

1 **Genetic screens identified dual roles of MAST kinase and CREB within a single**
2 **thermosensory neuron in the regulation of *C. elegans* thermotaxis behavior**

3

4 Shunji Nakano^{1, 2*}, Airi Nakayama^{2†}, Hiroo Kuroyanagi^{2†}, Riku Yamashiro^{2†}, Yuki Tsukada^{1, 2}
5 and Ikue Mori^{1, 2*}

6

7 ¹ Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-
8 8602, Japan.

9 ² Department of Biological Science, Division of Natural Science, Graduate School of Science,
10 Nagoya University, Nagoya, Aichi 464-8602, Japan.

11

12 [†] These authors contributed equally to this work.

13

14 * Corresponding authors: z48329a@nucc.cc.nagoya-u.ac.jp (S.N.)
15 m46920a@nucc.cc.nagoya-u.ac.jp (I.M.).

16

17 Running head: Genetic screens for *C. elegans* thermotaxis behavior

18

19 Keywords: *C. elegans*; thermotaxis; AFD; MAST kinase; stomatin

20 **Abstract**

21 Animals integrate sensory stimuli presented at the past and present, assess the changes in their
22 surroundings and navigate themselves toward preferred environment. Identifying the molecular
23 and circuit mechanisms of such sensory integration is pivotal to understand how the nervous
24 system generates perception and behavior. Previous studies on thermotaxis behavior of
25 *Caenorhabditis elegans* suggested that a single thermosensory neuron AFD plays an essential
26 role in integrating the past and present temperature information and is essential for the neural
27 computation that drives the animal toward the preferred temperature region. However, the
28 molecular mechanisms by which AFD executes this neural function remained elusive. Here we
29 report multiple forward genetic screens to identify genes required for thermotaxis. We reveal that
30 *kin-4*, which encodes the *C. elegans* homolog of MAST kinase, plays dual roles in thermotaxis
31 and can promote both cryophilic and thermophilic drives. We also uncover that a thermophilic
32 defect of mutants for *mec-2*, which encodes a *C. elegans* homolog of stomatin, can be suppressed
33 by a loss-of-function mutation in the gene *crh-1*, encoding a *C. elegans* homolog CREB
34 transcription factor. Calcium imaging analysis from freely-moving animals suggest that *mec-2*
35 and *crh-1* function in AFD and regulate the neuronal activity of its post-synaptic interneuron
36 AIY. Our results suggest that a stomatin family protein can control the dynamics of neural
37 circuitry through the transcriptional regulation within a sensory neuron.

38 **Introduction**

39 Information processing in the nervous system is essential for animals to survive and reproduce in
40 response to changes in their environments. Research in the past decades have identified basic
41 principles of the neural circuit operation that enable several functions of neural computations
42 such as gain control of sensory stimuli and integration of multisensory information (Dunn and
43 Rieke 2006; van Atteveldt *et al.* 2014). Identifying the site of such neural computations and
44 deciphering the molecular and circuit mechanisms thereof are critical steps toward understanding
45 how the nervous system generates perception and behavior.

46 Multisensory integration allows the animals to process stimuli of different modalities or
47 of the same modality presented at different time points, and underlies decision making in the
48 nervous system. A well-studied example includes the mushroom body, the learning center of the
49 fly brain required for olfactory learning. Responses of the fruit fly to certain odors can be
50 modulated by pairing the odorants with appetitive or aversive stimuli (Quinn *et al.* 1974; Tempel
51 *et al.* 1983). The mushroom body receives inputs from both olfactory (Aso *et al.* 2014) and
52 gustatory systems (Kim *et al.* 2017), suggesting that it is the site of multisensory integration that
53 mediates olfactory learning. Studies in the fruit fly as well as in other species have thus
54 elucidated a common neural basis for multisensory integration: multiple sensory inputs converge
55 onto a single group of target neurons that integrate the signals and control the outputs.

56 Recent studies in the nematode *Caenorhabditis elegans* suggested a distinct circuit
57 operation for integration of thermal stimuli presented at different time points. The wild-type
58 animals that have been cultivated at a certain temperature with food migrate toward that
59 cultivation temperature when placed on a thermal gradient (Hedgecock and Russell 1975). The *C.*
60 *elegans* nervous system apparently integrates the past and the present temperature information

61 and executes the appropriate behavior that drives themselves toward the cultivation temperature
62 (Luo *et al.* 2014; Ikeda *et al.* 2020). Neural circuitry required for thermotaxis has been
63 extensively studied (Mori and Ohshima 1995; Kuhara *et al.* 2008; Beverly *et al.* 2011; Ikeda *et al.*
64 2020). Central to this circuitry is the thermosensory neurons AFD and its postsynaptic
65 interneurons AIY (White *et al.* 1986; Cook *et al.* 2019). The AFD neurons respond to
66 temperature stimuli and increase intracellular calcium (Ca^{2+}) level upon warming (Kimura *et al.*
67 2004; Clark *et al.* 2006, 2007; Ramot *et al.* 2008; Tsukada *et al.* 2016; Takeishi *et al.* 2016). The
68 increase in the Ca^{2+} level of the AFD neurons reflects the information of the previous cultivation
69 temperature and occurs within a temperature range with its lower bound determined by the
70 previous cultivation temperature. Analysis of a primary cultured AFD neurons indicated that the
71 temperature range of the AFD response is an intrinsic property of AFD and does not require the
72 connection to the neural circuits (Kobayashi *et al.* 2016). Recent studies also suggested that in
73 addition to these temperature-evoked Ca^{2+} responses, the AFD neuron modulates its neuronal
74 outputs such that it evokes distinct responses in its post-synaptic neuron AIY (Hawk *et al.* 2018;
75 Nakano *et al.* 2020). Thus, the single AFD neurons integrate the past and present temperature
76 information and execute single-cell multisensory computation to achieve thermotaxis behavior.
77 A similar neural operation has been also reported in the circuitry required for salt chemotaxis in
78 *C. elegans* (Sato *et al.* 2021; Hiroki *et al.* 2022), suggesting that a single-cell integration is
79 prevalent in the *C. elegans* nervous system. However, the molecular mechanisms by which the
80 AFD neurons execute this modulation remain elusive.

81 To further understand the molecular basis of the single-cell computation during *C.*
82 *elegans* thermotaxis, we here conducted forward genetic screens for mutants defective in
83 thermotaxis. We show that *kin-4*, which encodes the *C. elegans* homolog of MAST

84 (Microtubule-associated serine threonine) kinase (Walden and Cowan 1993), plays dual roles in
85 thermotaxis and suggest that KIN-4 is a critical regulator of the single-cell computation within
86 AFD. Our genetic screen also indicated that a thermotaxis defect of a stomatin homolog, *mec-2*
87 (Huang *et al.* 1995 p. 2; Nakano *et al.* 2020), was suppressed by a loss-of-mutation in *crh-1*,
88 which encodes the *C. elegans* homolog of CREB transcription factor (Kimura *et al.* 2002). Our
89 results suggest that a stomatin family protein controls the multisensory integration in AFD via
90 transcriptional regulation.

91 **Materials and Methods**

92 ***C. elegans* strains**

93 The *C. elegans* strains were cultured on NGM plates with the OP50 *Escherichia coli* as food
94 (Brenner 1974). All strains were cultured at 20 °C unless otherwise indicated. N2 (Bristol) was
95 used as the wild-type strain. Germline transformation was performed by microinjection as
96 previously described (Mello *et al.* 1991). CRISPR-Cas9-mediated genome editing was
97 performed as previously described (Dickinson *et al.* 2013; Dokshin *et al.* 2018). Mutations,
98 extrachromosomal arrays, integrated transgenes used in this study were described in FileS1.

99

100 **Thermotaxis assay**

101 Thermotaxis assays were performed as previously described (Ito *et al.* 2006). Two
102 hermaphrodite animals at the fourth larval stage were placed onto a NGM plate and were
103 allowed to lay eggs. Their F₁ progeny from two NGM plates were collected, were washed with
104 M9 buffer and were transferred onto the center of a thermotaxis assay plate that had been placed
105 onto a temperature gradient from 17 °C to 23 °C with the gradient steepness of 0.5 °C/cm. The
106 animals were allowed to freely move on the temperature gradient for one hour. The assay plate
107 was divided into eight sections along the temperature gradient. The number of animals in each
108 section was counted.

109

110 **Genetic screens for mutants defective in thermotaxis behavior**

111 Wild-type animals were mutagenized by ethyl methanesulfonate (EMS). Their F₂ progeny were
112 cultivated at 17 °C or 23 °C and were subjected to thermotaxis assays on a temperature gradient
113 from 17 °C to 23 °C. Animals that had migrated to the 17 °C region when cultivated at 23 °C or

114 to the 23 °C region when cultivated at 17 °C were picked as mutant candidates and were
115 recovered onto NGM plates. We allowed each candidate animal to lay eggs and retested eight to
116 twelve lines from each F₂ candidate for thermotaxis behaviors.

117 To screen for mutations that can suppress the thermophilic phenotype of *mec-2(nj89gf)*,
118 we mutagenized *mec-2(nj89gf)* animals with EMS, and their F₂ progeny cultivated at 20 °C were
119 subjected to thermotaxis assay on a temperature gradient from 17 °C to 23 °C. Animals that had
120 migrated to the 17 °C region were picked as mutant candidates, and their progeny were retested
121 for the suppression of the *mec-2(nj89gf)* thermophilic phenotype.

122

123 **Calcium imaging of the AFD neurons in immobilized animals**

124 We generated animals expressing the calcium indicator YCX1.6 (Madisen *et al.* 2015) in the
125 AFD and AIY neurons. The YCX1.6 in AFD was localized to the nucleus to separate the signals
126 from AFD and AIY. The animals were immobilized by placing on a 10 % agarose pad with
127 polystyrene beads (Polysciences), which were then covered by a cover slip. The samples were
128 placed on a Peltier device used for the temperature control, and the YFP and CFP images were
129 captured using epi-fluorescent microscope equipped with SOLA light engine (Lumencore) as a
130 light source and were recorded at one frame per second with 400 msec exposure. Image
131 processing was performed by MetaMorph software (Molecular Devices), and the fluorescent
132 intensities of YFP and CFP were determined. The ratio change was calculated as (R_t - R₀)/R₀,
133 where R_t represents the ratio of YFP to CFP of each frame, and R₀ the mean ratio of the first ten
134 frames.

135

136 **Calcium imaging of the AFD and AIY neurons in freely-moving animals**

137 Animals expressing YCX1.6 in the AFD nucleus and the AIY neurons were placed on a 2 %
138 agarose pad and were covered with a cover glass. The samples were placed on a motorized stage
139 (HawkVision Inc.) with a transparent temperature-control device (TOKAI HIT Co. Ltd.). The
140 animals were allowed to freely move on the agarose pad and were subjected to a temperature
141 ramp. The YFP and CFP images were captured at 2 frames per second (30 msec exposure time)
142 under epi-fluorescent microscope with SOLA light engine as a light source. The animals were
143 kept under the field of view by controlling the stage movement, which was achieved by real-time
144 analysis of transmitted infrared light images.

145 The image processing was first performed by DeepLabCut (Mathis *et al.* 2018; Nath *et al.*
146 2019) to extract the x-y coordinates of the region of the interest (ROI) for the fluorescent
147 analysis of AFD and AIY. The image analysis was further performed by a custom-written
148 program in MATLAB, and the positions of the ROI predicted by DeepLabCut were manually
149 inspected for each frame. The AFD intensity was analyzed from its nucleus, and the AIY
150 intensity was measured from a part of its neurite that makes a dorsal turn (White *et al.* 1986;
151 Nakano *et al.* 2020). The ratio of fluorescence intensities (YFP/CFP) was used to calculate the
152 standardized ratio change of AFD and AIY, which was defined as $(R_t - R_{\min})/(R_{\max} - R_{\min})$. The
153 baseline standardized ratio, which was the mean of the standardized ratio values of the frames
154 before the temperature was increased, was subtracted from the standardized ratio change of each
155 frame. We calculated the area under the curve of the AIY standardized ratio change for the entire
156 time window after the temperature stimulus was applied.

157

158 **Statistics**

159 Normality of the data was assessed by Shapiro-Wilk test. Equal variance among data sets was
160 assessed by Bartlett test. When both normality and equal variance were assumed, we used one-
161 way analysis of variance (ANOVA) with Tukey-Kramer test or Dunnett test for multiple
162 comparisons. Otherwise, we used Wilcoxon rank sum test.

163 **Results and Discussion**

164 **A genetic screen for mutants defective in thermotaxis recovered 21 mutant isolates**

165 To identify genes important for the regulation of thermotaxis, we conducted a genetic screen. We
166 mutagenized the wild-type animals and looked for mutants that migrated toward the 23 °C region
167 when cultivated at 17 °C or toward the 17 °C region when cultivated 23 °C (Fig. 1A). From this
168 screen, we isolated 21 mutant strains, which were classified into three groups based on their
169 thermotaxis phenotypes: nine mutants - *nj85*, *nj89*, *nj97*, *nj98*, *nj102*, *nj104*, *nj108*, *nj111* and
170 *nj113* - displayed thermophilic phenotypes and migrated toward the higher temperature region
171 (Fig. 1B); six mutants - *nj87*, *nj90*, *nj91*, *nj92*, *nj94* and *nj100* - showed athermotactic
172 phenotypes and distributed evenly on the temperature gradient (Fig. 1C); and six mutants - *nj86*,
173 *nj95*, *nj96*, *nj107*, *nj110* and *nj112* - exhibited cryophilic phenotypes and preferred the colder
174 temperature region (Fig. 1D). We have previously reported that *nj89* is a gain-of-function allele
175 of the gene *mec-2*, which encodes a *C. elegans* homolog of stomatin (Nakano *et al.* 2020) and
176 that *nj90*, *nj94* and *nj100* are alleles of *kcc-3*, which encodes a potassium/chloride co-transporter
177 that functions in a glial-like cell (Yoshida *et al.* 2016). In this study, we further characterize
178 some of the thermophilic isolates, as described below.

179

180 ***nj98* and *nj111* mutants carry mutations in the *pkc-1* locus**

181 We observed that *nj98* and *nj111* failed to complement each other for their thermotaxis defects.
182 To identify the gene responsible for the thermotaxis defects of these mutants, we mapped *nj111*
183 into a 2.7 Mb interval on chromosome V (Figure 2). This region contains the *pkc-1* gene, which
184 encodes a *C. elegans* homolog of protein kinase C-epsilon/eta. Our previous study indicated that
185 *pkc-1*, also known as *tx-4*, is required for thermotaxis (Okochi *et al.* 2005). We therefore asked

186 whether *nj98* and *nj111* are alleles of *pkc-1*. We conducted DNA sequence analyses of these
187 mutants and identified mutations in *pkc-1*: *nj98* carries a G-to-A transition mutation that is
188 predicted to alter the glycine 1338 codon of *pkc-1c* to an aspartic acid codon; *nj111* is associated
189 with a C-to-T transition mutation that would alter the arginine 80 codon to an opal stop codon
190 (Figure 2). These observations suggested that *nj98* and *nj111* are alleles of *pkc-1*.

191

192 ***nj97* is an allele of *pkc-2***

193 To identify the gene responsible for the thermophilic defect of *nj97* animals, we mapped *nj97*
194 into a 1.9 Mb region of chromosome X. This region contains the gene *pkc-2*, which encodes a *C.*
195 *elegans* homolog of protein kinase C beta (Fig. 3A). A previous study indicated that *pkc-2* is
196 required for thermotaxis and that *pkc-2* functions in the AFD thermosensory neuron to regulate
197 thermotaxis (Land and Rubin 2017) . We therefore asked whether *nj97* is an allele of *pkc-2*. We
198 identified a G-to-A transition mutation in the *pkc-2* locus of *nj97* animals that is predicted to alter
199 the tryptophan 248 codon of *pkc-2a* to an amber stop codon (Fig. 3B). Introduction of a genomic
200 clone that harbors the *pkc-2* locus rescued the thermophilic phenotype of *nj97* animals (Fig. 3C).

201 These results indicated that *nj97* is an allele of *pkc-2*.

202

203 ***nj104* and *nj108* harbor mutations in the *plc-1* locus**

204 *nj104* and *nj108* failed to complement each other for the thermotaxis defect. To identify the gene
205 responsible for their thermotaxis defects, we mapped *nj108* into a 180 kb interval of
206 chromosome X (Fig. 3). This region contains the *plc-1* locus (Kunitomo *et al.* 2013), which
207 encodes a *C. elegans* homolog of phospholipase C (PLC). PLCs cleaves phosphatidylinositol
208 4,5-bisphosphate (PIP₂) into inositol 1,4,5-triphosphate (IP₃) and diacyl glycerol (DAG), the

209 latter of which is known to act as a second messenger and can bind to and regulate diverse
210 intracellular signaling proteins, including protein kinase C (Brose *et al.* 2004). We conducted
211 DNA sequencing analyses of the *plc-1* locus in *nj104* and *nj108* animals and observed that these
212 mutants carry mutations in *plc-1*: *nj104* is associated with a C-to-T transition mutation that is
213 predicted to alter the glutamine 1112 codon of *plc-1d* to an ochre stop codon; *nj108* harbors a G-
214 to-A transition mutation in the splice acceptor sequence within the 5th intron of *plc-1d*. These
215 observations suggested that *nj104* and *nj108* are alleles of *plc-1*.

216 Our genetic screen identified three genes, *pkc-1*, *pkc-2* and *plc-1*, all of which were
217 shown to be involved in the DAG signaling pathway: The PKC-1 and PKC-2 proteins contain
218 the C1 and C2 domains that can bind to DAG (Corbalán-García and Gómez-Fernández 2014),
219 and the PLC-1 protein promotes the production of DAG. Previous studies focusing on the *C.*
220 *elegans* salt chemotaxis also indicated the importance of the DAG signaling in the ASER
221 chemosensory neurons (Ohno *et al.* 2017). These observations suggest that the DAG signaling
222 plays an important role in the single-cell computation within the *C. elegans* sensory neurons.

223

224 ***nj102* is an allele of *kin-4***

225 To identify the gene mutated in *nj102* animals, we mapped this mutation into a 300 kb interval of
226 chromosome IV. This region contains the gene *kin-4*, which encodes the *C. elegans* homolog of
227 microtubule-associated serine threonine (MAST) kinase (Fig. 5A). DNA sequencing analysis
228 revealed that *nj102* animals carry a C-to-T transition mutation that alters the glutamine 1480 of
229 *kin-4d* to an amber stop codon. We found that the introduction of a genomic clone carrying the
230 *kin-4* locus rescued the thermophilic defect of *nj102* mutants (Fig. 5B). These results indicated
231 that *nj102* is an allele of *kin-4*.

232 To further characterize the role of the *kin-4* gene in the regulation of thermotaxis, we
233 analyzed other alleles of *kin-4*. As we previously reported (Nakano *et al.* 2020), two deletion
234 alleles of *kin-4*, *tm1049* and *nj170*, displayed phenotypes distinct from that of *nj102* animals:
235 *kin-4(tm1049)* and *kin-4(nj170)* mutants displayed bimodal distributions on the temperature
236 gradient, with the majority of animals migrating toward the colder temperature region, while a
237 minor population stayed around the cultivation temperature region (Fig. 5C). These results
238 indicated that the majority of the *kin-4* null mutant animals display the cryophilic phenotype and
239 that *kin-4* null phenotype is distinct from that of *kin-4(nj102)* animals.

240 The KIN-4 protein contains three major domains: DUF1908 (domain of unknown
241 function), serine-threonine kinase domain and PDZ domain. *nj102* mutants harbor a mutation
242 that would truncate the KIN-4 protein within the PDZ domain (Fig. 5A). To assess whether
243 mutations that would eliminate the PDZ domain from the KIN-4 protein could cause the
244 thermophilic phenotype similar to that of *kin-4(nj102)*, we generated another deletion allele of
245 *kin-4*, *nj171*. *kin-4(nj171)* removes a part of the coding sequence of KIN-4 polypeptide that
246 corresponds to the PDZ domain and its carboxy-terminal end (Fig. 5A). We found that
247 *kin-4(nj171)* displayed a thermophilic phenotype similar to that of *kin-4(nj102)*. These results
248 suggested that mutations that would eliminate the PDZ domain and C-terminal end of KIN-4
249 result in thermophilic phenotypes.

250

251 ***kin-4(nj102)* is likely a reduction-of-function mutation**

252 To further characterize the nature of the *kin-4(nj102)* allele, we examined the thermotaxis
253 phenotypes of a series of trans-heterozygotes as well as transgenic lines. First, both *nj102*+/+ and
254 *tm1049*+/+ heterozygous animals showed the wild-type phenotype (Fig. 5D), indicating that *nj102*

255 and *tm1049* cause recessive phenotypes. To ask whether *kin-4(nj102)* causes a gain-of-function
256 mutation, we injected a genomic clone containing the *kin-4(+)* or *kin-4(nj102)* gene into the
257 wild-type animals. Neither clone affected the thermotaxis phenotype (Fig. 5E), suggesting that
258 *nj102* is not a gain-of-function mutation. When we examined the trans-heterozygotes of
259 *nj102/tm1049*, these animals displayed a thermophilic phenotype similar to that of *nj102* animals
260 (Fig. 5D). These observations suggested that *nj102* might be a reduction-of-function mutation.
261 We therefore asked whether introduction of the *kin-4(nj102)* genomic clone into a *kin-4(null)*
262 background can alter the thermotaxis phenotype. While introduction of the *kin-4(+)* clone
263 rescued the thermotaxis defect of the *kin-4(tm1049)* animals, *kin-4(tm1049)* animals carrying the
264 *kin-4(nj102)* clone displayed a thermophilic phenotype (Fig. 5E). By contrast, introduction of the
265 *kin-4(tm1049)* genomic clone into *kin-4(nj102)* animals did not affect the thermotaxis phenotype
266 (Fig. 5B). These results suggested that *kin-4(nj102)* is a reduction-of-function mutation.

267 Our results indicated that *kin-4* can be mutated to cause either a thermophilic or a
268 cryophilic phenotype, suggesting that *kin-4* plays dual roles in regulating thermotaxis, with one
269 activity promoting a thermophilic drive and the other a cryophilic movement. That the *kin-4* null
270 phenotype displayed a bimodal distribution on the temperature gradient is consistent with this
271 notion. Our previous study showed that the AFD-specific expression of a wild-type *kin-4* cDNA
272 rescued the *kin-4* null phenotype (Nakano *et al.* 2020). These observations support that KIN-4
273 exerts these opposing thermophilic and cryophilic controls within the AFD neurons and suggest
274 that *kin-4* would be a master regulator of single-cell computation by the AFD neuron.

275 What is the nature of the allele of *kin-4* that causes a thermophilic phenotype? Although
276 the gene dosage analysis of *kin-4* suggested that *kin-4(nj102)* would be a reduction-of-function
277 mutation, *kin-4(nj102)* might not be a simple reduction of function mutation, since heterozygous

278 animals of a *kin-4* null mutation, *kin-4(tm1049Δ)*, showed the wild-type phenotype (Fig. 5D).
279 Our observations indicated that both thermophilic alleles of *kin-4*, *nj102* and *nj171Δ*, are
280 predicted to remove the PDZ domain from the KIN-4 protein. These results raise the possibility
281 that the PDZ domain of KIN-4 is specifically engaged in the KIN-4 cryophilic activity but is
282 dispensable for its thermophilic drive. We speculate that thermophilic alleles of *kin-4* might
283 result from elimination of the PDZ domain, which causes the reduction specifically in the
284 thermophilic activity of *kin-4* while maintaining the cryophilic activity. Since the PDZ domain is
285 known to be involved in protein-protein interactions, it would be important to determine the
286 interaction partner of KIN-4 through its PDZ domain (An *et al.* 2019). Such analysis might
287 uncover the molecular basis underlying the dual roles of KIN-4 in the AFD thermosensory
288 neurons for the regulation of thermotaxis.

289

290 **A genetic screen for suppressors of *mec-2(nj89gf)***

291 Among the thermophilic mutants we had isolated, we have previously shown that *nj89* is a gain-
292 of-function allele of the gene *mec-2* (Nakano *et al.* 2020), which encodes a *C. elegans* homolog
293 of stomatin (Huang *et al.* 1995). We showed that *mec-2* functions in the AFD thermosensory
294 neurons to regulate thermotaxis and that the *mec-2(nj89gf)* mutation affected the neural activity
295 of the AIY interneuron (Nakano *et al.* 2020), which is directly innervated by the AFD
296 thermosensory neurons (White *et al.* 1986; Cook *et al.* 2019). However, the molecular
297 mechanisms by which MEC-2 regulates the AIY neural activity remained elusive.

298 To further understand the mechanisms by which *mec-2* controls the AIY neural activity
299 and consequently thermotaxis behavior, we conducted another genetic screen to look for
300 mutations that can suppress the thermophilic phenotype of *mec-2(nj89gf)*. We mutagenized

301 *mec-2(nj89gf)* animals and looked for animals that displayed cryophilic phenotypes (Fig. 6A).
302 From this screen, we isolated 13 mutations - *nj254*, *nj255*, *nj256*, *nj260*, *nj262*, *nj263*, *nj267*,
303 *nj268*, *nj269*, *nj270*, *nj271* and *nj274* - that altered the *mec-2(nj89gf)* phenotype. We have
304 previously shown that *nj271* and *nj274* are alleles of *dgk-1*, which encodes a diacylglycerol
305 kinase. *dgk-1* also functions in the AFD thermosensory neurons and affects the neuronal
306 response of the AIY interneuron (Nakano *et al.* 2020).

307

308 ***nj260* and *nj263* are alleles of *tx-3***

309 Amongst the isolates we recovered from the *mec-2(nj89gf)* suppressor screen, we observed that
310 *nj260* and *nj263* failed to complement each other. We mapped *nj260* mutation into chromosome
311 X and found that *nj260* carries a mutation in the gene *tx-3*, which encodes a LIM homeodomain
312 transcription factor required for the cell fate specification of the AIY interneuron (Hobert *et al.*
313 1997). *nj260* animals are associated with a C-to-T transition mutation that alters the proline 371
314 codon of *tx-3a* into a serine codon (Fig. 7A). We could not identify a mutation in the *tx-3* locus
315 of *nj263*. We attempted to amplify the *tx-3* locus from *nj263* by polymerase chain reaction
316 (PCR) with multiple primer sets but could not obtain PCR fragments. To assess whether *nj263* is
317 an allele of *tx-3*, we introduced a genomic PCR product containing the *tx-3* locus into
318 *mec-2(nj89gf)* *nj263* animals and observed that the transgenic animals at least partly reverted to
319 the thermophilic phenotype (Fig. 7B). These results indicated that *nj260* and *nj263* are alleles of
320 *tx-3*. We speculate that *nj263* might carry a complex chromosomal rearrangement that involves
321 the *tx-3* locus. That loss of *tx-3* function suppresses the thermophilic defect of *mec-2(nj89gf)* is
322 consistent with our previous observation that *mec-2(nj89gf)* affects thermotaxis through the
323 regulation of the AIY neural activity (Nakano *et al.* 2020).

324

325 **Loss of *crh-1* function can suppress the thermotaxis defect of *mec-2(nj89gf)***

326 To identify the gene responsible for *nj257*, we first outcrossed *mec-2(nj89gf)*; *nj257* animals and
327 isolated *nj257* in an *mec-2(+)* background by following the activity that causes the cryophilic
328 phenotype. Using this *nj257* mutant strain, we mapped the mutation into a 45 kb interval of
329 chromosome III (Fig. 8A). This region contains the gene *crh-1*, which encodes a *C. elegans*
330 homolog of CREB transcription factor (Kimura *et al.* 2002). We previously showed that *crh-1* is
331 required for thermotaxis and that *crh-1* functions in the AFD thermosensory neurons to regulate
332 thermotaxis (Nishida *et al.* 2011). DNA sequencing analysis of *nj257* animals identified a G-to-
333 A transition mutation that is predicted to alter the arginine 282 codon of *crh-1a* to a histidine
334 codon (Fig. 8A). A pan-neuronal expression of a *crh-1* cDNA using an *unc-14* promoter rescued
335 the cryophilic defect of *nj257* animals (Fig. 8B). We also generated a deletion allele of *crh-1*,
336 *nj366*, which is predicted to eliminate the entire DNA binding domain of CRH-1 and is thus
337 likely a null allele of *crh-1*. Like *nj257*, *crh-1(nj366)* displayed a cryophilic phenotype (Fig. 8C).
338 We also confirmed that *crh-1(tz2)*, another deletion allele of *crh-1* (Kimura *et al.* 2002), showed
339 a cryophilic phenotype similar to those observed in *crh-1(nj257)* and *crh-1(nj366)* (Fig. 8C).
340 These results established that *nj257* is an allele of *crh-1* and that loss of *crh-1* function can
341 suppress the thermophilic defect of *mec-2(nj89gf)*.

342 To identify the site of *crh-1* action for the suppression of the thermophilic phenotype
343 conferred by *mec-2(nj89gf)*, we conducted a cell-specific rescue experiment. We expressed a
344 *crh-1* cDNA specifically in the AFD or the AIY neurons of *crh-1(nj257)*; *mec-2(nj89gf)* animals
345 and observed that animals expressing *crh-1* in AFD reverted to the thermophilic phenotype,
346 while animals expressing *crh-1* in AIY did not (Fig. 8D). These results indicated that loss of

347 *crh-1* function in AFD can suppress the thermotaxis defect of *mec-2(nj89gf)* and suggested that
348 *crh-1* acts downstream of, or in parallel to, *mec-2* in AFD to regulate thermotaxis.

349

350 ***crh-1(nj257)* suppressed the defect of the AIY calcium response of *mec-2(nj89gf)***

351 We previously showed that the AIY neurons exhibit bidirectional neural responses that correlate
352 with the valence of thermal stimuli: AIY is excited when temperature is increased toward the
353 cultivation temperature, while AIY is inhibited when temperature is increased away from the
354 cultivation temperature. While the temperature-evoked Ca^{2+} responses in the AFD
355 thermosensory neurons are normal in *mec-2(nj89gf)* mutants, they showed a defect in this
356 bidirectional AIY response. The AIY neurons of *mec-2(nj89gf)* animals displayed excitatory
357 responses even when temperature was increased away from the cultivation temperature (Nakano
358 *et al.* 2020).

359 To investigate the neural mechanisms underlying the *crh-1*-dependent suppression of
360 *mec-2(gf)*, we conducted Ca^{2+} imaging experiments. We first examined temperature-evoked Ca^{2+}
361 responses of the AFD thermosensory neurons in immobilized animals. The AFD neurons
362 respond to warming stimuli by increasing the intracellular Ca^{2+} level (Kimura *et al.* 2004; Clark
363 *et al.* 2006; Ramot *et al.* 2008; Kobayashi *et al.* 2016; Tsukada *et al.* 2016; Takeishi *et al.* 2016).
364 We previously showed that the Ca^{2+} responses of the AFD neuron in *mec-2(nj89gf)* animals were
365 indistinguishable from that of the wild-type animals (Nakano *et al.* 2020). When *crh-1(nj257)*;
366 *mec-2(nj89gf)* animals were subjected to temperature ramps, the AFD neurons increased the Ca^{2+}
367 levels similarly to those observed in *mec-2(nj89gf)* animals (Fig. 9A). These results indicate that
368 *crh-1* affects a process downstream of the Ca^{2+} influx in the AFD neurons to suppress the
369 thermotaxis phenotype of *mec-2(nj89gf)*.

370 We next asked whether *crh-1* regulates the neuronal activity of the AIY interneuron.

371 Since the AIY neural activity is likely influenced by the motor states of the animal (Luo *et al.*

372 2014; Li *et al.* 2014), we conducted the imaging from freely-moving animals. We cultivated

373 animals at 20 °C and conducted simultaneous Ca²⁺ imaging of the AFD and AIY neurons from

374 freely-moving animals. We subjected the animals to a temperature ramp that increases from 20.2

375 °C to 21.2 °C. As previously reported (Nakano *et al.* 2020), the AIY neurons of *mec-2(nj89gf)*

376 animals predominantly exhibited excitatory responses under this condition (Fig. 9B). By contrast,

377 a significant fraction of the AIY neurons from *crh-1(nj257)*; *mec-2(nj89gf)* animals displayed

378 inhibitory responses (Fig. 9B). The AFD neurons from both *mec-2(nj89gf)* and *crh-1(nj257)*;

379 *mec-2(nj89gf)* animals showed increases in the Ca²⁺ concentrations upon the warming stimuli.

380 These results suggest that *crh-1* functions in the AFD neurons and regulates the bidirectional

381 responses of the AIY interneurons to regulate thermotaxis.

382 Our previous study indicated that *crh-1* controls the excitability of the AFD

383 thermosensory neurons in response to certain thermal stimuli (Nishida *et al.* 2011). Our

384 observations indicated that in addition to this role in regulating the AFD neural activity, *crh-1*

385 controls the neuronal outputs from AFD, thereby governing the bidirectional AIY activity. We

386 suggest that *crh-1* might regulate transcription of a set of genes in AFD, some of which adjust

387 the excitability of the AFD neurons while others control the AFD neuronal output to its post-

388 synaptic neurons AIY. Our results together with our previous observations thus highlight the

389 dual roles of *crh-1* within the AFD neurons for the regulation of thermotaxis.

390 Our results also suggested that *mec-2* could act upstream of *crh-1* in the AFD

391 thermosensory neurons to regulate thermotaxis. Since *crh-1* is a transcriptional regulator, these

392 observations raised a possibility that *mec-2* would regulate thermotaxis by controlling

393 transcription of genes within AFD that either directly or indirectly affect the neuronal outputs
394 from the AFD neurons. Previous studies indicated that when the cultivation temperature was
395 shifted, the wild-type animals required certain time to adjust their thermotaxis behavior
396 (Hedgecock and Russell 1975; Mohri *et al.* 2005; Aoki *et al.* 2018; Hawk *et al.* 2018). The
397 adaptation to new cultivation temperature involves transcriptional reconfiguration of genes
398 expressed in the AFD thermosensory neurons (Yu *et al.* 2014). Our previous observations also
399 indicated that *crh-1* is required to promote the adaptation to new cultivation temperature
400 (Nishida *et al.* 2011). These findings thus suggest that the AFD neurons in *mec-2* mutants might
401 be defective in setting the level of gene expression appropriate for the cultivation temperature.
402 Since the AFD neurons apparently compute its neuronal outputs based on the cultivation
403 temperature and current thermal context (Hawk *et al.* 2018; Nakano *et al.* 2020), such a defect in
404 AFD of *mec-2* mutants would result in an abnormal neuronal output from AFD, leading to a
405 defect in the bidirectional AIY activity. Thus, in contrast to previous studies that indicated the
406 roles of the stomatin family proteins in regulating the ion channels (Goodman *et al.* 2002; Price
407 *et al.* 2004), our genetic screens suggest a new mode of the MEC-2/stomatin action that involves
408 the transcriptional regulation in controlling the dynamics of a neural circuitry.

409 **Data availability**

410 *C. elegans* strains and plasmids are available upon request. FileS1 contains descriptions of the
411 strains used in this study. FileS2 contains numeric data of imaging analyses from freely-moving
412 animals. The authors affirm that all data necessary for confirming the conclusions of the article
413 are present within the article, figures and supplemental materials.

414

415 **Acknowledgements**

416 We thank S. Mitani at National BioResource for strains; K. Ikegami, Y. Murakami and M.
417 Murase for technical and administrative assistance; the members of the Mori and Noma
418 laboratories for discussions. Some strains were provided by *Caenorhabditis* Genetic Center,
419 which is funded by NIH Office of Research Infrastructure Programs (P40 OD010440).

420

421 **Funding**

422 This work was supported by JSPS KAKENHI Grant Numbers 17K07499 (to S.N.), 18H05123
423 (to S.N.), 21H052525 (to S.N.), 16H02516 (to I.M.), 19H01009 (to I.M.) and 19H05644 (to
424 I.M.).

425

426 **Conflicts of interest**

427 None declared.

428

429

430 **Literature cited**

431 An, S. W. A., E.-S. Choi, W. Hwang, H. G. Son, J.-S. Yang *et al.*, 2019 KIN-4/MAST kinase
432 promotes PTEN-mediated longevity of *Caenorhabditis elegans* via binding through a
433 PDZ domain. *Aging Cell* 18: e12906.

434 Aoki, I., M. Tateyama, T. Shimomura, K. Ihara, Y. Kubo *et al.*, 2018 SLO potassium channels
435 antagonize premature decision making in *C. elegans*. *Commun Biol* 1: 123.

436 Aso, Y., D. Hattori, Y. Yu, R. M. Johnston, N. A. Iyer *et al.*, 2014 The neuronal architecture of
437 the mushroom body provides a logic for associative learning (L. C. Griffith, Ed.). *eLife* 3:
438 e04577.

439 van Atteveldt, N., M. M. Murray, G. Thut, and C. E. Schroeder, 2014 Multisensory Integration:
440 Flexible Use of General Operations. *Neuron* 81: 1240–1253.

441 Beverly, M., S. Anbil, and P. Sengupta, 2011 Degeneracy and neuromodulation among
442 thermosensory neurons contribute to robust thermosensory behaviors in *Caenorhabditis*
443 *elegans*. *J Neurosci* 31: 11718–11727.

444 Brenner, S., 1974 The genetics of *Caenorhabditis elegans*. *Genetics* 77: 71–94.

445 Brose, N., A. Betz, and H. Wegmeyer, 2004 Divergent and convergent signaling by the
446 diacylglycerol second messenger pathway in mammals. *Curr Opin Neurobiol* 14: 328–
447 340.

448 Clark, D. A., D. Biron, P. Sengupta, and A. D. T. Samuel, 2006 The AFD sensory neurons
449 encode multiple functions underlying thermotactic behavior in *Caenorhabditis elegans*. *J*
450 *Neurosci* 26: 7444–7451.

451 Clark, D. A., C. V. Gabel, H. Gabel, and A. D. T. Samuel, 2007 Temporal activity patterns in
452 thermosensory neurons of freely moving *Caenorhabditis elegans* encode spatial thermal
453 gradients. *J Neurosci* 27: 6083–6090.

454 Cook, S. J., T. A. Jarrell, C. A. Brittin, Y. Wang, A. E. Bloniarz *et al.*, 2019 Whole-animal
455 connectomes of both *Caenorhabditis elegans* sexes. *Nature* 571: 63–71.

456 Corbalán-García, S., and J. C. Gómez-Fernández, 2014 Classical protein kinases C are regulated
457 by concerted interaction with lipids: the importance of phosphatidylinositol-4,5-
458 bisphosphate. *Biophys Rev* 6: 3–14.

459 Dickinson, D. J., J. D. Ward, D. J. Reiner, and B. Goldstein, 2013 Engineering the
460 *Caenorhabditis elegans* genome using Cas9-triggered homologous recombination. *Nat
461 Methods* 10: 1028–1034.

462 Dokshin, G. A., K. S. Ghanta, K. M. Piscopo, and C. C. Mello, 2018 Robust Genome Editing
463 with Short Single-Stranded and Long, Partially Single-Stranded DNA Donors in
464 *Caenorhabditis elegans*. *Genetics* 210: 781–787.

465 Dunn, F. A., and F. Rieke, 2006 The impact of photoreceptor noise on retinal gain controls.
466 *Current Opinion in Neurobiology* 16: 363–370.

467 Goodman, M. B., G. G. Ernstrom, D. S. Chelur, R. O'Hagan, C. A. Yao *et al.*, 2002 MEC-2
468 regulates *C. elegans* DEG/ENaC channels needed for mechanosensation. *Nature* 415:
469 1039–1042.

470 Hawk, J. D., A. C. Calvo, P. Liu, A. Almoril-Porras, A. Aljobeh *et al.*, 2018 Integration of
471 Plasticity Mechanisms within a Single Sensory Neuron of *C. elegans* Actuates a Memory.
472 *Neuron* 97: 356-367.e4.

473 Hedgecock, E. M., and R. L. Russell, 1975 Normal and mutant thermotaxis in the nematode

474 *Caenorhabditis elegans*. Proc Natl Acad Sci U S A 72: 4061–4065.

475 Hiroki, S., H. Yoshitane, H. Mitsui, H. Sato, C. Umatani *et al.*, 2022 Molecular encoding and

476 synaptic decoding of context during salt chemotaxis in *C. elegans*. Nat Commun 13: 2928.

477 Hobert, O., I. Mori, Y. Yamashita, H. Honda, Y. Ohshima *et al.*, 1997 Regulation of interneuron

478 function in the *C. elegans* thermoregulatory pathway by the *tx-3* LIM homeobox gene.

479 Neuron 19: 345–357.

480 Huang, M., G. Gu, E. L. Ferguson, and M. Chalfie, 1995 A stomatin-like protein necessary for

481 mechanosensation in *C. elegans*. Nature 378: 292–295.

482 Ikeda, M., S. Nakano, A. C. Giles, L. Xu, W. S. Costa *et al.*, 2020 Context-dependent operation

483 of neural circuits underlies a navigation behavior in *Caenorhabditis elegans*. Proc Natl

484 Acad Sci U S A 117: 6178–6188.

485 Ito, H., H. Inada, and I. Mori, 2006 Quantitative analysis of thermotaxis in the nematode

486 *Caenorhabditis elegans*. J Neurosci Methods 154: 45–52.

487 Kim, H., C. Kirkhart, and K. Scott, 2017 Long-range projection neurons in the taste circuit of

488 *Drosophila* (H. J. Bellen, Ed.). eLife 6: e23386.

489 Kimura, Y., E. E. Corcoran, K. Eto, K. Gengyo-Ando, M.-A. Muramatsu *et al.*, 2002 A CaMK

490 cascade activates CRE-mediated transcription in neurons of *Caenorhabditis elegans*.

491 EMBO Rep 3: 962–966.

492 Kimura, K. D., A. Miyawaki, K. Matsumoto, and I. Mori, 2004 The *C. elegans* thermosensory

493 neuron AFD responds to warming. Curr Biol 14: 1291–1295.

494 Kobayashi, K., S. Nakano, M. Amano, D. Tsuboi, T. Nishioka *et al.*, 2016 Single-Cell Memory

495 Regulates a Neural Circuit for Sensory Behavior. Cell Rep 14: 11–21.

496 Kuhara, A., M. Okumura, T. Kimata, Y. Tanizawa, R. Takano *et al.*, 2008 Temperature sensing
497 by an olfactory neuron in a circuit controlling behavior of *C. elegans*. *Science* 320: 803–
498 807.

499 Kunitomo, H., H. Sato, R. Iwata, Y. Satoh, H. Ohno *et al.*, 2013 Concentration memory-
500 dependent synaptic plasticity of a taste circuit regulates salt concentration chemotaxis in
501 *Caenorhabditis elegans*. *Nat Commun* 4: 2210.

502 Land, M., and C. S. Rubin, 2017 A Calcium- and Diacylglycerol-Stimulated Protein Kinase C
503 (PKC), *Caenorhabditis elegans* PKC-2, Links Thermal Signals to Learned Behavior by
504 Acting in Sensory Neurons and Intestinal Cells. *Molecular and Cellular Biology* 37:
505 e00192-17.

506 Li, Z., J. Liu, M. Zheng, and X. Z. S. Xu, 2014 Encoding of both analog- and digital-like
507 behavioral outputs by one *C. elegans* interneuron. *Cell* 159: 751–765.

508 Luo, L., N. Cook, V. Venkatachalam, L. A. Martinez-Velazquez, X. Zhang *et al.*, 2014
509 Bidirectional thermotaxis in *Caenorhabditis elegans* is mediated by distinct sensorimotor
510 strategies driven by the AFD thermosensory neurons. *Proc Natl Acad Sci U S A* 111:
511 2776–2781.

512 Madisen, L., A. R. Garner, D. Shimaoka, A. S. Chuong, N. C. Klapoetke *et al.*, 2015 Transgenic
513 mice for intersectional targeting of neural sensors and effectors with high specificity and
514 performance. *Neuron* 85: 942–958.

515 Mathis, A., P. Mamidanna, K. M. Cury, T. Abe, V. N. Murthy *et al.*, 2018 DeepLabCut:
516 markerless pose estimation of user-defined body parts with deep learning. *Nat Neurosci*
517 21: 1281–1289.

518 Mello, C. C., J. M. Kramer, D. Stinchcomb, and V. Ambros, 1991 Efficient gene transfer in
519 *C.elegans*: extrachromosomal maintenance and integration of transforming sequences.
520 *EMBO J* 10: 3959–3970.

521 Mohri, A., E. Kodama, K. D. Kimura, M. Koike, T. Mizuno *et al.*, 2005 Genetic control of
522 temperature preference in the nematode *Caenorhabditis elegans*. *Genetics* 169: 1437–
523 1450.

524 Mori, I., and Y. Ohshima, 1995 Neural regulation of thermotaxis in *Caenorhabditis elegans*.
525 *Nature* 376: 344–348.

526 Nakano, S., M. Ikeda, Y. Tsukada, X. Fei, T. Suzuki *et al.*, 2020 Presynaptic MAST kinase
527 controls opposing postsynaptic responses to convey stimulus valence in *Caenorhabditis*
528 *elegans*. *Proceedings of the National Academy of Sciences* 117: 1638–1647.

529 Nath, T., A. Mathis, A. C. Chen, A. Patel, M. Bethge *et al.*, 2019 Using DeepLabCut for 3D
530 markerless pose estimation across species and behaviors. *Nat Protoc* 14: 2152–2176.

531 Nishida, Y., T. Sugi, M. Nonomura, and I. Mori, 2011 Identification of the AFD neuron as the
532 site of action of the CREB protein in *Caenorhabditis elegans* thermotaxis. *EMBO Rep* 12:
533 855–862.

534 Ohno, H., N. Sakai, T. Adachi, and Y. Iino, 2017 Dynamics of Presynaptic Diacylglycerol in a
535 Sensory Neuron Encode Differences between Past and Current Stimulus Intensity. *Cell*
536 *Rep* 20: 2294–2303.

537 Okochi, Y., K. D. Kimura, A. Ohta, and I. Mori, 2005 Diverse regulation of sensory signaling by
538 *C. elegans* nPKC-epsilon/eta TTX-4. *EMBO J* 24: 2127–2137.

539 Price, M. P., R. J. Thompson, J. O. Eshcol, J. A. Wemmie, and C. J. Benson, 2004 Stomatin
540 modulates gating of acid-sensing ion channels. *J Biol Chem* 279: 53886–53891.

541 Quinn, W. G., W. A. Harris, and S. Benzer, 1974 Conditioned Behavior in *Drosophila*
542 melanogaster. *Proceedings of the National Academy of Sciences* 71: 708–712.

543 Ramot, D., B. L. MacInnis, and M. B. Goodman, 2008 Bidirectional temperature-sensing by a
544 single thermosensory neuron in *C. elegans*. *Nat Neurosci* 11: 908–915.

545 Sato, H., H. Kunitomo, X. Fei, K. Hashimoto, and Y. Iino, 2021 Glutamate signaling from a
546 single sensory neuron mediates experience-dependent bidirectional behavior in
547 *Caenorhabditis elegans*. *Cell Rep* 35: 109177.

548 Takeishi, A., Y. V. Yu, V. M. Hapiak, H. W. Bell, T. O’Leary *et al.*, 2016 Receptor-type
549 Guanylyl Cyclases Confer Thermosensory Responses in *C. elegans*. *Neuron* 90: 235–244.

550 Tempel, B. L., N. Bonini, D. R. Dawson, and W. G. Quinn, 1983 Reward learning in normal and
551 mutant *Drosophila*. *Proceedings of the National Academy of Sciences* 80: 1482–1486.

552 Tsukada, Y., M. Yamao, H. Naoki, T. Shimowada, N. Ohnishi *et al.*, 2016 Reconstruction of
553 Spatial Thermal Gradient Encoded in Thermosensory Neuron AFD in *Caenorhabditis*
554 *elegans*. *J Neurosci* 36: 2571–2581.

555 Walden, P. D., and N. J. Cowan, 1993 A novel 205-kilodalton testis-specific serine/threonine
556 protein kinase associated with microtubules of the spermatid manchette. *Mol Cell Biol*
557 13: 7625–7635.

558 White, J. G., E. Southgate, J. N. Thomson, and S. Brenner, 1986 The structure of the nervous
559 system of the nematode *Caenorhabditis elegans*. *Philos Trans R Soc Lond B Biol Sci*
560 314: 1–340.

561 Yoshida, A., S. Nakano, T. Suzuki, K. Ihara, T. Higashiyama *et al.*, 2016 A glial K⁺/Cl[−]
562 cotransporter modifies temperature-evoked dynamics in *Caenorhabditis elegans* sensory
563 neurons. *Genes, Brain and Behavior* 15: 429–440.

564 Yu, Y. V., H. W. Bell, D. Glauser, S. D. Van Hooser, M. B. Goodman *et al.*, 2014 CaMKI-
565 dependent regulation of sensory gene expression mediates experience-dependent
566 plasticity in the operating range of a thermosensory neuron. *Neuron* 84: 919–926.
567

568 **Figure legends**

569 **Figure 1.** A forward genetic screen identified mutants defective in *C. elegans* thermotaxis. a)
570 Schematic of the forward genetic screen and the formulas for TTX and Dispersion indices. We
571 mutagenized the wild-type animals and screened their F₂ progeny for mutants defective in
572 thermotaxis. Animals that had migrated to the 23 °C or 17 °C region after cultivation at 17 °C or
573 23 °C, respectively, were isolated as mutant candidates. Thermotaxis behavior was quantified by
574 counting the number of animals in each of the eight sections along the temperature gradient. We
575 calculated TTX and Dispersion indices according to the formulas shown. b-d) Thermotaxis
576 behaviors of thermophilic (b), athermotactic (c) and cryophilic (d) mutant isolates. Distributions
577 of the animals in each section of the thermotaxis assay plate are shown as means ± SEM. TTX
578 and Dispersion indices are shown as dots. *P* values were determined by one-way ANOVA with
579 Tukey-Kramer test.

580

581 **Figure 2.** *nj98* and *nj111* carry mutations in the *pkc-1* locus. A chromosomal region to which
582 *nj111* was mapped is indicated. The gene structure of *pkc-1c* is shown. The black boxes indicate
583 exons, and the lines between the black boxes represent introns. Mutations identified in *nj98* and
584 *nj111* are shown. The nucleotides correspond to the sequence in the sense strand.

585

586 **Figure 3.** *nj97* is an allele of *pkc-2*. a) A chromosomal region to which *nj97* was mapped is
587 indicated. The gene structure of *pkc-2a* is shown. The black boxes indicate exons, and the lines
588 between black boxes represent introns. A mutation identified in *nj97* is shown. b) Thermotaxis
589 behaviors of the wild-type, *nj97* and *nj97* carrying a genomic clone containing the *pkc-2* locus.

590 Distributions of animals on the temperature gradient are indicated as means \pm SEM. TTX indices
591 are shown as dots. P values were determined by one-way ANOVA with Tukey-Kramer test.

592

593 **Figure 4.** *nj104* and *nj108* harbor mutations in the *plc-1* locus. A chromosomal region to which
594 *nj108* was mapped is indicated. The gene structure of *plc-1d* is shown. The black boxes indicated
595 exons, and the lines between the black boxes represent introns. Mutations identified in *nj104* and
596 *nj108* animals are shown.

597

598 **Figure 5.** *nj102* is an allele of *kin-4*. a) A chromosomal region to which *nj102* was mapped is
599 indicated. The gene structure of *kin-4d* is shown. The boxes indicate exons, and the lines
600 represent introns. The colored boxes denote the coding sequences corresponding to the DUF1908,
601 the kinase and the PDZ domains. Mutations associated with each mutant are shown. b)-f)
602 Thermotaxis behaviors of *kin-4* mutants. Distributions on the temperature gradients are shown as
603 means \pm SEM. TTX indices are indicated as dots. P values were determined by one-way
604 ANOVA with Tukey-Kramer tests in b), d), e) and f), and by one-way ANOVA with Dunnett
605 test in c).

606

607 **Figure 6.** A genetic screen identified mutations that suppressed the thermophilic defect of
608 *mec-2(nj89gf)*. a) Schematic of the genetic screen. We mutagenized *mec-2(nj89gf)* animals, and
609 their F₂ progeny cultivated at 20 °C were subjected to thermotaxis assays. Animals that had
610 migrated toward the 17 °C region were isolated as mutant candidates. b)-c) Thermotaxis
611 behaviors of mutant strains isolated from the *mec-2(nj89gf)* suppressor screen. Distributions of
612 animals on the temperature gradients were shown as means \pm SEM. TTX indices were indicated

613 as dots. *P* values were determined by one-way ANOVA with Tukey-Kramer test. *P* values
614 indicate the comparison of the wild-type and each suppressor isolates to *mec-2(nj89gf)*.

615

616 **Figure 7.** Mutations in *tx-3* suppressed the thermophilic defect of *mec-2(nj89gf)*. a) A gene
617 structure of *tx-3a* and a mutation found in *nj263* are shown. The black boxes indicate exons, the
618 white box untranslated sequence, and the lines introns. b) Thermotaxis behaviors of
619 *mec-2(nj89gf)* and *mec-2(nj89gf) nj260* animals with or without a transgene containing a
620 genomic fragment of the *tx-3* locus. Distributions of animals on the temperature gradients were
621 shown as means \pm SEM. TTX indices were indicated as dots. *P* values were determined by one-
622 way ANOVA with Tukey-Kramer test.

623

624 **Figure 8.** *crh-1(nj257)* suppressed the thermophilic defect of *mec-2(nj89gf)*. a) A chromosomal
625 region to which *nj257* was mapped is indicated. The gene structure of *crh-1a* and mutations
626 associated with each mutant are shown. The black boxes indicate exons, the lines introns, and the
627 white boxes untranslated sequences. b)-d) Thermotaxis behaviors of *crh-1* mutants. Distributions
628 of animals on the temperature gradients were shown as means \pm SEM. TTX indices were
629 indicated as dots. *P* values were determined by one-way ANOVA with Tukey-Kramer test.

630

631 **Figure 9.** *crh-1* regulates the AIY neuronal activity. a) Calcium imaging of the AFD
632 thermosensory neurons in immobilized animals expressing the calcium indicator, *YCX1.6*. The
633 temperature stimulus is shown in the blue lines. Individual calcium responses are shown as the
634 ratio changes of YCX/CFP in gray lines. The mean responses are indicated in the red lines. The
635 box and dot plots of the maximum ratio change and the half maximum temperature are shown.

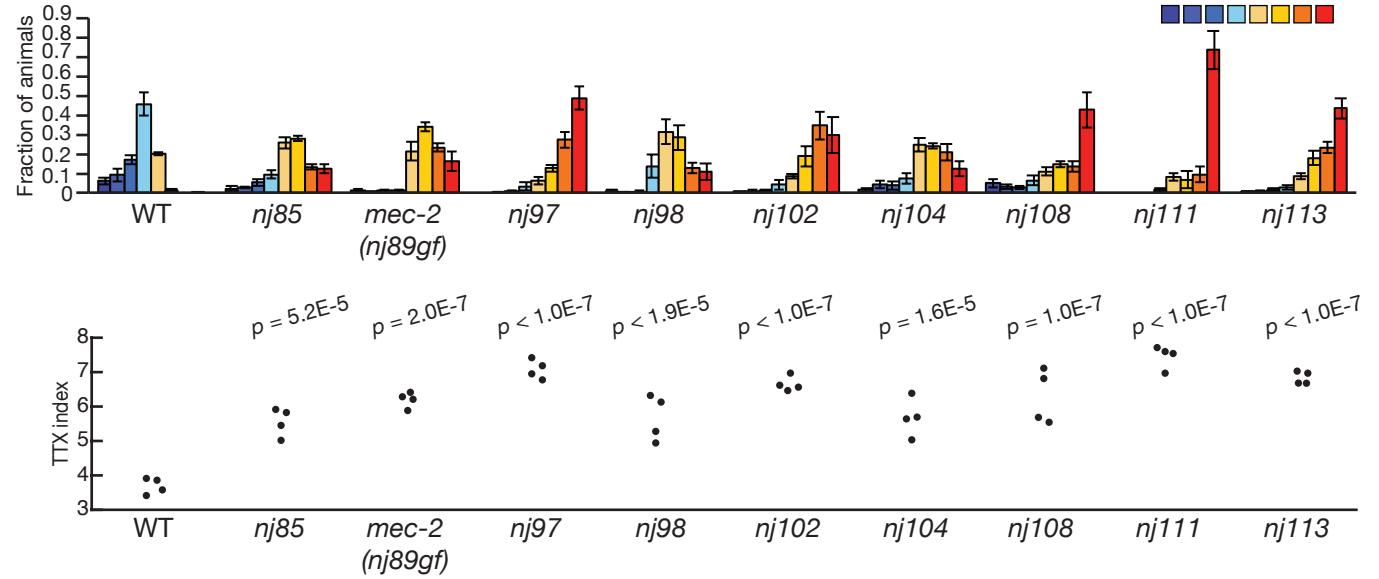
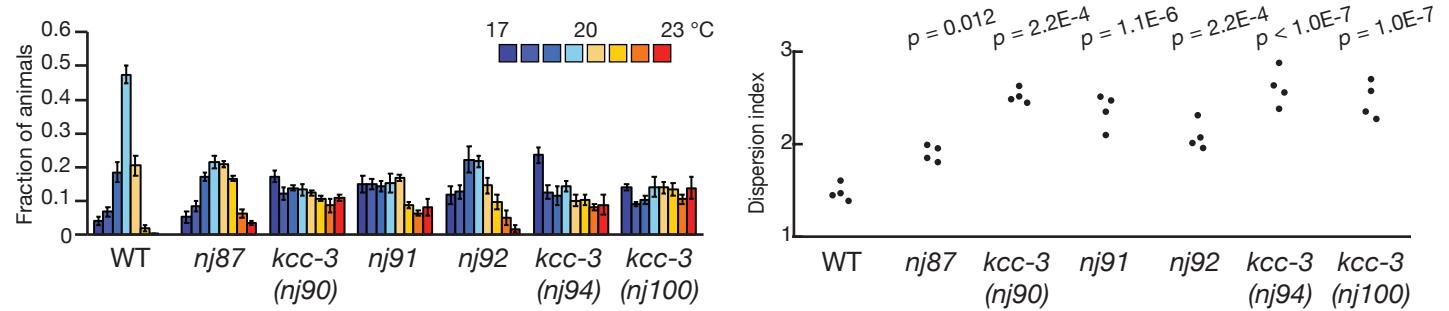
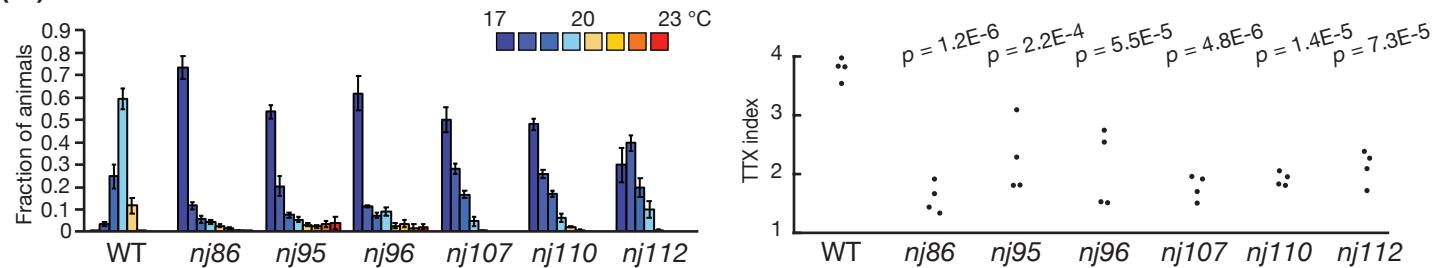
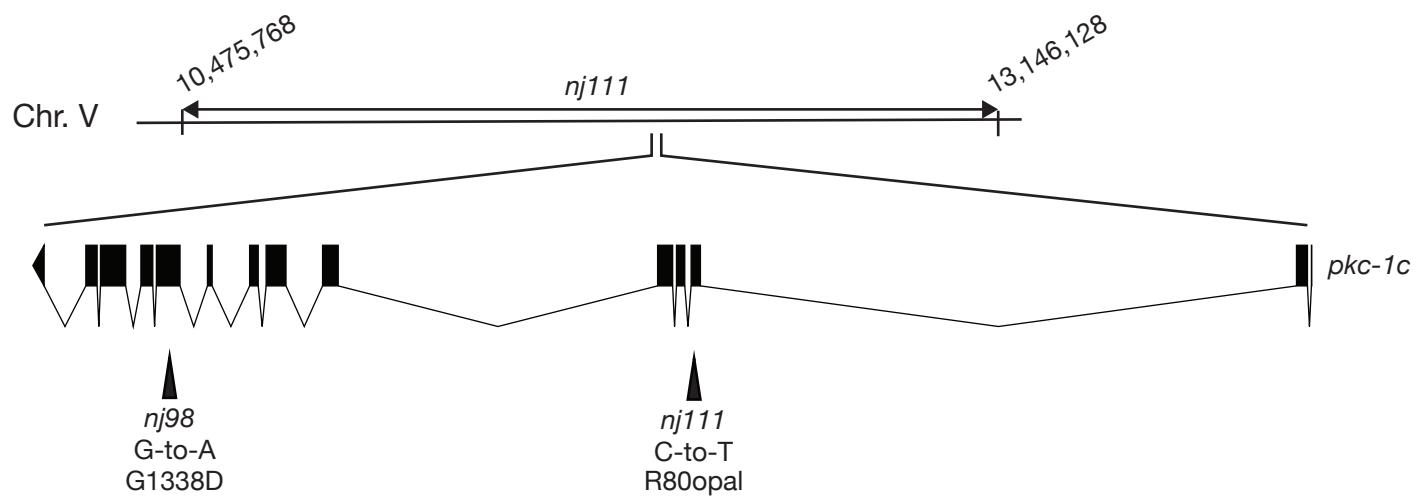
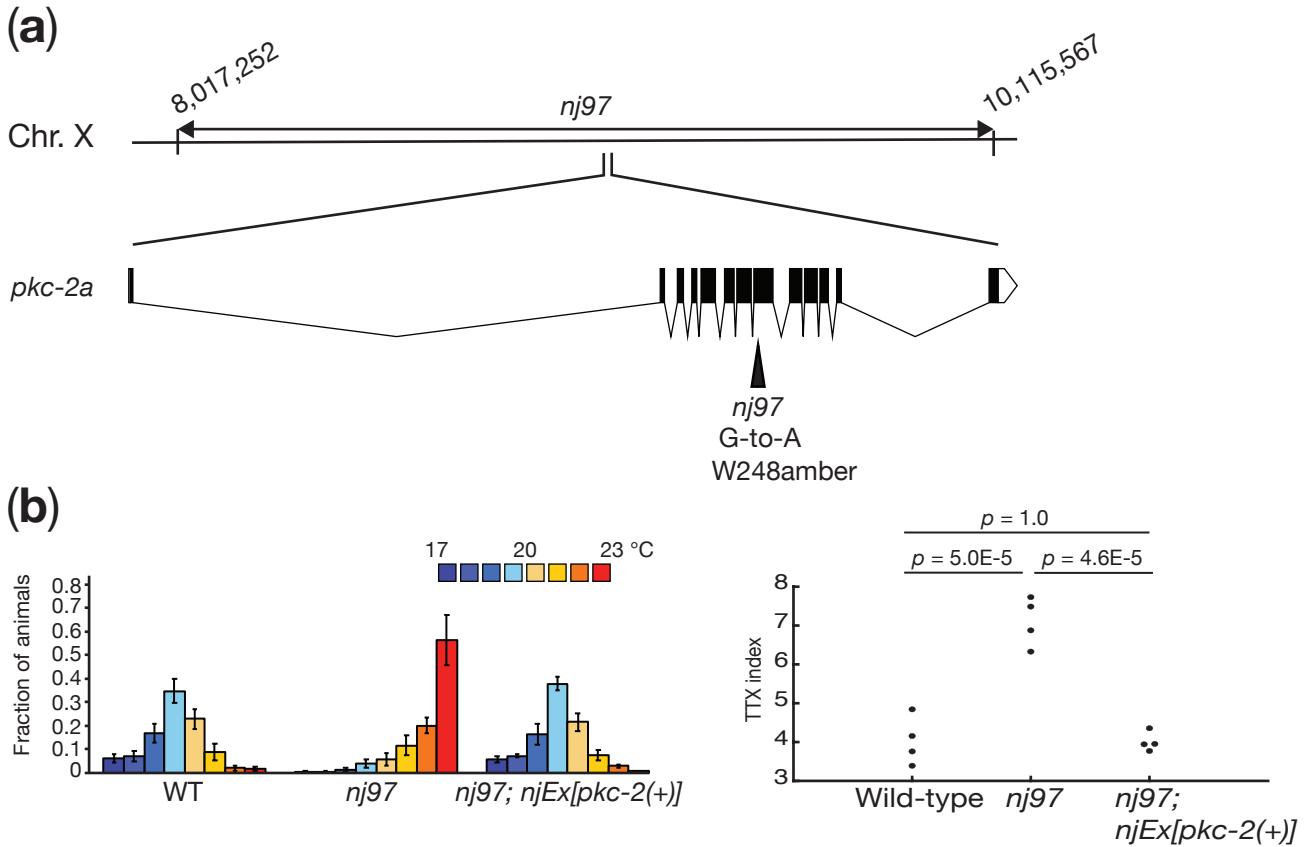

636 The boxes display the first and third quartiles, the lines inside the boxes are the medians, and the
637 whiskers extend to 1.5-time interquartile range from the boxes. *P* values were determined by
638 Wilcoxon rank sum test. *n* = 20 and 18 for *mec-2(nj89gf)* and *crh-1(nj257)*; *mec-2(nj89gf)*
639 animals, respectively. b) Calcium imaging from freely-moving animals expressing *YCX1.6* in the
640 AFD and AIY neurons. A representative of the temperature stimulus is shown. The heatmaps
641 indicate the standardized ratio change of the AFD and AIY calcium dynamics. The areas under
642 the curve of the AIY standardized ratio changes are represented in the box and dot plots. The
643 boxes indicate display the first and third quartiles, the lines inside the boxes are the medians, and
644 the whiskers extend to 1.5-time interquartile range from the boxes. *P* values were determined by
645 Wilcoxon rank sum test. *n* = 17 and 20 for *mec-2(nj89gf)* and *crh-1(nj257)*; *mec-2(nj89gf)*
646 animals, respectively.

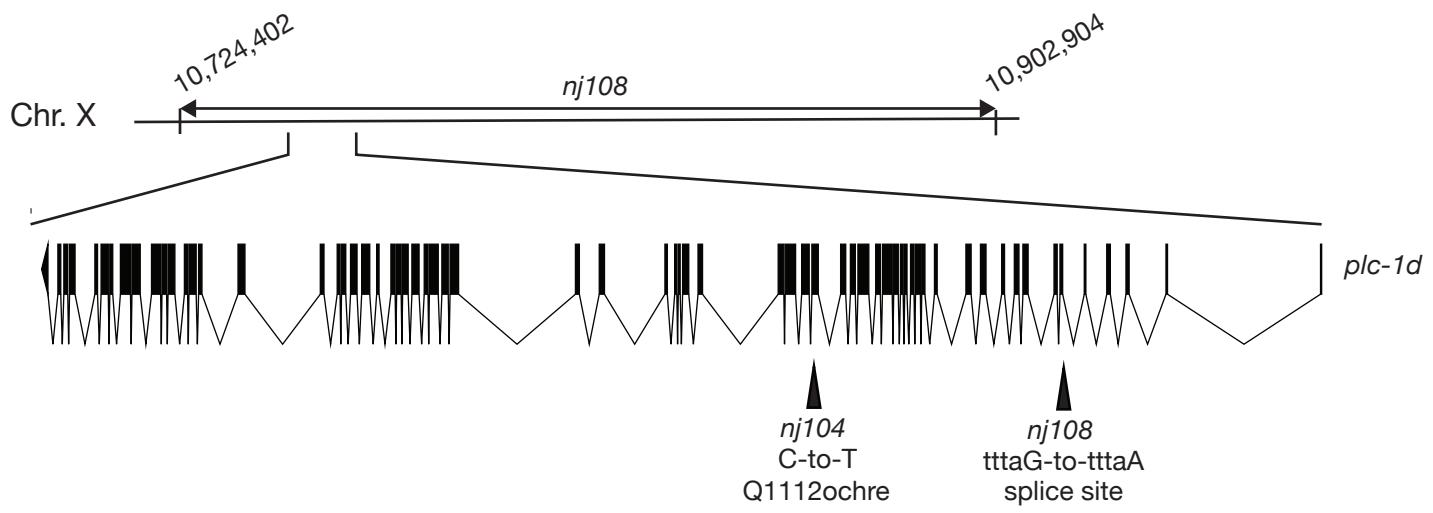
Figure 1


(a)


(b)


(c)


(d)


Figure 2

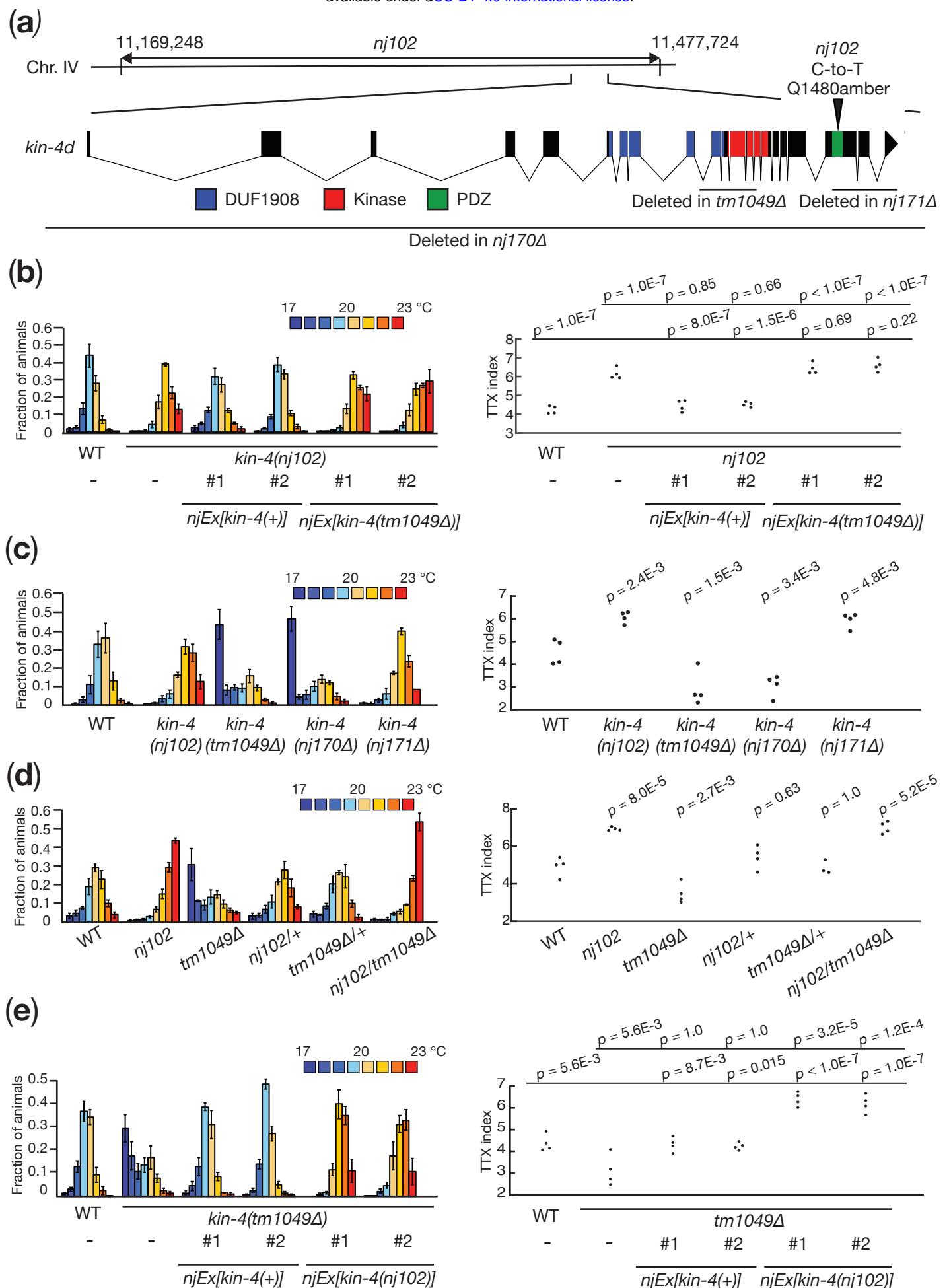

Figure 3

Figure 4

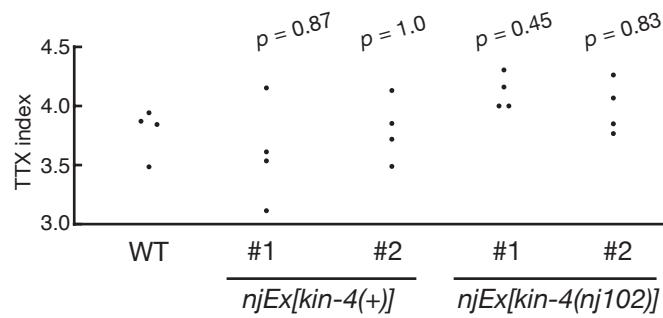
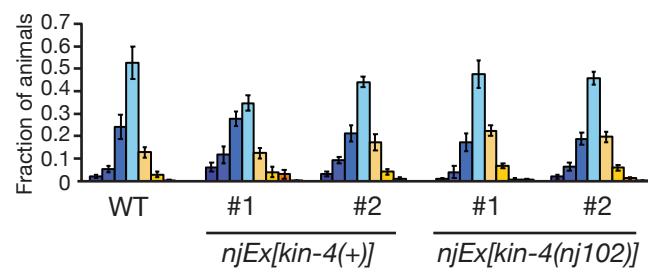
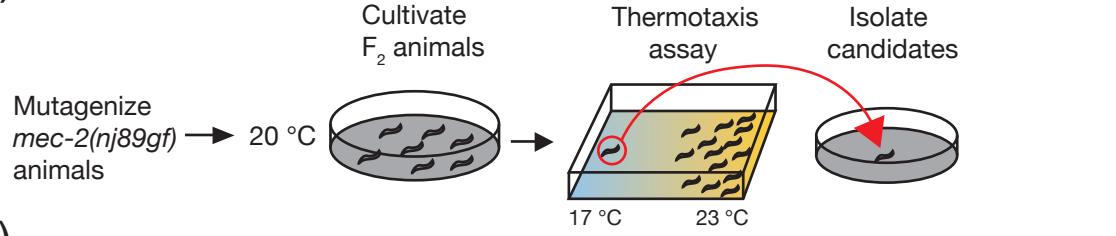



Figure 5


Figure 5, continued

(f)

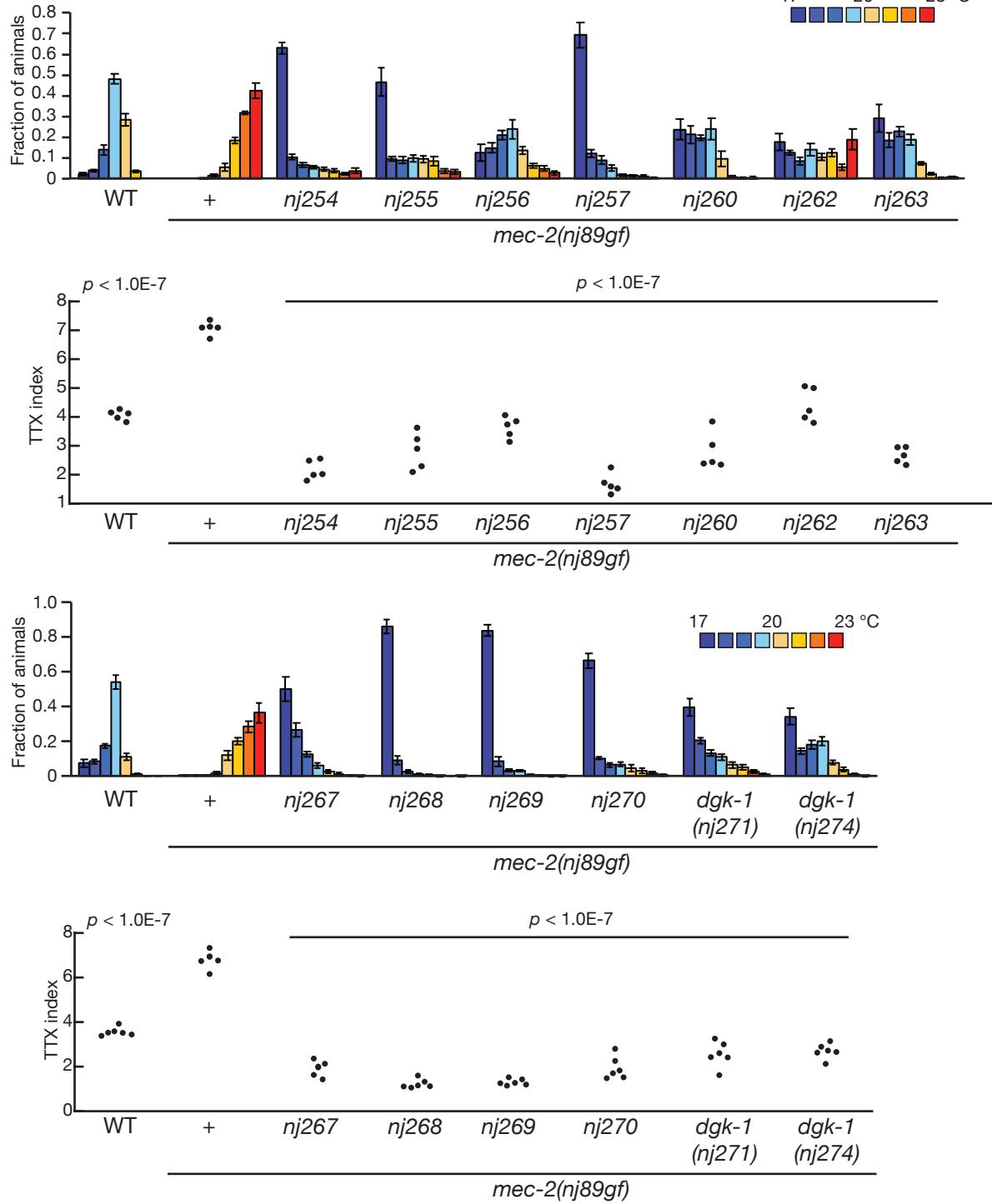
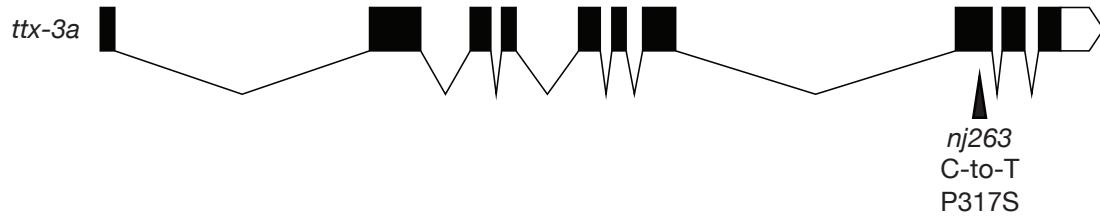


Figure 6

(a)



(b)

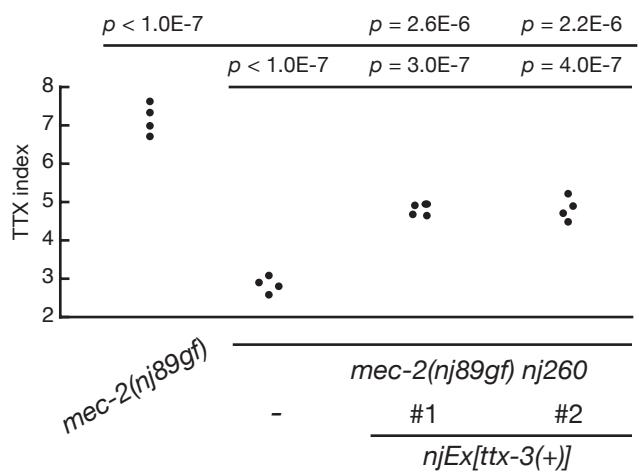
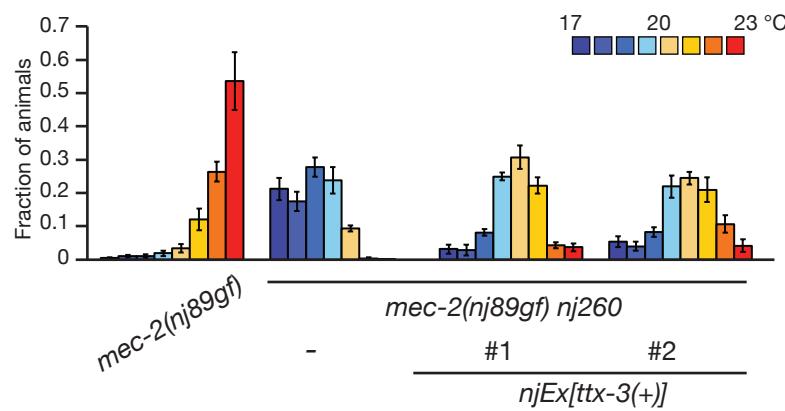
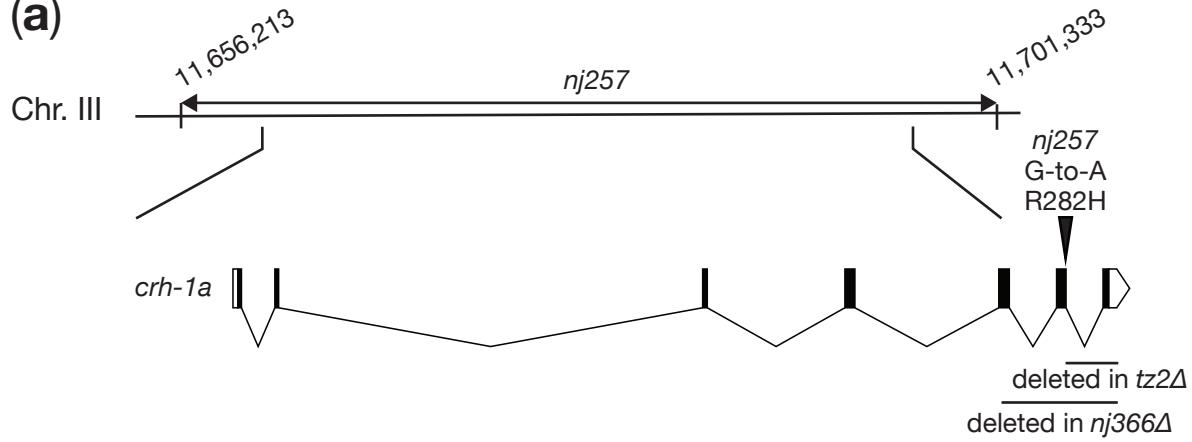



Figure 7

(a)



(b)

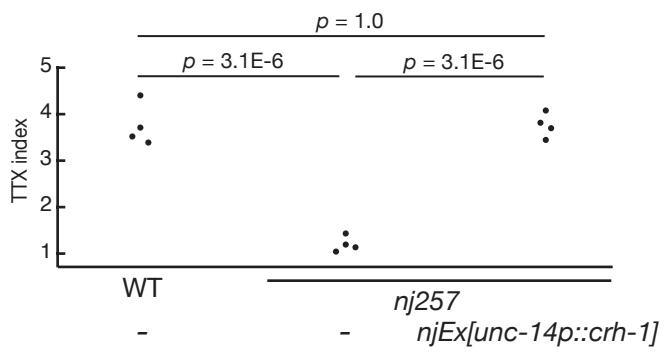
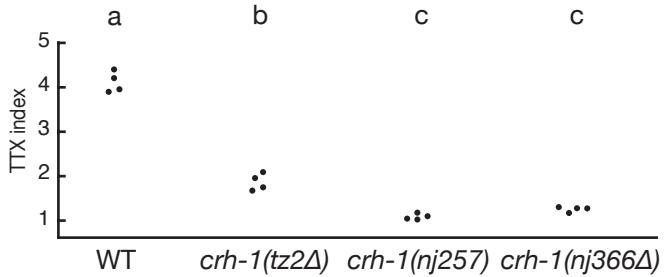
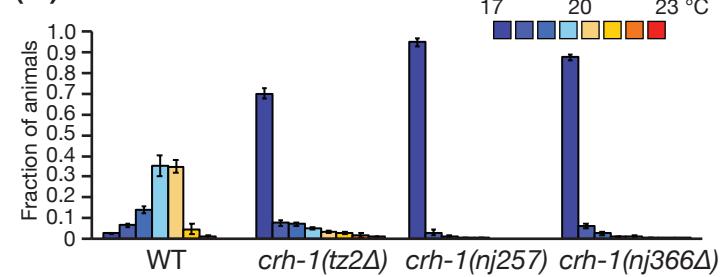
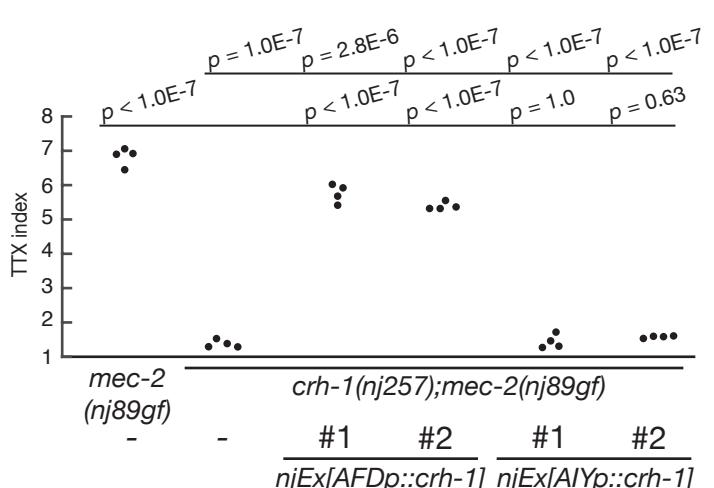
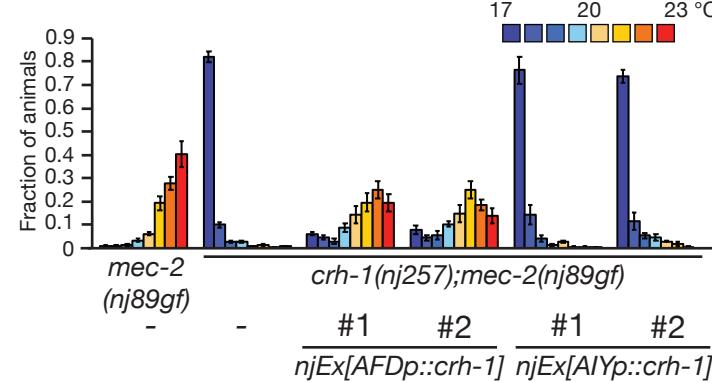
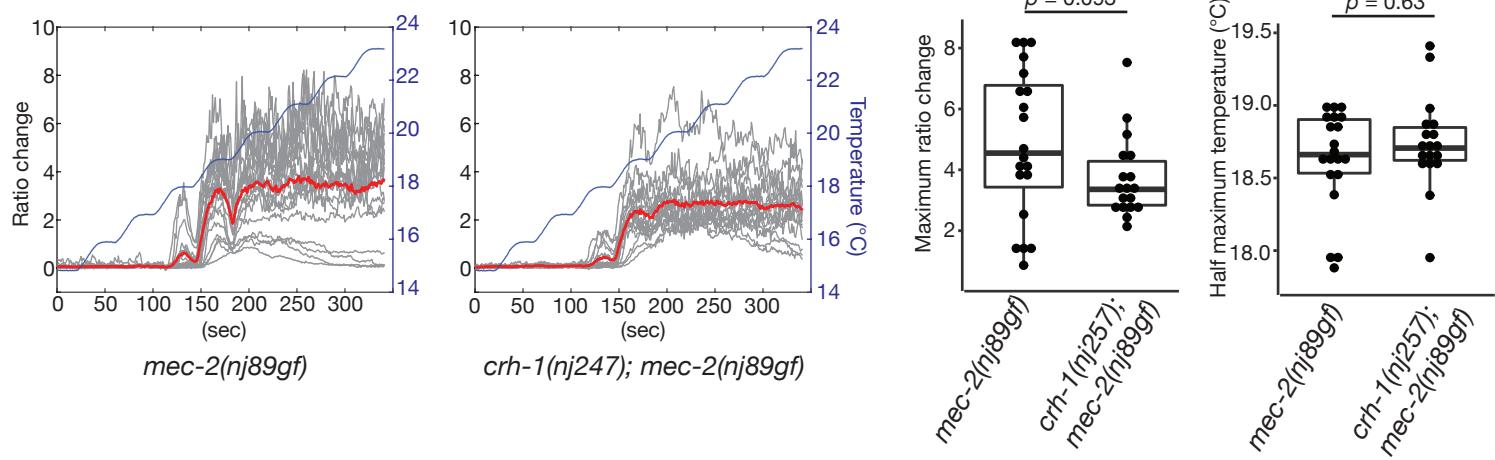



Figure 8



(a)



(b)

(c)



(d)

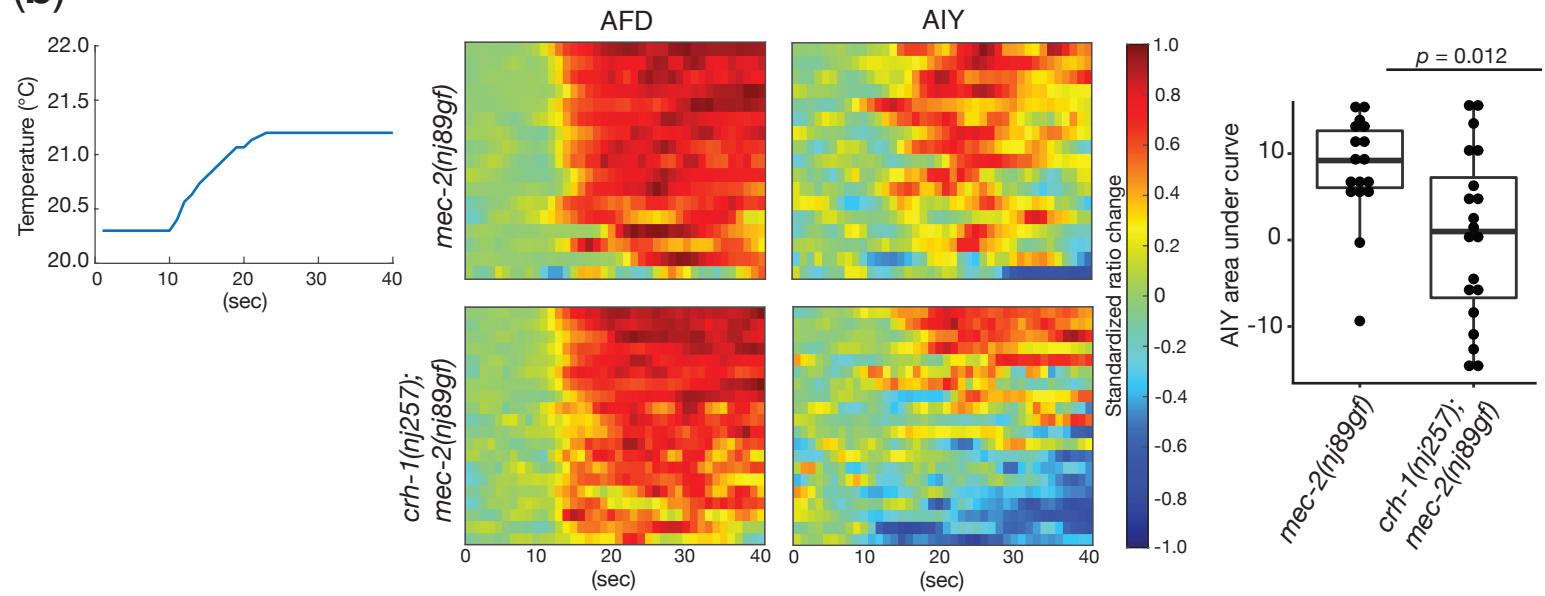


Figure 9

(a)

(b)

