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Abstract: High-throughput chromosome conformation capture (Hi-C) technique profiles the genomic structure 
in a genome-wide fashion. The reproducibility and consistency of Hi-C data are essential in characterizing 
dynamics of genomic structures. We developed a diffusion-based method, CTG (Hi-C To Geometry), to deal 
with the technical bias induced by insufficient sampling in sequencing and obtain reliable gemeotric 
information of the chromatin. CTG properly quantifies dubiously weak or even undetected interactions and 
produces a consistent and reproducible framework for the 3D genomic structure.  CTG allows for a reliable 
genome-wide insight on the alteration of genomic structures under different cellular conditions and reveals 
correlations between genomic-proximal genes at both transcriptional and translational levels. Cell-specific 
correspondence between gene-gene and corresponding protein-protein physical interactions, as well as that 
with the transcription correlation reveals the coordinated inter-molecular structural and regulatory information 
passage in the central dogma.  
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Introduction 

The three-dimensional architecture of chromatin is crucial to the functionality of one-dimensional DNA 
sequences (Oudelaar and Higgs, 2021). However, the concrete correlation between the 3D architecture and its 
function in genome regulation has not been completely resolved. High-throughput chromosome conformation 
capture (Hi-C) technique (Lieberman-Aiden et al., 2009) allows for genome-wide profiling of chromatin 
interactions in 3D-space by performing unbiased DNA-DNA proximity ligation. Hi-C reveals a hierarchical 
organization of chromatin (Rowley and Corces, 2018) and the 3D architecture is demonstrated to be involved 
in critical biological processes, such as gene regulation, cell fate decisions, and even evolution (Bonev and 
Cavalli, 2016). Sharing fixed genetic inheritance, the primary domains that make up the hierarchical 
organization, such as compartments and topologically associating domains (TADs) are largely conserved 
across cell types (Rao et al., 2014). On the other hand, the variations of chromatin structures among different 
cell states are pertinent  to their distinct genomic function (Bonev and Cavalli, 2016). Various types of genomic 
changes are relevant to genetic disorders and can lead to genomic diseases such as cancer (Corces and Corces, 
2016; Li et al., 2020). Hence, it’s essential to study the dynamics of chromatin structures, quantifying the 
variations with cellular states and understanding their functions. 
The great success of Next Generation Sequencing (NGS) technology makes it possible to obtain Hi-C data 
with high throughput. However, the quality and reproducibility of raw Hi-C data are affected by technical and 
biological bias, and the characterization of the genomic geometry requires normalization tools. A number of 
normalization algorithms have been developed to remove unwanted systematic bias. The normalization 
algorithms fall into two main categories: explicit-factor correction and implicit matrix balancing. Explicit-
factor correction algorithms such as Hi-C-Norm (Hu et al., 2012) propose parametric models to depict known 
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bias such as GC content, fragments length, and mappability. Implicit matrix balancing algorithms, such as 
iterative correction and eigenvector decomposition (ICE) (Imakaev, Maxim; Fundenberg, Geoffrey; Patton 
McCord, Rachel; Naumova, Natalia; Goloborodko, Anton; Lajoie, Bryan R.; Dekker, Job; Mirny, 2012), 
Knight and Ruiz’s algorithms (Hu et al., 2012), and chromoR (Hu et al., 2012), assume equal visibility for all 
genomic loci and balance row and column sums. These methods remove reoccurring biological bias and 
improve the reproducibility of replicated datasets, but leaving unpredictable technical biases unaddressed. 
The unpredictable technical bias mainly comes from insufficient sampling, resulting in dubiously weak contact 
strengths and random noise. The correlation between raw matrices and matrices normalized by different 
algorithms increases with the sequencing depth (Han and Wei, 2017), indicating the importance of sufficient 
sampling. The randomly directed noise conceals the real biological proximity information and impedes the 
characterization for variations of the chromatin structures among different cell states. There are multiple 
computational methods (Djekidel et al., 2018; Lun and Smyth, 2015; Stansfield et al., 2019) aimed for making 
statistically-grounded comparisons between Hi-C datasets and quantifying statistically significant dynamic 
changes. A few of them, including diffHiC (Lun and Smyth, 2015) and multiHiCcompare (Stansfield et al., 
2019), conduct across-sample normalizations to improve their performances to quantify consistent differential 
chromatin interactions. The across-normalization methods reduce the random noise, but the problem on 
intrinsic insufficiency in sampling is not addressed, limiting the performances of these statistically-grounded 
methods. 
The distance matrix is naturally a full matrix and a corresponding contact matrix can be recovered from the 
distance matrix following a power law approximation, where the strengths of weak or even undetected 
interactions are properly quantified. Here, we propose CTG (Hi-C To Geometry), a diffusion-based algorithm, 
to treat the technical insufficiency and uncover the geometric structure from Hi-C data (Figure 1). CTG takes 
Hi-C contact matrix normalized by ICE as the input, and outputs a CTG distance matrix. The main inspiration 
of CTG algorithm stems from the physical succession of the genomic structure. In perspective of a proximity 
network, the proximal genomic regions should share similar diffusion manners. The CTG distance between 
pairwise genomic regions is quantified by their genomic-wide diffusion manners and therefore reduce the 
impact of insufficient sampling for any individual interaction. CTG, as a distance-like measurement, allows for 
genome-wide insight into the correlations between proximal genes in genomic structure and we investigated 
the correspondence at transcriptional and translational levels. 
 
Results 

Overall design of CTG 
The Hi-C contact map depict a proximity network G(V,E), where the vertices V={v1,v2,…vn} denote the non-
overlapping genomic regions and the edges E = {ei,j} denote the contact strength between pairwise connected 
genomic regions. Similar to diffusion-based methods for network denoising (Cao et al., 2013; Wang et al., 
2018), a Markov prosses (2007) is used to describe the diffusion process on this network. !"#$!,! = ∑ '!,#$
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When k reaches infinity, /!
(*)converges to Si (Supplementary note). As the weighted summation of (!

(-), Si 
naturally integrates neighbor information of the connected graph, and therefore alleviates in a physics-based 
manner the problems caused by the Hi-C data sparsity. On the other hand, the exponential decay ensures that 
the integration does not eliminate the distinction of each vertex, taking the rapid convergence of (!

(*) into 
consideration. 
The physical succession of the genomic structure suggests that the proximal genomic regions should share 
similar diffusion manners. The similarity between pairwise vertices vi and vj is quantified by L1 distance 
between Si and Sj. L1 distance is used as a measure since it mitigates the impact of outliers caused by distance 
metrices of higher-order terms. A CTG distance matrix is then constructed based on the Hi-C contact map. We 
demonstrate below that CTG distance is relevant to real spatial distance and thus provides information on the 
geometry of the genome. Meanwhile, to fit the contact probability, a CTG contact matrix is converted from the 
CTG distance matrix by making use of a power law, according to the power-law dependencies derived from 
polymer-like behavior (Halverson et al., 2014; Lieberman-Aiden et al., 2009). With the power of 4, the 
distribution of the reconstructed contact frequency is most similar with raw HiC contact datasets.  
 

 
Figure 1. Schematic overview of CTG.  CTG uses a diffusion-based strategy to uncover the gemetry of genomic 
structure from Hi-C data. CTG quantifies the diffusion property of each vertex by aggregating global diffusion 
information from the vertex to other verteces respectively. And the CTG distance between pairwise verteces is 
calculated by similary of their diffusion properties. CTG allows for a genome-wide insight deciphering the gene 
regulation information coded in genomic structure.  
 
Validation of CTG 
One way to test whether the sequencing-based method such as Hi-C can faithfully reproduce geometric 
structure information is to make comparison with fluorescence in situ hybridization (FISH) imaging data (Su 
et al., 2020), as the latter provides direct spatial position information of individual loci. Ref. Su et al., 2020 
provided high-resolution imaging data on the coordinates at 50-kb resolution for Chr2 and Chr21 of human 
lung fibroblast (IMR-90) cells. The median spatial distance between pairs of imaged loci is thus a physical 
distance measurement (Figure 2A and 2B, right pannel). Taken the Hi-C data of IMR-90 (Rao et al., 2014), 
one can perform a direct comparison between the spatial distance and the inverse contact probability and the 
Pearson correlation coefficient is 0.790 and 0.897 (with logarithm transformation) for Chr2 and Chr21, 
respectively, which is to some extent satisfactory. In contrast, as shown in Figure 2C, the calculation of CTG 
distance matrix (Figure 2A and 2B, left pannel) improves its linear correlation with the physical distance 
measurement and the corresponding Pearson correlation coefficient with the median spatial distance matrix 
reaches 0.952 and 0.930, respectively. These results show that the CTG method provides a more accurate 
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calibration between two different experimental methods and the distance metrics generated by the CTG method 
reproduces that observed by super-resolution experiment. 
Next, we evaluate the robustness of CTG contact propensity map by applications to different samples and 
compare the Hi-C data derived from a) normal colon tissue samples of different individuals (Johnstone et al., 
2020), b) tumor colon tissue samples (Johnstone et al., 2020), c) different numbers of HEK293 cells (sample 
0923-2 and 0923-4), d) repeated experiments on HEK293 cells (sample 0923-4 and 1002-5). The robustness 
of CTG is assessed by calculating Spearman correlation coefficient of spatial interactions from different 
samples at various genomic distances. Such a calculation is equivalent to calculating Spearman correlation 
coefficient of diagonal elements of Hi-C maps. For an Hi-C contact map treated after ICE normalization, the 
correlations between different samples decrease sharply as genomic distance increases (Figure 2D, upper 
pannel), indicating that the normalized Hi-C contact map is of high confidence level at scales up to about 5Mb 
but not longer. In contrast, the correlations of CTG contact maps are significantly higher and hardly decrease 
with the genomic distance. We also compared the Spearman correlation coefficient for individual genomic 
regions between Hi-C and CTG contact maps, equivalent to calculating Spearman correlation coefficient of 
each row of different contact maps (Figure 2D, lower pannel), where the latter also display a higher consistency 
than the former. In addition, the systematic bias between different datasets for Hi-C and CTG contact map were 
quantified by a MD plot (Minus, or difference vs. Distance plot) (Stansfield et al., 2018), to visualize the 
differences between two datasets accounting for the linear genomic distance between interacting genomic 
regions. M is defined as the fold-change between two Hi-C datasets, with its element Mij = log2(IF1

ij- IF2
ij), 

where IF1
ij and IF2

ij are contact strengths between pairs of genomic regions from two datasets. D is defined as 
1D genomic distance of pairwise genomic regions. In this was, the systematic bias between different datasets 
is reflected by the deviation of M from the M=0 baseline. The MD plot (Figure 2E) of CTG contact map is 
approximately symmetric about M=0 baseline without any prior fitting. In contrast, for the Hi-C contact map, 
only 30% non-zero elements can be faithfully calculated due to the limitation of sparse data. The distribution 
obtained for the Hi-C contact map (Figure 2E, lower panel) deviates significantly from the baseline, indicating 
the impact of systematic bias. 
We note here that the unprocessed Hi-C contact map is subject to large noise due to incomplete statistics, and 
the large variance of long-range interactions (>5Mb) among similar samples indicates that weak interactions 
or long-range interactions tend to be unreliable. Therefore, a genome-wide comparison between different Hi-
C datasets is ambiguous, due to the noisy and sparse data. By incorporating the genome-wide diffusion 
property of each genomic regions into consideration, the problem associated with insufficient sampling for 
singular interactions is sufficiently corrected. The CTG contact/distance maps reveal the hidden reproducibility 
of Hi-C data and more importantly, that the putative topologies of genomic structures are conserved across 
different cell numbers and even different individuals. The genomic structures recovered by CTG algorithm thus 
allow for direct comparison for replicate experiments and even for samples from different 
individuals/experimental setups. Such a property of CTG makes it suitable for characterizing the changes of 
genomic structures under different conditions.  
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Figure 2. Validation of CTG. (A) The CTG distance matrix (left) and the median spatial distance matrix (right) of 
chr2 (resolution of 50kb). (B) The CTG distance matrix (left) and the median spatial distance matrix (right) of chr21 
(resolution of 50kb). (C) the correlation between CTG distance matrix and the median spatial distance matrix of 
chr2 and chr21. (D) The Spearman correlation for genomic sequence distance (upper pannel) and for individual 
genomic region(lower pannel) between pairwise contact matrices derived from 1) normal colon tissue samples; 2) 
tumor colon tissue samples; 3) different numbers of 293 cells; 4) repeated experiments on 293 cells. *** represents 
P-value<10-300 (t-test). (E) The MD plots between two normal colon tissue samples in view of genomic sequence 
distance. 
 
CTG characterizes the global structural changes in Colorectal Cancer pathogenesis  
In this section, we use the CTG method to analyze genomic structures derived from normal and tumor colon 
Hi-C data��Compartmental recognition was performed in a previous study (Johnstone et al., 2020) on these 
datasets, which associated the compartment changes during colorectal cancer pathogenesis with stemness, 
invasion, and metastasis of tumor. In the following, we show that CTG allows for new insights into cancer-
related changes of genomic structure. To ensure the consistency and reproducibility of our analysis, pairwise 
normal and tumor samples derived from 4 individuals were compared. We took chromosome 17 as an example 
in our latter single chromosome analysis to simplify our discussion. The conclusions are the same for other 
chromosomes. 
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As can be seen from Figure 3A, the overall pattern of CTG distance matrices clearly distinguishes normal from 
tumor colon samples. From direct visualization, the fine plaid patterns of normal samples become significantly 
blurred in cancer, where the distinct genomic “chess-like squares” are no longer properly segregated and the 
specific long-range aggregation weakens. To be more quantitative, we calculated the contrast ratio of the 
genomic “squares” over their proximal neighbors (Figure 3B, Method). The contrast ratios were found to be 
significantly higher for normal samples than tumor samples (P-value=0.0084) and were conserved across 4 
individuals. Such a result indicates that there is a clear insulation between neighboring regions in normal 
tissues, the strength of which weakens in cancer samples. This change in genome insulation indicates the 
potential transcriptional dysregulation in carcinogenesis. One important factor affecting genome insulation is 
CTCF. It is known that CTCF/cohesin-binding sites are frequently mutated in cancer (Katainen et al., 2015) 
and immortalized cancer cell lines display a low CTCF occupancy with the hypermethylation of 
CTCF/cohesin-binding sites(Ong and Corces, 2014). However, it was also reported that the 
compartmentalization of mammalian chromosomes were independent from CTCF (Nora et al., 2017). The 
observations on mutli-scale chromatin structure changes thus suggest the influence from systematic aberration 
such as the uncontrolled cell cycle (Hanahan and Weinberg, 2000) in addition to the absence of chromosomal 
structure regulator, such as CTCF. Such a possibility has been suggested by Ma et al., 2015. 
Next, we calculated the reconstructed contact as a function of the 1D genomic distance (Figure 3C). It can be 
seen that the tumor samples display large decay rates in ~Mb region and the comparison between normal and 
cancerous CTG distance matrices suggests the loss of specific long-range interactions in colon cancer, as 
revealed by Figure 3C. In comparison, the decay curve derived from Hi-C data normalized by ICE only varies 
more significantly over different sample paris (Figure 3D), again validating the effectiveness of CTG  in 
revealing the consistent difference between normal and cancer cells.  
Sequence properties, especially CpG density, was reported to be an important factor affecting the organization 
of genomic structure (Liu et al., 2018). To gain understanding on how one-dimensional DNA sequences affect 
the organization of three-dimensional genomic structure, we performed dimensionality reduction on CTG 
distance matrix. The non-linear Laplacian Eigenmaps (see Methods) was employed for dimensionality 
reduction, as the eigenvectors obtained by this method are interpretable and reveals information on hierarchical 
clustering (Figure 3E, Figure S1). Sorted by eigenvalues, the leading eigenvector E1 reflects the predominant 
structural patterns. We quantified the contribution of sequence properties, including sequential similarity (CpG 
density) and sequential distance, to genomic structure, by projecting the structure-related eigenvectors on these 
sequence properties. Reflected by projection of E1(Figure 3F), the dominant factor in structure determination 
changes from sequential similarity in normal cells to sequential distance in colon cancer, affecting the 
organization of A and B compartmental domains and probably resulting in the dysregulation of 
transcriptionally active or inactive states (see Discussion). 
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Figure 3. Global structural patterns of Colorectal Cancer revealed by CTG. (A) The CTG contact maps for 
normal (upper pannel) and tumor (lower pannel) colon samples. Each column represents pairwise normal and tumor 
samples derived from the same patient. The yellow and red squares are examples of the differences between normal 
and tumor samples. (B) The contrast ratio of the CTG distance map, the blue bars correspond to normal samples and 
the red bars correspond to tumor samples. (C) Contact probability as a function of genomic distance calculated from 
the CTG contact map. (D) Contact probability as a function of genomic distance calculated from the Hi-C contact 
map. (E) The 2D Laplacian Eigenmaps of CTG distance matrices for pairwise colon normal and tumor samples. 
Each point represents a 40kb genomic region. The color is used to represent the CpG density of the 
corresponding genomic region. (F) Contribution of sequences properties to structure-related E1 eigenvector. 
 

CTG reveals the coupling of co-expression and genomic proximity during Colorectal Cancer 
pathogenesis 
The genomic structure is believed to play a crucial role in the precise gene expression program (Elimelech and 
Birnbaum, 2020; Oudelaar and Higgs, 2021). The genomic interactions between gene promoters and distal cis-
regulatory elements have been studied extensively (Li et al., 2022). Since less attention has been paid on the 
function of gene-gene co-localization in genomic structures, we investigate here the physical gene-gene 
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interactions at genomic levels, represented through the contact between genomic bins in 40 Kb resolution 
which contain these genes. Of special interest is whether a correlation exists between gene-gene contact in 
chromatin and gene co-expressions at the transcript level. The correlation network at transcript levels was 
characterized by spearman correlation coefficients of RNA-seq data, with the RNA-seq data derived from the 
Cancer Genome Atlas (TCGA) program, for 86 pairwise normal and tumor colon samples. The interaction 
network at genomic levels was quantified by CTG distances. The two networks were aligned together in 
perspective of the genomic position of each gene.  
The overall patterns of co-expression matrix changed significantly from normal to tumor samples (Figure 4A 
and 4B). Taking chromosome 17 as an example, the expression correlation between pairs of genes detected in 
tumor samples decreases sharply as a function of the corresponding linear genomic distance between the gene 
pairs increases, whereas this function barely changes with the genomic distance in the case of normal tissues 
(Figure 4C). Intriguringly, the dependence of co-expression on the genomic distance resembles that of CTG 
contact map, implying a potential relationship between genomic proximity and co-expression. To be more 
specific, we evaluated the one-to-one correspondence between genomic co-localization and co-expression. For 
both tumor and normal samples, the proximal gene-pairs tend to co-express at the transcript level (Figure 4D), 
and such an inter-dependence is stronger for tumor than normal samples. In reverse, gene-pairs that share a 
similar expression pattern tend to be proximal at genomic levels for tumor samples (Figure 4E), which is again 
more prominent for tumor than for normal samples. Such a difference between tumor and normal samples 
indicates an increased correlation between genomic structure and gene transcription in cancers in perspective 
of gene-gene interplay. Compared to cancer sample, there is a weaker correlation between gene pair proximity 
and their expression correlation across normal samples, for which genes of large linear and spatial distances 
can be highly correlated in expression, suggesting more important roles of regulation mechanisms besides 
spatial co-transcription, such as histone modification or DNA methylation, in normal cells than in their 
cancerous counterparts.  The elevated dependence of gene co-expression on their spatial interaction in 
chromatin may suggest that the gene expression regulation becomes more directly correlated with genomic 
structure. Interestingly, it was discovered recently that the RNA and protein levels become more strongly 
correlated in carcinogenesis, supporting that the regulation network simplifies in cancer pathogenesis 
(Nusinow et al., 2020). Moreover, besides solid tumors, we also found similar correspondence of gene-gene 
proximity and gene co-expression in acute lymphoblastic leukemia samples (Figure S2). 
Next, we analyzed the local spatial contacts in chromatin for individual genes (see Methods), where spatial 
gene-gene interactions (GGIs) are characterized. The interactions formed in cancer but not in normal tissue are 
referred as cancer specific GGIs (csGGIs). Noticeably, genes involved in csGGIs are prone to be more 
positively correlated in tumor samples than normal samples comparing with respective background (Figure 
4F). These csGGIs tend to be properly insulated in normal cells but not in cancer. We expect the csGGIs in 
genomic structures of tumor colon samples quantified by CTG algorithm to play an important role in 
transcriptional co-regulation between genes. Therefore, we further select csGGIs with notable changes in RNA 
correlation (tumor correlation >0.5 and normal correlation <0.1, the criterion is robust) and construct a csGGIs 
network. We found that the cancer-related genes (see Methods) are indeed enriched in the network, as 4.33% 
genes involved in this network are cancer genes with 0.28% of all coding genes being cancer genes. The cancer 
genes, including ERBB3, HRAS, MAP2K2, PTK6, RAC1, SDC4, TSC2, SRC, among others, are connected 
with more than 5 genes and thus may play central roles in this network (Figure S3-S5). Meanwhile, most of 
them are reported to be highly relative in colorectal cancer pathogenesis (Liu et al., 2021; Serebriiskii et al., 
2019; Wang et al., 2021). Deciphering the gene-gene interaction and resulted changes in regulation networks 
is expected to render further understanding on the specific functionality of these genes in addition to that 
provided merely by mutation of single genes. As the cancer genes are inferred from only cancer-related 
mutations, we next performed functional annotation analysis on all genes connected with more than 5 genes 
in this network (Table S1) and found these genes to be strongly involved in epidermal growth factor receptor 
(ERGF) signaling pathway and proteoglycans in cancer. In addition, HRAS, RAC1, SOS2, MAPK3 and 
MAP2K2 directly participate in colorectal cancer KEGG pathway. HRAS is involved in multiple cancer-
related process and genes interacting with HRAS in cancer genomic structure, for example, IFITM3, DRD4, 
IRF7 and NLRP6, are heavily involved in immune response. Such an analysis likely provides a new 
perspective on the roles of immune responses in cancer pathogenesis. 
 
CTG reveals the information passage from genomic proximity to protein-protein interaction in 
colorectal cancer pathogenesis 
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After interrogation on the interplays between gene-pairs at DNA levels and their transcript product, we ask 
whether such information is further passed along the central dogma, such that gene-gene interaction at the 
chromatin level affects the interaction between their translational products. The interplays at protein levels 
were evaluated by physical protein-protein interactions derived from the STRING project (Szklarczyk et al., 
2021). The genomic interactions and PPIs were aligned by genes and protein isoforms generated from 
corresponding genes. As shown below, we did identify associations between genomic structure and protein-
protein interactions (PPIs) in both normal and tumor samples that have not been discussed before. 
First, it can be seen from left panel of Figure 4G, 4H, S6A and S6B that the CTG distances between gene-pairs 
with their proteins forming known/predicted PPIs tend to be more proximal than those without PPIs, for both 
intra-chromosomal gene-pairs with a more stable genomic structure and inter-chromosomal gene-pairs with a 
more flexible genomic structure. We also calculated the proportion of gene-pairs containing PPIs under varied 
CTG distances and show the results in right panel of Figure 4G ,4H, S6A and S6B, from which one observes 
that the spatially proximal gene-pairs are more likely to have their product proteins to form PPIs. These results 
suggest that contact information deposited in genomic spatial structures has a tendency to pass to the protein 
level. Since the information passage of DNA-DNA (gene-gene) interaction to protein-protein interaction 
inevitably goes through RNA, we next examined the correlation between different genes at RNA and protein 
levels. Interestingly, gene pairs forming PPIs in the STRING dataset are indeed more prone to be correlated in 
transcription than randomly chosen pairs and such a tendency is found across different tumor types (Figure 
S7). Although co-expressions are a portion of gene interplays at RNA levels and PPIs in the datset are not 
tissue-matched, gene pairs with GGIs and PPIs are more correlated in transcription than those only with PPIs 
(Figure S8). Such results suggest that the information of gene regulatory network is at least partially coded in 
3D genomic structures and tranferred to RNA and protein levels along with the central dogma, in a way beyond 
correct coding and functioning of single genes, but also at the message-passage level in form of gene-gene 
interations. 
Integrating gene-gene interplay at DNA, RNA and protein levels, a number of gene pairs are seen to be at the 
center of interaction network for colon cancer (Figure 4I). For example, STAT3/STAT5, DSG2/DSC3, and 
RPTN/SPRR3, all possess genomic proximity, transcription coregulation and potential protein interactions 
inferred from STRING. In fact, these genes are all reported to be involved in colorectal tumorigenesis. For 
example, STAT3 are known biomarkers for colon cancer as it is necessary for proliferation and survival in 
colon cancer-initiating cells (Lin et al., 2011), and STAT5 are reported to be involved in regulation of 
colorectal cancer cell apoptosis (Du et al., 2012). The downregulation of DSG2 and DSC3 in colon cancer 
cells was found to suppress colon cancer cell proliferation (Cui et al., 2011; Kamekura et al., 2014), and DSC3 
is involved in tumor suppression activity (Cui et al., 2019). Finally, the overexpression of SPRR3 is known to 
promotes cell proliferation through AKT activation (Cui et al., 2011). The interactions between multiple genes 
can also be observed in the chromatin structure. For example, close proximity is seen among HLA (Human 
Leukocyte Antigen) genes (Figure S9). It is known that the relavent translational products make up the HLA 
class I (HLA-A, HLA-B, HLA-C) and class II (HLA-DQ, HLA-DR) complexes, which play important and 
distinctive roles in presenting processed peptide antigene (Choo, 2007; Giudizi et al., 1987). The results 
indicated that not only direct protein interations within each class of complex, but also co-regualtion between 
the two complexes may be partially coded in genomic structure, although they are distant in the linear genome.  
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Figure 4. Passage of gene-gene interplay from genomic level to transcription and protein levels in Colorectal 
Cancer. (A) Gene-gene transcriptional Pearson correlation matrix of chromosome 17 of normal colon samples. 
(B) Gene-gene transcriptional Pearson correlation matrix of chromosome 17 of tumor colon samples. (C) The 
averaged correlation coefficients as a function of 1D genomic distance between gene pairs. (D) The distribution of 
transcriptional Pearson correlation under different CTG distance of whole chromosome, the color of each line 
indicates corresponding CTG distance. (E) The distribution of CTG distance under different Pearson correlation 
of whole chromosome, the color of each line indictes corresponding Pearson correlation coefficient. (F) The 
distribution of correlation of gene-pairs with csGGIs and overall background (G) The distribution of CTG 
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distance between intra-chromosomal gene pairs with and without STRING PPIs for whole chromosome in 
tumor sample (left pannel); The proportion of intra-chromosomal gene-pairs with STRING PPI at different 
CTG distances in tumor sample (right pannel). (H) The distribution of CTG distance between inter-
chromosomal gene pairs with and without STRING PPIs for whole chromosome in tumor sample (left pannel); 
The proportion of inter-chromosomal gene-pairs with STRING PPI at different CTG distances in tumor sample 
(right pannel). (I) The gene network integrating colon cancer-related gene-gene interplay at DNA, RNA and 
protein levels. The three kinds of edges indicate gene-gene interplays at three levels. 
 
CTG reveals the tissue-specific coupling of protein-protein interaction and genomic interactions 
The integrated STRING PPI dataset contains both tissue-matched and unmatched PPIs, which allows the 
statistical anaylsis on GGI-PPI correlation but limits one from precisely match GGIs with PPIs in a cell-state 
specific manner. To overcome this limit, we next performed analysis based on the tissue-matched PPI datasets 
from the Affinity-Purification Mass Spectrometry (APMS) technique (see Methods).  
Fortunately, BioPlex project has compiled a comprehensive dataset of protein-protein interactions of HCT116 
cells (Huttlin et al., 2021), which allows us to quantify the correlation between genomic interactions and 
protein interactions for this colorectal carcinoma cell line. The cell-matched BioPlex PPIs consist  ~71,000 
interactions and they are all included in our analysis. Consistent with the results obtained using STRING 
datasets, as shown in Figure 5A and 5B, genomic proximal gene pairs in HCT116 cell are also more likely to 
possess corresponding PPIs  and on the other hand, gene pairs with corresponding PPIs also tend to be spatially 
closer in genomic structure than those without known PPIs, although the current PPI list is proabably far from 
being complete.  
The mutual correspondence between GGI and PPI uncovers a significant correlation between genomic 
interactions and protein-protein interactions. The genomic proximity information appears to be partially 
preserved in both transcription and translation. Furthermore, the intra-chromosomal gene-pairs with PPIs 
(Figure 5A and 5B, left pannel) displayed a tighter correlation with genomic structure than inter-chromosomal 
ones (Figure 5A and 5B, right pannel). Interestingly, it is known that genes with related functions tend to 
cluster along the linear genome and in individual chromosomes (Hurst et al., 2004). The higher intra- than 
inter-chromosomal DNA, RNA and protein coupling is consistent with this functional requirement. Next, to 
exclude the impact of 1D genomic distance within chromosomes, we evaluated GGI-PPI correlation at fixed 
genomic distances and found that gene-pairs with corresponding PPIs tend to be more proximal in all genomic 
distances (Figure 5C) than those without. Limited by a majority of weak or even undetected interactions, these 
signals are insignificant in raw Hi-C datasets with 90% zero-elements, again demonstrating the importance of 
further data processing for Hi-C matrix. We also performed functional annotation analysis for proximal gene-
pairs with tissue-matched PPIs (Table S2 and S3). These genomic-proximal intra-chromosomal PPIs 
significantly correlate with cell adhesion and immune response, enrichend in “interferon signaling pathway” 
and “antigene presentation” (HLA genes). In accrodance, interferon gene family is heavily involved in cancer-
related pathways, such as those of JAK-STAT and PI3K-Akt signaling (Burke et al., 2014; Horvath, 2004). In 
the meanwhile, HLA genes play vital roles in cancer immunotherapy (Anderson et al., 2021). The interactions 
of HLA genes in both genomic and protein levels in colon cancer cell line are consistent with findings on solid 
colorectal cancer samples. On the other hand, the functions of genomic-proximal inter-chromosomal PPIs are 
relavent with RNA exosome and proteasome which mediate the degradation of RNA and protein (Makino et 
al., 2013). The degradation system was shown to play important roles in cancer studies (Manasanch and 
Orlowski, 2017; Taniue et al., 2022) and the two degradatioin systems may follow common principles (Makino 
et al., 2013). These results demonstrated the possible roles chromatin and corresponding protein complex 
structures may play for the establishment of cell identity, as the structural-related PPIs are in correspondence 
with the cell-specific biological processes. 
Next, we studied the specific genomic and protein interactions of breast cancer cell line MCF-7 and its normal 
counterpart MCF-10A cells (Kim et al., 2021), and compared between them. The specific PPIs were quantified 
by over-expression affinity purification–mass spectrometry (PPI-score>0.65) (Kim et al., 2021). The number 
of MCF-10A-specific PPIs is 559 and that of MCF-7-specific PPIs is 1325. From Figure 5D, one observes a 
clear tendency that gene pairs with MCF-7-specific PPIs are more likely to possess genomic interactions in 
MCF-7 cells rather than MCF-10A-specific PPIs, while in contrast such a trend is insignificant for MCF-10A 
cells (Figure 5E). In addition, gene pairs with MCF-7-specific PPIs are more distal (t-value = -16.23, P-value 
= 1.79 × 10,/0 ) and those with MCF-10A-specific PPIs are more proximal (t-value = 7.08, P-value = 
1.99 × 10,&) ) in MCF-10A cells than in MCF-7 cells. These results thus reflect a tissue-specific 
correspondence between GGIs and PPIs. The breast cancer cell line MCF-7 displaying a more significant 
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correspondence than its normal counterpart may reflect that fewer cell-specific PPIs were identified in the 
normal than the cancer cells. This observation may also indicate the cancer-specific PPIs to be more strongly 
correlated with the changes in genomic structure, although the inference requires more experimental evidence 
due to the limited quantity of MCF-10A-specific PPIs. As specific and important examples, we analyzed TP53, 
GATA3, SMARCB1 and their corresponding MCF-7-specific PPIs neighbors. As shown in Figure 5F, the PPI 
neighbors of these genes, for example, CBX1/TP53, ITGB1/GATA3 and PI4KA/SMARCB1, tend to be 
proximal judged by comparison to their mean distances to all genes. Interestingly, their proximal PPI neighbors 
enrich more MCF-7 fitness genes (Behan et al., 2019), such as EIF5/TP53, GTPBP4/GATA3 and 
PAM16/SMARCB1, than distal PPI neighbors do in genomic structure, suggesting the importance of genomic 
structure to cell functionality and survivability.  
In summary, CTG revealed that a proportion of genomic proximity information is directly reflected at both 
transcriptional and translational levels. Such an observation suggests that the PPI information is at least 
partially coded through genomic proximity in the nucleus (see Discussion).  

 
Figure 5. The tissue-specific correspondance of protein-protein interaction and genomic proximity. (A) 
The distribution of CTG distance of intra-chromosomal gene pairs with and without HCT116-related PPIs for 
whole chromosome (left pannel); the proportion of intra-chromosomal gene-pairs with HCT116-related PPI at 
different CTG distances (right pannel). (B) The distribution of CTG distance of inter-chromosomal gene pairs 
with and without HCT116-related PPIs for whole chromosome (left pannel); the proportion of inter-
chromosomal gene-pairs with HCT116-related PPI at different CTG distances (right pannel). (C) The CTG 
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distance of gene pairs in fixed 1D genomic distance. (D) CTG distance of gene pairs with MCF-7-specific and 
MCF-10A-specific PPIs in MCF-7 cell. (E) CTG distance of gene pairs with MCF-7-specific and MCF-10A-
specific PPIs in MCF-10A cell. (F) TP53,GATA3, SMARCB1 related MCF-7-specific PPIs,the distance to 
TP53 indicates the CTG distance and the green circle indicates the background distance,the pink scatter 
indicates MCF-7 fitness genes and the dashes inducate genomic proximal neighbors. 
 
Discussion and conclusions 

We present in this paper a computational method, CTG, which was shown to significantly alleviate the 
insufficient sampling problem of Hi-C datasets. CTG takes a HiC contact matrix normalized by ICE as input, 
and outputs a reconstructed distance/contact matrix, enhancing extremely weak or even undetected interactions 
in a statistically reliable way. The CTG distance matrix is naturally a dense matrix and was shown to be highly 
consistent with imaging data obtained by FISH technique, thus validating the physical interpretation of the 
former. We next validated the reproducibility and consistency of CTG contact matrix using different cell 
numbers and even across different individuals and quantified the impact of residual systematic bias. Compared 
to Hi-C dataset upon normalization, CTG generates a reproducible and stable framework to characterize the 
variation of genomic structures among different samples and experiments. Using this method, we characterized 
the global changes of genomic structures in colorectal cancer pathogenesis and the changes are consistent 
across samples  taken from different patients. The CTG distance matrices can be compared among different 
samples and permit quantification of the chromatin structure changes, including the loss of specific long-range 
interactions and dysregulation of transcriptional insulation. These changes are distinguished from sequence-
related changes such as gene mutations and structural variations (including deletion,�duplications, insertions, 
inversions and translocations).  
Dimensional reduction on CTG distance map also reveals the sequence dependence of hierarchical chromatin 
structure. The organization of A and B compartmental domains is tightly correlated with the 1D sequence 
similarity, with compartment A of high CGI density compartment B of low CGI density (Liu et al., 2018). In 
colon cancer, the dominant factor in structure determination appears to change from sequential similarity in 
normal cells to sequential distance, impeding the long-range interactions of compartmental domains with 
similar sequence composition. Meanwhile, we investigated the potential correlation between genomic structure 
and transcriptional co-regulation in colon cancer, and found that the dysregulation in RNA-RNA correlation 
is at least partially encoded in the genomic structure and can thus be decoded by chromatin structure analysis. 
We therefore believe that the understanding of the genomic structure can provide a deeper insight into cancer 
progression and therapy. 
In fact, the precise gene expression programed through interactions between gene promoters and distal cis-
regulatory elements has been widely investigated. The role of 3D chromatin structure in gene expression 
regulation has been demonstrated through the importance of loop, TAD formation as well as 
compartmentalization, although significant uncertainties remain. CTG allows for a genome-wide interrogation 
on the correlations between proximal genes in genomic structure and their functions at transcriptional and 
translational levels. According to the central dogma, the sequence information of the DNA is mapped into that 
of RNA and then proteins, effectively resulting in a passage of the  one-dimension coding information. From 
a chemical point of view, the central dogma maps the chemical formula of DNAs to RNAs, and then to proteins, 
at a single molecule-level and in terms of individual genes. We found here that the flow of information in the 
central dogma is also manifested as the transmission of gene-gene interplay information, where genomic gene-
gene interactions at DNA levels are correlated with co-expressions at RNA levels and protein-protein 
interactions at protein levels.  
Firstly, from DNA to RNA levels, genome-wide correspondence between genomic proximity and co-
expression in colorectal cancer was detected in this study. Such an observation triggers us to speculate that the 
long-range interactions of genomic structure plays a fundamental role in the global transcriptional regulation, 
ensuring that specific linearly distant genes can share similar transcription environment, such as transcription 
factor binding and epigenetic hallmarks, and thus are co-regluated. Secondly, from DNA to protein levels, the 
associations between genomic proximity and PPIs were also detected. We demonstrated such an association 
on both integrated and tissue-matched PPI datasets. The genomic-proximal PPIs were found to be enriched in 
tissue-specific biological processes in several cell lines with available data, including HCT116, MCF-7 and 
MCF-10A. Thirdly, from RNA to protein, it is confirmed that gene pairs with detected PPIs are prone to be 
positively correlated in transcription for various types of normal and cancer samples deposited in TCGA. 
Hence, a more comprehensive picture on the biological information passage through central dogma thus likely 
goes beyond the single gene (protein) and the sequence (chemical formula) level and includes more complex 
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interaction information (Figure 6). In this scenario, the three layers of regulatory networks (roughly speaking, 
DNA, or more precisely, chromatin, RNA, and protein) are inter-connected not only at the single gene level 
but also partially at the levels of gene-gene and protein-protein pairs.  In this sense, not only genetics but also 
epigenetics information is passed through DNA to proteins. The distinct epigenetic hallmarks affect the 
accessibility and TF and RNA binding preference to DNA of specific genomic regions, and introduce distinct 
gene-gene interactions over similar 1D DNA sequence for different tissues. These interactions are all likely to 
participate in the establishment of tissue-specific gene regulatory networks. 
The storage and passage of interactome information in genomic structure is crucial for tissue-specificity and 
stability of the regulatory networks. The tissue/cell-specific protein-protein interaction play essential roles in 
functional orgnization of regulatory networks (Huttlin et al., 2021). However, proteins can vary heavily in 
number of copies, diffuse relatively freely in the cell if not anchored, and can have short lifetimes. Many of 
them are also required to respond quickly to external signals and other changes of cellular states. The cell is 
painfully crowded and complexed for proteins to find and associate with each other faithfully in a timely and 
well-organized manner, as required by signal transduction, especially if the population and distribution of 
individual proteins is entirely random or independent of each other. The highly responsive protein-protein 
interactions also impose difficulties for the proteins to maintain cell state-related information with constant 
disturbance as a result of cross-talk with the environment. A coordinated production of proteins can be 
envisioned to facilitate their interactions, the occurrence of which at the right place and right time could be 
essential for the information cascade. In contrast to proteins, genes including their copy numbers, positions on 
the linear DNA and 3-D chromatin are less variable and provide a more stable information storage. This study 
suggests that a coordinated and cellular-state dependent, highly regulated protein-protein interaction network 
can be achieved through usage of information stored in gene-gene interactions in 3-D chromatin structure. 
Such an information flow can lead to coordinated transcription (in time, and probably also in space) and 
eventually to functional protein-protein interactions. One can imagine that such protein-protein interactions 
involve not only pairs of proteins but also hetero-complexes formed by multiple proteins, the formation of 
which requires conceivably an even higher-level of coordination. 
Hence, the stable information storage of genomic structure can also furnish intrinsic guidance on 
quantifications of tissue/cell-specific protein-protein interactions. In contrast to the fast accumulation of Hi-C 
data, high-throughput quantifications of tissue/cell-specific protein-protein interactions are still challenging. 
The genomic structure changes provide important knowledge and complementary information in predicting 
tissue-specific protein-protein interactions, which is expected to be of use in understanding the dynamic 
function of proteomics, as well as the resulted gene regulation network.  In future studies, to understand the 
molecular mechanisms leading to the various molecular associations, we will thoroughly analyze the sequence 
and structure of  proteins identified through the current chromatin structure analysis.  
In summary, CTG is a consistent and robust framework for understanding the 3D genomic structure, by which 
we have detected a possible information flux of gene-gene interaction from genomic structure to transcriptional 
and translational levels. This study reveals important information of  gene-gene physical interactions in 3D 
chromatin structure formation and their changes in cancer compared to normal tissues. We found that this 
physical contact information between genes at the DNA level is likely transferred to the protein level for at 
least a subset of genes. The underlying mechanisms and functions of the passage of genomic to transcription 
correlation and protein-protein interaction requires much more experimental and computational validations 
and tests. For a more decisive evaluation on the GGI and PPI relationship, concurrent measurement of them in 
the same cells at the single-cell level would be extremely valuable. 
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Figure 6. Passage of gene-gene interplay through central dogma. Lines between pairwise genes, transcripts 
and proteins represent gene-gene interaction, transcriptional co-regulation and protein-protein interaction, 
respectively. 
  
Methods 

CTG algorithm 
W denotes for the Hi-C contact map normalized by ICE. It is a positive symmetric matrix and is regarded as 
the adjacency matrix for a weighted connected network G(V,E), where the vertices V={v1,v2,…vn} denote the 
non-overlapping genomic regions and the edges E = {ei,j} denote the contact strength between pairwise 
genomic regions. D is the diagonal degree matrix for the network, where the matrix element !!,! = ∑ ?!,#

$
#%! . 

An 1-step transition probability matrix P(1) can be derived by row-normalization of W: 
((&) = (	 =	!,&? 

As W is diagonalizable, P is also diagonalizable: 
( = ABA,& 

The eigenvectors U = {u1,u2,…,un}  reflect the characteristics of the reference matrix P. From the perspective 
of spectral analysis, the eigenvectors indicate the hierarchy of the network and the eigenvector corresponding 
to the largest eigenvalue indicates the most predominant hierarchy level of the network. Specific to genomic 
structures, the eigenvectors are respectively assigned to hierarchical structures, such as compartments and 
TAD structures. And the local systematic biases are more likely to be assigned to eigenvectors of small eigen 
values, as they are not global properties. 
The k-step transition probability matrix P(k) can be written as k-th power of ((&): 

((*) = (* = AB*A,& 
With step number k increasing, eigenvectors associated with genomic structure are preserved. Meanwhile, for 
a larger k, the contributing proportion of eigenvectors (corresponding eigenvalues) changes, where 
eigenvectors corresponding to larger eigenvalues of B  gradually contribute more and ((*)  highlight 
predominant hierarchy level of the network. 	((*) converges to the invariant distribution quickly and the 
difference between ((*,&)  and ((*)  decreases sharply, which means ((*)  provide less and less new 
information with k increasing. An exponential decay to was chosen to fit the convergence and a transition 
propensity matrix S within k steps is defined as: 

/(*) =4exp(−:2) (-
*

-%&
 

When k approaches infinity, S(k) converge to M (Supplymentary note1): 
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/		 =A
Λ

exp(λ) − Λ
A,& 

Therefore, the properties of S are independent from the value k. Si denotes the ith row of S and represents the 
integrated diffusion propensity of the ith vertex. The L1 norm of Si can be written as: 

E|/!|E& = lim
$→!

4exp(−:3)
*

=
1

exp(:) − 1
 

Considering the uniformity of the L1 norm of Si, we quantify the similarity between pairwise genomic regions 
i and j by calculating the L1 distance between Si and Sj. Hence, a CTG distance matrix is constructed from Hi-
C contact matrix and the distance measures the similarity of pairwise genomic regions by their diffusion 
propensity in a genome-wide fashion.  
 
Hi-C experiment 
Cell culture and fixation HEK293 cells (American Type Culture Collection) were cultured at 37 ℃ under 
5% CO2 in a humidified incubator. We cultured HEK293 cells in DMEM medium (Gibco, #11965092) with 
10% fetal bovine serum and 1% penicillin–streptomycin. To gather the cells for Hi-C processing, the cells 
were washed twice using PBS, detached by adding 1 mL 0.25% trypsin-EDTA (Gibco, #25200056) to their 
culture dish, centrifuged at 500g for 5 min, and recovered in PBS buffer. The cells were counted by a cell 
counter to determine the concentration. For sample 0923-4, 1000 cells were extracted to a 0.5 mL Eppendorf 
Lobind Microcentrifuge tube (Eppendorf, #32119210) for each sample. For sample 1002-5 and 0923-2, 10,000 
cells were extracted. 
The cells were then fixed by adding formaldehyde (Sigma-Aldrich, #47608) to a final concentration of 2% at 
room temperature for 10 min then quenched by 0.2 M glycine (Sigma-Aldrich, #50046) for 10 min. The fixed 
cells were centrifuged at 2,500g for 5 min to discard the supernatant and washed by 0.5 mL PBS (Gibco, 
#20012027) once. 
Hi-C processing Hi-C experiments were performed followed methods described in Rao et al., 2014 with some 
modifications. Briefly, the fixed cell pallet was lysed in 100 µL Hi-C lysis The fixed cell pallet was lysed in 
100 µL Hi-C lysis buffer (10 mM Tris-HCl pH=7.6 (Rockland, #MB-003), 10mM NaCl (Invitrogen 
AM9760G), 0.2% IGEPAL CA-720 (Sigma-Aldrich, #238589), 1x cOmplete protease inhibitor (Roche, 
#04693116001)) on ice for at least 30 min. The tubes were centrifuged to remove all the supernatant. 50 µL of 
0.5% SDS (Invitrogen, #15553027) was added to each tube and incubate at 65℃ for 20 min. To quench the 
reaction, 25 µL of 10% Triton X-100 (Sigma Aldrich, #T8787) was added and mix by pipetting up and down 
for several times. The tubes were then incubated at 37℃ for 20 min. To perform chromatin digestion, 10 µL 
10x NEBuffer2 (NEB, #B7002S), 10 µL 25U/µL MboI (NEB, #R0147L) and 5 µL water were added to each 
tube and incubate at 37℃ with rotation for 24 h. MboI enzyme was inactivated at 62℃ for 20 min. Fill-in mix 
which contains 14 µL 0.4 mM biotin-dATP (Invitrogen #19518018), 0.17 µL 10mM dTTP (NEB, #N0446S), 
0.17 µL 10mM dGTP (NEB, #N0446S), 0.17 µL 10mM dCTP (NEB, #N0446S) and 3 µL 5U/µL DNA 
Polymerase I Large (Klenow) Fragment (NEB, #M0210V) was added and incubated at 37℃ for 45min with 
rotation. Next, 12 µL 10% Triton X-100, 1.5 µL 100x BSA (NEB, #B9000S), 5 µL 10x T4 DNA ligase reaction 
buffer (NEB, #B0202S), 2 µL 400U/µL T4 DNA ligase (NEB, #M0202V), 10 µL 10mM ATP (NEB, 
#P0756S) and 2 µL water were added to each sample and the ligation reaction was carried out by incubating 
at room temperature with rotation for 24 h.  
Library Construction After ligation, DNA fragments were released by addition of 15 µL 10% SDS and 30 
µL Proteinase K (Qiagen, #19133) to each tube followed by incubation at 50℃ for 3h. The DNA fragments 
were purified by Ampure XP beads (volume ratio 1:1, Beckman Coulter, #A63881) and elute the DNA 
fragments in 27 µL water. Tagemtation was performed by adding 4 µL 8x TD buffer (80mM Tris-HCl pH=7.6, 
40mM MgCl2 (Invitrogen, #AM9530G), 80% N,N Dimethylformamide (Sigma-Aldrich, #D4551)) and 1 µL 
TTE Mix V50 Tn5 enzyme (Vazyme, #TD501) to the 27 µL DNA template. The tubes were incubated at 55℃ 
for 1h. To stop the reation, 8 µL 5x TS (Vazyme, #TD503) was added to each tube and incubate at room 
temperature for 5 min. To prepare Dynabeads M-280 streptavidin (Invitrogen, #11206D) for the capture of 
ligation junctions, 25 µL streptavidin beads was washed by 1x BW buffer (5mM Tris-HCl pH=7.6, 0.5mM 
EDTA (Invitrogen #AM9260G), 1M NaCl) and resuspended in 13 µL 4x BW buffer (20mM Tris-HCl pH=7.6, 
2mM EDTA, 4M NaCl) for each sample. The beads were then mixed with 40 µL tagmentation mix and 
incubate at room temperature overnight with rotation. The streptavidin beads were washed twice with 1x BW 
buffer, twice with 10mM Tris-HCl pH=7.6 and resuspended in 20 µL 10mM Tris-HCl pH=7.6. PCR 
amplification was carried out by addition of 5 µL 10 µM Nextera index mix(Vazyme, #TD203) and 25 µL Q5 
High-Fidelity 2X master mix (NEB, #M0492S) to the 20 µL sample. PCR program was set as follows: 
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STEP TEMP TIME 
Pre-extension 72°C 5 minutes 
Initial Denaturation 98°C 30 seconds 

10 Cycles 
98°C 10 seconds 
65°C 30 seconds 
72°C 90 seconds 

Final Extension 72°C 2 minutes 
Hold 4°C ∞ 

Post-PCR purification was performed using Ampure XP beads (0.8 times volume of the PCR mix) according 
to manufacturer's instructions.  
Library QC and sequencing The libraries were quantified using Qubit 1x dsDNA HS Assay kits (Invitrogen, 
#Q33230) and the size distribution was assessed using 5200 Fragment Analyzer System (Agilent, 
#M5310AA). The qualified libraries were then quantified by qPCR and sequenced by 2x 150 bp paired-end 
run on a Novaseq 6000 System (Illumina). 
Sequence Processing Paired-end reads were first under adaptor trimming using Cutadapt (Martin, 2011, 
version 2.10) with default arguments. Reads shorter than 20 bp were filtered out after adapter trimming. 
Trimmed reads were mapped to Genome Reference Consortium Human Build 37 (hg19, downloaded from 
UCSC, https://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips) and processed by HiC-Pro (Servant et al., 
2015, version 2.11.4) using default settings. The contact matrix extracted by HiC-Pro were then used in 
downstream analysis. 
 
Hi-C data analysis  
For normal and tumor colon samples, we used Hi-C data from GSE133928, the normal samples are 
BRD3162N-sb, BRD3179N, BRD3187N, BRD3462N, the tumor samples are BRD3162, BRD3179, 
BRD3187, BRD3146. For HCT116 cell line, we used Hi-C data from GSE133928. For MCF-7 and MCF-10A 
cell line, we used the samples GSE165570. Hi-C matrices were normalized using the ICE algorithm (Imakaev, 
Maxim; Fundenberg, Geoffrey; Patton McCord, Rachel; Naumova, Natalia; Goloborodko, Anton; Lajoie, 
Bryan R.; Dekker, Job; Mirny, 2012).   
 
Contrast ratio 
Sobel operator is a discrete derivative operator for edge detection which is defined as:  

/2 = J
−1 −2 −1
0 0 0
1 2 1

L , /3 = J
−1 0 1
2 0 2
−1 0 1

L 

 
Convolution was performed on a distance map I with the Sobel operator as the kernel:  

M2 = /2 ∗ O 
M3 = /3 ∗ O 

M = PM2) + M2)
!

 

Distinct edges will be emphasized by G for a distance map with ‘chess-like squares’. Therefore, G reflects the 
contrast ratio of the genomic “squares” with distinct edges over their proximal neighbors and the mean of G is 
defined as the overall contrast ratio of the distance map. 
 
Laplacian Eigenmaps 
Given a CTG distance map O, it’s transformed into weight matrix W by a exponential kernal : 

R	 = 	'ST(−UO) 
U reflects the scale of genomic structure we focused on. A large U amplifies weights of short-distance and a 
small U amplifies weights of long-distance. To avoid the impact uneven degree distribution, the normalized 
Laplacian L is  constructed: 

V = O	 −	!,&/)R!,&/) 
Where D is the degree matrix for W. 
V  is diagonalizable and the bottom 3 eigenvectors E0, E1,E2 is computed. E0 is excluded as it is  not 
informative: 
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W	 = 	 [Y1Y2]!
,&/) 

The coordinates for n genomic regions {[&|[)|. . . |[$} 	 ∈ R) is acquired by converting the columns of Y into 
2-dimensional vectors: 

[[&|[)|. . . |[$] 	= 	W 
 
Gene expression data 
We downloaded all available tumor-normal pairwise somatic expression data for patients from TCGA GDC 
Data Portal (https://portal.gdc.cancer.gov) and selected expression data with more than 10 patients for 17 
cancer types/subtypes. All expression data were converted to TPM (transcripts per million) format. 
 
Protein-Protein interaction data 
To build a comprehensive protein-protein interactome, we assembled protein-protein interactions from 3 
sources: (1) PPIs from STRING project (https://www.string.com), (2) HCT116-related PPIs from BioPlex 
project, (3) MCF-10A-related and MCF-7-related PPIs from Kim, M. et al. The cell-specific PPIs were 
determined from (2)(3) with PPI score ≥ 0.65 and ≥8-fold change. 
 
Genomic neighborhood and csGGIs 
The neighborhood for a given genomic region is defined by its radial distribution function(RDF), taken a small 
proportion of genomic regions within the neighborhood. The diameter of the neighborhood is determined by 
boundary of the highest characteristic peak, where the slope of tangent line of the cumulative RDF is 
calculated, and tangent line with lagerst slope is chosen as a guideline. The diameter is quantified by the point 
that the guidline intersects with the x axis. The neighborhood for a given genomic region is then settled. 
Pairwise genomic regions within each other’s neighborhood is defined to have gene-gene interactions (GGIs).  
 
The fold-change of CTG distance between tumor samples and normal samples is calculated, where ] denotes 
for the mean of fold-change and ^ denotes for the standard deviation. The cancer specific GGIs (csGGIs) are 
GGIs from tumor samples with extreme change in CTG distance (fold-change < ]− 3^, according to 3^ rule). 
 
Gene function analysis 
GO enrichment analysis of all the given gene clusters in this work was conducted using DAVID 
(https://david.ncifcrf.gov). Individual gene functions were obtained from GeneCards 
(https://www.genecards.org). Cancer genes were obtained from COSMIC 
�https://cancer.sanger.ac.uk/cosmic).  
 
Visualization 
The PyMOL program (Schrodinger  LLC, 2015) was employed to visualize the genomic structure (Xie et al., 
2017) in Figure 1. The VMD program (Humphrey et al., 1996) was employed to render the protein structure.     

Supplementary Materials: Figure S1: 2D Laplacian eigenmap of colon cancer, Figure S2: Correspondence of 

gene-gene proximity and RNA co-regulation in leukemia, Figure S3: Subgraph of csGGI network with ERBB3, 

Figure S4: Subgraph of csGGI network with HRAS, Figure S5: Subgraph of csGGI network with PTK6., Figure 

S6: Correspondance of gene-gene proximity and STRING PPIs in normal colon sample, Figure S7: The distribution 

of RNA correlation with STRING PPI for 17 cancer types, Figure S8: The distribution of RNA correlation for colon 

cancer, Table S1: Function enrichment analysis, Table S1: Functional annotation clustering of colon csGGIs, Table 

S2: Functional annotation clustering of HCT116 structural-related intra-chromosomal PPIs; Table S3: Functional 

annotation clustering of HCT116 structural-related inter-chromosomal PPIs. 
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Supplementary note 

Proof 1: eigenvalues Λ of the P are within range of [-1,1]. 

For any eigenvector X of P:  
"#	 = 	&# 

The maximum element of X is denoted as '!"#, and the minimum element of X is 
denoted as '!$%. As the row summation of P is normalized to 1, and P is positive, 

'!$% ≤ &'!$% ≤ '!"# 
'!$% ≤ &'!"# ≤ '!"# 

Therefore, 
−1 ≤ &'!"# ≤ 1 

 
Proof 2: When n approaches infinity, the transition propensity matrix M(n) is 
convergent. 
P is diagonalizable:  

P=U-1VU 
P(k) can be written as:  

P(k) = PK = U-1ΛkU 
S(n) is the weighted summation of P(k):  

+	(%) =	∑ exp(−&1)	3()Λ*%
*+) 3 = ∑ 3()[exp(−&1)	Λ*]%

*+) 3  
According to associative law of multiplication :  

+	(%) =	3()6[exp(−&1)	Λ*]
%

*+)
3 = 3()[6exp(−&1)	Λ*]

%

*+)
3 

When n approaches infinity, we have 

+	 = 	3()[ lim
%→∞

6exp
%

*+)
(−&1) Λ*]3 

In the above equation, exp(−&1)	Λ* is a geometric progression, and  

lim
%→∞

	exp(−&1)	Λ* 	→ 	0 

Therefore, the summation over exp(−&1)	Λ*is convergent, and  
 

lim
%→∞

6exp(−&1)	Λ*
%

*+)
=	 Λ
exp(&) − Λ 

 S is then also convergent and  

+		 = 3() Λ
exp(&) − Λ3 
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Figure S1. 2D Laplacian eigenmap of colon cancer. (A) The 2D Laplacian Eigenmaps of 
CTG distance matrices for pairwise normal (upper pannel) and tumor (lower pannel) colon 
samples. Each point represents a 40kb genomic region. The color is used to represent 
the CpG density of the corresponding genomic region. (B) The color is used to 
represent the genomic position of the corresponding genomic region. 
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Figure S2. Correspondence of gene-gene proximity and RNA co-regulation in leukemia. (A) 
The distribution of transcriptional Pearson correlation under different CTG distance of 
chromosome 1(left) and chromosome 17(right), the color of each line indictes 
corresponding CTG distance. (B) The distribution of CTG distance under different 
Pearson correlation of chromosome 1(left) and chromosome 17(right), the color of 
each line indictes corresponding Pearson correlation coefficient. 
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Figure S3. Subgraph of csGGI network with ERBB3.  
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 V 

 
Figure S4. Subgraph of csGGI network with HRAS. 
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Figure S5. Subgraph of csGGI network with PTK6. 
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Figure S6. Correspondance of gene-gene proximity and STRING PPIs in normal colon sample. 
(A) The distribution of CTG distance between intra-chromosomal gene pairs with and 
without STRING PPIs for whole chromosome in tumor sample (left pannel); The 
proportion of intra-chromosomal gene-pairs with STRING PPI at different CTG 
distances in normal sample (right pannel). (B) The distribution of CTG distance between 
inter-chromosomal gene pairs with and without STRING PPIs for whole chromosome 
in normal sample (left pannel); The proportion of inter-chromosomal gene-pairs with 
STRING PPI at different CTG distances in normal sample (right pannel). 
 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 13, 2022. ; https://doi.org/10.1101/2022.07.12.499232doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.12.499232
http://creativecommons.org/licenses/by-nc-nd/4.0/


 VIII 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 13, 2022. ; https://doi.org/10.1101/2022.07.12.499232doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.12.499232
http://creativecommons.org/licenses/by-nc-nd/4.0/


 IX 

 
Figure S7. The distribution of RNA correlation with STRING PPI for 17 cancer types. The 
distributions of gene-pairs with STRING PPI are colored blue and the control groups are colored 
orange. All samples show similar patterns that gene-pairs with STRING PPI are more correlated 
in transcriptional level. 
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Figure S8. The distribution of RNA correlation for colon cancer. Gene-pairs with both 
STRING PPI and GGIs are colored blue and gene-pairs with only STRING PPI are colored orange 
and the control group is colored green. Gene-pairs with both STRING PPI and GGIs are more 
correlated in transcriptional level for both tumor and normal colon sample. 
 
Table S1. Functional annotation clustering of colon csGGIs. 
Annotation Cluster 1: Enrichment Score: 1.5327833580397092 
Term Count PValue Benjamini 

hsa01521: EGFR tyrosine kinase inhibitor resistance 7 4.63E-05 0.00920864 
h_pyk2Pathway: Links between Pyk2 and Map Kinases 5 8.51E-05 0.00802485 

h_at1rPathway: Angiotensin II mediated activation of 
JNK Pathway via Pyk2 dependent signaling 

5 1.65E-04 0.00802485 

hsa05219: Bladder cancer 5 3.55E-04 0.03383294 

h_malPathway: Role of MAL in Rho-Mediated 
Activation of SRF 

4 5.67E-04 0.01608635 

hsa04662: B cell receptor signaling pathway 6 5.77E-04 0.03383294 

hsa04012: ErbB signaling pathway 6 6.80E-04 0.03383294 
h_rasPathway: Ras Signaling Pathway 4 0.00101341 0.0196602 

hsa04140: Autophagy - animal 7 0.00108928 0.03764245 

hsa05231: Choline metabolism in cancer 6 0.00129541 0.03764245 

hsa04370: VEGF signaling pathway 5 0.00142489 0.03764245 
hsa05205: Proteoglycans in cancer 8 0.00151326 0.03764245 

h_sam68Pathway: Regulation of Splicing through 
Sam68 

3 0.00163092 0.02636658 

GO: 2000641~regulation of early endosome to late 
endosome transport 

3 0.0017761 0.66330982 

hsa04810: Regulation of actin cytoskeleton 8 0.00215053 0.04444882 

h_erkPathway: Erk1/Erk2 Mapk Signaling pathway 4 0.00223416 0.03095906 

hsa04664: Fc epsilon RI signaling pathway 5 0.00241051 0.04444882 
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hsa05211: Renal cell carcinoma 5 0.00254296 0.04444882 

hsa04917: Prolactin signaling pathway 5 0.00268033 0.04444882 

hsa05223: Non-small cell lung cancer 5 0.00297021 0.04546711 
hsa05220: Chronic myeloid leukemia 5 0.00361302 0.05135645 

h_metPathway: Signaling of Hepatocyte Growth Factor 
Receptor 

4 0.00379947 0.03988317 

hsa04650: Natural killer cell mediated cytotoxicity 6 0.00389495 0.05167298 

h_fmlpPathway: fMLP induced chemokine gene 
expression in HMC-1 cells 

4 0.00411167 0.03988317 

h_integrinPathway: Integrin Signaling Pathway 4 0.00411167 0.03988317 

hsa05210: Colorectal cancer 5 0.00561992 0.06989776 
h_cdk5Pathway: Phosphorylation of MEK1 by 
cdk5/p35 down regulates the MAP kinase pathway 

3 0.00586627 0.05172985 

hsa04540: Gap junction 5 0.00609515 0.07134909     

Annotation Cluster 2: Enrichment Score: 1.5241353790689698 
Term Count PValue Benjamini 

GO: 0039702~viral budding via host ESCRT complex 3 0.01072312 1 
GO: 0036258~multivesicular body assembly 3 0.02069957 1 

GO: 0043162~ubiquitin-dependent protein catabolic 
process via the multivesicular body sorting pathway 

3 0.02069957 1 

GO: 0090148~membrane fission 3 0.03330408 1     

Annotation Cluster 3: Enrichment Score: 1.453480544316328 
Term Count PValue Benjamini 

KW-0653~Protein transport 12 0.01295629 0.24467061 

GO: 0015031~protein transport 8 0.0389436 1 

KW-0967~Endosome 9 0.08642541 0.79943504     

Annotation Cluster 4: Enrichment Score: 1.444194122407839 
Term Count PValue Benjamini 

KW-0648~Protein biosynthesis 6 0.00775783 0.24467061 
KW-0396~Initiation factor 3 0.07027195 0.71901399 

GO: 0003743~translation initiation factor activity 3 0.08528948 1     

Annotation Cluster 5: Enrichment Score: 1.3130484622630447 
Term Count PValue Benjamini 

GO: 0051402~neuron apoptotic process 5 0.001971 0.66330982 

GO: 0043524~negative regulation of neuron apoptotic 
process 

4 0.10479492 1 

    

Annotation Cluster 6: Enrichment Score: 1.2661570708970376 
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Term Count PValue Benjamini 

GO: 0097542~ciliary tip 4 0.00441052 0.19343661 

GO: 0005813~centrosome 11 0.00465311 0.19343661 
GO: 0042073~intraciliary transport 3 0.02328684 1 

GO: 0005929~cilium 6 0.02622916 0.44898151     

Annotation Cluster 7: Enrichment Score: 1.2170182899365116 
Term Count PValue Benjamini 

GO: 0019216~regulation of lipid metabolic process 4 0.00293104 0.66330982 

GO: 0042752~regulation of circadian rhythm 3 0.08129563 1 
 
 
Table S2. Functional annotation clustering of HCT116 structural-related intra-chromosomal 
PPIs. 
Annotation Cluster 1: Enrichment Score: 18.886710115925517 
Term PValue Benjamini 

GO: 0007156~homophilic cell adhesion via plasma 
membrane adhesion molecules 

7.08E-39 1.38E-35 

GO: 0007399~nervous system development 5.72E-17 5.59E-14 

GO: 0007155~cell adhesion 1.66E-15 1.08E-12 

GO: 0005509~calcium ion binding 1.07E-14 6.82E-12 
GO: 0005887~integral component of plasma membrane 5.09E-12 2.37E-09    

Annotation Cluster 2: Enrichment Score: 5.486720966179876 

Term PValue Benjamini 
hsa05320: Autoimmune thyroid disease 8.92E-19 2.45E-16 

GO: 0002323~natural killer cell activation involved in 
immune response 

1.09E-10 5.32E-08 

hsa05169: Epstein-Barr virus infection 4.37E-10 6.01E-08 

GO: 0005132~type I interferon receptor binding 2.03E-09 6.44E-07 

hsa05152: Tuberculosis 8.01E-09 3.96E-07 

GO: 0033141~positive regulation of peptidyl-serine 
phosphorylation of STAT protein 

1.02E-08 3.98E-06 

hsa05164: Influenza A 1.78E-08 5.91E-07 
hsa05163: Human cytomegalovirus infection 1.93E-08 5.91E-07 

hsa05168: Herpes simplex virus 1 infection 5.62E-08 1.54E-06 

GO: 0002286~T cell activation involved in immune response 7.08E-08 2.18E-05 

GO: 0006959~humoral immune response 1.07E-07 2.61E-05 
GO: 0019221~cytokine-mediated signaling pathway 5.31E-07 1.01E-04 

hsa04623: Cytosolic DNA-sensing pathway 5.84E-07 1.46E-05 

GO: 0042100~B cell proliferation 6.20E-07 1.01E-04 

GO: 0060337~type I interferon signaling pathway 6.20E-07 1.01E-04 
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 XIII 

hsa05170: Human immunodeficiency virus 1 infection 6.38E-07 1.46E-05 

hsa05167: Kaposi sarcoma-associated herpesvirus infection 6.93E-07 1.47E-05 

GO: 0043330~response to exogenous dsRNA 7.02E-07 1.05E-04 
hsa05165: Human papillomavirus infection 1.66E-06 3.26E-05 

hsa04650: Natural killer cell mediated cytotoxicity 4.93E-06 8.47E-05 

hsa05162: Measles 1.55E-05 2.37E-04 

GO: 0051607~defense response to virus 2.19E-05 0.00237571 
GO: 0030183~B cell differentiation 2.44E-05 0.0025043 

hsa04622: RIG-I-like receptor signaling pathway 8.08E-05 0.00105761 

hsa05161: Hepatitis B 8.57E-05 0.00107156 

GO: 0002250~adaptive immune response 1.05E-04 0.00972708 
hsa05200: Pathways in cancer 1.24E-04 0.00148135 

GO: 0098586~cellular response to virus 1.42E-04 0.01258975 

hsa04217: Necroptosis 2.67E-04 0.00271968 

hsa04620: Toll-like receptor signaling pathway 3.80E-04 0.00373633 
hsa05417: Lipid and atherosclerosis 5.11E-04 0.00484296 

hsa05160: Hepatitis C 8.40E-04 0.00745575 

hsa04936: Alcoholic liver disease 0.00123367 0.01028057 

GO: 0005125~cytokine activity 0.00232746 0.21113399 
hsa04630: JAK-STAT signaling pathway 0.00350412 0.02604415 

hsa04060: Cytokine-cytokine receptor interaction 0.00466886 0.03292144 

hsa04151: PI3K-Akt signaling pathway 0.00537873 0.0369788 

hsa05171: Coronavirus disease - COVID-19 0.00802705 0.05133577 
hsa04621: NOD-like receptor signaling pathway 0.00900205 0.05626278 

GO: 0005126~cytokine receptor binding 0.01312996 0.75795707    

Annotation Cluster 3: Enrichment Score: 4.299091183648573 
Term PValue Benjamini 

hsa05320: Autoimmune thyroid disease 8.92E-19 2.45E-16 

GO: 0071556~integral component of lumenal side of 
endoplasmic reticulum membrane 

3.08E-10 7.16E-08 

hsa05330: Allograft rejection 2.03E-09 1.86E-07 

hsa05332: Graft-versus-host disease 6.58E-09 3.96E-07 
hsa04940: Type I diabetes mellitus 8.64E-09 3.96E-07 

GO: 0042605~peptide antigen binding 1.09E-08 2.30E-06 

hsa04612: Antigen processing and presentation 1.11E-08 4.37E-07 

GO: 0042613~MHC class II protein complex 5.37E-08 8.32E-06 
GO: 0019882~antigen processing and presentation 7.82E-08 2.18E-05 

GO: 0002504~antigen processing and presentation of peptide 
or polysaccharide antigen via MHC class II 

1.75E-07 3.79E-05 

GO: 0032395~MHC class II receptor activity 2.70E-07 4.28E-05 
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GO: 0002503~peptide antigen assembly with MHC class II 
protein complex 

8.60E-07 1.20E-04 

GO: 0002381~immunoglobulin production involved in 
immunoglobulin mediated immune response 

1.30E-06 1.70E-04 

hsa05416: Viral myocarditis 3.00E-06 5.50E-05 

GO: 0012507~ER to Golgi transport vesicle membrane 3.18E-06 2.95E-04 

GO: 0019886~antigen processing and presentation of 
exogenous peptide antigen via MHC class II 

3.77E-06 4.60E-04 

hsa04145: Phagosome 9.83E-06 1.59E-04 

hsa05166: Human T-cell leukemia virus 1 infection 1.99E-05 2.87E-04 
GO: 0023026~MHC class II protein complex binding 3.50E-05 0.00444635 

hsa05150: Staphylococcus aureus infection 3.91E-05 5.38E-04 

GO: 0050870~positive regulation of T cell activation 8.58E-05 0.00838156 

hsa05310: Asthma 1.29E-04 0.00148193 
GO: 0030666~endocytic vesicle membrane 1.55E-04 0.01200662 

hsa05145: Toxoplasmosis 1.61E-04 0.00177432 

hsa05140: Leishmaniasis 1.71E-04 0.00180795 

GO: 0005765~lysosomal membrane 2.22E-04 0.0147493 
GO: 0006955~immune response 3.83E-04 0.03118785 

GO: 0002486~antigen processing and presentation of 
endogenous peptide antigen via MHC class I via ER 
pathway, TAP-independent 

5.93E-04 0.046337 

GO: 0042612~MHC class I protein complex 7.87E-04 0.04053694 

hsa04514: Cell adhesion molecules 8.40E-04 0.00745575 

GO: 0000139~Golgi membrane 0.00109335 0.04621875 
hsa04640: Hematopoietic cell lineage 0.00111535 0.00958507 

hsa05321: Inflammatory bowel disease 0.00148522 0.01201284 

hsa04672: Intestinal immune network for IgA production 0.00165846 0.01303076 

GO: 0030658~transport vesicle membrane 0.00190334 0.06808101 
hsa05322: Systemic lupus erythematosus 0.00299623 0.02288785 

GO: 0001916~positive regulation of T cell mediated 
cytotoxicity 

0.00301056 0.22613968 

GO: 0030670~phagocytic vesicle membrane 0.00555792 0.15684631 

hsa04659: Th17 cell differentiation 0.00734264 0.04807682 

hsa04658: Th1 and Th2 cell differentiation 0.01032726 0.06173908 
hsa05323: Rheumatoid arthritis 0.01092655 0.06393195 

GO: 0030669~clathrin-coated endocytic vesicle membrane 0.01841431 0.42813264 

GO: 0010008~endosome membrane 0.05188268 0.86361666 

GO: 0031901~early endosome membrane 0.05200272 0.86361666 
GO: 0055038~recycling endosome membrane 0.07280561 1 

GO: 0032588~trans-Golgi network membrane 0.07280561 1 

GO: 0050852~T cell receptor signaling pathway 0.24866213 1 
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hsa05203: Viral carcinogenesis 0.28823311 1 

hsa04218: Cellular senescence 0.38971633 1 

hsa04144: Endocytosis 0.49025631 1    

Annotation Cluster 4: Enrichment Score: 2.5719744078830575 

Term PValue Benjamini 

GO: 0016339~calcium-dependent cell-cell adhesion via 
plasma membrane cell adhesion molecules 

4.69E-06 5.39E-04 

GO: 0007416~synapse assembly 1.79E-04 0.015208 
GO: 0007268~chemical synaptic transmission 0.12291758 1 

GO: 0045202~synapse 0.49932314 1    

Annotation Cluster 5: Enrichment Score: 1.3966018993019305 
Term PValue Benjamini 

hsa00480: Glutathione metabolism 0.00361814 0.02618394 

GO: 0004364~glutathione transferase activity 0.00366572 0.29096645 

hsa05204: Chemical carcinogenesis - DNA adducts 0.00922531 0.05637689 
GO: 0006749~glutathione metabolic process 0.02149396 1 

hsa00982: Drug metabolism - cytochrome P450 0.04022589 0.22124239 

hsa01524: Platinum drug resistance 0.04229977 0.22808699 

hsa05207: Chemical carcinogenesis - receptor activation 0.05243462 0.27729846 
hsa00980: Metabolism of xenobiotics by cytochrome P450 0.0536251 0.27824345 

hsa00983: Drug metabolism - other enzymes 0.05860336 0.29301679 

GO: 0006805~xenobiotic metabolic process 0.07181652 1 

GO: 0042178~xenobiotic catabolic process 0.09474298 1 
hsa05225: Hepatocellular carcinoma 0.15260351 0.68796663 

hsa05418: Fluid shear stress and atherosclerosis 0.15821423 0.69977247 

hsa05208: Chemical carcinogenesis - reactive oxygen species 0.23136469 0.92210563    

Annotation Cluster 6: Enrichment Score: 1.3570585896445353 

Term PValue Benjamini 

GO: 0045869~negative regulation of single stranded viral 
RNA replication via double stranded DNA intermediate 

0.00518358 0.33745123 

GO: 0010529~negative regulation of transposition 0.01639338 0.89908234 

GO: 0070383~DNA cytosine deamination 0.02040899 0.99646883 
GO: 0047844~deoxycytidine deaminase activity 0.02262817 1 

GO: 0009972~cytidine deamination 0.02905456 1 

GO: 0016554~cytidine to uridine editing 0.02905456 1 

GO: 0004126~cytidine deaminase activity 0.03216004 1 
GO: 0080111~DNA demethylation 0.08096562 1 

hsa03250: Viral life cycle - HIV-1 0.49555146 1 

GO: 0000932~P-body 0.62879617 1 
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Annotation Cluster 7: Enrichment Score: 1.2134687565396018 

Term PValue Benjamini 
GO: 0045324~late endosome to vacuole transport 0.01657295 0.89908234 

GO: 0097352~autophagosome maturation 0.06918992 1 

GO: 0016236~macroautophagy 0.1995957 1 
 
Table S3. Functional annotation clustering of HCT116 structural-related intra-
chromosomal PPIs. 
Annotation Cluster 1: Enrichment Score: 2.943527846030514 
Term PValue Benjamini 

GO: 0000502~proteasome complex 1.47E-06 1.74E-04 

hsa03050: Proteasome 6.92E-04 0.043804 

GO: 0022624~proteasome accessory complex 0.0066303 0.1380662 
hsa05017: Spinocerebellar ataxia 0.24932119 0.99411035    

Annotation Cluster 2: Enrichment Score: 2.5665692443489947 

Term PValue Benjamini 
GO: 0042765~GPI-anchor transamidase complex 9.14E-04 0.03595721 

GO: 0016255~attachment of GPI anchor to protein 0.00185364 0.55531848 

hsa00563: Glycosylphosphatidylinositol (GPI)-anchor 
biosynthesis 

0.01178264 0.22179084 

   

Annotation Cluster 3: Enrichment Score: 2.4423007751503065 
Term PValue Benjamini 

GO: 0008380~RNA splicing 2.54E-06 0.00457121 

hsa03040: Spliceosome 1.25E-04 0.01331879 

GO: 0000398~mRNA splicing, via spliceosome 0.00136178 0.49401419 
GO: 0005681~spliceosomal complex 0.00175958 0.05662648 

GO: 0071013~catalytic step 2 spliceosome 0.00260104 0.07082841 

GO: 0071005~U2-type precatalytic spliceosome 0.00771117 0.15598591 

GO: 0071007~U2-type catalytic step 2 spliceosome 0.01130191 0.20517311 
GO: 0000375~RNA splicing, via transesterification 
reactions 

0.11039709 1 

GO: 0005682~U5 snRNP 0.11623505 0.86190502 
GO: 0046540~U4/U6 x U5 tri-snRNP complex 0.17059402 0.9309836    

Annotation Cluster 4: Enrichment Score: 2.3608515879841923 

Term PValue Benjamini 
GO: 0030141~secretory granule 1.78E-04 0.0104911 

GO: 0004252~serine-type endopeptidase activity 0.01734523 0.95171215 

GO: 0008236~serine-type peptidase activity 0.02680996 1 
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Annotation Cluster 5: Enrichment Score: 2.1495169142708916 

Term PValue Benjamini 
GO: 0071051~polyadenylation-dependent snoRNA 3'-end 
processing 

1.51E-04 0.1354518 

GO: 0034475~U4 snRNA 3'-end processing 2.90E-04 0.20444477 

GO: 0000177~cytoplasmic exosome (RNase complex) 2.93E-04 0.01480803 

GO: 0045006~DNA deamination 3.98E-04 0.20444477 

GO: 0000178~exosome (RNase complex) 5.91E-04 0.02791445 
GO: 0101019~nucleolar exosome (RNase complex) 7.58E-04 0.033306 

GO: 0034427~nuclear-transcribed mRNA catabolic 
process, exonucleolytic, 3'-5' 

8.07E-04 0.36271775 

GO: 0000176~nuclear exosome (RNase complex) 0.00165804 0.05662648 

GO: 0016075~rRNA catabolic process 0.00558333 0.8519673 

GO: 0043928~exonucleolytic nuclear-transcribed mRNA 
catabolic process involved in deadenylation-dependent 
decay 

0.02071858 1 

GO: 0006401~RNA catabolic process 0.02274463 1 

GO: 0035327~transcriptionally active chromatin 0.02293376 0.31837454 
GO: 0071028~nuclear mRNA surveillance 0.06364649 1 

hsa03018: RNA degradation 0.06393924 0.60178111 

GO: 0000175~3'-5'-exoribonuclease activity 0.07306224 1 

GO: 0000791~euchromatin 0.16498087 0.9309836 
GO: 0090503~RNA phosphodiester bond hydrolysis, 
exonucleolytic 

0.22541777 1 

GO: 0006396~RNA processing 0.99805831 1    

Annotation Cluster 6: Enrichment Score: 1.9218679321185945 

Term PValue Benjamini 
GO: 0044183~protein binding involved in protein folding 0.00113455 0.23666785 

GO: 0051082~unfolded protein binding 0.03069127 1 

GO: 0006457~protein folding 0.04926703 1    

Annotation Cluster 7: Enrichment Score: 1.7774390184940738 

Term PValue Benjamini 

hsa05020: Prion disease 0.00703128 0.20136586 

hsa05014: Amyotrophic lateral sclerosis 0.00818049 0.20136586 
hsa05012: Parkinson disease 0.00975062 0.22157805 

hsa05022: Pathways of neurodegeneration - multiple 
diseases 

0.01038647 0.22157805 

hsa05016: Huntington disease 0.02612139 0.34828525 

hsa05010: Alzheimer disease 0.14225106 0.8128632 
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