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Abstract

Polygenic Transcriptome Risk Scores (PTRS) are variations of Polygenic Risk Scores (PRS) that use

genetically predicted transcriptome as features for prediction instead of directly using genetic variants.

We have shown that when PTRS is combined with PRS, they can yield improved prediction performance

and portability across populations (Liang et al., 2022). Given the difficulty of training PTRS using

large scale individual-level data (due to both computational burden and the lack of data access), we

developed a user friendly software that infers PTRS using GWAS summary results and reference LD. We

tested three summary statistics-based PTRS approaches: i) Clumping and thresholding (clump-PTRS),

keeping trait associated genes while removing highly correlated ones; ii) Summary statistics-based elastic

net PTRS (S-EN-PTRS), an extension of lassosum (Mak et al., 2017) to predicted transcriptome; iii)

Naive-PTRS, the sum of predicted expressions of significantly associated genes weighted by PrediXcan-

estimated effect sizes (Gamazon et al., 2015). Despite reports that individual-level trained elastic net

PTRS outperformed clump-PTRS in (Liang et al., 2022), for most of the 11 traits used in the comparison,

clump-PTRS outperformed S-EN-PTRS, which outperformed naive-PTRS.

Introduction

PRS is a promising tool to translate GWAS discoveries into clinically-relevant preventive and therapeutic

strategies, but there are some challenges that need to be addressed. One issue with PRS is the loss of

performance when applied to populations that are underrepresented in current GWASs, i.e. non European-

descent groups (Martin et al., 2019). To address this problem, we have proposed PTRS, which uses genetically

predicted trancript levels instead of genetic variants as predictors of complex traits (Figure 1B) (Liang et al.,

2022). We have shown that PTRS can help improve portability across populations and when combined with

traditional PRS, they can yield better performance than PRS alone (Liang et al., 2022).
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Figure 1: Overview of PRS and PTRS workflows. (A) PRS weights are calculated typically from the
GWAS summary statistics and a reference LD (correlation between genetic variants) by summary statistics-
based PRS methods (Vilhjálmsson et al., 2015; Mak et al., 2017; Ge et al., 2019; Lloyd-Jones et al., 2019);
(B) PTRS weights are calculated by (Liang et al., 2022) using individual-level genotype and trait data in
the UK Biobank cohort. It first calculates the predicted transcriptome of each individuals from genotype
and prediction models of gene expressions (i.e. PredictDB from predictdb.org) and then obtains PTRS
weights from predicted transcriptome and trait data with a mini-batch elastic net solver tailored to biobank-
scale dataset; (C) The summary statistics-based PTRS approach implemented in this report uses TWAS
summary statistics (obtained from GWAS summary statistics, PredictDB, and a reference LD by summary
statistics-based PrediXcan/TWAS (Gusev et al., 2016; Barbeira et al., 2018)) and a reference LD to derive
PTRS weights.

Another issue with PRS is that very large training sets (GWASs with very large sample sizes) are needed

to obtain relevant prediction accuracy. However, obtaining access to and handling large-scale genetic and

phenotypic data can be challenging due to computational and regulatory hurdles. Fortunately, PRS weights

can be derived directly from the summary results of GWAS in combination with reference LD information

(Figure 1A) (Vilhjálmsson et al., 2015; Mak et al., 2017; Ge et al., 2019; Lloyd-Jones et al., 2019).
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In this report, similar to the essence of summary statistics-based PRS approaches, we develop a tool that

derives PTRS using GWAS summary statistics and a reference LD (Figure 1C). We implement several ap-

proaches to derive PTRS and provide a user-friendly software https://github.com/liangyy/SPrediXcan2PTRS.

Results

To calculate PTRS based on GWAS summary statistics, we extended three common approaches used for

PRS construction using GWAS summary statistics: i) clumping and thresholding, ii) summary-based elastic

net as implemented in lassosum (Mak et al., 2017), and iii) simple significance thresholding. Clumping

and thresholding consists of selecting the most significant features and filtering out features that are highly

correlated with each other or do not pass some significance threshold. The lassosum infers the elastic net

trained predictors using GWAS summary statistics (Mak et al., 2017). Simple significance thresholding

consists of filtering out the variants with non-significant GWAS p-values and using the GWAS effect sizes

as the weights in the PRS. We refer to these extensions as clump-PTRS, S-EN-PTRS, and naive-PTRS,

respectively.

All three summary statistics-based PTRS approaches start by calculating the TWAS summary statistics using

the GWAS summary statistics and transcriptome prediction weights (PredictDB in Figure 1). Clump-PTRS

removes genes that are highly correlated and those that do not pass a given p-value threshold. S-EN-PTRS

is an implementation of lassosum with TWAS summary statistics taking the place of the GWAS summary

statistics. Both the clump-PTRS and S-EN-PTRS require information on the correlation between SNPs

which are involved in the prediction of gene expression levels. Naive-PTRS uses the z-scores (or effect sizes)

from the TWAS summary statistics as weights for the PTRS. Further details are described in Methods.

To examine the performance of the summary statistics-based PTRS approaches, we selected 11 quantitative

trait GWASs listed in Table 1 and calculated the PTRS weights using each of the three approaches described

above (Methods). We evaluated the performance of these PTRSs using 5,000 randomly sampled European-

descent participants in the UK Biobank. We calculated the Spearman correlation between PTRS scores and

the observed UK Biobank traits (Table1) as a measure of the performance of the PTRS (Methods). For the

S-EN-PTRS we used a range of shrinkage values (0.01, 0.1, 0.3, 0.5, 0.7, 0.9) and set the mixing parameter

α = 1 (effectively a lasso penalty was used). For the clump-PTRS, we used a squared correlation cutoff of

0.1 and a sequence of p-value cutoffs (applied after clumping): 10−7, 10−6, 10−5, 10−4: 10−3, 0.005, 0.01,

0.05, 0.1, 0.5, 1.
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trait short name ukb field gwas id gwas reference gwas sample size

eosinophil 30150 Astle et al 2016 Eosinophil counts Astle et al. (2016) 173480

lymphocyte 30120 Astle et al 2016 Lymphocyte counts Astle et al. (2016) 173480

monocyte 30130 Astle et al 2016 Monocyte count Astle et al. (2016) 173480

neutrophil 30140 Astle et al 2016 Neutrophil count Astle et al. (2016) 173480

platelet 30080 Astle et al 2016 Platelet count Astle et al. (2016) 173480

rbc 30010 Astle et al 2016 Red blood cell count Astle et al. (2016) 173480

wbc 30000 Astle et al 2016 White blood cell count Astle et al. (2016) 173480

bmi 21001 GIANT 2017 BMI Active EUR 109433

height 50 GIANT HEIGHT Wood et al. (2014) 253288

sbp 4080 ICBP SystolicPressure Ehret et al. (2011) 203056

dbp 4079 ICBP DiastolicPressure Ehret et al. (2011) 203056

Table 1: Information on the 11 quantitative traits being used for examining the performance of
PTRS. We used the GWAS harmonized in Barbeira et al. (2021). Column “gwas id” indicates the GWAS
ID used in Barbeira et al. (2021). Column “gwas reference” shows the reference to the GWAS. Column “ukb
field” shows the Field ID in the UK Biobank

As shown in Figure 2, among most of these 11 quantitative traits, clump-PTRS performed the best, followed

by S-EN-PTRS with the performance increasing with higher shrinkage parameters. Naive-PTRS showed the

lowest performance.

The lower performance of S-EN-PTRS was unexpected given that the individual-level elastic net-based

PTRS outperformed clump-PTRS in our previous study (Liang et al., 2022). One possible explanation of

this low performance is the difference in LD between the source GWAS study and the reference one used

here. Moreover, we observed that S-EN-PTRS performance increases as the offset term o becomes larger

(see definition of the offset in Methods). Since the offset term measures the tendency to treat all genes

as independent predictors instead of taking LD information into account, this result also suggested that

S-EN-PTRS is potentially sensitive to LD panel.
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Figure 2: Performance of S-EN-PTRS, clump-PTRS, and naive-PTRS. Different summary
statistics-based PTRS approaches are shown on x-axis. For S-EN-PTRSs, the value in the parentheses
indicates the offset term o being used. PTRSs were evaluated using 5,000 individuals in UK Biobank where
half of the samples were used to determine the best-performing hyperparameters (for clump-PTRS, it is the
p-value threshold; for S-EN-PTRS, it is the mixing parameter λ). The y-axis shows the Spearman correlation
on the other half of the samples with demographic covariates and genetic PCs being adjusted (more details
in Methods).

We provide an out-of-box implementation of the three summary statistics-based PTRS approaches, clump-

PTRS, S-EN-PTRS, and naive-PTRS, under a unified interface. It takes S-PrediXcan results along with

a reference LD panel and generates the corresponding PTRS weights. The software is available at https:

//github.com/liangyy/SPrediXcan2PTRS.

Discussion

In this work, we implemented three summary statistics-based PTRS approaches. We briefly examined the

performance of these summary statistics-based PTRSs on 11 quantitative traits while using out-of-sample

LD panel. We observed that, with out-of-sample LD panel, clump-PTRS outperforms S-EN-PTRS even

though it’s been reported that EN-PTRS outperforms clump-PTRS when using individual-level data (Liang

et al., 2022). Such discrepancy in performance might be attributed to the LD mismatch since, comparing
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to clump-PTRS, S-EN-PTRS is more sensitive to the accuracy of the LD panel. To support this claim will

require a comprehensive survey of the behavior of these approaches under different scenarios (e.g. variations

on the qualities of LD panels, GWASs, and gene expression prediction models). However, a deep performance

survey is beyond the scope of this report and we defer it to future work.

Nonetheless, on the basis of the brief performance comparison results in this report, we caution that one

should use S-EN-PTRS carefully with an out-of-sample LD panel. With mismatched LD, one could increase

the offset parameter in S-EN-PTRS to reduce the effect of mismatch LD on the prediction performance.

In practice, one could include both S-EN-PTRS and clump-PTRS as part of their model selection and

hyperparameter tuning scheme.

We hope this report along with the software could ease and accelerate the future study and development of

PTRS.

Methods

Details of S-EN-PTRS implementation

For N samples and K genes, let y ∈ RN×1 represent the phenotype and let G ∈ RN×K be the predicted

expression matrix. As described in (Liang et al., 2022), EN-PTRS is defined by the following problem:

arg min
x
‖y −Gx‖22 + λ0 · (α‖x‖1 +

1− α
2
‖x‖22) (1)

The EN-PTRS weights correspond to the solution to Eq 1.

We note that the amount of the regularization on each gene depends on the scaling of the corresponding

column in G. To resolve such ambiguity, we further assume that each column of G is standardized and

so is y. With this assumption, implicitly, the gene-level effect of gene k (xk) quantifies the amount of

phenotypic increase (in the unit of standard deviation of the phenotype) under one unit increase of the

predicted expression level of gene k (e.g. the predicted expression goes from the population mean to the

population mean plus standard deviation).

Under this scaling, Eq 1 is equivalent to

arg min
x
x′Rx− 2b′x+ λ · (α‖x‖1 +

1− α
2
‖x‖22) (2)

R is the sample correlation matrix of G and b = zPrediXcan/
√
N . Since, equivalently, we use GWAS cohort

for EN-PTRS training, N is essentially the GWAS sample size. And λ = λ0/N .
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In practice, we don’t have access to R (the in-sample sample correlation). Instead we calculate the sample

correlation using a reference LD panel as R̃. When the GWAS cohort and the reference LD panel are from

the same ancestry group, R ≈ R̃ especially when both GWAS and reference LD panel have a lot of samples.

In practice, to stabalize the model fitting (similar to lassosum (Mak et al., 2017)), we add an offset term to

R̃ when approximating R. In other words, we let R = (1− o) · R̃+ o · I.

We treat o ∈ (0, 1), α ∈ [0, 1], and λ ∈ (0,∞) as hyperparameters. For a given pair of o and α, we determine

the maximum λ by solving for the minimum possible λ satisfying the KKT condition when x = 0 is the

solution ((Friedman et al., 2010)). In other words,

λmax = arg min
λ
{λ : |2Rk· ·~0− 2bk| ≤ αλ, ∀k = 1, · · · ,K} (3)

=
2 ·maxk |bk|

α
(4)

We solve for a sequence of equally spaced (in log-scale) λ values from λmax to λmin and usually λmin =

λmax/100.

Similar to (Friedman et al., 2010), we solve Eq 2 by coordinate descent. For the sequence λ1 = λmax,λ2,

· · · ,λJ = λmin, we first set x = ~0 for λ = λmax. And then, for each λ = λj , we initialize x as the solution

from λ = λj−1.

Additionally, to obtain R̃, we need information more than the one required for S-PrediXcan, since we need

to know both the variant/variant covariance for each variant pair within a gene and the variant pair from

two different genes. We note that it is not suitable to pre-compute gene covariance since, usually, the

GWAS may miss some genetic variants in the prediction models and we should exclude these variants for

the PTRS training. Instead, similar to the S-PrediXcan implementation, we calculate R̃ on the fly using the

pre-computed variant/variant covariance from the reference LD panel. In practice, we consider gene/gene

covariance for each chromosome and assume the covariance between genes from different chromosomes equals

to zero. With this assumption, we need to pre-compute and store variant/variant covariance for all the vari-

ants that appear in at least one of the prediction models and lie in the same chromosome. For chromosomes

1 to 22, the number of variants to consider ranges from 4,000 to 30,000, for which we need to store all the

pairwise information. In fact, the number of samples in the reference LD panel NLD is usually smaller than

the number of variants being considered NSNP and it is an order of magnitude smaller when using GTEx

data as the reference (sample size is about hundreds) The NSNP-by-NSNP variant/variance covariance matrix

can be represented by only NLD eigenvalues and eigenvectors. We make use of this property and save the

eigenvalue decomposition of the variant/variant covariance matrix instead.

In principle, we need to loop over the genome-wide variants until convergence. But here, we also implement
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an alternative scheme in which we loop over variants within each chromosome (this is similar to lassosum

(Mak et al., 2017) which solves elastic net models for each LD block while using the same y for all blocks).

We note that this chromosome-wise approach usually gives similar results as the genome-wide iteration and

converges a little faster.

Details of clump-PTRS implementation

Given a list of genes with PrediXcan z-scores and r2, a cutoff on squared correlation between genes, we want

to perform clumping such that genes with duplicated signals (genes which are “highly” correlated with a

more significant gene) are removed. The procedure is similar to (Liang et al., 2022) and it is outlined in

Algorithm 1.

Algorithm 1: Clumping procedure

Input : Z-scores for a list of predictor candidates z ∈ RK×1, correlation between predictors
R ∈ RK×K , a squared correlation cutoff r2.

Output: A list of predictors (in terms of index) among which R2
ij < r2 and the ones with high |z|

should always be preferred.
1 Function Clumping(z,R, r2):
2 sortedIndex = argsort(|z|, decreasing);
3 Initialize a Hash table statusHash with keys 1, · · · , K and value = 0;
4 Initialize outputList as empty;
5 for j ← 1 to K do
6 i = sortedIndex[j];
7 if statusHash[i] = -1 then
8 continue;
9 Append i to outputList;

10 for k ← j to K do
11 if statusHash[k] = -1 then
12 continue;
13 end
14 if R2

ik ≥ r2 then
15 statusHash[k] = -1;
16 end

17 end

18 end
19 return outputList

20 End

Applying summary statitics-based PTRS to 11 GWASs

We applied clump-PTRS, S-EN-PTRS, and naive-PTRS to 11 GWASs listed in Table 1. These GWASs were

harmonized previously and imputed in GTEx v8 WGS samples (Barbeira et al., 2021). We used the CTIMP

models and cross-tissue gene expression imputation models (Hu et al., 2019) from Whole Blood, which were
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trained on GTEx v8 European samples (Barbeira et al., 2020). The variant/variant covariance was obtained

from GTEx v8 European samples.

Evaluating PTRS performance using UK Biobank data

We evaluated the prediction performance by calculating the Spearman correlation between the predicted and

observed phenotype values on 5,000 randomly selected UK Biobank participants with European ancestry.

To take covariates into account, we regressed out the top 10 genetic PCs, age, and sex (and second order

terms of age and sex) from both the observed and the predicted values before calculating the correlation.

The corresponding UK Biobank phenotypes used for the evaluation are shown in Table 1.

To select the hyperparameters, we split the selected participants into two halves. We used the first half

samples to determine the hyperparameters (λ for S-EN-PTRS and the p-value cutoff for clump-PTRS) by

selecting the best-performing models. And then we used the second half of the samples to calculate the

prediction performance under the models with the selected hyperparameters.

Code Availability

The software implemented for this work is available at https://github.com/liangyy/SPrediXcan2PTRS.
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