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Abstract 
Motivation: We propose a practical algorithm based on graph theory, with the purpose of identifying CTCF-
mediated chromatin loops that are linked in 3D space. Our method is based finding clique minors in graphs con-
structed from pairwise chromatin interaction data obtained from the ChIA-PET experiments. We show that such a 
graph structure, representing a particular arrangement of loops, mathematically necessitates linking, if co-occur-
ring in an individual cell. The presence of these linked structures can advance our understanding of the principles 
of spatial organization of the genome. 
Results: We apply our method to graphs created from in situ ChIA-PET data for GM12878, H1ESC, HFFC6 and 
WTC11 cell lines, and from long-read ChIA-PET data. We look at these datasets as divided into CCDs - closely 
interconnected regions defined based on CTCF loops. We find numerous candidate regions with minors, indicat-
ing the presence of links. The graph-theoretic characteristics of these linked regions, including betweenness and 
closeness centrality, differ from regions without, in which no minors were found, which supports their non-random 
nature. We also look at the position of the linked regions with respect to chromatin compartments. 
Availability: The implementation of the algorithm is available at https://github.com/SFGLab/cKNOTs  
Contact: Dariusz.Plewczynski@pw.edu.pl  

 

1 Introduction  
The human genome is composed of more than 3 billion nucleotides, 
measures about 2 meters and it is enclosed in the nucleus that is only 6 
micrometers wide (Tang, et al., 2015), causing the spatial structure of the 
genome to emerge. This spatial organization includes multiple levels of 
interrelated structures (Wang, et al., 2016), most importantly: chromatin 
compartments, topologically associated domains or TADs (Dixon, 
Gorkin, & Ren, 2016), and chromatin contact domains or CCDs (Tang, et 
al., 2015); for an illustration see Figure 1A. 

The properties of the genome structure (e.g. boundaries between TADs) 
are partially determined by the formation of chromatin loops, which can 
be detected using chromatin interaction analysis with paired-end tags 
(ChIA-PET) experiment (Li, et al., 2010). Such loops comprise the Cohe-
sin protein complex bringing together in 3D space two occupied CTCF 
(CCCTC-binding factor) binding sites, which can be far apart in terms of 
genomic coordinates, i.e., the linear position on the DNA strand (Splinter, 
et al., 2006) (Ong & Corces, 2014). They are also used to define CCDs as 
continuous regions with a relatively large number of interconnected loops 
(Tang, et al., 2015). The 3D structure changes resulting from the formation 
or disruption of the loops were found to have functional consequences (Li, 
et al., 2012) (Doyle, Fudenberg, Imakaev, & Mirny, 2014) (Dixon, 
Gorkin, & Ren, 2016). 

Another important level of segmentation, which controls the function-
ality in the genome, is compartmentalization. The genome is divided into 
two major compartments: A and B. Compartment A, or euchromatin, is 

open for transcription to take place, and therefore active. On the other 
hand, compartment B, called heterochromatin, is densely packed, so that 
transcription is suppressed as transcription factors can't reach the genes. 
The two compartments can be further subdivided based on their location. 
Within compartment A we have regions denoted as A1, which are close to 
nuclear speckles, and A2, which is enriched with Pol II and Bromodomain 
Proteins and far from the nuclear speckles. Similarly, compartment B is 
divided into three sub-compartments: B1 is binded by Polycomb repres-
sive complex (PRC), B2 is near the nucleus and bounded by nuclear-asso-
ciating domains (NADs) and heterochromatin proteins (HP1), and B3 is 
close to nuclear lamina and bounded with Lamina-associating domains 
(LADs) along with HP1.  

We know that the organization of the genome plays a significant role in 
its function, and disturbances in chromatin folding influence gene expres-
sion (Lupiáñez, et al., 2015). The principle of creating this organizational 
complexity is not fully understood (Szalaj & Plewczynski, 2018). In par-
ticular, one unexplored possibility is that chromatin loops might be linked 
together, impacting the resulting 3D structure. Current methods of analyz-
ing chromatin conformation, such as Chromatin Interaction Analysis by 
Paired-End Tag Sequencing (ChIA-PET), (Fullwood, et al., 2009) or Hi-
C (Lieberman-Aiden, et al., 2009), give us point-wise information about 
which pairs of loci are closely placed in 3D space. Nevertheless, there are 
many possible 3-dimensional models corresponding to this data, therefore 
it is still complicated to decide which one of them is accurate. Graph the-
ory can aid in solving this problem by abstracting from the particularities 
of any 3D physical model and looking only at connection structure. A con-
tinuous region of chromatin (a chromosome or its part) can be represented 
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as a graph composed of vertices, which represent points on the genome, 
and edges, which correspond to either to interactions (physical connection 
between distant loci) detected using conformation capture experiments, or 
to the parts of DNA strand itself. 
Although we do not know which spatial structure of chromatin is correct, 
in the graph representation we can find features common for every possi-
ble model compatible with data. 

 We describe a computational method of searching for so-called minors 
of a complete subgraph with 6 vertices (K6) within the chromatin graphs. 
The presence of such a minor, guarantees that the chromatin graph em-
bedded in 3-dimensional space, contains two linked loops. The base (ex-
act) algorithm has exponential complexity; hence we refine it to only 
search for a certain subset of K6 minors, which we call linear minors. We 
apply the linear algorithm to graphs constructed from ChIA-PET data for 
GM12878 and three other cell lines, subdivided into densely connected 
regions called chromatin contact domains, or CCDs (Tang, et al., 2015). 
After identifying the linked regions, we study the graph-theoretic proper-
ties of the corresponding graphs, to learn their characteristics. We also 
provide a 3D model of an example region on chromosome 10, containing 
a K6 minor. Finally, we assess the coverage of each CCD-containing minor 
by the two major chromatin compartments. 

2 Methods 

3.1 Datasets 
  

To create the graphs representing the physical interactions in chromatin, 
we used data from several ChIA-PET experiments targeting the CTCF 
protein. We use data from two versions of ChIA-PET protocol: the long-
read ChIA-PET (Li, et al., 2017), and the in situ ChIA-PET: a more effi-
cient version detecting interactions directly in the nucleus. 

We applied our algorithm to in situ CTCF ChIA-PET datasets for 4 hu-
man cell lines: GM12878 (human lymphoblastoid cell), H1ESC (H1 hu-
man embryonic stem cell), HFFC6 (human foreskin fibroblast cell) and 
WTC11 (human induced pluripotent stem cell), and to long-read CTCF 
ChIA-PET for GM12878 cell line. The in situ ChIA-PET data was ob-
tained from 4DNucleome data portal (Reiff, et al., 2021) (Dekker, et al., 
2017) and has been produced by the Jackson Laboratory. The long-read 
data was provided by (Tang, et al., 2015). The in situ ChIA-PET data is 
mapped onto hg38 reference genome, while the long-read data was 
mapped to hg19 reference genome. The raw interactions in ChIA-PET 
data are provided as pairs of anchors: each having a start and end coordi-
nate, and the frequency of occurrence of the given interaction, called the 
PET-count. In other words, the presence of an interaction between two 
loci in this dataset means that at least two reads existed, whose both end-
points were approximately the same, and the endpoints were confirmed to 
be CTCF binding sites - verified by both the presence of a peak in the 
ChIP-Seq signal (indicating the presence of CTCF protein) and the pres-
ence of a CTCF binding motif in the DNA sequence. The raw interactions 
were filtered by their frequency (PET-count), and only the ones with fre-
quency equal or above a threshold were retained. The threshold was set to 
3 for in situ data (for all cell lines), and 2 for long-read data - this is be-
cause the latter dataset is generally sparser. Note, that the ChIA-PET read 
frequency should not be understood as an absolute estimate of probability 
of the existence of a loop in an arbitrary cell. The detection of an existing 
chromatin loop via ChIA-PET read is itself highly chance-dependent, 
while the PET-counts themselves depend on e.g., sequencing depth. Thus, 
only cautious relative inferences can be made, with higher PET-count 

interactions being regarded as more confident than those with lower PET-
count. Next, we merged all overlapping anchors, as we are interested in 
the case of multiple loops attached to (almost) the same anchor region. 

 At this stage we could proceed with graph construction, producing a 
single connected graph for each chromosome. However, since it is not fea-
sible to run the algorithm on whole-chromosome networks, we extract in-
teractions for each individual CCD separately. Since the CCDs are the 
most internally connected regions by definition, it makes most sense to 
search for linking within them. 

3.2 Graph construction and graph-theoretic definitions 

Chromatin graph representation  

We represent the interaction data of a continuous segment (such as a 
CCD) of the human genome as a connected graph G, with vertices V and 
edges E. The vertices V = v1, v2, …, vn are placed on the chromatin strand 

Figure 1: A) Illustration of the hierarchical structure of the genome. 
B) Different geometric realizations of K6 graph lead to different pairs 
of triangles that are linked. Observe that the central picture and the 
right one differ in a single detail, the line connecting 2 and 5 is above 
or below the line connecting 1 and 5, but the pairs of triangles are 
different. C) An example of a linear minor. The blue arcs represent 
ChIA-PET contacts (jump edges), the red lines and dots denote the 
node sets being collapsed to a minor. D) Illustration of the necessity 
of using only solid minors. The linking of a blue solid triangle 
(formed of jump edges) has no biological meaning. After contracting 
blue edges to small size, there is no linking in the DNA thread. Dotted 
lines represent other edges, that are not the focus here 
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in this order, each representing a genomic locus. The edges belong to one 
of two classes: solid edges or jump edges. The edges Es = vivi+1 for 1 ≤ i < 
n connect consecutive vertices and represent the DNA strand. The remain-
ing set of the edges Ej we will call jump edges. A jump edge corresponds 
to the presence of a chromatin loop joining two distant points of the chro-
matin strand. In our model, such interaction is reflected by a single jump 
edge, connecting the corresponding vertices vj and vk. The actual coordi-
nates which we choose to represent are determined by the endpoints of 
jump edges. The jump edges are quite short in terms of genomic coordi-
nates in relation to the chromosome scale, as most of them connect parts 
of genome up to 1 million base pairs away. However, in 3D space they 
bring the two endpoints to close proximity. Within graphs constructed in 
this way we search for linked structures, which we will now define. 

Graph minors and linking in a graph 

A geometric realization of a graph G is a particular arrangements of its 
vertices and edges in 3D space. Formally, it is an assignment of each ver-
tex v ∈ V(G) a point φ(v) in R3, and to each edge uv ∈ E(G) an arc in R3 
with endpoints φ(u) and φ(v). We require that no two arcs intersect, except 
possibly at their common endpoints. A geometric realization is linked if 
there are two cycles in C1 and C2 in G, whose combined realizations φ(C1) 
∪	φ(C2) form a non-split link in S3. Intuitively, it means that the curves in 
3D space that are the cycles’ representations are interleaved with one an-
other so that they cannot be pulled apart. 
Given a geometric realization, we say that the graph G is linked, if there 
exist two cycles in G, whose geometric representations in this realization 
are linked. Finally, if a graph is linked for any possible of its geometric 
realizations, it is called and intrinsically linked graph. An important ob-
servation here is that K6 (i.e. the clique graph on six vertices) is intrinsi-
cally linked. To better understand the concept of linkedness, we provide 
the example of different geometric realizations of the K6 graph depicted 
in Figure 1B. 
Intrinsically linked graphs were characterized by Conway and Gordon 
(Conway & Gordon, 1983) in terms of minor containment, which we will 
now briefly recall. Given graphs H and G, a minor model of H in G is an 
assignment to every v ∈ V(H) a connected subgraph Fv of G such that (1) 
the subgraphs Fv are pairwise vertex disjoint, and (2) for every uv ∈ E(H) 
there is at least one edge in G between V(Fu) and V(Fv). Minors can be 
intuitively understood in the following way: G has a minor model of H if 
we can obtain H from G by contracting edges (i.e., for and edge uv replac-
ing u and v with a single vertex which retains the neighbors of u and v) 
and possibly removing some vertices and edges. Here we will only con-
sider clique minors where H is a clique Kr on r vertices. We provide a 
general description for any r, but in our empirical work we use r = 6, in 
other words we consider K6 minors. Note that for the sake of conciseness 
we will often use the word “minor” to refer to a minor model. 
A graph can have many different K6 minor models. In that case any of its 
geometric realizations could have multiple pairs of linked cycles. If two 
K6 minor models in a graph partially overlap, the corresponding pairs of 
linked cycles might, but need not, be the same. 

The central theorem related to our method, formulated by Conway, 
states the following: A graph G is intrinsically linked if and only if it con-
tains a minor model of K6. We can thus detect linked structures by finding 
K6 minor models in the respective chromatin graphs. Given the importance 
of minors in our study, we introduce a notation for them: as alluded to 
above, a K6 minor consists of connected subgraphs H1,…,H6 which are 
connected and pairwise disjoint, as well as the choice of edges eij, 1 ≤ i < 
j ≤ 6, such that eij connects a vertex in Hi with a vertex in Hj. 

Solid minors 

There is one more thing to consider: not every K6 minor model in such 
a graph will lead to the linking of the chromatin strand. The problem is 
that linking cycles consisting only of jump edges would not result in a 
biologically meaningful linked structure - the cycles can be linked but 
there is no linking of the actual physical chromatin molecule. A schematic 
of such a situation is presented in Figure 1D. To address this we are look-
ing for a certain type of K6 minor models, which we will call solid minors. 
Let G be a graph representation of chromatin as defined above. A cycle in 
G is solid if it contains at least one edge of Es (i.e., part of the chromatin 
strand). 

Recall, that since K6 is intrinsically linked, for any geometric realization 
of K6 graph with the vertex set V(K6) = {1, 2, 3, 4, 5, 6} there exists a 
triple of vertices a, b, c, such that the triangle abc and the triangle formed 
by the three other vertices have linked geometric realizations. Let M = (Fv) 
for v ∈ V(K6) be a K6-minor model in G. Then M is solid if for every 
triangle uvw of K6 there exists a solid cycle in G that traverses Fu, Fv, Fw, 
and exactly one edge between each pair of these subgraphs. To summarize 
any solid minor of a graph G leads to an actual linking of the chromatin 
strand, and thus detecting solid minors is the focus of our method. 

3.3 Treewidth, pathwidth, and cutwidth 
  
Before describing the algorithm for finding solid minors we will give a 

few more definitions, of which the most important in this work is path 
decomposition and pathwidth, which can be introduced as simple special 
cases of tree decomposition and treewidth respectively. Treewidth, 
(Robertson & Seymour, 1984) is arguably one of the most successful 
structural graph parameter. Low treewidth means that a graph structurally 
resembles a tree. Coincidentally a vast number of fundamental hard com-
putational problems becomes tractable on graphs of low treewidth; we re-
fer to Chapter 7 of (Cygan, et al., 2015) for an overview. Algorithms on 
graphs of bounded treewidth usually follow the paradigm of dynamic pro-
gramming and, consequently, are very robust with regards to different var-
iants of the studied problems. The problem of finding minor models is no 
exception. 

Let us proceed with formal definitions. A tree decomposition of a graph 
G consists of a tree T and a function β : V(T) → 2V(G) that assigns to every 
node t ∈ V(T)  a bag β ⊆ V(G). The bags are required to satisfy the fol-
lowing two properties: (i) for every v ∈ V(G) the set of nodes {t ∈ V(T) | 
v ∈ β(t)} induces a nonempty connected subtree of T, and (ii) for every 
edge uv ∈ V(G) there exists a node t ∈ V(T) with {u, v} ⊆	β(t). The width 
of the decomposition (T, β) equals maxt ∈ V(T) |β(t)| - 1 and the treewidth of 
a graph is the minimum possible width of its tree decomposition. 

 The crux of the definition of a tree decomposition is that for every edge 
st ∈ E(T) the set β(s) ∩ β(t) is a separator between the vertices of G ap-
pearing in the bags of the two connected components of T-{st}. This al-
lows dynamic programming algorithms that scan the tree T in a bottom-
to-top fashion. 

If one restricts the above definition to T being a path (as opposed to an 
arbitrary tree), one obtains the definition of a path decomposition and 
pathwidth. While the value of pathwidth can be larger than that of 
treewidth, dynamic programming on path decompositions is often concep-
tually and technically simpler than on tree decompositions. Path decom-
position is directly applied in our algorithm. 
Finally, Cutwidth is another graph width parameter that is relevant to our 
work. Let G be a graph and let ≺ be a total order on V(G). For every v ∈ 
V(G), the cut at v on ≺ is defined as the partition V(G) = Av ∪ Bv where 
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Av = {u ∈ V(G) | u ≼ v} and Bv = {u ∈ V(G) | v ≺ u}. The order of the cut 
Av, Bv is the number of edges of G with one endpoint in Av and the second 
endpoint in Bv. The cutwidth of the ordering ≺ is the maximum order of 
the cut on ≺ and the cutwidth of a graph is the minimum cutwidth among 
all orderings of V(G). 

 The starting point of our work is an observation that in a chromatin 
graph G with V(G) = {v1, v2, …, vn} with the total order v1 ≺ v2 ≺ … ≺ 
vn (which is the natural ordering of vertices by their actual genomic coor-
dinates of each vertex) is likely to have low cutwidth. This is because of 
the characteristics of chromatin organization, especially the existence of 
contact domains – since most edges (interactions) are restricted to these 
domains, the number of edges stacked in one location is limited. This ob-
servation is supported by the experimental results, for example in long-
read ChIA-PET for GM12878 data, the cutwidth ranges between 15 (chro-
mosome 21 and 22) and 31 (chromosome X). 

However, the values of cutwidth are still quite large for dynamic pro-
gramming algorithms whose running times depend exponentially on the 
value of the width parameter. Therefore, we study as well the pathwidth 
of the chromatin graphs. To this end, we need the following well-known 
observation. Let G be a graph and let ≺ be a total order of V(G) of cutwidth 
c. Consider the following path decomposition (T, β) of G. Assume that 
V(G) = v1, v2, …, vn with v1 ≺ v2 ≺ … ≺ vn. Let T be a path with vertices 
labeled 1, 2, …, n in this order and let  β(i) = {vi} ∪ {j < I | ∃k ≥ i vjvk ∈ 
E(G)}. It is straightforward to verify that (T, β) is a path decomposition of 
width at most c. 

Using the observation above we turned the natural ordering v1 ≺ v2 ≺ 
… ≺ vn of a chromatin graph into a path decomposition. The example 
calculation results on the same dataset show pathwidth between 9 (chro-
mosome 18 and 21) and 24 (chromosome X, but next largest is 16 for 
chromosome 13). The pathwidth bounds are much lower than the cutwidth 
bounds (difference ranges from 5 up to 19), indicating that often many 
edges in cuts 𝐴!! , 𝐵!! 	have common endpoints. These path decompositions 
are used as inputs for the implemented dynamic programming algorithms. 

3.4 Finding minors via dynamic programming 
  
The base algorithm is a straightforward procedure that tries to construct 

a minor model of a clique Kr, given a path decomposition of a graph G. 
Let us denote V(Kr) = {w1,w2, …, wr}. Given a bag β(t), a single state 
consists of  

1. a function f: β(t) → {0, 1, 2, …, r}, 
2. a partition pi of f-1(i), for each i ∈	{0, 1, 2, …, r}, and 
3. a subset 𝐸" ⊆ ,#$- 

In simple terms, the state stores a 2-way map between each vertex from 
the bag β(t) and a vertex from Kr (pt. 1, 2), and a subset of edges from Kr 

(pt. 3). For a state (f, (𝑝%)%&'# , E'), we keep a Boolean variable that indicates 
if one can construct a partial minor model of Kr from the vertices of the 
graph appearing in the bags to the left of the bag β(t) such that f-1(i) are 
exactly the vertices β(t) that are in 𝐹(! with pi being the partition of them 
among the connected components in the partial minor model and E' is the 
set of pairs 𝑖𝑗 ∈ ,#$- for which an edge joining  𝐹(! with  𝐹(" has already 
been found. Observe that for a given bag β(t) of size k the number of states 
is bounded by (𝑟 + 1)) ⋅ 𝑘) ⋅ 2*

#
$+, where the first factor corresponds to the 

number of possible functions f, the second one bounds the number of par-
titions (𝑝%)%&'# 	and the third one is the number of possible sets E'. 

Using this algorithm we were able to find multiple K6 minors in the 
chromatin graphs. However, the above algorithm is not able to find solid 
clique minors without significant enhancement. If one does such enhance-
ment directly, then one needs to store for every distinct u, v ∈ β(t)-f-1(0) 

the information whether one can connect u and v within the model using 
only vertices of 𝐹(%(') and 𝐹(%()) and at least one edge of Es. This increases 
the number of states to exponential in Ω(|β(t)|2), making the application of 
the algorithm infeasible in practice. 

To cope with this problem, we restrict our search to a subclass of solid 
minor models of a clique Kr, which we will call linear minors, with the 
property that vertices from G mapping to a single Kr’s vertex must form 
continuous, non-interleaving groups on the chromatin strand. 

Formally, if G is a chromatin graph with V(G) = v1, v2, …  vn, then a 
linear model of Kr consists of (1) subgraphs Fi for i = 1, …, r where Fi is 
the subpath between 𝑣,! and 𝑣-! we require ai ≤ bi for every 1 ≤ i ≤ r and 
ai+1 = bi+1 for every 1 ≤ i < r, and (2) selected jump edges ei,j with endpoints 
in Fi and Fj for every 1 ≤ i ≤  r and 1 ≤ j ≤  r with i + 2 ≤ j. A linear model 
is solid if no three edges ei,j form a triangle; note that this corresponds to 
the minor model (in the usual sense) being solid when the edge ei,j is al-
ways used to connect subgraphs Fi and Fj for the purpose of building solid 
cycles. 

We look for linear models of K6. To this end, we use the aforementioned 
path decomposition of a chromatin graph G constructed from the ordering 
v1 ≺ v2 ≺ … ≺ vn. Recall that in this context the bag β(a) for 1 ≤ a ≤ n 
consists of va, va-1, and all vertices vb for b < a that are incident with some 
jump edge vbvc for some c ≥ a. A state for a bag β(a) now consists of a 
partial linear minor model defined as follows: 

1. an index 1 ≤ ι ≤ 6 such that va-1 ∈ Fι, 
2. choice of some of the edges ei,j for every 1 ≤ i ≤ ι and ι ≤ j ≤ 

6 with i + 2 ≤ j if their left endpoints are to the left of va. 
While building the partial linear minor models in the dynamic program-

ming algorithm we ensure that the edges ei,j never form a full triangle. 
Note that in pt. 2 of the state for K6 one needs to store up to 9 edges for ι 
∈ {3,4} (e.g., for ι = 3, one may need to store e1,3, e1,4, e1,5, e1,6, e2,4, e2,5, 
e2,6, e3,5, e3,6). This, if the order v1 ≺ v2 ≺ … vn has cutwidth c, then we 
have an upper bound of  6 ⋅ ∑ ,./-

0
/&1  on the number of states. 

3.5 Topological measures 
 
In order to characterize the graph topology between the regions containing 
links, we quantify the size of each CCD graph in terms of vertex and edge 
counts, density (ratio of actual edge number and largest possible edge 
number). Moreover, for each node we compute two arguably most com-
monly used centrality measures:  closeness centrality and betweenness 
centrality - quantities understood to indicate the importance of a given 
node in a graph. We will now briefly recall their definitions. 
The closeness centrality of a node u is the inverse of the mean distance 
between u and all other nodes in a graph: c23 =

45'
∑ 7(9,;)*∈,,*./

, where dis-
tance d(u, v) is the length of the shortest path between u and v, and n is 
the number of nodes in the graph. Closeness centrality was originally de-
fined simply as the reciprocal of the sum of the distances from u to all 
other nodes (Sabidussi, 1966), but we use the normalized version in which 
the maximum value is 1. Note, that in our case the graphs are always con-
nected, so d(u, v) is always well-defined. 

The betweenness centrality of a node indicates how often a node is en-
countered on a shortest path between other nodes, capturing the notion of 
being an intermediary between them (Freeman, 1977). In formal terms: 
c=(v) =

'
(45')(45$)

∑ >*s, t?v+
>(@,A)@,A∈C  where V is the set of nodes, σ(s, t) is the 

number of shortest paths between s and t, and σ(s, t | v) is the number of 
those paths passing through node v, assuming σ(s, t) = 1 in case of s = t. 
In the case of multiple shortest paths, the proportion of them passing 
through u is considered. Again, we use the normalized version of the 
measure, in which values range from 0 to 1. 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 14, 2022. ; https://doi.org/10.1101/2022.07.13.499767doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.13.499767
http://creativecommons.org/licenses/by-nc/4.0/


Intrinsic linking of chromatin fiber in human cells 

The centrality measures are defined per node, but their aggregates can 
be used to characterize the graphs themselves (Zubek, et al., 2017). In this 
vein we compute average values of the per-node statistics (betweenness, 
closeness, and the degree) thus obtaining three measurements for each 
CCD graph. Finally, we look at the size of CCD in terms of genomic co-
ordinates. Using all these measures we can compare the CCDs containing 
and not containing minors in terms of their general topology. 

3 Results and Discussion 
  
For the GM128787, a total of 1091 unique solid minors were found in 

the long-read data, occupying 382 (16.7%) out of 2290 CCDs. In the case 
of in situ ChIA-PET, 725 unique solid minors were detected in 257 out of 
2466 CCDs (10.2%). For other cell lines the percentages are 10.3% 
(HFFC6), 6.8% (WTC11) and 1.0% (H1ESC). This percentage, however, 
is expected to be influenced by the density of the graphs obtained from 
ChIA-PET data, which in turn depends on many factors, such as on the 
characteristics of the experiment (ling-read vs in-situ ChIA-PET), and on 
the PET-count threshold used. Moreover, each dataset has a distinct set of 
CCDs. The detailed numbers of unique solid minors located on each chro-
mosome are provided in Table 1, while the statistics for CCDs occupied 
by minors are shown in Table 2. 

 
Table 1: Number of unique solid linear minors in each chromosome 

found by the linear algorithm for each of the datasets. 
  

GM12878(LR) GM12878(IS) H1ESC HFFC6 WTC11 

chr1 71 36 24 44 123 

chr2 134 73 4 79 54 

chr3 89 71 1 23 21 

chr4 118 26 0 46 0 

chr5 101 52 4 105 1 

chr6 59 18 0 35 5 

chr7 94 58 0 21 4 

chr8 57 28 0 31 15 

chr9 51 42 0 20 5 

chr10 14 39 0 90 13 

chr11 28 31 0 10 1 

chr12 57 53 0 58 3 

chr13 25 28 0 3 0 

chr14 35 35 0 14 0 

chr15 26 34 2 22 19 

chr16 36 24 0 8 0 

chr17 28 22 0 10 7 

chr18 12 15 0 18 0 

chr19 6 5 0 1 7 

chr20 19 13 0 10 2 

chr21 12 3 0 4 0 

chr22 2 6 0 4 0 

chrX 17 13 0 6 0 

 

Table 2: Number of CCDs containing at least one solid linear minor in 
each chromosome, for each of the datasets. The percentage refers to the 
total number of CCDs on that chromosome in the given dataset. For 
GM12878 the (LR) and (IS) indicate the long-read ChIA-PET dataset or 
in situ ChIA-PET respectively. 

 
 GM12878 GM12878 H1ESC HFFC6 WTC11 

chr1 26 13.7% 13 6.0% 6 2.9% 14 6.8% 32 12.9% 
chr2 43 24.0% 20 11.2% 1 1.7% 20 13.0% 29 13.4% 

chr3 25 15.1% 22 12.2% 1 2.2% 15 11.5% 3 2.3% 

chr4 33 27.7% 11 8.9% 0 0.0% 10 13.3% 0 0.0% 

chr5 26 19.7% 18 13.7% 1 2.3% 12 11.3% 1 2.2% 

chr6 28 20.4% 8 5.7% 0 0.0% 12 9.8% 2 4.3% 

chr7 22 16.9% 16 12.3% 0 0.0% 8 8.5% 2 4.9% 

chr8 29 26.1% 16 15.5% 0 0.0% 12 14.3% 1 6.2% 

chr9 20 21.3% 13 12.4% 0 0.0% 9 10.1% 3 7.5% 

chr10 10 9.1% 16 12.9% 0 0.0% 19 18.4% 3 4.7% 

chr11 14 13.0% 10 7.0% 0 0.0% 8 6.5% 1 1.1% 

chr12 21 18.1% 20 16.4% 0 0.0% 15 15.3% 3 4.7% 

chr13 20 28.6% 14 22.6% 0 0.0% 3 11.1% 0 0.0% 

chr14 11 15.3% 7 9.5% 0 0.0% 7 12.7% 0 0.0% 

chr15 5 6.8% 8 9.4% 1 2.3% 6 8.7% 3 6.2% 

chr16 11 16.2% 11 14.3% 0 0.0% 6 8.7% 0 0.0% 

chr17 7 8.3% 10 8.6% 0 0.0% 5 5.1% 4 4.3% 

chr18 7 12.7% 4 6.5% 0 0.0% 4 13.3% 0 0.0% 

chr19 4 6.9% 3 3.4% 0 0.0% 1 1.2% 3 3.8% 

chr20 6 12.8% 8 11.9% 0 0.0% 5 8.1% 2 6.2% 

chr21 4 17.4% 1 5.9% 0 0.0% 2 14.3% 0 0.0% 

chr22 2 6.1% 5 10.4% 0 0.0% 4 10.8% 0 0.0% 

chrX 8 8.0% 3 6.0% 0 0 2 15.4% 0 0.0% 

3.6 Example of a linked structure 
  

To give a more direct understanding of the actual minors and their rela-
tionship with the 3D structure we provide an example one solid linear K6 
minor that was found in the in situ ChIA-PET for GM12878, on chromo-
some 10, between coordinates 86397456 to 86587768. A 3D model of the 
region is presented in Figure 2. This minor was selected because of the 
small number of edges in the graph (143 edges, 84 nodes), which makes 
the visualization more clear. Notice how the brown and green segments 
form a closed “loop” (i.e., a closed circuit, not to be confused with a chro-
matin loop), through which purple and red parts of the strand pass - these 
cannot be disentangled from one another, i.e., are linked. Note, that it is 
not possible to deduce from the graph which segments will form this link, 
as there are many geometric realizations of the graph - we only know that 
it must happen in this region. 
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3.7 Topology of linked CCDs 
We will now look at the graph-theoretic characterization of the regions 
containing the minors, focusing on GM12878. We compare the median 
values for each of the measures between the regions, in which at least one 
solid linear minor was found, and those without any minors. We will call 
the former “linked CCDs” and the others as “non-linked'.” To make the 
comparison reliable we excluded CCDs which were either very large or 
very small in terms of the size of the graph. First, we discarded the CCDs 
that have less than 6 nodes or less than 15 edges, as they could not contain 
a K6 minor. Moreover, we discarded CCDs above 10000 edges, for which 
the averages of centrality measures could be skewed (0.1% CCDs have 
more than 4750 edges). We perform the comparison for each dataset sep-
arately with the Mann-Whitney U test and use Bonferroni correction. For 
the results of all tests: test statistics, p-values and medians for all cells are 
reported in Table 3. 

 
Table 3: Results of each U Mann-Whitney tests performed to differentiate 
between linked and non-linked regions. Each graph measure is provided 
in separate set of rows. The columns are: U - the test statistic, p - the p-
value, medN - median value of a given measure for the CCDs without links, 

medL - median value of for the linked CCDs. The group sizes in each sets 
are provide in the final set of rows. For GM12878 the (LR) and (IS) indi-
cate the long-read ChIA-PET dataset or in situ ChIA-PET respectively. 

 
Measure Dataset U p medN medL 

No. nodes GM12878(LR) 157546 .000 142.0 296.0 
 

GM12878(IS) 164026 .000 122.0 224.0 
 

H1ESC 1756 .007 60.0 149.0 
 

HFFC6 69406 .000 88.0 198.0 
 

WTC11 6361 .000 40.0 154.0 

No. edges GM12878(LR) 173713 .000 223.0 437.5 
 

GM12878(IS) 193825 .000 243.0 354.0 
 

H1ESC 2532 .133 177.0 257.0 
 

HFFC6 88125 .000 192.0 344.0 
 

WTC11 7808 .000 65.0 244.5 

Density GM12878(LR) 564267 .000 0.022 0.010 
 

GM12878(IS) 402924 .000 0.032 0.015 
 

H1ESC 7364 .001 0.093 0.022 
 

HFFC6 269893 .000 0.049 0.018 
 

WTC11 78514 .000 0.081 0.021 

Degree GM12878(LR) 447113 .000 3.127 2.960 
 

GM12878(IS) 376306 .000 3.833 3.382 
 

H1ESC 7289 .001 5.235 3.932 
 

HFFC6 249484 .000 4.163 3.557 
 

WTC11 38892 .999 3.188 3.235 

Closeness  GM12878(LR) 585337 .000 0.251 0.176 
 

GM12878(IS) 448535 .000 0.306 0.244 
 

H1ESC 7866 .000 0.395 0.271 
 

HFFC6 285299 .000 0.333 0.252 
 

WTC11 76585 .000 0.355 0.256 

Betweenness GM12878(LR) 447624 .000 0.023 0.018 
 

GM12878(IS) 328290 .000 0.020 0.016 
 

H1ESC 6232 .064 0.027 0.019 
 

HFFC6 230760 .000 0.025 0.016 
 

WTC11 73760 .000 0.051 0.021 

N GM12878(LR) 1854 382 
  

 
GM12878(IS) 2102 257 

  

 
H1ESC 855 10 

  

 
HFFC6 1642 199 

  

 
WTC11 915 92 

  

 
 

Figure 2: An example CCD, located at chr10:86397456-86587768, in 
which a linear minor was found. A) A 3D model of region created 
using Spring Model tool (Kadlof, Rozycka, & Plewczynski, 2020). 
The strand colors represent regions that collapse into a single vertex 
in the minor, while gray represents parts of chromatin not belonging 
to the minor. Fuchsia lines represent ChIA-PET interactions. The 
brown and green segments form a closed loop, through which purple 
and red parts of the strand pass - this is the linking in this particular 
geometric realization of the linked graph. B) Graph representation of 
the region. The dots represent the linear order of the vertices on the 
chromatin strand, colored as above. The arcs represent all ChIA-PET 
interactions in the region, with bold ones being the edges participating 
in the minor. 
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 The linked CCDs tend to be less dense, while having more nodes and 
edges in terms of absolute values. In case of GM12878, the medians of the 
numbers of nodes are 296 vs 140 (linked vs non-linked, p < .001) and 224 
vs 122 (p < .001) for long-read and in situ ChIA-PET respectively. The 
densities, however, drop from 0.022 to 0.010 (p < .001) for long-read 
ChIA-PET and from 0.032 to 0.015 for in situ ChIA-PET (p < .001). This 
is interesting, given that denser graphs would seem to have more oppor-
tunity to randomly create clique structures. 

Next, we find that both average closeness and average betweenness 
centrality in linked CCDs are lower than in non-linked. For long-read 
ChIA-PET the medians of closeness centrality are 0.25 for linked CCDs 
and 0.18 for non-linked (p < .001), and for in situ ChIA-PET their values 
are 0.31 for linked CCDs and 0.24 for non-linked CCDs (p < .001). The 
betweenness centrality medians are 0.023 vs 0.018 (p < .001) for long-
read ChIA-PET, and 0.020 vs 0.016 (p = .020) or in situ ChIA-PET. The 
average degree also tends to slightly be lower in linked CCDs, in concord-
ance with their lower density, being 3.13 vs 2.96 (p < .001) for long-read 
ChIA-PET and 3.83 vs 3.38 (p < .001) for in situ ChIA-PET. 

The above comparisons hold true for four out of five datasets, except 
the H1ESC cell line, in which an exceedingly small number of minors 
found (only in 10 CCDs) (we provide the statistics nevertheless for the 
sake of completeness) - still, the tendencies in the medians are the same. 
Also, the degree did not vary significantly for the WTC11. The distribu-
tions of the graph-theoretic measures illustrating the comparisons are pro-
vided in Figure 3. These observations paint an overall characterization of 
the linked CCDs: they are regions with many redundant connections, as 
indicated by low betweenness; These connections do not, however, col-
lapse the entire region, but only local tightly packed bundles exist - con-
cordant with low closeness. 

Finally, it is important to point out that the density in linked CCDs is 
lower than in non-linked, which indicates that the appearance of the mi-
nors is a deeper phenomenon, not explained simply by concentration of 
many interactions in a smaller region. 

3.8 Linking and chromatin compartments 
  
We obtained genomic coordinates of compartments discovered using in 

situ Hi-C experiments, for the GM12878 cell line, from 4DNucleome data 
portal (source lab: BCM) (Reiff, et al., 2021) (Dekker, et al., 2017). The 
resolution of the compartment data was 250kb, i.e., every segment of that 
length could have a compartment assigned. Our initial hypothesis was that 
the minors might aid in maintaining compartmentalization, so linked 
CCDs would be enriched in compartment boundaries, and would span 
multiple compartments more often.  

To test this, for each region we calculated the proportion (expressed as 
a percentage) covered by either compartment. We then attributed each 
CCD to compartment A if the proportion of its length covered by com-
partment A was higher than 60%, to the B compartment if coverage by B 
was higher than 60% and marked any others as “mixed”. To complement 
this division, we calculated all points of change between compartments 
(1335 in total), and mapped them to CCDs with 50kb tolerance, dividing 
the CCDs into those either with or without such boundaries. The results 
show, that linked regions all almost equally to either compartment A or B, 
unlike non-linked regions - the chi-squared test for the contingency table 
yielded χ2(2) = 38.3, p < .001. The linked regions also contain slightly 
more compartment boundaries than expected (26% observed vs 19% ex-
pected, χ2(1) = 8.29, p = .005). Figure 3 shows the contingency tables for 
compartment assignment test and boundaries test, in the form of bar plots. 

Overall, the results point towards the proposed enrichment, but not over-
whelmingly. 

4 Conclusion 
 
We have described an algorithm capable of efficiently searching real-
world genomic data for the presence of linked structures, which may play 
a role in spatial organization of chromatin. Our method found hundreds of 
regions with possible linking both for long-read and in situ ChIA-PET data 
in GM12878, and in three other human cell lines for the in situ method, 
with the numbers up to 1091, depending on the dataset. We found that it 

Figure 3: The distributions of graph properties for linked (orange) and 
non-linked (blue) CCDs, compared for each of the datasets separately. 
The first three box plots show A) the size of CCD graph in terms of 
number of vertices, B) number of edges, and C) density. In these plots 
the scale on the x axis is logarithmic. The next three violin plots show 
the per-node measures averaged within a CCD graph: D) average de-
gree, E) average closeness centrality, F) average betweenness central-
ity. The last three plots show the counts of linked and non-linked CCDs 
by G) their assignment to chromatin compartments H) Presence of 
compartments boundaries within or near (< 50kb) them. 
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is rather structure than density of the region that predicts the presence of 
linking. The graph-theoretic characteristics of the linked regions distin-
guish them from other regions. An ideal clique has maximum possible 
closeness, as every node is connected to every other. For the same reason, 
the betweenness is minimal, as no route requires an intermediary. Low 
closeness in minor regions indicates that the groups of nodes are subdi-
vided in such a way, that keeps relatively large number of nodes far apart, 
while retaining the redundancy of connections of the clique structure. 
These findings together support the view of structures that do not emerge 
simply from concentration of contacts in one place. 
In the present study we searched only for linear minors i.e., minors with 
vertices occupying consecutive parts of chromosome. Our approach, how-
ever, provides another version of the algorithm: one searching for non-
linear minors as well. While it could detect more linked structures, it has 
significantly larger computational complexity, making it unfeasible for 
larger datasets like the ones we used. Nevertheless, the linear minors alone 
provide enough data for statistical assessment of the differences between 
linked and non-linked regions, even though the number of minors would 
be higher. 
One must bear in mind that the presence of the actual linked structure is 
contingent on the edges forming a minor being simultaneously present 
within a cell. Since our research is based on aggregated population data, it 
would be valuable to confirm results using a method that delivers single-
cell data. However, the presently available methods cannot guarantee to 
capture all contacts, which severely limits the detection capability. 
There are several implications of the presence of links, which need to be 
investigated in the future. Firstly, suppose that a linked structure is present 
in each chromosome. After breaking and reconnecting the DNA chain, 
e.g., using a topoisomerase, a link can be broken, but then it will reappear 
in a different place. This might be, potentially, a mechanism regulating 
gene expression in a cell. Secondly, mutations might destroy or create a 
linked structure, in a similar fashion that it can disrupt TAD boundaries 
(Valton & Dekker, 2016), potentially causing disease. On the other hand, 
a mutation that creates a linked structure might inhibit coding some im-
portant proteins or obstruct adaptation mechanisms. Finally, the presence 
of a rare contact or an absence of a commonly occurring contact might 
create or destroy some linked structure and lead to a different behavior of 
a cell, without affecting the DNA chain. To summarize, the proposed al-
gorithm is a first step towards verification if intrinsic linking of chromatin 
is a viable mechanism for physically organizing the genome in the nucleus 
and regulating its function. 
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