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Highlights 20 

• Intuitive graphical user interface for interactive analysis of scRNA-seq data 21 
• Allows non-computational users to analyze scRNA-seq data with end-to-end workflows 22 
• Provides interoperability between tools across different programming environments 23 
• Produces HTML reports for reproducibility and easy sharing of results 24 

 25 
Summary 26 
Analysis of single-cell RNA-seq (scRNA-seq) data can reveal novel insights into heterogeneity of complex 27 
biological systems. Many tools and workflows have been developed to perform different types of analysis. 28 
However, these tools are spread across different packages or programming environments, rely on different 29 
underlying data structures, and can only be utilized by people with knowledge of programming languages. In the 30 
Single Cell Toolkit 2.0 (SCTK2.0), we have integrated a variety of popular tools and workflows to perform various 31 
aspects of scRNA-seq analysis. All tools and workflows can be run in the R console or using an intuitive graphical 32 
user interface built with R/Shiny. HTML reports generated with Rmarkdown can be used to document and 33 
recapitulate individual steps or entire analysis workflows. We show that the toolkit offers more features when 34 
compared with existing tools and allows for a seamless analysis of scRNA-seq data for non-computational users. 35 
 36 
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Graphical Abstract 38 
 39 
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Introduction 41 
 42 
Single-cell RNA sequencing (scRNA-seq) is a molecular assay that can quantify of the levels of mRNA transcripts 43 
for each gene in individual cells. This approach can be used to generate insights into cellular heterogeneity not 44 
previously possible with “bulk” transcriptomic assays [1], [2]. Profiling the transcriptome of individual cells has 45 
revealed novel cell subpopulations in normal tissues and cell states associated with the pathogenesis of complex 46 
diseases [3]. A large number of tools and software packages are available to perform different steps of scRNA-47 
seq data analysis. However, these tools are spread across different programming environments and rely on 48 
different data structures for input of data or output of results. As the interoperability for tools between platforms 49 
is lacking, users generally have to choose a single analysis workflow or spend considerable effort manually 50 
converting data between environments running different tools and integrating results [4]. Moreover, many 51 
researchers without strong computational backgrounds are generating scRNA-seq data but do not have 52 
necessary training for analysis and interpretation.  53 
 54 
Currently, there are limited options for frameworks that allows for interoperability of tools across environments 55 
and contains a graphical user interface (GUI) for non-computational users to perform flexible end-to-end analysis 56 
[5][6][7][8]. While some web applications are available for the analysis of scRNA-seq data, there are no online 57 
tools that can import data from a variety of formats, perform comprehensive quality control and filtering, run 58 
flexible clustering and trajectory workflows, and apply a series of downstream analysis and visualization tools 59 
within an interactive interface amiable to users without a strong programming background. To address this need, 60 
we developed the Single Cell Toolkit 2.0 (SCTK2.0) which is implemented in the R/Bioconductor package 61 
singleCellTK and available online at sctk.bu.edu. SCTK2.0 connects our previous R package for quality control 62 
of scRNA-seq data [9] with a variety of tools for analysis, integration, and visualization including interoperability 63 
with Seurat and many Bioconductor packages. All of the end-to-end analysis workflows are accessible using a 64 
“point-and-click” GUI to enable users without programming skills to analyze their own data. When compared to 65 
existing tools, the SCTK2.0 framework offers more options for data importing, clustering and trajectory analysis, 66 
interactive visualization, and generation of HTML reports for reproducibility. 67 
 68 
  69 
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Results 70 
 71 
Overview of the general framework 72 
 73 
singleCellTK (SCTK) is an R package that provides a uniform interface to popular scRNA-seq tools and 74 
workflows for quality control, clustering or trajectory analysis, and visualization. SCTK gives users the opportunity 75 
to seamlessly run different tools from different packages and environments during different stages of the 76 
analysis. Tools can be run by computational users in the R [10] console, by non-computational users with an 77 
interactive graphical user interface (GUI) developed in R/Shiny [11], or with HTML reports generated with 78 
Rmarkdown. SCTK utilizes multiple Bioconductor Experiment objects such as the SingleCellExperiment (SCE) 79 
as the primary data container for storing expression matrices, reduced dimensional representations, cell and 80 
feature annotations, and other tool outputs [12][13].  81 
 82 
Flexible and comprehensive workflows for scRNA-seq analysis 83 
 84 
The major steps of the SCTK workflow can be divided into three major components: 1) importing, quality control, 85 
and filtering, 2) normalization, dimensionality reduction, and clustering, and 3) various downstream analyses and 86 
visualizations for exploring biological patterns of the cell clusters (Fig. 1). For the first component, we have 87 
included the ability to import data from 11 different preprocessing tools or file formats. SCTK generates standard 88 
QC metrics such as the total number of counts, features detected per cell, or mitochondrial percentage using the 89 
scater package [14]. Doublet detection can be performed with 4 different tools and ambient RNA quantification 90 
and removal can be performed with DecontX [15] or SoupX [16]. For filtering, users can choose to exclude cells 91 
or genes based on one or a combination of QC metrics produced by the various QC tools. 92 
 93 
The major steps for the clustering workflows include normalization, selection of highly variable genes (HVGs), 94 
dimensionality reduction such as PCA, clustering, and 2-D embedding such as UMAP (Fig. 1). Users also have 95 
the option of performing batch correction or integration after normalization with 9 tools. SCTK2.0 provides an “a 96 
la carte” workflow which allows users to pick and choose different tools at each step or several curated workflows 97 
which only allow for specific tools or functions predefined by other packages. Current curated workflows in the 98 
Shiny GUI include those from the Seurat [17][18][19][20] and Celda [21] packages.  99 
 100 
Downstream analyses after clustering include finding markers for cell clusters using differential expression (DE), 101 
DE analysis between user-specified conditions, automated cell type labeling with SingleR [22], pathway 102 
enrichment analysis with GSVA [23], VAM [24], or Enrichr [25][26], and trajectory analysis with TSCAN [27]. DE 103 
analysis can be performed with the Wilcoxon rank-sum test, MAST [28], Limma [29], ANOVA, or DESeq2 [30] 104 
and visualized with heatmaps or volcano plots. The expression of individual genes can be displayed on 2-D 105 
embeddings, violin plots, or box plots. Finally, results from SCTK can be exported as flat text files (e.g. mtx, txt, 106 
csv), Seurat object, or an AnnData [31][32] object to allow for further analysis and integration with other tools.  107 
 108 
Interactive analysis with the SCTK2.0 GUI 109 
 110 
Users without a strong programming background can analyze scRNA-seq data with the interactive GUI built with 111 
Shiny and available at sctk.bu.edu (Fig. 2). The major steps in the analysis are accessible via the menus in the 112 
top navigation bar. Within each major section, parameters to run tools can be selected in the left panel and 113 
results are displayed in the right panel. Many plots can be customized with additional options such as the choice 114 
of the embedding in a scatter plot or choosing to color the points by a particular metric or label. SCTK has a 115 
general visualization tab called the “Cell Viewer” which supports functionality to generate and visualize custom 116 
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scatter plots, bar plots, and violin plots for user-selected genes or gene sets. Additionally, a generic heatmap 117 
plotting tab can be used to visualize the expression levels of multiple features from an expression matrix along 118 
with a variety of cell or feature annotations. The majority of plots are made interactive with the plotly [33] package 119 
and can be highlighted, cropped, zoomed, and saved in various formats.  120 
 121 
Reproducible and sharable analysis with HTML reports 122 
 123 
SCTK2.0 can generate HTML reports using Rmarkdown for quality control tools, differential expression (DE) 124 
results, differential abundance (DA) results, and for the curated workflows. These reporting tools can be used to 125 
plot and share a previously run analysis or start a new analysis workflow de novo with user-specified parameters. 126 
The output of these functions is a comprehensive HTML report that describes the input data, run parameters, 127 
and results with the standard visualizations. These reports provide reproducibility and offer a quick and easy way 128 
to explore and share the results of an individual analysis or whole workflow. For example, the DE report renders 129 
an HTML document that highlights the top differentially expressed genes via a scrollable table and common 130 
visualizations such as a heatmap and volcano plot (Item S1).  131 
 132 
Benchmarking  133 
 134 
We benchmarked the ability of the SCTK to analyze four datasets of different sizes. Two datasets of peripheral 135 
blood mononuclear cells (PBMC) were obtained from 10X Genomics that contained 5,419 cells (pbmc6k) and 136 
68,579 cells (pbmc68k). Two more datasets of immune cells were obtained from the “1M Immune Cells'' project 137 
from Human Cell Atlas that contained 100k cells (immune100k) and 300k cells (immune300k). The workflow 138 
consisted of steps of importing data from sparse matrix files, generating QC metrics, filtering, normalization, 139 
variable feature selection, dimension reduction, 2D embedding, clustering and marker detection. We recorded 140 
the RAM usage for the SCE object after each step (Fig. S1A) as well as the peak RAM allocation that was used 141 
during each step (Fig. S1B). The largest RAM usage for the SCE object was 6.23 GB and occurred after the 142 
marker detection step for the largest dataset. The largest peak RAM usage was 16.65 GB and occurred during 143 
the importing step of the largest dataset (16.65 GB). These results demonstrate that the SCTK GUI deployed on 144 
a server with typical memory availability (e.g. 64GB) can be used to analyze many standard single-cell datasets 145 
for several users at a time.  146 
 147 
Comparison to other tools with GUI for scRNA-seq analysis 148 
 149 
Some other tools and packages are available that provide graphical user interface to scRNA-seq data analysis. 150 
We compared the availability of supported methods between SCTK and Pegasus [5], ASAP [6][7], and BingleSeq 151 
[8] (Table S1). Generally, SCTK supports more methods and options for the various stages of a typical scRNA-152 
seq analysis. Particularly, SCTK has more options for importing from different data sources and supports more 153 
quality control algorithms. Similar to SCTK2.0, several methods and workflows are available in Pegasus. 154 
However, the GUI in Pegasus is only available via Jupiter Notebooks in the Terra cloud platform and non-155 
computational users need to have access to a cloud account and a Terra workspace before they can fully utilize 156 
this tool. Options for ASAP that are not in SCTK include for voom and DESeq2 for normalization, M3Drop for 157 
variable feature detection, and Seurat leiden, hierarchical and SC3 methods for clustering. Lastly, BingleSeq has 158 
Monocle for trajectory analysis and dot plots for visualization. With respect to trajectory analyses, SCTK uses 159 
TSCAN while Pegasus supports diffusion maps and BingleSeq includes Monocle. 160 
 161 
  162 
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Discussion 163 
 164 
SCTK2.0 provides an intuitive and easy-to-use GUI that integrates a variety of widely used methods into a single 165 
end-to-end workflow. Instead of having to switch between different graphic-based tools or learning a 166 
programming language to run a method that utilize specific data structures, users can use the “point-and-click” 167 
GUI to access existing analysis methods for scRNA-seq data. Features available in the GUI include the ability 168 
to import scRNA-seq data from a variety of formats, import and edit annotations for genes and cells, running 169 
quality-control analysis and applying filters, applying methods for normalization, dimensionality reduction, 170 
clustering, differential expression, pathway analysis, trajectory analysis and interactive visualization. The ability 171 
to easily generate comprehensive HTML reports enables quick sharing between collaborators and reproducibility 172 
of results. In the future, the singleCellTK package will be updated to utilize the MultiAssayExperiment and 173 
ExperimentSubset packages to store and manipulate both multi-modal data and subsets of existing datasets 174 
with the same object and from the same interactive interface. Overall, these features make SCTK2.0 a 175 
convenient toolkit for the analysis of scRNA-seq data regardless of their programming background.  176 
 177 
STAR★Methods 178 
 179 
Comprehensive Importing. SCTK enables importing data from the following pre-processing tools: CellRanger 180 
[34], Optimus, DropEst [35], BUStools [36][37], Seqc [38], STARSolo [39][40] and Alevin [41][42]. In all cases, 181 
SCTK parses the standard output directory structure from the pre-processing tools and automatically identifies 182 
the count files to import. These functions also support importing of count matrices stored in the plain text files 183 
(e.g. MTX, CSV, and TSV formats), SingleCellExperiment (SCE) object saved in RDS file, AnnData object saved 184 
in an h5ad file. The Shiny GUI allows users to specify the location of files for multiple samples on their local 185 
device. The data for these samples is uploaded and combined into a single SCE object to use across analyses.  186 
 187 
Quality Control and Filtering. Performing comprehensive quality control (QC) is necessary to remove poor 188 
quality cells for downstream analysis of single-cell RNA sequencing (scRNA-seq) data. Within droplet-based 189 
scRNA-seq data, droplets containing cells must be differentiated from empty droplets. Therefore, assessment of 190 
the data is required, for which various QC algorithms have been developed. In SCTK, we support EmptyDrops 191 
[43] and BarcodeRank [44] tools for droplets, and general QC Metrics, Scrublet [45], scDblFinder [46], cxds [47], 192 
bcds [47], hybrid of cxds and bcds [47], doubletFinder [48] and decontX [15] for cell. The metrics computed from 193 
these algorithms can be visualized on a 2D embedding or violin plot. Based on these metrics, users can filter the 194 
cells by selecting an appropriate metric and a cutoff value. The filtered data is stored in a separate SCE object 195 
and can be utilized in all subsequent analyses.  196 
 197 
À la carte Analysis Workflow. The à la carte analysis workflow includes the main interface and the functions 198 
of the toolkit that let the users select and pick different methods and options for various steps of the analysis 199 
workflow including normalization, batch correction or integration, feature selection, dimensionality reduction and 200 
2-D embedding, and clustering.  201 
 202 
Normalization. SCTK offers a convenient way to normalize data for downstream analysis using a number of 203 
methods available through the toolkit. Normalization methods available with the toolkit include “LogNormalize”, 204 
“CLR”, “RC” and “SCTransform” from Seurat package and “logNormCounts” and “CPM” from scater package. 205 
Additional transformation options are available for users including “log”, “log1p”, trimming of data assays and Z-206 
Score scaling.  207 
 208 
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Batch Correction and Integration. SCTK provides access to methods for batch correction and integration of 209 
samples from R packages including Batchelor (MNN) [49], SVA (ComBat) [50][51], limma [29], scMerge [52], 210 
Seurat and ZINBWaVE [53], as well as Python packages including BBKNN [54] and Scanorama [55]. These 211 
methods accept various types of input expression matrices (e.g. raw counts or log-normalized counts), and 212 
generate either a new corrected expression matrix or a low-dimensional dimensionality reduction of the 213 
integrated data.  214 
 215 
Feature Selection. Several methods are available to compute and select the most variable features to use in 216 
the downstream analysis. Feature selection methods available with the toolkit include “vst”, “mean.var.plot” and 217 
“dispersion” from Seurat package and “modelGeneVar” from Scran [56] package. The top variable genes can 218 
be visualized through the toolkit in a scatter plot of the genes or features using the mean-to-variance or mean-219 
to-dispersion plot depending upon the algorithm used.  220 
 221 
Dimensionality Reduction and 2D embedding. The toolkit provides access to both PCA (Principal Component 222 
Analysis) and ICA (Independent Component Analysis) algorithms from multiple packages for reducing the 223 
expression matrices into reduced dimensions. PCA is implemented from both scater and Seurat packages, while 224 
implementation of ICA is only available from Seurat. Reduced dimensions computed from these methods can 225 
be visualized through various plots including component plot, elbow plot, jackstraw plot and heatmaps. 2D 226 
embedding methods available with the toolkit include “tSNE” and “UMAP” from Seurat package, “tSNE” from 227 
Rtsne package and “UMAP” from scater package. The results computed from these methods can also be 228 
visualized using a 2D scatter plot.  229 
 230 
Clustering. Graph-based clustering methods available within SCTK include “Walktrap” [57], “Louvain” [58], 231 
“infomap” [59], “fastGreedy” [60], “labelProp” [61], from the scran package or “louvain”, “multilevel” [62], or “SLM” 232 
[63] from the Seurat package. Additionally, K-means methods can be run using “Hartigan-Wong”, “Lloyd”, or 233 
“MacQueen” algorithms from the stats package.  234 
 235 
Curated Workflows. SCTK2.0 provides access to both Seurat and Celda analysis workflows through a 236 
streamlined and guided interface. Seurat is a widely used R package that implements various methods for 237 
processing and clustering of scRNA-seq data. Celda is a R package that performs co-clustering of genes into 238 
modules and cells into subpopulations. In the SCTK GUI, all the steps of the Seurat and Celda workflows can 239 
be run in a “step-by-step” fashion with the “vertical blinds” layout. These curated workflows allow new or beginner 240 
users to quickly run an exploratory analysis of single-cell data without having to try too many combinations of 241 
parameters or tools. 242 
 243 
Differential Expression & Marker Selection. The toolkit offers differential expression in a group-vs-group way 244 
using one of the five implemented methods including Wilcoxon rank-sum test, MAST, Limma, DESeq2 or 245 
ANOVA. Alternatively, users can also use the differential expression methods in a “Find Marker” analysis to 246 
identify the top marker genes for each group of cells against all the other cells. The results for both approaches 247 
can be viewed through tables that display the top differentially expressed genes or marker genes along with the 248 
metrics computed by the selected method.  249 
 250 
Cell Type Labeling. Cell type labeling from a reference can be performed with the SingleR package. SingleR 251 
works by comparing the expression profile of each single cell to an annotated reference dataset and labels each 252 
cell with a cell type of the highest likelihood. SingleR can also label clusters of cells instead of individual cells. 253 
The cell type assignments of clusters or individual cells can be visualized on a 2D embedding in the same fashion 254 
as labels from de novo clustering algorithms. 255 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 14, 2022. ; https://doi.org/10.1101/2022.07.13.499900doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.13.499900
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 9 of 21 
 
 256 
Pathway Analysis. Custom gene sets can be imported by the user or automatically downloaded from the 257 
MsigDB [64] database. Methods for scoring the levels of a gene set in each individual cell include Variance-258 
Adjusted Mahalanobis (VAM) and Gene Set Variation Analysis (GSVA). The scores for gene sets can be used 259 
in a DE analysis to compare different cell annotations such as cell type or experimental condition. The distribution 260 
of gene set scores can be visualized using violin plots. EnrichR can be used to determine if sets of genes are 261 
enriched for biological pathways in curated databases such as KEGG [65], GO [66], and MsigDB.  262 
 263 
Trajectory Analysis. Cell trajectory can be constructed by building a cluster based minimum spanning tree 264 
(MST) and estimating pseudotime on the paths, with the TSCAN package. Based on the trajectory, SCTK also 265 
provides TSCAN methods to test features that are differentially expressed on a path or between paths. The 266 
pseudotime value or the expression of DE features can be visualized on a 2D embedding with the MST projected 267 
and overlaid on it.  268 
 269 
Benchmarking. The pbmc6k and pbmc68k datasets were obtained using the importExampleData() function 270 
which utilized the TENxPBMCData package (version 1.12.0) and ExperimentHub package (version 2.2.1) to 271 
retrieve the data. The immune100k and immune300k dataset was retrieved and downsampled from the Human 272 
Cell Atlas Portal. All datasets were exported to MTX format. The workflow that was benchmarked included steps 273 
for 1) importing the data from an MTX file using the importFromFiles() function, 2)  calculation of general quality 274 
control metrics using the runPerCellQC() function, 3) normalization using the runNormalization() with the 275 
“logNormCounts” method, 4) calculation of variable features using the runFeatureSelection() function with the 276 
“modelGeneVar” method, 5) dimensionality reduction using the runDimReduce() function with the “scaterPCA” 277 
method, 6) UMAP embedding using the runDimReduce() function with the “scaterUMAP” method, 6) clustering 278 
using the runScranSNN() function with the “Louvain” method, and 7) a differential gene expression analysis 279 
using the runDEAnalysis() function with the “wilcox” method. For each of the steps, we used the peakRAM() 280 
function from the peakRAM package (version 1.0.2) to record the RAM used by the SCE object after the 281 
completion of each step as well as the peak RAM allocation used during each step.  282 
 283 
  284 
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Software and Data Availability 285 
Live application: https://sctk.bu.edu/ 286 
Documentation and tutorials: https://www.camplab.net/sctk/ 287 
Docker image: https://hub.docker.com/r/campbio/sctk_shiny 288 
Bioconductor package: https://bioconductor.org/packages/singleCellTK/ 289 
Source code: https://github.com/compbiomed/singleCellTK 290 
pbmc6k data: https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc6k 291 
pbmc68k data: https://support.10xgenomics.com/single-cell-gene-292 
expression/datasets/1.1.0/fresh_68k_pbmc_donor_a 293 
immune100k and immune300k data: https://data.humancellatlas.org/explore/projects/cc95ff89-2e68-4a08-294 
a234-480eca21ce79 295 
 296 
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Figures 481 
 482 

 483 
 484 
Figure 1. Overview of analysis workflows available in SCTK2.0. Analysis of scRNA-seq data can be divided 485 
into three major parts: Importing and Quality Control (QC), Clustering Workflows, and Downstream Analysis. For 486 
Importing & QC (top), SCTK2.0 can import data from many different upstream preprocessing tools and formats. 487 
A variety of metrics for general QC, empty drop detection, doublet detection, and ambient RNA quantification 488 
can be calculated and displayed for each sample. For Clustering Workflows (middle), SCTK2.0 provides an “a 489 
la carte” workflow which allows users to pick and choose different tools at each step of the workflow as well as 490 
curated workflows from the Seurat and Celda packages. For Downstream Analysis (bottom), SCTK2.0 provides 491 
access to additional tools and analyses for differential expression, cell type labeling, pathway analysis, and 492 
trajectory analysis. Overall, the toolkit provides a wide variety of methods for each part of the analysis workflow. 493 
 494 
 495 
 496 
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 497 
Figure 2. Interactive analysis of single-cell RNA-seq data with a Graphical User Interface (GUI) and HTML 498 
reports. SCTK2.0 allows non-computational users to analyze scRNA-seq data using an interactive GUI built 499 
with R/Shiny which can be hosted on a web server. (A) The menu bar allows the users to navigate through the 500 
main sections including data importing, quality control, the “à la carte” clustering workflow, and downstream 501 
analysis. The curated workflows for Seurat and Celda can be selected and allow the users to follow through a 502 
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series of steps using vertical tabs. For example, the Seurat curated workflow is shown and includes steps for 503 
normalization, feature selection, dimensionality reduction, clustering, 2-D embedding, and finding markers. (B) 504 
SCTK2.0 also provides the ability to generate HTML reports for several individual analyses or entire workflows 505 
to enable reproducibility and facilitate sharing of results. An HTML report for clustering of PMBC data with Seurat 506 
is shown. Different steps that were run in the workflow can be selected with the navigation menu on the left of 507 
the report. A description of the step or tool, the chosen parameters, and the resulting plots are shown on the 508 
right side of the report.  509 
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 510 
 511 
Supplementary Figure 1, RAM allocation benchmarking for four datasets, pbmc6k, pbmc68k, immune100k and 512 
immune300k, using a Bioconductor based analysis workflow. A. The RAM usage for the SCE object after each 513 
step is shown for each dataset. B. The peak RAM usage during each step is displayed for each dataset.  514 
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 515 
 516 
Supplementary Table 1 
Functionalities SCTK Pegasus ASAP BingleSeq 

Link/Citation https://sctk.bu.edu/ 
https://pegas
us.readthedo
cs.io/ 

https://asap.epf
l.ch/ 

https://github.com/dbdimitro
v/BingleSeq/ 

Language/Framework 
R, Shiny 
(Use some Python 
packages) 

Python, Terra 
(Use some R 
packages) 

 R, Shiny 

Quality Control 
    General 
Counts/Detected Gene √ √ √ √ 
Mitochondrial geneset √ √ √  
Protein coding geneset √  √  
Ribosomal geneset √  √  
User specific geneset √    
    Doublet 
ScDblFinder √    
cxds √    
bcds √    
cxds_bcds_hybrid √    
scrublet √ √   
doubletFinder √    
    Ambient RNA Removal 
DecontX √    
SoupX √    
Normalization and Scaling 
CPM √  √ √ 
Log-normalization √ √ √  
Seurat normalization √  √ √ 
TPM  √   
Voom   √  
DESeq2   √  
Z-score √    
Seurat scaling √  √  
Batch Correction 
BBKNN √    
ComBatSeq √    
MNN √    
Limma √    
Scanorama √ √   
SCMerge √    
ZINBWaVE √    
iNMF / LIGER √ √   
Harmony  √   
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scVI / scANVI  √   
Select Variable Feature 
Seurat - Dispersion √ √  √ 
Seurat - VST √  √ √ 
Seurat - Mean Var Plot √   √ 
Scran - modelGeneVar √    
Pegasus  √   
M3Drop   √  
Dimension Reduction and Embedding 
PCA √ √ √ √ 
ICA √    
UMAP √ √ √  
tSNE √ √ √ √ 
Clustering 
Leiden - Scran √    
Louvain - Scran √    
Walktrap - Scran √    
Infomap - Scran √    
Fast Greedy - Scran √    
Label Prop - Scran √    
Leading Eigen - Scran √    
Louvain - Seurat √  √ √ 
Multilevel - Seurat √  √ √ 
SLM - Seurat √  √ √ 
Leiden – Seurat   √  
Leiden  √   
Louvain  √   
Spectral Louvain  √   
Spectral Leiden  √   
K-Means √  √  
Hierarchical Clustering   √  
SC3   √ √ 
Monocle    √ 
Differential Expression 
MAST √   √ 
Limma √  √  
DESeq2 √  √ √ 
ANOVA √    
Wilcoxon √ √ √ √ 
LRT √    
negbinom √    
t-test √  √ √ 
poisson √    
Logistic Regression √   √ 
Welch’s t-test  √   
Fisher’s exact test  √   
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Trajectory Analysis 
TSCAN √    
Diffusion MAP  √   
Gene Set Enrichment Analysis 
fGSEA  √   
enrichR √    
Sample-wise Gene Set Enrichment 
GSVA √    
VAM √    
Signature Score  √   
Visualization 
Barcode Rank Plot √ √   
Violin Plot √ √  √ 
Heatmap √ √  √ 
Scatter Plot √ √ √ √ 
Variable Feature Plot √ √  √ 
Volcano Plot √ √  √ 
Composition Plot √ √   
Ridge Plot √ √  √ 
Batch Variance Plot √    
Dot Plot  √  √ 
Force-directed (FLE) Graph  √   
GSEA Barplot  √   
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