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ABSTRACT

The use of water contaminated with Salmonella for produce production contributes to foodborne
disease burden. To reduce human health risks, there is a need for novel, targeted approaches for
assessing the pathogen status of agricultural water. We investigated the utility of water
microbiome data for predicting Salmonella contamination of streams used to source water for
produce production. Grab samples were collected from 60 New York streams in 2018 and

tested for Salmonella. Separately, DNA was extracted from the samples and used for

[llumina shotgun metagenomic sequencing. Reads were trimmed and used to assign taxonomy
with Kraken2. Conditional forest (CF), regularized random forest (RRF), and support vector
machine (SVM) models were implemented to predict Salmonella contamination. Model
performance was determined using 10-fold cross-validation repeated 10 times to quantify area
under the curve (AUC) and Kappa score. Taxa identified as the most informative for accurately
predicting Salmonella contamination based on conditional variable importance were compared to
taxa identified by ALDEX2 as being differentially abundant between Salmonella-positive and -
negative samples. CF models outperformed the other two algorithms based on AUC (0.82 - CF,
0.76 - RRF, 0.67 - SVM) and Kappa score (0.41- CF, 0.38 - RRF, 0.19 - SVM). CF and
differential abundance tests both identified Aeromonas (VI = 0.32) and Tabrizicola (VI =

0.12) as the two most informative taxa for predicting Salmonella contamination. The taxa
identified in this study warrant further investigation as indicators of Salmonella contamination in

Northeastern freshwater streams.
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IMPORTANCE

Understanding the associations between surface water microbiome composition and the presence
of foodborne pathogens, such as Salmonella, can facilitate the identification of novel indicators
of Salmonella contamination. This study assessed the utility of microbiome data and three
machine learning algorithms for predicting Salmonella contamination of Northeastern streams.
The research reported here both expanded the knowledge on the microbiome composition of
surface waters and identified putative novel indicators (i.e., Aeromonas and Tabrizcola) for
Salmonella in Northeastern streams. These putative indicators warrant further research to assess
whether they are consistent indicators of Salmonella for regions, waterways, and years not

represented in the dataset used in this study.
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INTRODUCTION

According to US Centers for Disease Control and Prevention (CDC), 46% of foodborne illnesses
in the US caused by a known food vehicle between 1998 and 2008 were linked to produce
commodities consumption (1). In the US, Salmonella is the most common bacterial pathogen
associated with outbreaks linked to fresh produce (2, 3). Thus, preventing Salmonella
contamination of fresh produce is critical for managing foodborne disease burden in the US.

Multiple produce-associated outbreaks have been putatively traced back to the use of
contaminated water for produce production (4—7). Therefore, identifying when water is likely to
be contaminated is a central component of produce safety risk management plans. In many
countries, agricultural and recreational water E. coli-based standards have been established (8—
11). However, E. cali is an indicator of fecal and not pathogen contamination. Indeed, the
presence and direction of the association between E. coli levels and foodborne pathogen presence
varies substantially within the scientific literature, with some studies reporting positive
relationships (12—-16), and others reporting negative or no relationship (17-20). As a result, E.
coli appears to be an unreliable indicator of Salmonella contamination of surface waterways,
even though E. coli can be used as a general indicator of hygienic condition of water (17, 21).
Thus, there is a need for novel approaches for identifying when and where agricultural
waterways may be contaminated with foodborne pathogens, such as Salmonella.

Metagenomics opened new avenues for characterization of water microbiomes.
Concurrent characterization of microbiome and pathogen status in water provides an opportunity
for the identification of microbial taxa associated with pathogen contamination of agricultural
water. Such taxa could be identified by developing models that use microbiome data (i.e.,

presence or absence of taxa, or differences in their relative abundance) to predict when and
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where pathogens are present. However, since the existing water microbiome literature
demonstrates substantial spatial and temporal variation in water microbiome composition (22—
25), identification of such “indicator” taxa is difficult using conventional analytical approaches,
such as multivariate ordination (25). Machine learning provides an alternative approach that may
be useful for identifying “indicator”, or combinations of “indicator” taxa and for developing
classification models that use these taxa to predict pathogen contamination status (26, 27).

Among classification machine learning models, supervised models are particularly useful
when the outcome information, such as pathogen status, is known for a set of samples. Labelling
the training dataset with an outcome class label allows for the development of a classifier that
can predict pathogen status. A variety of supervised classification models have been developed
to address different data structure challenges and improve the accuracy of prediction (28-31). A
benchmarking study that applied multiple machine learning models on human gut microbiome
found differences in the performance of models based on different machine learning algorithms.
This is likely due to differences in the characteristics of algorithms, such as linear/non-linear
separation, ensemble or regression approaches (30). This suggests the importance of selecting
and testing multiple algorithms to improve the prediction accuracy. In addition to model
selection, the performance of a model may be affected by microbiome data pre-processing, such
as data normalization (28). The latter is commonly carried out to account for potential
differences in sample library sizes, hence its effect on prediction accuracy needs to be assessed
(31-33).

With the above-outlined consideration in mind, we applied multiple machine learning
classifiers to normalized and non-normalized microbiome data for samples collected from 60

different streams. Our goal was to identify microbial indicators predictive of Salmonella
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91  contamination in stream water samples collected in a region in Northeastern United States.

92  Lastly, we also assessed whether the addition of data on physicochemical properties of water

93  samples increases the accuracy of predicting Salmonella contamination.

94

95 RESULTS

96  Samples were sequenced with a median of 5,956,185 reads and a median of 8.955% reads

97  were assigned bacterial taxonomic identifier. A median of 5,956,185 reads per sample were

98  obtained from 60 samples [min = 4,048,684, max = 9,301,059, standard deviation (SD) =

99  1,125,759] and median of 8.95% reads were classified as bacterial using metagenomics
100  taxonomic classifier Kraken2 [median = 529,963, min = 145,211, max = 1,059,311, standard
101 deviation (SD) =206,336]. Across samples, a total of 885 different genera from 307 different
102 families were assigned.
103
104  The overall microbiome composition was not associated with the presence of Salmonellain
105  surface water samples. The principal component analysis (PCA) biplot (Fig. 1B and 1D) and
106  scree plot (Fig. 1A and 1C) showed that the sample microbiomes did not cluster based on the
107  presence of Salmonella. As evident from the scree plot (Fig. 1A and 1C), the first two
108  components explained a relatively low percent of variance in the microbiome composition.
109  Specifically, they explained 28.3% of the variance at the genus level (Fig. 1A) and 26.5% of the
110  variance at the family level (Fig. 1C). PERMANOVA results also did not indicate significant
111  association between microbiome composition and Salmonella isolation (p = 0.318 (family-level),
112 p=0.349 (genus-level)).

113
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CF models outperformed RRF and SVM models at predicting Salmonella contamination.
Regardless of feature set, the area under the curve (AUC) and Kappa score were always higher
for conditional forest (CF) compared to regularized random forest (RRF) and support vector
machine (SVM) when genus-level microbiome data were used (Fig. 2). Furthermore, the AUC
was also consistently higher for CF models compared to RRF and SVM models when family-
level microbiome data were used. However, the Kappa values were similar for CF and RRF
models when family-level microbiome data were used (Fig. 2). RRF models (AUC = [0.68, 0.75],
Kappa =[0.24 ,0.35]) and SVM models (AUC = [0.61, 0.64], Kappa = [0.1, 0.15]) had lower
AUC and Kappa score than CF models (AUC = [0.76, 0.82], Kappa = [0.32, 0.42]). We found
that the AUC range for CF did not overlap with AUC ranges of other two methods, indicating
that CF has outperformed RRF and SVM. Hence, further analyses were carried out using the CF
models.

Across all models using the genus-level data, the CF model run on CLR-transformed
relative abundance data without environmental features had the highest AUC (0.81) and Kappa
score (0.42) (Fig. 2). When using family level data, the CF model using the relative abundance
data, without environmental features resulted in the highest Kappa score (0.42), and second

highest AUC (0.80) (Fig. 3).

Aeromonas and Tabrizicola were most informative for accurately predicting Salmonella
presence. Using genus-level microbiome data, CF identified Aeromonas, Tabrizicola,
Haematobacter, Defluviimonas, and Rhizobium as the five most informative genera for
predicting Salmonella contamination (Fig. 3A). In family level analysis, Aeromonadaceae,

Rhodobacteraceae, and Methanobacteriaceae were identified as the three most informative
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families. Furthermore, four environmental features (i.e., stream level, dissolved oxygen level, pH,
and changes of elevation and length of the stream) were also identified as informative features in
the CF model that included environmental features (Fig. 3B).

The differential abundance analysis carried out using ALDEx2 and Kruskal-Wallis test
identified two bacterial genera, Aeromonas and Tabrizicola, (Fig. 4) as significantly
differentially abundant between Salmonella-positive and Salmonella-negative samples. These
two genera belong to Aeromonadaceae and Rhodobacteraceae families, respectively. These two
families are among the families identified as differentially abundant between Salmonella-positive
and -negative samples (i.e., Aeromonadaceae, Parvibaculaceae, Rhodobacteraceae, and

Shewanellaceae) (Fig. 5).

DISCUSSION

This study was based on the premise that contamination of surface waters with enteric pathogens
such as Salmonella, co-occurs with other microbiota that is either linked with the contamination
source or linked with the environmental conditions that favor pathogen introduction to or
survival in freshwater systems. As such, these taxa could be used to identify when and where
surface waters may by contaminated by Salmonella. Hence, we aimed to leverage water
microbiome data and machine learning classifiers to identify specific taxa predictive of
Salmonella contamination that could be further developed into rapid detection assays (10). For
example, taxa that (i) consistently occur in samples contaminated with Salmonella or are (ii)
consistently present in a significantly different relative abundance in samples contaminated with

Salmonella, may be utilized to develop rapid PCR-based indicator assays.
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Data transformation did not have a notable effect on the performance of predictive models.
Microbiome data analyses are challenging due to inherent data complexities. These include data
sparsity (i.e., many taxa are only present in small proportions of samples, resulting in a large
proportion of zero counts), collinearity (i.e., some taxa are highly correlated), imbalanced library
sizes, and a well-known "small n large p” problem (i.e., small number of samples and a large
number of taxa). Some of these challenges can be addressed prior to applying machine learning
models or can be addressed by applying machine learning methods that can address certain
microbiome data challenges. Here, we used a central log-ratio (CLR) transformation to mitigate
the potential effects of different library sizes, and to take into consideration the compositional
nature of microbiome data (33, 34). We found that the microbiome data transformation had an
inconsistent effect on a model performance, as it improved the AUC of some models (e.g., CF
using genus- and family-level data, SVM using family-level data) while it decreased the AUC of
other models (e.g., RRF using genus- and family-level data, SVM using genus-level data).
Previous studies on gut microbiome data emphasized the importance of data transformation due
to the compositionality of the microbiome data (28, 30, 32). However, they also reported that the
performance of tree-based algorithms (i.e., random forest and XGBoost) was not significantly

affected by data transformation (32).

Model selection is critically important when applying machine learning to microbiome data.
Different machine learning classifiers address microbiome data challenges to various degrees;
hence we assessed the performance of three different machine learning algorithms for prediction
of Salmonella contamination. At both genus-level and family-level classification, we found that

CF performed overall better than RRF and SVM. This is consistent with other studies that
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183  compared multiple algorithms for predicting foodborne pathogen contamination of surface water,
184  and consistently found that CF was a high performing algorithm (27). However, many of these
185  studies also found that RRF and/or SVM also performed well. Given the highly correlated nature
186  of microbiome data, it is not surprising that CF, which was developed to address limitations of
187  other random forest algorithms for handling correlated data, outperformed the RRF and SVM
188  (35-37). Moreover, given the complex relationships that underpin microbial ecosystems,

189  hierarchical relationships between the presence-absence of various taxa (e.g., models that

190  incorporate “interactions” or hierarchy such as CF and RRF) may predict pathogen presence

191  better than algorithms that do not (e.g., SVM).

192

193  Differential abundance analysis and conditional forest models identified putative indicators
194  of Salmonella contamination in surface waters. When assessing the association between the
195  overall microbiome composition and Salmonella contamination, associations between certain
196  taxa and Salmonella contamination may be missed due to the large number of taxa included in
197  the analyses. Indeed, we found the lack of association between the overall microbiome

198  composition and the presence of Salmonella based on the Principal Component Analysis (PCA)
199 and PERMANOVA. Hence, we used differential abundance analysis and machine learning

200  algorithm CF to discover individual taxa (or their relative abundance) associated with Salmonella
201  contamination.

202 Both, differential abundance analysis and CF identified some of the same taxa predictive
203  of Salmonella contamination in stream water samples. Using ALDEx2 differential abundance
204  analysis and CF, we identified two bacterial genera (Aeromonas and Tabrizicola) which were

205  present in a significantly lower relative abundance in samples contaminated with Salmonella.
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Aeromonas species have previously been found in natural water and a broad range of foods, in
addition to human and animal gastrointestinal tracts (38, 39). Aeromonas is regarded not only as
an important pathogenic bacterium in fish and cold-blooded animals, but also as an opportunistic
pathogen in immunocompromised humans (38). Aeromonas (belonging to Aeromonadaceae) has
similar morphological and biochemical characteristics as Enterobacteriaceae, a family of
microorganisms commonly used as an indicator of poor hygienic conditions in food systems (40).
Bonadonna et el. reported that the presence of E. coli and fecal coliforms were associated with
lower counts of Aeromonas, whereas the prevalence of total coliforms was associated with
higher counts of Aeromonas in bathing waters along the sea-coast of the Adriatic Sea (41, 42).
Another identified genus, Tabrizcola, belongs to a family of Rhodobacteraceae, which is
usually found in aquatic environment, including lakes and wastewater treatment facilities (43—
45). However, the ecological role of Tabrizicola is still understudied. In addition to the two
genera discussed above, we identified several bacterial families positively and negatively
associated with Salmonella contamination in water. Four families were identified in both
differential abundance analysis and machine learning variable importance analysis (i.e.,
Aeromonadaceae, Rhodobacteraceae, Shewanellaceae, and Parvibaculaceae). These four
families are known marine or aquatic microbiome members commonly found in natural waters
(46-48). However, their relationship with Salmonella is unknown. A study by Gu et al. used 16S
rDNA amplicon sequencing data and found an association between specific microbial taxa and
the prevalence and population density of Salmonella enterica detected in ponds and wells in
Eastern Shore of Virginia (ESV) between January to December (49). They found that the relative
abundance of Sphingomonadales was significantly correlated with S enterica prevalence as well

as its population density in irrigation ponds and water wells. However, in our study,
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Sphingomonadales were not identified as informative for prediction of Salmonella contamination
using machine learning nor differential abundance analysis (49). This inconsistency could
potentially be explained by regional differences in the water microbiome composition, which is
known to be influenced by environmental features such as natural variation over time, weather,
and adjacent land use (22, 23, 25).

In this study, we found that several environmental features were informative for
classification in the CF model. CVI of stream level was the second most informative feature for
predicting Salmonella contamination, and level of dissolved water, pH, and change in elevation
and length (CSL 10_85) were weakly associated with Salmonella contamination. Previous study
reported that environmental features had an effect on the level of E. coli and the probability of
detecting foodborne pathogen from the fresh water samples (20). Therefore, it is important to
consider environmental condition as supplementary features when developing new tools for
predicting Salmonella contamination of fresh water based on the specific taxa.

Some of the differences between taxa identified in this study and previous studies may be
due to the differences in microbiome composition between surface, pond, and well waters. Thus,
future studies that sample the same (or multiple) water types over multiple growing regions from
multiple states are needed to assess whether the putative indicators of Salmonella contamination
identified in this study are reproducible more broadly and are suitable candidates for the

development of a rapid nucleic acid-based diagnostic assay.

Conclusions. This study applied machine learning classifiers and differential abundance
analyses of surface water microbiome data to identify putative novel indicators of Salmonella

contamination. We identified Aeromonas and Tabrizcola bacterial genera and Aeromonadaceae,
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252 Rnhodobacteraceae, Shewanellaceae, and Parvibaculaceae families that warrant further

253  assessment as putative indicators of Salmonella contamination of the water. The identified taxa
254  are potential targets for the development of an alternative or complementary (to E. coli

255  quantification) water quality/safety monitoring strategy focused on mitigating the use of surface
256  waters likely contaminated with Salmonella. However, the models developed in this study first
257  need to be validated on new samples collected from a broader geographic area and over multiple
258  seasons to assess the predictive accuracy of taxa identified here. Furthermore, deeper

259  metagenomic sequencing that would enable metagenome assembly may facilitate identification
260  of putative novel indicators of Salmonella contamination at a species level, as well as

261  characterization of their functional potential.

262

263 MATERIALS AND METHODS

264  Sample collection and processing. Water samples were collected from sixty streams in Upstate
265  New York state between July and October 2018 as described by Weller et al. (2020) (20). All
266  chemical, microbial, and environmental water quality data were previously reported by Weller et
267  al. (2020) (20). Briefly, 10 L grab samples were collected from each stream and tested for

268  Salmonella presence. Each grab sample was filtered through modified Moore swabs (mMS).
269  Buffered peptone water supplemented with novobiocin (20 mg/l) was added to Whirl-Pak bags
270  containing mMS and incubated at 35°C for 24 h. After incubation, a BAX real-time PCR screen
271  was used to identify samples that were presumptively positive for Salmonella. Salmonella

272  presence was confirmed using culture-based methods fully described in Weller et al. (20)
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Separately, 100 ml grab samples were collected for metagenomic analysis. The 100-mL
samples were filtered through a 0.45 mm filter (Nalgene, Thermo Fisher Scientific, Waltham,

MA USA). Filters were then stored at -80 °C until DNA extraction.

DNA extraction and microbiome sequencing. DNA was extracted using DNeasy Power Water
kit (Qiagen, MD, USA) per manufacturer’s instructions. Extracted DNA was examined for
quality and quantified using Nanodrop One (Thermo Fisher Scientific, MA, USA) and Qubit 3
(Thermo Fisher Scientific, MA, USA), respectively. DNA was then sent to the Penn State
Genomics Core Facility for library preparation and sequencing. Libraries were prepared using
Nextera XT Flex per manufacturer’s instructions. Pooled libraries were sequenced on an

[llumina NextSeq with 150 bp paired end reads.

Sequence quality control and taxonomic classification. FastQC version 0.11.5 was used to
assess read quality using default parameters (50). Illumina adapters and low-quality bases were
trimmed using Trimmomatic (v 0.36) (51) with default parameters. Trimmed reads were
taxonomically classified using Kraken2 (v 2.1.2) (52) and relative abundances inferred using
Bracken (v 2.5) (53). The NCBI’s RefSeq nucleotide database (v 207) (54) was used to build a
Kraken2 database. Any read that mapped to a single reference genome was labeled with the
NCBI taxonomic annotation (taxid) corresponding to that reference genome. Any read that
mapped to multiple reference genomes, or did not meet or exceeded the confidence scoring
threshold was assigned a last common ancestor (LCA) taxonomic identification (taxid) (52).
Confidence scores were set to 0.1, meaning that at least 10% of the total number of kmers from a

read were classified. Bracken was used to estimate the abundance of taxa by re-distributing reads
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in the taxonomy using Bayes’ theorem (53). Assigned taxonomy and taxid counts of all samples

were merged into a table that was used for downstream analyses.

Microbiome Analyses. All statistical analyses of microbiome data were performed in R (version
4.1.0; R core Team, Vienna, Austria) (55), using a compositional analyses framework (33). First,
the estimated abundances were transformed using the centered log-ratio (CLR) transformation
(34). Ratio transformations capture the relationship between the taxonomic units in the data, and
logarithm of these ratios ensures that the data are symmetric and linearly related (34). Distances
between samples were calculated using the Aitchison distance (i.e., Euclidian distance after CLR
transformation) to investigate the among-sample differences in microbiome composition [11].
Principle component analysis (PCA) was carried out using the ‘princomp’ function in R on
relative abundances of taxids to visualize the ordination and clustering of samples based on the
microbiome composition (33). The first two principal components were plotted using the
‘ggplot2’ package (v 3.3.3) (56). Samples were color-coded to visually assess whether they
cluster based on the Salmonella presence/absence. Permutational Multivariate Analysis of
Variance (PERMANOVA) was carried out to assess statistical associations between microbiome
composition and Salmonella presence using the ‘adonis’ function in the ‘vegan’ package (v 2.5.7)
(57). Differential abundance test was conducted using the ALDEx2 R package (58) to identify
bacterial genera and families that were differentially abundant between Salmonella-positive and -
negative samples. Each identified bacterial genus and family were tested using Kruskal-Wallis

test to assess statistical significance of detected differences in their relative abundance (59).
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Predictive modelling. Three machine learning algorithms (i.e., conditional forest (CF) (35),
regularized random forest (RRF) (36), and support vector machine (SVM) with sigmoid kernel
(37)) that had previously been applied on microbiome data (60—62) and were suitable for
microbiome data structure (27) were used in this study. Additionally, these algorithms were
previously reported to outperform others for predicting Salmonella presence using environmental
data (27). These methods were used to develop models that predict Salmonella presence or
absence in water samples. Both relative abundance of taxid and CLR transformed relative
abundance of taxid were separately used as features to assess the effect of microbiome data
transformation on model performance. Model training and evaluation was performed using the
‘mlr’ package (v 2.19.0) (63). Ten-fold cross-validation repeated three-times was used to tune
hyperparameters to maximize area under the curve (AUC) (64, 65). In total, analyses were
conducted using two feature sets: (i) untransformed relative abundances of microbial taxa and (i)
CLR-transformed relative abundances of microbial taxa, to assess whether models perform better
on transformed microbiome data. Analyses were also carried out at two different taxonomic
levels (i.e., genus and family) and with or without environmental data. In total, 24 models were
constructed separately based on the AUC and kappa scores (Table 1). The best performing model
for each combination of algorithm and input data (Table 1) was selected for identifying
informative taxa. conditional variable importance (CVI) was calculated using the ‘party’ package

(v. 1.3.7) for CF models (35).
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522 TABLES
523  TABLE 1 Machine learning algorithms, data types, data transformation, and taxonomic levels

524 used for prediction of Salmonella contamination.

Machine learning Data type Data transformation Taxonomic level

algorithm®

Conditional forest Microbiome data Centered log-ratio Genus
transformed relative
abundances

Regularized random Microbiome data + Untransformed relative Family

forest environmental features abundances

Support vector

machine

525  *Each machine learning algorithm was run using all combinations of data type, data
526  transformation, and taxonomic level.
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527  FIGURE LEGENDS

528

529  FIG 1. Principal Component Analysis (PCA) based on the Aitchison distance. Scree plot

530  between principal components and eigen values are shown at the (A) genus level and (C) family
531 level. The PCA biplot showing ordination of samples between based on the microbiome

532 composition at the (B) genus level and (D) family level and color-coded based on whether

533  Salmonella was detected (orange) or not detected (blue) in water samples.

534

535  FIG 2. Kappa score and Area Under the Curve (AUC) for each machine learning algorithm.

536  Results are shown at two taxonomic levels used for the classification (left — genus, right— family).
537  Two different data transformation method (CLR [blue] — centered log-ratio transformation, and
538 RA [orange] — relative abundance) were compared with two different data structures: M (circles)
539  — microbiome data only and M+E (triangles) — microbiome and environmental data.

540

541  FIG 3. Conditional variable importance of taxa. Conditional variable importance was

542  calculated from best performing conditional forest (CF) models of (A) genus level and (B)

543  family level. Top 15 most informative for prediction of Salmonella contamination are presented.
544  Orange bars indicate taxa significantly differentially abundant, blue bars indicate taxa not

545  significantly differentially abundant, and black bars indicate environmental features (CSL 10 85
546 = change in elevation divided by the length between points 10 and 85 percent of distance along

547  main channel to basin divide).
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548  FIG 4. Relative abundance of (A) Aeromonas and (B) Tabrizicola in water samples. These

549  genera were identified as significantly differentially abundant between Salmonella positive and
550  negative water samples.

551

552  FIG 5. Relative abundance of (A) Aeromonadaceae (B) Parvibaculaceae (C) Rhodobacteraceae,
553  and (D) Shewanellaceae. These families were identified as significantly differentially abundant

554  between Salmonella positive and negative water samples.
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