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Abstract: High-throughput chromosome conformation capture (Hi-C) technique profiles the genomic structure
in a genome-wide fashion. The reproducibility and consistency of Hi-C data are essential in characterizing
dynamics of genomic structures. We developed a diffusion-based method, CtG (Hi-C To Geometry), to deal
with the technical bias induced by insufficient sampling in sequencing and obtain reliable gemeotric
information of the chromatin. CtG properly quantifies dubiously weak or even undetected interactions and
produces a consistent and reproducible framework for the 3D genomic structure. CrG allows for a reliable
genome-wide insight on the alteration of genomic structures under different cellular conditions and reveals
correlations between genomic-proximal genes at both transcriptional and translational levels. Cell-specific
correspondence between gene-gene and corresponding protein-protein physical interactions, as well as that
with the transcription correlation reveals the coordinated inter-molecular structural and regulatory information
passage in the central dogma.

Keywords: carcinogenesis; chromatin structure; gene expression regulation; protein-protein interaction

Introduction

The three-dimensional architecture of chromatin is crucial to the functionality of one-dimensional DNA
sequences (Oudelaar and Higgs, 2021). However, the concrete correlation between the 3D architecture and its
function in genome regulation has not been completely resolved. High-throughput chromosome conformation
capture (Hi-C) technique (Lieberman-Aiden et al., 2009) allows for genome-wide profiling of chromatin
interactions in 3D-space by performing unbiased DNA-DNA proximity ligation. Hi-C reveals a hierarchical
organization of chromatin (Rowley and Corces, 2018) and the 3D architecture is demonstrated to be involved
in critical biological processes, such as gene regulation, cell fate decisions, and even evolution (Bonev and
Cavalli, 2016). Sharing fixed genetic inheritance, the primary domains that make up the hierarchical
organization, such as compartments and topologically associating domains (TADs) are largely conserved
across cell types (Rao et al., 2014). On the other hand, the variations of chromatin structures among different
cell states are pertinent to their distinct genomic function (Bonev and Cavalli, 2016). Various types of genomic
changes are relevant to genetic disorders and can lead to genomic diseases such as cancer (Corces and Corces,
2016; Li et al., 2020). Hence, it’s essential to study the dynamics of chromatin structures, quantifying the
variations with cellular states and understanding their functions.

The great success of Next Generation Sequencing (NGS) technology makes it possible to obtain Hi-C data
with high throughput. However, the quality and reproducibility of raw Hi-C data are affected by technical and
biological bias, and the characterization of the genomic geometry requires normalization tools. A number of
normalization algorithms have been developed to remove unwanted systematic bias. The normalization
algorithms fall into two main categories: explicit-factor correction and implicit matrix balancing. Explicit-
factor correction algorithms such as Hi-C-Norm (Hu et al., 2012) propose parametric models to depict known
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bias such as GC content, fragments length, and mappability. Implicit matrix balancing algorithms, such as
iterative correction and eigenvector decomposition (ICE) (Imakaev, Maxim; Fundenberg, Geoffrey; Patton
McCord, Rachel; Naumova, Natalia; Goloborodko, Anton; Lajoie, Bryan R.; Dekker, Job; Mirny, 2012),
Knight and Ruiz’s algorithms (Hu et al., 2012), and chromoR (Hu et al., 2012), assume equal visibility for all
genomic loci and balance row and column sums. These methods remove reoccurring biological bias and
improve the reproducibility of replicated datasets, but leaving unpredictable technical biases unaddressed.
The unpredictable technical bias mainly comes from insufficient sampling, resulting in dubiously weak contact
strengths and random noise. The correlation between raw matrices and matrices normalized by different
algorithms increases with the sequencing depth (Han and Wei, 2017), indicating the importance of sufficient
sampling. The randomly directed noise conceals the real biological proximity information and impedes the
characterization for variations of the chromatin structures among different cell states. There are multiple
computational methods (Djekidel et al., 2018; Lun and Smyth, 2015; Stansfield et al., 2019) aimed for making
statistically-grounded comparisons between Hi-C datasets and quantifying statistically significant dynamic
changes. A few of them, including diffHiC (Lun and Smyth, 2015) and multiHiCcompare (Stansfield et al.,
2019), conduct across-sample normalizations to improve their performances to quantify consistent differential
chromatin interactions. The across-normalization methods reduce the random noise, but the problem on
intrinsic insufficiency in sampling is not addressed, limiting the performances of these statistically-grounded
methods.

The distance matrix is naturally a full matrix and a corresponding contact matrix can be recovered from the
distance matrix following a power law approximation, where the strengths of weak or even undetected
interactions are properly quantified. Here, we propose CtG (Hi-C To Geometry), a diffusion-based algorithm,
to treat the technical insufficiency and uncover the geometric structure from Hi-C data (Figure 1). CrG takes
Hi-C contact matrix normalized by ICE as the input, and outputs a CrG distance matrix. The main inspiration
of C1G algorithm stems from the physical succession of the genomic structure. In perspective of a proximity
network, the proximal genomic regions should share similar diffusion manners. The CtG distance between
pairwise genomic regions is quantified by their genomic-wide diffusion manners and therefore reduce the
impact of insufficient sampling for any individual interaction. CtG, as a distance-like measurement, allows for
genome-wide insight into the correlations between proximal genes in genomic structure and we investigated
the correspondence at transcriptional and translational levels.

Results

Overall design of C1G

The Hi-C contact map depict a proximity network G(V,E), where the vertices V={v,v,,...v,} denote the non-
overlapping genomic regions and the edges £ = {e;;} denote the contact strength between pairwise connected
genomic regions. Similar to diffusion-based methods for network denoising (Cao et al., 2013; Wang et al.,
2018), a Markov prosses (2007) is used to describe the diffusion process on this network. Diag;; = X.j-; €; .

is the element of the diagonal degree matrix Diag for the network. The vector P(l) {PL(11 ), Pl(21 ), e 131(1?} is
the conditional transition probability transiting from vertex v; to V={v;,v,,...v,} in one single step. Likewise,
p® = {P(k) p® P(k)} is the conditional transition probability in & st dp® = Yp= P(k 1)P(k 1

i T Wi ti2 0 tin p y Steps and 17 ; 1 )
With increasing , the transition probability from v; to v; gradually integrates neighbor 1nf0rmat10n and expand

the inclusion of edges, since v; and v;may not be connected in one step but they can be connected in some finite

steps as the network G is a connected graph. Taking k=2 and PL(JZ) = Pl(;)Pp( ])as an example, when the
two pairs of vertices (vi and v,, v; and v,) are pairwise neighbors, whlch means Pl.,(p) # 0 and Pp(}) =0, v
contributes to Pl(JZ) Pl.(k) converges to an invariant distribution for connected graph and the difference between
Pl.(k_l) and Pl.(k) decreases.

It is thus appropriate to use the integrated information on {Pi(l), Pi(z), e Pl.(k)} to describe the diffusion manner
of vertex v; within some given number of k steps, which can be infinite. In practice, we found that Pl.(k)

converges rapidly and therefore used the exponential decay to fit the convergence. Sl.(k) is defined as the

weighted summation of Pi(t) (1<t<k):
k
Sl.(k) = 2 exp(—At) Pi(t)
t=1
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When £k reaches infinity, Sl.(k)converges to Si (Supplementary note). As the weighted summation of Pi(t), Si
naturally integrates neighbor information of the connected graph, and therefore alleviates in a physics-based
manner the problems caused by the Hi-C data sparsity. On the other hand, the exponential decay ensures that
the integration does not eliminate the distinction of each vertex, taking the rapid convergence of Pl.(k) into
consideration.

The physical succession of the genomic structure suggests that the proximal genomic regions should share
similar diffusion manners. The similarity between pairwise vertices v; and v; is quantified by L1 distance
between §; and S;. L1 distance is used as a measure since it mitigates the impact of outliers caused by distance
metrices of higher-order terms. A CrG distance matrix is then constructed based on the Hi-C contact map. We
demonstrate below that CrG distance is relevant to real spatial distance and thus provides information on the
geometry of the genome. Meanwhile, to fit the contact probability, a CrG contact matrix is converted from the
C1G distance matrix by making use of a power law, according to the power-law dependencies derived from
polymer-like behavior (Halverson et al., 2014; Lieberman-Aiden et al., 2009). With the power of 4, the
distribution of the reconstructed contact frequency is most similar with raw HiC contact datasets.
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Figure 1. Schematic overview of CtG. C1G uses a diffusion-based strategy to uncover the gemetry of genomic
structure from Hi-C data. CtG quantifies the diffusion property of each vertex by aggregating global diffusion
information from the vertex to other verteces respectively. And the CrG distance between pairwise verteces is
calculated by similary of their diffusion properties. CTG allows for a genome-wide insight deciphering the gene
regulation information coded in genomic structure.

Validation of C1G

One way to test whether the sequencing-based method such as Hi-C can faithfully reproduce geometric
structure information is to make comparison with fluorescence in situ hybridization (FISH) imaging data (Su
et al., 2020), as the latter provides direct spatial position information of individual loci. Ref. Su et al., 2020
provided high-resolution imaging data on the coordinates at 50-kb resolution for Chr2 and Chr21 of human
lung fibroblast (IMR-90) cells. The median spatial distance between pairs of imaged loci is thus a physical
distance measurement (Figure 2A and 2B, right pannel). Taken the Hi-C data of IMR-90 (Rao et al., 2014),
one can perform a direct comparison between the spatial distance and the inverse contact probability and the
Pearson correlation coefficient is 0.790 and 0.897 (with logarithm transformation) for Chr2 and Chr21,
respectively, which is to some extent satisfactory. In contrast, as shown in Figure 2C, the calculation of CrG
distance matrix (Figure 2A and 2B, left pannel) improves its linear correlation with the physical distance
measurement and the corresponding Pearson correlation coefficient with the median spatial distance matrix
reaches 0.952 and 0.930, respectively. These results show that the CrG method provides a more accurate
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calibration between two different experimental methods and the distance metrics generated by the CrG method
reproduces that observed by super-resolution experiment.

Next, we evaluate the robustness of CtG contact propensity map by applications to different samples and
compare the Hi-C data derived from a) normal colon tissue samples of different individuals (Johnstone et al.,
2020), b) tumor colon tissue samples (Johnstone et al., 2020), ¢) different numbers of HEK293 cells (sample
0923-2 and 0923-4), d) repeated experiments on HEK293 cells (sample 0923-4 and 1002-5). The robustness
of CrG is assessed by calculating Spearman correlation coefficient of spatial interactions from different
samples at various genomic distances. Such a calculation is equivalent to calculating Spearman correlation
coefficient of diagonal elements of Hi-C maps. For an Hi-C contact map treated after ICE normalization, the
correlations between different samples decrease sharply as genomic distance increases (Figure 2D, upper
pannel), indicating that the normalized Hi-C contact map is of high confidence level at scales up to about SMb
but not longer. In contrast, the correlations of CtG contact maps are significantly higher and hardly decrease
with the genomic distance. We also compared the Spearman correlation coefficient for individual genomic
regions between Hi-C and CrG contact maps, equivalent to calculating Spearman correlation coefficient of
each row of different contact maps (Figure 2D, lower pannel), where the latter also display a higher consistency
than the former. In addition, the systematic bias between different datasets for Hi-C and CtG contact map were
quantified by a MD plot (Minus, or difference vs. Distance plot) (Stansfield et al., 2018), to visualize the
differences between two datasets accounting for the linear genomic distance between interacting genomic
regions. M is defined as the fold-change between two Hi-C datasets, with its element M;; = log:(IF";. IF?;),
where IF’; and IF?; are contact strengths between pairs of genomic regions from two datasets. D is defined as
1D genomic distance of pairwise genomic regions. In this was, the systematic bias between different datasets
is reflected by the deviation of M from the M=0 baseline. The MD plot (Figure 2E) of CtG contact map is
approximately symmetric about M=0 baseline without any prior fitting. In contrast, for the Hi-C contact map,
only 30% non-zero elements can be faithfully calculated due to the limitation of sparse data. The distribution
obtained for the Hi-C contact map (Figure 2E, lower panel) deviates significantly from the baseline, indicating
the impact of systematic bias.

We note here that the unprocessed Hi-C contact map is subject to large noise due to incomplete statistics, and
the large variance of long-range interactions (>5Mb) among similar samples indicates that weak interactions
or long-range interactions tend to be unreliable. Therefore, a genome-wide comparison between different Hi-
C datasets is ambiguous, due to the noisy and sparse data. By incorporating the genome-wide diffusion
property of each genomic regions into consideration, the problem associated with insufficient sampling for
singular interactions is sufficiently corrected. The CtG contact/distance maps reveal the hidden reproducibility
of Hi-C data and more importantly, that the putative topologies of genomic structures are conserved across
different cell numbers and even different individuals. The genomic structures recovered by CrG algorithm thus
allow for direct comparison for replicate experiments and even for samples from different
individuals/experimental setups. Such a property of CrG makes it suitable for characterizing the changes of
genomic structures under different conditions.
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Figure 2. Validation of C1G. (A) The CrG distance matrix (left) and the median spatial distance matrix (right) of
chr2 (resolution of 50kb). (B) The CrG distance matrix (left) and the median spatial distance matrix (right) of chr21
(resolution of 50kb). (C) the correlation between CTG distance matrix and the median spatial distance matrix of
chr2 and chr21. (D) The Spearman correlation for genomic sequence distance (upper pannel) and for individual
genomic region(lower pannel) between pairwise contact matrices derived from 1) normal colon tissue samples; 2)
tumor colon tissue samples; 3) different numbers of 293 cells; 4) repeated experiments on 293 cells. *** represents
P-value<107% (t-test). (E) The MD plots between two normal colon tissue samples in view of genomic sequence
distance.

C1G characterizes the global structural changes in Colorectal Cancer pathogenesis

In this section, we use the CtG method to analyze genomic structures derived from normal and tumor colon
Hi-C data. Compartmental recognition was performed in a previous study (Johnstone et al., 2020) on these

datasets, which associated the compartment changes during colorectal cancer pathogenesis with stemness,
invasion, and metastasis of tumor. In the following, we show that CrG allows for new insights into cancer-
related changes of genomic structure. To ensure the consistency and reproducibility of our analysis, pairwise
normal and tumor samples derived from 4 individuals were compared. We took chromosome 17 as an example
in our latter single chromosome analysis to simplify our discussion. The conclusions are the same for other
chromosomes.
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As can be seen from Figure 3A, the overall pattern of CrG distance matrices clearly distinguishes normal from
tumor colon samples. From direct visualization, the fine plaid patterns of normal samples become significantly
blurred in cancer, where the distinct genomic “chess-like squares” are no longer properly segregated and the
specific long-range aggregation weakens. To be more quantitative, we calculated the contrast ratio of the
genomic “squares” over their proximal neighbors (Figure 3B, Method). The contrast ratios were found to be
significantly higher for normal samples than tumor samples (P-value=0.0084) and were conserved across 4
individuals. Such a result indicates that there is a clear insulation between neighboring regions in normal
tissues, the strength of which weakens in cancer samples. This change in genome insulation indicates the
potential transcriptional dysregulation in carcinogenesis. One important factor affecting genome insulation is
CTCEF. It is known that CTCF/cohesin-binding sites are frequently mutated in cancer (Katainen et al., 2015)
and immortalized cancer cell lines display a low CTCF occupancy with the hypermethylation of
CTCF/cohesin-binding sites(Ong and Corces, 2014). However, it was also reported that the
compartmentalization of mammalian chromosomes were independent from CTCF (Nora et al., 2017). The
observations on mutli-scale chromatin structure changes thus suggest the influence from systematic aberration
such as the uncontrolled cell cycle (Hanahan and Weinberg, 2000) in addition to the absence of chromosomal
structure regulator, such as CTCF. Such a possibility has been suggested by Ma et al., 2015.

Next, we calculated the reconstructed contact as a function of the 1D genomic distance (Figure 3C). It can be
seen that the tumor samples display large decay rates in ~Mb region and the comparison between normal and
cancerous CrG distance matrices suggests the loss of specific long-range interactions in colon cancer, as
revealed by Figure 3C. In comparison, the decay curve derived from Hi-C data normalized by ICE only varies
more significantly over different sample paris (Figure 3D), again validating the effectiveness of CtG in
revealing the consistent difference between normal and cancer cells.

Sequence properties, especially CpG density, was reported to be an important factor affecting the organization
of genomic structure (Liu et al., 2018). To gain understanding on how one-dimensional DNA sequences affect
the organization of three-dimensional genomic structure, we performed dimensionality reduction on CrG
distance matrix. The non-linear Laplacian Eigenmaps (see Methods) was employed for dimensionality
reduction, as the eigenvectors obtained by this method are interpretable and reveals information on hierarchical
clustering (Figure 3E, Figure S1). Sorted by eigenvalues, the leading eigenvector E1 reflects the predominant
structural patterns. We quantified the contribution of sequence properties, including sequential similarity (CpG
density) and sequential distance, to genomic structure, by projecting the structure-related eigenvectors on these
sequence properties. Reflected by projection of E1(Figure 3F), the dominant factor in structure determination
changes from sequential similarity in normal cells to sequential distance in colon cancer, affecting the
organization of A and B compartmental domains and probably resulting in the dysregulation of
transcriptionally active or inactive states (see Discussion).
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Figure 3. Global structural patterns of Colorectal Cancer revealed by CrG. (A) The CrG contact maps for
normal (upper pannel) and tumor (lower pannel) colon samples. Each column represents pairwise normal and tumor
samples derived from the same patient. The yellow and red squares are examples of the differences between normal
and tumor samples. (B) The contrast ratio of the CrG distance map, the blue bars correspond to normal samples and
the red bars correspond to tumor samples. (C) Contact probability as a function of genomic distance calculated from
the CrG contact map. (D) Contact probability as a function of genomic distance calculated from the Hi-C contact
map. (E) The 2D Laplacian Eigenmaps of CrG distance matrices for pairwise colon normal and tumor samples.
Each point represents a 40kb genomic region. The color is used to represent the CpG density of the
corresponding genomic region. (F) Contribution of sequences properties to structure-related E1 eigenvector.

CTG reveals the coupling of co-expression and genomic proximity during Colorectal Cancer
pathogenesis

The genomic structure is believed to play a crucial role in the precise gene expression program (Elimelech and
Birnbaum, 2020; Oudelaar and Higgs, 2021). The genomic interactions between gene promoters and distal cis-
regulatory elements have been studied extensively (Li et al., 2022). Since less attention has been paid on the
function of gene-gene co-localization in genomic structures, we investigate here the physical gene-gene
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interactions at genomic levels, represented through the contact between genomic bins in 40 Kb resolution
which contain these genes. Of special interest is whether a correlation exists between gene-gene contact in
chromatin and gene co-expressions at the transcript level. The correlation network at transcript levels was
characterized by spearman correlation coefficients of RNA-seq data, with the RNA-seq data derived from the
Cancer Genome Atlas (TCGA) program, for 86 pairwise normal and tumor colon samples. The interaction
network at genomic levels was quantified by CrG distances. The two networks were aligned together in
perspective of the genomic position of each gene.

The overall patterns of co-expression matrix changed significantly from normal to tumor samples (Figure 4A
and 4B). Taking chromosome 17 as an example, the expression correlation between pairs of genes detected in
tumor samples decreases sharply as a function of the corresponding linear genomic distance between the gene
pairs increases, whereas this function barely changes with the genomic distance in the case of normal tissues
(Figure 4C). Intriguringly, the dependence of co-expression on the genomic distance resembles that of CtG
contact map, implying a potential relationship between genomic proximity and co-expression. To be more
specific, we evaluated the one-to-one correspondence between genomic co-localization and co-expression. For
both tumor and normal samples, the proximal gene-pairs tend to co-express at the transcript level (Figure 4D),
and such an inter-dependence is stronger for tumor than normal samples. In reverse, gene-pairs that share a
similar expression pattern tend to be proximal at genomic levels for tumor samples (Figure 4E), which is again
more prominent for tumor than for normal samples. Such a difference between tumor and normal samples
indicates an increased correlation between genomic structure and gene transcription in cancers in perspective
of gene-gene interplay. Compared to cancer sample, there is a weaker correlation between gene pair proximity
and their expression correlation across normal samples, for which genes of large linear and spatial distances
can be highly correlated in expression, suggesting more important roles of regulation mechanisms besides
spatial co-transcription, such as histone modification or DNA methylation, in normal cells than in their
cancerous counterparts. The elevated dependence of gene co-expression on their spatial interaction in
chromatin may suggest that the gene expression regulation becomes more directly correlated with genomic
structure. Interestingly, it was discovered recently that the RNA and protein levels become more strongly
correlated in carcinogenesis, supporting that the regulation network simplifies in cancer pathogenesis
(Nusinow et al., 2020). Moreover, besides solid tumors, we also found similar correspondence of gene-gene
proximity and gene co-expression in acute lymphoblastic leukemia samples (Figure S2).

Next, we analyzed the local spatial contacts in chromatin for individual genes (see Methods), where spatial
gene-gene interactions (GGIs) are characterized. The interactions formed in cancer but not in normal tissue are
referred as cancer specific GGIs (csGGIs). Noticeably, genes involved in ¢sGGls are prone to be more
positively correlated in tumor samples than normal samples comparing with respective background (Figure
4F). These csGGls tend to be properly insulated in normal cells but not in cancer. We expect the csGGls in
genomic structures of tumor colon samples quantified by CtG algorithm to play an important role in
transcriptional co-regulation between genes. Therefore, we further select csGGIs with notable changes in RNA
correlation (tumor correlation >0.5 and normal correlation <0.1, the criterion is robust) and construct a csGGls
network. We found that the cancer-related genes (see Methods) are indeed enriched in the network, as 4.33%
genes involved in this network are cancer genes with 0.28% of all coding genes being cancer genes. The cancer
genes, including ERBB3, HRAS, MAP2K2, PTK6, RAC1, SDC4, TSC2, SRC, among others, are connected
with more than 5 genes and thus may play central roles in this network (Figure S3-S5). Meanwhile, most of
them are reported to be highly relative in colorectal cancer pathogenesis (Liu et al., 2021; Serebriiskii et al.,
2019; Wang et al., 2021). Deciphering the gene-gene interaction and resulted changes in regulation networks
is expected to render further understanding on the specific functionality of these genes in addition to that
provided merely by mutation of single genes. As the cancer genes are inferred from only cancer-related
mutations, we next performed functional annotation analysis on all genes connected with more than 5 genes
in this network (Table S1) and found these genes to be strongly involved in epidermal growth factor receptor
(ERGF) signaling pathway and proteoglycans in cancer. In addition, HRAS, RACI, SOS2, MAPK3 and
MAP2K?2 directly participate in colorectal cancer KEGG pathway. HRAS is involved in multiple cancer-
related process and genes interacting with HRAS in cancer genomic structure, for example, IFITM3, DRD4,
IRF7 and NLRP6, are heavily involved in immune response. Such an analysis likely provides a new
perspective on the roles of immune responses in cancer pathogenesis.

C1G reveals the information passage from genomic proximity to protein-protein interaction in
colorectal cancer pathogenesis
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After interrogation on the interplays between gene-pairs at DNA levels and their transcript product, we ask
whether such information is further passed along the central dogma, such that gene-gene interaction at the
chromatin level affects the interaction between their translational products. The interplays at protein levels
were evaluated by physical protein-protein interactions derived from the STRING project (Szklarczyk et al.,
2021). The genomic interactions and PPIs were aligned by genes and protein isoforms generated from
corresponding genes. As shown below, we did identify associations between genomic structure and protein-
protein interactions (PPIs) in both normal and tumor samples that have not been discussed before.

First, it can be seen from left panel of Figure 4G, 4H, S6A and S6B that the CrG distances between gene-pairs
with their proteins forming known/predicted PPIs tend to be more proximal than those without PPIs, for both
intra-chromosomal gene-pairs with a more stable genomic structure and inter-chromosomal gene-pairs with a
more flexible genomic structure. We also calculated the proportion of gene-pairs containing PPIs under varied
C1G distances and show the results in right panel of Figure 4G ,4H, S6A and S6B, from which one observes
that the spatially proximal gene-pairs are more likely to have their product proteins to form PPIs. These results
suggest that contact information deposited in genomic spatial structures has a tendency to pass to the protein
level. Since the information passage of DNA-DNA (gene-gene) interaction to protein-protein interaction
inevitably goes through RNA, we next examined the correlation between different genes at RNA and protein
levels. Interestingly, gene pairs forming PPIs in the STRING dataset are indeed more prone to be correlated in
transcription than randomly chosen pairs and such a tendency is found across different tumor types (Figure
S7). Although co-expressions are a portion of gene interplays at RNA levels and PPIs in the datset are not
tissue-matched, gene pairs with GGIs and PPIs are more correlated in transcription than those only with PPIs
(Figure S8). Such results suggest that the information of gene regulatory network is at least partially coded in
3D genomic structures and tranferred to RNA and protein levels along with the central dogma, in a way beyond
correct coding and functioning of single genes, but also at the message-passage level in form of gene-gene
interations.

Integrating gene-gene interplay at DNA, RNA and protein levels, a number of gene pairs are seen to be at the
center of interaction network for colon cancer (Figure 4I). For example, STAT3/STATS, DSG2/DSC3, and
RPTN/SPRR3, all possess genomic proximity, transcription coregulation and potential protein interactions
inferred from STRING. In fact, these genes are all reported to be involved in colorectal tumorigenesis. For
example, STAT3 are known biomarkers for colon cancer as it is necessary for proliferation and survival in
colon cancer-initiating cells (Lin et al., 2011), and STATS are reported to be involved in regulation of
colorectal cancer cell apoptosis (Du et al., 2012). The downregulation of DSG2 and DSC3 in colon cancer
cells was found to suppress colon cancer cell proliferation (Cui et al., 2011; Kamekura et al., 2014), and DSC3
is involved in tumor suppression activity (Cui et al., 2019). Finally, the overexpression of SPRR3 is known to
promotes cell proliferation through AKT activation (Cui et al., 2011). The interactions between multiple genes
can also be observed in the chromatin structure. For example, close proximity is seen among HLA (Human
Leukocyte Antigen) genes (Figure S9). It is known that the relavent translational products make up the HLA
class I (HLA-A, HLA-B, HLA-C) and class Il (HLA-DQ, HLA-DR) complexes, which play important and
distinctive roles in presenting processed peptide antigene (Choo, 2007; Giudizi et al., 1987). The results
indicated that not only direct protein interations within each class of complex, but also co-regualtion between
the two complexes may be partially coded in genomic structure, although they are distant in the linear genome.
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Figure 4. Passage of gene-gene interplay from genomic level to transcription and protein levels in Colorectal
Cancer. (A) Gene-gene transcriptional Pearson correlation matrix of chromosome 17 of normal colon samples.
(B) Gene-gene transcriptional Pearson correlation matrix of chromosome 17 of tumor colon samples. (C) The
averaged correlation coefficients as a function of 1D genomic distance between gene pairs. (D) The distribution of
transcriptional Pearson correlation under different CrG distance of whole chromosome, the color of each line
indicates corresponding CtG distance. (E) The distribution of CrG distance under different Pearson correlation
of whole chromosome, the color of each line indictes corresponding Pearson correlation coefficient. (F) The
distribution of correlation of gene-pairs with csGGIs and overall background (G) The distribution of CtG
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distance between intra-chromosomal gene pairs with and without STRING PPIs for whole chromosome in
tumor sample (left pannel); The proportion of intra-chromosomal gene-pairs with STRING PPI at different
CtG distances in tumor sample (right pannel). (H) The distribution of CtG distance between inter-
chromosomal gene pairs with and without STRING PPIs for whole chromosome in tumor sample (left pannel);
The proportion of inter-chromosomal gene-pairs with STRING PPI at different CtG distances in tumor sample
(right pannel). (I) The gene network integrating colon cancer-related gene-gene interplay at DNA, RNA and
protein levels. The three kinds of edges indicate gene-gene interplays at three levels.

C1G reveals the tissue-specific coupling of protein-protein interaction and genomic interactions

The integrated STRING PPI dataset contains both tissue-matched and unmatched PPIs, which allows the
statistical anaylsis on GGI-PPI correlation but limits one from precisely match GGIs with PPIs in a cell-state
specific manner. To overcome this limit, we next performed analysis based on the tissue-matched PPI datasets
from the Affinity-Purification Mass Spectrometry (APMS) technique (see Methods).

Fortunately, BioPlex project has compiled a comprehensive dataset of protein-protein interactions of HCT116
cells (Huttlin et al., 2021), which allows us to quantify the correlation between genomic interactions and
protein interactions for this colorectal carcinoma cell line. The cell-matched BioPlex PPIs consist ~71,000
interactions and they are all included in our analysis. Consistent with the results obtained using STRING
datasets, as shown in Figure SA and 5B, genomic proximal gene pairs in HCT116 cell are also more likely to
possess corresponding PPIs and on the other hand, gene pairs with corresponding PPIs also tend to be spatially
closer in genomic structure than those without known PPIs, although the current PPI list is proabably far from
being complete.

The mutual correspondence between GGI and PPI uncovers a significant correlation between genomic
interactions and protein-protein interactions. The genomic proximity information appears to be partially
preserved in both transcription and translation. Furthermore, the intra-chromosomal gene-pairs with PPIs
(Figure 5A and 5B, left pannel) displayed a tighter correlation with genomic structure than inter-chromosomal
ones (Figure 5A and 5B, right pannel). Interestingly, it is known that genes with related functions tend to
cluster along the linear genome and in individual chromosomes (Hurst et al., 2004). The higher intra- than
inter-chromosomal DNA, RNA and protein coupling is consistent with this functional requirement. Next, to
exclude the impact of 1D genomic distance within chromosomes, we evaluated GGI-PPI correlation at fixed
genomic distances and found that gene-pairs with corresponding PPIs tend to be more proximal in all genomic
distances (Figure 5C) than those without. Limited by a majority of weak or even undetected interactions, these
signals are insignificant in raw Hi-C datasets with 90% zero-elements, again demonstrating the importance of
further data processing for Hi-C matrix. We also performed functional annotation analysis for proximal gene-
pairs with tissue-matched PPIs (Table S2 and S3). These genomic-proximal intra-chromosomal PPIs
significantly correlate with cell adhesion and immune response, enrichend in “interferon signaling pathway”
and “antigene presentation” (HLA genes). In accrodance, interferon gene family is heavily involved in cancer-
related pathways, such as those of JAK-STAT and PI3K-Akt signaling (Burke et al., 2014; Horvath, 2004). In
the meanwhile, HLA genes play vital roles in cancer immunotherapy (Anderson et al., 2021). The interactions
of HLA genes in both genomic and protein levels in colon cancer cell line are consistent with findings on solid
colorectal cancer samples. On the other hand, the functions of genomic-proximal inter-chromosomal PPIs are
relavent with RNA exosome and proteasome which mediate the degradation of RNA and protein (Makino et
al., 2013). The degradation system was shown to play important roles in cancer studies (Manasanch and
Orlowski, 2017; Taniue et al., 2022) and the two degradatioin systems may follow common principles (Makino
et al., 2013). These results demonstrated the possible roles chromatin and corresponding protein complex
structures may play for the establishment of cell identity, as the structural-related PPIs are in correspondence
with the cell-specific biological processes.

Next, we studied the specific genomic and protein interactions of breast cancer cell line MCF-7 and its normal
counterpart MCF-10A cells (Kim et al., 2021), and compared between them. The specific PPIs were quantified
by over-expression affinity purification—mass spectrometry (PPI-score>0.65) (Kim et al., 2021). The number
of MCF-10A-specific PPIs is 559 and that of MCF-7-specific PPIs is 1325. From Figure 5D, one observes a
clear tendency that gene pairs with MCF-7-specific PPIs are more likely to possess genomic interactions in
MCEF-7 cells rather than MCF-10A-specific PPIs, while in contrast such a trend is insignificant for MCF-10A
cells (Figure 5E). In addition, gene pairs with MCF-7-specific PPIs are more distal (t-value = -16.23, P-value
= 1.79 x 10757) and those with MCF-10A-specific PPIs are more proximal (t-value = 7.08, P-value =
1.99 x 10712 ) in MCF-10A cells than in MCF-7 cells. These results thus reflect a tissue-specific
correspondence between GGls and PPIs. The breast cancer cell line MCF-7 displaying a more significant
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correspondence than its normal counterpart may reflect that fewer cell-specific PPIs were identified in the
normal than the cancer cells. This observation may also indicate the cancer-specific PPIs to be more strongly
correlated with the changes in genomic structure, although the inference requires more experimental evidence
due to the limited quantity of MCF-10A-specific PPIs. As specific and important examples, we analyzed TP53,
GATA3, SMARCBI and their corresponding MCF-7-specific PPIs neighbors. As shown in Figure 5F, the PPI
neighbors of these genes, for example, CBX1/TP53, ITGB1/GATA3 and PI4KA/SMARCBI, tend to be
proximal judged by comparison to their mean distances to all genes. Interestingly, their proximal PPI neighbors
enrich more MCF-7 fitness genes (Behan et al., 2019), such as EIF5/TP53, GTPBP4/GATA3 and
PAM16/SMARCBI, than distal PPI neighbors do in genomic structure, suggesting the importance of genomic
structure to cell functionality and survivability.

In summary, CrG revealed that a proportion of genomic proximity information is directly reflected at both
transcriptional and translational levels. Such an observation suggests that the PPI information is at least
partially coded through genomic proximity in the nucleus (see Discussion).
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Figure 5. The tissue-specific correspondance of protein-protein interaction and genomic proximity. (A)
The distribution of CtG distance of intra-chromosomal gene pairs with and without HCT116-related PPIs for
whole chromosome (left pannel); the proportion of intra-chromosomal gene-pairs with HCT116-related PPI at
different CrG distances (right pannel). (B) The distribution of CrG distance of inter-chromosomal gene pairs
with and without HCT116-related PPIs for whole chromosome (left pannel); the proportion of inter-
chromosomal gene-pairs with HCT116-related PPI at different CtG distances (right pannel). (C) The CtG
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distance of gene pairs in fixed 1D genomic distance. (D) CrG distance of gene pairs with MCF-7-specific and
MCF-10A-specific PPIs in MCF-7 cell. (E) CtG distance of gene pairs with MCF-7-specific and MCF-10A-
specific PPIs in MCF-10A cell. (F) TP53,GATA3, SMARCBI related MCF-7-specific PPIs,the distance to
TP53 indicates the CTG distance and the green circle indicates the background distance,the pink scatter
indicates MCF-7 fitness genes and the dashes inducate genomic proximal neighbors.

Discussion and conclusions

We present in this paper a computational method, CrG, which was shown to significantly alleviate the
insufficient sampling problem of Hi-C datasets. CrG takes a HiC contact matrix normalized by ICE as input,
and outputs a reconstructed distance/contact matrix, enhancing extremely weak or even undetected interactions
in a statistically reliable way. The CrG distance matrix is naturally a dense matrix and was shown to be highly
consistent with imaging data obtained by FISH technique, thus validating the physical interpretation of the
former. We next validated the reproducibility and consistency of CrG contact matrix using different cell
numbers and even across different individuals and quantified the impact of residual systematic bias. Compared
to Hi-C dataset upon normalization, CtG generates a reproducible and stable framework to characterize the
variation of genomic structures among different samples and experiments. Using this method, we characterized
the global changes of genomic structures in colorectal cancer pathogenesis and the changes are consistent
across samples taken from different patients. The CrG distance matrices can be compared among different
samples and permit quantification of the chromatin structure changes, including the loss of specific long-range
interactions and dysregulation of transcriptional insulation. These changes are distinguished from sequence-
related changes such as gene mutations and structural variations (including deletion, duplications, insertions,
inversions and translocations).

Dimensional reduction on CrG distance map also reveals the sequence dependence of hierarchical chromatin
structure. The organization of A and B compartmental domains is tightly correlated with the 1D sequence
similarity, with compartment A of high CGI density compartment B of low CGI density (Liu et al., 2018). In
colon cancer, the dominant factor in structure determination appears to change from sequential similarity in
normal cells to sequential distance, impeding the long-range interactions of compartmental domains with
similar sequence composition. Meanwhile, we investigated the potential correlation between genomic structure
and transcriptional co-regulation in colon cancer, and found that the dysregulation in RNA-RNA correlation
is at least partially encoded in the genomic structure and can thus be decoded by chromatin structure analysis.
We therefore believe that the understanding of the genomic structure can provide a deeper insight into cancer
progression and therapy.

In fact, the precise gene expression programed through interactions between gene promoters and distal cis-
regulatory elements has been widely investigated. The role of 3D chromatin structure in gene expression
regulation has been demonstrated through the importance of loop, TAD formation as well as
compartmentalization, although significant uncertainties remain. CrG allows for a genome-wide interrogation
on the correlations between proximal genes in genomic structure and their functions at transcriptional and
translational levels. According to the central dogma, the sequence information of the DNA is mapped into that
of RNA and then proteins, effectively resulting in a passage of the one-dimension coding information. From
a chemical point of view, the central dogma maps the chemical formula of DNAs to RNAs, and then to proteins,
at a single molecule-level and in terms of individual genes. We found here that the flow of information in the
central dogma is also manifested as the transmission of gene-gene interplay information, where genomic gene-
gene interactions at DNA levels are correlated with co-expressions at RNA levels and protein-protein
interactions at protein levels.

Firstly, from DNA to RNA levels, genome-wide correspondence between genomic proximity and co-
expression in colorectal cancer was detected in this study. Such an observation triggers us to speculate that the
long-range interactions of genomic structure plays a fundamental role in the global transcriptional regulation,
ensuring that specific linearly distant genes can share similar transcription environment, such as transcription
factor binding and epigenetic hallmarks, and thus are co-regluated. Secondly, from DNA to protein levels, the
associations between genomic proximity and PPIs were also detected. We demonstrated such an association
on both integrated and tissue-matched PPI datasets. The genomic-proximal PPIs were found to be enriched in
tissue-specific biological processes in several cell lines with available data, including HCT116, MCF-7 and
MCF-10A. Thirdly, from RNA to protein, it is confirmed that gene pairs with detected PPIs are prone to be
positively correlated in transcription for various types of normal and cancer samples deposited in TCGA.
Hence, a more comprehensive picture on the biological information passage through central dogma thus likely
goes beyond the single gene (protein) and the sequence (chemical formula) level and includes more complex
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interaction information (Figure 6). In this scenario, the three layers of regulatory networks (roughly speaking,
DNA, or more precisely, chromatin, RNA, and protein) are inter-connected not only at the single gene level
but also partially at the levels of gene-gene and protein-protein pairs. In this sense, not only genetics but also
epigenetics information is passed through DNA to proteins. The distinct epigenetic hallmarks affect the
accessibility and TF and RNA binding preference to DNA of specific genomic regions, and introduce distinct
gene-gene interactions over similar 1D DNA sequence for different tissues. These interactions are all likely to
participate in the establishment of tissue-specific gene regulatory networks.

The storage and passage of interactome information in genomic structure is crucial for tissue-specificity and
stability of the regulatory networks. The tissue/cell-specific protein-protein interaction play essential roles in
functional orgnization of regulatory networks (Huttlin et al., 2021). However, proteins can vary heavily in
number of copies, diffuse relatively freely in the cell if not anchored, and can have short lifetimes. Many of
them are also required to respond quickly to external signals and other changes of cellular states. The cell is
painfully crowded and complexed for proteins to find and associate with each other faithfully in a timely and
well-organized manner, as required by signal transduction, especially if the population and distribution of
individual proteins is entirely random or independent of each other. The highly responsive protein-protein
interactions also impose difficulties for the proteins to maintain cell state-related information with constant
disturbance as a result of cross-talk with the environment. A coordinated production of proteins can be
envisioned to facilitate their interactions, the occurrence of which at the right place and right time could be
essential for the information cascade. In contrast to proteins, genes including their copy numbers, positions on
the linear DNA and 3-D chromatin are less variable and provide a more stable information storage. This study
suggests that a coordinated and cellular-state dependent, highly regulated protein-protein interaction network
can be achieved through usage of information stored in gene-gene interactions in 3-D chromatin structure.
Such an information flow can lead to coordinated transcription (in time, and probably also in space) and
eventually to functional protein-protein interactions. One can imagine that such protein-protein interactions
involve not only pairs of proteins but also hetero-complexes formed by multiple proteins, the formation of
which requires conceivably an even higher-level of coordination.

Hence, the stable information storage of genomic structure can also furnish intrinsic guidance on
quantifications of tissue/cell-specific protein-protein interactions. In contrast to the fast accumulation of Hi-C
data, high-throughput quantifications of tissue/cell-specific protein-protein interactions are still challenging.
The genomic structure changes provide important knowledge and complementary information in predicting
tissue-specific protein-protein interactions, which is expected to be of use in understanding the dynamic
function of proteomics, as well as the resulted gene regulation network. In future studies, to understand the
molecular mechanisms leading to the various molecular associations, we will thoroughly analyze the sequence
and structure of proteins identified through the current chromatin structure analysis.

In summary, CrG is a consistent and robust framework for understanding the 3D genomic structure, by which
we have detected a possible information flux of gene-gene interaction from genomic structure to transcriptional
and translational levels. This study reveals important information of gene-gene physical interactions in 3D
chromatin structure formation and their changes in cancer compared to normal tissues. We found that this
physical contact information between genes at the DNA level is likely transferred to the protein level for at
least a subset of genes. The underlying mechanisms and functions of the passage of genomic to transcription
correlation and protein-protein interaction requires much more experimental and computational validations
and tests. For a more decisive evaluation on the GGI and PPI relationship, concurrent measurement of them in
the same cells at the single-cell level would be extremely valuable.
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Methods

C1G algorithm

W denotes for the Hi-C contact map normalized by ICE. It is a positive symmetric matrix and is regarded as
the adjacency matrix for a weighted connected network G(V,E), where the vertices V={v;,vs,...v,} denote the
non-overlapping genomic regions and the edges £ = {e;;} denote the contact strength between pairwise
genomic regions. D is the diagonal degree matrix for the network, where the matrix element D; ; = ;-l:l- W ;.
An 1-step transition probability matrix P’ can be derived by row-normalization of ¥
PW =p = Dplw
As W is diagonalizable, P is also diagonalizable:
P=UAU?
The eigenvectors U = {uy,u,...,us} reflect the characteristics of the reference matrix P. From the perspective
of spectral analysis, the eigenvectors indicate the hierarchy of the network and the eigenvector corresponding
to the largest eigenvalue indicates the most predominant hierarchy level of the network. Specific to genomic
structures, the eigenvectors are respectively assigned to hierarchical structures, such as compartments and
TAD structures. And the local systematic biases are more likely to be assigned to eigenvectors of small eigen
values, as they are not global properties.
The k-step transition probability matrix P® can be written as k-th power of P(D:
P = pk = yaky-1
With step number £ increasing, eigenvectors associated with genomic structure are preserved. Meanwhile, for
a larger k, the contributing proportion of eigenvectors (corresponding eigenvalues) changes, where
eigenvectors corresponding to larger eigenvalues of A gradually contribute more and P™ highlight
predominant hierarchy level of the network. P® converges to the invariant distribution quickly and the
difference between P*~1 and P®) decreases sharply, which means P® provide less and less new
information with k increasing. An exponential decay to was chosen to fit the convergence and a transition

propensity matrix S within & steps is defined as:
k

st = 2 exp(—At) Pt

t=1
When k approaches infinity, S® converge to M (Supplymentary notel):
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S =U A Ut
T exp(l) — A
Therefore, the properties of S are independent from the value k. S; denotes the ith row of S and represents the
integrated diffusion propensity of the ith vertex. The L1 norm of S; can be written as:
Sil|, = li 2 k) = ——
[1S:11, lim ) exp(-=ak) = e
Considering the uniformity of the L1 norm of S;, we quantify the similarity between pairwise genomic regions
i and j by calculating the L1 distance between S; and S;. Hence, a CrG distance matrix is constructed from Hi-
C contact matrix and the distance measures the similarity of pairwise genomic regions by their diffusion
propensity in a genome-wide fashion.

Hi-C experiment

Cell culture and fixation HEK293 cells (American Type Culture Collection) were cultured at 37 °C under
5% CO; in a humidified incubator. We cultured HEK293 cells in DMEM medium (Gibco, #11965092) with
10% fetal bovine serum and 1% penicillin—streptomycin. To gather the cells for Hi-C processing, the cells
were washed twice using PBS, detached by adding 1 mL 0.25% trypsin-EDTA (Gibco, #25200056) to their
culture dish, centrifuged at 500g for 5 min, and recovered in PBS buffer. The cells were counted by a cell
counter to determine the concentration. For sample 0923-4, 1000 cells were extracted to a 0.5 mL Eppendorf
Lobind Microcentrifuge tube (Eppendorf, #32119210) for each sample. For sample 1002-5 and 0923-2, 10,000
cells were extracted.

The cells were then fixed by adding formaldehyde (Sigma-Aldrich, #47608) to a final concentration of 2% at
room temperature for 10 min then quenched by 0.2 M glycine (Sigma-Aldrich, #50046) for 10 min. The fixed
cells were centrifuged at 2,500g for 5 min to discard the supernatant and washed by 0.5 mL PBS (Gibco,
#20012027) once.

Hi-C processing Hi-C experiments were performed followed methods described in Rao et al., 2014 with some
modifications. Briefly, the fixed cell pallet was lysed in 100 pL Hi-C lysis The fixed cell pallet was lysed in
100 pL Hi-C lysis buffer (10 mM Tris-HCl pH=7.6 (Rockland, #MB-003), 10mM NaCl (Invitrogen
AMI760G), 0.2% IGEPAL CA-720 (Sigma-Aldrich, #238589), 1x cOmplete protease inhibitor (Roche,
#04693116001)) on ice for at least 30 min. The tubes were centrifuged to remove all the supernatant. 50 pL of
0.5% SDS (Invitrogen, #15553027) was added to each tube and incubate at 65°C for 20 min. To quench the
reaction, 25 pLL of 10% Triton X-100 (Sigma Aldrich, #T8787) was added and mix by pipetting up and down
for several times. The tubes were then incubated at 37°C for 20 min. To perform chromatin digestion, 10 pL
10x NEBuffer2 (NEB, #B7002S), 10 uL 25U/uLL Mbol (NEB, #R0147L) and 5 pL. water were added to each
tube and incubate at 37°C with rotation for 24 h. Mbol enzyme was inactivated at 62°C for 20 min. Fill-in mix
which contains 14 pL 0.4 mM biotin-dATP (Invitrogen #19518018), 0.17 uL. 10mM dTTP (NEB, #N0446S),
0.17 uL 10mM dGTP (NEB, #N0446S), 0.17 uL 10mM dCTP (NEB, #N0446S) and 3 uL 5U/uL DNA
Polymerase I Large (Klenow) Fragment (NEB, #M0210V) was added and incubated at 37°C for 45min with
rotation. Next, 12 uLL 10% Triton X-100, 1.5 uL 100x BSA (NEB, #B9000S), 5 uL 10x T4 DNA ligase reaction
buffer (NEB, #B0202S), 2 uL 400U/uL T4 DNA ligase (NEB, #M0202V), 10 uL 10mM ATP (NEB,
#P0756S) and 2 uL water were added to each sample and the ligation reaction was carried out by incubating
at room temperature with rotation for 24 h.

Library Construction After ligation, DNA fragments were released by addition of 15 pL 10% SDS and 30
uL Proteinase K (Qiagen, #19133) to each tube followed by incubation at 50°C for 3h. The DNA fragments
were purified by Ampure XP beads (volume ratio 1:1, Beckman Coulter, #A63881) and elute the DNA
fragments in 27 uL water. Tagemtation was performed by adding 4 pL 8x TD buffer (§80mM Tris-HCI pH=7.6,
40mM MgCl2 (Invitrogen, #AM9530G), 80% N,N Dimethylformamide (Sigma-Aldrich, #D4551)) and 1 pL
TTE Mix V50 Tn5 enzyme (Vazyme, #TD501) to the 27 uL. DNA template. The tubes were incubated at 55°C
for 1h. To stop the reation, 8 uL 5x TS (Vazyme, #TD503) was added to each tube and incubate at room
temperature for 5 min. To prepare Dynabeads M-280 streptavidin (Invitrogen, #11206D) for the capture of
ligation junctions, 25 pL streptavidin beads was washed by 1x BW buffer (SmM Tris-HCl pH=7.6, 0.5mM
EDTA (Invitrogen #AM9260G), 1M NaCl) and resuspended in 13 pL 4x BW buffer (20mM Tris-HCI pH=7.6,
2mM EDTA, 4M NaCl) for each sample. The beads were then mixed with 40 pL tagmentation mix and
incubate at room temperature overnight with rotation. The streptavidin beads were washed twice with 1x BW
buffer, twice with 10mM Tris-HClI pH=7.6 and resuspended in 20 pL 10mM Tris-HCI pH=7.6. PCR
amplification was carried out by addition of 5 uL 10 uM Nextera index mix(Vazyme, #TD203) and 25 pL Q5
High-Fidelity 2X master mix (NEB, #M0492S) to the 20 pL sample. PCR program was set as follows:
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STEP TEMP TIME
Pre-extension 72°C 5 minutes
Initial Denaturation 98°C 30 seconds

98°C 10 seconds
10 Cycles 65°C 30 seconds

72°C 90 seconds
Final Extension 72°C 2 minutes
Hold 4°C o0

Post-PCR purification was performed using Ampure XP beads (0.8 times volume of the PCR mix) according
to manufacturer's instructions.

Library QC and sequencing The libraries were quantified using Qubit 1x dsDNA HS Assay kits (Invitrogen,
#Q33230) and the size distribution was assessed using 5200 Fragment Analyzer System (Agilent,
#MS5310AA). The qualified libraries were then quantified by qPCR and sequenced by 2x 150 bp paired-end
run on a Novaseq 6000 System (Illumina).

Sequence Processing Paired-end reads were first under adaptor trimming using Cutadapt (Martin, 2011,
version 2.10) with default arguments. Reads shorter than 20 bp were filtered out after adapter trimming.
Trimmed reads were mapped to Genome Reference Consortium Human Build 37 (hgl9, downloaded from
UCSC, https://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips) and processed by HiC-Pro (Servant et al.,
2015, version 2.11.4) using default settings. The contact matrix extracted by HiC-Pro were then used in
downstream analysis.

Hi-C data analysis

For normal and tumor colon samples, we used Hi-C data from GSE133928, the normal samples are
BRD3162N-sb, BRD3179N, BRD3187N, BRD3462N, the tumor samples are BRD3162, BRD3179,
BRD3187, BRD3146. For HCT116 cell line, we used Hi-C data from GSE133928. For MCF-7 and MCF-10A
cell line, we used the samples GSE165570. Hi-C matrices were normalized using the ICE algorithm (Imakaev,
Maxim; Fundenberg, Geoffrey; Patton McCord, Rachel;, Naumova, Natalia; Goloborodko, Anton; Lajoie,
Bryan R.; Dekker, Job; Mirny, 2012).

Contrast ratio
Sobel operator is a discrete derivative operator for edge detection which is defined as:
-1 -2 -1 -1 0 1
Sx=40 0 0S8 =92 0 2
1 2 1 -1 0 1

Convolution was performed on a distance map I with the Sobel operator as the kernel:
Gy =Sy *1
Gy, =5, *1

G ="62+62
Distinct edges will be emphasized by G for a distance map with ‘chess-like squares’. Therefore, G reflects the

contrast ratio of the genomic “squares” with distinct edges over their proximal neighbors and the mean of G is
defined as the overall contrast ratio of the distance map.

Laplacian Eigenmaps

Given a CrG distance map I, it’s transformed into weight matrix W by a exponential kernal :
A = exp(—pl)

u reflects the scale of genomic structure we focused on. A large u amplifies weights of short-distance and a
small u amplifies weights of long-distance. To avoid the impact uneven degree distribution, the normalized
Laplacian L is constructed:

L=1— D Y24Dp~1/2
Where D is the degree matrix for W.
L is diagonalizable and the bottom 3 eigenvectors EO, E1,E2 is computed. EO is excluded as it is not
informative:
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_ EliH-1/2
Y = EZ]D

The coordinates for n genomic regions {y; [V, |... |y} € R? is acquired by converting the columns of Y into

2-dimensional vectors:

ilyzl-- lyn] =Y

Gene expression data

We downloaded all available tumor-normal pairwise somatic expression data for patients from TCGA GDC
Data Portal (https://portal.gdc.cancer.gov) and selected expression data with more than 10 patients for 17
cancer types/subtypes. All expression data were converted to TPM (transcripts per million) format.

Protein-Protein interaction data

To build a comprehensive protein-protein interactome, we assembled protein-protein interactions from 3
sources: (1) PPIs from STRING project (https://www.string.com), (2) HCT116-related PPIs from BioPlex
project, (3) MCF-10A-related and MCF-7-related PPIs from Kim, M. et al. The cell-specific PPIs were
determined from (2)(3) with PPI score > 0.65 and >8-fold change.

Genomic neighborhood and ¢sGGIs

The neighborhood for a given genomic region is defined by its radial distribution function(RDF), taken a small
proportion of genomic regions within the neighborhood. The diameter of the neighborhood is determined by
boundary of the highest characteristic peak, where the slope of tangent line of the cumulative RDF is
calculated, and tangent line with lagerst slope is chosen as a guideline. The diameter is quantified by the point
that the guidline intersects with the x axis. The neighborhood for a given genomic region is then settled.
Pairwise genomic regions within each other’s neighborhood is defined to have gene-gene interactions (GGIs).

The fold-change of CtG distance between tumor samples and normal samples is calculated, where m denotes
for the mean of fold-change and o denotes for the standard deviation. The cancer specific GGIs (csGGIs) are
GGIs from tumor samples with extreme change in CtG distance (fold-change < m — 3, according to 3¢ rule).

Gene function analysis

GO enrichment analysis of all the given gene clusters in this work was conducted using DAVID
(https://david.ncifcrf.gov).  Individual  gene  functions  were  obtained from  GeneCards
(https://www.genecards.org). Cancer genes were obtained from COSMIC

(https://cancer.sanger.ac.uk/cosmic).

Visualization

The PyMOL program (Schrodinger LLC, 2015) was employed to visualize the genomic structure (Xie et al.,
2017) in Figure 1. The VMD program (Humphrey et al., 1996) was employed to render the protein structure.
Supplementary Materials: Figure S1: 2D Laplacian eigenmap of colon cancer, Figure S2: Correspondence of
gene-gene proximity and RNA co-regulation in leukemia, Figure S3: Subgraph of csGGI network with ERBB3,
Figure S4: Subgraph of ¢sGGI network with HRAS, Figure S5: Subgraph of csGGI network with PTK6., Figure
S6: Correspondance of gene-gene proximity and STRING PPIs in normal colon sample, Figure S7: The distribution
of RNA correlation with STRING PPI for 17 cancer types, Figure S8: The distribution of RNA correlation for colon
cancer, Table S1: Function enrichment analysis, Table S1: Functional annotation clustering of colon csGGlIs, Table
S2: Functional annotation clustering of HCT116 structural-related intra-chromosomal PPIs; Table S3: Functional

annotation clustering of HCT116 structural-related inter-chromosomal PPIs.
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Supplementary note

Proof 1: eigenvalues A of the P are within range of [-1,1].

For any eigenvector X of P:
PX = AX

The maximum element of X is denoted as x4y, and the minimum element of X is
denoted as x,,;,. As the row summation of P is normalized to 1, and P is positive,

Xmin = Axmin < Xmax

Xmin = Axmax < Xmax
Therefore,

-1 < A <1

Proof 2: When n approaches infinity, the transition propensity matrix M®™ is
convergent.
P is diagonalizable:
P=U"'VU
P® can be written as:
pP® = pK =AU

S®™ is the weighted summation of P®:

SM = Y1 exp(—Ak) UTIARU = ¥, U™ [exp(—2Ak) A¥]U
According to associative law of multiplication :

n n
s = y-1 Z[exp(—lk) AU = U‘l[z exp(=1k) AK] U
k=1 k=1
When n approaches infinity, we have

S = U lim ) exp(—ak) A*lU
=t
In the above equation, exp(—A1k) A* is a geometric progression, and

lim exp(—21k) A*¥ - 0

n-—eo

Therefore, the summation over exp(—A1k) A¥is convergent, and

. _ k - =
7}1_{20 exp(=2k) A exp(1) — A

k=1
S is then also convergent and
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Figure S1. 2D Laplacian eigenmap of colon cancer. (A) The 2D Laplacian Eigenmaps of
CrG distance matrices for pairwise normal (upper pannel) and tumor (lower pannel) colon
samples. Each point represents a 40kb genomic region. The color is used to represent
the CpG density of the corresponding genomic region. (B) The color is used to
represent the genomic position of the corresponding genomic region.
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Figure S2. Correspondence of gene-gene proximity and RNA co-regulation in leukemia. (A)
The distribution of transcriptional Pearson correlation under different CtG distance of
chromosome 1(left) and chromosome 17(right), the color of each line indictes
corresponding CrG distance. (B) The distribution of CtG distance under different
Pearson correlation of chromosome 1(left) and chromosome 17(right), the color of
each line indictes corresponding Pearson correlation coefficient.
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Figure S6. Correspondance of gene-gene proximity and STRING PPIs in normal colon sample.
(A) The distribution of CrG distance between intra-chromosomal gene pairs with and
without STRING PPIs for whole chromosome in tumor sample (left pannel); The
proportion of intra-chromosomal gene-pairs with STRING PPI at different CtG
distances in normal sample (right pannel). (B) The distribution of CtG distance between
inter-chromosomal gene pairs with and without STRING PPIs for whole chromosome
in normal sample (left pannel); The proportion of inter-chromosomal gene-pairs with
STRING PPI at different CtG distances in normal sample (right pannel).
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Figure S7. The distribution of RNA correlation with STRING PPI for 17 cancer types. The
distributions of gene-pairs with STRING PPI are colored blue and the control groups are colored

orange. All samples show similar patterns that gene-pairs with STRING PPI are more correlated

in transcriptional level.
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Figure S8. The distribution of RNA correlation for colon cancer. Gene-pairs with both

STRING PPI and GGIs are colored blue and gene-pairs with only STRING PPI are colored orange

and the control group is colored green. Gene-pairs with both STRING PPI and GGIs are more

correlated in transcriptional level for both tumor and normal colon sample.

Table S1. Functional annotation clustering of colon csGGIs.

Annotation Cluster 1: Enrichment Score: 1.5327833580397092

Term Count PValue Benjamini
hsa01521: EGFR tyrosine kinase inhibitor resistance 7 4.63E-05 | 0.00920864
h pyk2Pathway: Links between Pyk2 and Map Kinases 5 8.51E-05 | 0.00802485
h_atlrPathway: Angiotensin Il mediated activation of 5 1.65E-04 | 0.00802485
JNK Pathway via Pyk2 dependent signaling

hsa05219: Bladder cancer 5 3.55E-04 | 0.03383294
h_malPathway: Role of MAL in Rho-Mediated 4 5.67E-04 | 0.01608635
Activation of SRF

hsa04662: B cell receptor signaling pathway 6 5.77E-04 | 0.03383294
hsa04012: ErbB signaling pathway 6 6.80E-04 | 0.03383294
h_rasPathway: Ras Signaling Pathway 410.00101341 | 0.0196602
hsa04140: Autophagy - animal 71 0.00108928 | 0.03764245
hsa05231: Choline metabolism in cancer 6 | 0.00129541 | 0.03764245
hsa04370: VEGF signaling pathway 510.00142489 | 0.03764245
hsa05205: Proteoglycans in cancer 8 1 0.00151326 | 0.03764245
h_sam68Pathway: Regulation of Splicing through 310.00163092 | 0.02636658
Sam68

GO: 200064 1~regulation of early endosome to late 3| 0.0017761 | 0.66330982
endosome transport

hsa04810: Regulation of actin cytoskeleton 8 1 0.00215053 | 0.04444882
h_erkPathway: Erk1/Erk2 Mapk Signaling pathway 41 0.00223416 | 0.03095906
hsa04664: Fc epsilon RI signaling pathway 510.00241051 | 0.04444882
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hsa05211: Renal cell carcinoma 510.00254296 | 0.04444882
hsa04917: Prolactin signaling pathway 510.00268033 | 0.04444882
hsa05223: Non-small cell lung cancer 510.00297021 | 0.04546711
hsa05220: Chronic myeloid leukemia 510.00361302 | 0.05135645
h_metPathway: Signaling of Hepatocyte Growth Factor 41 0.00379947 | 0.03988317
Receptor

hsa04650: Natural killer cell mediated cytotoxicity 6 | 0.00389495 | 0.05167298
h_fmlpPathway: fMLP induced chemokine gene 410.00411167 | 0.03988317
expression in HMC-1 cells

h_integrinPathway: Integrin Signaling Pathway 410.00411167 | 0.03988317
hsa05210: Colorectal cancer 510.00561992 | 0.06989776
h_cdk5Pathway: Phosphorylation of MEK1 by 31 0.00586627 | 0.05172985
cdk5/p35 down regulates the MAP kinase pathway

hsa04540: Gap junction 510.00609515 | 0.07134909
Annotation Cluster 2: Enrichment Score: 1.5241353790689698

Term Count PValue Benjamini
GO: 0039702~viral budding via host ESCRT complex 310.01072312 1
GO: 0036258~multivesicular body assembly 31 0.02069957 1
GO: 0043162~ubiquitin-dependent protein catabolic 31 0.02069957 1
process via the multivesicular body sorting pathway

GO: 0090148~membrane fission 31 0.03330408 1
Annotation Cluster 3: Enrichment Score: 1.453480544316328

Term Count PValue Benjamini
KW-0653~Protein transport 12 1 0.01295629 | 0.24467061
GO: 001503 1~protein transport 8| 0.0389436 1
KW-0967~Endosome 910.08642541 | 0.79943504
Annotation Cluster 4: Enrichment Score: 1.444194122407839

Term Count PValue Benjamini
KW-0648~Protein biosynthesis 6 | 0.00775783 | 0.24467061
KW-0396~Initiation factor 310.07027195 | 0.71901399
GO: 0003743~translation initiation factor activity 31 0.08528948 1
Annotation Cluster 5: Enrichment Score: 1.3130484622630447

Term Count PValue Benjamini
GO: 0051402~neuron apoptotic process 5 0.001971 | 0.66330982
GO: 0043524~negative regulation of neuron apoptotic 41 0.10479492 1

process

Annotation Cluster 6: Enrichment Score: 1.2661570708970376
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Term Count PValue Benjamini

GO: 0097542~ciliary tip 41 0.00441052 | 0.19343661
GO: 0005813~centrosome 11 | 0.00465311 | 0.19343661
GO: 0042073~intraciliary transport 310.02328684 1
GO: 0005929~cilium 6| 0.02622916 | 0.44898151

Annotation Cluster 7: Enrichment Score: 1.2170182899365116

Term Count PValue Benjamini
GO: 0019216~regulation of lipid metabolic process 410.00293104 | 0.66330982
GO: 0042752~regulation of circadian rhythm 310.08129563 1

Table S2. Functional annotation clustering of HCT116 structural-related intra-chromosomal

PPIs.
Annotation Cluster 1: Enrichment Score: 18.886710115925517
Term PValue Benjamini
GO: 0007156~homophilic cell adhesion via plasma 7.08E-39 1.38E-35
membrane adhesion molecules
GO: 0007399~nervous system development 5.72E-17 5.59E-14
GO: 0007155~cell adhesion 1.66E-15 1.08E-12
GO: 0005509~calcium ion binding 1.07E-14 6.82E-12
GO: 0005887~integral component of plasma membrane 5.09E-12 2.37E-09
Annotation Cluster 2: Enrichment Score: 5.486720966179876
Term PValue Benjamini
hsa05320: Autoimmune thyroid disease 8.92E-19 2.45E-16
GO: 0002323~natural killer cell activation involved in 1.09E-10 5.32E-08
immune response
hsa05169: Epstein-Barr virus infection 4.37E-10 6.01E-08
GO: 0005132~type I interferon receptor binding 2.03E-09 6.44E-07
hsa05152: Tuberculosis 8.01E-09 3.96E-07
GO: 0033141~positive regulation of peptidyl-serine 1.02E-08 3.98E-06
phosphorylation of STAT protein
hsa05164: Influenza A 1.78E-08 5.91E-07
hsa05163: Human cytomegalovirus infection 1.93E-08 5.91E-07
hsa05168: Herpes simplex virus 1 infection 5.62E-08 1.54E-06
GO: 0002286~T cell activation involved in immune response 7.08E-08 2.18E-05
GO: 0006959~humoral immune response 1.07E-07 2.61E-05
GO: 001922 1~cytokine-mediated signaling pathway 5.31E-07 1.01E-04
hsa04623: Cytosolic DNA-sensing pathway 5.84E-07 1.46E-05
GO: 0042100~B cell proliferation 6.20E-07 1.01E-04
GO: 0060337~type I interferon signaling pathway 6.20E-07 1.01E-04
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hsa05170: Human immunodeficiency virus 1 infection 6.38E-07 1.46E-05
hsa05167: Kaposi sarcoma-associated herpesvirus infection 6.93E-07 1.47E-05
GO: 0043330~response to exogenous dsRNA 7.02E-07 1.05E-04
hsa05165: Human papillomavirus infection 1.66E-06 3.26E-05
hsa04650: Natural killer cell mediated cytotoxicity 4.93E-06 8.47E-05
hsa05162: Measles 1.55E-05 2.37E-04
GO: 0051607~defense response to virus 2.19E-05 | 0.00237571
GO: 0030183~B cell differentiation 2.44E-05 | 0.0025043
hsa04622: RIG-I-like receptor signaling pathway 8.08E-05 | 0.00105761
hsa05161: Hepatitis B 8.57E-05 | 0.00107156
GO: 0002250~adaptive immune response 1.05E-04 | 0.00972708
hsa05200: Pathways in cancer 1.24E-04 | 0.00148135
GO: 0098586~cellular response to virus 1.42E-04 | 0.01258975
hsa04217: Necroptosis 2.67E-04 | 0.00271968
hsa04620: Toll-like receptor signaling pathway 3.80E-04 | 0.00373633
hsa05417: Lipid and atherosclerosis 5.11E-04 | 0.00484296
hsa05160: Hepatitis C 8.40E-04 | 0.00745575
hsa04936: Alcoholic liver disease 0.00123367 | 0.01028057
GO: 0005125~cytokine activity 0.00232746 | 0.21113399
hsa04630: JAK-STAT signaling pathway 0.00350412 | 0.02604415
hsa04060: Cytokine-cytokine receptor interaction 0.00466886 | 0.03292144
hsa04151: PI3K-Akt signaling pathway 0.00537873 | 0.0369788
hsa05171: Coronavirus disease - COVID-19 0.00802705 | 0.05133577
hsa04621: NOD-like receptor signaling pathway 0.00900205 | 0.05626278
GO: 0005126~cytokine receptor binding 0.01312996 | 0.75795707
Annotation Cluster 3: Enrichment Score: 4.299091183648573

Term PValue Benjamini
hsa05320: Autoimmune thyroid disease 8.92E-19 2.45E-16
GO: 0071556~integral component of lumenal side of 3.08E-10 7.16E-08
endoplasmic reticulum membrane

hsa05330: Allograft rejection 2.03E-09 1.86E-07
hsa05332: Graft-versus-host disease 6.58E-09 3.96E-07
hsa04940: Type I diabetes mellitus 8.64E-09 3.96E-07
GO: 0042605~peptide antigen binding 1.09E-08 2.30E-06
hsa04612: Antigen processing and presentation 1.11E-08 4.37E-07
GO: 0042613~MHC class II protein complex 5.37E-08 8.32E-06
GO: 0019882~antigen processing and presentation 7.82E-08 2.18E-05
GO: 0002504~antigen processing and presentation of peptide 1.75E-07 3.79E-05
or polysaccharide antigen via MHC class 11

GO: 0032395~MHC class II receptor activity 2.70E-07 4.28E-05
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GO: 0002503~peptide antigen assembly with MHC class 11 8.60E-07 1.20E-04
protein complex

GO: 000238 1~immunoglobulin production involved in 1.30E-06 1.70E-04
immunoglobulin mediated immune response

hsa05416: Viral myocarditis 3.00E-06 5.50E-05
GO: 0012507~ER to Golgi transport vesicle membrane 3.18E-06 2.95E-04
GO: 0019886~antigen processing and presentation of 3.77E-06 4.60E-04
exogenous peptide antigen via MHC class 11

hsa04145: Phagosome 9.83E-06 1.59E-04
hsa05166: Human T-cell leukemia virus 1 infection 1.99E-05 2.87E-04
GO: 0023026~MHC class II protein complex binding 3.50E-05 | 0.00444635
hsa05150: Staphylococcus aureus infection 3.91E-05 5.38E-04
GO: 0050870~positive regulation of T cell activation 8.58E-05 | 0.00838156
hsa05310: Asthma 1.29E-04 | 0.00148193
GO: 0030666~endocytic vesicle membrane 1.55E-04 | 0.01200662
hsa05145: Toxoplasmosis 1.61E-04 | 0.00177432
hsa05140: Leishmaniasis 1.71E-04 | 0.00180795
GO: 0005765~lysosomal membrane 2.22E-04 | 0.0147493
GO: 0006955~immune response 3.83E-04 | 0.03118785
GO: 0002486~antigen processing and presentation of 5.93E-04 0.046337
endogenous peptide antigen via MHC class I via ER

pathway, TAP-independent

GO: 0042612~MHC class I protein complex 7.87E-04 | 0.04053694
hsa04514: Cell adhesion molecules 8.40E-04 | 0.00745575
GO: 0000139~Golgi membrane 0.00109335 | 0.04621875
hsa04640: Hematopoietic cell lineage 0.00111535 | 0.00958507
hsa05321: Inflammatory bowel disease 0.00148522 | 0.01201284
hsa04672: Intestinal immune network for IgA production 0.00165846 | 0.01303076
GO: 0030658~transport vesicle membrane 0.00190334 | 0.06808101
hsa05322: Systemic lupus erythematosus 0.00299623 | 0.02288785
GO: 0001916~positive regulation of T cell mediated 0.00301056 | 0.22613968
cytotoxicity

GO: 0030670~phagocytic vesicle membrane 0.00555792 | 0.15684631
hsa04659: Th17 cell differentiation 0.00734264 | 0.04807682
hsa04658: Th1 and Th2 cell differentiation 0.01032726 | 0.06173908
hsa05323: Rheumatoid arthritis 0.01092655 | 0.06393195
GO: 0030669~clathrin-coated endocytic vesicle membrane 0.01841431 | 0.42813264
GO: 0010008~endosome membrane 0.05188268 | 0.86361666
GO: 0031901~early endosome membrane 0.05200272 | 0.86361666
GO: 0055038~recycling endosome membrane 0.07280561 1
GO: 0032588~trans-Golgi network membrane 0.07280561 1
GO: 0050852~T cell receptor signaling pathway 0.24866213 1
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hsa05203: Viral carcinogenesis 0.28823311 1
hsa04218: Cellular senescence 0.38971633 1
hsa04144: Endocytosis 0.49025631 1
Annotation Cluster 4: Enrichment Score: 2.5719744078830575

Term PValue Benjamini
GO: 0016339~calcium-dependent cell-cell adhesion via 4.69E-06 5.39E-04
plasma membrane cell adhesion molecules

GO: 0007416~synapse assembly 1.79E-04 0.015208
GO: 0007268~chemical synaptic transmission 0.12291758 1
GO: 0045202~synapse 0.49932314 1
Annotation Cluster 5: Enrichment Score: 1.3966018993019305

Term PValue Benjamini
hsa00480: Glutathione metabolism 0.00361814 | 0.02618394
GO: 0004364~glutathione transferase activity 0.00366572 | 0.29096645
hsa05204: Chemical carcinogenesis - DNA adducts 0.00922531 | 0.05637689
GO: 0006749~glutathione metabolic process 0.02149396 1
hsa00982: Drug metabolism - cytochrome P450 0.04022589 | 0.22124239
hsa01524: Platinum drug resistance 0.04229977 | 0.22808699
hsa05207: Chemical carcinogenesis - receptor activation 0.05243462 | 0.27729846
hsa00980: Metabolism of xenobiotics by cytochrome P450 0.0536251 | 0.27824345
hsa00983: Drug metabolism - other enzymes 0.05860336 | 0.29301679
GO: 0006805~xenobiotic metabolic process 0.07181652 1
GO: 0042178~xenobiotic catabolic process 0.09474298 1
hsa05225: Hepatocellular carcinoma 0.15260351 | 0.68796663
hsa05418: Fluid shear stress and atherosclerosis 0.15821423 | 0.69977247
hsa05208: Chemical carcinogenesis - reactive oxygen species | 0.23136469 | 0.92210563
Annotation Cluster 6: Enrichment Score: 1.3570585896445353

Term PValue Benjamini
GO: 0045869~negative regulation of single stranded viral 0.00518358 | 0.33745123
RNA replication via double stranded DNA intermediate

GO: 0010529~negative regulation of transposition 0.01639338 | 0.89908234
GO: 0070383~DNA cytosine deamination 0.02040899 | 0.99646883
GO: 0047844~deoxycytidine deaminase activity 0.02262817 1
GO: 0009972~cytidine deamination 0.02905456 1
GO: 0016554~cytidine to uridine editing 0.02905456 1
GO: 0004126~cytidine deaminase activity 0.03216004 1
GO: 0080111~DNA demethylation 0.08096562 1
hsa03250: Viral life cycle - HIV-1 0.49555146 1
GO: 0000932~P-body 0.62879617 1
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Annotation Cluster 7: Enrichment Score: 1.2134687565396018
Term PValue Benjamini
GO: 0045324~late endosome to vacuole transport 0.01657295 | 0.89908234
GO: 0097352~autophagosome maturation 0.06918992 1
GO: 0016236~macroautophagy 0.1995957 1
Table S3. Functional annotation clustering of HCT116 structural-related intra-
chromosomal PPIs.
Annotation Cluster 1: Enrichment Score: 2.943527846030514
Term PValue Benjamini
GO: 0000502~proteasome complex 1.47E-06 1.74E-04
hsa03050: Proteasome 6.92E-04 0.043804
GO: 0022624~proteasome accessory complex 0.0066303 | 0.1380662
hsa05017: Spinocerebellar ataxia 0.24932119 | 0.99411035
Annotation Cluster 2: Enrichment Score: 2.5665692443489947
Term PValue Benjamini
GO: 0042765~GPI-anchor transamidase complex 9.14E-04 | 0.03595721
GO: 0016255~attachment of GPI anchor to protein 0.00185364 | 0.55531848
hsa00563: Glycosylphosphatidylinositol (GPI)-anchor 0.01178264 | 0.22179084
biosynthesis
Annotation Cluster 3: Enrichment Score: 2.4423007751503065
Term PValue Benjamini
GO: 0008380~RNA splicing 2.54E-06 | 0.00457121
hsa03040: Spliceosome 1.25E-04 | 0.01331879
GO: 0000398~mRNA splicing, via spliceosome 0.00136178 | 0.49401419
GO: 0005681~spliceosomal complex 0.00175958 | 0.05662648
GO: 0071013~catalytic step 2 spliceosome 0.00260104 | 0.07082841
GO: 0071005~U2-type precatalytic spliceosome 0.00771117 | 0.15598591
GO: 0071007~U2-type catalytic step 2 spliceosome 0.01130191 | 0.20517311
GO: 0000375~RNA splicing, via transesterification 0.11039709 1
reactions
GO: 0005682~US snRNP 0.11623505 | 0.86190502
GO: 0046540~U4/U6 x U5 tri-snRNP complex 0.17059402 | 0.9309836
Annotation Cluster 4: Enrichment Score: 2.3608515879841923
Term PValue Benjamini
GO: 003014 1~secretory granule 1.78E-04 | 0.0104911
GO: 0004252~serine-type endopeptidase activity 0.01734523 | 0.95171215
GO: 000823 6~serine-type peptidase activity 0.02680996 1
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Annotation Cluster 5: Enrichment Score: 2.1495169142708916

Term PValue Benjamini
GO: 007105 1~polyadenylation-dependent snoRNA 3'-end 1.51E-04 | 0.1354518
processing

GO: 0034475~U4 snRNA 3'-end processing 2.90E-04 | 0.20444477
GO: 0000177~cytoplasmic exosome (RNase complex) 2.93E-04 | 0.01480803
GO: 0045006~DNA deamination 3.98E-04 | 0.20444477
GO: 0000178~exosome (RNase complex) 5.91E-04 | 0.02791445
GO: 0101019~nucleolar exosome (RNase complex) 7.58E-04 0.033306
GO: 0034427~nuclear-transcribed mRNA catabolic 8.07E-04 | 0.36271775
process, exonucleolytic, 3'-5'

GO: 0000176~nuclear exosome (RNase complex) 0.00165804 | 0.05662648
GO: 0016075~rRNA catabolic process 0.00558333 | 0.8519673
GO: 0043928~exonucleolytic nuclear-transcribed mRNA 0.02071858 1
catabolic process involved in deadenylation-dependent

decay

GO: 0006401~RNA catabolic process 0.02274463 1
GO: 0035327~transcriptionally active chromatin 0.02293376 | 0.31837454
GO: 0071028~nuclear mRNA surveillance 0.06364649 1
hsa03018: RNA degradation 0.06393924 | 0.60178111
GO: 0000175~3'-5"-exoribonuclease activity 0.07306224 1
GO: 0000791~euchromatin 0.16498087 | 0.9309836
GO: 0090503~RNA phosphodiester bond hydrolysis, 0.22541777 1
exonucleolytic

GO: 0006396~RNA processing 0.99805831 1
Annotation Cluster 6: Enrichment Score: 1.9218679321185945

Term PValue Benjamini
GO: 0044183~protein binding involved in protein folding | 0.00113455 | 0.23666785
GO: 0051082~unfolded protein binding 0.03069127 1
GO: 0006457~protein folding 0.04926703 1
Annotation Cluster 7: Enrichment Score: 1.7774390184940738

Term PValue Benjamini
hsa05020: Prion disease 0.00703128 | 0.20136586
hsa05014: Amyotrophic lateral sclerosis 0.00818049 | 0.20136586
hsa05012: Parkinson disease 0.00975062 | 0.22157805
hsa05022: Pathways of neurodegeneration - multiple 0.01038647 | 0.22157805
diseases

hsa05016: Huntington disease 0.02612139 | 0.34828525
hsa05010: Alzheimer disease 0.14225106 | 0.8128632
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