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Highlights
¢ Intuitive graphical user interface for interactive analysis of scRNA-seq data
¢ Allows non-computational users to analyze scRNA-seq data with end-to-end workflows
e Provides interoperability between tools across different programming environments
e Produces HTML reports for reproducibility and easy sharing of results

Summary

Analysis of single-cell RNA-seq (scRNA-seq) data can reveal novel insights into heterogeneity of complex
biological systems. Many tools and workflows have been developed to perform different types of analysis.
However, these tools are spread across different packages or programming environments, rely on different
underlying data structures, and can only be utilized by people with knowledge of programming languages. In the
Single Cell Toolkit 2.0 (SCTK2.0), we have integrated a variety of popular tools and workflows to perform various
aspects of scRNA-seq analysis. All tools and workflows can be run in the R console or using an intuitive graphical
user interface built with R/Shiny. HTML reports generated with Rmarkdown can be used to document and
recapitulate individual steps or entire analysis workflows. We show that the toolkit offers more features when
compared with existing tools and allows for a seamless analysis of scRNA-seq data for non-computational users.
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Introduction

Single-cell RNA sequencing (scRNA-seq) is a molecular assay that can quantify of the levels of mMRNA transcripts
for each gene in individual cells. This approach can be used to generate insights into cellular heterogeneity not
previously possible with “bulk” transcriptomic assays [1], [2]. Profiling the transcriptome of individual cells has
revealed novel cell subpopulations in normal tissues and cell states associated with the pathogenesis of complex
diseases [3]. A large number of tools and software packages are available to perform different steps of scRNA-
seq data analysis. However, these tools are spread across different programming environments and rely on
different data structures for input of data or output of results. As the interoperability for tools between platforms
is lacking, users generally have to choose a single analysis workflow or spend considerable effort manually
converting data between environments running different tools and integrating results [4]. Moreover, many
researchers without strong computational backgrounds are generating scRNA-seq data but do not have
necessary training for analysis and interpretation.

Currently, there are limited options for frameworks that allows for interoperability of tools across environments
and contains a graphical user interface (GUI) for non-computational users to perform flexible end-to-end analysis
[5][6][71[8]. While some web applications are available for the analysis of scRNA-seq data, there are no online
tools that can import data from a variety of formats, perform comprehensive quality control and filtering, run
flexible clustering and trajectory workflows, and apply a series of downstream analysis and visualization tools
within an interactive interface amiable to users without a strong programming background. To address this need,
we developed the Single Cell Toolkit 2.0 (SCTK2.0) which is implemented in the R/Bioconductor package
singleCellTK and available online at sctk.bu.edu. SCTK2.0 connects our previous R package for quality control
of scRNA-seq data [9] with a variety of tools for analysis, integration, and visualization including interoperability
with Seurat and many Bioconductor packages. All of the end-to-end analysis workflows are accessible using a
“point-and-click” GUI to enable users without programming skills to analyze their own data. When compared to
existing tools, the SCTK2.0 framework offers more options for data importing, clustering and trajectory analysis,
interactive visualization, and generation of HTML reports for reproducibility.
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Results
Overview of the general framework

singleCellTK (SCTK) is an R package that provides a uniform interface to popular scRNA-seq tools and
workflows for quality control, clustering or trajectory analysis, and visualization. SCTK gives users the opportunity
to seamlessly run different tools from different packages and environments during different stages of the
analysis. Tools can be run by computational users in the R [10] console, by non-computational users with an
interactive graphical user interface (GUI) developed in R/Shiny [11], or with HTML reports generated with
Rmarkdown. SCTK utilizes multiple Bioconductor Experiment objects such as the SingleCellExperiment (SCE)
as the primary data container for storing expression matrices, reduced dimensional representations, cell and
feature annotations, and other tool outputs [12][13].

Flexible and comprehensive workflows for scRNA-seq analysis

The maijor steps of the SCTK workflow can be divided into three major components: 1) importing, quality control,
and filtering, 2) normalization, dimensionality reduction, and clustering, and 3) various downstream analyses and
visualizations for exploring biological patterns of the cell clusters (Fig. 1). For the first component, we have
included the ability to import data from 11 different preprocessing tools or file formats. SCTK generates standard
QC metrics such as the total number of counts, features detected per cell, or mitochondrial percentage using the
scater package [14]. Doublet detection can be performed with 4 different tools and ambient RNA quantification
and removal can be performed with DecontX [15] or SoupX [16]. For filtering, users can choose to exclude cells
or genes based on one or a combination of QC metrics produced by the various QC tools.

The major steps for the clustering workflows include normalization, selection of highly variable genes (HVGs),
dimensionality reduction such as PCA, clustering, and 2-D embedding such as UMAP (Fig. 1). Users also have
the option of performing batch correction or integration after normalization with 9 tools. SCTK2.0 provides an “a
la carte” workflow which allows users to pick and choose different tools at each step or several curated workflows
which only allow for specific tools or functions predefined by other packages. Current curated workflows in the
Shiny GUI include those from the Seurat [17][18][19][20] and Celda [21] packages.

Downstream analyses after clustering include finding markers for cell clusters using differential expression (DE),
DE analysis between user-specified conditions, automated cell type labeling with SingleR [22], pathway
enrichment analysis with GSVA [23], VAM [24], or Enrichr [25][26], and trajectory analysis with TSCAN [27]. DE
analysis can be performed with the Wilcoxon rank-sum test, MAST [28], Limma [29], ANOVA, or DESeq2 [30]
and visualized with heatmaps or volcano plots. The expression of individual genes can be displayed on 2-D
embeddings, violin plots, or box plots. Finally, results from SCTK can be exported as flat text files (e.g. mtx, txt,
csv), Seurat object, or an AnnData [31][32] object to allow for further analysis and integration with other tools.

Interactive analysis with the SCTK2.0 GUI

Users without a strong programming background can analyze scRNA-seq data with the interactive GUI built with
Shiny and available at sctk.bu.edu (Fig. 2). The major steps in the analysis are accessible via the menus in the
top navigation bar. Within each major section, parameters to run tools can be selected in the left panel and
results are displayed in the right panel. Many plots can be customized with additional options such as the choice
of the embedding in a scatter plot or choosing to color the points by a particular metric or label. SCTK has a
general visualization tab called the “Cell Viewer” which supports functionality to generate and visualize custom
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scatter plots, bar plots, and violin plots for user-selected genes or gene sets. Additionally, a generic heatmap
plotting tab can be used to visualize the expression levels of multiple features from an expression matrix along
with a variety of cell or feature annotations. The maijority of plots are made interactive with the plotly [33] package
and can be highlighted, cropped, zoomed, and saved in various formats.

Reproducible and sharable analysis with HTML reports

SCTK2.0 can generate HTML reports using Rmarkdown for quality control tools, differential expression (DE)
results, differential abundance (DA) results, and for the curated workflows. These reporting tools can be used to
plot and share a previously run analysis or start a new analysis workflow de novo with user-specified parameters.
The output of these functions is a comprehensive HTML report that describes the input data, run parameters,
and results with the standard visualizations. These reports provide reproducibility and offer a quick and easy way
to explore and share the results of an individual analysis or whole workflow. For example, the DE report renders
an HTML document that highlights the top differentially expressed genes via a scrollable table and common
visualizations such as a heatmap and volcano plot (Item S1).

Benchmarking

We benchmarked the ability of the SCTK to analyze four datasets of different sizes. Two datasets of peripheral
blood mononuclear cells (PBMC) were obtained from 10X Genomics that contained 5,419 cells (pbmc6k) and
68,579 cells (pbmc68k). Two more datasets of immune cells were obtained from the “1M Immune Cells" project
from Human Cell Atlas that contained 100k cells (immune100k) and 300k cells (immune300k). The workflow
consisted of steps of importing data from sparse matrix files, generating QC metrics, filtering, normalization,
variable feature selection, dimension reduction, 2D embedding, clustering and marker detection. We recorded
the RAM usage for the SCE object after each step (Fig. S1A) as well as the peak RAM allocation that was used
during each step (Fig. S1B). The largest RAM usage for the SCE object was 6.23 GB and occurred after the
marker detection step for the largest dataset. The largest peak RAM usage was 16.65 GB and occurred during
the importing step of the largest dataset (16.65 GB). These results demonstrate that the SCTK GUI deployed on
a server with typical memory availability (e.g. 64GB) can be used to analyze many standard single-cell datasets
for several users at a time.

Comparison to other tools with GUI for scRNA-seq analysis

Some other tools and packages are available that provide graphical user interface to scRNA-seq data analysis.
We compared the availability of supported methods between SCTK and Pegasus [5], ASAP [6][7], and BingleSeq
[8] (Table S1). Generally, SCTK supports more methods and options for the various stages of a typical sScRNA-
seq analysis. Particularly, SCTK has more options for importing from different data sources and supports more
quality control algorithms. Similar to SCTK2.0, several methods and workflows are available in Pegasus.
However, the GUI in Pegasus is only available via Jupiter Notebooks in the Terra cloud platform and non-
computational users need to have access to a cloud account and a Terra workspace before they can fully utilize
this tool. Options for ASAP that are not in SCTK include for voom and DESeqg2 for normalization, M3Drop for
variable feature detection, and Seurat leiden, hierarchical and SC3 methods for clustering. Lastly, BingleSeq has
Monocle for trajectory analysis and dot plots for visualization. With respect to trajectory analyses, SCTK uses
TSCAN while Pegasus supports diffusion maps and BingleSeq includes Monocle.
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Discussion

SCTK2.0 provides an intuitive and easy-to-use GUI that integrates a variety of widely used methods into a single
end-to-end workflow. Instead of having to switch between different graphic-based tools or learning a
programming language to run a method that utilize specific data structures, users can use the “point-and-click”
GUI to access existing analysis methods for scRNA-seq data. Features available in the GUI include the ability
to import scRNA-seq data from a variety of formats, import and edit annotations for genes and cells, running
quality-control analysis and applying filters, applying methods for normalization, dimensionality reduction,
clustering, differential expression, pathway analysis, trajectory analysis and interactive visualization. The ability
to easily generate comprehensive HTML reports enables quick sharing between collaborators and reproducibility
of results. In the future, the singleCellTK package will be updated to utilize the MultiAssayExperiment and
ExperimentSubset packages to store and manipulate both multi-modal data and subsets of existing datasets
with the same object and from the same interactive interface. Overall, these features make SCTK2.0 a
convenient toolkit for the analysis of sScRNA-seq data regardless of their programming background.

STARX Methods

Comprehensive Importing. SCTK enables importing data from the following pre-processing tools: CellRanger
[34], Optimus, DropEst [35], BUStools [36][37], Seqc [38], STARSolo [39][40] and Alevin [41][42]. In all cases,
SCTK parses the standard output directory structure from the pre-processing tools and automatically identifies
the count files to import. These functions also support importing of count matrices stored in the plain text files
(e.g. MTX, CSV, and TSV formats), SingleCellExperiment (SCE) object saved in RDS file, AnnData object saved
in an h5ad file. The Shiny GUI allows users to specify the location of files for multiple samples on their local
device. The data for these samples is uploaded and combined into a single SCE object to use across analyses.

Quality Control and Filtering. Performing comprehensive quality control (QC) is necessary to remove poor
quality cells for downstream analysis of single-cell RNA sequencing (scRNA-seq) data. Within droplet-based
scRNA-seq data, droplets containing cells must be differentiated from empty droplets. Therefore, assessment of
the data is required, for which various QC algorithms have been developed. In SCTK, we support EmptyDrops
[43] and BarcodeRank [44] tools for droplets, and general QC Metrics, Scrublet [45], scDblFinder [46], cxds [47],
bcds [47], hybrid of cxds and bcds [47], doubletFinder [48] and decontX [15] for cell. The metrics computed from
these algorithms can be visualized on a 2D embedding or violin plot. Based on these metrics, users can filter the
cells by selecting an appropriate metric and a cutoff value. The filtered data is stored in a separate SCE object
and can be utilized in all subsequent analyses.

A la carte Analysis Workflow. The a la carte analysis workflow includes the main interface and the functions
of the toolkit that let the users select and pick different methods and options for various steps of the analysis
workflow including normalization, batch correction or integration, feature selection, dimensionality reduction and
2-D embedding, and clustering.

Normalization. SCTK offers a convenient way to normalize data for downstream analysis using a number of
methods available through the toolkit. Normalization methods available with the toolkit include “LogNormalize”,
“CLR”, “RC” and “SCTransform” from Seurat package and “logNormCounts” and “CPM” from scater package.

Additional transformation options are available for users including “log”, “log1p”, trimming of data assays and Z-
Score scaling.
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Batch Correction and Integration. SCTK provides access to methods for batch correction and integration of
samples from R packages including Batchelor (MNN) [49], SVA (ComBat) [50][51], limma [29], scMerge [52],
Seurat and ZINBWaVE [53], as well as Python packages including BBKNN [54] and Scanorama [55]. These
methods accept various types of input expression matrices (e.g. raw counts or log-normalized counts), and
generate either a new corrected expression matrix or a low-dimensional dimensionality reduction of the
integrated data.

Feature Selection. Several methods are available to compute and select the most variable features to use in
the downstream analysis. Feature selection methods available with the toolkit include “vst”, “mean.var.plot” and
“dispersion” from Seurat package and “modelGeneVar” from Scran [56] package. The top variable genes can
be visualized through the toolkit in a scatter plot of the genes or features using the mean-to-variance or mean-

to-dispersion plot depending upon the algorithm used.

Dimensionality Reduction and 2D embedding. The toolkit provides access to both PCA (Principal Component
Analysis) and ICA (Independent Component Analysis) algorithms from multiple packages for reducing the
expression matrices into reduced dimensions. PCA is implemented from both scater and Seurat packages, while
implementation of ICA is only available from Seurat. Reduced dimensions computed from these methods can
be visualized through various plots including component plot, elbow plot, jackstraw plot and heatmaps. 2D
embedding methods available with the toolkit include “tSNE” and “UMAP” from Seurat package, “©'SNE” from
Rtsne package and “UMAP” from scater package. The results computed from these methods can also be
visualized using a 2D scatter plot.

Clustering. Graph-based clustering methods available within SCTK include “Walktrap” [57], “Louvain” [58],
“‘infomap” [59], “fastGreedy” [60], “labelProp” [61], from the scran package or “louvain”, “multilevel” [62], or “SLM”

[63] from the Seurat package. Additionally, K-means methods can be run using “Hartigan-Wong”, “Lloyd”, or
“MacQueen” algorithms from the stats package.

Curated Workflows. SCTK2.0 provides access to both Seurat and Celda analysis workflows through a
streamlined and guided interface. Seurat is a widely used R package that implements various methods for
processing and clustering of scRNA-seq data. Celda is a R package that performs co-clustering of genes into
modules and cells into subpopulations. In the SCTK GUI, all the steps of the Seurat and Celda workflows can
be run in a “step-by-step” fashion with the “vertical blinds” layout. These curated workflows allow new or beginner
users to quickly run an exploratory analysis of single-cell data without having to try too many combinations of
parameters or tools.

Differential Expression & Marker Selection. The toolkit offers differential expression in a group-vs-group way
using one of the five implemented methods including Wilcoxon rank-sum test, MAST, Limma, DESeq2 or
ANOVA. Alternatively, users can also use the differential expression methods in a “Find Marker” analysis to
identify the top marker genes for each group of cells against all the other cells. The results for both approaches
can be viewed through tables that display the top differentially expressed genes or marker genes along with the
metrics computed by the selected method.

Cell Type Labeling. Cell type labeling from a reference can be performed with the SingleR package. SingleR
works by comparing the expression profile of each single cell to an annotated reference dataset and labels each
cell with a cell type of the highest likelihood. SingleR can also label clusters of cells instead of individual cells.
The cell type assignments of clusters or individual cells can be visualized on a 2D embedding in the same fashion
as labels from de novo clustering algorithms.
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Pathway Analysis. Custom gene sets can be imported by the user or automatically downloaded from the
MsigDB [64] database. Methods for scoring the levels of a gene set in each individual cell include Variance-
Adjusted Mahalanobis (VAM) and Gene Set Variation Analysis (GSVA). The scores for gene sets can be used
in a DE analysis to compare different cell annotations such as cell type or experimental condition. The distribution
of gene set scores can be visualized using violin plots. EnrichR can be used to determine if sets of genes are
enriched for biological pathways in curated databases such as KEGG [65], GO [66], and MsigDB.

Trajectory Analysis. Cell trajectory can be constructed by building a cluster based minimum spanning tree
(MST) and estimating pseudotime on the paths, with the TSCAN package. Based on the trajectory, SCTK also
provides TSCAN methods to test features that are differentially expressed on a path or between paths. The
pseudotime value or the expression of DE features can be visualized on a 2D embedding with the MST projected
and overlaid on it.

Benchmarking. The pbmc6k and pbmc68k datasets were obtained using the importExampleData() function
which utilized the TENxPBMCData package (version 1.12.0) and ExperimentHub package (version 2.2.1) to
retrieve the data. The immune100k and immune300k dataset was retrieved and downsampled from the Human
Cell Atlas Portal. All datasets were exported to MTX format. The workflow that was benchmarked included steps
for 1) importing the data from an MTX file using the importFromFiles() function, 2) calculation of general quality
control metrics using the runPerCellQC() function, 3) normalization using the runNormalization() with the
“logNormCounts” method, 4) calculation of variable features using the runFeatureSelection() function with the
“‘modelGeneVar’ method, 5) dimensionality reduction using the runDimReduce() function with the “scaterPCA”
method, 6) UMAP embedding using the runDimReduce() function with the “scaterUMAP” method, 6) clustering
using the runScranSNN() function with the “Louvain” method, and 7) a differential gene expression analysis
using the runDEAnalysis() function with the “wilcox” method. For each of the steps, we used the peakRAM()
function from the peakRAM package (version 1.0.2) to record the RAM used by the SCE object after the
completion of each step as well as the peak RAM allocation used during each step.


https://doi.org/10.1101/2022.07.13.499900
http://creativecommons.org/licenses/by-nc-nd/4.0/

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.13.499900; this version posted July 14, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Page 10 of 21

Software and Data Availability

Live application: https://sctk.bu.edu/

Documentation and tutorials: https://www.camplab.net/sctk/

Docker image: https://hub.docker.com/r/campbio/sctk _shiny

Bioconductor package: https://bioconductor.org/packages/singleCellTK/

Source code: https://github.com/compbiomed/singleCell TK

pbmc6k data: https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc6k
pbmc68k data: https://support.10xgenomics.com/single-cell-gene-
expression/datasets/1.1.0/fresh_68k pbmc_donor_a

immune 100k and immune300k data: https://data.humancellatlas.org/explore/projects/cc95ff89-2e68-4a08-
a234-480eca21ce’9

Author Contributions

Software, Y.W., I.S., RH., YK, VA, X.C.,, S.AA, NP, SAZ, ZW.,, FJ.,, MY., W.E.J. and J.D.C.; Formal
Analysis, Y.W. and |.S.; Writing - Original Draft, Y.W. and |.S.; Writing - Review & Editing, J.D.C., W.E.J., Y.K,,
R.H. Y.W. and I.S., Funding Acquisition, J.D.C., W.E.J. and M.Y.; Supervision, J.D.C.

Acknowledgements

This work was funded by the National Library of Medicine (NLM) R0O1LM013154-01 (J.D.C. and M.Y.), the
National Cancer Institute (NCI) Informatics Technology for Cancer Research (ITCR) 1U01 CA220413-01 (W.E.J.
and J.D.C.), and 5R01GM127430 (W.E.J.).

Declaration of Interests
The authors declare no competing interests.


https://sctk.bu.edu/
https://www.camplab.net/sctk/
https://hub.docker.com/r/campbio/sctk_shiny
https://bioconductor.org/packages/singleCellTK/
https://github.com/compbiomed/singleCellTK
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc6k
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/fresh_68k_pbmc_donor_a
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/fresh_68k_pbmc_donor_a
https://data.humancellatlas.org/explore/projects/cc95ff89-2e68-4a08-a234-480eca21ce79
https://data.humancellatlas.org/explore/projects/cc95ff89-2e68-4a08-a234-480eca21ce79
https://doi.org/10.1101/2022.07.13.499900
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.13.499900; this version posted July 14, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Page 11 of 21

309 References

310

311 [1] A. Haque, J. Engel, S. A. Teichmann, and T. Lénnberg, “A practical guide to single-cell RNA-sequencing
312 for biomedical research and clinical applications,” Genome Medicine, vol. 9, no. 1, p. 75, Aug. 2017, doi:
313 10.1186/s13073-017-0467-4.

314  [2] B. Hwang, J. H. Lee, and D. Bang, “Single-cell RNA sequencing technologies and bioinformatics

315 pipelines,” Experimental & Molecular Medicine, vol. 50, no. 8, pp. 1-14, Aug. 2018, doi:

316 10.1038/s12276-018-0071-8.

317  [3] G. Chen, B. Ning, and T. Shi, “Single-Cell RNA-Seq Technologies and Related Computational Data
318 Analysis,” Frontiers in Genetics, vol. 10, Apr. 2019, doi: 10.3389/fgene.2019.00317.

319 [4] M. Eisenstein, “Single-cell RNA-seq analysis software providers scramble to offer solutions,” Nature
320 Biotechnology, vol. 38, no. 3, pp. 254-257, Mar. 2020, doi: 10.1038/s41587-020-0449-8.

321 [5] B. Li et al., “Cumulus provides cloud-based data analysis for large-scale single-cell and single-nucleus
322 RNA-seq,” Nature Methods, vol. 17, no. 8, pp. 793-798, Aug. 2020, doi: 10.1038/s41592-020-0905-x.
323 [6] F. P. A. David, M. Litovchenko, B. Deplancke, and V. Gardeux, “ASAP 2020 update: an open, scalable
324 and interactive web-based portal for (single-cell) omics analyses,” Nucleic Acids Research, vol. 48, no.
325 W1, pp. W403-W414, May 2020, doi: 10.1093/nar/gkaa412.

326 [7] V. Gardeux, F. P. A. David, A. Shajkofci, P. C. Schwalie, and B. Deplancke, “ASAP: a web-based

327 platform for the analysis and interactive visualization of single-cell RNA-seq data,” Bioinformatics, vol.
328 33, no. 19, pp. 3123-3125, Oct. 2017, doi: 10.1093/bioinformatics/btx337.

329 [8] D. Dimitrov and Q. Gu, “BingleSeq: a user-friendly R package for bulk and single-cell RNA-Seq data
330 analysis,” Peerd, vol. 8, p. 10469, Dec. 2020, doi: 10.7717/peerj.10469.

331 [9] R. Hong et al., “Comprehensive generation, visualization, and reporting of quality control metrics for
332 single-cell RNA sequencing data,” Nature Communications, vol. 13, no. 1, p. 1688, Dec. 2022, doi:
333 10.1038/s41467-022-29212-9.

334 [10] R Core Team, “R: A language and environment for statistical computing.” Vienna, Austria, 2022.

335 [Online]. Available: https://www.R-project.org/

336 [11] W. Chang et al., “shiny: Web Application Framework for R.” 2021.
337 [12] R.A. Amezquita et al., “Orchestrating single-cell analysis with Bioconductor,” Nature Methods, vol. 17,

338 no. 2, pp. 137-145, Feb. 2020, doi: 10.1038/s41592-019-0654-x.

339 [13] | Sarfraz, M. Asif, and J. D. Campbell, “ExperimentSubset: an R package to manage subsets of

340 Bioconductor Experiment objects,” Bioinformatics, vol. 37, no. 18, pp. 3058-3060, Sep. 2021, doi:
341 10.1093/BIOINFORMATICS/BTAB179.

342 [14] D.J. McCarthy, K. R. Campbell, A. T. L. Lun, and Q. F. Wills, “Scater: Pre-processing, quality control,
343 normalization and visualization of single-cell RNA-seq data in R,” Bioinformatics, vol. 33, no. 8, pp.
344 1179-1186, Apr. 2017, doi: 10.1093/bioinformatics/btw777.

345 [15] S.Yang et al., “Decontamination of ambient RNA in single-cell RNA-seq with DecontX,” Genome
346 Biology, vol. 21, no. 1, p. 57, Dec. 2020, doi: 10.1186/s13059-020-1950-6.

347 [16] M. D. Young and S. Behjati, “SoupX removes ambient RNA contamination from droplet-based single-
348 cell RNA sequencing data,” Gigascience, vol. 9, no. 12, pp. 1-10, Nov. 2020, doi:

349 10.1093/GIGASCIENCE/GIAA151.

350 [17] Y.Hao et al., “Integrated analysis of multimodal single-cell data,” Cell, vol. 184, no. 13, pp. 3573-

351 3587.e29, Jun. 2021, doi: 10.1016/J.CELL.2021.04.048.

352 [18] T. Stuart et al., “Comprehensive Integration of Single-Cell Data Resource Comprehensive Integration of
353 Single-Cell Data,” Cell, vol. 177, 2019, doi: 10.1016/j.cell.2019.05.031.


https://doi.org/10.1101/2022.07.13.499900
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.13.499900; this version posted July 14, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Page 12 of 21

354 [19] A.Butler, P. Hoffman, P. Smibert, E. Papalexi, and R. Satija, “Integrating single-cell transcriptomic data

355 across different conditions, technologies, and species,” Nature Biotechnology, vol. 36, no. 5, pp. 411—
356 420, Jun. 2018, doi: 10.1038/nbt.4096.

357 [20] R. Satija, J. A. Farrell, D. Gennert, A. F. Schier, and A. Regev, “Spatial reconstruction of single-cell gene
358 expression data,” Nature Biotechnology, vol. 33, no. 5, pp. 495-502, May 2015, doi: 10.1038/nbt.3192.
359 [21] Z.Wang et al., “Celda: A Bayesian model to perform co-clustering of genes into modules and cells into
360 subpopulations using single-cell RNA-seq data,” Biorxiv, Mar. 2021, doi: 10.1101/2020.11.16.373274.
361 [22] D. Aran et al., “Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic
362 macrophage,” Nature Immunology 2019 20:2, vol. 20, no. 2, pp. 163—-172, Jan. 2019, doi:

363 10.1038/s41590-018-0276-y.

364 [23] S.Hanzelmann, R. Castelo, and J. Guinney, “GSVA: gene set variation analysis for microarray and

365 RNA-Seq data,” BMC Bioinformatics, vol. 14, no. 1, p. 7, Jan. 2013, doi: 10.1186/1471-2105-14-7.

366 [24] H.R. Frost, “Variance-adjusted Mahalanobis (VAM): a fast and accurate method for cell-specific gene
367 set scoring,” Nucleic Acids Research, vol. 48, no. 16, pp. €94—e94, Sep. 2020, doi:

368 10.1093/NAR/GKAA582.

369 [25] E.Y.Chen etal., “Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool,” BMC
370 Bioinformatics, vol. 14, no. 1, pp. 1-14, Apr. 2013, doi: 10.1186/1471-2105-14-128.

371 [26] M. V. Kuleshov et al., “Enrichr: a comprehensive gene set enrichment analysis web server 2016

372 update,” Nucleic Acids Res, vol. 44, no. W1, pp. W90-W97, Jul. 2016, doi: 10.1093/nar/gkw377.

373 [27] Z.Jiand H. Ji, “TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis,”
374 Nucleic Acids Research, vol. 44, no. 13, p. €117, Jul. 2016, doi: 10.1093/nar/gkw430.

375 [28] G. Finak et al., “MAST: a flexible statistical framework for assessing transcriptional changes and

376 characterizing heterogeneity in single-cell RNA sequencing data,” Genome Biology, vol. 16, no. 1, p.
377 278, Dec. 2015, doi: 10.1186/s13059-015-0844-5.

378 [29] M. E. Ritchie et al., “limma powers differential expression analyses for RNA-sequencing and microarray
379 studies,” Nucleic Acids Research, vol. 43, no. 7, pp. e47—e47, Apr. 2015, doi: 10.1093/nar/gkv007.

380 [30] M. I Love, W. Huber, and S. Anders, “Moderated estimation of fold change and dispersion for RNA-seq
381 data with DESeq2,” Genome Biology, vol. 15, no. 12, p. 550, Dec. 2014, doi: 10.1186/s13059-014-0550-
382 8

383 [31] | Virshup, S. Rybakov, F. J. Theis, P. Angerer, and F. A. Wolf, “anndata: Annotated data,” Biorxiv, Dec.
384 2021, doi: 10.1101/2021.12.16.473007.

385 [32] F.A.Wolf, P. Angerer, and F. J. Theis, “SCANPY: large-scale single-cell gene expression data

386 analysis,” Genome Biology, vol. 19, no. 1, p. 15, Dec. 2018, doi: 10.1186/s13059-017-1382-0.

387 [33] C. Sievert, Interactive Web-Based Data Visualization with R, plotly, and shiny. Chapman and Hall/CRC,
388 2020.

389 [34] G. X.Y.Zheng et al., “Massively parallel digital transcriptional profiling of single cells,” Nature

390 Communications, vol. 8, no. 1, p. 14049, Apr. 2017, doi: 10.1038/ncomms14049.

391 [35] V. Petukhov et al., “dropEst: pipeline for accurate estimation of molecular counts in droplet-based

392 single-cell RNA-seq experiments,” Genome Biology, vol. 19, no. 1, p. 78, Dec. 2018, doi:

393 10.1186/s13059-018-1449-6.

394 [36] P. Melsted et al., “Modular, efficient and constant-memory single-cell RNA-seq preprocessing,” Nature
395 Biotechnology, vol. 39, no. 7, pp. 813—-818, Jul. 2021, doi: 10.1038/s41587-021-00870-2.

396 [37] P. Melsted, V. Ntranos, and L. Pachter, “The barcode, UMI, set format and BUStools,” Bioinformatics,
397 vol. 35, no. 21, pp. 4472-4473, Nov. 2019, doi: 10.1093/BIOINFORMATICS/BTZ279.

398 [38] E. Azizietal., “Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment,”
399 Cell, vol. 174, no. 5, pp. 1293-1308.e36, Aug. 2018, doi: 10.1016/j.cell.2018.05.060.


https://doi.org/10.1101/2022.07.13.499900
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.13.499900; this version posted July 14, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Page 13 of 21

400 [39] B. Kaminow, D. Yunusov, and A. Dobin, “STARsolo: accurate, fast and versatile mapping/quantification

401 of single-cell and single-nucleus RNA-seq data,” bioRxiv, p. 2021.05.05.442755, May 2021, doi:

402 10.1101/2021.05.05.442755.

403 [40] A.Dobin et al., “STAR: ultrafast universal RNA-seq aligner,” Bioinformatics, vol. 29, no. 1, pp. 15-21,
404 Jan. 2013, doi: 10.1093/BIOINFORMATICS/BTS635.

405 [41] A. Srivastava, L. Malik, H. Sarkar, and R. Patro, “A Bayesian framework for inter-cellular information
406 sharing improves dscRNA-seq quantification,” Bioinformatics, vol. 36, no. Supplement_1, pp. i292—i299,
407 Jul. 2020, doi: 10.1093/bioinformatics/btaa450.

408 [42] A. Srivastava, L. Malik, T. Smith, |. Sudbery, and R. Patro, “Alevin efficiently estimates accurate gene
409 abundances from dscRNA-seq data,” Genome Biology, vol. 20, no. 1, p. 65, Dec. 2019, doi:

410 10.1186/s13059-019-1670-y.

411 [43] A.T.L.Lun, S. Riesenfeld, T. Andrews, T. P. Dao, T. Gomes, and J. C. Marioni, “EmptyDrops:

412 distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data,” Genome
413 Biology, vol. 20, no. 1, p. 63, Dec. 2019, doi: 10.1186/s13059-019-1662-y.

414  [44] J. A. Griffiths, A. C. Richard, K. Bach, A. T. L. Lun, and J. C. Marioni, “Detection and removal of barcode
415 swapping in single-cell RNA-seq data,” Nature Communications, vol. 9, no. 1, p. 2667, Dec. 2018, doi:
416 10.1038/s41467-018-05083-x.

417 [45] S.L.Wolock, R. Lopez, and A. M. Klein, “Scrublet: Computational Identification of Cell Doublets in

418 Single-Cell Transcriptomic Data,” Cell Systems, vol. 8, no. 4, pp. 281-291.e9, Apr. 2019, doi:

419 10.1016/J.CELS.2018.11.005.

420 [46] P.-L. Germain, A. Lun, C. Garcia Meixide, W. Macnair, and M. D. Robinson, “Doublet identification in
421 single-cell sequencing data using scDblFinder,” F1000Res, vol. 10, p. 979, May 2022, doi:

422 10.12688/f1000research.73600.2.

423 [47] A. S. Bais and D. Kostka, “scds: computational annotation of doublets in single-cell RNA sequencing
424 data,” Bioinformatics, vol. 36, no. 4, pp. 1150-1158, Feb. 2020, doi:

425 10.1093/BIOINFORMATICS/BTZ698.

426 [48] C.S. McGinnis, L. M. Murrow, and Z. J. Gartner, “DoubletFinder: Doublet Detection in Single-Cell RNA
427 Sequencing Data Using Artificial Nearest Neighbors,” Cell Systems, vol. 8, no. 4, pp. 329-337.e4, Apr.
428 2019, doi: 10.1016/J.CELS.2019.03.003.

429  [49] L. Haghverdi, A. T. L. Lun, M. D. Morgan, and J. C. Marioni, “Batch effects in single-cell RNA-

430 sequencing data are corrected by matching mutual nearest neighbors,” Nature Biotechnology, vol. 36,
431 no. 5, pp. 421-427, May 2018, doi: 10.1038/nbt.4091.

432  [50] J.T.Leek, W. E. Johnson, H. S. Parker, A. E. Jaffe, and J. D. Storey, “The sva package for removing
433 batch effects and other unwanted variation in high-throughput experiments,” Bioinformatics, vol. 28, no.
434 6, p. 882, Mar. 2012, doi: 10.1093/BIOINFORMATICS/BTS034.

435 [51] W. E. Johnson, C. Li, and A. Rabinovic, “Adjusting batch effects in microarray expression data using
436 empirical Bayes methods,” Biostatistics, vol. 8, no. 1, pp. 118-127, Jan. 2007, doi:

437 10.1093/biostatistics/kxj037.

438 [52] Y. Lin etal., “scMerge leverages factor analysis, stable expression, and pseudoreplication to merge
439 multiple single-cell RNA-seq datasets,” Proceedings of the National Academy of Sciences, vol. 116, no.
440 20, pp. 9775-9784, May 2019, doi: 10.1073/pnas.1820006116.

441 [53] D. Risso, F. Perraudeau, S. Gribkova, S. Dudoit, and J.-P. Vert, “A general and flexible method for
442 signal extraction from single-cell RNA-seq data,” Nature Communications, vol. 9, no. 1, p. 284, Dec.
443 2018, doi: 10.1038/s41467-017-02554-5.

4144 [54] K. Polanski, M. D. Young, Z. Miao, K. B. Meyer, S. A. Teichmann, and J. E. Park, “BBKNN: fast batch
445 alignment of single cell transcriptomes,” Bioinformatics, vol. 36, no. 3, pp. 964-965, Feb. 2020, doi:

446 10.1093/BIOINFORMATICS/BTZ625.


https://doi.org/10.1101/2022.07.13.499900
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.13.499900; this version posted July 14, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Page 14 of 21

447 [55] B. Hie, B. Bryson, and B. Berger, “Efficient integration of heterogeneous single-cell transcriptomes using

448 Scanorama,” Nature Biotechnology, vol. 37, no. 6, pp. 685-691, Jun. 2019, doi: 10.1038/s41587-019-
449 0113-3.

450 [56] A.T.L.Lun,D.J.McCarthy, and J. C. Marioni, “A step-by-step workflow for low-level analysis of single-
451 cell RNA-seq data with Bioconductor,” F1000Res, vol. 5, p. 2122, Oct. 2016, doi:

452 10.12688/f1000research.9501.2.

453 [57] P.Pons and M. Latapy, “Computing Communities in Large Networks Using Random Walks,” in

454 Computer and Information Sciences - ISCIS 2005, vol. 3733, p. Yolum, T. Glngoér, F. Glrgen, and C.
455 Ozturan, Eds. Berlin: Springer, 2005, pp. 284—293. doi: 10.1007/11569596_31.

156 [58] V. D. Blondel, J. L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding of communities in large
457 networks,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2008, no. 10, p. P10008, Oct.
458 2008, doi: 10.1088/1742-5468/2008/10/P10008.

459 [59] M. Rosvall, D. Axelsson, and C. T. Bergstrom, “The map equation,” The European Physical Journal
460 Special Topics, vol. 178, no. 1, pp. 13—23, Nov. 2009, doi: 10.1140/epjst/e2010-01179-1.

4161 [60] A. Clauset, M. E. J. Newman, and C. Moore, “Finding community structure in very large networks,”
462 Physical Review E, vol. 70, no. 6, p. 066111, Dec. 2004, doi: 10.1103/PhysRevE.70.066111.

463 [61] X.Zhu and Z. Ghahramani, “Learning from Labeled and Unlabeled Data with Label Propagation,”
464 Carnegie Mellon University, Pittsburgh, 2002.

465 [62] R. Rotta and A. Noack, “Multilevel local search algorithms for modularity clustering,” ACM Journal of
466 Experimental Algorithmics, vol. 16, May 2011, doi: 10.1145/1963190.1970376.

467 [63] L. Waltman and N. J. van Eck, “A smart local moving algorithm for large-scale modularity-based

468 community detection,” The European Physical Journal B, vol. 86, no. 11, p. 471, Nov. 2013, doi:

469 10.1140/epjb/e2013-40829-0.

470 [64] A. Liberzon, C. Birger, H. Thorvaldsdéttir, M. Ghandi, J. P. Mesirov, and P. Tamayo, “The Molecular
471 Signatures Database Hallmark Gene Set Collection,” Cell Systems, vol. 1, no. 6, pp. 417-425, Dec.
472 2015, doi: 10.1016/j.cels.2015.12.004.

473 [65] M. Kanehisa and S. Goto, “KEGG: Kyoto Encyclopedia of Genes and Genomes,” Nucleic Acids

4174 Research, vol. 28, no. 1, pp. 27-30, Jan. 2000, doi: 10.1093/nar/28.1.27.

475 [66] Gene Ontology Consortium, “The Gene Ontology (GO) database and informatics resource,” Nucleic
476 Acids Research, vol. 32, no. 90001, pp. D258-D261, Jan. 2004, doi: 10.1093/nar/gkh036.

477

478

479

480


https://doi.org/10.1101/2022.07.13.499900
http://creativecommons.org/licenses/by-nc-nd/4.0/

481
482

483
484

485
486
487
488
489
490
491
492
493
494
495
496

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.13.499900; this version posted July 14, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Page 15 of 21

Figures
8]
o Import Quality Control
=
£ Preprocessing Tools : General QC Doublet Detection  Ambient RNA Detection | . |
S CellRanger SCE object Total counts Serublet Decontx - e
o Optimus Seurat object Features detected ScObiFinder SoupX - .
= DropEst AnnData opject ==l Percentage of top Xgenes  DoubletFinder
g BUStools Mitochondrial summary O(DS, BCDS, hybrid ~ Empty Droplet Removal
Seqge Flat Files EmptyDrops g
Q STARSolo oSV, TSV Ba,f:,’;mm =S -
.§. Alevin General OC plots ScFbifinder plots
a Normalization Feature selection
Normalization ngNurmaIlIe seurat:
Seurat: ST, mean.var.plot,
LogNormalize, CLR, RC, dispersion
SC%’:‘ansform SETranshm\ Scran:
Scater: logNoermCounts, v . modeiGeneVar
cPM o Scaling .
e u"w Identify number of feature modules and
Scaling 7 Poisson cell clusters
{ Feature Selaction plots "@E‘""‘?m
I-score e
; ‘ Faature selection heh /’
9 8
X Feature selection :‘f“ P /I”-f
a Seurat: spersion
= VST, mean.var.plt, Dimension Reduction
dispersion
o Scran;: “ {
.g modelGenavar Ica
Q Dimension Reduction | -.......... .. ... Embedding Rate of perplexty change Rate of perplexity change
g { PeA FCA elbow plot # UMAP v for feature modules for cell clusters
= ICA 1SNE
(W] ‘ Explore feature modules
Clustering
Embeddin louvain VI
g ] multlleve[ ey IIIII: "é%%;
.[ Umap SLM 7 - i l! COIE
SNE H g t || coa
; Find & Explore Markers i i "" L8
.5,_» e L T e |!| il '|'Lc'31=
Clustering Bimodal E L= |
-~ T-test i | Ii i EL’
Scran SNN . Negbinom v Il Ge®
Seurat DOEOn | SRPG
K-Means UMAP labeled with clusters LR"’“ Top marker ridge plot v I 1 Acoazsao s
DESeq? Module heatmap for "CD3E” Module UMAP for "CD3E”
=4 T cell module T cell module
g} Marker Detection & Differential Expression Cell Type Labeling Pathway Enrichment Analysis Trajectory Analysis
g Wilcoxon, Limma, DESeq2, MAST, ANOVA singleR GEVA, VAM TSCAN
—
q o T m- Ea e — \
E J | et !
S : ("1 ; 3 _
8 i :
I R d . ; . \
s . Wiy e ™
. 1 I 20 e * "
3 g P < ~
Q & - 2

Figure 1. Overview of analysis workflows available in SCTK2.0. Analysis of scRNA-seq data can be divided
into three major parts: Importing and Quality Control (QC), Clustering Workflows, and Downstream Analysis. For
Importing & QC (top), SCTK2.0 can import data from many different upstream preprocessing tools and formats.
A variety of metrics for general QC, empty drop detection, doublet detection, and ambient RNA quantification
can be calculated and displayed for each sample. For Clustering Workflows (middle), SCTK2.0 provides an “a
la carte” workflow which allows users to pick and choose different tools at each step of the workflow as well as
curated workflows from the Seurat and Celda packages. For Downstream Analysis (bottom), SCTK2.0 provides
access to additional tools and analyses for differential expression, cell type labeling, pathway analysis, and
trajectory analysis. Overall, the toolkit provides a wide variety of methods for each part of the analysis workflow.
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Figure 2. Interactive analysis of single-cell RNA-seq data with a Graphical User Interface (GUI) and HTML
reports. SCTK2.0 allows non-computational users to analyze scRNA-seq data using an interactive GUI built
with R/Shiny which can be hosted on a web server. (A) The menu bar allows the users to navigate through the
main sections including data importing, quality control, the “a la carte” clustering workflow, and downstream
analysis. The curated workflows for Seurat and Celda can be selected and allow the users to follow through a
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series of steps using vertical tabs. For example, the Seurat curated workflow is shown and includes steps for
normalization, feature selection, dimensionality reduction, clustering, 2-D embedding, and finding markers. (B)
SCTK2.0 also provides the ability to generate HTML reports for several individual analyses or entire workflows
to enable reproducibility and facilitate sharing of results. An HTML report for clustering of PMBC data with Seurat
is shown. Different steps that were run in the workflow can be selected with the navigation menu on the left of
the report. A description of the step or tool, the chosen parameters, and the resulting plots are shown on the
right side of the report.
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Supplementary Figure 1, RAM allocation benchmarking for four datasets, pbmc6k, pbmc68k, immune 100k and
immune300k, using a Bioconductor based analysis workflow. A. The RAM usage for the SCE object after each
step is shown for each dataset. B. The peak RAM usage during each step is displayed for each dataset.
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Supplementary Table 1

Functionalities SCTK Pegasus ASAP BingleSeq

https://pegas
Link/Citation https://sctk.bu.edu/ us.readthedo

cs.io/
R, Shiny Python, Terra
Language/Framework (Use some Python (Use some R R, Shiny
packages) packages)

https://asap.epf https://github.com/dbdimitro
l.ch/ v/BingleSea/

Quality Control

General

Counts/Detected Gene
Mitochondrial geneset
Protein coding geneset
Ribosomal geneset
User specific geneset

< 2]

2L 2 2 2 2
2 2 2 2

Doublet

ScDblFinder

cxds

bcds
cxds_bceds_hybrid
scrublet
doubletFinder

2 2L 2 2 2 2|

Ambient RNA Removal

DecontX
SoupX

2 <2

Normalization and Scaling

CPM N N
Log-normalization \ \ \/
Seurat normalization \ \
TPM V

Voom
DESeq2
Z-score
Seurat scaling

< 2

2 <2

Batch Correction

BBKNN
ComBatSeq
MNN

Limma
Scanorama
SCMerge
ZINBWaVE
iNMF / LIGER
Harmony

2L 2 2 2 2 2 2 2|
2

< 2


https://sctk.bu.edu/
https://pegasus.readthedocs.io/
https://pegasus.readthedocs.io/
https://pegasus.readthedocs.io/
https://asap.epfl.ch/
https://asap.epfl.ch/
https://github.com/dbdimitrov/BingleSeq/
https://github.com/dbdimitrov/BingleSeq/
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scVI / scANVI v

Select Variable Feature

Seurat - Dispersion N N

Seurat - VST \/ \
J
N

2 2 2]

Seurat - Mean Var Plot

Scran - modelGeneVar

Pegasus \

M3Drop \

Dimension Reduction and Embedding

PCA
ICA
UMAP
tSNE

2 <2 2 2]
< 2
2 <2

Clustering

Leiden - Scran
Louvain - Scran
Walktrap - Scran
Infomap - Scran

Fast Greedy - Scran
Label Prop - Scran
Leading Eigen - Scran
Louvain - Seurat
Multilevel - Seurat
SLM - Seurat

Leiden — Seurat
Leiden

Louvain

Spectral Louvain
Spectral Leiden
K-Means \
Hierarchical Clustering

SC3

Monocle

2L 22 2 2 2 2 2 2 2]
< 2 2 =2
< 2 2 <2
< 2 2

2 <2 2
<L <2

Differential Expression

MAST

Limma

DESeq2

ANOVA

Wilcoxon

LRT

negbinom

t-test

poisson

Logistic Regression
Welch’s t-test
Fisher's exact test

< 2

2L 2 2 2 2 2 2 2 2 2|

< 2
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Trajectory Analysis

TSCAN N
Diffusion MAP N

Gene Set Enrichment Analysis

fGSEA N
enrichR v

Sample-wise Gene Set Enrichment

GSVA N
VAM \
Signature Score

2

Visualization

Barcode Rank Plot
Violin Plot

Heatmap

Scatter Plot

Variable Feature Plot
Volcano Plot
Composition Plot
Ridge Plot

Batch Variance Plot
Dot Plot
Force-directed (FLE) Graph
GSEA Barplot

2L 2 2 2 2 2 2 2 2]
<L 2 2 2 2 2 2 2]
<
< 2 2 2 =2

< 2 2

517
518
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