

Computational model of the full-length TSH receptor

Mihaly Mezei^{1,2}, Rauf Latif^{2,3} and Terry F Davies^{2,3}.

¹Department of Pharmacological Sciences and ²Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai,
and ³James J. Peters VA Medical Center.

Running Title: Full length TSH receptor

Correspondence: Mihaly Mezei, PhD, Icahn School of Medicine at Mount Sinai, New York, NY, USA. E-mail: mihaly.mezei@mssm.edu.

Additional information

Disclosures: TFD is member of the Board of Kronus Inc (Starr, ID, USA); MM, and RF have nothing to disclose.

Data Availability: The initial model generated is available from the Dryad server; URL: <https://doi.org/10.5061/dryad.rjdfn2zdp>.

ORCiD numbers: 0000-0003-0294-4307 (M. Mezei); 0000-0002-4226-3728 (R. Latif), and 0000-0003-3909-2750 (T.F. Davies).

Abbreviations: AA, amino acid; CEM, cryo electron microscopy; DPPC, Dipalmitoylphosphatidylcholine; ECD, ectodomain; GCE, grand-canonical ensemble; GPCR, G protein coupled receptor; IDP, intrinsically disordered protein; LHR, luteinizing hormone receptor; LR, linker region; LRD, leucine-rich domain; MD, Molecular Dynamics; SSE, secondary structure element; TMD, trans-membrane domain; TSH, thyroid stimulating hormone; TSHR, TSH receptor.

1 **Abstract**

2

3 The receptor for thyroid stimulating hormone (TSHR), a GPCR, is of particular
4 interest as the primary antigen in autoimmune hyperthyroidism (Graves' disease) caused
5 by stimulating TSHR antibodies. To date, only one domain of the extracellular region of
6 the TSHR has been crystallized. We have now generated a model of the entire TSHR
7 by merging the extracellular region of the receptor, obtained using artificial intelligence,
8 with our recent homology model of the transmembrane domain, embedded it in a lipid
9 membrane solvated it with water and counterions, and performed 1000ns Molecular
10 Dynamic simulations on it.

11

12 The simulations showed that the structure of the transmembrane and leucine-rich
13 domains were remarkably constant while the linking region (LR), known more commonly
14 as the “hinge region”, showed significant flexibility, forming several transient secondary
15 structural elements. Furthermore, the relative orientation of the leucine-rich domain with
16 the rest of the receptor was also seen to be variable. These data suggest that this linker
17 region is an intrinsically disordered protein (IDP). Furthermore, preliminary data
18 simulating the full TSHR model complexed with its ligand (TSH) showed that (a) there is
19 a strong affinity between the linker region and TSH ligand and (b) the association of the
20 linker region and the TSH ligand reduces the structural fluctuations in the linker region.

21

22 This full-length model illustrates the importance of the linker region in responding
23 to ligand binding and lays the foundation for studies of pathologic TSHR autoantibodies

Full length TSH receptor

24 complexed with the TSHR to give further insight into their interaction with the flexible
25 linker region.

26

27 **Key Words:** TSHR, molecular dynamics, simulation, transmembrane domain, hinge
28 region, linker region, TSH.

29 **Introduction**

30 The thyroid-stimulating hormone receptor (TSHR) on the surface of thyrocytes is
31 an important regulator of thyroid growth, development, hormone synthesis and secretion.
32 It is also the primary target of autoantibodies in Graves' disease (autoimmune
33 hyperthyroidism) (1). From cloning, sequence analysis, partial crystallization and
34 biochemical studies this GPCR has been deduced to be made of a large ectodomain
35 (ECD) and membrane-bound signal transducing transmembrane domain (TMD) (2,3).
36 The ECD is further divided into a leucine rich domain (LRD) forming a curved structure
37 which is linked to the TMD by a 130 amino acid (AA) linker region (LR) known commonly
38 as the "hinge region" (AA280-410). Unique to the TSHR is a large 50 amino acid
39 cleavage region (AA316-366) located within the LR that is proteolytically degraded
40 leaving a cleaved ectodomain thought to be tethered to the TMD via 3 cysteine bonds
41 (4,5) and sometimes referred to as the C peptide.

42 Crystallization studies (6,7), besides producing crystal structures for the LRD,
43 have shown that antibodies, which either stimulate or block TSHR signaling, bind to the
44 LRD when the receptor is conformationally correct and can compete for TSH binding. In
45 contrast, "neutral" antibodies to the TSHR which do not initiate a traditional signal (8),
46 nor inhibit TSH binding, predominantly, but not exclusively, bind to linear epitopes in the
47 LR (9). Although the partial LRD structure has been determined with x-ray
48 crystallography (10) no experimental structure has been found for the LR and, until
49 recently, only partial models have been proposed (11-13). On the basis of the immune
50 response to the TSHR we, and others, have suggested that the LR is not an inert scaffold
51 but rather an important ligand-specific structural and functional entity (14) but its structure

52 has not been examined in the context of the full-length receptor. However, the recent
53 success of the AI-based Alphafold2 (15) program lead us to believe that it might be
54 possible to generate a full-length receptor structure by combining the LRD-LR structure
55 generated by Alphafold2 (that includes a structural model of the LR region but no TMD
56 and for which neither experimental nor homology models are available) with our recently
57 published model of the TSHR TMD (named TRIO) (16). This full-length model could then
58 be enhanced and verified with molecular dynamics simulation (MD). We can now report
59 a successful computer-based approach to obtain insight into the LR allowing us to
60 complete a full-length model of the TSHR. We have examined the behavior of this TSHR
61 in a lipid-embedded, electro-neutral, aqueous environment by molecular dynamic
62 simulation studies and showed that the LR is indeed an intrinsically disordered protein
63 but can be stabilized by TSH ligand binding to the LRD.

64

65 **MATERIALS AND METHODS**

66 **AI model of the LRD and LR**

67 The coordinates of the structure of the LRD and LR domains of the human TSHR,
68 residues 24 – 408, were downloaded from the Swissprot database (17); Uniprot #:
69 P16473 and Swissprot file /P1/64/73. The first 23 residues, of which 21 residues formed
70 the signal peptide, were not included in the model.

71

72 **Model of the TMD**

73 Our previous work (16) detailed the MD trajectory of the TMD, residues 408 – 717 of the
74 human TSHR, into three clusters using k-medoid clustering (18), performed by the
75 program Simulaid (19). For the present work, we chose the representative structure of
76 the largest cluster, forming during the second half of the MD trajectory. As before, the
77 initial positions of internal waters were determined using grand-canonical ensemble
78 Monte Carlo simulation (20), followed by circular variance (21) filtering and derivation of
79 generic sites (22). The Monte Carlo simulation, as well as the circular variance and
80 generic site calculations, were performed with the program MMC (23).

81

82 **Formation of a full-length TSH model by combination of the Alphafold2 LRD and
83 LR model with the TRIO TMD model**

84 The alphafold2 model of the TSHR ectodomain (LRD-LR) and the TRIO model have only
85 one common residue – cysteine 408. First, the LRD-LR model was translated so that the
86 C_α of the LRD-LR cysteine is at the position of the TRIO cysteine's C_α position. As both
87 models were already oriented along the membrane normal (the Z axis), the only degree
88 of freedom left was rotation around the Z axis. In the next step a scan by 45° steps
89 selected the angle region that minimized the volume of the enclosing rectangle, followed
90 by generating conformations in 5° steps and obtaining the list of contact distances
91 between the LR and the TMD (pairs of atoms are defined to be in contact if they are
92 mutually proximal). Examination of the contacts narrowed down the likely conformation.
93 The final choice was made after having examined visually (using the program VMD (24))
94 the form that resulted in the broadest contacts between the LR and the TMD. While this
95 last step is admittedly an inexact operation, it is made with the understanding that small

96 errors would be corrected during the MD equilibration. The coordinates of this initial
97 model is available from the Dryad server at the URL
98 <https://doi.org/10.5061/dryad.rjdfn2zdp>.

99

100 **Immersion in bilayer**

101 The Charmm-Gui server (25) was used to immerse the full model of TSHR, including the
102 internal waters, into a bilayer of DPPC molecules. The server also added a water layer
103 as well as counterions (K⁺ and Cl⁻ ions), both to ensure electroneutrality and an ionic
104 strength of 0.15 M to best represent physiological conditions. Periodic boundary
105 conditions were applied using a hexagonal prism simulation cell. The system thus
106 generated included inputs for a six-step equilibration protocol and inputs for the
107 production run, all using the program NAMD (26).

108

109 **Molecular dynamics simulation**

110 The simulations used the default parameters set by Charmm-gui. For the protein and the
111 ions the pairwise additive Charmm36m force field (27) was used and water was
112 represented by the TIP3P water model(28). Long-range electrostatics was treated with
113 the Ewald method and VdW interactions used a cutoff of 12 Å, smoothly cut to zero
114 starting at 10 Å. The simulations used 2 fs time steps and were run in the (T,P,N)
115 ensemble.

116

117 **TSHR-TSH and TSHR-antibody complexes**

118 The TSHR-TSH complex used for calculating clashes with the Alphafold2 model and for
119 the start of the MD simulation was obtained based on the crystal structure of the Follicle-
120 Stimulating Hormone (FSH) in complex of the LRD of FSH (PDB id 4ay9). In the first step
121 the several TSH beta chain coordinates were generated based on the FSH beta chain
122 coordinates in the FSHR-FSH complex using the program Modeller (29). Next, the model
123 with that had the fewest clashes with the LRD was selected and used to replace the FSH
124 beta coordinates, followed by aligning the LRD of the FSHR-TSH beta complex to the
125 LRD of our full TSHR model. Finally, the beta chain of one structure from an earlier
126 unpublished model of the TSH-LRD complex was aligned to the beta chain of the newly
127 generated complex to add the TSH alpha chain to the model.

128 The TSHR-antibody complexes for the calculation of clashes were obtained by
129 superimposing the LRD domains in the crystal structures of stimulating and blocking
130 antibodies (PDB ids 3g84 and 2xwt) to the LRD domain of the Alphafold2 structure.

131

132 **Analyses**

133 Most analyses were performed on the trajectories with the program Simulaid (19).
134 Hydrogen bonds are defined by Simulaid as X...H-Y where X and Y are polar heavy
135 atoms, the X...H-Y angle is above 120° and the X-Y distance is below threshold. Note
136 that this definition ignores the actual charges thus it includes salt bridges as well; as is
137 the case for several of the hydrogen bonds thus defined. The adequacy of the run length
138 was verified by the saturation of the hydrogen-bond tracks. In other words, after a while
139 the system did not form new hydrogen bonds, it only broke and reformed the existing
140 ones. The variation of the shape of the LR was tracked by calculating the radius of

141 gyration. The change in the relative orientation of the LRD with the rest of the protein
142 was characterized by the angle between the first principal axis of the LRD and the Z axis
143 and also tracked by observing the animated trajectory. Formation and unraveling of
144 secondary structure elements in the LR was tracked with the DSSP algorithm (30).

145

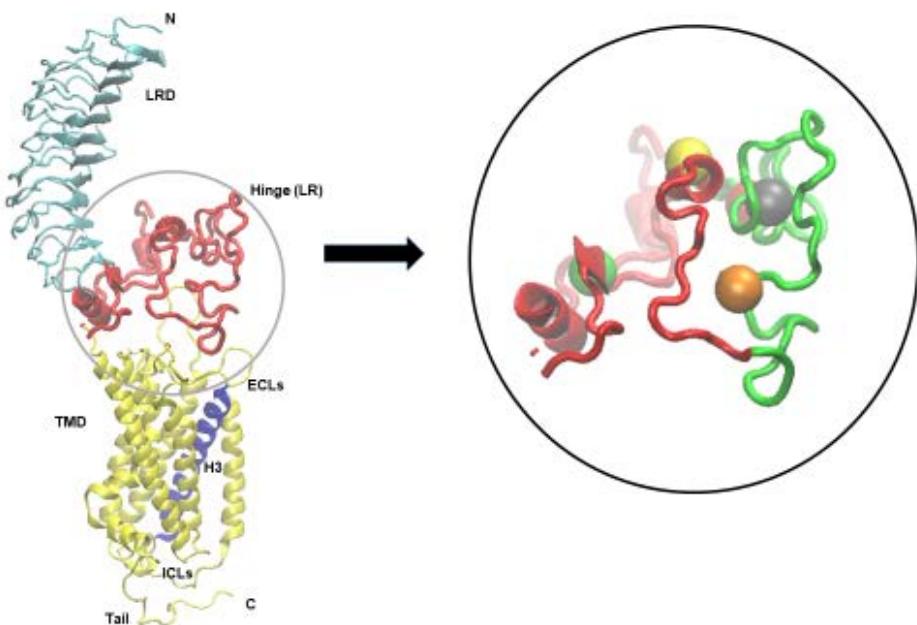
146 **Results**

147 **Initial full-length TSHR model and its clashes**

148 **Figure 1** shows the structure of the full-length receptor that was obtained by
149 combining the LRD-LR structure generated by the Alphafold2 AI system with the TMD
150 structure from the TRIO model as detailed in Methods section. The LR is also shown in
151 the enlargement, with the centers of five linear epitopes, which are immunogenic in a full
152 length TSHR immunized mouse model (9), shown as spheres. Note that while the LR
153 region has unique linear epitopes for TSHR antibodies of the “neutral” variety, the LRD
154 is not devoid of such binding sites either, with at least 3 such linear epitopes (not
155 represented here) seen in immunized mice (9).

156 However, this assembled full length TSHR structure showed significant LR
157 clashes with TSH ligand and with TSHR antibodies (**Figures 2A-C**). A clash was here
158 defined as a heavy atom distance less than 2.10 Å, 1.68 Å, and 1.65 Å, for atom pairs
159 involving S, N or O, and C, resp. In particular, the number of LR heavy atoms clashing
160 with TSH, blocking antibody (PDB id 2xwt), and stimulating antibody (PDB id 3g04) were
161 40, 68, and 101, resp. and involved 7, 11, and 18 residues, resp. Clearly, this approach

Full length TSH receptor

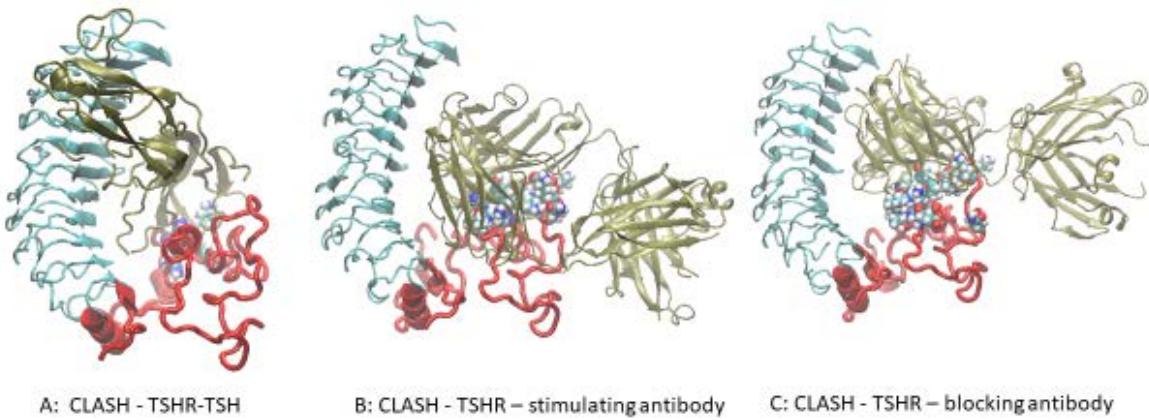

162 showed marked hindrance of ligand and autoantibody binding so the model required
163 further development.

164 **Figure 1:**

165 The initial model of the full-length TSHR (LRD: blue, LR: red, TMD: yellow) derived from
166 combination of the LRD and hinge region of the Alphafold2 program and the TMD of our
167 earlier “TRIO” model (16). Helix 3 of the TMD is shown in purple.

168
169 The enlargement shows the LR with the unique 50 AA insert in green. In addition, this
170 diagram shows the C_{α} atoms at the centers of our described LR epitopes (13) as spheres;
171 epitope 313-324: red (partly obscured), epitope 322-342: gray, epitope 349-356: orange,
172 epitope 377-391: yellow, and epitope 393-400: green.

173



174

175

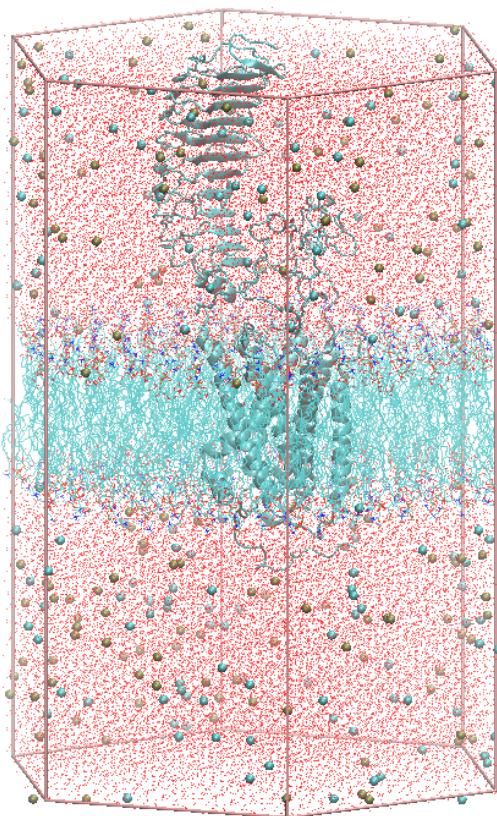
176 **Figure 2:**

177 (A) The extracellular part of the full-length model from Figure 1 is shown in combination with
178 the TSH ligand. The LR backbone is shown in red and several LR residues clashing with
179 the TSH are shown as spheres (partly obscured). For clarity the TMD has been removed in
180 this and subsequent illustrations.
181
182 (B) Similarly, the LR model is shown clashing with a stimulating TSHR monoclonal antibody
183 (MS-1) based on the crystal structure (PDB id 3g04) with even more clashes than with TSH.
184
185
186 (C) Here the LR is clashing with a blocking TSHR monoclonal antibody (KI-70) based on the
187 crystal structure (PDB id 2xwt) which once again shows many clashes.

188

189 **Inserting the TSHR model into a cell membrane**

190 The combined model, including Monte Carlo-generated internal waters, was then
191 sent to the Charmm-Gui server to be embedded in a DPPC lipid bilayer and immersed
192 in water with counterions. The membrane-inserted, fully hydrated and neutralized system
193 consisted of 177 and 176 DPPC molecules in the upper and lower layer, respectively,
194 148 K⁺ and 149 Cl⁻ ions and 54,412 water molecules, a total of 220,799 atoms in the


Full length TSH receptor

195 simulation cell. The length of the periodic cell hexagon was 185.0 Å and the edge of the
196 base hexagon was 66.4 Å. **Figure 3** shows the full simulation cell.

197 **Figure 3:**

198 The full simulation cell prepared by Charmm-gui. The TSHR is shown in gray cartoon
199 representation, lipids are shown as lines without hydrogens, ions as tan or cyan
200 spheres representing K⁺ or Cl⁻ ions, resp., and the water oxygens as red dots. The
201 hexagonal prism edges defined the initial simulation cell.

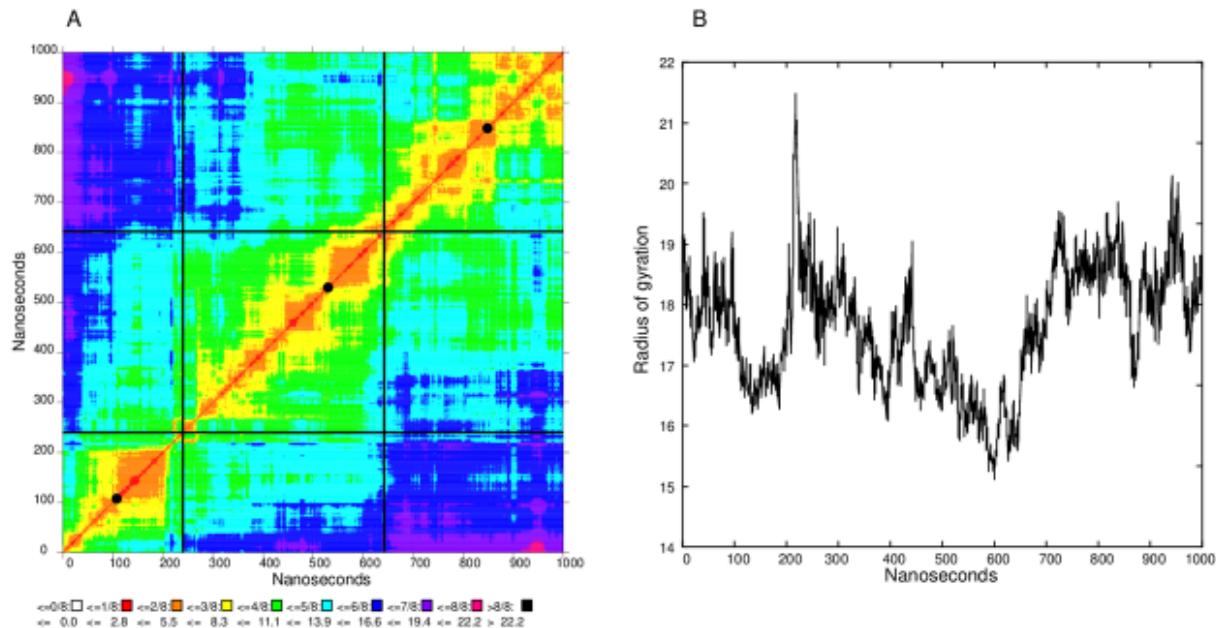
202

203

204 As the structures of the LRD have been experimentally determined by
205 crystallography and we have described the TSHR-TMD in detail earlier (16), the analyses
206 in this report are focused on extracting a potential structure of the entire LR from the MD
207 simulation trajectory of the Alphafold2-based membrane embedded structure.

208 Animation (with the VMD software) of the simulation trajectory showed that (a) the LRD
209 and TMD structures in the simulated complex did not show significant deviation from the
210 earlier reports; (b) the LR structure generated using the Alphafold2 program had few
211 secondary structural elements and showed significant fluctuation; and (c) the relative
212 orientation of the LRD with the rest of the protein also fluctuated significantly during the
213 simulation. This, therefore, offered the opportunity for finding conformations where the
214 possibility of ligand and antibody binding did not clash with the LR. **Figure 4A** shows
215 the 2D RMSD map of the LR over 2000 evenly spaced conformations. The RMSDs are
216 calculated for the LR backbones. K-medoid clustering was performed asking for three
217 clusters (as suggested by the 2D RMSD map) and the cluster representatives (the
218 structure with the lowest maximum RMSD with the rest of the cluster members) were
219 also extracted. These three representative structures of the LR are shown in **Figure 5**
220 with the LR backbones of the three clusters in red and illustrating the unique 50 AA
221 cleaved region.in green along with their simulation times.

222 **Instability of the LR**


223 Examination of these backbones clearly showed that the LR does not form a well-
224 defined stable tertiary structure. The radius of gyration R_g , a measure of compactness,
225 of the LR is shown in **Figure 4B** as a function of simulation time. It shows remarkable
226 fluctuations with the range (the difference between the highest and lowest value) of R_g
227 values being 6.4 Å. In contrast, the range of R_g values was only 1.6 Å for the larger LRD
228 (not shown). The secondary structure of the LR was also tracked by the DSSP algorithm.

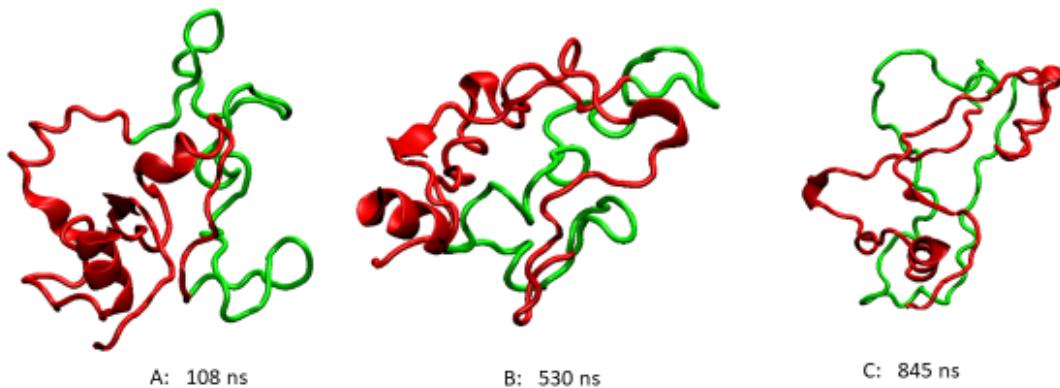
229

230

231 **Figure 4:**

232 (A) 2D RMSD map of the LR during the 1000 ns simulation. Black lines delineate the three
233 clusters and the black discs on the diagonal indicate the most representative structure.
234 (B) The radius of gyration of the LR during the simulation.

235


236 **Figure 6A** shows the secondary structural elements (SSE) found as the
237 simulation progressed. Most SSEs are helices but, remarkably, in the 700-900 ns range
238 several beta sheets formed and then dissolved. While a helix at the N terminal (residues
239 280-290) persisted throughout the calculations, **Figure 6A** also shows that all the other
240 transient helices were seen to unwind or form only in the later stages of the simulation.

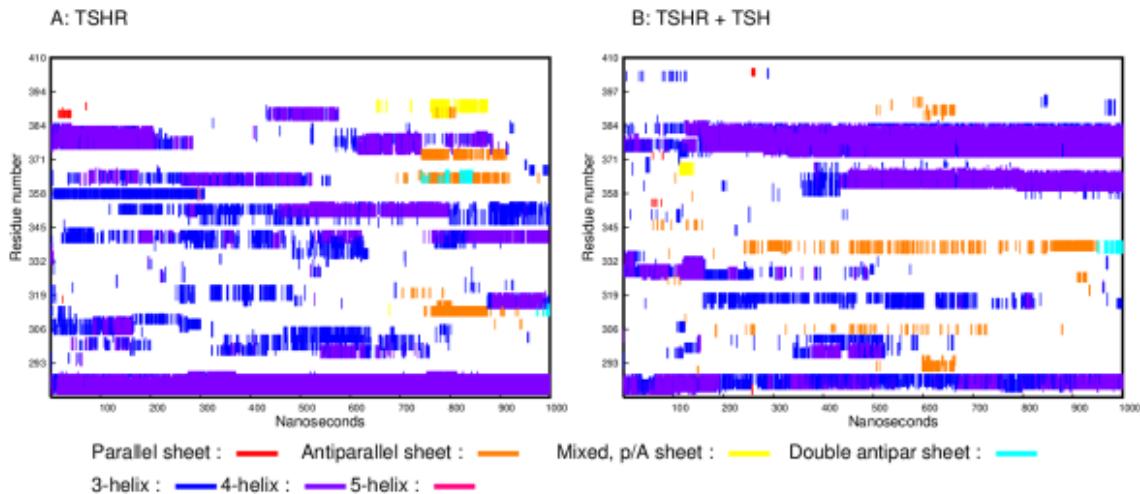
241

242

243 **Figure 5:**

244 These three clusters are representative of the highly flexible structures of the LR
245 backbone at different times during the 1000 ns simulation. The 50 AA cleaved
246 segment is shown in green, the rest of the LR is in red.

247

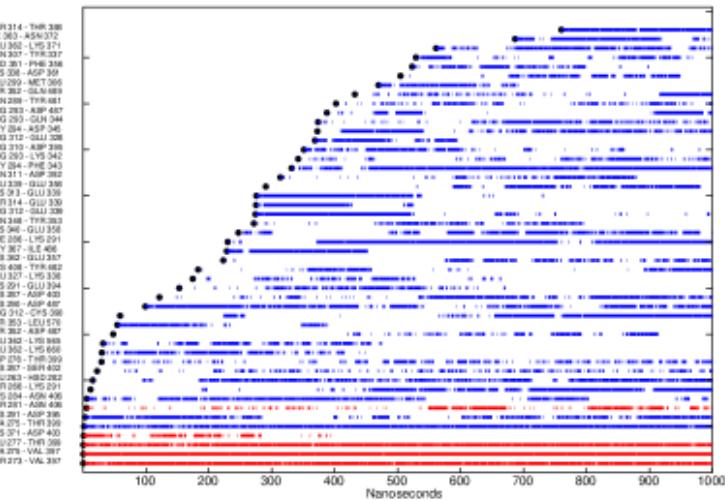

248 The history of hydrogen-bonded residue pairs for the LR is shown in **Figure 7**.

249 Each line on the plot represents one residue pair. By this analysis, it was seen that the
250 inter-domain hydrogen bonds (THR250-VAL374, ALA252-VAL374, LEU254-THR376)
251 persisted throughout the simulation, although several of these residue pairs broke and
252 reformed their hydrogen bonds during the run. This reflected the structural fluctuations
253 similar to the fluctuations seen in the DSSP plot of the SSEs. Note, however, that these
254 hydrogen bonds are not the ones creating most of the SSEs.

255

256 **Figure 6:**

257 (A) DSSP plot showing the secondary structure elements formed in the LR during the simulation
258 of the TSHR without ligand. The x axis is the simulation time and the Y axis is the residue
259 number.
260 (B) DSSP plot showing the secondary structure elements formed in the LR during the simulation
261 of the TSHR-TSH complex. Compared to (A) there appears to be much improved stabili


262

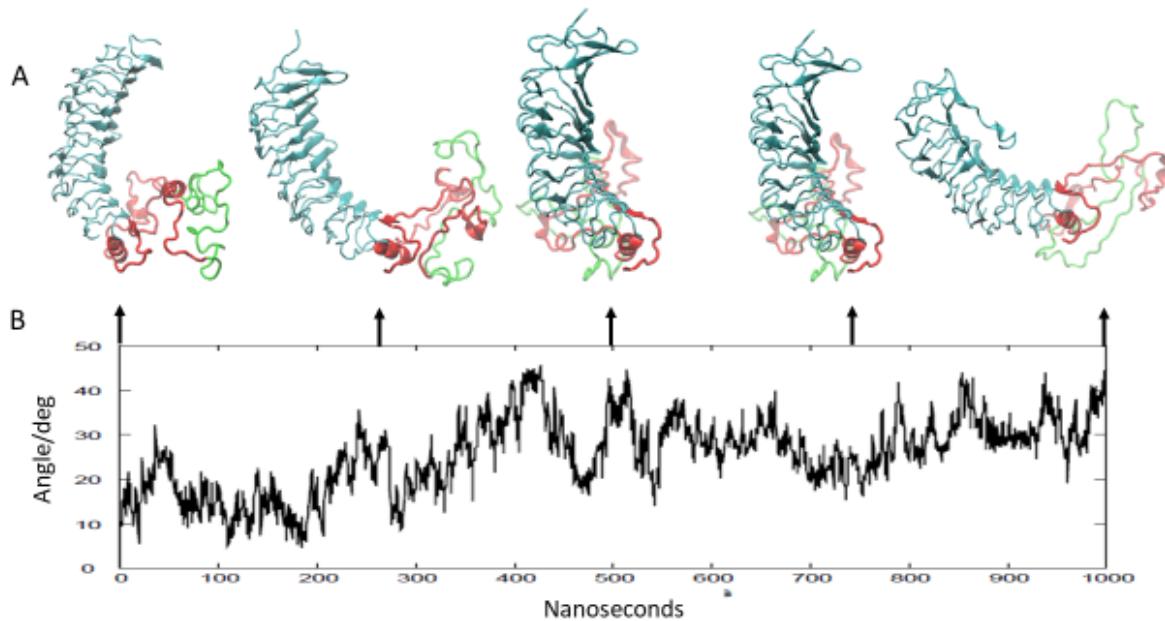
263

264

265 **Figure 7:**

266 Plot of the residue pairs involving just the LR that were hydrogen bonded at some
267 parts of the simulation. The lines are broken whenever the residue pair was not hydrogen
268 bonded. Blue represents residue pairs within the LR and red represents hydrogen bonds
269 between residues in the LR and the LRD. Note the unbroken lines between the LR and
270 LRD while the LR itself is intrinsically unstable. Note: Residue pairs have to be at least
271 five residues apart (to exclude the many intra-helix hydrogen bonds) and be hydrogen-
272 bonded at least 15% of simulation time to be represented.

273


274 **Receptor orientation**

275 During these studies the relative orientation of the LRD with the TMD was also
276 found to undergo significant fluctuations. **Figure 8A** demonstrates this flexibility by
277 showing the conformation of the LRD and LR of the full-length model at 250 ns intervals,
278 superimposed on the initial TMD backbone (without the C-terminal tail). **Figure 8B** shows
279 the fluctuation of the angle between the Z axis and the first principal axis of the LRD. It
280 is also clear from the figures that the rotation of the LRD with respect to the LR is largely
281 confined to one axis. Note also, that all LRD conformations stayed well within the
282 simulation cell. **Figure 8A** also shows the wide range of conformations that the LR forms

283 during the simulation and the changing shape of the 50 AA cleavage region (shown in
284 green) within the LR which is reported to be cleaved by membrane bound matrix
285 metalloprotease (31,32) both in the native and activated states of the receptor (33). Near
286 the end of the simulation, the two end residues of this 50-residue segment (which will
287 form the C peptide) become close ($C_{\alpha} - C_{\alpha}$ distance is 6.3 Å) – which may be of
288 significance for post-cleavage processing.

289 **Figure 8:**

290 (A) Comparison of the relative orientation of the LRD with the TMD at 250 ns intervals. The
291 structures are aligned by the TMD that is not shown. The LR is shown in red with the 50 AA
292 unique insert (316-366) that may be cleaved during post translational processing is shown
293 in green.
294 (B) The instability of the LR is further illustrated by changes in the angle (in degrees) between
295 the first principal axis of the LRD and the z axis, over 1000 nanoseconds.

296

297 **Analysis of the TMD helix bundle**

298 As part of the full-length receptor structure, we also carried out analyses of the
299 constitutive variation in the helix geometry of the 2D RMSD map of 2000 structures. This

300 was calculated based on superimposing the structures on the TMD only as performed
301 earlier. Using k-medoid clustering into three clusters resulted in three representative
302 structures. The changes in the transmembrane helix bundle with the initial model (whose
303 structure was obtained from the third model of the previously published TRIO model (16))
304 were analyzed with the TRAJELIX (34) module of Simulaid. This program is based on
305 the geometry of the C_α atoms, defining the helix axis (35). Helices with proline are broken
306 up into sub helices; the short segment between the two sub helices in helix 7 is ignored.
307 Data in **Table 1** showed the change in the helix length and in the radius of the circle fitted
308 to the C_α atoms, a measure of the bent of the helix (the smaller it is, the more bent is the
309 helix). The change is the average over the representative structures minus the reference
310 structure's value. When the reference value is outside the range of the values from the
311 three representative structures, the change is deemed significant. The largest change
312 was observed in **helix 3** that became more curved, resulting in significant shortening
313 (defined as the end-to-end distance).

314 Changes in the distance between the helix centers and the change in the closest
315 approach of the helix axes are shown in **Table 2**. The comparison of the two values gives
316 an indication of the relative shifts. The changes in the helix-helix angles are shown in
317 **Table 3**. We noted from these data that, while the overall arrangement of the helix bundle
318 did not change, it was clear that non-trivial adjustment of the helix bundle occurred. The
319 extent of changes was similar to the changes we observed when the homology model
320 was compared with representative structures from our earlier MD simulation of the TSHR
321 TMD (16).

322

323 **Table 1.** Changes in helix length and radius.

324

Helix #	1	2	3	4	5	6.1	6.2	7.1	7.2	8	
Length:	-0.6	S	-1.3	S	-4.4	S	1.2	S	0.1	n	0.0
Radius:	-0.5	S	-0.5	S	-3.7	S	0.4	n	0.2	n	0.0

325

326 Changes were defined as the difference between the average of values from the representative
327 structures and from the starting model structure.

328

329 A positive number indicates an increase with respect to the starting structure. The characters 'S'
330 and 'N' indicate that the reference value is within or outside the range of the representative
331 structure values, respectively. The labels of the proline-separated segments of helices 6 and 7
332 have .1 and .2 added.

333

334

335 **Table 2.** Helix-helix distance changes

336

Helix#	1	2	3	4	5	6.1	6.2	7.1	7.2	8	
1	0.0	n	-0.4	S	0.1	n	-0.1	n	2.2	S	1.5
2	0.1	n	0.0	n	0.4	S	-1.6	S	1.3	S	-0.9
3	1.1	S	0.7	S	0.0	n	0.1	n	-0.4	n	-1.0
4	0.5	n	0.3	S	0.2	S	0.0	n	0.7	S	3.8
5	2.8	S	1.2	S	-0.2	n	-0.2	n	0.0	n	-2.0
6.1	2.7	S	0.5	n	-1.2	S	-1.1	S	0.1	n	0.0
6.2	1.0	S	-0.8	S	-1.5	S	-1.0	S	0.1	n	0.0
7.1	2.0	S	1.2	S	1.2	S	1.4	S	1.6	S	0.7
7.2	1.9	S	-2.3	S	-2.6	S	-3.7	S	-0.1	n	0.5
8	1.8	n	-0.5	n	-0.8	S	-2.6	S	1.2	S	1.9

337

338 Upper triangle shows the change in the closest approach of the helix axes; the lower triangle
339 shows the change in the distance between the helix centers. Positive number indicates an
340 increase with respect to the starting structure. The characters 'S' and 'n' indicate that the
341 reference value is within or outside the range of the representative structure values, resp. The
342 labels of the proline-separated segments of helices 6 and 7 have .1 and .2 added.

343

344
345
346
347
348

Table 3. Helix-helix angle changes

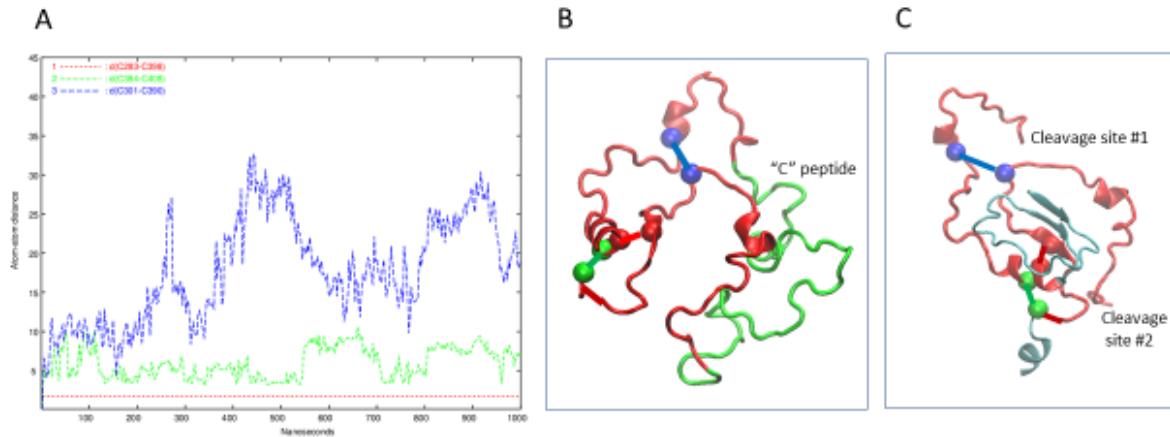
Helix #	2	3	4	5	6.1	6.2	7.1	7.2	8									
1	0.9	n	1.4	S	-7.8	S	6.9	S	-10.8	S	-8.8	S	16.4	S	-27.8	S	11.8	n
2			-0.3	n	-1.7	S	0.2	n	-0.6	n	-0.8	n	-8.6	S	34.8	S	-5.8	n
3					2.4	S	-2.3	S	7.5	S	1.6	n	6.6	n	-24.2	S	1.0	n
4						-0.2	n	5.3	S	1.1	n	-3.3	n	34.3	S	-4.1	n	
5								4.1	S	-0.9	n	4.5	n	-24.5	S	0.1	n	
6.1										5.5	S	-9.0	n	36.1	S	-7.4	S	
6.2											4.1	n	0	8.9	S	2.9	n	
7.1														-31.9	S	0.5	n	
7.2																-10.7	S	

349
350
351
352
353
354
355

The characters 'S' and 'n' indicate that the reference value is within or outside the range of the representative structure values, resp. The labels of the proline-separated segments of helices 6 and 7 have .1 and .2 added.

Analysis of the cysteines and cysteine bonds

356 The LR has six cysteines that are able to form three cysteine bonds: C283-C398, 357 C284-C408, and C301-C390. In fact, in the Alphafold2 structure the distance between 358 the corresponding SG atoms are 3.44, 5.08 and 7.72 Å, respectively. Since the 359 simulation did not include these bonds, it was interesting to see if the LR preferred 360 conformations favorable for the cysteine bonds to form. **Figure 9A** shows the distances 361 for the three putative bonds with time and **Figure 9B** shows the position of the sulfur 362 atoms in these cysteines (colored to match the corresponding graph color) in the 363 Alphafold2 model of the LR. It is clear that C283 and C398 stayed consistently close 364 and C384 and C408 did not separate too far from a bonding distance. However, the third 365 pair, which actually were not close even in the Alphafold2 structure, quickly separated 366 and never became close.


367

368

369 **Figure 9:**

370 (A) Time evolution of the three cysteine-cysteine distances in the LR. C283-C398: red, C384-
371 C408: green, and C301-C390: blue.
372 (B) The LR backbone (red and green) and the S atoms of the cysteines, colored to match the
373 corresponding graph color. The putative pairs are connected by a line.
374 (C) Here we have left the cysteine pairs connected but taken away the 50 AA insert in the LR
375 and show the reported cleavage sites. For giving context a small part of the LRD and the
376 TMD are also shown in gray/blue.

377

378

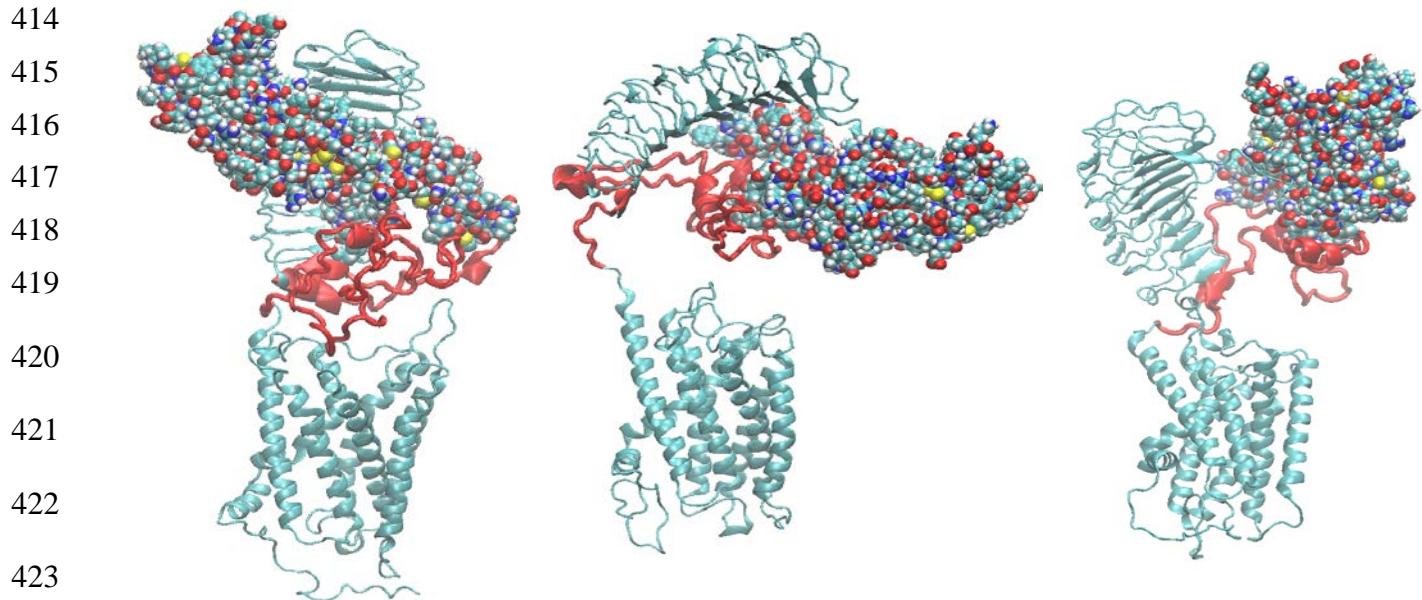
379 **Simulation of the TSHR in complex with TSH**

380 Since our conclusion was that the LR is an IDP, it was of interest to find out what,
381 if anything, stabilizes its structure. The most likely candidate was its ligand, TSH. Thus,
382 the structure shown in **Figure 10A** was used to set up an MD simulation modeled after
383 the earlier simulation without the TSH. The DSSP plot of the simulation is shown in
384 **Figure 6B**. The SSEs were remarkably more stable, indicating that the presence of TSH
385 indeed stabilized the LR. The conformations of the complex at the start, middle and end

386 of the 1000 ns simulation are shown in **Figure 10**. It clearly shows that the LR is attached
387 to the TSH at several places. The hydrogen-bond analysis analogous to the one shown
388 in **Figure 7** showed that there are seven residues which are hydrogen bonded to the α
389 subunit of TSH and three LR residues hydrogen bonded to the β subunit and there is
390 even one LR residue that is hydrogen bonded to the LRD. It also shows that 6 of the 10
391 LR-TSH contacts were formed with the LR residues which are not part of the 50 AA
392 cleaved segment. In addition, new contacts formed between the LR and the LRD with
393 time. On the other hand, the LR moved significantly away from the TMD (more at 500 ns
394 than at 1000ns) indicating that to be able to transmit the signal induced by binding of
395 TSH the cysteine bonds have to be present in the LR. While such analyses remain
396 preliminary and subject to more and possibly longer simulations the structure-inducing
397 effect of the TSH appears to be very clear.

398

399


400 **Discussion**

401 The TSHR, similar to the FSH and LH/hCG receptors, consists of a large
402 extracellular ligand bind domain incorporating 11 leucine rich repeats (LRD) and a
403 transmembrane domain (TMD), linked via a 130 AA linker region (LR). The TMD is made
404 up of eight helices joined by extracellular and intracellular loops and a long C-terminal
405 cytoplasmic tail. The TMD is embedded in a phospholipid bilayer and transduces a
406 cascade of signals by engaging several different G proteins (36) and β arrestins (37,38).
407 The interest in the TSHR has been largely fueled by its role as a major human
408 autoantigen in autoimmune thyroid disease; especially Graves' disease (1).

409

410 **Figure 10:**

411 The conformations of the TSHR-TSH complex at the start, middle and end of the
412 simulation. TSH is shown as spheres, the LR backbone is red and the LRR and TMD
413 domains are gray/blue.

424 Detailed mapping of binding sites and interaction partners for the TSHR ligand,
425 TSH, and for stimulating and blocking monoclonal autoantibodies to the TSHR, have
426 been revealed by homology modeling (39) and crystallization of the partial ectodomain
427 bound to these autoantibodies (6,7). Furthermore, homology modeling has suggested
428 possible mechanisms by which activation of the receptor by TSH and a stimulating
429 antibody might occur (40-42). However, all these tripartite models have remained
430 incomplete due to the lack of a reasonable structure for the large TSHR linker/hinge-
431 region (LR). Here we present a full-length model of the TSHR which became possible
432 because of the recent availability of models of the human proteome generated by the
433 artificial intelligence (AI) based protein folding program AlphaFold2 (15). We combined
434 the AlphaFold2-generated structure of the LRD – LR complex with our recent MD-refined
435 homology model of the TSHR TMD (16) and further refined the structure with molecular
436 dynamics in a DPCC membrane environment. Given that the structures of the LRD and

Full length TSH receptor

437 the TMD of the TSHR have been described in earlier studies (43,44), our analysis in this
438 report was firstly focused on the structure of the LR, its intramolecular and molecular
439 bonding dynamics and its structural variations in lieu with LRD and TMD structures.

440 It is notable that in the initial structure obtained by the combination of the two parts
441 using the relative orientation of the LRD (residues 22-280) and the TMD (residues 409-
442 694) resulted in a full-length receptor allowing the formation of TMD dimers in a
443 conformation predicted and experimentally verified by our earlier work (44) and which
444 would still leave the LRD binding surface free for ligand or autoantibody binding.
445 However, in the Alphafold2-predicted conformation presented here, the concave surface
446 of the LRD where autoantibodies bind, is partly occluded by the LR and thus would clash
447 with a bound TSHR antibody whose binding sites on the LRD are known (PDB id 3g04).
448 This conundrum was resolved by the observations that (a) the structure of the LR cluster
449 is highly flexible and (b) the relative orientation of the LRD with the rest of the structure
450 is also highly variable resulting in a significant population of conformations where
451 simulating and blocking TSHR autoantibodies could access the receptor to activate or
452 block signaling. Thus, we can say that the Alphafold2 structure of the LR, while useful
453 in providing a starting point for the MD simulation, was not correct in the sense that it
454 missed the large conformational freedom of the LR needed for ligand binding. Given the
455 low reliability score assigned to the LR part of the Alphafold2 structure this observation
456 was not a surprise. However, these conclusions could be further verified by obtaining, if
457 possible, cryo electron microscopy (CEM) or a crystal structure of the native full-length
458 TSHR perhaps stabilized by an autoantibody to the LR.

459 Based on this study we can conclude that the LR in the TSHR is remarkably
460 flexible, sampling vastly different overall conformations without settling on a well-defined
461 tertiary structure. While different SSEs formed during the simulation (mostly helices),
462 they were transient, as seen from **Figure 6A**. On the other hand, contacts between the
463 LR and the LRD persisted throughout the simulation. The conclusion is that the LR is an
464 IDP. This conclusion is consistent both with the fact that so far no one has succeeded in
465 obtaining its crystal structure and with the suggestion (15) that low reliability scores
466 indicate that the protein is intrinsically disordered. However, from these studies we
467 speculate that the highly flexible nature of the LR is what allows it to accommodate both
468 the ligand or the autoantibodies to the LRD.

469 The convergence of the simulation is always an open question. However, there
470 are important indicators that suggest that our sampling was adequate. **Figure 7**, the
471 history of hydrogen bonds involving the LR showed that most of the bonds had formed
472 during the first half of the simulation; no new ones formed in the last quarter. Hydrogen
473 bonds also kept forming and reforming. Similarly, **Figure 6A** shows that most SSEs
474 formed and broke several times during the simulation. Taken together these indicators
475 allow us to conclude that the simulation involved adequate sampling.

476 In addition to our examination of the LR structure, we compared the changes seen
477 in the TMD helix bundle, from the respective reference structure in the TMD-only
478 simulation, versus the full-length model. It was of great interest that the change in the
479 curvature (and, as a consequence, in the end-to-end distance) of Helix 3 was significantly
480 greater in the new full-length model than in the TMD-only model. Comparing the range
481 of values sampled in the representative structures (data not shown) we found similar

482 differences. This observation supported the hypothesis put forward earlier (45) that helix
483 3 is highly important for the signal transduction of the TSHR and consistent with a variety
484 of small molecule activators which all interact with Helix 3 (not illustrated). We also
485 examined the LR cysteines. Much has been discussed concerning the role of cysteine
486 bonds in anchoring the LR to the LRD following post receptor processing which involves
487 cleavage of the unique 55 amino acid insert in the LR (see **Figure 9C**). The analysis of
488 the cysteines in the LR showed the remarkable affinity of one pair to each other (C283-
489 C398) and to a lesser degree for the second pair. (C384-C408). However, the third pair
490 (C301-C390), showed poor affinity, leading to the suggestion that in the fully formed
491 TSHR only two of the cysteine bonds were formed.

492 Recently, structures of the luteinizing hormone receptor (LHR) in complex with
493 different proteins and in its inactive state, a total of five structures, obtained by CEM have
494 been described (46). In accordance with our simulation, the relative orientation of the
495 LRD with the TMD was quite variable. The LR in the LHR, however, while significantly
496 shorter than the LR in the TSHR, was missing more than 40 residues in the CEM
497 structures thus preventing detailed comparison with the TSHR LR. It is notable that the
498 short helix at the N-terminal end of the LR was present in all five CEM structures and
499 during the 1000 ns MD run described here. Also, the LR conformations in the CEM
500 structures were very different from each other, reflecting the conformational variations
501 observed during our TSHR MD run. Interestingly, our simulation of 1000ns with the
502 heterodimeric TSH showed stabilization of secondary structural elements which was
503 clearly absent without TSH (**Figure 6**) further suggesting that the LR plays an important
504 part in TSH binding and that TSH is able to stabilize the flexible LR region after

Full length TSH receptor

505 transitioning through various dynamic structural changes. Furthermore, the separation
506 of the LR and the TMD during the simulation suggests that for the proper action of the
507 TSHR on binding of the TSH then at least one cysteine bond has to be formed.

508 In conclusion, we generated the first model of the full-length TSHR that includes
509 the characterization of a flexible LR and concluded that the LR is constitutively unstable
510 in the native state of receptor thus can be considered an IDP. However, our preliminary
511 results indicate that TSH is able to stabilize this disordered protein, which suggest that
512 stabilization of LR might be important for signaling to ensue.

513
514

515 **Acknowledgments**

516
517

518 This work was supported in part by NIH grant DK069713 and a VA Merit Award
519 BX000800 (to TFD), the Segal Family Fund and additional anonymous donations. It was
520 also supported in part through the computational resources and staff expertise provided
521 by the Department of Scientific Computing at the Icahn School of Medicine at Mount
522 Sinai.

523

524

525

526

527 **References**

528

529 1. Davies TF, Andersen S, Latif R, Nagayama Y, Barbesino G, Brito M, Eckstein AK,
530 Stagnaro-Green A, Kahaly GJ. Graves' disease. *Nat Rev Dis Primers.*
531 2020;6(1):52.

532 2. Rapoport B, Chazenbalk GD, Jaume JC, McLachlan SM. The thyrotropin (TSH)
533 receptor: interaction with TSH and autoantibodies. *Endocr Rev.* 1998;19(6):673-
534 716.

535 3. Davies TF, Ando T, Lin RY, Tomer Y, Latif R. Thyrotropin receptor-associated
536 diseases: from adenomata to Graves disease. *J Clin Invest.* 2005;115(8):1972-
537 1983.

538 4. Tanaka K, Chazenbalk GD, McLachlan SM, Rapoport B. Subunit structure of
539 thyrotropin receptors expressed on the cell surface. *J Biol Chem.*
540 1999;274(48):33979-33984.

541 5. Tanaka K, Chazenbalk GD, Rapoport B, McLachlan SM. Reassessment of the
542 location of the thyrotropin receptor 50 amino acid "insertion" provides evidence in
543 favor of a second downstream cleavage site. *Thyroid.* 2001;11(2):111-114.

544 6. Sanders J, Chirgadze DY, Sanders P, Baker S, Sullivan A, Bhardwaja A, Bolton
545 J, Reeve M, Nakatake N, Evans M, Richards T, Powell M, Miguel RN, Blundell
546 TL, Furmaniak J, Smith BR. Crystal structure of the TSH receptor in complex with
547 a thyroid-stimulating autoantibody. *Thyroid.* 2007;17(5):395-410.

548 7. Sanders P, Young S, Sanders J, Kabelis K, Baker S, Sullivan A, Evans M, Clark
549 J, Wilmot J, Hu X, Roberts E, Powell M, Nunez Miguel R, Furmaniak J, Rees

Full length TSH receptor

550 Smith B. Crystal structure of the TSH receptor (TSHR) bound to a blocking-type
551 TSHR autoantibody. *J Mol Endocrinol.* 2011;46(2):81-99.

552 8. S.A. Morshed RM, R. Latif, T.F. Davies. Biased signaling by thyroid-stimulating
553 hormone receptor-specific antibodies determines thyrocyte survival in
554 autoimmunity. *Sci Signal* 2018;11.

555 9. Sun S, Summachiwakij S, Schneck O, Morshed SA, Ma R, Latif R, Davies TF.
556 Antigenic "Hot- Spots" on the TSH Receptor Hinge Region. *Front Endocrinol*
557 (*Lausanne*). 2018;9:765.

558 10. J. Miller-Gallacher PS, S. Young, A. Sullivan, S. Baker, S.C Reddington, M. Clue,
559 K. Kabelis, J. Clark, J. Wilmot, D. Thomas, M. Chlebowska, F. Cole, E. Pearson,
560 E. Roberts, M. Holly, M. Evans, R. Núñez Miguel, M. Powell, J. Sanders, J.
561 Furmaniak, B. Rees Smith. Crystal structure of a ligand-free stable TSH receptor
562 leucine-rich repeat domain. *Journal of Molecular Endocrinology* 2019;62:117–128

563 11. Kleinau G, Neuman S, Grüters A, Krude H, Biebermann H. Novel insights on
564 thyroid-stimulating hormone receptor signal transduction *Endocr Rev.*
565 2013;34:691-724.

566 12. Kleinau G, Worth CL, Kreuchwig A, Biebermann H, Marcinkowski P, Scheerer P
567 and Krause G. Structural–Functional Features of the Thyrotropin Receptor: A
568 Class A G-Protein-Coupled Receptor at Work. *Front Endocrinol.* 2017;8.

569 13. Morshed SA, Latif R, Davies TF. Characterization of thyrotropin receptor antibody-
570 induced signaling cascades. *Endocrinology.* 2009;150:519-529.

571 14. Schaarschmidt J, Huth S, Meier R, Paschke R, Jaeschke H7. Influence of the
572 Hinge Region and Its Adjacent Domains on Binding and Signaling Patterns of the
573 Thyrotropin and Follitropin Receptor. *PLoS ONE*. 2014;9.
574 15. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O,
575 Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl
576 SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back
577 T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M,
578 Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K,
579 Kohli P, and Hassabi D. Highly accurate protein structure prediction with
580 AlphaFold. *Nature*. 2021;596:583-589.
581 16. Mezei M, Latif R, Das B, Davies TF. Implications of an improved model of the TSH
582 receptor transmembrane domain (TSHR-TMD -TRIO). *Endocrinology*.
583 2021;162:bqab051
584 17. Bairoch A, Apweiler R. The SWISS-PROT protein sequence database and its
585 supplement TrEMBL in 2000. *Nucleic Acids Res*. 2000;28:45–48.
586 18. Kaufman L, Rousseeuw PJ. 1987. In: Dodge Y, ed. Clustering by means of
587 Medoids, in Statistical Data Analysis Based on the L1 - Norm and Related
588 Method. Amsterdam: North Holland:405-416.
589 19. Mezei M. Simulaid: a simulation facilitator and analysis program. *J Comput Chem*.
590 2010;31(14):2658-2668.
591 20. Mezei M. Grand-Canonical Ensemble Monte Carlo Simulation of Dense Fluids:
592 Lennard-Jones, Soft Spheres and Water. *Mol Phys*. 1987;61:565-582.
593 21. Mardia KV, Jupp PE. Directional Statistics. Chichester: John Wiley & Sons, Ltd.

594 22. Mezei M, Beveridge DL. Generic solvation sites in a crystal. *J Comp Chem.*
595 1984;6:523-527.

596 23. Ali MR, Latif R, Davies TF, Mezei M. Monte Carlo loop refinement and virtual
597 screening of the thyroid-stimulating hormone receptor transmembrane domain. *J*
598 *Biomol Struct Dyn.* 2015;33(5):1140-1152.

599 24. Humphrey W, Dalke A, Schulten K. VMD - Visual Molecular Dynamics. *J Molec*
600 *Graphics.* 1996;14:33-38.

601 25. Jo S, Kim T, Iyer VG, Im W. CHARMM-GUI: a web-based graphical user interface
602 for CHARMM. *J Comput Chem.* 2008;29(11):1859-1865.

603 26. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel
604 RD, Kale L, Schulten K. Scalable molecular dynamics with NAMD. *J Comput*
605 *Chem.* 2005;26(16):1781-1802.

606 27. Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, de Groot BL, Grubmüller H, D.
607 MacKerell AD, Jr. CHARMM36m: An Improved Force Field for Folded and
608 Intrinsically Disordered Proteins. *Nat Methods.* 2017;14.

609 28. Jorgensen WL, Chandrashekar J, Madura J, Impey RW, Klein ML. Comparison of
610 simple potential functions for simulating liquid water. *J Chem Phys.* 1983;79.

611 29. Webb B, Sali A. Comparative Protein Structure Modeling Using MODELLER. *Curr*
612 *Protoc Bioinformatics.* 2014;47:5 6 1-32.

613 30. Kabsch W, Sander C. Dictionary of protein secondary structure: Pattern
614 recognition of hydrogen-bonded and geometrical features. *Biopolymers.*
615 1983;22:2577-2637.

616 31. de Bernard S, Misrahi M, Huet JC, Beau I, Desroches A, Loosfelt H, Pichon C,
617 Pernollet JC, Milgrom E. Sequential cleavage and excision of a segment of the
618 thyrotropin receptor ectodomain. *J Biol Chem.* 1999;274(1):101-107.

619 32. Tanaka K, Chazenbalk GD, McLachlan SM, Rapoport B. Evidence that cleavage
620 of the thyrotropin receptor involves a "molecular ruler" mechanism: deletion of
621 amino acid residues 305-320 causes a spatial shift in cleavage site 1 independent
622 of amino acid motif. *Endocrinology.* 2000;141(10):3573-3577.

623 33. Latif R, Ando T, Davies TF. Monomerization as a prerequisite for intramolecular
624 cleavage and shedding of the thyrotropin receptor. *Endocrinology.*
625 2004;145(12):5580-5588.

626 34. Mezei M, Filizola M. TRAJELIX: A computational Tool for the Geometric
627 Characterization of Protein Helices During Molecular Dynamics Simulations. *J*
628 *Computer-Aided Molecular Design.* 2006;20:97-107.

629 35. Mezei M. A new method for mapping macromolecular topography. *Journal of*
630 *molecular graphics & modelling.* 2003;21(5):463-472.

631 36. Laugwitz KL, Allgeier A, Offermanns S, Spicher K, Van Sande J, Dumont JE,
632 Schultz G. The human thyrotropin receptor: a heptahelical receptor capable of
633 stimulating members of all four G protein families. *Proc Natl Acad Sci U S A.*
634 1996;93(1):116-120.

635 37. Boutin A, Eliseeva E, Gershengorn MC, Neumann S. beta-Arrestin-1 mediates
636 thyrotropin-enhanced osteoblast differentiation. *FASEB J.* 2014;28(8):3446-3455.

637 38. Frenzel R, Voigt C, Paschke R. The human thyrotropin receptor is predominantly
638 internalized by beta-arrestin 2. *Endocrinology.* 2006;147(6):3114-3122.

Full length TSH receptor

639 39. Nunez Miguel R, Sanders J, Jeffreys J, Depraetere H, Evans M, Richards T,
640 Blundell TL, Rees Smith B, Furmaniak J. Analysis of the thyrotropin receptor-
641 thyrotropin interaction by comparative modeling. *Thyroid*. 2004;14(12):991-1011.

642 40. Jiang X, Fischer D, Chen X, McKenna SD, Liu H, Sriraman V, Yu HN,
643 Goutopoulos A, Arkinstall S, He X. Evidence for Follicle-stimulating Hormone
644 Receptor as a Functional Trimer. *J Biol Chem*. 2014;289(20):14273-14282.

645 41. Kleinau G, Krause G. Thyrotropin and homologous glycoprotein hormone
646 receptors: structural and functional aspects of extracellular signaling mechanisms.
647 *Endocr Rev*. 2009;30(2):133-151.

648 42. Krause G, Kreuchwig A, Kleinau G. Extended and structurally supported insights
649 into extracellular hormone binding, signal transduction and organization of the
650 thyrotropin receptor. *PLoS One*. 2012;7(12):e52920.

651 43. Ali MR, Latif R, Davies TF, Mezei M. Monte Carlo loop refinement and virtual
652 screening of the thyroid-stimulating hormone receptor transmembrane domain.
653 *Journal of Biomolecular Structure and Dynamics*. 2014;1-13.

654 44. Latif R, Ali MR, Mezei M, Davies TF. Transmembrane Domains of Attraction in
655 the TSH Receptor. *Endocrinology*. 2014.

656 45. R. Latif TFD. Targeting the thyroid-stimulating hormone receptor with small
657 molecule ligands and antibodies. *Expert Opinion on Therapeutic Targets*.
658 2015;19:835-847.

659 46. J. Duan PX, Xi Cheng, C. Mao, T. Croll, X. He, J. Shi, X. Luan, W. Yin, E. You, Q.
660 Liu, S. Zhang, H. Jiang, Y. Zhang, Yi.Jiang & H. . Xu. Structures of full-length
661 glycoprotein hormone receptor signalling complexes. *Nature*. 2021;598:688–692

Full length TSH receptor

662

A: 0 ns

B: 500 ns

C: 1000 ns