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ABSTRACT 15 

The use of water contaminated with Salmonella for produce production contributes to foodborne 16 

disease burden. To reduce human health risks, there is a need for novel, targeted approaches for 17 

assessing the pathogen status of agricultural water. We investigated the utility of water 18 

microbiome data for predicting Salmonella contamination of streams used to source water for 19 

produce production. Grab samples were collected from 60 New York streams in 2018 and 20 

tested for Salmonella. Separately, DNA was extracted from the samples and used for 21 

Illumina shotgun metagenomic sequencing. Reads were trimmed and used to assign taxonomy 22 

with Kraken2. Conditional forest (CF), regularized random forest (RRF), and support vector 23 

machine (SVM) models were implemented to predict Salmonella contamination. Model 24 

performance was determined using 10-fold cross-validation repeated 10 times to quantify area 25 

under the curve (AUC) and Kappa score. Taxa identified as the most informative for accurately 26 

predicting Salmonella contamination based on conditional variable importance were compared to 27 

taxa identified by ALDEx2 as being differentially abundant between Salmonella-positive and -28 

negative samples. CF models outperformed the other two algorithms based on AUC (0.82 - CF, 29 

0.76 - RRF, 0.67 - SVM) and Kappa score (0.41- CF, 0.38 - RRF, 0.19 - SVM). CF and 30 

differential abundance tests both identified Aeromonas (VI = 0.32) and Tabrizicola (VI = 31 

0.12) as the two most informative taxa for predicting Salmonella contamination. The taxa 32 

identified in this study warrant further investigation as indicators of Salmonella contamination in 33 

Northeastern freshwater streams.  34 
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IMPORTANCE 35 

Understanding the associations between surface water microbiome composition and the presence 36 

of foodborne pathogens, such as Salmonella, can facilitate the identification of novel indicators 37 

of Salmonella contamination. This study assessed the utility of microbiome data and three 38 

machine learning algorithms for predicting Salmonella contamination of Northeastern streams. 39 

The research reported here both expanded the knowledge on the microbiome composition of 40 

surface waters and identified putative novel indicators (i.e., Aeromonas and Tabrizicola) for 41 

Salmonella in Northeastern streams. These putative indicators warrant further research to assess 42 

whether they are consistent indicators of Salmonella for regions, waterways, and years not 43 

represented in the dataset used in this study.   44 
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INTRODUCTION 45 

According to US Centers for Disease Control and Prevention (CDC), 46% of foodborne illnesses 46 

in the US caused by a known food vehicle between 1998 and 2008 were linked to produce 47 

commodities consumption (1). In the US, Salmonella is the most common bacterial pathogen 48 

associated with outbreaks linked to fresh produce (2, 3). Thus, preventing Salmonella 49 

contamination of fresh produce is critical for managing foodborne disease burden in the US.  50 

 Multiple produce-associated outbreaks have been putatively traced back to the use of 51 

contaminated water for produce production (4–7). Therefore, identifying when water is likely to 52 

be contaminated is a central component of produce safety risk management plans. In many 53 

countries, agricultural and recreational water E. coli-based standards have been established (8–54 

11). However, E. coli is an indicator of fecal and not pathogen contamination. Indeed, the 55 

presence and direction of the association between E. coli levels and foodborne pathogen presence 56 

varies substantially within the scientific literature, with some studies reporting positive 57 

relationships (12–16), and others reporting negative or no relationship (17–20). As a result, E. 58 

coli appears to be an unreliable indicator of Salmonella contamination of surface waterways, 59 

even though E. coli can be used as a general indicator of hygienic condition of water (17, 21). 60 

Thus, there is a need for novel approaches for identifying when and where agricultural 61 

waterways may be contaminated with foodborne pathogens, such as Salmonella.  62 

 Metagenomics opened new avenues for characterization of water microbiomes. 63 

Concurrent characterization of microbiome and pathogen status in water provides an opportunity 64 

for the identification of microbial taxa associated with pathogen contamination of agricultural 65 

water. Such taxa could be identified by developing models that use microbiome data (i.e., 66 

presence or absence of taxa, or differences in their relative abundance) to predict when and 67 
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where pathogens are present. However, since the existing water microbiome literature 68 

demonstrates substantial spatial and temporal variation in water microbiome composition (22–69 

25), identification of such “indicator” taxa is difficult using conventional analytical approaches, 70 

such as multivariate ordination (25). Machine learning provides an alternative approach that may 71 

be useful for identifying  “indicator”, or combinations of “indicator” taxa and for developing 72 

classification models that use these taxa to predict pathogen contamination status (26, 27).   73 

 Among classification machine learning models, supervised models are particularly useful 74 

when the outcome information, such as pathogen status, is known for a set of samples. Labelling 75 

the training dataset with an outcome class label allows for the development of a classifier that 76 

can predict pathogen status. A variety of supervised classification models have been developed 77 

to address different data structure challenges and improve the accuracy of prediction (28–31). A 78 

benchmarking study that applied multiple machine learning models on human gut microbiome 79 

found differences in the performance of models based on different machine learning algorithms. 80 

This is likely due to differences in the characteristics of algorithms, such as linear/non-linear 81 

separation, ensemble or regression approaches (30). This suggests the importance of selecting 82 

and testing multiple algorithms to improve the prediction accuracy. In addition to model 83 

selection, the performance of a model may be affected by microbiome data pre-processing, such 84 

as data normalization (28). The latter is commonly carried out to account for potential 85 

differences in sample library sizes, hence its effect on prediction accuracy needs to be assessed 86 

(31–33).  87 

With the above-outlined consideration in mind, we applied multiple machine learning 88 

classifiers to normalized and non-normalized microbiome data for samples collected from 60 89 

different streams. Our goal was to identify microbial indicators predictive of Salmonella 90 
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contamination in stream water samples collected in a region in Northeastern United States. 91 

Lastly, we also assessed whether the addition of data on physicochemical properties of water 92 

samples increases the accuracy of predicting Salmonella contamination. 93 

 94 

RESULTS 95 

Samples were sequenced with a median of 5,956,185 reads and a median of 8.955% reads 96 

were assigned bacterial taxonomic identifier. A median of 5,956,185 reads per sample were 97 

obtained from 60 samples [min = 4,048,684, max = 9,301,059, standard deviation (SD) = 98 

1,125,759] and median of 8.95% reads were classified as bacterial using metagenomics 99 

taxonomic classifier Kraken2 [median = 529,963, min = 145,211, max = 1,059,311, standard 100 

deviation (SD) = 206,336]. Across samples, a total of 885 different genera from 307 different 101 

families were assigned.  102 

 103 

The overall microbiome composition was not associated with the presence of Salmonella in 104 

surface water samples. The principal component analysis (PCA) biplot (Fig. 1B and 1D) and 105 

scree plot (Fig. 1A and 1C) showed that the sample microbiomes did not cluster based on the 106 

presence of Salmonella. As evident from the scree plot (Fig. 1A and 1C), the first two 107 

components explained a relatively low percent of variance in the microbiome composition. 108 

Specifically, they explained 28.3% of the variance at the genus level (Fig. 1A) and 26.5% of the 109 

variance at the family level (Fig. 1C). PERMANOVA results also did not indicate significant 110 

association between microbiome composition and Salmonella isolation (p = 0.318 (family-level), 111 

p = 0.349 (genus-level)).  112 

 113 
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CF models outperformed RRF and SVM models at predicting Salmonella contamination.  114 

Regardless of feature set, the area under the curve (AUC) and Kappa score were always higher 115 

for conditional forest (CF) compared to regularized random forest (RRF) and support vector 116 

machine (SVM) when genus-level microbiome data were used (Fig. 2). Furthermore, the AUC 117 

was also consistently higher for CF models compared to RRF and SVM models when family-118 

level microbiome data were used. However, the Kappa values were similar for CF and RRF 119 

models when family-level microbiome data were used (Fig. 2). RRF models (AUC = [0.68, 0.75], 120 

Kappa = [0.24 ,0.35]) and SVM models (AUC = [0.61, 0.64], Kappa = [0.1, 0.15]) had lower 121 

AUC and Kappa score than CF models (AUC = [0.76, 0.82], Kappa = [0.32, 0.42]). We found 122 

that the AUC range for CF did not overlap with AUC ranges of other two methods, indicating 123 

that CF has outperformed RRF and SVM. Hence, further analyses were carried out using the CF 124 

models. 125 

Across all models using the genus-level data, the CF model run on CLR-transformed 126 

relative abundance data without environmental features had the highest AUC (0.81) and Kappa 127 

score (0.42) (Fig. 2). When using family level data, the CF model using the relative abundance 128 

data, without environmental features resulted in the highest Kappa score (0.42), and second 129 

highest AUC (0.80) (Fig. 3).  130 

 131 

Aeromonas and Tabrizicola were most informative for accurately predicting Salmonella 132 

presence.  Using genus-level microbiome data, CF identified Aeromonas, Tabrizicola, 133 

Haematobacter, Defluviimonas, and Rhizobium as the five most informative genera for 134 

predicting Salmonella contamination (Fig. 3A). In family level analysis, Aeromonadaceae, 135 

Rhodobacteraceae, and Methanobacteriaceae were identified as the three most informative 136 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 13, 2022. ; https://doi.org/10.1101/2022.07.11.499664doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.11.499664
http://creativecommons.org/licenses/by-nc-nd/4.0/


families. Furthermore, four environmental features (i.e., stream level, dissolved oxygen level, pH, 137 

and changes of elevation and length of the stream) were also identified as informative features in 138 

the CF model that included environmental features (Fig. 3B).  139 

 The differential abundance analysis carried out using ALDEx2 and Kruskal-Wallis test 140 

identified two bacterial genera, Aeromonas and Tabrizicola, (Fig. 4) as significantly 141 

differentially abundant between Salmonella-positive and Salmonella-negative samples. These 142 

two genera belong to Aeromonadaceae and Rhodobacteraceae families, respectively. These two 143 

families are among the families identified as differentially abundant between Salmonella-positive 144 

and -negative samples (i.e., Aeromonadaceae, Parvibaculaceae, Rhodobacteraceae, and 145 

Shewanellaceae) (Fig. 5).  146 

  147 

DISCUSSION 148 

This study was based on the premise that contamination of surface waters with enteric pathogens 149 

such as Salmonella, co-occurs with other microbiota that is either linked with the contamination 150 

source or linked with the environmental conditions that favor pathogen introduction to or 151 

survival in freshwater systems. As such, these taxa could be used to identify when and where 152 

surface waters may by contaminated by Salmonella. Hence, we aimed to leverage water 153 

microbiome data and machine learning classifiers to identify specific taxa predictive of 154 

Salmonella contamination that could be further developed into rapid detection assays (10). For 155 

example, taxa that (i) consistently occur in samples contaminated with Salmonella or are (ii) 156 

consistently present in a significantly different relative abundance in samples contaminated with 157 

Salmonella, may be utilized to develop rapid PCR-based indicator assays.  158 

 159 
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Data transformation did not have a notable effect on the performance of predictive models. 160 

Microbiome data analyses are challenging due to inherent data complexities. These include data 161 

sparsity (i.e., many taxa are only present in small proportions of samples, resulting in a large 162 

proportion of zero counts), collinearity (i.e., some taxa are highly correlated), imbalanced library 163 

sizes, and a well-known "small n large p” problem (i.e., small number of samples and a large 164 

number of taxa). Some of these challenges can be addressed prior to applying machine learning 165 

models or can be addressed by applying machine learning methods that can address certain 166 

microbiome data challenges. Here, we used a central log-ratio (CLR) transformation to mitigate 167 

the potential effects of different library sizes, and to take into consideration the compositional 168 

nature of microbiome data (33, 34). We found that the microbiome data transformation had an 169 

inconsistent effect on a model performance, as it improved the AUC of some models (e.g., CF 170 

using genus- and family-level data, SVM using family-level data) while it decreased the AUC of 171 

other models (e.g., RRF using genus- and family-level data, SVM using genus-level data). 172 

Previous studies on gut microbiome data emphasized the importance of data transformation due 173 

to the compositionality of the microbiome data (28, 30, 32). However, they also reported that the 174 

performance of tree-based algorithms (i.e., random forest and XGBoost) was not significantly 175 

affected by data transformation (32).  176 

 177 

Model selection is critically important when applying machine learning to microbiome data. 178 

Different machine learning classifiers address microbiome data challenges to various degrees; 179 

hence we assessed the performance of three different machine learning algorithms for prediction 180 

of Salmonella contamination. At both genus-level and family-level classification, we found that 181 

CF performed overall better than RRF and SVM. This is consistent with other studies that 182 
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compared multiple algorithms for predicting foodborne pathogen contamination of surface water, 183 

and consistently found that CF was a high performing algorithm (27). However, many of these 184 

studies also found that RRF and/or SVM also performed well. Given the highly correlated nature 185 

of microbiome data, it is not surprising that CF, which was developed to address limitations of 186 

other random forest algorithms for handling correlated data, outperformed the RRF and SVM 187 

(35–37). Moreover, given the complex relationships that underpin microbial ecosystems, 188 

hierarchical relationships between the presence-absence of various taxa (e.g., models that 189 

incorporate “interactions” or hierarchy such as CF and RRF) may predict pathogen presence 190 

better than algorithms that do not (e.g., SVM).  191 

   192 

Differential abundance analysis and conditional forest models identified putative indicators 193 

of Salmonella contamination in surface waters. When assessing the association between the 194 

overall microbiome composition and Salmonella contamination, associations between certain 195 

taxa and Salmonella contamination may be missed due to the large number of taxa included in 196 

the analyses. Indeed, we found the lack of association between the overall microbiome 197 

composition and the presence of Salmonella based on the Principal Component Analysis (PCA) 198 

and PERMANOVA. Hence, we used differential abundance analysis and machine learning 199 

algorithm CF to discover individual taxa (or their relative abundance) associated with Salmonella 200 

contamination.  201 

 Both, differential abundance analysis and CF identified some of the same taxa predictive 202 

of Salmonella contamination in stream water samples. Using ALDEx2 differential abundance 203 

analysis and CF, we identified two bacterial genera (Aeromonas and Tabrizicola) which were 204 

present in a significantly lower relative abundance in samples contaminated with Salmonella. 205 
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Aeromonas species have previously been found in natural water and a broad range of foods, in 206 

addition to human and animal gastrointestinal tracts (38, 39). Aeromonas is regarded not only as 207 

an important pathogenic bacterium in fish and cold-blooded animals, but also as an opportunistic 208 

pathogen in immunocompromised humans (38). Aeromonas (belonging to Aeromonadaceae) has 209 

similar morphological and biochemical characteristics as Enterobacteriaceae, a family of 210 

microorganisms commonly used as an indicator of poor hygienic conditions in food systems (40). 211 

Bonadonna et el. reported that the presence of E. coli and fecal coliforms were associated with 212 

lower counts of Aeromonas, whereas the prevalence of total coliforms was associated with 213 

higher counts of Aeromonas in bathing waters along the sea-coast of the Adriatic Sea (41, 42). 214 

Another identified genus, Tabrizicola, belongs to a family of Rhodobacteraceae, which is 215 

usually found in aquatic environment, including lakes and wastewater treatment facilities (43–216 

45). However, the ecological role of Tabrizicola is still understudied. In addition to the two 217 

genera discussed above, we identified several bacterial families positively and negatively 218 

associated with Salmonella contamination in water. Four families were identified in both 219 

differential abundance analysis and machine learning variable importance analysis (i.e., 220 

Aeromonadaceae, Rhodobacteraceae, Shewanellaceae, and Parvibaculaceae). These four 221 

families are known marine or aquatic microbiome members commonly found in natural waters 222 

(46–48). However, their relationship with Salmonella is unknown. A study by Gu et al. used 16S 223 

rDNA amplicon sequencing data and found an association between specific microbial taxa and 224 

the prevalence and population density of Salmonella enterica detected in ponds and wells in 225 

Eastern Shore of Virginia (ESV) between January to December (49). They found that the relative 226 

abundance of Sphingomonadales was significantly correlated with S. enterica prevalence as well 227 

as its population density in irrigation ponds and water wells. However, in our study, 228 
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Sphingomonadales were not identified as informative for prediction of Salmonella contamination 229 

using machine learning nor differential abundance analysis (49). This inconsistency could 230 

potentially be explained by regional differences in the water microbiome composition, which is 231 

known to be influenced by environmental features such as natural variation over time, weather, 232 

and adjacent land use (22, 23, 25).  233 

In this study, we found that several environmental features were informative for 234 

classification in the CF model. CVI of stream level was the second most informative feature for 235 

predicting Salmonella contamination, and level of dissolved water, pH, and change in elevation 236 

and length (CSL 10_85) were weakly associated with Salmonella contamination. Previous study 237 

reported that environmental features had an effect on the level of E. coli and the probability of 238 

detecting foodborne pathogen from the fresh water samples (20). Therefore, it is important to 239 

consider environmental condition as supplementary features when developing new tools for 240 

predicting Salmonella contamination of fresh water based on the specific taxa. 241 

Some of the differences between taxa identified in this study and previous studies may be 242 

due to the differences in microbiome composition between surface, pond, and well waters. Thus, 243 

future studies that sample the same (or multiple) water types over multiple growing regions from 244 

multiple states are needed to assess whether the putative indicators of Salmonella contamination 245 

identified in this study are reproducible more broadly and are suitable candidates for the 246 

development of a rapid nucleic acid-based diagnostic assay.  247 

 248 

Conclusions. This study applied machine learning classifiers and differential abundance 249 

analyses of surface water microbiome data to identify putative novel indicators of Salmonella 250 

contamination. We identified Aeromonas and Tabrizicola bacterial genera and Aeromonadaceae, 251 
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Rhodobacteraceae, Shewanellaceae, and Parvibaculaceae families that warrant further 252 

assessment as putative indicators of Salmonella contamination of the water. The identified taxa 253 

are potential targets for the development of an alternative or complementary (to E. coli 254 

quantification) water quality/safety monitoring strategy focused on mitigating the use of surface 255 

waters likely contaminated with Salmonella. However, the models developed in this study first 256 

need to be validated on new samples collected from a broader geographic area and over multiple 257 

seasons to assess the predictive accuracy of taxa identified here. Furthermore, deeper 258 

metagenomic sequencing that would enable metagenome assembly may facilitate identification 259 

of putative novel indicators of Salmonella contamination at a species level, as well as 260 

characterization of their functional potential. 261 

 262 

MATERIALS AND METHODS 263 

Sample collection and processing. Water samples were collected from sixty streams in Upstate 264 

New York state between July and October 2018 as described by Weller et al. (2020) (20). All 265 

chemical, microbial, and environmental water quality data were previously reported by Weller et 266 

al. (2020) (20). Briefly, 10 L grab samples were collected from each stream and tested for 267 

Salmonella presence. Each grab sample was filtered through modified Moore swabs (mMS). 268 

Buffered peptone water supplemented with novobiocin (20 mg/l) was added to Whirl-Pak bags 269 

containing mMS and incubated at 35°C for 24 h. After incubation, a BAX real-time PCR screen 270 

was used to identify samples that were presumptively positive for Salmonella. Salmonella 271 

presence was confirmed using culture-based methods fully described in Weller et al. (20)  272 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 13, 2022. ; https://doi.org/10.1101/2022.07.11.499664doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.11.499664
http://creativecommons.org/licenses/by-nc-nd/4.0/


Separately, 100 ml grab samples were collected for metagenomic analysis. The 100-mL 273 

samples were filtered through a 0.45 mm filter (Nalgene, Thermo Fisher Scientific, Waltham, 274 

MA USA). Filters were then stored at -80 °C until DNA extraction.  275 

 276 

DNA extraction and microbiome sequencing. DNA was extracted using DNeasy Power Water 277 

kit (Qiagen, MD, USA) per manufacturer’s instructions. Extracted DNA was examined for 278 

quality and quantified using Nanodrop One (Thermo Fisher Scientific, MA, USA) and Qubit 3 279 

(Thermo Fisher Scientific, MA, USA), respectively. DNA was then sent to the Penn State 280 

Genomics Core Facility for library preparation and sequencing. Libraries were prepared using 281 

Nextera XT Flex per manufacturer’s instructions. Pooled libraries were sequenced on an 282 

Illumina NextSeq with 150 bp paired end reads. 283 

  284 

Sequence quality control and taxonomic classification. FastQC version 0.11.5 was used to 285 

assess read quality using default parameters (50). Illumina adapters and low-quality bases were 286 

trimmed using Trimmomatic (v 0.36) (51) with default parameters. Trimmed reads were 287 

taxonomically classified using Kraken2 (v 2.1.2) (52) and relative abundances inferred using 288 

Bracken (v 2.5) (53). The NCBI’s RefSeq nucleotide database (v 207) (54) was used to build a 289 

Kraken2 database. Any read that mapped to a single reference genome was labeled with the 290 

NCBI taxonomic annotation (taxid) corresponding to that reference genome. Any read that 291 

mapped to multiple reference genomes, or did not meet or exceeded the confidence scoring 292 

threshold was assigned a last common ancestor (LCA) taxonomic identification (taxid) (52). 293 

Confidence scores were set to 0.1, meaning that at least 10% of the total number of kmers from a 294 

read were classified. Bracken was used to estimate the abundance of taxa by re-distributing reads 295 
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in the taxonomy using Bayes’ theorem (53). Assigned taxonomy and taxid counts of all samples 296 

were merged into a table that was used for downstream analyses.  297 

  298 

Microbiome Analyses. All statistical analyses of microbiome data were performed in R (version 299 

4.1.0; R core Team, Vienna, Austria) (55), using a compositional analyses framework (33). First, 300 

the estimated abundances were transformed using the centered log-ratio (CLR) transformation 301 

(34). Ratio transformations capture the relationship between the taxonomic units in the data, and 302 

logarithm of these ratios ensures that the data are symmetric and linearly related (34). Distances 303 

between samples were calculated using the Aitchison distance (i.e., Euclidian distance after CLR 304 

transformation) to investigate the among-sample differences in microbiome composition [11]. 305 

Principle component analysis (PCA) was carried out using the ‘princomp’ function in R on 306 

relative abundances of taxids to visualize the ordination and clustering of samples based on the 307 

microbiome composition (33). The first two principal components were plotted using the 308 

‘ggplot2’ package (v 3.3.3) (56). Samples were color-coded to visually assess whether they 309 

cluster based on the Salmonella presence/absence. Permutational Multivariate Analysis of 310 

Variance (PERMANOVA) was carried out to assess statistical associations between microbiome 311 

composition and Salmonella presence using the ‘adonis’ function in the ‘vegan’ package (v 2.5.7) 312 

(57). Differential abundance test was conducted using the ALDEx2 R package (58) to identify 313 

bacterial genera and families that were differentially abundant between Salmonella-positive and -314 

negative samples. Each identified bacterial genus and family were tested using Kruskal-Wallis 315 

test to assess statistical significance of detected differences in their relative abundance (59). 316 

 317 
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Predictive modelling. Three machine learning algorithms (i.e., conditional forest (CF) (35), 318 

regularized random forest (RRF) (36), and support vector machine (SVM) with sigmoid kernel 319 

(37)) that had previously been applied on microbiome data (60–62) and were suitable for 320 

microbiome data structure (27) were used in this study. Additionally, these algorithms were 321 

previously reported to outperform others for predicting Salmonella presence using environmental 322 

data (27). These methods were used to develop models that predict Salmonella presence or 323 

absence in water samples. Both relative abundance of taxid and CLR transformed relative 324 

abundance of taxid were separately used as features to assess the effect of microbiome data 325 

transformation on model performance. Model training and evaluation was performed using the 326 

‘mlr’ package (v 2.19.0) (63). Ten-fold cross-validation repeated three-times was used to tune 327 

hyperparameters to maximize area under the curve (AUC) (64, 65). In total, analyses were 328 

conducted using two feature sets: (i) untransformed relative abundances of microbial taxa and (ii) 329 

CLR-transformed relative abundances of microbial taxa, to assess whether models perform better 330 

on transformed microbiome data. Analyses were also carried out at two different taxonomic 331 

levels (i.e., genus and family) and with or without environmental data.  In total, 24 models were 332 

constructed separately based on the AUC and kappa scores (Table 1). The best performing model 333 

for each combination of algorithm and input data (Table 1) was selected for identifying 334 

informative taxa. conditional variable importance (CVI) was calculated using the ‘party’ package 335 

(v. 1.3.7) for CF models (35).  336 
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TABLES 522 

TABLE 1 Machine learning algorithms, data types, data transformation, and taxonomic levels 523 

used for prediction of Salmonella contamination.  524 

Machine learning 
algorithma 

Data type Data transformation  Taxonomic level  

Conditional forest Microbiome data Centered log-ratio 
transformed relative 
abundances 

Genus 

Regularized random 
forest 

Microbiome data + 
environmental features 

Untransformed relative 
abundances 

Family 

Support vector 
machine 

      

a Each machine learning algorithm was run using all combinations of data type, data 525 
transformation, and taxonomic level.  526 
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FIGURE LEGENDS 527 

 528 

FIG 1. Principal Component Analysis (PCA) based on the Aitchison distance. Scree plot 529 

between principal components and eigen values are shown at the (A) genus level and (C) family 530 

level. The PCA biplot showing ordination of samples between based on the microbiome 531 

composition at the (B) genus level and (D) family level and color-coded based on whether 532 

Salmonella was detected (orange) or not detected (blue) in water samples. 533 

 534 

FIG 2. Kappa score and Area Under the Curve (AUC) for each machine learning algorithm. 535 

Results are shown at two taxonomic levels used for the classification (left – genus, right– family). 536 

Two different data transformation method (CLR [blue] – centered log-ratio transformation, and 537 

RA [orange] – relative abundance) were compared with two different data structures: M (circles) 538 

– microbiome data only and M+E (triangles) – microbiome and environmental data.  539 

 540 

FIG 3. Conditional variable importance of taxa. Conditional variable importance was 541 

calculated from best performing conditional forest (CF) models of (A) genus level and (B) 542 

family level. Top 15 most informative for prediction of Salmonella contamination are presented. 543 

Orange bars indicate taxa significantly differentially abundant, blue bars indicate taxa not 544 

significantly differentially abundant, and black bars indicate environmental features (CSL 10_85 545 

= change in elevation divided by the length between points 10 and 85 percent of distance along 546 

main channel to basin divide). 547 
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FIG 4. Relative abundance of (A) Aeromonas and (B) Tabrizicola in water samples. These 548 

genera were identified as significantly differentially abundant between Salmonella positive and 549 

negative water samples. 550 

 551 

FIG 5. Relative abundance of (A) Aeromonadaceae (B) Parvibaculaceae (C) Rhodobacteraceae, 552 

and (D) Shewanellaceae. These families were identified as significantly differentially abundant 553 

between Salmonella positive and negative water samples. 554 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 13, 2022. ; https://doi.org/10.1101/2022.07.11.499664doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.11.499664
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 13, 2022. ; https://doi.org/10.1101/2022.07.11.499664doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.11.499664
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 13, 2022. ; https://doi.org/10.1101/2022.07.11.499664doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.11.499664
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 13, 2022. ; https://doi.org/10.1101/2022.07.11.499664doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.11.499664
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 13, 2022. ; https://doi.org/10.1101/2022.07.11.499664doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.11.499664
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 13, 2022. ; https://doi.org/10.1101/2022.07.11.499664doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.11.499664
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Manuscript Text File
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

