

1 **Conditional forest models built using metagenomic data could accurately predict**

2 ***Salmonella* contamination in Northeastern streams**

3 Taejung Chung^{1,2}, Runan Yan^{1,2}, Daniel L. Weller³, Jasna Kovac^{1,2#}

4

5 ¹ Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania,
6 USA

7 ² Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University,
8 University Park, Pennsylvania, USA

9 ³ Department of Statistics and Computational Biology, University of Rochester Medical Center,
10 Rochester, NY, USA

11

12 #Address correspondence to Jasna Kovac, jzk303@psu.edu

13

14 KEYWORDS: Surface water, *Salmonella*, water safety, microbiome, machine learning

15 ABSTRACT

16 The use of water contaminated with *Salmonella* for produce production contributes to foodborne
17 disease burden. To reduce human health risks, there is a need for novel, targeted approaches for
18 assessing the pathogen status of agricultural water. We investigated the utility of water
19 microbiome data for predicting *Salmonella* contamination of streams used to source water for
20 produce production. Grab samples were collected from 60 New York streams in 2018 and
21 tested for *Salmonella*. Separately, DNA was extracted from the samples and used for
22 Illumina shotgun metagenomic sequencing. Reads were trimmed and used to assign taxonomy
23 with Kraken2. Conditional forest (CF), regularized random forest (RRF), and support vector
24 machine (SVM) models were implemented to predict *Salmonella* contamination. Model
25 performance was determined using 10-fold cross-validation repeated 10 times to quantify area
26 under the curve (AUC) and Kappa score. Taxa identified as the most informative for accurately
27 predicting *Salmonella* contamination based on conditional variable importance were compared to
28 taxa identified by ALDEx2 as being differentially abundant between *Salmonella*-positive and -
29 negative samples. CF models outperformed the other two algorithms based on AUC (0.82 - CF,
30 0.76 - RRF, 0.67 - SVM) and Kappa score (0.41- CF, 0.38 - RRF, 0.19 - SVM). CF and
31 differential abundance tests both identified *Aeromonas* (VI = 0.32) and *Tabrizicola* (VI =
32 0.12) as the two most informative taxa for predicting *Salmonella* contamination. The taxa
33 identified in this study warrant further investigation as indicators of *Salmonella* contamination in
34 Northeastern freshwater streams.

35 **IMPORTANCE**

36 Understanding the associations between surface water microbiome composition and the presence
37 of foodborne pathogens, such as *Salmonella*, can facilitate the identification of novel indicators
38 of *Salmonella* contamination. This study assessed the utility of microbiome data and three
39 machine learning algorithms for predicting *Salmonella* contamination of Northeastern streams.
40 The research reported here both expanded the knowledge on the microbiome composition of
41 surface waters and identified putative novel indicators (i.e., *Aeromonas* and *Tabrizicola*) for
42 *Salmonella* in Northeastern streams. These putative indicators warrant further research to assess
43 whether they are consistent indicators of *Salmonella* for regions, waterways, and years not
44 represented in the dataset used in this study.

45 INTRODUCTION

46 According to US Centers for Disease Control and Prevention (CDC), 46% of foodborne illnesses
47 in the US caused by a known food vehicle between 1998 and 2008 were linked to produce
48 commodities consumption (1). In the US, *Salmonella* is the most common bacterial pathogen
49 associated with outbreaks linked to fresh produce (2, 3). Thus, preventing *Salmonella*
50 contamination of fresh produce is critical for managing foodborne disease burden in the US.

51 Multiple produce-associated outbreaks have been putatively traced back to the use of
52 contaminated water for produce production (4–7). Therefore, identifying when water is likely to
53 be contaminated is a central component of produce safety risk management plans. In many
54 countries, agricultural and recreational water *E. coli*-based standards have been established (8–
55 11). However, *E. coli* is an indicator of fecal and not pathogen contamination. Indeed, the
56 presence and direction of the association between *E. coli* levels and foodborne pathogen presence
57 varies substantially within the scientific literature, with some studies reporting positive
58 relationships (12–16), and others reporting negative or no relationship (17–20). As a result, *E.*
59 *coli* appears to be an unreliable indicator of *Salmonella* contamination of surface waterways,
60 even though *E. coli* can be used as a general indicator of hygienic condition of water (17, 21).
61 Thus, there is a need for novel approaches for identifying when and where agricultural
62 waterways may be contaminated with foodborne pathogens, such as *Salmonella*.

63 Metagenomics opened new avenues for characterization of water microbiomes.
64 Concurrent characterization of microbiome and pathogen status in water provides an opportunity
65 for the identification of microbial taxa associated with pathogen contamination of agricultural
66 water. Such taxa could be identified by developing models that use microbiome data (i.e.,
67 presence or absence of taxa, or differences in their relative abundance) to predict when and

68 where pathogens are present. However, since the existing water microbiome literature
69 demonstrates substantial spatial and temporal variation in water microbiome composition (22–
70 25), identification of such “indicator” taxa is difficult using conventional analytical approaches,
71 such as multivariate ordination (25). Machine learning provides an alternative approach that may
72 be useful for identifying “indicator”, or combinations of “indicator” taxa and for developing
73 classification models that use these taxa to predict pathogen contamination status (26, 27).

74 Among classification machine learning models, supervised models are particularly useful
75 when the outcome information, such as pathogen status, is known for a set of samples. Labelling
76 the training dataset with an outcome class label allows for the development of a classifier that
77 can predict pathogen status. A variety of supervised classification models have been developed
78 to address different data structure challenges and improve the accuracy of prediction (28–31). A
79 benchmarking study that applied multiple machine learning models on human gut microbiome
80 found differences in the performance of models based on different machine learning algorithms.
81 This is likely due to differences in the characteristics of algorithms, such as linear/non-linear
82 separation, ensemble or regression approaches (30). This suggests the importance of selecting
83 and testing multiple algorithms to improve the prediction accuracy. In addition to model
84 selection, the performance of a model may be affected by microbiome data pre-processing, such
85 as data normalization (28). The latter is commonly carried out to account for potential
86 differences in sample library sizes, hence its effect on prediction accuracy needs to be assessed
87 (31–33).

88 With the above-outlined consideration in mind, we applied multiple machine learning
89 classifiers to normalized and non-normalized microbiome data for samples collected from 60
90 different streams. Our goal was to identify microbial indicators predictive of *Salmonella*

91 contamination in stream water samples collected in a region in Northeastern United States.
92 Lastly, we also assessed whether the addition of data on physicochemical properties of water
93 samples increases the accuracy of predicting *Salmonella* contamination.

94

95 **RESULTS**

96 **Samples were sequenced with a median of 5,956,185 reads and a median of 8.955% reads**
97 **were assigned bacterial taxonomic identifier.** A median of 5,956,185 reads per sample were
98 obtained from 60 samples [min = 4,048,684, max = 9,301,059, standard deviation (SD) =
99 1,125,759] and median of 8.95% reads were classified as bacterial using metagenomics
100 taxonomic classifier Kraken2 [median = 529,963, min = 145,211, max = 1,059,311, standard
101 deviation (SD) = 206,336]. Across samples, a total of 885 different genera from 307 different
102 families were assigned.

103

104 **The overall microbiome composition was not associated with the presence of *Salmonella* in**
105 **surface water samples.** The principal component analysis (PCA) biplot (Fig. 1B and 1D) and
106 scree plot (Fig. 1A and 1C) showed that the sample microbiomes did not cluster based on the
107 presence of *Salmonella*. As evident from the scree plot (Fig. 1A and 1C), the first two
108 components explained a relatively low percent of variance in the microbiome composition.
109 Specifically, they explained 28.3% of the variance at the genus level (Fig. 1A) and 26.5% of the
110 variance at the family level (Fig. 1C). PERMANOVA results also did not indicate significant
111 association between microbiome composition and *Salmonella* isolation (p = 0.318 (family-level),
112 p = 0.349 (genus-level)).

113

114 **CF models outperformed RRF and SVM models at predicting *Salmonella* contamination.**

115 Regardless of feature set, the area under the curve (AUC) and Kappa score were always higher
116 for conditional forest (CF) compared to regularized random forest (RRF) and support vector
117 machine (SVM) when genus-level microbiome data were used (Fig. 2). Furthermore, the AUC
118 was also consistently higher for CF models compared to RRF and SVM models when family-
119 level microbiome data were used. However, the Kappa values were similar for CF and RRF
120 models when family-level microbiome data were used (Fig. 2). RRF models (AUC = [0.68, 0.75],
121 Kappa = [0.24 ,0.35]) and SVM models (AUC = [0.61, 0.64], Kappa = [0.1, 0.15]) had lower
122 AUC and Kappa score than CF models (AUC = [0.76, 0.82], Kappa = [0.32, 0.42]). We found
123 that the AUC range for CF did not overlap with AUC ranges of other two methods, indicating
124 that CF has outperformed RRF and SVM. Hence, further analyses were carried out using the CF
125 models.

126 Across all models using the genus-level data, the CF model run on CLR-transformed
127 relative abundance data without environmental features had the highest AUC (0.81) and Kappa
128 score (0.42) (Fig. 2). When using family level data, the CF model using the relative abundance
129 data, without environmental features resulted in the highest Kappa score (0.42), and second
130 highest AUC (0.80) (Fig. 3).

131

132 ***Aeromonas* and *Tabrizicola* were most informative for accurately predicting *Salmonella***
133 **presence.** Using genus-level microbiome data, CF identified *Aeromonas*, *Tabrizicola*,
134 *Haematobacter*, *Defluviimonas*, and *Rhizobium* as the five most informative genera for
135 predicting *Salmonella* contamination (Fig. 3A). In family level analysis, *Aeromonadaceae*,
136 *Rhodobacteraceae*, and *Methanobacteriaceae* were identified as the three most informative

137 families. Furthermore, four environmental features (i.e., stream level, dissolved oxygen level, pH,
138 and changes of elevation and length of the stream) were also identified as informative features in
139 the CF model that included environmental features (Fig. 3B).

140 The differential abundance analysis carried out using ALDEx2 and Kruskal-Wallis test
141 identified two bacterial genera, *Aeromonas* and *Tabrizicola*, (Fig. 4) as significantly
142 differentially abundant between *Salmonella*-positive and *Salmonella*-negative samples. These
143 two genera belong to *Aeromonadaceae* and *Rhodobacteraceae* families, respectively. These two
144 families are among the families identified as differentially abundant between *Salmonella*-positive
145 and -negative samples (i.e., *Aeromonadaceae*, *Parvibaculaceae*, *Rhodobacteraceae*, and
146 *Shewanellaceae*) (Fig. 5).

147

148 **DISCUSSION**

149 This study was based on the premise that contamination of surface waters with enteric pathogens
150 such as *Salmonella*, co-occurs with other microbiota that is either linked with the contamination
151 source or linked with the environmental conditions that favor pathogen introduction to or
152 survival in freshwater systems. As such, these taxa could be used to identify when and where
153 surface waters may be contaminated by *Salmonella*. Hence, we aimed to leverage water
154 microbiome data and machine learning classifiers to identify specific taxa predictive of
155 *Salmonella* contamination that could be further developed into rapid detection assays (10). For
156 example, taxa that (i) consistently occur in samples contaminated with *Salmonella* or are (ii)
157 consistently present in a significantly different relative abundance in samples contaminated with
158 *Salmonella*, may be utilized to develop rapid PCR-based indicator assays.

159

160 **Data transformation did not have a notable effect on the performance of predictive models.**

161 Microbiome data analyses are challenging due to inherent data complexities. These include data
162 sparsity (i.e., many taxa are only present in small proportions of samples, resulting in a large
163 proportion of zero counts), collinearity (i.e., some taxa are highly correlated), imbalanced library
164 sizes, and a well-known "small n large p" problem (i.e., small number of samples and a large
165 number of taxa). Some of these challenges can be addressed prior to applying machine learning
166 models or can be addressed by applying machine learning methods that can address certain
167 microbiome data challenges. Here, we used a central log-ratio (CLR) transformation to mitigate
168 the potential effects of different library sizes, and to take into consideration the compositional
169 nature of microbiome data (33, 34). We found that the microbiome data transformation had an
170 inconsistent effect on a model performance, as it improved the AUC of some models (e.g., CF
171 using genus- and family-level data, SVM using family-level data) while it decreased the AUC of
172 other models (e.g., RRF using genus- and family-level data, SVM using genus-level data).
173 Previous studies on gut microbiome data emphasized the importance of data transformation due
174 to the compositionality of the microbiome data (28, 30, 32). However, they also reported that the
175 performance of tree-based algorithms (i.e., random forest and XGBoost) was not significantly
176 affected by data transformation (32).

177

178 **Model selection is critically important when applying machine learning to microbiome data.**

179 Different machine learning classifiers address microbiome data challenges to various degrees;
180 hence we assessed the performance of three different machine learning algorithms for prediction
181 of *Salmonella* contamination. At both genus-level and family-level classification, we found that
182 CF performed overall better than RRF and SVM. This is consistent with other studies that

183 compared multiple algorithms for predicting foodborne pathogen contamination of surface water,
184 and consistently found that CF was a high performing algorithm (27). However, many of these
185 studies also found that RRF and/or SVM also performed well. Given the highly correlated nature
186 of microbiome data, it is not surprising that CF, which was developed to address limitations of
187 other random forest algorithms for handling correlated data, outperformed the RRF and SVM
188 (35–37). Moreover, given the complex relationships that underpin microbial ecosystems,
189 hierarchical relationships between the presence-absence of various taxa (e.g., models that
190 incorporate “interactions” or hierarchy such as CF and RRF) may predict pathogen presence
191 better than algorithms that do not (e.g., SVM).

192

193 **Differential abundance analysis and conditional forest models identified putative indicators**
194 **of *Salmonella* contamination in surface waters.** When assessing the association between the
195 overall microbiome composition and *Salmonella* contamination, associations between certain
196 taxa and *Salmonella* contamination may be missed due to the large number of taxa included in
197 the analyses. Indeed, we found the lack of association between the overall microbiome
198 composition and the presence of *Salmonella* based on the Principal Component Analysis (PCA)
199 and PERMANOVA. Hence, we used differential abundance analysis and machine learning
200 algorithm CF to discover individual taxa (or their relative abundance) associated with *Salmonella*
201 contamination.

202 Both, differential abundance analysis and CF identified some of the same taxa predictive
203 of *Salmonella* contamination in stream water samples. Using ALDEx2 differential abundance
204 analysis and CF, we identified two bacterial genera (*Aeromonas* and *Tabrizicola*) which were
205 present in a significantly lower relative abundance in samples contaminated with *Salmonella*.

206 *Aeromonas* species have previously been found in natural water and a broad range of foods, in
207 addition to human and animal gastrointestinal tracts (38, 39). *Aeromonas* is regarded not only as
208 an important pathogenic bacterium in fish and cold-blooded animals, but also as an opportunistic
209 pathogen in immunocompromised humans (38). *Aeromonas* (belonging to *Aeromonadaceae*) has
210 similar morphological and biochemical characteristics as *Enterobacteriaceae*, a family of
211 microorganisms commonly used as an indicator of poor hygienic conditions in food systems (40).
212 Bonadonna et al. reported that the presence of *E. coli* and fecal coliforms were associated with
213 lower counts of *Aeromonas*, whereas the prevalence of total coliforms was associated with
214 higher counts of *Aeromonas* in bathing waters along the sea-coast of the Adriatic Sea (41, 42).
215 Another identified genus, *Tabrizicola*, belongs to a family of *Rhodobacteraceae*, which is
216 usually found in aquatic environment, including lakes and wastewater treatment facilities (43–
217 45). However, the ecological role of *Tabrizicola* is still understudied. In addition to the two
218 genera discussed above, we identified several bacterial families positively and negatively
219 associated with *Salmonella* contamination in water. Four families were identified in both
220 differential abundance analysis and machine learning variable importance analysis (i.e.,
221 *Aeromonadaceae*, *Rhodobacteraceae*, *Shewanellaceae*, and *Parvibaculaceae*). These four
222 families are known marine or aquatic microbiome members commonly found in natural waters
223 (46–48). However, their relationship with *Salmonella* is unknown. A study by Gu et al. used 16S
224 rDNA amplicon sequencing data and found an association between specific microbial taxa and
225 the prevalence and population density of *Salmonella enterica* detected in ponds and wells in
226 Eastern Shore of Virginia (ESV) between January to December (49). They found that the relative
227 abundance of *Sphingomonadales* was significantly correlated with *S. enterica* prevalence as well
228 as its population density in irrigation ponds and water wells. However, in our study,

229 *Sphingomonadales* were not identified as informative for prediction of *Salmonella* contamination
230 using machine learning nor differential abundance analysis (49). This inconsistency could
231 potentially be explained by regional differences in the water microbiome composition, which is
232 known to be influenced by environmental features such as natural variation over time, weather,
233 and adjacent land use (22, 23, 25).

234 In this study, we found that several environmental features were informative for
235 classification in the CF model. CVI of stream level was the second most informative feature for
236 predicting *Salmonella* contamination, and level of dissolved water, pH, and change in elevation
237 and length (CSL 10_85) were weakly associated with *Salmonella* contamination. Previous study
238 reported that environmental features had an effect on the level of *E. coli* and the probability of
239 detecting foodborne pathogen from the fresh water samples (20). Therefore, it is important to
240 consider environmental condition as supplementary features when developing new tools for
241 predicting *Salmonella* contamination of fresh water based on the specific taxa.

242 Some of the differences between taxa identified in this study and previous studies may be
243 due to the differences in microbiome composition between surface, pond, and well waters. Thus,
244 future studies that sample the same (or multiple) water types over multiple growing regions from
245 multiple states are needed to assess whether the putative indicators of *Salmonella* contamination
246 identified in this study are reproducible more broadly and are suitable candidates for the
247 development of a rapid nucleic acid-based diagnostic assay.

248

249 **Conclusions.** This study applied machine learning classifiers and differential abundance
250 analyses of surface water microbiome data to identify putative novel indicators of *Salmonella*
251 contamination. We identified *Aeromonas* and *Tabrizicola* bacterial genera and *Aeromonadaceae*,

252 *Rhodobacteraceae*, *Shewanellaceae*, and *Parvibaculaceae* families that warrant further
253 assessment as putative indicators of *Salmonella* contamination of the water. The identified taxa
254 are potential targets for the development of an alternative or complementary (to *E. coli*
255 quantification) water quality/safety monitoring strategy focused on mitigating the use of surface
256 waters likely contaminated with *Salmonella*. However, the models developed in this study first
257 need to be validated on new samples collected from a broader geographic area and over multiple
258 seasons to assess the predictive accuracy of taxa identified here. Furthermore, deeper
259 metagenomic sequencing that would enable metagenome assembly may facilitate identification
260 of putative novel indicators of *Salmonella* contamination at a species level, as well as
261 characterization of their functional potential.

262

263 MATERIALS AND METHODS

264 **Sample collection and processing.** Water samples were collected from sixty streams in Upstate
265 New York state between July and October 2018 as described by Weller et al. (2020) (20). All
266 chemical, microbial, and environmental water quality data were previously reported by Weller et
267 al. (2020) (20). Briefly, 10 L grab samples were collected from each stream and tested for
268 *Salmonella* presence. Each grab sample was filtered through modified Moore swabs (mMS).
269 Buffered peptone water supplemented with novobiocin (20 mg/l) was added to Whirl-Pak bags
270 containing mMS and incubated at 35°C for 24 h. After incubation, a BAX real-time PCR screen
271 was used to identify samples that were presumptively positive for *Salmonella*. *Salmonella*
272 presence was confirmed using culture-based methods fully described in Weller et al. (20)

273 Separately, 100 ml grab samples were collected for metagenomic analysis. The 100-mL
274 samples were filtered through a 0.45 mm filter (Nalgene, Thermo Fisher Scientific, Waltham,
275 MA USA). Filters were then stored at -80 °C until DNA extraction.

276

277 **DNA extraction and microbiome sequencing.** DNA was extracted using DNeasy Power Water
278 kit (Qiagen, MD, USA) per manufacturer's instructions. Extracted DNA was examined for
279 quality and quantified using Nanodrop One (Thermo Fisher Scientific, MA, USA) and Qubit 3
280 (Thermo Fisher Scientific, MA, USA), respectively. DNA was then sent to the Penn State
281 Genomics Core Facility for library preparation and sequencing. Libraries were prepared using
282 Nextera XT Flex per manufacturer's instructions. Pooled libraries were sequenced on an
283 Illumina NextSeq with 150 bp paired end reads.

284

285 **Sequence quality control and taxonomic classification.** FastQC version 0.11.5 was used to
286 assess read quality using default parameters (50). Illumina adapters and low-quality bases were
287 trimmed using Trimmomatic (v 0.36) (51) with default parameters. Trimmed reads were
288 taxonomically classified using Kraken2 (v 2.1.2) (52) and relative abundances inferred using
289 Bracken (v 2.5) (53). The NCBI's RefSeq nucleotide database (v 207) (54) was used to build a
290 Kraken2 database. Any read that mapped to a single reference genome was labeled with the
291 NCBI taxonomic annotation (taxid) corresponding to that reference genome. Any read that
292 mapped to multiple reference genomes, or did not meet or exceed the confidence scoring
293 threshold was assigned a last common ancestor (LCA) taxonomic identification (taxid) (52).
294 Confidence scores were set to 0.1, meaning that at least 10% of the total number of kmers from a
295 read were classified. Bracken was used to estimate the abundance of taxa by re-distributing reads

296 in the taxonomy using Bayes' theorem (53). Assigned taxonomy and taxid counts of all samples
297 were merged into a table that was used for downstream analyses.

298

299 **Microbiome Analyses.** All statistical analyses of microbiome data were performed in R (version
300 4.1.0; R core Team, Vienna, Austria) (55), using a compositional analyses framework (33). First,
301 the estimated abundances were transformed using the centered log-ratio (CLR) transformation
302 (34). Ratio transformations capture the relationship between the taxonomic units in the data, and
303 logarithm of these ratios ensures that the data are symmetric and linearly related (34). Distances
304 between samples were calculated using the Aitchison distance (i.e., Euclidian distance after CLR
305 transformation) to investigate the among-sample differences in microbiome composition [11].
306 Principle component analysis (PCA) was carried out using the 'princomp' function in R on
307 relative abundances of taxids to visualize the ordination and clustering of samples based on the
308 microbiome composition (33). The first two principal components were plotted using the
309 'ggplot2' package (v 3.3.3) (56). Samples were color-coded to visually assess whether they
310 cluster based on the *Salmonella* presence/absence. Permutational Multivariate Analysis of
311 Variance (PERMANOVA) was carried out to assess statistical associations between microbiome
312 composition and *Salmonella* presence using the 'adonis' function in the 'vegan' package (v 2.5.7)
313 (57). Differential abundance test was conducted using the ALDEx2 R package (58) to identify
314 bacterial genera and families that were differentially abundant between *Salmonella*-positive and -
315 negative samples. Each identified bacterial genus and family were tested using Kruskal-Wallis
316 test to assess statistical significance of detected differences in their relative abundance (59).

317

318 **Predictive modelling.** Three machine learning algorithms (i.e., conditional forest (CF) (35),
319 regularized random forest (RRF) (36), and support vector machine (SVM) with sigmoid kernel
320 (37)) that had previously been applied on microbiome data (60–62) and were suitable for
321 microbiome data structure (27) were used in this study. Additionally, these algorithms were
322 previously reported to outperform others for predicting *Salmonella* presence using environmental
323 data (27). These methods were used to develop models that predict *Salmonella* presence or
324 absence in water samples. Both relative abundance of taxid and CLR transformed relative
325 abundance of taxid were separately used as features to assess the effect of microbiome data
326 transformation on model performance. Model training and evaluation was performed using the
327 ‘mlr’ package (v 2.19.0) (63). Ten-fold cross-validation repeated three-times was used to tune
328 hyperparameters to maximize area under the curve (AUC) (64, 65). In total, analyses were
329 conducted using two feature sets: (i) untransformed relative abundances of microbial taxa and (ii)
330 CLR-transformed relative abundances of microbial taxa, to assess whether models perform better
331 on transformed microbiome data. Analyses were also carried out at two different taxonomic
332 levels (i.e., genus and family) and with or without environmental data. In total, 24 models were
333 constructed separately based on the AUC and kappa scores (Table 1). The best performing model
334 for each combination of algorithm and input data (Table 1) was selected for identifying
335 informative taxa. conditional variable importance (CVI) was calculated using the ‘party’ package
336 (v. 1.3.7) for CF models (35).

337

338 **Acknowledgments**

339 This work was supported by the Penn State Institutes of Energy and the Environment seed grant,
340 the Penn State Huck Institutes of the Life Sciences’ Genomics Core facility, and the USDA

341 National Institute of Food and Agriculture Hatch Appropriations under Project #PEN04646 and
342 Accession #1015787. We thank Martin Wiedmann for the support of DW's work at the Cornell
343 University.

344

345 **Data availability**

346 Sequences generated in this study are available in the NCBI Sequence Read Archive database
347 under the BioProject accession number PRJNA849616. Script used for bioinformatics and
348 statistical analyses are available in GitHub repository:

349 <https://github.com/tuc289/SurfaceWaterMicrobiome/tree/master/Year2>.

350 **REFERENCES**

351 1. Painter JA, Hoekstra RM, Ayers T, Tauxe RV, Braden CR, Angulo FJ, Griffin PM. 2013.
352 Attribution of foodborne illnesses, hospitalizations, and deaths to food commodities by
353 using outbreak data, United States, 1998-2008. *Emerg Infect Dis* 19:407–415.

354 2. Scallan E, Mahon BE. 2012. Foodborne Diseases Active Surveillance Network (FoodNet)
355 in 2012: a foundation for food safety in the United States. *Clin Infect Dis* 54:S381–S384.

356 3. Carstens CK, Salazar JK, Darkoh C. 2019. Multistate outbreaks of foodborne illness in the
357 United States associated with fresh produce from 2010 to 2017. *Front Microbiol* 10:2667.

358 4. FDA. Factors Potentially Contributing to the Contamination of Romaine Lettuce Implicated
359 in the Three Outbreaks of *E. coli* O157:H7 During the Fall of 2019.

360 5. Centers for Disease Control and Prevention. 2019. Outbreak of *E. coli* infections linked to
361 romaine lettuce. US Dep Health Hum Serv Cent Dis Control Prev Atlanta.

362 6. Weller D, Wiedmann M, Strawn LK. 2015. Irrigation is significantly associated with an
363 increased prevalence of *Listeria monocytogenes* in produce production environments in
364 New York State. *J Food Prot* 78:1132–1141.

365 7. Strawn LK, Gröhn YT, Warchocki S, Worobo RW, Bihn EA, Wiedmann M. 2013. Risk
366 factors associated with *Salmonella* and *Listeria monocytogenes* contamination of produce
367 fields. *Appl Environ Microbiol* 79:7618–7627.

368 8. European Parliament. 2006. Directive 2006/7/EC of the European Parliament and of the
369 Council of 15 February 2006 concerning the management of bathing water quality and
370 repealing Directive 76/160/EEC. 32006L0007064.

371 9. EPA. 2012. 2012 Recreational Water Quality Criteria | US EPA.
372 <https://www.epa.gov/wqc/2012-recreational-water-quality-criteria>. Retrieved 14 September
373 2021.

374 10. FDA. 2021. FSMA Final Rule on Produce Safety. <https://www.fda.gov/food/food-safety-modernization-act-fsma/fsma-final-rule-produce-safety>. Retrieved 10 January 2022.

376 11. LGMA. 2017. Commodity specific food safety guidelines for the production and harvest of
377 lettuce and leafy greens. Ariz Dept Agric Phoenix AZ.

378 12. Edberg S, Rice E, Karlin R, Allen M. 2000. Escherichia coli: the best biological drinking
379 water indicator for public health protection. *J Appl Microbiol* 88:106S-116S.

380 13. Wilkes G, Edge T, Gannon V, Jokinen C, Lyautey E, Medeiros D, Neumann N, Ruecker N,
381 Topp E, Lapen DR. 2009. Seasonal relationships among indicator bacteria, pathogenic
382 bacteria, Cryptosporidium oocysts, Giardia cysts, and hydrological indices for surface
383 waters within an agricultural landscape. *Water Res* 43:2209–2223.

384 14. Bihn E. 2011. Survey of current water use practices on fresh fruit and vegetable farms and
385 evaluation of microbiological quality of surface waters intended for fresh produce
386 production.

387 15. Payment P, Locas A. 2011. Pathogens in water: value and limits of correlation with
388 microbial indicators. *Groundwater* 49:4–11.

389 16. Benjamin L, Atwill ER, Jay-Russell M, Cooley M, Carychao D, Gorski L, Mandrell RE.
390 2013. Occurrence of generic *Escherichia coli*, *E. coli* O157 and *Salmonella* spp. in water
391 and sediment from leafy green produce farms and streams on the Central California coast.
392 *Int J Food Microbiol* 165:65–76.

393 17. McEgan R, Mootian G, Goodridge LD, Schaffner DW, Danyluk MD. 2013. Predicting
394 *Salmonella* populations from biological, chemical, and physical indicators in Florida
395 surface waters. *Appl Environ Microbiol* 79:4094–4105.

396 18. Antaki EM, Vellidis G, Harris C, Aminabadi P, Levy K, Jay-Russell MT. 2016. Low
397 concentration of *Salmonella enterica* and generic *Escherichia coli* in farm ponds and
398 irrigation distribution systems used for mixed produce production in southern Georgia.
399 *Foodborne Pathog Dis* 13:551–558.

400 19. Pachepsky Y, Shelton D, Dorner S, Whelan G. 2016. Can *E. coli* or thermotolerant coliform
401 concentrations predict pathogen presence or prevalence in irrigation waters? *Crit Rev
402 Microbiol* 42:384–393.

403 20. Weller D, Brassill N, Rock C, Ivanek R, Mudrak E, Roof S, Ganda E, Wiedmann M. 2020.
404 Complex interactions between weather, and microbial and physicochemical water quality
405 impact the likelihood of detecting foodborne pathogens in agricultural water. *Front
406 Microbiol* 11:134.

407 21. Luo Z, Gu G, Ginn A, Giurcanu MC, Adams P, Vellidis G, van Bruggen AH, Danyluk MD,
408 Wright AC. 2015. Distribution and characterization of *Salmonella enterica* isolates from
409 irrigation ponds in the southeastern United States. *Appl Environ Microbiol* 81:4376–4387.

410 22. Van Rossum T, Peabody MA, Uyaguari-Diaz MI, Cronin KI, Chan M, Slobodan JR,
411 Nesbitt MJ, Suttle CA, Hsiao WW, Tang PK. 2015. Year-long metagenomic study of river
412 microbiomes across land use and water quality. *Front Microbiol* 6:1405.

413 23. Wang L, Zhang J, Li H, Yang H, Peng C, Peng Z, Lu L. 2018. Shift in the microbial
414 community composition of surface water and sediment along an urban river. *Sci Total
415 Environ* 627:600–612.

416 24. Payne JT, Millar JJ, Jackson CR, Ochs CA. 2017. Patterns of variation in diversity of the
417 Mississippi river microbiome over 1,300 kilometers. *PLoS One* 12:e0174890.

418 25. Chung T, Weller DL, Kovac J. 2020. The composition of microbial communities in six
419 streams, and its association with environmental conditions, and foodborne pathogen
420 isolation. *Front Microbiol* 11:1757.

421 26. Polat H, Topalcengiz Z, Danyluk MD. 2020. Prediction of *Salmonella* presence and
422 absence in agricultural surface waters by artificial intelligence approaches. *J Food Saf*
423 40:e12733.

424 27. Weller DL, Love TM, Belias A, Wiedmann M. 2020. Predictive Models May Complement
425 or Provide an Alternative to Existing Strategies for Assessing the Enteric Pathogen
426 Contamination Status of Northeastern Streams Used to Provide Water for Produce
427 Production. *Front Sustain Food Syst* 4:151.

428 28. Song K, Wright FA, Zhou Y-H. 2020. Systematic comparisons for composition profiles,
429 taxonomic levels, and machine learning methods for microbiome-based disease prediction.
430 *Front Mol Biosci* 423.

431 29. Marcos-Zambrano LJ, Karaduzovic-Hadziabdic K, Loncar Turukalo T, Przymus P,
432 Trajkovik V, Aasmets O, Berland M, Gruca A, Hasic J, Hron K. 2021. Applications of
433 machine learning in human microbiome studies: a review on feature selection, biomarker
434 identification, disease prediction and treatment. *Front Microbiol* 313.

435 30. Topçuoğlu BD, Lesniak NA, Ruffin IV MT, Wiens J, Schloss PD. 2020. A framework for
436 effective application of machine learning to microbiome-based classification problems.
437 *MBio* 11:e00434-20.

438 31. Ghannam RB, Techtmann SM. 2021. Machine learning applications in microbial ecology,
439 human microbiome studies, and environmental monitoring. *Comput Struct Biotechnol J*
440 19:1092–1107.

441 32. Kubinski R, Djamen-Kepaou J-Y, Zhanabaev T, Hernandez-Garcia A, Bauer S, Hildebrand
442 F, Korcsmaros T, Karam S, Jantchou P, Kafi K, Martin RD. 2022. Benchmark of Data
443 Processing Methods and Machine Learning Models for Gut Microbiome-Based Diagnosis
444 of Inflammatory Bowel Disease. *Front Genet* 13.

445 33. Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egoscue JJ. 2017. Microbiome datasets are
446 compositional: and this is not optional. *Front Microbiol* 8:2224.

447 34. Aitchison J, Barceló-Vidal C, Martín-Fernández JA, Pawlowsky-Glahn V. 2000. Logratio
448 analysis and compositional distance. *Math Geol* 32:271–275.

449 35. Strobl C, Boulesteix A-L, Kneib T, Augustin T, Zeileis A. 2008. Conditional variable
450 importance for random forests. *BMC Bioinformatics* 9:1–11.

451 36. Deng H, Runger G. 2013. Gene selection with guided regularized random forest. *Pattern*
452 *Recognit* 46:3483–3489.

453 37. Cortes C, Vapnik V. 1995. Support-vector networks. *Mach Learn* 20:273–297.

454 38. Altwegg M, Geiss HK, Freij BJ. 1989. *Aeromonas* as a human pathogen. *CRC Crit Rev*
455 *Microbiol* 16:253–286.

456 39. Janda JM, Abbott SL. 2010. The genus *Aeromonas*: taxonomy, pathogenicity, and infection.
457 *Clin Microbiol Rev* 23:35–73.

458 40. Zeitoun A, Debevere J, Mossel D. 1994. Significance of Enterobacteriaceae as index
459 organisms for hygiene on fresh untreated poultry, poultry treated with lactic acid and
460 poultry stored in a modified atmosphere. *Food Microbiol* 11:169–176.

461 41. Burke V, Robinson J, Gracey M, Peterson D, Partridge K. 1984. Isolation of *Aeromonas*
462 *hydrophila* from a metropolitan water supply: seasonal correlation with clinical isolates.
463 *Appl Environ Microbiol* 48:361–366.

464 42. Bonadonna L, Briancesco R, Coccia AM, Semproni M, Stewardson D. 2002. Occurrence of
465 potential bacterial pathogens in coastal areas of the Adriatic Sea. *Environ Monit Assess*
466 77:31–49.

467 43. Ko D-J, Kim J-S, Park D-S, Lee D-H, Heo S-Y, Seo J-W, Kim CH, Oh B-R. 2018.
468 *Tabrizicola fusiformis* sp. nov., isolated from an industrial wastewater treatment plant. *Int J*
469 *Syst Evol Microbiol* 68:1800–1805.

470 44. Liu Z-X, Dorji P, Liu H-C, Li A-H, Zhou Y-G. 2019. *Tabrizicola sediminis* sp. nov., one
471 aerobic anoxygenic photoheterotrophic bacteria from sediment of saline lake. *Int J Syst*
472 *Evol Microbiol* 69:2565–2570.

473 45. Tarhriz V, Eyvazi S, Shakeri E, Hejazi MS, Dilmaghani A. 2020. Antibacterial and
474 antifungal activity of novel freshwater bacterium *Tabrizicola aquatica* as a prominent
475 natural antibiotic available in Qurugol Lake. *Pharm Sci* 26:88–92.

476 46. Esteve C. 1995. Numerical taxonomy of *Aeromonadaceae* and *Vibriionaceae* associated
477 with reared fish and surrounding fresh and brackish water. *Syst Appl Microbiol* 18:391–402.

478 47. Elifantz H, Horn G, Ayon M, Cohen Y, Minz D. 2013. Rhodobacteraceae are the key
479 members of the microbial community of the initial biofilm formed in Eastern
480 Mediterranean coastal seawater. *FEMS Microbiol Ecol* 85:348–357.

481 48. Satomi M. 2014. The family *shewanellaceae*. *Prokaryotes—Gammaproteobacteria* Eds E
482 Rosenb EF DeLong Lory E Stackebrandt F Thompson Berl SpringerVerlag 597–625.

483 49. Gu G, Strawn LK, Ottesen AR, Ramachandran P, Reed EA, Zheng J, Boyer RR, Rideout
484 SL. 2021. Correlation of *Salmonella enterica* and *Listeria monocytogenes* in irrigation
485 water to environmental factors, fecal indicators, and bacterial communities. *Front Microbiol*
486 3426.

487 50. Andrews S. 2010. FastQC: a quality control tool for high throughput sequence data.

488 51. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina
489 sequence data. *Bioinformatics* 30:2114–2120.

490 52. Wood DE, Lu J, Langmead B. 2019. Improved metagenomic analysis with Kraken 2.
491 *Genome Biol* 20:1–13.

492 53. Lu J, Breitwieser FP, Thielen P, Salzberg SL. 2017. Bracken: estimating species abundance
493 in metagenomics data. *PeerJ Comput Sci* 3:e104.

494 54. Pruitt KD, Tatusova T, Maglott DR. 2007. NCBI reference sequences (RefSeq): a curated
495 non-redundant sequence database of genomes, transcripts and proteins. *Nucleic Acids Res*
496 35:D61–D65.

497 55. R Core Team. 2020. R: A Language and Environment for Statistical Computing. R
498 Foundation for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>.

499 56. Wickham H. 2011. ggplot2. *Wiley Interdiscip Rev Comput Stat* 3:180–185.

500 57. Dixon P. 2003. VEGAN, a package of R functions for community ecology. *J Veg Sci*
501 14:927–930.

502 58. Fernandes, D A, Reid, J., Macklaim, M J, McMurrough, T.A, Edgell, D.R., Gloor, B G.
503 2014. Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-
504 seq, 16S rRNA gene sequencing and selective growth experiments by compositional data
505 analysis. *Microbiome* 2014 Vol 2 15.

506 59. McKnight PE, Najab J. 2010. Kruskal-wallis test. *Corsini Encycl Psychol* 1–1.

507 60. Moreno-Indias I, Lahti L, Nedyalkova M, Elbere I, Roshchupkin G, Adilovic M, Aydemir
508 O, Bakir-Gungor B, Santa Pau EC, D'Elia D. 2021. Statistical and machine learning
509 techniques in human microbiome studies: contemporary challenges and solutions. *Front
510 Microbiol* 12:277.

511 61. Namkung J. 2020. Machine learning methods for microbiome studies. *J Microbiol* 58:206–
512 216.

513 62. Zhou Y-H, Gallins P. 2019. A review and tutorial of machine learning methods for
514 microbiome host trait prediction. *Front Genet* 10:579.

515 63. Bischl B, Lang M, Kotthoff L, Schiffner J, Richter J, Studerus E, Casalicchio G, Jones ZM.
516 2016. *mlr: Machine Learning in R*. *J Mach Learn Res* 17:1–5.

517 64. Kim J-H. 2009. Estimating classification error rate: Repeated cross-validation, repeated
518 hold-out and bootstrap. *Comput Stat Data Anal* 53:3735–3745.

519 65. Hanley JA, McNeil BJ. 1982. The meaning and use of the area under a receiver operating
520 characteristic (ROC) curve. *Radiology* 143:29–36.

521

522 **TABLES**

523 **TABLE 1** Machine learning algorithms, data types, data transformation, and taxonomic levels

524 used for prediction of *Salmonella* contamination.

Machine learning algorithm ^a	Data type	Data transformation	Taxonomic level
Conditional forest	Microbiome data	Centered log-ratio transformed relative abundances	Genus
Regularized random forest	Microbiome data + environmental features	Untransformed relative abundances	Family
Support vector machine			

525 ^aEach machine learning algorithm was run using all combinations of data type, data
526 transformation, and taxonomic level.

527 **FIGURE LEGENDS**

528

529 **FIG 1.** Principal Component Analysis (PCA) based on the Aitchison distance. Scree plot
530 between principal components and eigen values are shown at the **(A)** genus level and **(C)** family
531 level. The PCA biplot showing ordination of samples between based on the microbiome
532 composition at the **(B)** genus level and **(D)** family level and color-coded based on whether
533 *Salmonella* was detected (orange) or not detected (blue) in water samples.

534

535 **FIG 2.** Kappa score and Area Under the Curve (AUC) for each machine learning algorithm.
536 Results are shown at two taxonomic levels used for the classification (left – genus, right – family).
537 Two different data transformation method (CLR [blue] – centered log-ratio transformation, and
538 RA [orange] – relative abundance) were compared with two different data structures: M (circles)
539 – microbiome data only and M+E (triangles) – microbiome and environmental data.

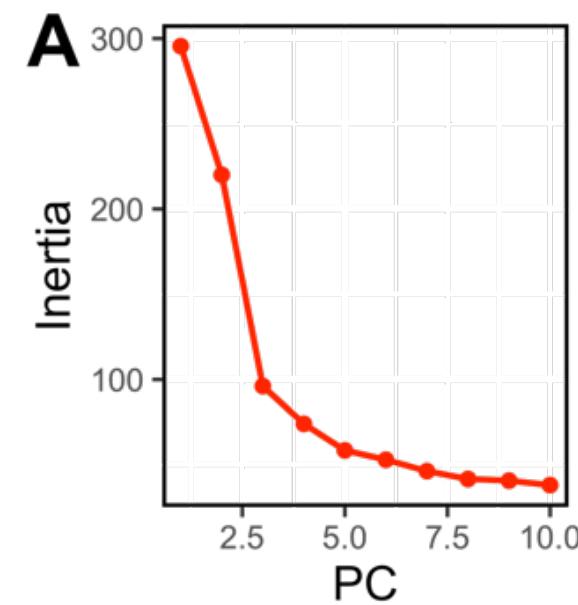
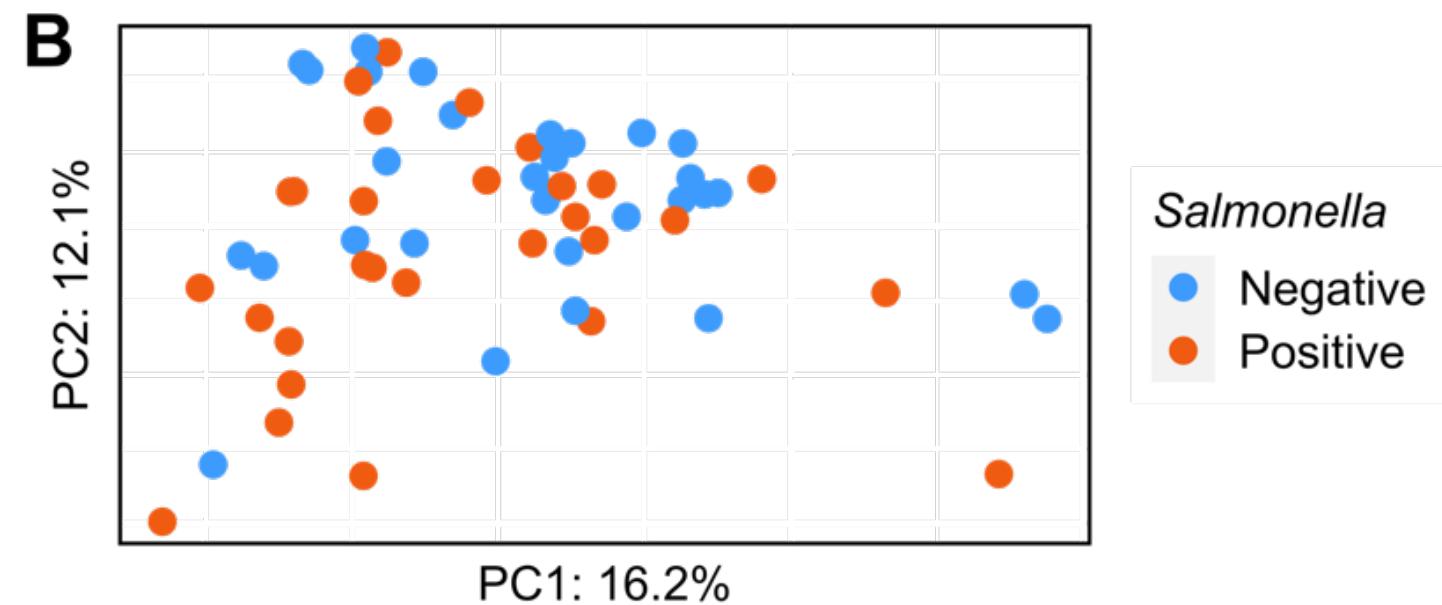
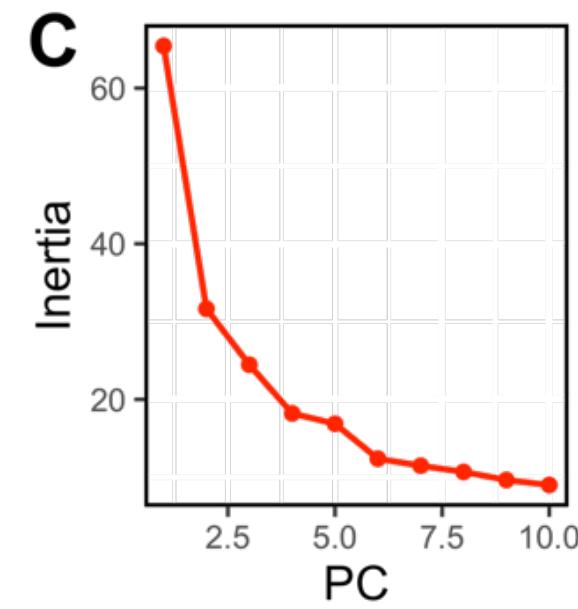
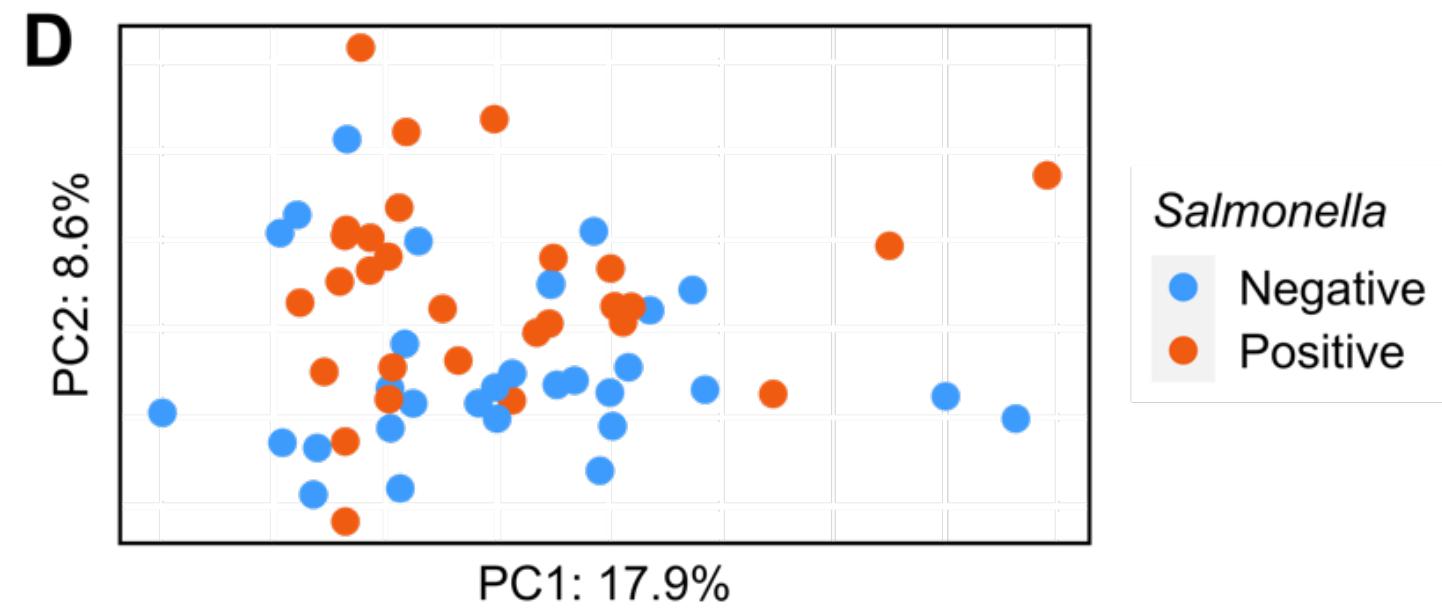
540

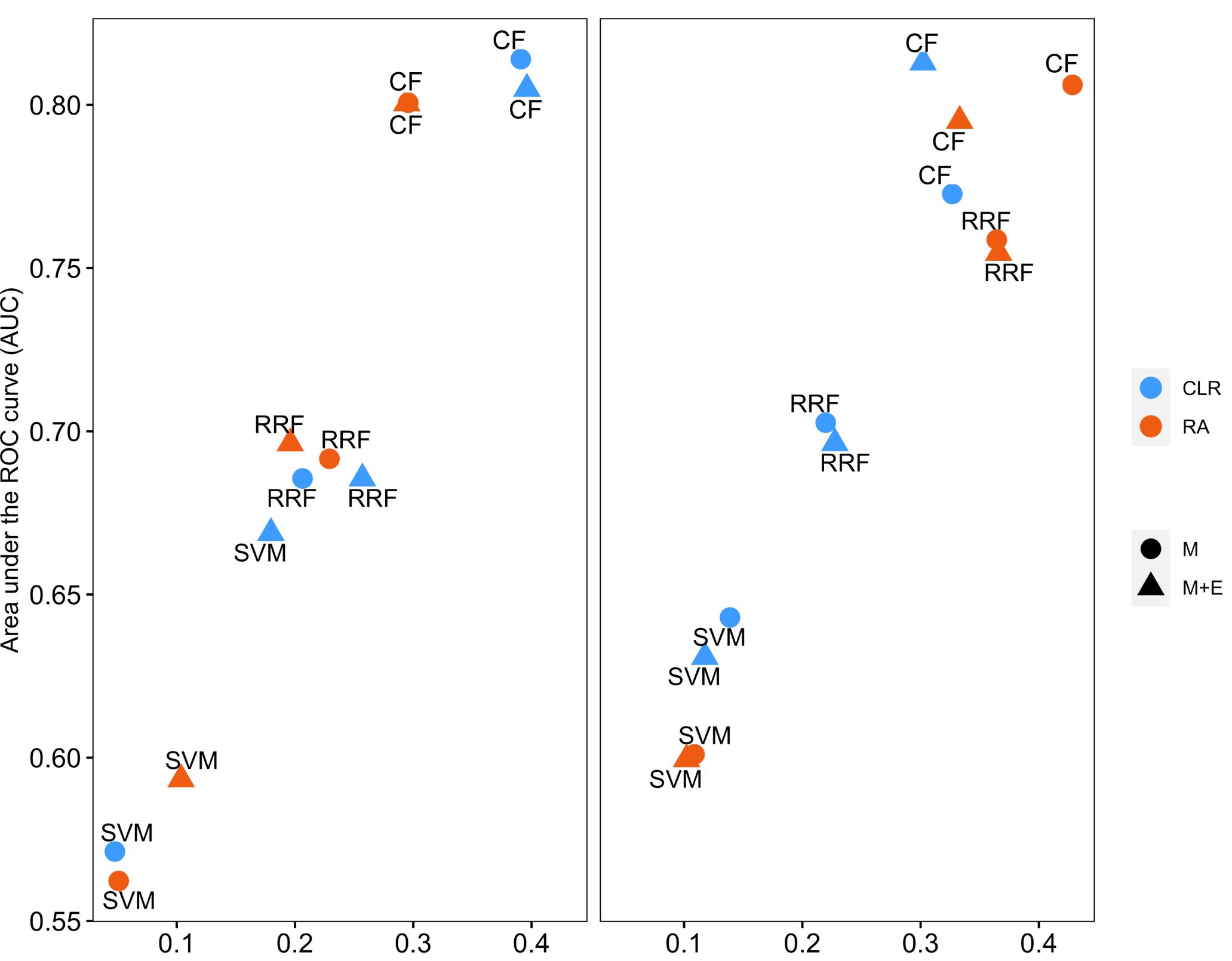
541 **FIG 3. Conditional variable importance of taxa.** Conditional variable importance was
542 calculated from best performing conditional forest (CF) models of **(A)** genus level and **(B)**
543 family level. Top 15 most informative for prediction of *Salmonella* contamination are presented.
544 Orange bars indicate taxa significantly differentially abundant, blue bars indicate taxa not
545 significantly differentially abundant, and black bars indicate environmental features (CSL 10_85
546 = change in elevation divided by the length between points 10 and 85 percent of distance along
547 main channel to basin divide).

548 **FIG 4.** Relative abundance of **(A)** *Aeromonas* and **(B)** *Tabrizicola* in water samples. These
549 genera were identified as significantly differentially abundant between *Salmonella* positive and
550 negative water samples.

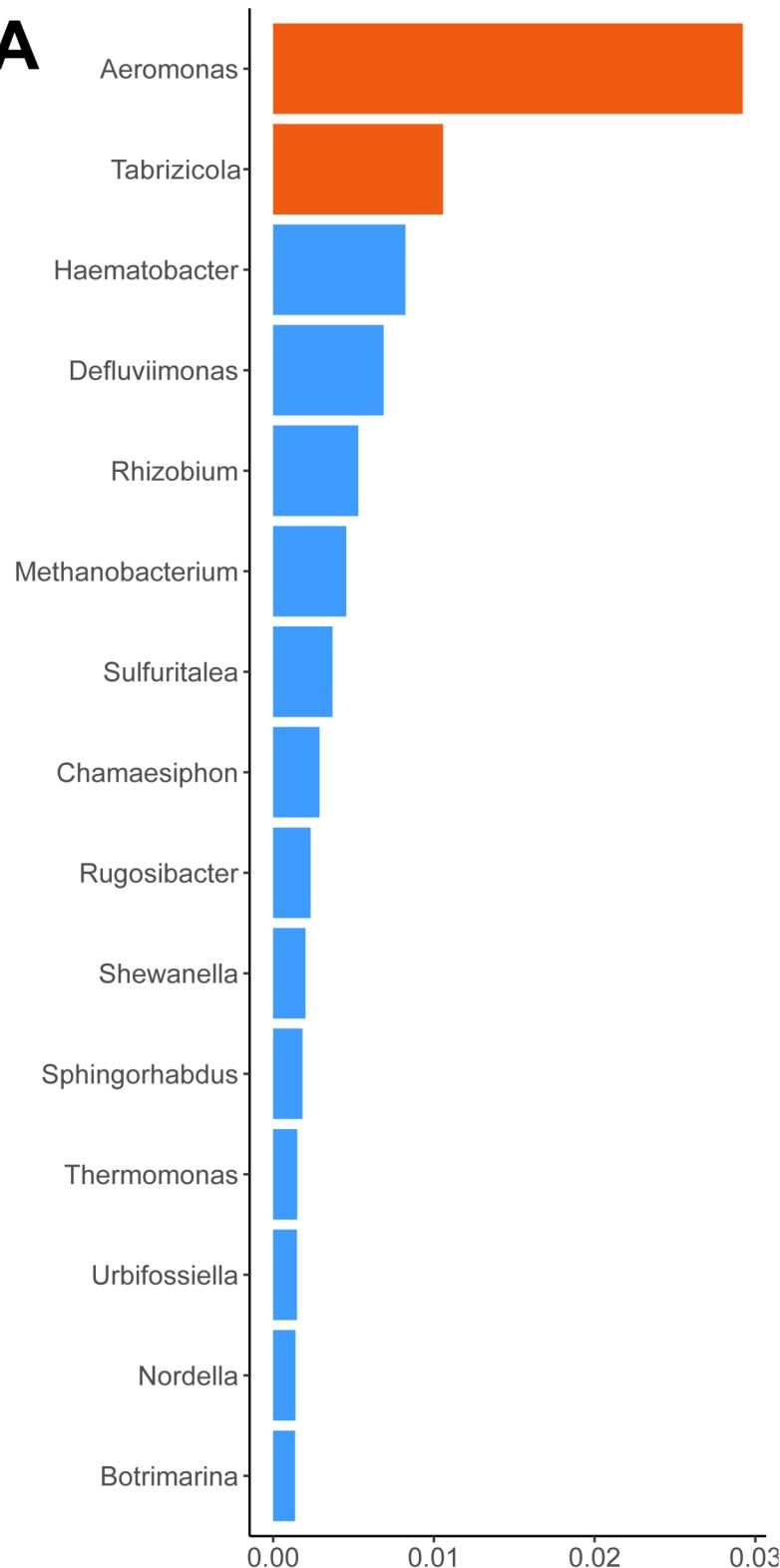
551

552 **FIG 5.** Relative abundance of **(A)** *Aeromonadaceae* **(B)** *Parvibaculaceae* **(C)** *Rhodobacteraceae*,
553 and **(D)** *Shewanellaceae*. These families were identified as significantly differentially abundant
554 between *Salmonella* positive and negative water samples.

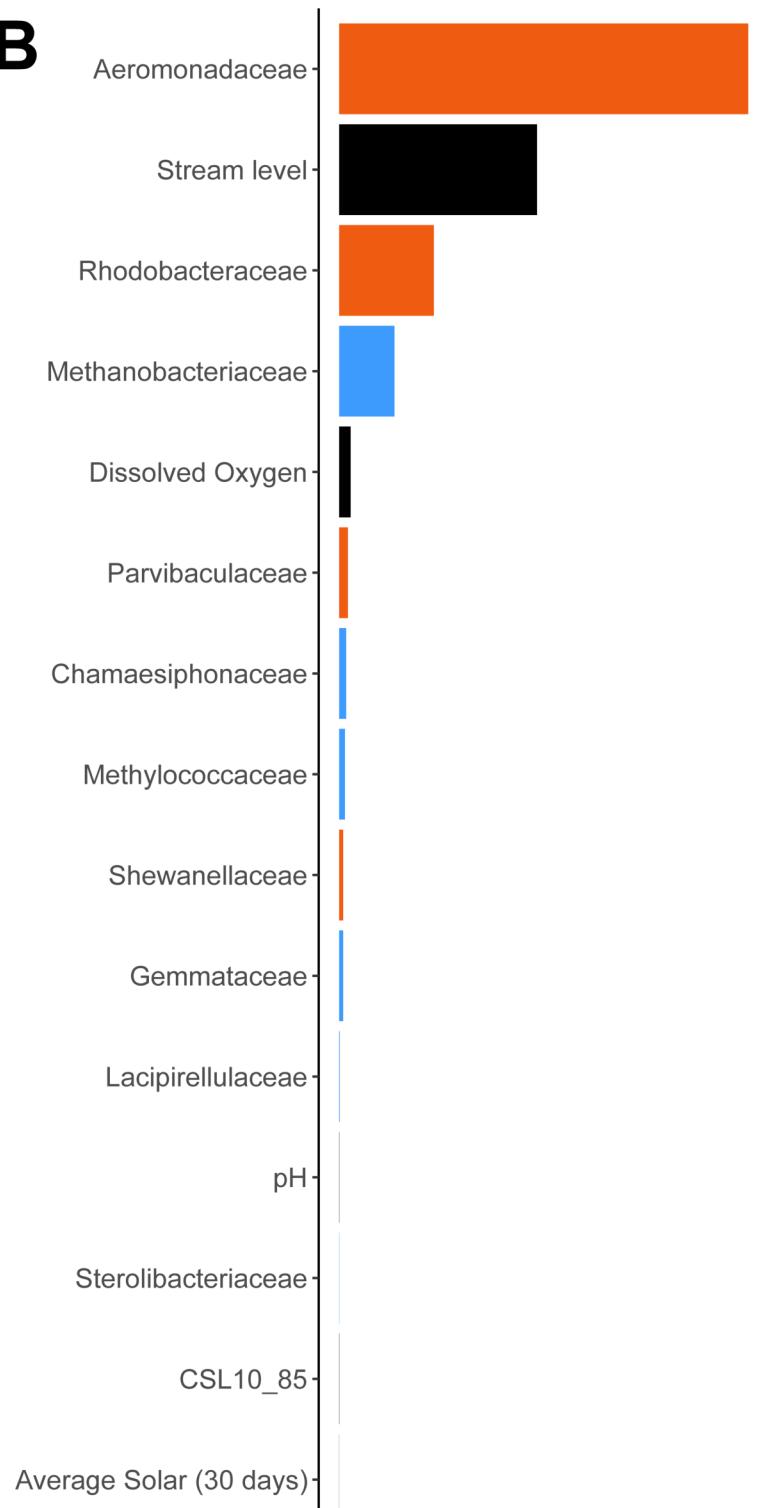


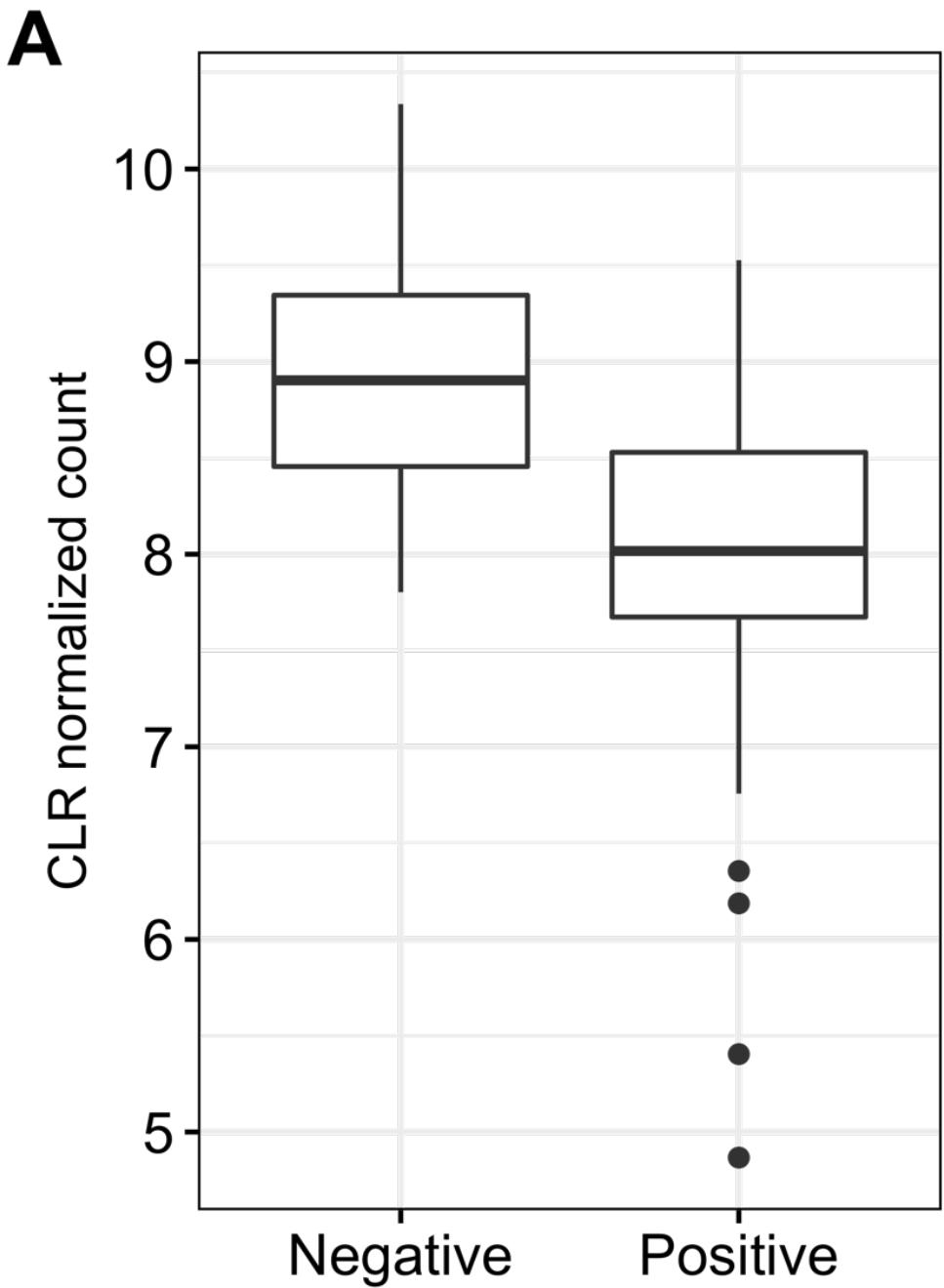
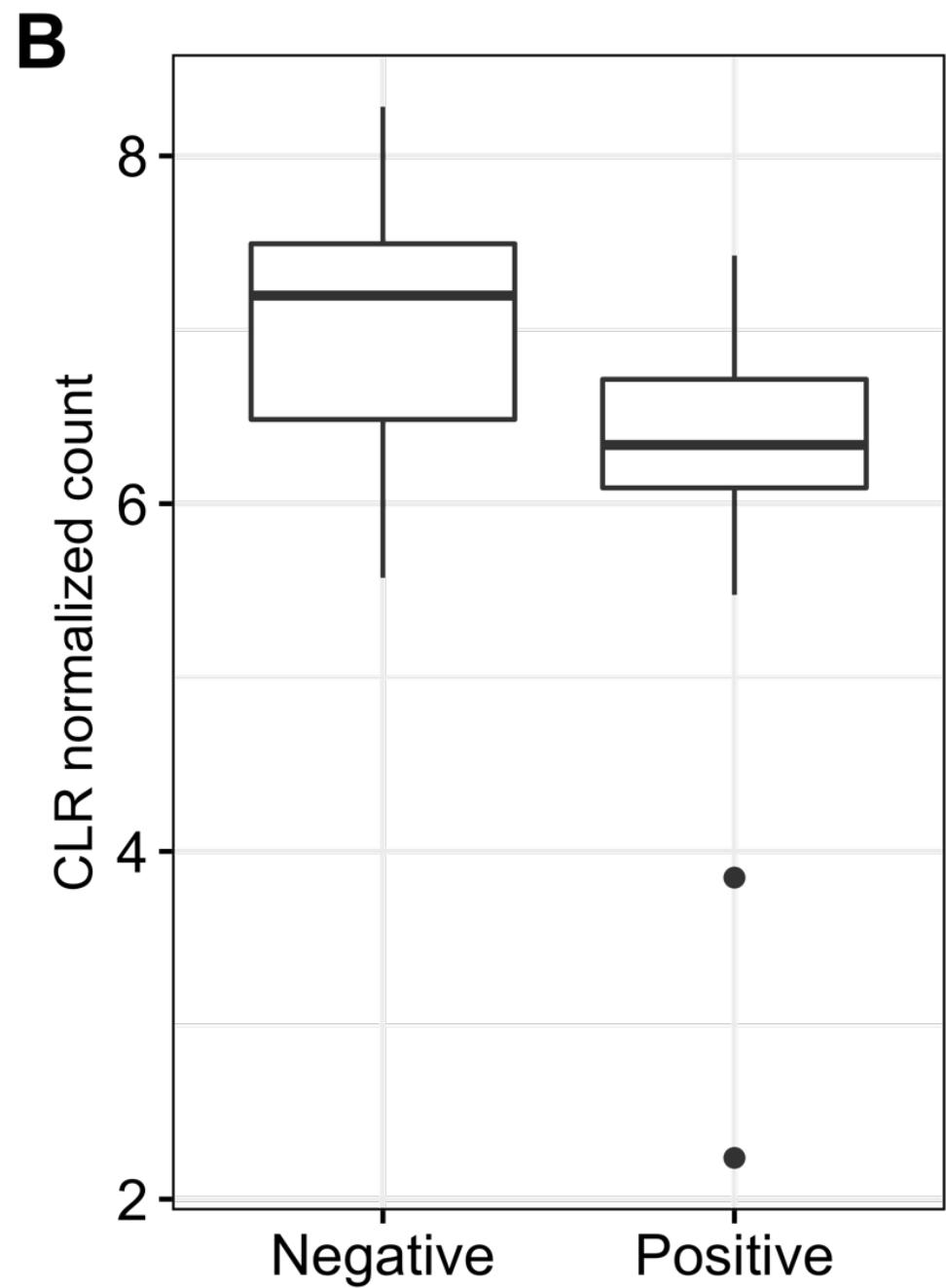


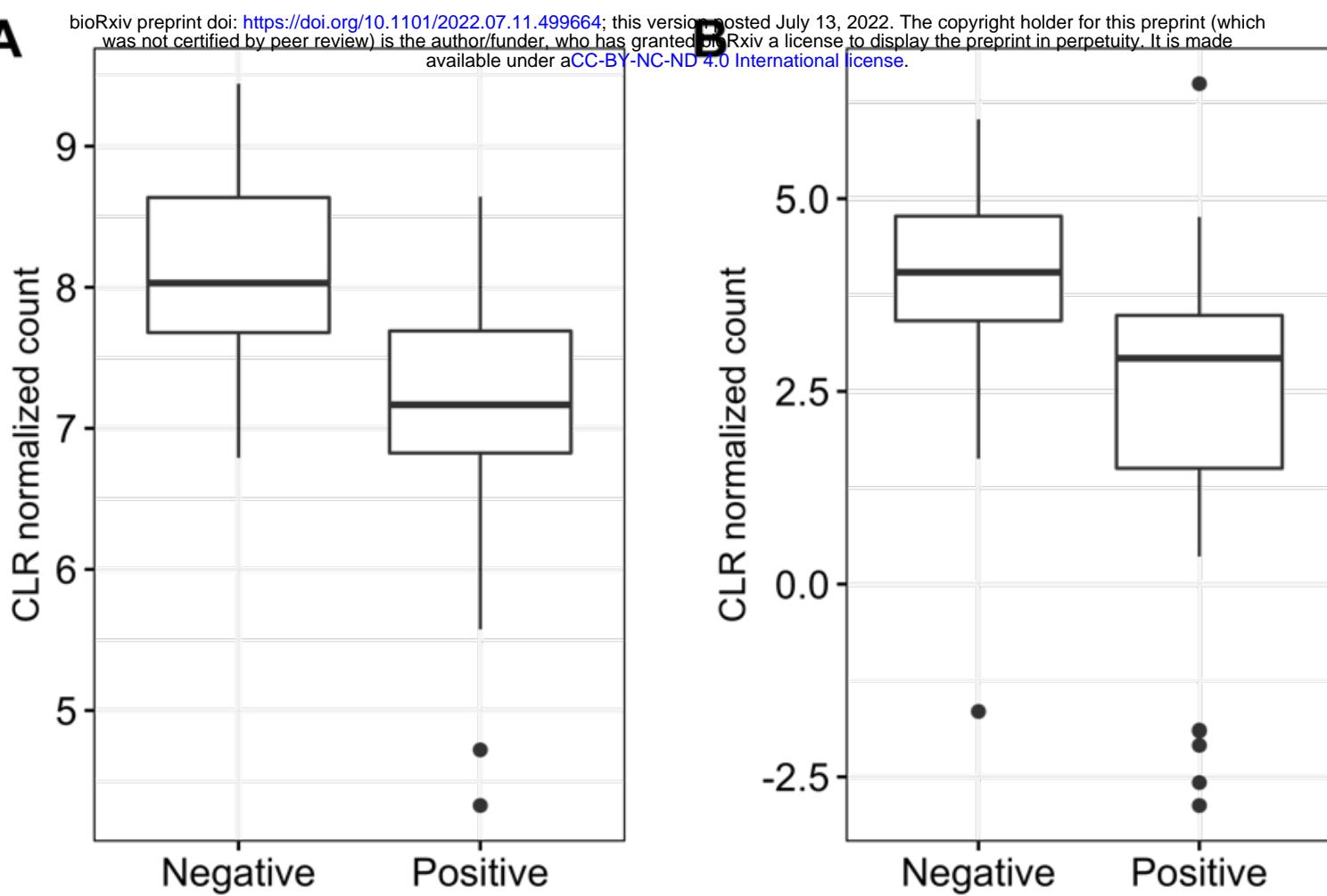
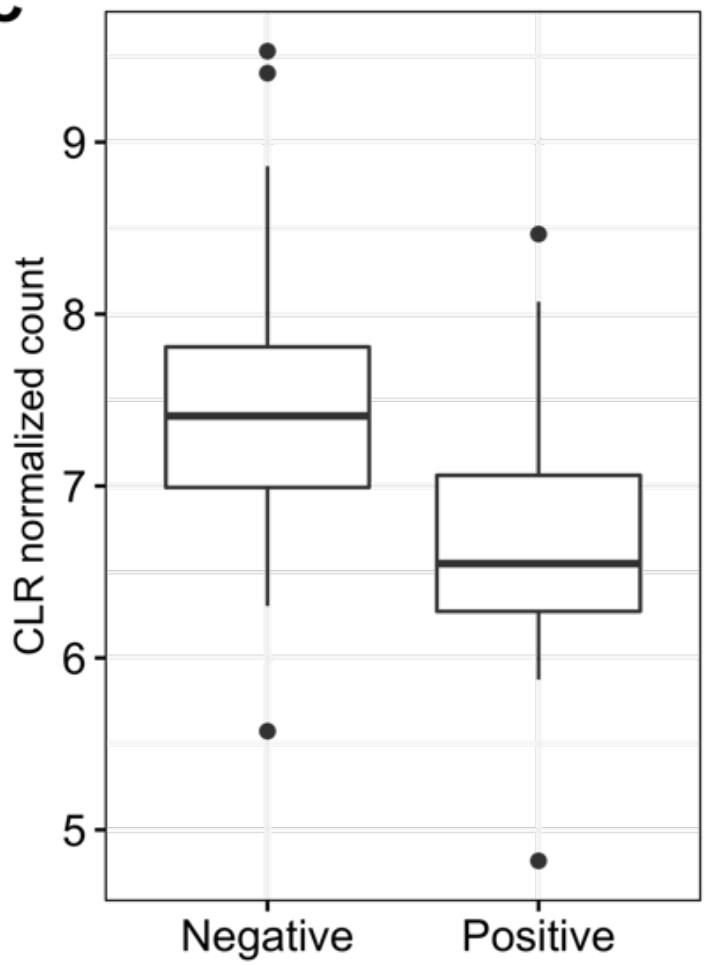
A



B





A**C****D**