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Abstract

Static statistical regularities in the placement of targets and salient distractors within the search

display can be learned and used to optimize attentional guidance. Whether statistical learning also extends

to dynamic regularities governing the placement of targets and distractors on successive trials has been

less investigated. Here, we applied the same dynamic cross-trial regularity (one-step shift of the critical

item in clock-/counterclockwise direction) either to the target or a distractor, and additionally varied

whether the distractor was defined in a different (color) or the same dimension (shape) as the target. We

found robust learning of the predicted target location: processing of the target at this (vs. a random)

location was facilitated. But we found no evidence of proactive suppression of the predictable distractor

location. Facilitation of the anticipated target location was associated with explicit awareness of the

dynamic regularity, whereas participants showed no awareness of the distractor regularity. We propose

that this asymmetry arises because, owing to the target’s central role in the task set, its location is

explicitly encoded in working memory, enabling the learning of dynamic regularities. In contrast, the

distractor is not explicitly encoded; so, statistical learning of distractor locations is limited to static

regularities.

Keywords: probability cueing, color swapping, feature-based suppression, priority-based

suppression

Public significance statement

Can we learn the cross-trial dynamic regularity of a target or a task-irrelevant salient distractor (e.g.,

one-step shift of the critical item in clock-/counterclockwise direction) to boost search performance? The

present study found robust learning of the predicted target location, but no evidence of proactive

suppression of the predictable distractor location. Facilitation of the anticipated target location was

associated with explicit awareness of the dynamic regularity. This asymmetry highlights the important

role of the target-centered task set in the learning of dynamic regularities.
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Asymmetric learning of dynamic spatial regularities in visual search: facilitation of anticipated

target locations, no suppression of predictable distractor locations

Our environment is extremely rich and complex, while our capacity for information processing is

limited. The brain must prioritize information relevant to the task at hand, while resisting irrelevant

information that might compete for our limited cognitive resources (Egeth & Yantis, 1997; Folk et al.,

1992, 2002; Folk & Remington, 1998, 2008; Wolfe et al., 1989). Fortunately, rather than being random,

our visual environment is highly structured. Accordingly, prior learning of environmental regularities and

decisions could be useful for solving similar tasks. For example, it is easy to locate a sushi box from your

familiar supermarket without being distracted much by other products, given that you know where the

sushi boxes are. In the laboratory, this phenomenon has been systematically investigated in terms of

so-called spatial ‘probability cueing effects’ (Geng & Behrmann, 2002, 2005). When a task-relevant

target occurs with a high probability at one location, our attentional system can learn and effectively use

this information for guiding search, facilitating target detection and response decisions (Druker &

Anderson, 2010; Geng & Behrmann, 2002, 2005; Hoffmann & Kunde, 1999; Jiang et al., 2013; Shaw &

Shaw, 1977).

Spatial probability cueing is not limited to prioritizing the target location. Rather, as has been

shown in recent studies, high probability of a salient but task-irrelevant distractor appearing at a specific

location or region can also be learned and used to de-prioritize the processing of such stimuli (e.g.,

Ferrante et al., 2018; Goschy et al., 2014; Leber et al., 2016; Sauter et al., 2018, 2019; B. Wang &

Theeuwes, 2018a; Zhang et al., 2019). For example, Goschy and colleagues (2014) designed a visual

search task that requires participants to search for a tilted bar amongst vertical bars and indicate whether

the target bar had a gap at the top or the bottom. In half of the trials, a colored bar was shown with high

probability (90%) in one half of the screen and with low probability (10%) in the other half. The

‘interference’ (i.e., the reaction time, RT, cost) engendered by a salient color distractor was greatly

reduced if the distractor was presented in the high probability region, indicating that statistical learning of

distractor locations can also boost search performance. In a control experiment, Goschy et al. further

confirmed that the interference reduction is not merely owing to repetition of the distractor location across

trials (which is more likely for likely distractor locations); rather, long-term statistical learning of likely

distractor locations, and attendant suppression processes, contribute to the efficient search guidance .

Collectively, these studies have shown that observers can learn/exploit, from experience, the

uneven spatial distributions of target and distractor in the search array over time, to minimize the

interference generated by distractors and optimize target selection. However, whether statistical learning

of target selection and distractor suppression are distinctive processes remains controversial. Some
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researchers argue that distractor suppression involves distinct processes to target selection (e.g., Noonan

et al., 2016), while others suggest that attentional allocation by statistical learning is a result of a unitary

mechanism: enhanced and, respectively, suppressed activities in spatial-attentional priority maps are just

two sides of the same coin (Ferrante et al., 2018). It should be noted that statistical learning is not limited

to the level of the spatial priority map. When the features or dimensions of the target and distractors are

non-overlapped, selective attention can operate at the lower levels of features and dimensions in the

functional architecture of the selective attention, as proposed by the Guided Search (Wolfe, 1994, 2021;

Wolfe & Gray, 2007) and the Dimension-Weighting Account (DWA; Found & Müller, 1996; Liesefeld &

Müller, 2019; Müller et al., 1995, 2003). For example, when color is never a target-defining dimension,

such as in search for an orientation-defined target, the visual system boosts search efficiency by

down-weighting signals from the (irrelevant) color dimension, and/or up-weighting signals from the

(relevant) orientation dimension. The same would apply to feature selectivity: if a ‘red’ item is never a

target, feature detectors tuned to red can be effectively down-weighted, and vice versa for detectors tuned

to the critical target feature. Top-down dimension- or feature-based weighting processes, which operate

prior to signal integration (across feature dimensions) by the priority map, are in principle spatially

unspecific, that is, they operate in parallel and equally across the scene, and to what extent the weights

can also be selectively tuned to particular display locations as a result of statistical learning (e.g., of

distractor locations) is unclear (see Zhang et al., 2021 for a discussion). In any case, when

dimension-based control is inapplicable (e.g., ignoring a salient intra-dimension distractor), spatially

specific control of attentional selection based on statistical learning would have to operate at the level of

the priority map, as has been shown in recent studies (Allenmark et al., 2019; Liesefeld & Müller, 2020).

The majority of the probability cueing studies demonstrating spatial statistical learning used a

fixed uneven probability manipulation, such as one region/location having a higher occurrence of the

target or distractor compared to the other region/locations (e.g., Geng & Behrmann, 2002, 2005; Goschy

et al., 2014; Sauter et al., 2018; Shaw & Shaw, 1977). The implicit assumption is that statistical learning

can modulate the activation pattern on the spatial priority map, by enhancing or suppressing specific

locations/regions. However, the question remains whether or not such a modulation of selection priorities

is stationary – adapting to a static spatial distribution of targets and distractors – or dynamic – adaptive to

predictable changes in the distribution of targets and distractors. In a recent study, Li and Theeuwes

(2020) introduced a dynamic cross-trial regularity to explore this question. In their paradigm, some target

locations were predictably coupled across trials, such as a target occurring at the left-most (or

respectively, the top) display location on trial n would invariably lead to the next target, on trial n+1,

occurring at the rightmost (or respectively, the bottom) location (but not vice versa). Although apparently

unbeknown to participants, (Li & Theeuwes, 2020) found this target regularity to nevertheless facilitate
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search and boost accuracy. In a more recent study, Wang et al. (2021) further explored whether such a

flexibility would also characterize statistical learning, and attendant suppression, of distractor locations. In

their adaptation of the ‘classical’ additional singleton search paradigm with a circular display

arrangement, a salient color distractor ‘jumped’ by one location in either clockwise or, respectively,

counterclockwise direction across consecutive trials, with 100% predictability. Wang et al. found that

participants could relatively rapidly learn this cross-trial regularity to facilitate search, compared to a

control group performing the task under conditions in which placement of the distractor across trials was

random (i.e., the ‘regular’ group showed a reduced distractor interference relative to the distractor-absent

baseline compared to the ‘random’ group). Note, though, that in their study the odd-one-out distractor

color was either fixed (their Exp. 1) or randomly swapped between two colors (their Exp. 2), while the

color of the (color-defined) distractor was never the color of the (shape-defined) target (white). Thus, as

suggested by dimension-based accounts of distractor handling (Liesefeld & Müller, 2019), it would

remain possible to globally, in a spatially non-specific manner, suppress feature contrast signals from the

color dimension and so reduce their weight in the computation of the priority map. In fact, in Wang et al.

(2021), the difference in interference between their ‘regular’ and the ‘random’ group was diminished

towards the end of testing, suggesting that both groups were operating the same, spatially nonspecific

suppression strategy (at least in the end); the reduced interference in the ‘regular’ group earlier on might

then be explained by distractors occurring consistently across trials within the same (regularly moving)

display region (of adjacent locations) increasing the learning rate compared to distractors occurring

randomly in all display directions.

It has been shown that whether or not the target and distractor share the same defining dimension

is a critical factor determining which strategy – priority-based or dimension-based suppression – is being

adopted (Allenmark et al., 2019). Without color swapping between the distractor and the target (more

precisely, between the distractor and all non-distractor items, the latter including the target), observers

tend to adopt a dimension- (or feature-) based suppression strategy; with target-distractor color swapping,

they develop priority-map-based suppression (Allenmark et al., 2019; Zhang et al., 2019). This echoes a

similar idea proposed in the contingent capture hypothesis (Folk et al., 1992), namely, that the top-down

attentional set for target-defining features determines which items are prioritized for selection: distractors

can be effectively down-weighted only if they mismatch, rather than match, the features critical for

discerning the target among the non-target items in the display – where the attentional control set

influences signal coding below the level of the priority map, in a spatially nonspecific manner.

Thus, given that statistical learning of item locations for attentional prioritization can occur at

multiple levels in the functional architecture of search guidance, whether dynamic enhancement and

suppression are purely based on the predictive location of the target and, respectively, distractor remains
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elusive. To systematically investigate this, we devised the same cross-trial transitional probability

structure for predictable target locations and, respectively, predictable distractor locations. In addition, we

applied the same probability manipulation to distractors defined in the same and, respectively, a different

dimension to the target (same- and different-dimension distractor, respectively) to establish whether

(dynamic) statistical learning of distractor suppression would depend on the target-distractor dimensional

relation. We hypothesized that if statistical learning of the predictable locations of the target and distractor

are the ‘two sides of the same coin’, we should observe a similar pattern of dynamic spatial learning and

attendant signal modulations – though in opposite directions: prioritization of target and de-prioritization

of distractor signals – on the attentional priority map. By contrast, if dynamic modulation of spatial

priorities by statistical learning is tied to the positive search goal, namely, to find some pre-specified

target, we would expect to see a dissociation between dynamically predictable target locations (which

should be learnable) and distractor location (which may not be learned, as they are only part of the

negative task set). Specifically, in Experiment 1, we adopted the classic additional singleton paradigm and

introduced cross-trial spatial regularities for the singleton color distractor (Experiment 1a) and,

respectively, the singleton shape target (Experiment 1b, see Figure 1). The location of the critical item

(either the target or the distractor) would move by one location across trials in one direction, either

clockwise or counterclockwise (counterbalanced across participants) with a high probability (80%), or the

opposite direction with a low probability (10%), or jump randomly to one of the non-adjacent locations

(including location repetitions) (10%). Note that, in contrast to Wang et al. (2021), this implements a

within-participant design (with the same participants performing both the regular and the random,

baseline condition), avoiding spurious effects attributable to random group differences. To promote

statistical learning taking place at the level of the priority map, we randomly swapped the target and the

distractor color across trials, which previous research (Allenmark et al., 2019; Zhang et al., 2019)

indicates limits learning at a level below the priority map (the level of specific features or feature

dimensions). In Experiment 2, we used a letter search paradigm adopted from (Geng & Behrmann, 2002,

2005) and introduced a same-dimension distractor, rendering dimension-based distractor handling

inapplicable. Again, the same cross-trial transitional probability structure was applied to the distractor

(Experiment 2a) and the target (Experiment 2b). To preview the main results, we found robust statistical

learning of dynamically predictable target locations, but failed to find any learning of dynamically

predictable distractor locations.
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Experiment 1: Transitional regularity with the singleton paradigm

In Experiment 1, we applied the cross-trial transitional location regularity to the distractor

(Experiment 1a) and the target (Experiment 1b) separately in a singleton target search paradigm with

Experiment (a vs. b) as a between-subject factor.

Method

Participants
24 healthy university students were recruited for Experiments 1a (mean age ± SD: 27.3 ± 4.2

years; age range: 21-39 years; 13 females) and 1b (mean age ± SD = 26.0 ± 3.2 years; age range: 21-33

years; 9 females) respectively. All participants reported normal or corrected-to-normal visual acuity. And

all passed the Ishihara color test (Clark, 1924), ensuring they had normal color perception (especially for

red and green). The participants can thus be regarded as representative of the standard population of

healthy (young) adults.

The sample size was determined based on previous studies, in particular, Li and Theeuwes

(2020), who had implemented a similar design introducing cross-trial regularities (for the target), with an

effect size of = 0.42 (average across all experiments). We conducted an a priori power analysis, with the𝑓 

effect size of = 0.42, = .05, and 98% power (1- ), which yielded a minimum sample size of n = 20𝑓 α β

(G*Power 3.1; Faul et al., 2007). However, different from Li and Theeuwes, our study comprised both a

singleton search and a letter search paradigm. Thus, to be on the safe side, we increased the sample size to

24 per tested group – an n that had also been used in another study with a similar design (Ferrante et al.,

2018). All participants provided written informed consent prior to the experiment and were paid 9 Euro

per hour or given correspondent course credit for their participation. This study was approved by the

LMU Faculty of Pedagogics & Psychology Ethics Board. All data in Experiment 1 were collected in

2021.

Apparatus and Stimuli
The experiment was conducted in a sound-attenuated and moderately lit test room. Participants

sat in front of the CRT display monitor, with a viewing distance of 60 cm. The search stimuli, presented at

1280 × 1024 pixels screen resolution and a refresh rate of 85 Hz, were generated by customized

MATLAB R2019b (The Math- Works® Inc) code with Psychophysics Toolbox Version 3 (PTB-3)

(Brainard, 1997).
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Figure 1. (a) Illustration of three cross-trial target- or, respectively, distractor-location transitions in Experiments 1

and 2. In each experiment, there were three types of the location change of the critical item (target or distractor)

across consecutive trials: with 80% probability, the critical item would move to the adjacent location, either in

clockwise or counterclockwise direction (here, indicated by the red dashed circle marking the frequent location).

The direction was for a given participant and counterbalanced across participants. With 10% probability, the critical

item would shift to the adjacent location in the opposite direction (indicated by the green dashed circle marking the

infrequent location). On the remaining 10% of trials, the critical item would move randomly to any of the other

locations, including re-appearing at the same location (indicated by the yellow dashed circle marking a random

location). (b) Schematic illustration of four types of search display in which we implemented the cross-trial

transitional regularity of the critical item (marked by white dashed circles, which were not presented in the

experiments) to the left. The critical item was a color singleton distractor in Experiment 1a, the shape-defined target

in Experiment 1b, the ‘T’-like distractor in Experiment 2a, and the ‘T’ target in Experiment 2b. As depicted in the

upper panels, the target in Experiment 1 was an odd-one-out shape item (e.g., the circle at the 3-o’clock position in

the upper left panel). In Experiment 2, the target was a left- or right-oriented T shape (e.g., at the 6-o’clock position

in the bottom left panel).

As illustrated in Figure 1b, a search display consisted of eight items, each consisting of an outline

shape (either diamond or circle) and a oriented bar (horizontal or vertical) inside it. The eight items were

equidistantly arranged around an imaginary circle (radius 3.6° of visual angle). The diameter of the circle

shapes was 1.4° of visual angle, the side length of the diamond shapes ​​1.9°, and the gray vertical or

horizontal line inside the shapes 1.2° 0.3°. Each display contained one singleton-shape target and seven×

non-targets. When a singleton distractor was present (replacing one of the non-targets), its color differed

in color from the seven shapes shapes, being either green (CIE [Yxy]: [16.8, 0.306, 0.549]) among

homogeneous red shapes (CIE [Yxy]: [11.6, 0.605, 0.336]), or red amongst homogeneous green shape.
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All search displays were presented on a black screen background (CIE [Yxy]: 1.72, 0.329，0.265]), with a

white fixation cross (0.76° × 0.76°; CIE [Yxy]: 79.7, 0.298, 0.298) in the center.

Design and procedure

A target, which was a shape-defined singleton (either a circle among diamonds or a diamond

among circles, equally likely randomly assigned on each trial) was present on all trials. In order to realize

a distractor-absent baseline in Experiment 1a without interrupting the structure of the cross-trial

transitional probabilities of the distractor, we presented the singleton-distractor present and -absent trials

in separate blocks. There were 16 blocks in Experiment 1a (4 singleton-distractor-absent blocks were

randomly interleaved the other, singleton-present blocks). Each block consisted of 60 trials, yielding a

total of 960 trials (240 distractor-absent trials and 720 distractor-present trials). Experiment 1b also

consisted of 16 blocks, but without any singleton distractor. In both Experiments 1a and 1b, the target

position was overall (across all trials) equally distributed among the eight possible locations, and

participants had to respond to the orientation of the line inside the target as fast and accurately as possible.

Importantly, the placement of the critical item – the color singleton distractor in Experiment 1a,

and the target singleton in Experiment 1b – across consecutive trials n and n+1 was made predictable in a

probabilistic manner. Specifically, in the majority of trials (80%), the location of the critical (distractor or

target) item was shifted to an adjacent position in either clockwise or counterclockwise direction (with the

main direction being fixed for a given participant, but counterbalanced across participants); hereafter, this

will be referred to as the frequent condition. On another 10% of the trials, the position of the singleton

distractor was shifted to the adjacent location in the opposite direction to the frequent condition (i.e., if the

main direction was clockwise, the shift was counterclockwise, and vice versa) – the infrequent condition.1

And on the remaining 10% of the trials, the position of the critical item was randomly selected among the

six remaining alternative locations (including repeated presentation at the same location) – the random

condition. Of note, the statistical regularities were only assigned to the position of the singleton distractor

or, respectively, the singleton target. Its color and shape varied randomly across trials. That is, the colors

of the distractor and the target (as well as the other, non-distractor item) could randomly swap across trials

– as in previous studies (e.g., Allenmark et al., 2019; Theeuwes, 1992), but different from Wang et al.

(2021) design, in which the colors of the distractor were never the target color.

A trial started with a fixation cross presented in the center of the screen for 500 ms, followed by

the search display (Figure 1b), which was shown until the participant gave a response. Participants were

1 This condition was introduced to allow us to compare two conditions with the same inter-trial distance (movement of the critical
item by one step) but different probability. With only the frequent and random conditions, we would have had too few trials on
which the critical item moved the same distance in the random as in the frequent condition (but in the opposite direction). Figure
shown in 6c, comparing conditions with the equal distance turned out ‘diagnostic’ at least in one of the experiments.
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instructed to search for the shape-defined target and discriminate the orientation of the bar inside it by

pressing the leftward- (‘horizontal’) or upward-pointing (‘vertical’) arrow on the keyboard with their

right-hand index or middle fingers, respectively. If participants issued an incorrect response, a feedback

display with the word “Error!” in the screen center was presented for 500 ms. The next trial started after

an inter-trial interval of 500–750 ms. Between blocks, participants could take a break of a self-determined

length.

At the end of the experiment, participants completed a post-experiment questionnaire in which

they had to give two forced-choice responses: First, participants had to indicate whether or not they had

noticed any regularity in the way Critical Items (CI: the target or distractor) had moved across trials. Next,

they need to report the specific regularity of the movement, by choosing one of seven options for the most

frequent type of movement (CI moved to opposite end of circle; CI moved one step clockwise; CI moved

one step counterclockwise; CI moved two steps clockwise; CI moved two steps counterclockwise; CI

moved three steps clockwise; CI moved three steps counterclockwise.)

Transparency and Openness
The experimental code, raw data, and data analyses of the present study are publicly available at:

https://github.com/msenselab/asymmetric_statistical_learning. The pilot study (reported in the Appendix)

was carried out in the winter semester 2018/19. Experiments 1 and 2 were conducted in 2021.

Bayesian analyses
Bayesian analyses of variance (ANOVAs) and associated post-hoc tests were carried out using

JASP 0.15 (http://www.jasp-stats.org) with default settings. All Bayes factors for ANOVA main effects

and interactions are inclusion Bayes factors calculated across matched models. Inclusion Bayes factors

provide a measure of the extent to which the data support inclusion of a factor in the model. In more

detail, inclusion Bayes factors compare models with a particular predictor to models that exclude that

predictor: they indicate the amount of change from the prior inclusion odds (i.e., the ratio between the

total prior probability for models that include a predictor and the prior probability for models that do not

include it) to the posterior inclusion odds. Using inclusion Bayes factors calculated across matched

models means that models that contain higher-order interactions involving the predictor of interest are

excluded from the set of models on which the total prior and posterior odds are based.
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Results

Experiment 1a: transitional regularity of the distractor location

Error rates and Mean RTs

Trials with extreme RTs (slower than 2500 or faster than 200 ms) were excluded from further

analysis (4.5% of trials). While the average error rate was overall low (4.7%), more errors occurred on

distractor-present vs. -absent trials (5.4% vs. 3.4%), t(23)= 3.627, p = .001, dz = .74, with the error rates

being comparable among the three (the frequent, infrequent, and random) distractor-location transition

conditions, F(2, 46) = 1.002, p = .375, = 0.042, BFincl = .286.𝜂
𝑝
2

The mean (correct) RTs for the four distractor conditions (the distractor-absent baseline along

with the frequent, infrequent, and random distractor-location transition conditions) are shown in Figure 2.

As can be seen, the mean RT was faster in distractor-absent vs. distractor-present blocks, with the

interference caused by distractor presence being significant, t(23) = 6.167, p < .001, dz = 1.26. Similar to

the error-rate pattern, however, the RTs for the three cross-trial distractor-location transition conditions

did not differ significantly among each other, F(2,46) = .168, p = .847, = .007, BFincl = .134 . That is,𝜂
𝑝
2  

participants failed to learn the (frequent) cross-trial ‘movement’ of the location of the distractor to reduce

its interference. This finding with a dynamic regularity of the distractor placement differs from that seen

in ‘standard’ distractor-location probability-cueing paradigms, in which a fixed (stationary) frequent

location/region of the distractor can be effectively learned to reduce distractor interference (Ferrante et al.,

2018; Goschy et al., 2014).

Figure 2. (a) Mean RTs and (b) Error rates, with associated standard errors, for Experiment 1a, separately for the

distractor-absent baseline and the  random, infrequent, and frequent cross-trial transitional distractor-location
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conditions. (c) Mean RT as a function of the inter-trial distractor distance (0 indicates the distractor repeated at the

same location, while 1 denotes the distractor moved one position to its neighbor, including both the frequent and

infrequent directions). Error bars represent one standard error of the mean.

It should be noted that the random cross-trial transition condition included exact location

repetitions, which could potentially trigger (reactive) short-term inter-trial distractor-location suppression,

facilitating search performance on such trials (see, e.g., the Supplementary in Sauter et al., 2018), for a

detailed analysis of such effects). To examine for such inter-trial ‘negative-priming’ effects, we

re-analyzed the mean RTs based on the inter-trial distractor distance (see Figure 2c, in which a distance of

0 denotes an inter-trial distractor-location repetition, while the distance of 1 includes all trials from the

cross-trial frequent and infrequent distractor-location transition conditions, in an 8:1 ratio). Even though

there was a numerical facilitation of 51 ms for distractor-location repetitions vs. the combined frequent

and infrequent cross-trial transitions, t(23) = -1.922, p = .067, dz = -0.392, BF10 = 1.035, a

repeated-measures ANOVA revealed the RTs to be (largely) comparable across the five inter-trial

distances, F(4,92) = 1.970, p = .106, = .079, BFincl = .445 .𝜂
𝑝
2 

In standard (static) distractor-location probability-cueing paradigms (e.g., Goschy et al., 2014; B.

Wang & Theeuwes, 2018a), it is often found that learned suppression of frequent distractor locations also

impacts processing of the target when it occurs at such a location, evidenced by longer RTs to targets at

frequent vs. infrequent distractor locations – typically assessed on distractor-absent trials. However, here,

the distractor-absent trials were presented in separate (mini-)blocks from the distractor-present trials, so

that it was not possible to estimate the target-location effect based on the distractor-absent trials. Thus, to

examine for impeded target processing at the (dynamically predicted) frequent distractor location in our

paradigm, we calculated the target-location effect based on our random distractor-location condition.2 A

repeated-measures ANOVA with the factor Target Location (target occurring Frequent, Infrequent, and

Random distractor location) failed to revealed any significant difference among the three target-location

conditions (1104,1078, and 1099 ms for the Random, Infrequent, and Frequent locations, respectively),

F(2,46) = 0.579, p = .564, = .025, BFincl = .179. This null-finding is consistent with the absence of a𝜂
𝑝
2 

distractor-location effect (see Figure 3a).

2 Note that Wang et al. (2021) could not examine for such an effect because, in their design, the distractor appeared
with 100% certainty at the location one step ahead of the current location in a given direction. That is, a target could
never occur at this perfectly predicted location.
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Awareness test

Among the 24 participants, only three reported having noticed a regularity in the distractor

movement. However, none of them was able to identify the specific regularity present in their search

displays.

Experiment 1b: transitional regularity of the target location

Error rates and Mean RTs

Outliers RTs (slower than 2500 or faster than 200 ms, 6.0%) were again removed prior to further

analysis. Similar to Experiment 1a, the error rates were generally low (3.5% of trials) and comparable

across the three transitional target location conditions, F(2, 46) = .320, p =  .728, = .014, BFincl = .162.𝜂
𝑝
2 

As depicted in Figure 3, the mean (correct) RTs were faster in the frequent cross-trial

target-location transition condition relative to the infrequent and random conditions. A one-way

repeated-measures ANOVA confirmed a significant Transition main effect, F(2,46) = 5.643, p = .006, 𝜂
𝑝
2 

= .197. Post-host comparisons with Bonferroni-correction revealed the RTs to be faster in the frequent

(1094 ms) vs. both the infrequent (1158 ms), t(23) = 2.970, p = .014, dz = 0.606, and random (1155 ms),

t(23) = 2.845, p < .001, dz = 0.581, transition conditions, with comparable RTs between the latter two

conditions, t(23) = -0.125, p = 1.000, dz = -0.009, BF10 = .219. This pattern indicates that participants

were able to exploit the cross-trial transitional regularity of the target placement to facilitate search

performance.

Figure 3. (a) Mean RTs and (b) Error rates, with associated standard errors, for Experiment 1b, separately for the

random, infrequent, and frequent cross-trial transitional target location conditions. (c) Mean RT as a function of the
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inter-trial target distance (0 indicates the target repeated at the same location, while 1 denotes the target moved one

position to its neighbor, including both the frequent and infrequent directions). Error bars represent one standard

error of the mean.

We also examined for short-term inter-trial positional-priming effects (e.g., Allenmark et al.,

2019, 2021; Sauter et al., 2018) by comparing RT performance across the various inter-trial target

distances (Figure 3c). A repeated-measures ANOVA, with the single factor of inter-trial Target Distance,

failed to reveal revealed a significant Distance effect, F(4,92) = 1.753, p = .145, = .071, BFincl = .329 .𝜂
𝑝
2 

The numerical facilitation, of 60 ms, for the inter-trial target distance of 1 vs. the target location repetition

(distance 0) largely originated from the frequent cross-trial transition condition (which contributed 8 times

more trials than the infrequent condition) (Figure 3a). This suggests that short-term inter-trial target

location priming was not as strong as the dynamic, cross-trial probability cueing of the target location.

Awareness test

According to the questionnaire, 15 out of 24 participants reported noticing the regularity of the

target movement, and ten of them indicated the right target movement direction. We classified those ten

participants as the ‘aware’ group, and the other 14 participants as the ‘unaware’ group.

To examine for any differences between the two groups in statistical learning, we estimated the

probability-cueing effect in terms of the RT difference between the infrequent and frequent transition

conditions for individual participants. A positive probability cueing effect means that the mean RT is

faster in the presence of the critical item at the frequent relative to the infrequent location, while a

negative probability cueing effect indicates a reverse effect. Figure 4 plots the distribution of the

probability-cueing effect for the two groups. The mean probability-cueing effects were 116 ms and 25 ms

for the aware and unaware groups, respectively – with the effect being robust for the aware group, t(9) =

2.356, p = .043, dz = .745, but not for the unaware group, t(13) = 1.480, p = .163, dz = .396, BF10 =

0.660. Comparison between two groups revealed the probability-cueing effect was numerically higher for

the aware vs. the unaware group, however it was not significant, t(22) = 1.970, p = .062, dz = .816, BF10=

1.445. This pattern suggests that becoming aware of the dynamic probabilistic change of the target

location across trials helped participants to more effectively deploy visuo-spatial attention to the predicted

target location.
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Figure 4. Violin plots of the probability-cueing effect ( ), separately for the𝑅𝑇
𝑖𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡

− 𝑅𝑇
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡

aware and unaware groups of participants.

Comparison of probability-cueing effects between Experiments 1a and 1b

An independent-samples t-test comparing the probability-cueing effects between Experiment 1a

and Experiment 1b (–1.1 ms vs. 63.3 ms) turned out to be significant: t(46) = -2.480, p = .017

(two-tailed), dz = -.716. In other words, participants could readily pick up the probabilistic change of the

target position across trials and utilize it to enhance their search performance, whereas they found it hard

to learn the same change of the distractor position across trials.

Discussion
In Experiment 1, we manipulated the cross-trial transitional location probability of the singleton

distractor (Experiment 1a) and the singleton target (Experiment 1b) in a standard (additional) singleton

search paradigm. We found that the regularity of the cross-trial transition of the target location could be

learned successfully to facilitate target search. In contrast, the dynamic regularity of the cross-trial

distractor location had no significant effect on search performance and the Bayesian results supported the

null hypothesis, even though the structure of the transitional probability manipulation was exactly the

same for Experiments 1a as for Experiment 1b.

The ability to exploit the cross-trial regularity of the target placement to guide search is consistent

with (Li & Theeuwes, 2020). In their study, however, the cross-trial regularity was 100% certain and

relatively simple (either from the left- to the rightmost position, or from the top to the bottom location for

half the participants, and in the reverse direction for the other half). Surprisingly, Li and Theeuwes

reported that none of their participants had noticed this simple cross-trial regularity. The present

experiment, by contrast, showed that awareness – that is, explicit learning – of the regularity boosted the
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dynamic target-location probability-cueing effect – suggesting that it reflects largely an endogenous,

top-down-driven spatial-attentional orienting process (Posner, 1980).

In contrast to the facilitation by the transitional regularity of the target location, we failed to find

any significant suppression of the dynamically predictable distractor location in Experiment 1a. This

replicates the outcome of two pilot experiments with the same paradigm and a similar design (except that

distractor-absent and present trials were presented in randomized order, rather than in mini-blocks, as in

the present experiments; see Appendix 1 for details of the design and results). Although there is ample

evidence that the probability of a fixed distractor location/region can be learned to suppress the salient

distractor (Allenmark et al., 2019; Goschy et al., 2014; Sauter et al., 2018; B. Wang & Theeuwes, 2018b;

Zhang et al., 2019), thus far there is only one study, by Wang et al. (2021), reporting that a regular (100%

predictable) cross-trial change of the distractor location (clockwise or counterclockwise) could be

implicitly (i.e., without awareness) learned to reduce the interference of the upcoming distractor. It should

be noted, however, that in Wang et al. (2021), the colors of the distractor (single color in their Experiment

1, and two colors in their Experiment 2) were never the target color (the target was invariably white), and

the differential distractor interference between their ‘random’ (baseline) group and their ‘regular’ group

almost vanished towards the end of testing. Thus, it remains a possibility that the distractor-suppression

strategy developed by their participants might involve dimension-based, or even feature-based, distractor

filtering (Liesefeld & Müller, 2019), which operate below the level of the priority map. On this account,

the cross-trial regularity would increase the rate with which (a spatially unspecific) dimension-based

suppression strategy is acquired (compared to the ‘random’ baseline group), rather than fostering true

learning, and attendant de-prioritization, of the dynamically predicted distractor location. In contrast to

Wang et al. (2021), in our design, we randomly swapped the target and distractor colors across trials to

make observers adopt a priority-map-based suppression strategy (Allenmark et al., 2019) – and failed to

find any robust statistical learning of the cross-trial dynamics. The fact that responses were faster on trials

on which the distractor appeared at the same (i.e., an unlikely) vs. the likely location (Figure 3b) suggests

that distractor suppression was mainly driven by short-term inter-trial negative priming at the repeated

(fixed) location, rather than the long-term learning of the dynamically predictable location.

One reason for our failure to find successful learning of the dynamic, cross-trial transitional

distractor-location regularity could be that color was a task-irrelevant dimension, which can be

down-weighted in general (Liesefeld & Müller, 2019; Müller et al., 1995), hampering the learning of

statistical regularities in the placement of color singletons. The results of Experiment 1a suggest, by

implication, that learning of dynamic distractor-location regularities requires participants to become aware

of them, and becoming aware may be hampered if the regularity occurs in an effectively down-weighted,

that is, (to-be-) ignored, stimulus dimension. It remains unclear whether the dynamic cross-trial regularity
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could be learned to suppress a predictable distractor location if dimension-based down-weighting is

rendered impossible. In order to investigate this, we devised Experiment 2 with a singleton distractor

defined within the target-defining dimension.

Experiment 2: Transitional regularity with the letter paradigm

Method
The setup was essentially the same as in Experiment 1, except the following differences.

Participants
24 healthy university students were recruited for Experiment 2a (mean age ± SD: 27.0 ± 4.02

years; age range: 19–37 years; 16 females) and 2b (mean age ± SD: 26.0 ± 5.3 years; age range: 19–39

years; 16 females) respectively. All participants were right-handed and had normal or corrected-to-normal

vision. They all provided written informed consent prior to the experiment and were paid 9 Euro per hour

or given correspondent course credit for their participation. All data in Experiment 2 were collected in

2021.

Due to the COVID pandemic, the planned Experiment 2b (transitional regularity of the target)

had to be shifted online, through the online platform Pavlovia.

Apparatus and Stimuli

In the onsite Experiment 2a, the apparatus was identical to that in Experiment 1, while

participants used their own computers in the online Experiment 2b. As depicted in Figure 1b (lower

panel), the background of the search display was gray (CIE [Yxy]: [22.0, 0.304, 0.290]), and a white

crosshair (0.48° × 0.48°, CIE [Yxy]: 79.7, 0.298, 0.298) was presented in the center of the display.

In Experiment 2a, the search items consisted of a “T”-shaped target presented among

homogenous “L”-shaped non-targets; on distractor-present trials, one of the non-targets was replaced by a

target-like distractor in which the intersected line in the “T” shape was not exactly bisected, but the

intersection point was rather shifted slightly towards one end (i.e., the distractor was a cross between the

target and non-target shapes). The search items were equidistantly arranged around a virtual circle 4° of

visual angle in radius, and each item subtended 0.67° × 0.67° (CIE [Yxy]: 79.7, 0.298, 0.298); the small

offset of the line junction in the distractor was 0.14° in size. The “T” target and “T”-like distractor were

randomly rotated by 90° to either the left or the right from the upright orientation; the “L”-type

non-targets were randomly rotated by either 0° or 180°.
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In Experiment 2b, the search display consisted of eight shapes with a target “T” and non-targets

“L” and “F”, with the items being randomly rotated 90° to either the left or the right. The “F”-shape

non-targets were included to increase the difficulty of the task.3

Design and procedure

Experiment 2a consisted of 16 blocks (four distractor-absent, 12 distractor-present blocks), each of

60 trials (960 trials in total); and Experiment 2b consisted of 10 blocks, each of 84 trials (840 trials). The

same structure of the cross-trial transitional regularity as in Experiment 1 (see Figure 1a) was applied to

the distractor in Experiment 2a and the target in Experiment 2b. The task was to discriminate whether the

base of the “T” target was pointing to left or right by pressing the F or J key on the keyboard as fast and

as accurately as possible. Following the response, a feedback message (“correct” in green or “incorrect”

in red) was shown for 500 ms.

At the end of the experiment, participants completed a post-experiment questionnaire in which

they had to give two forced-choice responses: first, they had to indicate whether they had noticed any

regularity in the “movement” of the critical item (the distractor in Experiment 2a, the target in Experiment

2b); next, participants were asked to select from seven options to indicate exactly how the critical item

had moved.

Results

Experiment 2a: transitional regularity of the distractor location

Error rates and Mean RTs

RT-outlier (1.2%) and response-error (2.8%) trials were relatively rare. Similar to Experiment 1a,

errors were mainly made in distractor-present blocks (3.3%), rather than distractor-absent blocks (1.3%),

t(23) = 4.413, p < .001, dz = -0.901. The error rates for the three cross-trial distractor-location transition

conditions (frequent, infrequent, random; see Fig. 5b) were comparably low, F(2, 46) = 0.564, p = .573,

= 0.024, BFincl = .176.𝜂
𝑝
2

3 We considered this necessary in Experiment 2 but not in Experiment 1, because in the latter the random trial-to-trial
swapping of the target and non-target shape (circle among diamonds and diamond among circles) ensured sufficient task
difficulty. In contrast, searching for a “T” target among homogeneous “L”-shape non-targets in the absence of any distractor
would have made the task easier. Thus, we introduced an element of non-target heterogeneity in Experiment 2 to avoid a possible
ceiling effect – attributable to the target being invariably the first item to summon attention, which may have left insufficient
‘room for improvement’ by learning of the dynamic target-location regularity.
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Comparison of the (mean) correct RTs between the distractor-present condition(s) (967 ms) vs.

the distractor-absent baseline (771 ms) revealed a significant distractor-interference effect (of 196 ms),

t(23) = 13.118, p < .001, dz = 2.653 (Figure 5). A one-way repeated-measures ANOVA on the mean RTs

in the three Transition conditions (frequent, infrequent, random transition; see Figure 5a) yielded a

significant main effect, F(2,46) = 4.398, p = .018, = .161. Surprisingly, post-hoc t-tests with Bonferroni𝜂
𝑝
2 

correction revealed RTs to be faster for infrequent transitions (945 ms) compared to both frequent (970

ms), t(23) = -2.56, p = .042, d = -0.115, and random (970 ms), t(23) = -2.58, p = .039, dz = -0.116,

transitions (there was no difference between the latter two conditions, t(23) = -0.027, p = 1.0, dz = -0.001,

BF10 = .215).

Next, we again examined the mean RTs as a function of the inter-trial distractor distance (see

Figure 5c). Similar to Experiment 1a, the response speed was comparable among the various distances,

F(4,92) = 0.829, p = .510, = .035, BFincl = .093. There was a numerical RT benefit, of 21 ms, for𝜂
𝑝
2 

distractor-location repetitions (distance 0) vs. cross-trial movements of the distractor to an adjacent

position (distance 1, made up by frequent/infrequent transitions in an 8:1 ratio). Comparing the

distractor-location repetition against the infrequent transition condition (which produced faster RTs than

the frequent condition) failed to reveal the difference to be significant: 946 ms vs. 945 ms, t(23) = 0.065,

p = 0.949, dz = 0.013, BF10 = .215. This suggests that the (unexpected) ‘facilitation’ effect observed with

a distractor occurring at the infrequent location is related to lingering inter-trial negative priming, given

that the distractor had appeared at that location on trial n–1 (distractor-location-repeat trial) or on trial n–2

(frequent transition trial, 80%). Nevertheless, we failed to find any evidence of distractor suppression at

the most frequent location. This null finding is consistent with the results of Experiment 1a.

Figure 5. (a) Mean RTs and (b) Error rates, with associated standard errors, for Experiment 2a, separately for the

distractor-absent baseline and the random, infrequent, and frequent cross-trial transitional distractor-location

conditions. (c) Mean RT as a function of the inter-trial distractor distance (0 indicates the distractor repeated at the
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same location, while 1 denotes the distractor moved one position to its neighbor, including both the frequent and

infrequent directions). Error bars represent one standard error of the mean.

Additionally, a ANOVA examining for a Target-Location effect failed to reveal any evidence of

RTs to a target occurring at the dynamically predicted (i.e., frequent) distractor location (957 ms) being

slowed relative to targets appearing at a non-predicted (i.e., the infrequent or a random) distractor location

(967 and 971 ms, respectively), F(2,46) = 0.166, p = .847, = .007, BFincl = .132. This is consistent with𝜂
𝑝
2 

the absence of reduced interference caused by distractors occurring at the predicted location (see Figure

5a).

Awareness test

Among the 24 participants, seven reported having noticed some regularities, but only three of

them gave the correct response to the second question. Due to the small sample size of the aware group

(n=3), statistical tests would not yield meaningfully interpretable results; accordingly, we refrained from

further analysis.

Experiment 2b: transitional regularity of the target location

Error rates and Mean RTs

Again, there were only few outlier-RT (0.96%) and the response-error (3.2%) trials, and the error

rates were comparable across the frequent, infrequent, and random cross-trial transitional target-location

conditions, F(2, 46) = 1.223, p =  .304, = .050, BFincl = .291.𝜂
𝑝
2 

The mean RTs exhibited a systematic trend (see Figure 6a), being lowest for the random transition

condition (1067 ms), intermediate for the infrequent condition (962 ms), and fastest for the frequent

condition (893 ms). A one-way repeated-measures ANOVA confirmed the target-location Transition

effect to be significant, F(2,46) = 30.63, p < .001, = .571. Post-host t-tests with Bonferroni correction𝜂
𝑝
2 

revealed RTs in all conditions to differ significantly from each other, ts(23) > 3.09, ps < 0.01, dzs > 0.63.

Figure 6c re-plots the mean RTs as a function of the inter-trial target distance. As can be seen, the

RTs increased with increasing inter-trial target distance (up to distance 3) – a pattern quite unlike those

seen in the other experiments. A repeated-measures ANOVA confirmed the Distance main effect to be

significant, F(4,92) = 48.174, p < 0.001, = .677. Post-hoc comparisons with Bonferroni correction𝜂
𝑝
2 

revealed all but one comparisons to be significant, ts(23) > 3.29, ps < .014, ds > 0.59 ( dz, non-significant

comparison between distances 3 and 4, t(23) = 0.158, p = 1.0, dz = 0.029). The significantly faster RTs
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for distance 0 (exact target-location repetitions) vs. distance 1 (which is made up largely by the frequent

target-location transitions) suggests that the inter-trial repetition facilitation outweighs the benefits

deriving from the target moving to the predicted location.

Figure 6. (a) Mean RTs and (b) Error rates, with associated standard errors, for Experiment 2b, separately for the

random, infrequent, and frequent cross-trial transitional target-location conditions. (c) Mean RT as a function of the

inter-trial target distance (0 indicates the target repeated at the same location, while 1 denotes the target moved one

position to its neighbor, including both the frequent and infrequent directions). Error bars represent one standard

error of the mean.

Awareness test

Seven participants indicated being aware of a regularity in the placement of the target in the

display, but only 4 of them correctly identified the regularity. Given the sample size was small for the

aware group (n = 4), a statistical comparison with the unaware group would need to be interpreted with

caution.

To visualize any awareness benefits for statistical learning of the dynamic target location, we

calculated the probability-cueing effect ( ) for the individual participants, and𝑅𝑇
𝑖𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡

− 𝑅𝑇
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡

divided them into the ‘aware’ and ‘unaware’ groups. Figure 7 shows the distribution of cueing effect for

the two groups. Simple t-tests revealed the probability-cueing effect to be significant in the aware group,

t(3) = 4.166, p = .025, dz = 2.083, but not in the unaware group, t(19) = 1.988, p = .061, dz = .444, BF10 =

1.184; further, the cueing effect was significantly larger in the aware than in the unaware group,

(independent-samples) t(22)= 2.281, p = .033, dz = 1.249. In line with Experiment 1b, this pattern

suggests that awareness of the predicted target location facilitated the guidance of attention to the

dynamically predicted target location.
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Figure 7. Violin plots of the probability-cueing effect ( ), separately for the𝑅𝑇
𝑖𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡

− 𝑅𝑇
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡

aware and unaware groups.

Comparison of probability-cueing effects between Experiments 2a and 2b

An independent-samples t-test comparing the probability-cueing effects between Experiment 2a

and Experiment 2b (–23.8 ms vs. 69.0 ms) turned out to be significant: t(46) = -3.689, p < .001

(two-tailed), dz = -1.065. This pattern is the same as in Experiment 1.

Comparisons across Experiments 1 and 2

We observed different probability-cueing effects between Experiment 1a and Experiment 1b, and

between Experiment 2a and Experiment 2b. However, it is uncertain whether the results of Experiment 1

(singleton-search paradigm) and Experiment 2 (letter-search paradigm) are statistically different, that is,

to which extent the task contributes to differential probability-cueing effects. To examine for any such

contribution, we conducted a two-way factorial ANOVA on the mean RT probability-cueing effect with

cross-trial Regularity (target, distractor) and Paradigm (singleton vs. letter search) as between-participant

factors. The main effect of Regularity turned out significant, F(1,92) = 18.905, p < 0.001, = .170,𝜂
𝑝
2 

indicative of participants being able to pick up and utilize the cross-trial regularity in the positioning of

the target, but not in the positioning of the distractor. Importantly, there was no evidence of the paradigm
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playing a role in this (Paradigm main effect, F(1,92) = .222, p = .638, = .002, BFincl = .237; Regularity𝜂
𝑝
2 

Paradigm interaction, F(1,92) = .617, p = .434, = .007, BFincl = .368).× 𝜂
𝑝
2 

Discussion
In Experiment 2, we changed the paradigm from the ‘classical’ (additional-) singleton paradigm

in Experiment 1 to a paradigm that required search for a letter-type (shape) target in the possible presence

of a letter-type (shape) distractor – that is, a distractor defined in the same dimension as the target: shape

–, but we maintained the cross-trial transitional probability structure for the distractor location in

Experiment 2a and for the target location in Experiment 2b. The result pattern turned out essentially the

same as in Experiment 1: there was robust statistical learning of the dynamically predictable target

location (RTs were significantly faster when the target to a location in the frequent, predictable vs.

infrequent, non-predicted direction), but there was no evidence for learning of the distractor location (RTs

were even slower when the distractor moved to a location in the frequent direction vs. the infrequent

direction). The latter (non-) finding is at variance with a  previous report by Wang et al. (2021).

Further, like Experiment 1b, Experiment 2b indicates that search performance is boosted by

explicit awareness of the dynamic (probabilistic) target-location regularity – suggesting that the dynamic

target-location cueing effect is based on endogenous control of visuo-spatial attention allocation. Further,

in Experiment 2b, we found a strong inter-trial target-location repetition benefit – suggesting that search

guidance is also modulated by a short-lived inter-trial priming effect, in addition to statistical learning of

the dynamically changing target location.

General Discussion

The present study was designed to investigate whether dynamic target-location enhancement and,

respectively, distractor-location suppression purely based on the probabilistic cross-trial transitional

regularities are possible. We conducted two experiments with the same cross-trial transitional regularity

(80% likely one-step clockwise or counterclockwise ‘movement’) of the critical item: either the search

target or a task-irrelevant distractor. In addition, we manipulated how the distractor was defined in

relation to the target: in a different dimension (color; Experiment 1) or the same dimension (shape;

Experiment 2). We found robust dynamic search guidance when the target location shifted predictably

across consecutive trials. In contrast, we failed to find any evidence of reduced distractor interference

when the distractor location shifted predictably across trials, not even when the distractor was defined in

the same dimension as the target. Facilitated processing of the target at the predicted location appeared to
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be associated with conscious awareness of the dynamic regularity: only those participants who explicitly

recognized the regularity exhibited a robust facilitation effect. In contrast, there was no evidence of

participants becoming aware of the regularity in the distractor item, not even it was defined in the same

dimension as the target.

The statistical learning of the predicted target location that we observed in both experiments

broadly consistent with the probability cueing of the target location reported in the literature (Geng &

Behrmann, 2002, 2005; Shaw & Shaw, 1977). For example, manipulating the likelihood of target

presentation unevenly between the left and right sides of the display (80% vs. 20%), Geng and Behrmann

(2002) found search to be facilitated when the target actually appeared within the more probable region.

Of note, though, most of the previous target-location probability-cueing studies used a spatially fixed (or

stationary) uneven probability manipulation (either location- or region-based), finding that search

guidance can remarkably adapt to these environmental statistics to boost performance. A recent study, by

Li and Theeuwes (2020), showed that this adaptability also extends to dynamic location manipulations:

when the target on trial n-1 (appearing, e.g., at the leftmost display location) predicted the location of the

target on trial n (in the example, the right-most location) with 100% certainty, participants were also able

to learn this cross-trial regularity to facilitate search performance. Here, we showed that a dynamic

cross-trial regularity can also be learned when it is probabilistic in nature. Similar to earlier studies (e.g.,

Geng & Behrmann, 2002), we implemented an uneven cross-trial transitional probability structure (80%

for cross-trial frequent, 10% for infrequent, and 10% for random transitions) and showed that participants

could learn this probabilistic regularity and use it to facilitate target detection. It is important to note that,

in our study, the global probability of the target occurrence remained equal across all possible locations –

only the cross-trial transitional probability differed in the direction of the target movement (clockwise or

counterclockwise). This suggests that the search-guidance system can learn and adapt to both fixed and

dynamic probability structures that govern where the target appears, and modify the weights on the

attentional-priority map accordingly.

In contrast to robust cross-trial dynamic probability-cueing of the target location, we failed to find

any evidence that participants were able to learn the same dynamic probability structure when this was

applied to predict distractor location. This is different from the many studies with a fixed uneven

distribution of the distractor, which have collectively shown that display locations/regions with a high

probability of distractor occurrence can be effectively de-prioritized to reduce the interference caused by

the irrelevant pop-out stimulus (Ferrante et al., 2018; Goschy et al., 2014; Leber et al., 2016; Sauter et al.,

2018, 2019; B. Wang & Theeuwes, 2018a; Zhang et al., 2019). For instance, likely distractor locations

may be proactively suppressed – that is, some ‘no-go’ tag may be placed on them – on the attentional

priority map (e.g., Ferrante et al., 2018), dampening the built-up of the priority signal at such locations.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 14, 2022. ; https://doi.org/10.1101/2022.07.12.499748doi: bioRxiv preprint 

https://paperpile.com/c/e3MXLh/rwZq+20l2+JI6e
https://paperpile.com/c/e3MXLh/rwZq+20l2+JI6e
https://paperpile.com/c/e3MXLh/rwZq/?noauthor=1
https://paperpile.com/c/e3MXLh/FQOk/?noauthor=1
https://paperpile.com/c/e3MXLh/rwZq/?prefix=e.g.%2C%20
https://paperpile.com/c/e3MXLh/rwZq/?prefix=e.g.%2C%20
https://paperpile.com/c/e3MXLh/RrzQ+qW4h+HR1C+IVyF+aTEb+jm3C+aYTW
https://paperpile.com/c/e3MXLh/RrzQ+qW4h+HR1C+IVyF+aTEb+jm3C+aYTW
https://paperpile.com/c/e3MXLh/RrzQ/?prefix=e.g.%2C%20
https://doi.org/10.1101/2022.07.12.499748
http://creativecommons.org/licenses/by-nc-nd/4.0/


25

Thus, while ‘no-go’ tagging of fixed likely distractor locations is a feasible strategy for the

search-guidance system to reduce attentional capture, our findings suggest that ‘no-go’ tagging of

dynamically predictable distractor locations is not possible – at least not with the same dynamic

probability structure (and the same number of learning trials) that we used for the target location.

Our non-finding also appears to be at variance with Wang et al. (2021), who reported that a very

similar cross-trial transitional regularity of the distractor (clockwise or counterclockwise movement by

one step). Importantly, however, there are several key differences between their study and ours. First, the

regularity they implemented was deterministic (100%), rather than probabilistic (our structure predicted

the distractor location with 80% probability). Whether this is a critical difference is, ultimately, an

empirical matter. However, there is evidence from reward-association learning of ‘incentive salience’ that

probabilistic regimens are more effective than deterministic regimens (e.g., Cho & Cho, 2021; Sali et al.,

2014). Also, our participants had no problem learning exactly the same deterministic structure in relation

to the target location. Another key difference in Wang et al.’s (2021) study from ours is that the color of

the (color-defined) distractor was distinct from the fixed target color in their experiments (even in their

Experiment 2, in which the distractor could appear in two possible colors). In our color-distractor

experiment (Experiment 1a), we purposely implemented random swapping, across trials, of the distractor

and target (i.e., more generally, the non-distractor) colors to reduce possible dimension- (or feature-based)

distractor suppression which operates in a spatially non-specific manner. As shown in our previous studies

(Allenmark et al., 2019; Zhang et al., 2019), whether participants adopt dimension-/feature-based or a

priority-map-based suppression much depends on the overlapping of the distractor and target features:

with color swapping between target and distractor, participants tend to adopt a priority-map-based

suppression strategy; without color swapping, they are likely to develop a dimension-based strategy

(reducing the weight of color signals in priority computations). This is consistent with Gaspelin and Luck

(2018), who also reported that with random trial-by-trial swapping of the singleton and non-singleton

colors in the search display, (post-display) probe suppression effects (i.e., reduced report accuracy for

probes at the distractor location vs. averaged non-distractor locations) were completely eliminated.

Similarly, in an eye-movement experiment with color swapping between distractors and targets, Gaspelin

and Luck (2018) found the first saccade (after display onset) to be more likely to be directed to the

singleton distractor than to the average of the other non-target items, in line with color swapping reducing

lower-level distractor suppression. Accordingly, participants in Wang et al.’s (2021) study might have

adopted a spatially unspecific strategy of suppressing the color dimension in both the condition with the

‘regular’ structure (performed by one group of participants) and the baseline condition with the ‘random’

structure (performed by another group). Some evidence of this is provided by the fact that, while

distractor interference generally (i.e., in both groups) decreased across the ten trial blocks of their
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experiments, there remained little difference in interference between the ‘regular’ and the ‘random’

groups by the end of testing. That is, the ‘regular’ group only showed a faster rate of interference

reduction over the course of the experiments – which could mean that learning to suppress the irrelevant

color dimension works more efficiently when the distractor occurs in a contiguous display region across

trials (such as in a stepwise movement of the distractor from one location to the next) compared to when it

crisscrosses the display in a random manner.4 Whatever the precise reason(s) for the discrepant findings

between the Wang et al. (2021) and our Experiment 1a, it remains (at least) that it is difficult to

demonstrate successful learning of a dynamic probabilistic regularity with regard to the locations of

(color-defined) distractor, but not with regard to the locations of color-defined targets.

Of note, despite attempting to make dimension-based distractor suppression hard in Experiment

1a (by introducing random color swapping), we could not rule out that participants nevertheless

developed such a strategy – given that color was completely irrelevant to solving the task to find a

shape-defined target. If so, color feature-contrast signals would have been globally suppressed (at least to

some extent), impeding statistical learning of the dynamically predictable location of the color distractor.

As a consequence, statistical learning of the predictive location of the color distractor might have been

reduced or diminished – and this is why we found no distractor-location cueing effect in Experiment 1a.

Therefore, in Experiment 2a, we introduced a distractor defined within the same dimension as the target: a

shape-defined distractor. Given that participants had to set themselves for a shape target, they could not

globally ignore the shape dimension, as this would have conflicted with the task goal. As expected (e.g.,

Geng & Behrmann, 2002, 2005; Goschy et al., 2014; Sauter et al., 2018; Shaw & Shaw, 1977), the shape

distractor caused massive interference, of 185 ms relative to the distractor-absent baseline – which is

likely due to ‘overt’ attentional capture, involving a first eye movement to the distractor on most trials

before attentional/oculomotor disengagement and re-orientation to the target (see Sauter et al., 2021). In

other words, the distractor was expressly processed as a ‘wrongly’ selected item – and yet, participants

failed to learn its dynamic cross-trial transitional regularity. In contrast, when implemented in the target

placement (Experiment 2b), the same regularity again produced a dynamic facilitation effect, as in

Experiment 1b.

Thus, the question remains why dynamic suppression of predictable distractor locations is so hard

(if not impossible), whereas dynamic facilitation of predicted target locations is established easily. A clue

4 Alternatively, their result pattern might also be explained by reactive suppression placed post-capture on the distractor location,
in order to disengage attention and re-orient it to the target. If reactive suppression is somewhat fuzzy, affecting adjacent
locations, and if it is carried over across trials, it would, on average, have a greater impact with the regular movement of the
distractor to an adjacent location, as compared to the random placement. Wang et al. (2021) argued against this possibility based
on an analysis of inter-trial negative priming effects in their ‘random’ condition (with a different group of participants). They
could not examine for such effects directly in the ‘regular’ group, because the dynamic distractor regularity was deterministic.
Note in this context that our ‘random’ baseline was a within-participant, rather than a between-participant, manipulation, ruling
out confounding of effects by spurious group differences.
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to answering this question is provided by the ‘awareness’ results. In both Experiments 1b and 2b,

participants became substantially aware of the dynamic target regularity, and those of them who correctly

selected the right regularity (out of seven alternatives) in the awareness test showed a significantly larger

facilitation effect than the ‘unaware’ participants. Pooling the two experiments together for improved

statistical power to compare the facilitation effects between the aware and unaware groups revealed a

robust benefit of explicit awareness, t(46) = 2.811, p = .007, dz = 0.893. This is not to say that the

dynamic target regularity cannot be implicitly learned. In fact, the pooled ‘unaware’ group also exhibited

a significant facilitation effect, of 38 ms (t(33) = 2.456, p = .020, dz = 0.421), which however is only a

small fraction of the 134-ms effect exhibited by the aware group (134 ms).5 The fact that explicit

awareness greatly boosted the dynamic facilitation effect suggests that participants did develop a dynamic

top-down set to prioritize the next location in the regular (clockwise or counterclockwise) direction in

anticipation of the next target occurring there (endogenous orienting in Posner, 1980 terms). We suggest

that they did develop such an anticipatory top-down set because the target is the central item in the task

set: observers have to set up a target template in working memory and compare any selected item against

this template, and then deselect it if there is a mismatch or proceed to extracting the response-relevant

feature and select the appropriate response if there is a match. Given the central place of the target in the

task set, even seemingly irrelevant ‘features’ such as its location may be explicitly encoded, providing the

basis for recognizing the regularity in the placement/movement of the target across consecutive trials. In

contrast, if a distractor is mistakenly selected, it only needs to be rejected as a non-target item, that is, as

not matching the target template; in other words, there is no need to process the distractor for, and

explicitly represent, any featural information about the distractor, including its location. As a result, there

is no explicit learning of higher-order dynamic statistical regularities in the placement of the distractor.

However, there is implicit learning of static statistical regularities, that is, of a fixed display

location or region being more likely to contain a distractor than other locations – as evidenced by a

plethora of recent demonstrations of distractor-location probability-cueing effects in the absence of

conscious awareness of bias in the distractor distribution. We have recently shown that these static cueing

effects depend purely on the the local distractor probability (Allenmark et al., 2022), and that the

frequency with which distractors occur at a particular location modulates the responsivity of neurons in

early (i.e., retinotopic) visual cortex areas, from V1 to V4 – with higher frequency rendering a stronger

down-modulation (Zhang et al., 2021). Also, we proposed that the ‘tuning’ signal for the

down-modulation of entry-level cortical feature coding is provided by the ‘rejection’ (or reactive

5 Interestingly, apparently none of the participants in Li and Theeuwes (2020) reported noticing the cross-trial target regularity
that they had encountered during the search (where a target at, say, the leftmost location predicted with certainty that the next
target would appear at the rightmost location).
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suppression) of a particular location when a selected (distractor) item at this location produced a

mis-match decision: the more often this happens for a particular locations, the lower the responsivity of

V1–V4 neurons with corresponding receptive fields becomes – which naturally explains the static

distractor-location probability-cueing effect. That is, this is an essentially static mechanism (top-down

inhibiting the current distractor location, so as to disengage attention and re-deploy it to the target

location), which does not require conscious knowledge of the distractor location to work. Given this, it is

hard to see how it could be ‘dynamicized’ to track a distractor that changes position predictably,

according to some higher-order rule,  across trials.

In contrast, a dynamically predictable target location can be tracked successfully if the rule is

explicitly (consciously) represented in working memory, as part of the task set. This rule can then be

applied to flexibly prioritize a given next location, given the current target location, perhaps by top-down

pre-activating the anticipated location on the attentional priority map. Further, neuroscientific work is

necessary to examine the brain mechanisms underlying dynamic target-location prediction, though these

are likely to involve the frontoparietal attention network: a richly interconnected network linking the

intraparietal sulcus (IPS), the inferior parietal lobe (IPL), and dorsal premotor cortex (PMC), including

the frontal eye field (FEF). According to Ptak’s (2012) model of this network, the posterior parietal cortex

has functional characteristics that point to a central role of this region in the computation of a feature- and

dimension-independent attentional-priority map. “Feature maps computed in the sensory cortex and

current behavioral goals as well as abstract representations of associated actions (action templates)

generated in the prefrontal and premotor cortex (PMC) feed into the parietal priority map. The

dorsolateral prefrontal cortex (DLPFC) maintains behavioral goals in working memory and protects them

from distracting information. The inferior parietal lobe (IPL) initiates shift of attention and maintains

attention on the relevant stimulus” (Ptak, 2012, p. 512). Given this, it is conceivable that dynamic spatial

expectations originating in the DLPFC and PMC can also be integrated in the priority map.

Conclusion

The present study investigated statistical learning of the same dynamic, cross-trial probabilistic

regularity of the target and (additional-singleton) distractor location in visual search. In several

experiments, we consistently found robust facilitation of the dynamically predictable target location, but

no suppression of the dynamically predictable location of the distractor (the latter being at variance with

another report in the literature). While none of the participants noticed the cross-trial regularity of the

distractor, one third of the participants correctly selected the cross-trial target regularity in a post-search

explicit-recognition test; further, awareness of the target regularity greatly (by a factor of 4) enhanced

cross-trial cueing of the target location. We propose that this asymmetry, in the dynamic cueing and
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awareness effects, arises because the target occupies a central place in the task and so is explicitly

encoded in working memory for template matching and extraction of the response critical feature; as a

result, the dynamic cross-trial change in its location is also registered and can be used to top-down

prioritize the upcoming target location. In contrast, the distractor is not an explicit part of the task set;

(e.g., no distractor template needs to be set up in working memory to reject a distractor that captured

attention), and so statistical learning of the distractor location is only static, limited to its current position

and how frequently it occurs at this position.
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Appendix 1: Analysis of pilot experiment data

In two pilot experiments, intended to investigate whether observers can learn to suppress a

predictable distractor location based on dynamical regularities in the trial-to-trial movement of the

distractor, we obtained similar results to Experiments A1a and 2a. These experiments used essentially the

same paradigm (stimuli and task) as in Experiment 1a, with a few minor differences. The distractor was

more likely to move in one, ‘frequent’ direction, either clockwise or counterclockwise (counterbalanced

across participants), but on the remaining trials it moved randomly to any other location (i.e., unlike

Experiments 1a, movement in the direction opposite to the frequent direction, the ‘infrequent’ direction

was no more likely than movement to any other location). In both experiments, a distractor was present on

overall 66% of trials, but (unlike Experiment 1a) distractor-absent trials were randomly interleaved with

distractor-present trials. When one or more distractor-absent trials occurred in-between two

distractor-present trials, the ‘frequent’ distractor location on the second of the two interrupted

distractor-present trials was defined in two different ways: for half of the participants the frequent location

was one step in the frequent direction compared to the last distractor-present trial, while for the other half

the frequent distractor location was the location where the distractor would have been if a distractor had

been present and moved in the frequent direction on each trial (e.g., with two distractor-absent trials

in-between two distractor-present trials, the frequent location on the second distractor-present trial was

three steps in the frequent direction from the distractor location on the first distractor-present trial). In

pilot Experiment 1, 65% of distractors occurred at the frequent location; pilot Experiment 2, this

probability was increased to 85%. We tested 14 participants in Experiment 1 and 16 in Experiment 2.

Figure A1 shows the mean response times and error rates in both pilot experiments in the

distractor absent condition, as well as for trials with distractors appearing in the frequent location and

random locations. Distractor interference – the difference in RT between distractor-present and

distractor-absent RTs – was significantly greater than zero in both experiments (Exp. 1: 118 ms, t(13) =

6.40, p < .001; Exp. 2: 117 ms, t(15) = 7.95, p < .001). However, there was no significant difference

between RTs when a distractor occurred in the frequent location compared to a random location in either

experiment (Exp. 1: 2 ms, t(13) = 0.15, p = .88; Exp 2: -12 ms, t(15) = -1.30, p = .21). Since the

predictability of the frequent distractor location could be reduced by interruptions by distractor absent

trials we also checked whether there was a difference between RTs when a distractor occurred in the

frequent location compared to a random location when considering only pairs of consecutive distractor

present trials but there was still no significant difference (Exp 1: 5 ms, t(13) = 0.36, p = .72; Exp 2: -12

ms, t(15) = -1.15, p = .27).
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Figure A1. Mean response times (a, b) and error rates (c, d) on distractor absent trials, trials with a

distractor in the (dynamic) frequent distractor location and on trials with a distractor in a random location

in pilot experiment 1 (a, c) and pilot experiment 2 (b, d). Error bars represent one standard error of the

mean.
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