

1 **Cell specialization in cyanobacterial biofilm development revealed by**
2 **expression of a cell-surface and extracellular matrix protein**

3 Alona Frenkel^{1#}, Eli Zecharia^{1#}, Daniel Gómez-Pérez², Eleonora Sendersky¹, Yevgeni
4 Yegorov¹, Avi Jacobs¹, Jennifer Benichou¹, York-Dieter Stierhof² Rami Parnasa¹,
5 Susan S Golden^{3,4}, Eric Kemen² and Rakefet Schwarz^{1*}

6 ¹The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-
7 Gan, Israel, 5290002.

8 ²Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72074 Tübingen,
9 Germany

10 ³Division of Biological Sciences, University of California, San Diego, La Jolla, CA
11 92093, USA

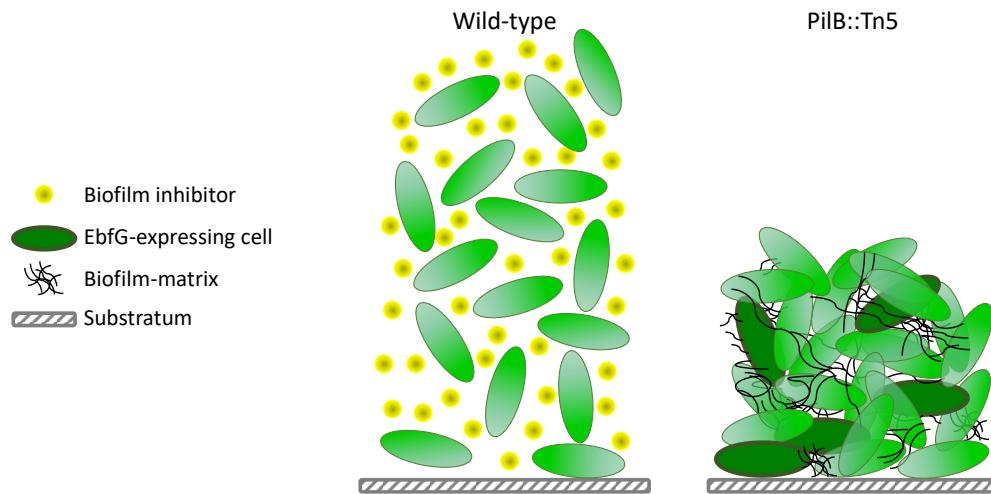
12 ⁴Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093,
13 USA

14 [#]These authors contributed equally to the study

15 ^{*}Corresponding author

16 **Running Title: Cell specialization in cyanobacterial biofilm development**

17


18

19 **Abstract**

20 Cyanobacterial biofilms are ubiquitous and play important roles in diverse
21 environments, yet, understanding of the processes underlying development of these
22 aggregates is just emerging. Here we report cell specialization in formation of
23 *Synechococcus elongatus* PCC 7942 biofilms - a hitherto unknown characteristic of
24 cyanobacterial multicellularity. We show that only a quarter of the cell population
25 expresses at high levels the four-gene *ebfG*-operon that is required for biofilm
26 formation. Almost all cells, however, are assembled in the biofilm. Detailed
27 characterization of EbfG4 encoded by this operon revealed cell-surface localization as
28 well as its presence in the biofilm matrix. Moreover, EbfG1-3 were shown to form
29 amyloid structures such as fibrils and are thus likely to contribute to the matrix
30 structure. These data suggest a beneficial 'division of labour' during biofilm formation
31 where only some of the cells allocate resources to produce matrix proteins – 'public
32 goods' that support robust biofilm development by the majority of the cells.
33 Additionally, previous studies revealed the operation of a self-suppression mechanism
34 that depends on an extracellular inhibitor, which suppresses transcription of the *ebfG*-
35 operon. Here we revealed inhibitor activity at an early growth stage and its gradual
36 accumulation along the exponential growth phase in correlation with cell density. Data,
37 however, do not support a threshold-like phenomenon known for quorum-sensing in
38 heterotrophs. Together, data presented here demonstrate cell specialization and imply
39 density-dependent regulation thereby providing novel insights into cyanobacterial
40 communal behaviour.

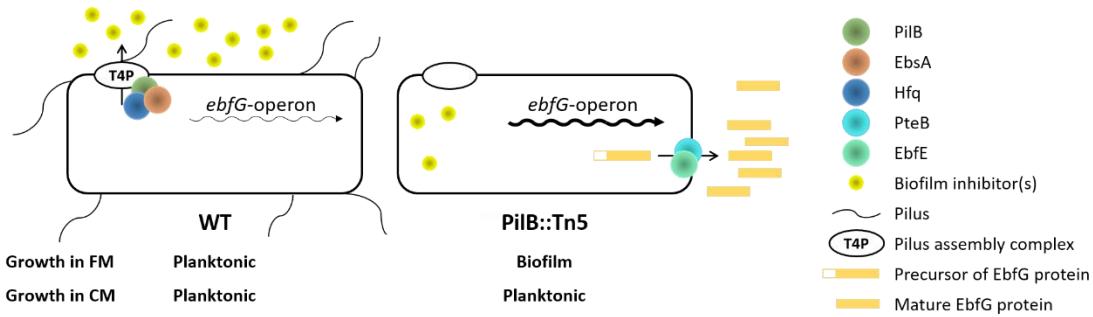
41

42 **Graphical Abstract**

43

44

45 **Introduction**


46 Cyanobacteria are highly abundant in the environment and are responsible for ~25%
47 of the global primary production [1, 2]. Frequently, these photosynthetic prokaryotes
48 are found in microbial assemblages known as biofilms or part of laminated biofilms,
49 dubbed microbial mats [3-5]. Phototrophic biofilms are often associated with industrial
50 problems [6-8]; in contrast, such microbial consortia are beneficial e.g., for effective
51 biomass accumulation for the biofuel industry and for harvesting of secondary
52 metabolites [9-12]. In-depth understanding of cyanobacterial biofilm development
53 paves the way for inhibition of deleterious biofilms and promotion of beneficial ones.

54 The mechanisms involved in cyanobacterial aggregation or biofilm formation started
55 emerging only in recent years. For example, similarly to heterotrophic bacteria,
56 cyanobacteria use the second messenger cyclic-di-GMP for regulating aggregated vs
57 planktonic mode of growth [13]. Furthermore, the thermophilic cyanobacterium
58 *Thermosynechococcus vulcanus* employs cyanobacteriochrome photoreceptors to
59 mediate light-colour input for controlling cell aggregation via c-di-GMP signaling [14-
60 16].

61 Microbial cells within biofilms are encased in a self-produced matrix of hydrated
62 extracellular polymeric substances (EPS) that allows multilayering of cells and
63 structural stability and provides a protected environment. Numerous studies in diverse
64 heterotrophic bacteria identified particular sugar polymers and protein filaments as
65 matrix components [17, 18], however, little is known about the cyanobacterial biofilm
66 matrix. Yet, extracellular polysaccharides were implicated in cyanobacterial biofilm
67 formation, for example, studies of *Synechocystis* support involvement of extracellular
68 polysaccharides in surface adhesion [19] and cell sedimentation [20] and cellulose
69 accumulation is responsible for cell aggregation in *T. vulcanus* RKN [21]. The exo-
70 protein HesF of *Anabaena* sp. PCC 7120 is required for aggregation and it was
71 proposed that it interacts with polysaccharides [22], however, its detailed role in
72 aggregation is still unknown.

73 Our previous studies revealed a biofilm self-suppression mechanism in *S. elongatus*
74 that dictates planktonic growth of this strain (Fig. 1). Inactivation of gene
75 *Synpcc7942_2071*, abrogates the biofilm inhibitory process and results in a biofilm-
76 proficient strain in contrast to the planktonic nature of WT. This gene encodes a

77 homologue of ATPases of type 2 secretion (T2S) systems or type 4 pilus (T4P)
78 assembly complexes, thus, the mutant was initially designated T2EQ but recently
79 renamed PilB::Tn5 [23-25]. The RNA chaperone Hfq and a conserved cyanobacterial
80 protein (EbsA), which are part of the T4P complex, are also essential for the biofilm
81 suppression mechanism [25]. Additionally, we identified four small proteins, each with
82 a double glycine secretion motif, that enable biofilm formation (enable biofilm formation
83 with a GG motif EbfG1-4).

85 **Figure 1: Biofilm regulation in *S. elongatus* by an extracellular inhibitor that dictates**
86 **transcription of the *ebfG*-operon.**

87 The type 4 pilus (T4P) assembly complex is involved in deposition to the extracellular milieu
88 of biofilm inhibitor(s), which dictate transcription of the *ebfG*-operon. Low and high abundance
89 of transcripts of this operon are indicated by thin and thick arrows, respectively. FM – fresh
90 medium; CM – conditioned medium.

91 The T4P complex is involved in deposition to the extracellular milieu of a biofilm
92 inhibitor that regulates expression of the *ebfG*-operon [23, 26]. Mass-spectrometry
93 (MS) analyses revealed the presence of EbfG1-4 in conditioned medium (CM) of
94 PilB::Tn5 [26, 27]. Furthermore, we demonstrated that proteins PteB (peptidase
95 transporter essential for biofilm formation), which belongs to the C39 peptidases
96 family, and EbfE (enable biofilm formation enzyme), a homolog of microcin processing
97 peptidases, are implicated in secretion of EbfG1-4 to the extracellular milieu [26, 28].
98 The role of EbfG1-4 in biofilm formation, however, was unknown. Here, using a
99 reporter construct we demonstrate that high expression of the *ebfG*-operon is limited
100 to a small subpopulation of cells of PilB::Tn5. Further characterization indicates cell-
101 surface and biofilm-matrix localization of EbfG1-4 and strongly supports amyloid nature
102 of EbfG1-4. Together, the data indicate cell specialization and imply microbial
103 cooperation for production of extracellular components beneficial for the whole
104 population, known as “public-goods”. Additionally, the response of the reporter strain
105 to conditioned media harvested at different stages of logarithmic growth of the wild-

106 type strain implies a density dependent mechanism in regulation of *S. elongatus*
107 biofilm development.

108 **Materials Methods**

109 **Strains and culture conditions and harvesting of conditioned medium (CM):**
110 Cultures of *S. elongatus* PCC 7942 and all derived strains were grown in Pyrex tubes
111 under bubbling with air enriched with CO₂ as described previously [29, 30].
112 Construction of mutants and details of molecular manipulations are provided in Table
113 S1. For harvesting of CM, wild-type cultures were initiated from liquid starters at
114 OD₇₅₀=0.2. CM harvesting was performed as described [23].

115 **Flow cytometry:** 50 ml culture at exponential phase was centrifuged (6000g, room
116 temperature), resuspended with 4 ml fresh BG11 to obtain a concentrated culture for
117 inoculation into fresh medium or CM at an OD₇₅₀ of 0.5. Aliquots of 0.5 ml were taken
118 from each culture tube following 6 days of growth and then, in case of biofilm-forming
119 strains, planktonic cells were removed. 1.5 ml BG11 were used to resuspend the
120 biofilmed cells by rigorous pipettation and 0.13 ml were transferred to a 1.5 ml
121 Eppendorf tube for homogenization with a pellet pestle (Sigma-Aldrich, Z359971-
122 1EA). The homogenized samples were filtered through a mesh (pore size 52 µm),
123 supplemented with formaldehyde to a final concentration of 1%, diluted with PBS to
124 OD₇₅₀ of ~0.0001 and measured using BD *FACSAria* (excitation 488nm, emission 530
125 ±30nm).

126 All statistical analyses were conducted in the statistical program R, version 3.3.2 [31].
127 FCS files obtained from *FlowJo* were analyzed with *flowcore* package [32]. Mean,
128 median, and robust coefficient of variation (CV) of the intensity distribution for each
129 sample were calculated. Robust CV was calculated as defined in the *FlowJo*
130 documentation [33]. Intensity values were log-transformed. Significant difference
131 between biofilm and planktonic cells of a particular culture was tested using Paired t-
132 tests on several intensity distribution parameters (mean, median and robust CV). Initial
133 analysis did not reveal significant differences between biofilm and planktonic cells
134 within a particular culture, therefore, these data were combined for further analysis.
135 Effect of growth medium or genetic background on intensity distribution parameters
136 (mean, median and robust CV) was tested with 2-way repeated measures ANOVA.
137 Specifically, mixed linear effect models were fitted with medium or genetic background

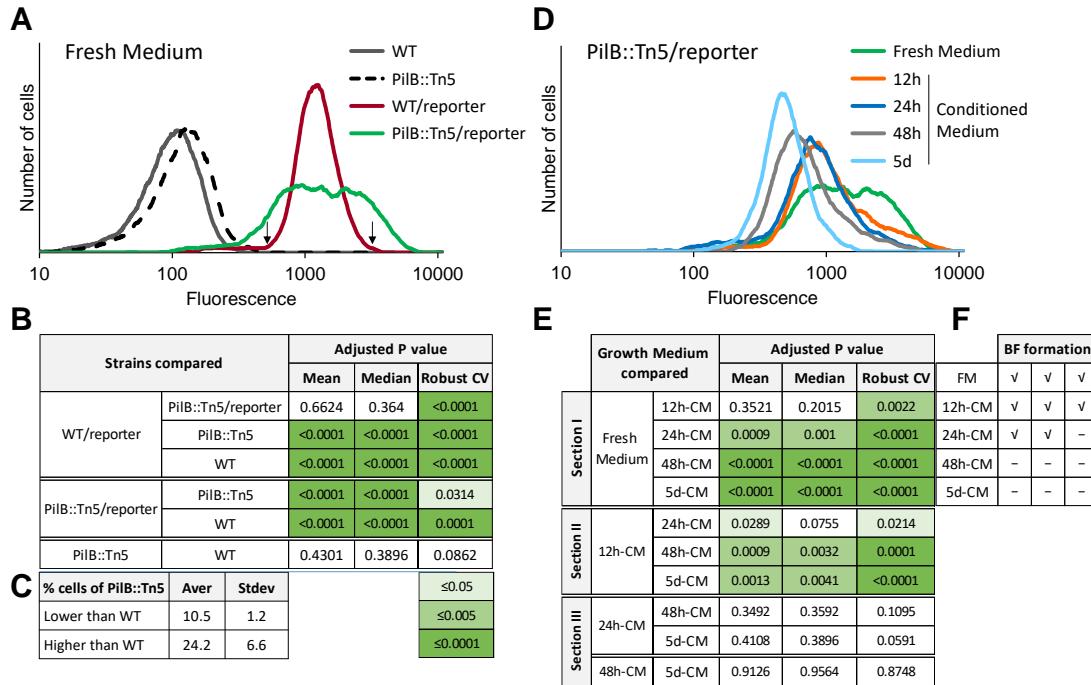
138 as fixed effects and biological replicates as random effect, (using *lmerTest* package
139 [34]), and the ANOVA was performed on the resulting models. Post hoc pairwise
140 comparisons were performed by testing linear contrasts (using *emmeans* R package
141 [35]), and FDR correction was applied to control for multiple testing. Normality of
142 residuals homogeneity of variances assumptions were checked graphically.

143 **Dot-blot analysis:** Cell extracts from 6 days old cultures were prepared as described
144 previously [25] and 2.3 μ l from diluted extracts were spotted onto TransBlot Turbo
145 nitrocellulose membrane (Bio-Rad) and air dried for 5 min. All following procedures
146 were performed at room temperature: Blocking was done for 1 h in 0.1% bovine serum
147 albumin in TBST (20 mM Tris-HCl (pH 8.0) and 0.05% Tween20). Incubation with anti-
148 FLAG (ab1162, Abcam; 1:2000 diluted in blocking solution) was performed for 1h
149 following three washes in TBST for 5 min each. Incubation with secondary antibodies
150 (goat anti rabbit IgG, 170-6515, Bio-Rad; 1:5000 diluted in blocking solution) was done
151 for 1h following washes as above with extension of last wash to 15 min and signal
152 detection using SuperSignal West Pico kit (Thermo Scientific, 34080).

153 **Fluorescence microscopy:** Cultures were initiated and grown as described for
154 biofilm quantification. Cultures (30 ml) were centrifuged (5 min, 6000 g, room temp)
155 and resuspended in 1 ml phosphate-buffered saline (PBS). In case of biofilm-forming
156 strains, the planktonic cells were removed with a pipette and the biofilmed cells were
157 gently resuspended using 1 ml PBS. The concentrated cultures were precipitated by
158 centrifugation in Eppendorf tubes as above, resuspended in 1 ml PBS and
159 formaldehyde, from 16% stock solution prepared as described in Cold Spring Harbor
160 Protocols (<http://cshprotocols.cshlp.org/content/2010/1/pdb.rec12102.full>), was added
161 to a final concentration of 2%. Cells were incubated in the dark (30 min at room
162 temperature in a tube rotator followed by 30 min incubation on ice agitation), washed
163 once in PBS, resuspended in 1 ml PBS and the mixture was equally divided into two
164 Eppendorf tubes. These tubes were centrifuged - cells for imaging without
165 permeabilization were resuspended in 1 ml PBS and saved in the dark at room
166 temperature. For imaging following permeabilization, cells were resuspended in 500
167 μ l 0.1% triton in PBS, incubated at room temperature in a tube-rotator for 15 min and
168 centrifuged. Cell pellet was resuspended with lysozyme solution (0.2 mg/ml dissolved
169 in 50 mM Tris-HCl, pH 7.5 and 10 mM EDTA) and incubated for 30 min at 37°C. Cells
170 were washed twice with 1 ml PBS. An aliquot of 200 μ l was treated with an equal

171 volume of freshly prepared blocking solution (5% BSA in PBS) in a tube-rotator for 1
172 h at room temperature. Cells were pelleted, resuspended in 100 μ l anti-FLAG antibody
173 (Abcam, 1:400 diluted with blocking solution), incubated for 40 min at room
174 temperature and then 40 min at 30°C. Cells were washed twice with 100-200 μ l PBS
175 buffer, resuspended in 20 μ l secondary antibody (Alexa Fluor® 488 Abcam) diluted
176 1:100 in blocking solution and incubated for 1h at 30°C. Pellet was washed once with
177 50 μ l PBS and resuspended in 20 μ l PBS. 3-5 μ l were spread on microscopy slides
178 prepared as follows. 10 μ l of L-polylysine (Sigma) diluted 1:10 was spread on a
179 microscope slide (approximately on a 1 cm x 1 cm region). Slides were air dried,
180 washed by dipping them twice in double distilled water and air dried. Cells were
181 layered on the coated area, air dried and slides were centrifuged in 50 ml falcon tubes
182 to attach cells to the polylysine layer (300g 10 min, room temperature). 3 μ l antifade
183 [36] was spotted and covered with a coverslip. Images were recruited using Leica SP8
184 confocal microscope (autofluorescence: excitation - 630 nm; emission - 641 to 657
185 nm and detection of Alexa Fluor® 488: excitation - 488 nm; emission - 495 to 515 nm).
186 **Amyloid analysis:** We employed the TANGO algorithm and the machine learning
187 programs APPNN and AmyloGram for in silico amyloid prediction over the mature
188 peptide sequence of EbfG1-4 [37-39]. The pipeline can be found at
189 <https://github.com/danielzmbp/amypred>. After max-min normalization of the scores
190 between 0 and 1, the cutoff for amyloid prediction was set at 0.5. For the annotation
191 of amyloidogenic hotspots, we employed software with a diverse predictive
192 background, including statistical sequence analysis (WALTZ), structural information
193 analysis (ArchCandy and Pasta 2.0), machine-learning-based (APPNN and PATH),
194 and metamyl, a consensus predictor [39-44]. We predicted the cross-beta three-
195 dimensional structure from the amyloid peptide domains using Cordax and visualized
196 it using ChimeraX [45, 46].

197 We used the Curli-Dependent Amyloid Generator (C-DAG) system to study amyloid
198 formation *in vivo* [47, 48]. This system uses the built-in curli processing system from
199 *Escherichia coli* to express recombinant proteins in order to test for their amyloid
200 aggregation. Positive and negative controls for amyloid formation employed, the
201 *Saccharomyces cerevisiae* prion Sup35 with aggregating domain (Sup35[NM]) and
202 without (Sup35[M]), were encoded by pVS72 and pVS105 plasmids, respectively.
203 EbfG proteins equipped with a CsgA secretion signal in place of the native secretion


204 signal and fused to a 6x Histidine tag at the C-terminus were separately cloned in
205 pExport plasmids and expressed in the *E. coli* strain VS45 (Table S1). For colony color
206 phenotype analysis in inducing Congo Red plates (LB agar, 100 mg/l carbenicillin, 25
207 mg/l chloramphenicol, 0.2% w/v L-arabinose, 1mM IPTG and 10mg/l Congo Red),
208 colonies were grown for four days at 22°C in the dark.

209 In order to perform transmission electron microscopy (TEM) on the samples, we
210 deposited cells from the inducing Congo Red plates grown for four days on copper
211 mesh grids. After drying, we incubated with anti-Histidine primary antibody for 1 h
212 (mouse, Sigma Aldrich) followed by incubation with secondary anti-mouse IgG
213 conjugated to 6 nm gold beads for 1 h (goat, dianova) for the immunostained samples.
214 All samples were negatively stained for 30 seconds in aqueous uranyl acetate, before
215 visualization in a JSM 1400 plus transmission electron microscope (JEOL).

216 **Results**

217 ***ebfG*-operon expression in individual cells**

218 Previous quantitative RT-PCR analyses indicated that the *ebfG*-operon is highly
219 transcribed in PilB::Tn5 compared to WT [26]. These data reflect the averaged
220 transcription level, thus, to gain insight into variation within the population, here we
221 employ a reporter construct to follow expression of this operon in individual cells. To
222 this end, a DNA fragment bearing the putative *ebfG*-operon promoter along with the 5'
223 untranslated region was attached to a yellow fluorescence protein (*yfp*) gene, yielding
224 the construct P-*ebfG*::YFP (Table S1). This fusion product was inserted in a neutral
225 site 1 [49] in WT and PilB::Tn5 cells yielding WT/reporter and PilB::Tn5/reporter
226 strains, respectively, which were analysed by flow cytometry (Fig. 2A&D).

227

228 **Figure 2: Analysis of expression of the *ebfG*-operon by flow cytometry using reporter**

229 strains.

230 **A and B.** Number of cells as a function of fluorescence in cultures grown in fresh medium

231 (FM) for 6 days (**A**). Strains analyzed: WT, PilB::Tn5 and their cognate reporter strains that

232 bear a fusion of the regulatory region of the *ebfG*-operon with a yellow fluorescence protein

233 (YFP). Arrows indicate fluorescence cutoff for calculating mutant cells with lower or higher

234 expression of *ebfG*-operon compared to WT and summary of statistical analyses of reporter

235 expression in FM (**B**). **C.** Fraction of PilB::Tn5/reporter cells with lower or higher expression of

236 *ebfG*-operon compared to WT/reporter. Shown are averages and standard deviations from

237 three independent experiments. **D and E.** Number of cells as a function of fluorescence (**D**)

238 and summary of statistical analyses (**E**) of reporter expression in PilB::Tn5/reporter cells grown

239 in FM and conditioned medium (CM). **B and E** show adjusted p-values of the mean, median

240 and robust coefficient variation (rCV) from three independent experiments. **F.** Biofilm (BF)

241 formation by PilB::Tn5/reporter cells grown in FM or CM harvested at different time points of

242 WT culture.

243 Mean and median values of YFP fluorescence level is different between reporter

244 strains and strains lacking the reporter construct, whereas these parameters are

245 similar in WT/reporter and PilB::Tn5/reporter strains grown in fresh medium (Fig. 2B).

246 In contrast, data dispersion is larger in PilB::Tn5/reporter compared to WT/reporter

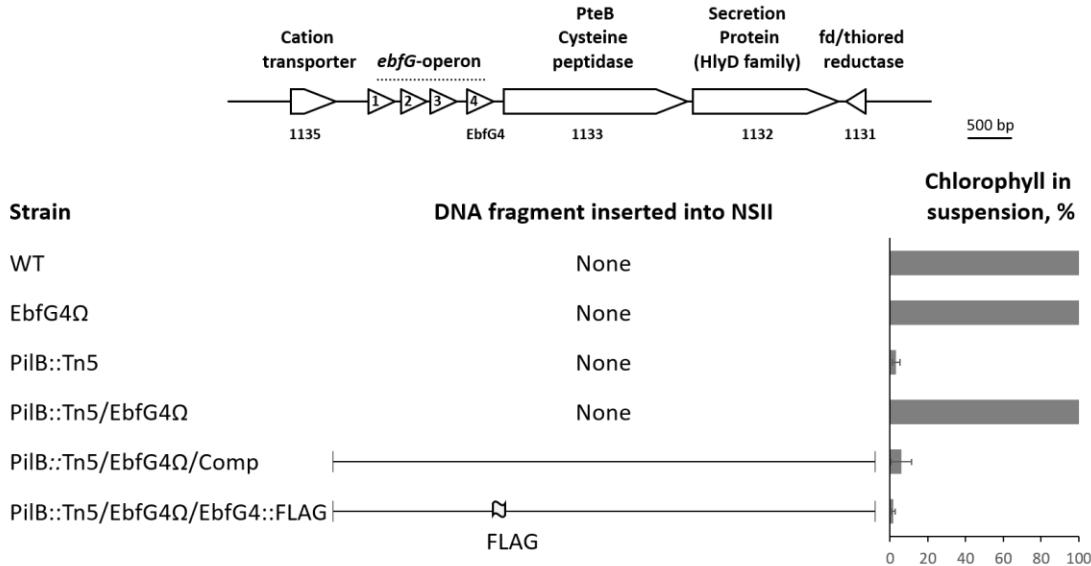
247 (Fig. 2A), a feature that is manifested in the significantly different robust coefficient

248 variation (rCV, Fig. 2B). Moreover, data analysis revealed that on average, ~10% of

249 PilB::Tn5/reporter cells are characterized by lower - and ~24% by higher - expression

250 of the *ebfG*-operon (Fig. 2C). This observation suggests cell specialization in *S.*

251 *elongatus* biofilm development.

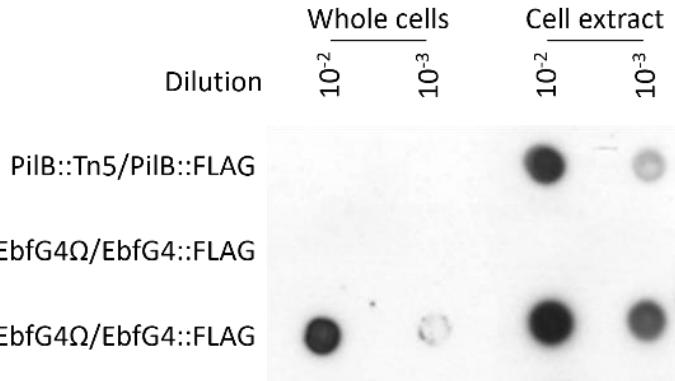

252 Our previous studies demonstrated higher transcription of the *ebfG*-operon in
253 PilB::Tn5 compared to WT when strains are cultured in fresh medium. Inoculation,
254 however, of the mutant into conditioned medium (CM) from WT culture, strongly
255 suppresses transcription [23, 26]. These data suggest involvement of intercellular
256 communication in *S. elongatus* biofilm development possibly via a density dependent
257 mechanism. To monitor the presence of the biofilm inhibitor along culture growth, CM
258 was harvested from WT cultures grown for 12h, 24h, 48h and 5 days (Fig. S1) and the
259 impact on YFP expression by PilB::Tn5/reporter was assessed. Note, conditioned
260 media were supplemented with nutrients to negate possible nutrient limitation.
261 Individual flow cytometry experiments demonstrated a decrease in fluorescence
262 intensity with CM age (e.g. Fig. 2D) in accordance with accumulation of the biofilm
263 inhibitor during culture growth. Statistical analysis of three independent experiments
264 indicated significant difference between rCV of cells grown in fresh medium and those
265 grown in CM harvested at 12 h following culture initiation (12h-CM; Fig. 2E see section
266 I of table). Additionally, mean, median and rCV were significantly different between
267 cells grown in fresh medium and those inoculated into CM harvested at 24h, 48h and
268 5 days (24h-CM, 48h-CM and 5d-CM; Fig. 2E, section I of table). Moreover, mean and
269 rCV were significantly different between cells exposed to 12h-CM and those inoculated
270 into either 24h-CM, 48h-CM or 5d-CM (Fig. 2E, section II of table). Comparisons of
271 the impact of CM from older cultures (Fig. 2E, section III; 24h-CM vs. 48h-CM and 5d-
272 CM and 48h-CM vs. 5d-CM) did not reveal significant changes. Because individual
273 experiments demonstrate accumulation of biofilm inhibitor in CM with growth time (e.g.
274 Fig. 2D), we propose that the inhibitor is accumulated with culture age, which
275 corresponds with culture density. Lack of significance, however, between data
276 summarizing three biological repeats at 24h or longer culture growth, indicates
277 variable kinetics of inhibitor accumulation in independent experiments.
278 Interestingly, 12h-CM had a significant impact on fluorescence rCV (Fig. 2E) and
279 apparently, less cells expressed the *ebfG*-operon at high levels compared with fresh
280 medium (Fig. 2D). Yet, biofilm development by these cultures (Fig. 2F) suggests that
281 the small fraction of *ebfG*-operon highly expressing cells is sufficient to drive biofilm
282 formation. 24h-CM significantly affected the mean, median and rCV compared with
283 fresh medium (Fig. 2E, section I), however, in two of the three biological repeats
284 biofilms were formed (Fig. 2F), in agreement with suggested variability in kinetics of
285 accumulation of the biofilm inhibitor between individual experiments. 48h-CM and 5d-

286 CM consistently inhibited biofilm formation in accordance with substantial repression
287 of *ebfG*-operon expression under these conditions (Fig. 2E section I and 2F).
288 Together, data indicate presence of the inhibitor at early culture stages upon initiation
289 of the logarithmic growth (Fig. S1 and Fig. 2D and E), and suggest further
290 accumulation with time and culture density.

291

292 ***Localization of EbfG4***

293 EbfG proteins do not share primary sequence similarity or domains with proteins of
294 known function. To get insight into the role of these proteins in biofilm development,
295 we selected EbfG4 for further characterization. This particular EbfG protein was
296 chosen because a mutational approach impairing the secretion motif of either one of
297 the EbfG proteins revealed that the mutation in EbfG4 had the most prominent impact
298 on biofilm development compared with EbfG1-3 [26]. To follow EbfG4 localization in
299 biofilm-forming and planktonic strains we introduced a FLAG-epitope tagged EbfG4
300 (EbfG4::FLAG) to the double mutant having inactivations in both *pilB* and
301 Synpcc7942_1134 (PilB::Tn5/EbfG4Ω). The double mutant grows planktonically –
302 similarly to WT, 100% of the chlorophyll is in planktonic cells as assessed by
303 measurement of the relative amount of chlorophyll in suspension of total chlorophyll in
304 the culture (Fig. 3). Insertion of a DNA fragment bearing either the native *ebfG*-operon
305 or one encoding EbfG4::FLAG into the double mutant (PilB::Tn5/EbfG4Ω/Comp and
306 PilB::Tn5/EbfG4Ω/EbfG4::FLAG, respectively), restored biofilm development; similarly
307 to PilB::Tn5, less than 5% of the chlorophyll is in suspended cells (Fig. 3). This analysis
308 validated functionality of the tagged EbfG4.

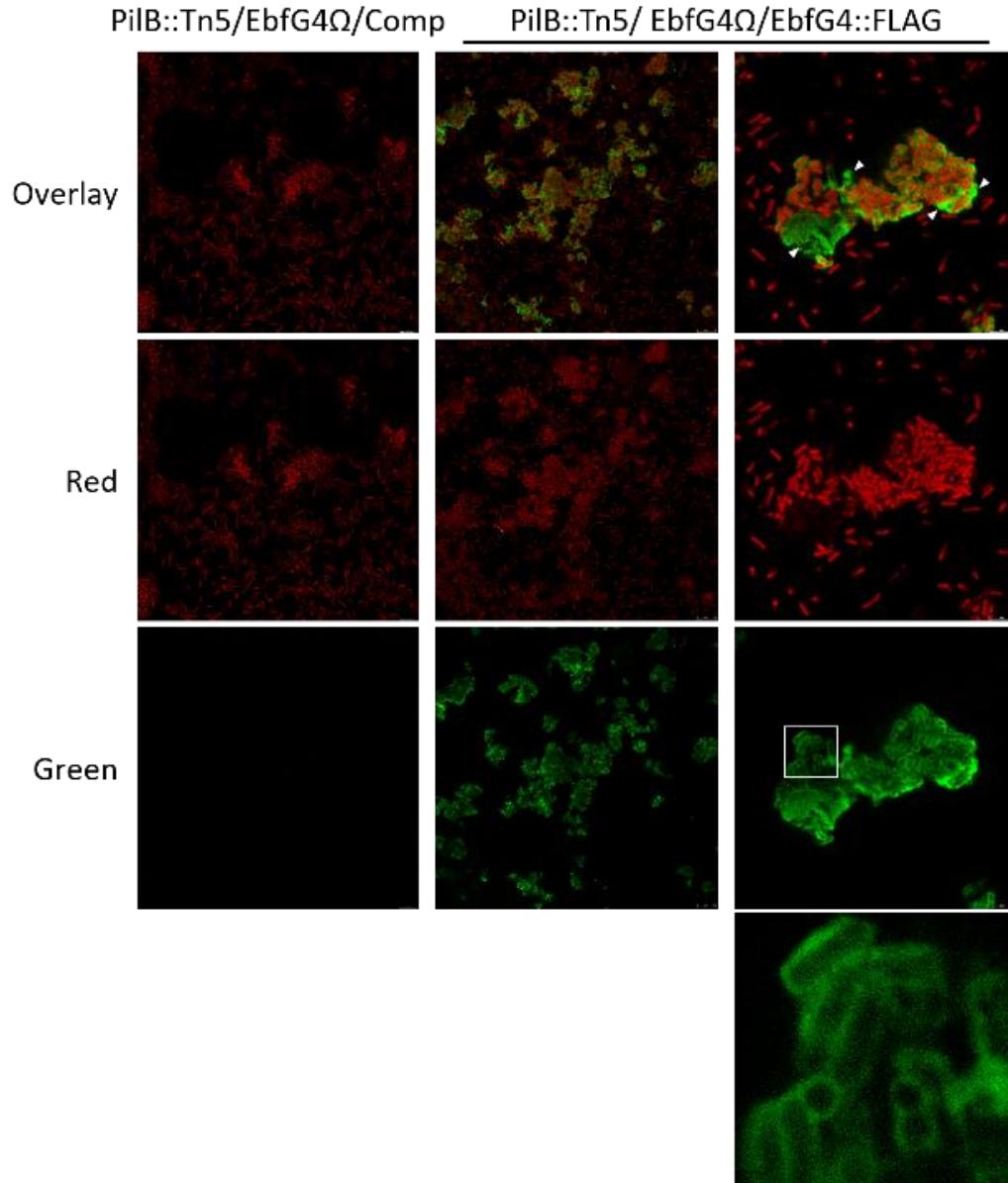


309

310 **Figure 3: FLAG-tagged EbfG4 is functional in biofilm development.**

311 Genomic region of the *ebfG*-operon. Bar graph presents percentage of total chlorophyll in the
312 suspended cells (average of three independent biological repeats \pm standard deviation).
313 Strains analyzed include: WT, a strain in which *ebfG4* was insertionally inactivated (EbfG4Ω),
314 PilB::Tn5, the double mutant PilB::Tn5/EbfG4Ω, double mutants complemented with the
315 indicated fragments encoding native or FLAG-tagged EbfG4 (PilB::Tn5/EbfG4Ω/Comp and
316 PilB::Tn5/EbfG4Ω/EbfG4::FLAG, respectively).

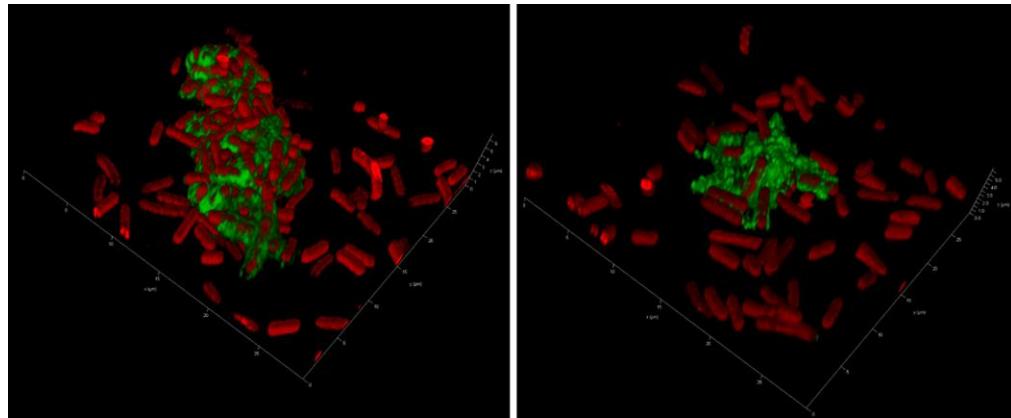
317 A first indication that EbfG4 is localized to the cell surface was obtained by dot-blot
318 analysis. Whole cells and cell extracts were spotted onto a nitrocellulose-membrane
319 and probed with anti-FLAG antibodies (Fig. 4). This analysis suggested association of
320 EbfG4 with the cell surface, as revealed by the signal obtained from whole cells (Fig.
321 4, PilB::Tn5/EbfG4Ω/EbfG4::FLAG). In contrast, the ATPase of T4P complex known
322 to be localized cytoplasmically, was not detected in whole cells but only in cell extracts
323 (Fig. 4, PilB::Tn5/PilB::FLAG), thus confirming availability of internal epitopes for
324 detection only in cell extracts. EbfG4 was not detected in whole cells or in cell extracts
325 of the planktonic strain EbfG4Ω/EbfG4::FLAG (Fig. 4), thus, EbfG4 is neither secreted
326 nor accumulated internally when the biofilm suppression mechanism is active.



327

328 **Figure 4: Dot-blot analysis using anti-FLAG antibodies.**

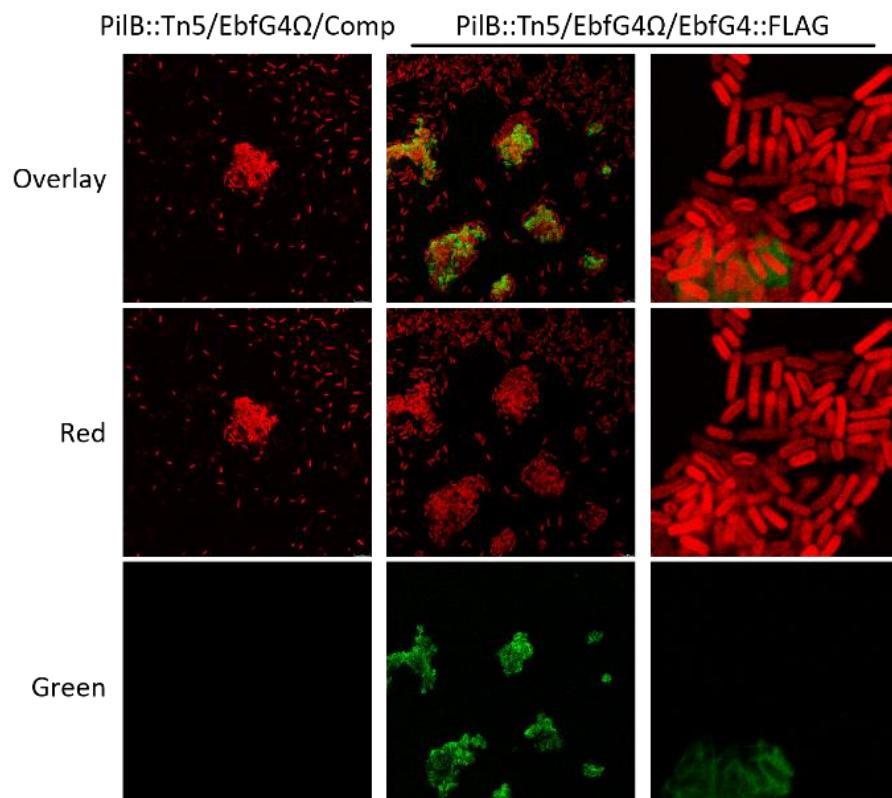
329 Whole cells and cell extracts of the following strains were analyzed: pilB-inactivated strain
330 complemented with FLAG-tagged PilB (PilB::Tn5/PilB::FLAG), ebfG4-inactivated strain
331 complemented with FLAG-tagged EbfG4 (EbfG4Ω/EbfG4::FLAG) and the latter strain that
332 also harbors pilB inactivation (PilB::Tn5/EbfG4Ω/EbfG4::FLAG). Strains PilB::Tn5/PilB::FLAG
333 and EbfG4Ω/EbfG4::FLAG are planktonic and PilB::Tn5/EbfG4Ω/EbfG4::FLAG forms biofilm.


344 To follow up on the observation suggesting cell surface association of EbfG4 (Fig. 4),
345 we examined by immunocytochemistry non-permeabilized cells that were subjected
346 to anti-FLAG antibodies, thus allowing detection of only extracellular EbfG4. Green
347 signal representing EbfG4 was detected only in strain PilB::Tn5/EbfG4Ω/EbfG4::FLAG
348 but was absent from the cognate control strain PilB::Tn5/EbfG4Ω/Comp confirming
349 specific detection of the FLAG epitope (Fig. 5). Moreover, the green signal is
350 associated with clustered cells (Fig. 5, middle and right columns), while unclustered
351 cells lack green signal and are visualized only by autofluorescence (Fig. 5).

342
343 **Figure 5: Visualization of EbfG4::FLAG in non-permeabilized cells by**
344 **immunocytochemistry of confocal fluorescence microscopy.**

345 Strains analyzed: PilB::Tn5/EbfG4Ω/Comp and PilB::Tn5/EbfG4Ω/EbfG4::FLAG. Red
346 (excitation 630nm; emission 636-695nm) represents autofluorescence whereas green
347 (excitation 490nm; emission: 497-539nm) indicates presence of EbfG4::FLAG. White square
348 indicates the enlarged area shown in the panel below. Arrowheads point at patches of green
349 fluorescence in areas void of cells.

350 Closer examination revealed green signal encasing many of the clustered cells
351 indicating EbfG4 localization throughout the cell surface (Fig. 5, right column).
352 Additionally, patches of green fluorescence are observed in areas void of cells (Fig. 5,
353 right column, arrowheads), and 3D-imaging clearly indicates the presence of EbfG4 in
354 between cells (Fig. 6) supporting its role as a matrix protein.



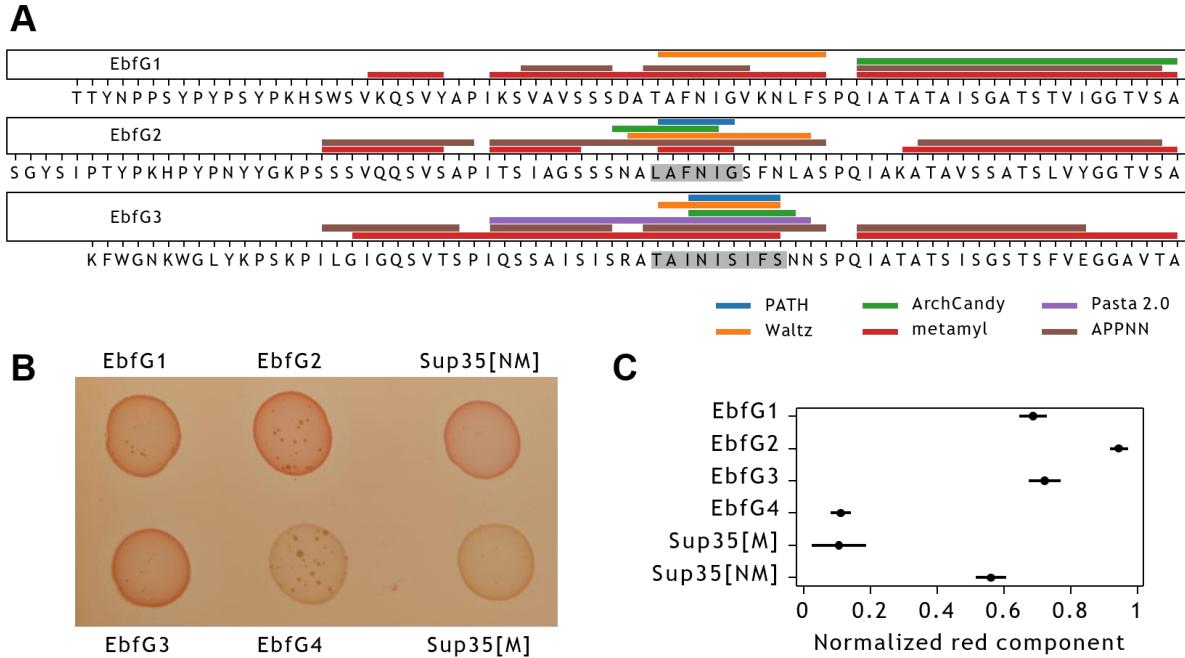
355

356 **Figure 6: 3D-imaging of strain PilB::Tn5/EbfG4Ω/EbfG4::FLAG.**

357 See details in legend to Fig. 5.

358 Next, we visualized permeabilized cells to test whether EbfG4 is also detected
359 intracellularly. Images similar to those observed without permeabilization emerged
360 from these analyses (Fig. 7). Close examination of an area mostly void of extracellular
361 green fluorescence did not reveal green signal within the cells (Fig. 7, right column).

362

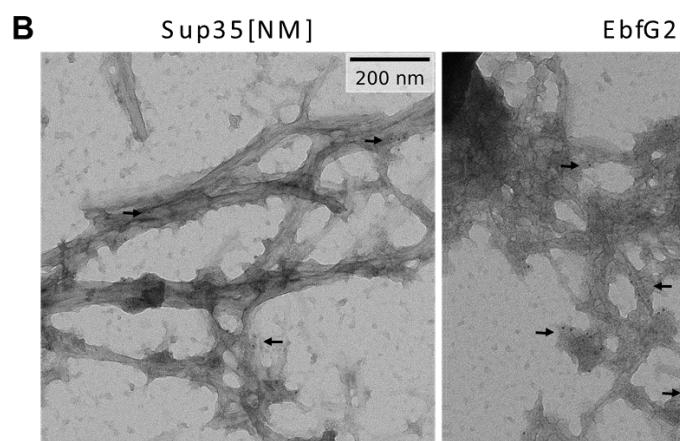
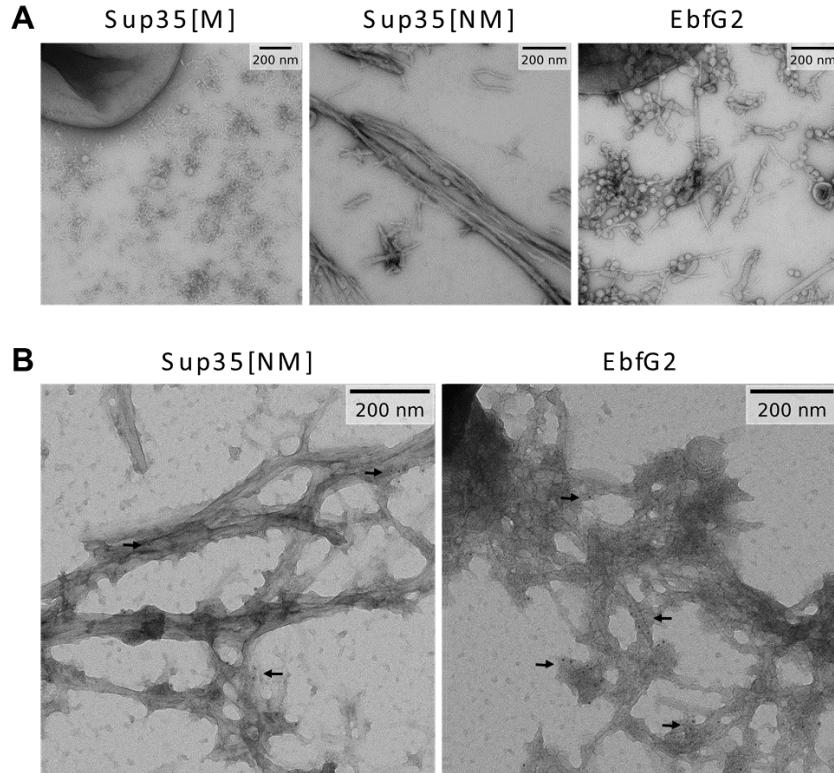

363 **Figure 7: Visualization of EbfG4::FLAG in permeabilized cells by**
364 **immunocytochemistry and confocal fluorescence microscopy.**

365 Strains analyzed: PilB::Tn5/EbfG4Ω/Comp and PilB::Tn5/EbfG4Ω/EbfG4::FLAG. Red
366 (excitation 630nm; emission 636-695nm) represents autofluorescence whereas green
367 (excitation 490nm; emission: 497-539nm) indicates presence of EbfG4::FLAG.

368 Successful visualization of internal PilB::FLAG, exclusively in permeabilized cells,
369 validate penetration of the antibodies used for detection (Fig. S2). Together, these
370 data indicate that EbfG4 does not accumulate intracellularly to detectable levels and
371 suggest efficient secretion of this protein.

372 ***Examination of amyloid formation by products of the ebfG-operon***

373 To test whether EbfG proteins might contribute to biofilm matrix formation through
374 insoluble aggregates, we initially performed an *in silico* characterization of their
375 tendency to fold as amyloids using a pipeline that consists of several prediction
376 software to build consensus models. We found that EbfG2 and 3 had the highest
377 prediction score, which was above the 0.5 cut-off for classification into amyloid-forming
378 proteins. Using separate tools with diverse prediction methods for the identification of
379 amyloid hotspots within the amino acid sequence, we found that the highly predicted
380 regions occurred at the same location in the alignment of EbfG2 and EbfG3. Despite
381 variations in the individual sequences, the core hotspot followed the motif Φ ΦΝΙΠ,
382 where Φ represents a hydrophobic residue, F or I, and Ι, a small side chain residue,
383 G or S (Fig. 8A). Such motif also occurs in EbfG1, however, in EbfG4 a polar
384 uncharged amino acid (glutamine) is present instead of a hydrophobic residue
385 (AQNIG). We modelled the amyloidogenic LAFNIG peptide from EbfG2 for its ability
386 to form cross-beta structures. We found that the hexapeptide arranged in a steric
387 zipper of antiparallel fashion (Figure S3), characteristic of amyloid proteins [50].



388 **Figure 8: Amyloid prediction and heterologous expression of EbfG1-4 proteins.**

389 **(A)** Prediction of amyloidogenic hotspots in the sequences of EbfG1-3 using six software
390 prediction tools. Shaded fragments correspond to consensus positive prediction in at least
391 four of the predictors. **(B)** Colony color phenotype of EbfG-expressing *Escherichia coli*
392 compared to negative (Sup35[M]) and positive (Sup35[NM]) controls for amyloid formation in
393 inducing plates. **(C)** Normalized red component of the brim of each colony as analyzed in
394 ImageJ, based on five biological replicates and displayed as the mean and 95% confidence
395 interval (t distribution).

397 To support these predictions, we heterologously expressed the EbfG proteins to test
398 for the formation of amyloids *in vivo*. To this end, we cloned the mature proteins
399 upstream of the GG motif in the Curli-Dependent Amyloid Generator (C-DAG) system
400 fused to a 6x Histidine Tag at the C-terminus (Table S1). After induction with
401 arabinose, we found a phenotype for amyloid formation in EbfG1, 2 and 3, evident by
402 the colour shift of the colonies due to the binding of Congo Red, similarly to the positive
403 control (Fig. 8B). Consistent with the *in silico* predictions, EbfG2 showed the strongest
404 phenotype while EbfG4 showed no sign of amyloid formation, comparable to the
405 negative control staining (Fig. 8C).

406 When looking at the induced EbfG2-producing C-DAG cells under the transmission
407 electron microscope, we detected fibril-like structures in the extracellular space. The
408 fibrils resemble those produced by the positive control, however shorter in length and
409 associated with vesicle-like structures (Fig. 9A). Using immunostaining methods, we
410 corroborated the identity of the fibrils as containing EbfG2 protein, based on the

411 colocalization of gold nano-beads directed to the 6x Histidine tag from the protein. We
412 observed unevenness in the distribution of the labelling which could be due to variable
413 antibody accessibility of the tag, both for the positive control and EbfG2 (Fig. 9B).

Figure 9: Transmission electron microscopy images of EbfG2 expressed in the C-DAG system.

417 **(A)** Fibril-like structures are found in the extracellular space for the positive control
418 (Sup35[NM]) and EbfG2 but not for the negative control (Sup35[M]) when expressed in the C-
419 DAG system. **(B)** Immunostained samples where 6 nm gold particles localize to the fibril-like
420 structures of the positive control and EbfG2.

421 Discussion

422 **Cell specialization and density-dependent regulation of public goods**
423 **production in *S. elongatus* biofilm development.** Previous genetic and point
424 mutation analyses demonstrated the requirement of the EbfG proteins for biofilm
425 formation [23, 26]. As manifested by analysis in individual cells, expression of the
426 operon encoding these genes varied substantially more in the biofilm-forming mutant
427 PilB::Tn5 than among WT cells (Fig. 2A-D). Although ~75% of the mutant cells express
428 the *ebfG*-operon at similar or lower level compared to WT (Fig. 2C), ~90% of the
429 mutant cells are found in the biofilm (Fig. 3, [23, 26, 28]). These findings are consistent
430 with cell specialization during *S. elongatus* biofilm development. Given that EbfG1-3

431 are prone to form amyloids (Fig. 8) and TEM analysis revealed that EbfG2 forms
432 fibrillar structures similar to amyloids, we propose that a relatively small subpopulation
433 of the mutant culture produces matrix components that support robust biofilm
434 development by the majority of the cells. Taken together, we propose cell
435 specialization in production of so-called public goods. Such a phenomenon may confer
436 selective advantage because only a minority of the cells invest resources for the
437 benefit of the population, which gains protection within the biofilm [51]. Cell
438 specialization in microbes have been documented in heterotrophic bacteria, for
439 example, during matrix formation in *Bacillus subtilis* [52]. Such differentiation,
440 however, was not previously reported for cyanobacterial biofilm development, thus,
441 this study, which uncovers cell differentiation suggests division of labor in communities
442 of these ecologically important photosynthetic prokaryotes.

443 Comparisons of expression of the *ebfG*-operon in fresh medium and under CM
444 harvested at different time points along growth of WT culture indicate production and
445 secretion of the inhibitor at early culture stages and suggest further accumulation with
446 time and cell density. The amount of biofilm inhibitor present following 12h growth is
447 sufficient to affect reporter expression (Fig. 2D and E), yet is insufficient for biofilm
448 inhibition (Fig. 2F). Up to 24h the inhibitor gradually accumulates (Fig. 2E) and at 48h
449 the inhibitor reaches levels that consistently inhibit biofilm development (Fig. 2F).
450 Together, data imply a density-dependent mechanism, however, a gradual impact of
451 the inhibitor is observed rather than a “threshold-like” effect typical of quorum-sensing
452 mechanisms known in heterotrophic bacteria, e.g. induction of the lux-operon [53-56].
453 Cyanobacterial quorum-sensing is largely unknown, although N-octanoyl homoserine
454 lactone was suggested to be involved in quorum-sensing in *Gloeothece* PCC6909
455 [57]. Biosynthetic LuxI-like proteins, which are responsible for production of acylated
456 homoserine lactones in numerous heterotrophs, however, are not encoded in the
457 majority of cyanobacterial genomes [58], therefore, such molecules are not likely to
458 represent a general mechanism for cyanobacterial intercellular communication. An
459 additional study demonstrated a governing role of extracellular signals produced at
460 high density on transcription of particular genes in low-density cultures of *N.*
461 *punctiforme* PCC 73102. These data support the existence of a quorum-sensing-like
462 mechanism(s), however, the nature of the signal(s) and the regulatory network have
463 yet to be identified [58].

464 **Dual function of EbfG4 – cell surface and matrix protein:** Microscopic analysis
465 revealed that some of the cells of PilB::Tn5/EbfG4Ω/EbfG4::FLAG present the EbfG4
466 protein on their cell surface (Figs. 5&7). Interestingly, EbfG4 is only observed on the
467 surface of clustered cells and cells that lack EbfG4 labelling are dissociated from the
468 clusters (Figs. 5&7). Together, these observations are in accordance with an adhesin
469 function of EbfG4. Additionally, EbfG4 was observed in the intercellular space (Figs.
470 5-7), consistent with the hypothesis that it serves as a matrix component. It is possible
471 that similarly to the adhesin SasG of *Staphylococcus aureus* [59], EbfG4 is initially
472 deposited to the cell surface and later is shed to the extracellular matrix. The role of
473 EbfG4 in the matrix is unknown, however, although it does not form amyloids by itself
474 (Fig. 8) it may be associated with amyloid structures formed by EbfG1-3.

475 **Amyloids as part of *S. elongatus* biofilm matrix:** When establishing biofilms,
476 microbes require a resilient scaffold on which the cells can settle. Bacteria from diverse
477 ecosystems have solved this problem by producing and releasing functional amyloids
478 into their environment [60, 61]. Amyloid proteins are able to assemble into long and
479 strong fibrils, which can withstand chemical and physical stresses [62]. However, the
480 production of amyloids is a process that can easily get out of control, therefore, it
481 requires a complex and dedicated machinery for appropriate manufacturing. Here, we
482 have investigated the amyloid forming capabilities of the *ebfG*-operon proteins and
483 found strong evidence supporting amyloid formation in EbfG1-3, and most manifestly
484 in EbfG2. EbfG4, which has a prominent role in biofilm formation, however, did not
485 spontaneously form amyloid fibrils. Consistent with homology in the amyloid hotspots,
486 we hypothesize this could be related to a mechanism intended to control aggregation.
487 By separating the amyloid nucleators, in this case EbfG1-3, from other components of
488 the fibril, e.g. EbfG4, better control over the synthesis of amyloids could be achieved.
489 This would be analogous to, for example, the functioning of CsgB and CsgA in the
490 production of curli, the biofilm backbone in *E. coli* [63]. As observed in the TEM
491 pictures, the EbfG2 fibrils were much shorter than the positive control and did not
492 bundle together. Heterogeneous fibrils formed of several EbfG proteins could result in
493 more stable fibrils, as seeding of amyloids composed of perfect repeats has been
494 shown to cause fragmentation [64].

495 Given the amyloid nature of EbfG1-3 proteins one may speculate that these matrix
496 components of *S. elongatus* biofilms assist in recruitment of other microbes for
497 establishment of multispecies biofilms. Additionally, our findings pave the way for
498 controlling formation of unwanted biomats, by using amyloid disrupting compounds,
499 as already shown for other bacteria [65, 66]. On the other hand, intentional use of
500 protein seeds could facilitate stronger amyloids and hence elicit formation of beneficial
501 biofilms.

502

503 **Acknowledgments**

504 We thank Ryan Simkovsky for providing the vector for EbfG4-tagging. Studies in the
505 laboratories of Rakefet Schwarz and Susan Golden were supported by the program
506 of the National Science Foundation and the US-Israel Binational Science Foundation
507 (NSF-BSF 2012823). This study was also supported by grants from the Israel Science
508 Foundation (ISF 1406/14 and 2494/19) to Rakefet Schwarz. Studies in the laboratory
509 of Eric Kemen were supported by the graduate school GRK 1708 “Molecular principles
510 of bacterial survival strategies” and the European Research Council (ERC) under the
511 DeCoCt research program (grant agreement: ERC-2018-COG 820124).

512

513 **References**

- 514 1. Falkowski, P.G., *The role of phytoplankton photosynthesis in global biogeochemical*
515 *cycles.* Photosynth. Res., 1994. **39**(3): p. 235-258.
- 516 2. Flombaum, P., et al., *Present and future global distributions of the marine*
517 *Cyanobacteria Prochlorococcus and Synechococcus.* Proc Natl Acad Sci U S A, 2013.
518 **110**(24): p. 9824-9.
- 519 3. Bolhuis, H., M.S. Cretoiu, and L.J. Stal, *Molecular ecology of microbial mats.* FEMS
520 *Microbiol Ecol, 2014. 90*(2): p. 335-50.
- 521 4. Rossi, F. and R. De Philippis, *Role of cyanobacterial exopolysaccharides in*
522 *phototrophic biofilms and in complex microbial mats.* Life (Basel), 2015. **5**(2): p. 1218-
523 38.
- 524 5. Veach, A.M. and N.A. Griffiths, *Testing the light:nutrient hypothesis: Insights into*
525 *biofilm structure and function using metatranscriptomics.* Molecular Ecology, 2018.
526 **27**(14): p. 2909-2912.
- 527 6. Wagner, M. and A. Loy, *Bacterial community composition and function in sewage*
528 *treatment systems.* Curr. Opin. Biotechnol., 2002. **13**(3): p. 218-27.
- 529 7. Ivnitsky, H., et al., *Bacterial community composition and structure of biofilms*
530 *developing on nanofiltration membranes applied to wastewater treatment.* Water Res.,
531 2007. **41**(17): p. 3924-3935.

532 8. Belila, A., et al., *Bacterial community structure and variation in a full-scale seawater*
533 *desalination plant for drinking water production*. Water Res, 2016. **94**: p. 62-72.

534 9. Heimann, K., *Novel approaches to microalgal and cyanobacterial cultivation for*
535 *bioenergy and biofuel production*. Curr Opin Biotechnol, 2016. **38**: p. 183-189.

536 10. Strieth, D., R. Ulber, and K. Muffler, *Application of phototrophic biofilms: from*
537 *fundamentals to processes*. Bioprocess Biosyst Eng, 2018. **41**(3): p. 295-312.

538 11. Bruno, L., et al., *Characterization of biofilm-forming cyanobacteria for biomass and*
539 *lipid production*. J Appl Microbiol, 2012. **113**(5): p. 1052-64.

540 12. Egan, S., T. Thomas, and S. Kjelleberg, *Unlocking the diversity and biotechnological*
541 *potential of marine surface associated microbial communities*. Curr. Opin. Microbiol.,
542 2008. **11**(3): p. 219-25.

543 13. Agostoni, M., C.M. Waters, and B.L. Montgomery, *Regulation of biofilm formation and*
544 *cellular buoyancy through modulating intracellular cyclic di-GMP levels in engineered*
545 *cyanobacteria*. Biotechnol Bioeng, 2016. **113**(2): p. 311-319.

546 14. Enomoto, G., et al., *Cyanobacteriochrome SesA Is a Diguanylate Cyclase That*
547 *Induces Cell Aggregation in Thermosynechococcus*. Journal of Biological Chemistry,
548 2014. **289**(36): p. 24801-24809.

549 15. Enomoto, G., et al., *Three cyanobacteriochromes work together to form a light color-*
550 *sensitive input system for c-di-GMP signaling of cell aggregation*. Proceedings of the
551 National Academy of Sciences of the United States of America, 2015. **112**(26): p.
552 8082-8087.

553 16. Enomoto, G., Y. Okuda, and M. Ikeuchi, *Tlr1612 is the major repressor of cell*
554 *aggregation in the light-color-dependent c-di-GMP signaling network of*
555 *Thermosynechococcus vulcanus*. Sci Rep, 2018. **8**(1): p. 5338.

556 17. Branda, S.S., et al., *Biofilms: the matrix revisited*. Trends Microbiol., 2005. **13**(1): p.
557 20-6.

558 18. Flemming, H.C. and J. Wingender, *The biofilm matrix*. Nature Reviews Microbiology,
559 2010. **8**(9): p. 623-633.

560 19. Fisher, M.L., et al., *Export of extracellular polysaccharides modulates adherence of*
561 *the Cyanobacterium Synechocystis*. PLoS One, 2013. **8**(9): p. e74514.

562 20. Jittawuttipoka, T., et al., *Multidisciplinary evidences that Synechocystis PCC6803*
563 *exopolysaccharides operate in cell sedimentation and protection against salt and metal*
564 *stresses*. PLoS One, 2013. **8**(2): p. e55564.

565 21. Kawano, Y., et al., *Cellulose accumulation and a cellulose synthase gene are*
566 *responsible for cell aggregation in the cyanobacterium Thermosynechococcus*
567 *vulcanus RKN*. Plant Cell Physiol, 2011. **52**(6): p. 957-66.

568 22. Oliveira, P., et al., *HesF, an exoprotein required for filament adhesion and aggregation*
569 *in Anabaena sp PCC 7120*. Environmental Microbiology, 2015. **17**(5): p. 1631-1648.

570 23. Schatz, D., et al., *Self-suppression of biofilm formation in the cyanobacterium*
571 *Synechococcus elongatus*. Environ Microbiol, 2013. **15**(6): p. 1786-94.

572 24. Nagar, E. and R. Schwarz, *To be or not to be planktonic? Self-inhibition of biofilm*
573 *development*. Environmental Microbiology, 2015. **17**(5): p. 1477-1486.

574 25. Yegorov, Y., et al., *A Cyanobacterial Component Required for Pilus Biogenesis Affects*
575 *the Exoproteome*. mBio, 2021. **12**(2).

576 26. Parnasa, R., et al., *Small secreted proteins enable biofilm development in the*
577 *cyanobacterium Synechococcus elongatus*. Sci Rep, 2016. **6**: p. 32209.

578 27. Nagar, E., et al., *Type 4 pili are dispensable for biofilm development in the*
579 *cyanobacterium *Synechococcus elongatus**. Environ Microbiol, 2017. **19**(7): p. 2862-
580 2872.

581 28. Parnasa, R., et al., *A microcin processing peptidase-like protein of the cyanobacterium*
582 *Synechococcus elongatus is essential for secretion of biofilm-promoting proteins*.
583 Environ Microbiol Rep, 2019. **11**(3): p. 456-463.

584 29. Sendersky, E., et al., *Quantification of Chlorophyll as a Proxy for Biofilm Formation in*
585 *the Cyanobacterium *Synechococcus elongatus**. Bio-protocol, 2017. **7**(14): p. www.bio-protocol.org/e2406 DOI:10.21769/BioProtoc.2406.

587 30. Suban, S., et al., *Impairment of a cyanobacterial glycosyltransferase that modifies a*
588 *pilin results in biofilm development*. Environ Microbiol Rep, 2022. **14**(2): p. 218-229.

589 31. Team, R.C. *R: A language and environment for statistical computing*. <https://www.R-project.org/> 2021.

590 32. Ellis B, H.P., Hahne F, Le Meur N, Gopalakrishnan N, Spidlen J, Jiang M, Finak G
591 *flowCore: Basic structures for flow cytometry data*. R package version 2.0.1. 2020.

592 33. [https://docs.flowjo.com/flowjo/workspaces-and-samples/ws-statistics/ws-
593 statdefinitions/](https://docs.flowjo.com/flowjo/workspaces-and-samples/ws-statistics/ws-statdefinitions/).

594 34. Kuznetsova, A., Per B. Brockhoff, and Rune HB Christensen, *lmerTest package: tests*
595 *in linear mixed effects models*. Journal of statistical software 2017. **82**(13): p. 1-26 R
596 package version 3.1-0.

597 35. Lenth, R.V. *emmeans: Estimated Marginal Means, aka Least-Squares Means*. . R
598 package version 1.6.2-1 2021.

599 36. Johnson, G.D. and G.M. Nogueira Araujo, *A simple method of reducing the fading of*
600 *immunofluorescence during microscopy*. J Immunol Methods, 1981. **43**(3): p. 349-50.

601 37. Fernandez-Escamilla, A.M., et al., *Prediction of sequence-dependent and mutational*
602 *effects on the aggregation of peptides and proteins*. Nat Biotechnol, 2004. **22**(10): p.
603 1302-6.

604 38. Burdakiewicz, M., et al., *Amyloidogenic motifs revealed by n-gram analysis*. Sci Rep,
605 2017. **7**(1): p. 12961.

606 39. Familia, C., et al., *Prediction of Peptide and Protein Propensity for Amyloid Formation*.
607 PLoS One, 2015. **10**(8): p. e0134679.

608 40. Oliveberg, M., *Waltz, an exciting new move in amyloid prediction*. Nat Methods, 2010.
609 **7**(3): p. 187-8.

610 41. Ahmed, A.B., et al., *A structure-based approach to predict predisposition to*
611 *amyloidosis*. Alzheimers Dement, 2015. **11**(6): p. 681-90.

612 42. Walsh, I., et al., *PASTA 2.0: an improved server for protein aggregation prediction*.
613 Nucleic Acids Res, 2014. **42**(Web Server issue): p. W301-7.

614 43. Wojciechowski, J.W. and M. Kotulska, *PATH - Prediction of Amyloidogenicity by*
615 *Threading and Machine Learning*. Sci Rep, 2020. **10**(1): p. 7721.

616 44. Emily, M., A. Talvas, and C. Delamarche, *MetAmyl: a METa-predictor for AMYloid*
617 *proteins*. PLoS One, 2013. **8**(11): p. e79722.

618 45. Louros, N., et al., *Structure-based machine-guided mapping of amyloid sequence*
619 *space reveals uncharted sequence clusters with higher solubilities*. Nat Commun,
620 2020. **11**(1): p. 3314.

621 46. Petersen, E.F., et al., *UCSF ChimeraX: Structure visualization for researchers,*
622 *educators, and developers*. Protein Sci, 2021. **30**(1): p. 70-82.

623 47. Sivanathan, V. and A. Hochschild, *A bacterial export system for generating*
624 *extracellular amyloid aggregates*. Nat Protoc, 2013. **8**(7): p. 1381-90.

626 48. Sivanathan, V. and A. Hochschild, *Generating extracellular amyloid aggregates using*
627 *E. coli cells*. *Genes & Development*, 2012. **26**(23): p. 2659-2667.

628 49. Taton, A., et al., *Broad-host-range vector system for synthetic biology and*
629 *biotechnology in cyanobacteria*. *Nucleic Acids Res*, 2014. **42**(17): p. e136.

630 50. Sawaya, M.R., et al., *Atomic structures of amyloid cross-beta spines reveal varied*
631 *steric zippers*. *Nature*, 2007. **447**(7143): p. 453-7.

632 51. Yin, W., et al., *Biofilms: The Microbial "Protective Clothing" in Extreme Environments*.
633 *International Journal of Molecular Sciences*, 2019. **20**(14).

634 52. Dragos, A., et al., *Division of Labor during Biofilm Matrix Production*. *Curr Biol*, 2018.
635 **28**(12): p. 1903-1913 e5.

636 53. Fuqua, C. and E.P. Greenberg, *Listening in on bacteria: acyl-homoserine lactone*
637 *signalling*. *Nat. Rev. Mol. Cell Biol.*, 2002. **3**(9): p. 685-695.

638 54. Parsek, M.R. and E. Greenberg, *Sociomicrobiology: the connections between quorum*
639 *sensing and biofilms*. *Trends Microbiol.*, 2005. **13**(1): p. 27-33.

640 55. Kolter, R. and E.P. Greenberg, *Microbial sciences - The superficial life of microbes*.
641 *Nature*, 2006. **441**(7091): p. 300-302.

642 56. Bassler, B.L., *Small talk. Cell-to-cell communication in bacteria*. *Cell*, 2002. **109**(4): p.
643 421-424.

644 57. Sharif, D.I., et al., *Quorum sensing in Cyanobacteria: N-octanoyl-homoserine lactone*
645 *release and response, by the epilithic colonial cyanobacterium Gloeothecce PCC6909*.
646 *ISME J*, 2008. **2**(12): p. 1171-82.

647 58. Guljamow, A., et al., *High-Density Cultivation of Terrestrial Nostoc Strains Leads to*
648 *Reprogramming of Secondary Metabolome*. *Appl Environ Microbiol*, 2017. **83**(23).

649 59. Geoghegan, J.A., et al., *Role of surface protein SasG in biofilm formation by*
650 *Staphylococcus aureus*. *J Bacteriol*, 2010. **192**(21): p. 5663-73.

651 60. Gomez-Perez, D., et al., *Amyloid Proteins in Plant-Associated Microbial Communities*.
652 *Microb Physiol*, 2021. **31**(2): p. 88-98.

653 61. Taglialegna, A., I. Lasa, and J. Valle, *Amyloid Structures as Biofilm Matrix Scaffolds*.
654 *Journal of Bacteriology*, 2016. **198**(19): p. 2579-2588.

655 62. Rambaran, R.N. and L.C. Serpell, *Amyloid fibrils: abnormal protein assembly*. *Prion*,
656 2008. **2**(3): p. 112-7.

657 63. Hammer, N.D., J.C. Schmidt, and M.R. Chapman, *The curli nucleator protein, CsgB,*
658 *contains an amyloidogenic domain that directs CsgA polymerization*. *Proceedings of*
659 *the National Academy of Sciences*, 2007. **104**(30): p. 12494-12499.

660 64. Rasmussen, C.B., et al., *Imperfect repeats in the functional amyloid protein FapC*
661 *reduce the tendency to fragment during fibrillation*. *Protein Sci*, 2019. **28**(3): p. 633-
662 642.

663 65. Romero, D., et al., *Biofilm Inhibitors that Target Amyloid Proteins*. *Chemistry & Biology*,
664 2013. **20**(1): p. 102-110.

665 66. Jain, N., et al., *Inhibition of curli assembly and Escherichia coli biofilm formation by the*
666 *human systemic amyloid precursor transthyretin*. *Proc Natl Acad Sci U S A*, 2017.
667 **114**(46): p. 12184-12189.

668