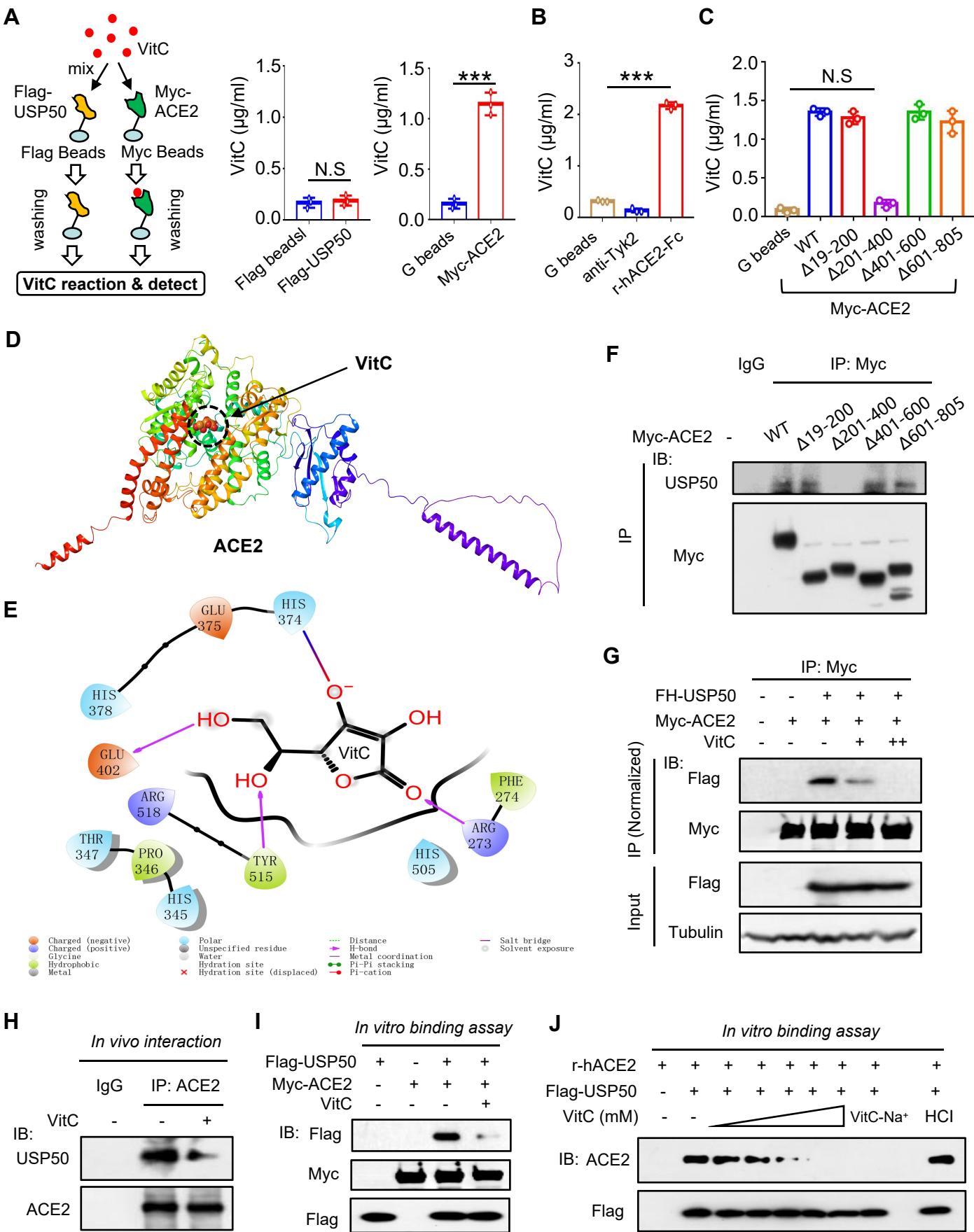

G


H


I


J


K


L

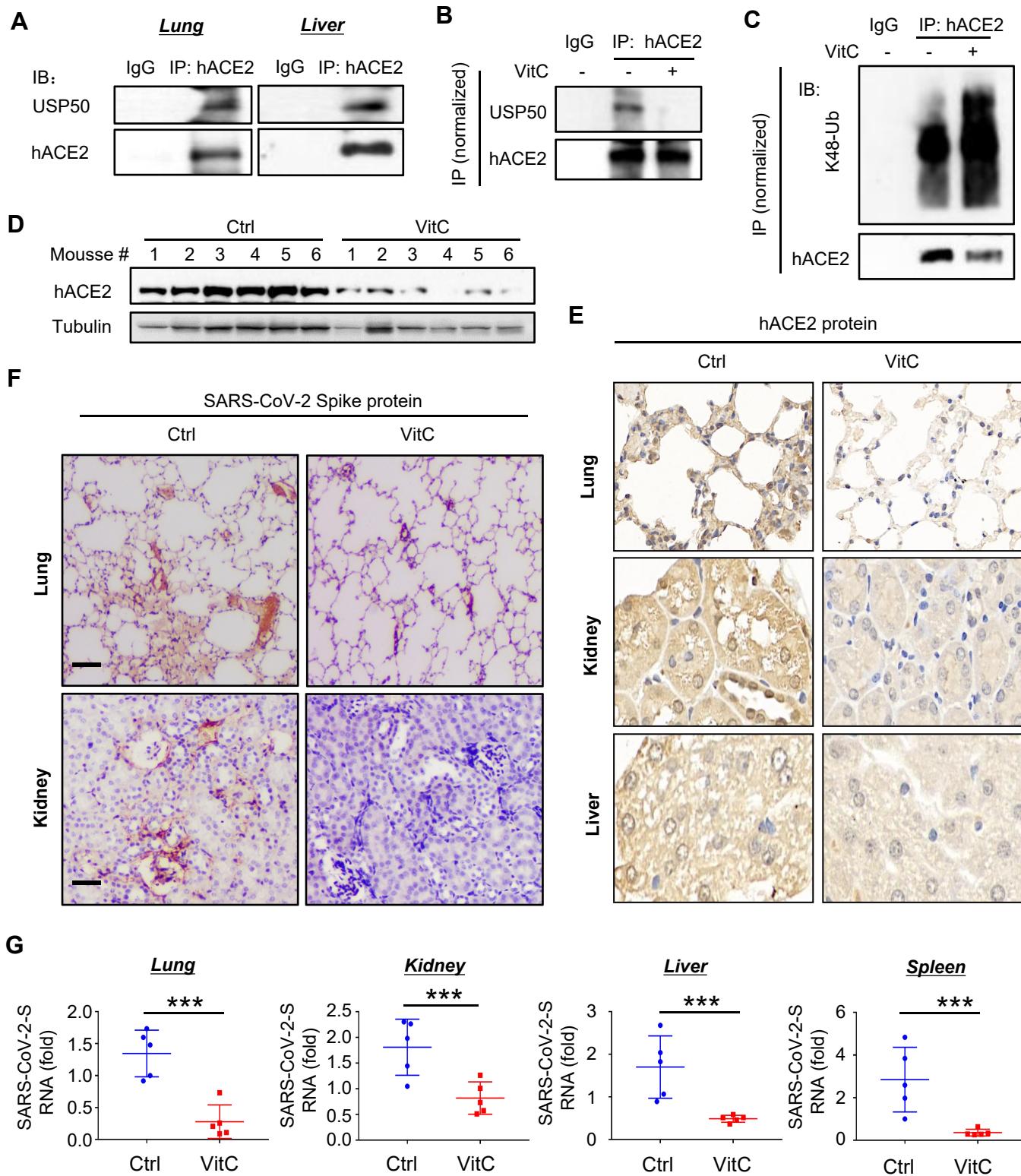

Fig. 4. Zuo Y. et al.

Fig. 5. Zuo Y. et al.

Fig. 6. Zuo Y. et al.

