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Summary Statement

This study demonstrates that neuroblastoma cells can interconvert between a state characterized by

expression of neuronal genes and a de-differentiated state.

Abstract

Neuroblastoma is the most common extracranial solid tumor of childhood and accounts for a
significant share of childhood cancer deaths. Prior studies utilizing RNA sequencing of bulk tumor
populations showed two predominant cell states characterized by high and low expression of neuronal
genes. Although cells respond to treatment by altering their gene expression, it is unclear whether this
reflects shifting balances of distinct subpopulations or plasticity of individual cells. Using
neuroblastoma cell lines lacking MYCN amplification, we show that the antigen CD49b distinguishes
these subpopulations. CD49b expression marks proliferative cells with an immature gene expression
program, while CD49b-negative cells express differentiated neuronal marker genes and are quiescent.
Sorted populations spontaneously switch between CD49b expression states in culture, and CD49b-
negative cells can generate rapidly growing, CD49b-positive tumors in mice. We profiled H3K27ac to
identify enhancers and super enhancers that are specifically active in each population and find that
CD49b-negative cells maintain the priming H3K4mel mark at elements that are active in CD49b-high
cells. Improper maintenance of primed enhancer elements thus may underlie cellular plasticity in

neuroblastoma, representing potential therapeutic targets for this lethal tumor.

Introduction

Neuroblastoma is the most common extracranial solid tumor in children, and accounts for 15% of
pediatric cancer deaths annually (Newman et al., 2019). These tumors arise when normal
differentiation of neural crest cells into sympathetic neurons of the peripheral nervous system is
disrupted (Kildisiute et al., 2021). The disease is stratified based on clinical and molecular
characteristics, with high-risk tumors carrying a dismal prognosis (Cohn et al., 2016). Although MYCN
amplification is the most common mutation found in high-risk lesions, over half of these tumors do not

display MYCN amplification (Lee et al., 2018; Yanishevski et al., 2020).
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Cellular identity is defined by the proteins that have been translated at any moment, and protein
translation requires transcription of genomic information into RNA. RNA expression is determined by
the enhancer elements a cell has selected (Long et al., 2016). Primed enhancers, marked by mono- or
dimethylation of lysine 4 on histone 3 (H3K4mel/2), are not actively engaged in promoting
transcription, while active enhancers denoted by the addition of acetylation on lysine 27 on histone 3
(H3K27ac) are bound by transcription factors and replication machinery (Creyghton et al., 2010). Stem
and progenitor cells are characterized by a broad repertoire of primed enhancers that can be activated to
trigger a change in transcriptional state (Crispatzu et al., 2021; Rada-Iglesias et al., 2011). As cells
progress through differentiation options, enhancers are decommissioned via loss of H3K4me1/2 marks
to limit fate potential (Tao et al., 2021; Whyte et al., 2012). Dysregulation of epigenetic pathways,
including aberrant enhancer activity, is common in cancer (Helmsauer et al., 2020; Okabe and Kaneda,

2021).

Super enhancers (SEs) are large regions of chromatin that are densely bound by transcription factors
and are strongly marked by H3K27ac (Parker et al., 2013; Whyte et al., 2013). Genes controlled by
super enhancers are highly expressed, and often sit at the apex of networks that establish cell identity
(Whyte et al., 2013). Cancer cells, including neuroblastoma cells, are particularly sensitive to altered
transcription of SE-controlled genes (Lovén et al., 2013). Identification of SEs is thus valuable for
determining target points to disrupt tumors and understanding how SEs are dysregulated may provide

insights regarding mechanisms of tumor initiation and progression.

There are two predominant biological states of neuroblastoma cells: an undifferentiated mesenchymal
state and an adrenergic state more closely resembling differentiated, committed sympathetic neurons
(Gartlgruber et al., 2021; van Groningen et al., 2017). Gene signatures associated with these states have
prognostic value, with the mesenchymal phenotype being associated with worse outcomes, and
relapsed lesions also being enriched for markers of the mesenchymal state (Gartlgruber et al., 2021;
van Groningen et al., 2017). Tumor cell lines treated with radiation or chemotherapeutic agents have
been shown to adopt a mesenchymal gene expression profile, a process which involves activation of
NOTCH signaling (Boeva et al., 2017; van Groningen et al., 2019). This seemingly conflicts with
longstanding evidence that post-treatment tumors often undergo histologic maturation (Finklestein et
al., 1979; Grosfeld et al., 1978). However, despite histologic maturation with therapy, many patients
relapse and succumb to their disease, raising the possibility that mature cells seen soon after therapy are

replaced by cells with less differentiated features. Moreover, it is unclear whether neuroblastoma
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plasticity represents clonal evolution with shifting balances among distinct tumor subpopulations or

plasticity of individual cells.

The present study was undertaken to determine whether neuroblastoma cells lacking MYCN
amplification include heterogeneous cellular phenotypes. We investigated whether the cell-surface
marker CD49b (integrin alpha 2, Itga?), which marks proliferative neural crest progenitor cells (Abe et
al., 2016; Joseph et al., 2011), distinguishes neuroblastoma populations with distinct gene expression
programs. We found that cells lacking CD49b expression are quiescent, express RNAs encoding
adrenergic transcription factors, and transcribe neuronal marker genes. In contrast, CD49b-expressing
cells are proliferative, transcribe transcription factor genes associated with the mesenchymal cell state,
and do not express neuronal genes. As expected, different complements of active enhancers and SEs are
associated with these populations. Intriguingly, we found that CD49b-low cells, which otherwise show
many hallmarks of mature neurons, maintain the priming H3K4mel mark at many enhancers and SEs
that are active only in CD49b-high cells, suggesting that mature cells retain an abnormal ability to de-
differentiate. Importantly, cells with either phenotype can give rise to the opposite cell type in culture.
These results suggest that a bidirectional differentiation hierarchy exists in neuroblastoma, likely due to
failure to decommission enhancer and SE elements. Defining the epigenetic mechanisms that restrict
neural crest cell fate may thus be critical for understanding and treating this aggressive childhood

disease.

Results

Neuroblastoma Cells Express the integrin CD49b

Because CD49b marks neuronal progenitor cells in neural crest-derived lineages but is not expressed
on differentiated neurons (Belkind-Gerson et al., 2015; Joseph et al., 2011; Morarach et al., 2021), we
hypothesized that this antigen would distinguish immature and mature neuroblastoma cells. We first
assessed expression of the /zga2 gene, which encodes for the CD49b antigen, in mouse 3T3 Swiss
(3T3) fibroblast cells, as well as in the murine neuroblastoma cell line Neuro-2a (N2a), which lacks
Mycn amplification. As a positive control, we also assessed for expression of Ngfir and Phox2b, two
genes known to be highly expressed in neuroblastoma (Baker et al., 1989; Boeva et al., 2017).
Consistent with our hypothesis, N2a cells display markedly higher transcript levels of /zga2 than do
3T3 cells (Fig. 1A). We followed this result by assessing cell surface expression of CD49b on N2a
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cells, as well as on human SH-SYSY cells, a patient-derived neuroblastoma cell line that also lacks
MYCN amplification. Both lines are heterogeneous with respect to CD49b cell-surface expression (Fig.
1B,C). We noted that N2a cells have a continuum of expression, from cells lacking the antigen to those
with high expression, while SH-SYSY cells have more clearly distinct CD49b-negative and CD49b-

positive populations.

CD49b Expression Distinguishes Neuroblastoma Cell States

To determine whether variation in CD49b expression reflects the differentiation state of neuroblastoma
cells, we sorted both N2a and SH-SYS5Y cells based on CD49b expression. Because CD49b does not
demarcate discrete populations of N2a cells, we sorted these cells into the lowest and highest
expression quartiles based on staining for the antigen (Fig. STA). We henceforth called these
populations CD49b-neg and CD49-high, respectively, since the lowest 25% of N2a cells based on
CD49b staining displayed similar signal as the unstained control (Fig S1A). The intermediate 50% of
N2a cells, which express low levels of the antigen, are referred to as CD49b-low. In contrast, SH-SY5Y
cells were sorted into distinct populations with and without detectable CD49b antigen, which we

respectively call C49b-pos and CD49b-neg (Fig. S1B).

After sorting, we isolated RNA and performed qPCR for selected neuronal marker genes (Fig. 2A,B).
Consistent with CD49b’s role as a marker of immature neuronal precursors in other neural crest-
derived lineages, we found diminished expression of the neuronal genes Elavi4, Phox2a, Phox2b,
Snap25, and Actl6b, although only Elavi4 and Phox2b reached statistical significance (p < 0.05) in N2a
cells (Fig. 2A). In SH-SYS5Y cells, transcripts of the human genes ELAVL4, PHOX2A, PHOX2B,
TUBB3, SNAP25, and ACTL6B were diminished, with all except PHOX2A reaching statistical
significance (Fig. 2B).

We next performed poly(A)-enriched RNA sequencing on sorted CD49b populations in both cell lines.
These experiments were undertaken to test, in an unbiased manner, whether CD49b marks biologically
distinct neuroblastoma cells. We found striking differences, with 4251 genes in N2a cells and 8409
genes in SH-SYSY cells achieving the predetermined thresholds of greater than 2-fold difference in
gene expression and p<0.0001 (Fig. 2C,D). To query whether this reflects neuronal differentiation
status, we compared our RNA sequencing replicates based on expression of selected neuronal marker

genes. Consistent with our qPCR data, CD49b-neg cells in both the N2a and SH-SYS5Y lines were
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markedly enriched for neuronal genes (Fig. 2E,F). We also examined genes encoding transcription
factors that have been associated with the adrenergic and mesenchymal cell states in the literature (van
Groningen et al., 2017). The adrenergic factors, which include many genes associated with
neurogenesis in the neural crest, were enriched in the CD49b-neg population in both cell lines (Fig.
S2A). In contrast, the mesenchymal factors displayed notably higher transcript levels in the CD49b-
high population in N2a cells and CD49b-pos population in SH-SYSY cells (Fig. S2B). These data
confirm that CD49b distinguishes distinct populations among neuroblastoma cells, and that lack of

CD49b indicates cells with a transcriptional program characteristic of differentiated neurons.

Distinct Signaling Pathways Characterize Cells Distinguished by CD49b Expression

To further validate that CD49b expression identifies distinct cell groups, we performed Gene Set
Enrichment Analysis (GSEA) to identify biological pathways that are preferentially active in one
population or the other. The results, shown in Tables S2 and S3, were remarkably similar for both cell
lines. We focused on the PI3K-Akt and Cytokine-Cytokine Receptor Interaction pathways, both of
which had significant differences in both cell lines and which are known to impact neuroblastoma cell
phenotypes (Cotterman and Knoepfler, 2009; Hatzi et al., 2002; Paul et al., 2013). Enrichment plots
and heatmaps of genes associated with these pathways show significant enrichment in the CD49b-high
and CD49b-pos populations in N2a and SH-SYS5Y cells, respectively (Fig. S3A-D). We used flow
cytometry to confirm that CD49b-positive cells have higher levels of active, phosphorylated Akt/AKT
in each cell line, as well as a higher percentage of cells that express the gp130 cytokine receptor (Fig.
S3E,F). These results provide additional evidence that CD49b expression distinguishes neuroblastoma

cells with distinct biological traits.

Clinical Neuroblastoma Specimens Encompass Similar Heterogeneity as Cell Lines

Experiments with tumor cell lines may not reflect the biology of clinical disease. To assess the clinical
relevance of our results, we assessed single-cell gene expression in 34,501 tumor cells isolated from
five children with high-risk neuroblastomas without MYCN amplification. Hierarchical clustering
demonstrates that these tumors contain a heterogenous mix of cells, with a subset enriched for common
neuronal marker genes (Fig. 3A). We inferred cell cycle status of these genes based on expression of
cell cycle-associated genes, as previously described (Tirosh et al., 2016). Strikingly, except for

PHOX2B, all the neuronal marker genes we assessed are enriched in quiescent cells, with diminished
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transcript levels among cells in the S, G2, and M phases of the cell cycle (Fig. 3B). We confirmed this
result by sorting the human SH-SY5Y cell line into CD49b-pos and CD49b-neg populations, plating
equal numbers of cells from each group, and assessing proliferation via a luminescence assay 2, 5, and
7 days later. The CD49b-pos population showed significantly greater proliferation at all time points
(p<0.005; Fig. 3C). This demonstrates that primary neuroblastomas have similar transcriptional
heterogeneity as the N2a and SH-SYSY cell lines, and that cells with a neuronal gene expression

signature are quiescent.

CD49b-neg N2a cells maintain H3K4mel priming marks at enhancers active in CD49b-high cells

Gene expression is determined by the enhancer elements active in cells. Given the striking differences
in gene expression among subpopulations of neuroblastoma cells, we hypothesized that cells with
different levels of CD49b antigen expression would have distinct enhancer profiles. Because
acquisition of a neuronal gene signature, including ACTL6B (Actl6b in mice), is associated with
terminal differentiation during normal neurogenesis (Morarach et al., 2021; Yoo et al., 2017), we also
hypothesized that CD49b-neg cells would decommission enhancers that are active in CD49b-pos/high
cells. We used CUT&RUN to globally assay H3K27ac and H3K4mel in CD49b-neg and CD49b-high
populations of N2a cells. We first identified enhancers active in each population by assessing H3K27ac
signal. Using a false discovery rate (FDR) of <0.001, we identified 3622 enhancers specifically active
in one population or the other, including 2225 enhancers active in CD49b-high cells and 1397
enhancers active in CD49b-neg cells (Fig. 4A). As anticipated, enhancer regions activated in each
population displayed markedly diminished H3K27ac signal in the other population (Fig. 4B,D).
However, when we examined signal of the priming mark H3K4mel at the same loci, we found that
CD49-neg cells maintain this mark, albeit to a slightly diminished extent, at enhancers active in
CD49b-high cells (Fig. 4C). Contrary to our expectation, CD49b-neg cells thus maintain CD49b-high-
specific enhancers in a poised state. A similar trend was observed at CD49b-neg enhancers, although to
a lesser degree (Fig. 4E). This implies that CD49b-neg neuroblastoma cells, despite having a gene
expression program characteristic of differentiated neurons, remain primed to de-differentiate to an

immature state.

CD49b-neg N2a cells maintain H3K4mel markers at super enhancers that define the CD49b-high

State
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SEs are large regions of chromatin that often overlap genes controlling cell identity. We used the ROSE
algorithm (Whyte et al., 2013) to identify all SEs active in N2a cells, and then used DEseq2 with a
stringent FDR (<10e-6) to identify SEs active in the CD49b-neg and CD49b-high populations. This
approach identified 69 SEs that are active only in CD49b-neg cells, and 228 SEs active only in CD49b-
high cells (Fig. 5A). Profile plots reveal that H3K27ac signal is diminished in each population at SE
loci that are active in the opposite cell type (Fig. 5B,C). This is also seen for H3K4mel signal in SEs
active in CD49b-neg cells (Fig. SE). However, in CD49b-neg cells, H3K4me]1 signal at CD49b-high
SE loci was only slightly diminished (Fig. 5D). This is illustrated by the SE region overlapping the
Itga? transcriptional start site, which is one of the SEs that defines the CD49b-high cell state (Fig. 5F).
Taken together with data in Fig. 4, these results indicate that CD49b-neg neuroblastoma cells are

epigenetically poised to activate the enhancers and SEs that determine the CD49b-high state.

Neuroblastoma cells can interconvert between CD49b expression states in vitro

Given the persistence of H3K4me1l marks at CD49b-high-specific enhancers in CD49b-neg N2a cells,
we hypothesized that these cells can switch to a CD49b-high state. To test this, we sorted N2a cells and
SH-SYS5Y cells using the gating strategies shown in Fig. S1, then returned the sorted populations to
culture under normal growth conditions for 7 days (N2a cells) or 21 days (SH-SYSY cells). Cells were
then reanalyzed for CD49b expression by flow cytometry. Because N2a cells show a continuum of
CD49b expression, we included cells that were neither CD49b-neg nor CD49b-high in our analysis,
and referred to this middle population as CD49b-low (Fig. S1A). Consistent with our hypothesis,
cultures beginning with a pure population of CD49b-neg cells generate large numbers of cells
expressing the antigen in both N2a cells (Fig. 6A,B) and SH-SYS5Y cells (Fig. 6C,D). Interestingly,
enhancer priming via H3K4mel may not be necessary for plasticity, as cultures of CD49b-high N2a
cells, which do not have strong H3K4mel signal at CD49b-neg enhancers (Fig. 4E), also give rise to
cells lacking the antigen (Fig. 6A-D), suggesting the CD49b-high to CD49b-neg switch involves de

novo enhancer selection.

CD49b-neg cells switch to a CD49b-high phenotype and generate tumors in vivo

We next sought to determine whether neuroblastoma cells exhibit similar phenotypic plasticity in vivo.

The N2a cell line is derived from a spontaneous tumor in A/J mice, and when injected into syngenic

animals forms rapidly-growing tumors in a native microenvironment (Lee et al., 2012; Srinivasan et al.,
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2018). Taking advantage of this model, we sorted N2a cells into CD49b-neg and CD49b-high
populations and then injected 2 x 10’ cells per animal into the flank of A/J mice. Mice were euthanized
ten days later. Surprisingly, there was no statistically significant difference in weight between tumors
grown from CD49b-neg and CD49b-pos cells, although there was greater variability in tumor size in
the CD49b-neg group (Fig. 7A). Histological examination of the tumors revealed a lack of neuropil in
all cases, suggesting poorly differentiated neuroblastomas, although eosinophilic cytoplasm does
appear more abundant in CD49b-high tumors (Fig. 7B,C). Interestingly, both sets of tumors were
diffusely positive for CD49b (Fig. 7B,C), confirming that CD49b-neg cells can generate tumors with a
CD49b-high phenotype in vivo. Both sets of tumors were also diffusely positive for Ki-67 (Fig. 7B,C),
indicating significant cell proliferation, although Ki-67 staining was diminished in areas of necrosis

(Fig. 7C).

Discussion

Recent studies have shown that neuroblastoma cells have two predominant states, a differentiated
adrenergic state characterized by neuronal transcripts and a less-differentiated mesenchymal state
expressing genes seen in neural crest cells. Prior studies assessing these states in neuroblastoma cell
lines have sequenced bulk, unsorted populations, making it impossible to investigate heterogeneity
within populations (Gartlgruber et al., 2021; van Groningen et al., 2017). Our work establishes that two
neuroblastoma cell lines lacking MYCN amplification, murine N2a and human SH-SY5Y, contain cells
with gene expression patterns characteristic of both the adrenergic and mesenchymal states. We have
also shown that N2a and SH-SYS5Y cells are plastic between these states. It is known that treating
neuroblastoma cells with cytotoxic agents can alter gene expression (Boeva et al., 2017), but prior
research in this area has relied on bulk expression profiles, so until now it has not been clear whether
individual cells are plastic. We have now shown that sorted populations of neuroblastoma cells revert to
a mixed population, meaning that cells either directly switch phenotypes or undergo asymmetric
divisions producing disparate daughter cells. Reversion towards equilibrium proportions from sorted
starting populations has been shown previously for cancer cells (Gupta et al., 2011), but to our

knowledge this is the first demonstration in neuroblastoma.

We have shown that the adrenergic and mesenchymal states can be distinguished by expression of the
CDA49b antigen. CD49b is an integrin that marks immature neuronal precursors in the peripheral

nervous system (Belkind-Gerson et al., 2015; Joseph et al., 2011). Downregulation of this antigen is
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associated with a transition to a committed neuronal state, but reversion of CD49b-negative neurons to
a CD49b-expressing state has not been observed during normal development. The ability of tumor cells
to revert from a CD49b-neg state, which is characterized by expression of neuronal genes, inverts the
normal trajectory of neurogenesis. We found that CD49b-neg N2a cells maintain the priming
H3K4mel mark at enhancer loci that are active in CD49b-high cells, which may explain their ability to
revert to a less mature gene expression state. Decommissioning of primed enhancers appears to be a
key mechanism for cells to maintain differentiation (Tao et al., 2021; Whyte et al., 2012). We thus
speculate that oncogenic mutations in neuroblastoma likely act, at least in part, by preventing proper
decommissioning of enhancer elements. The recent report that loss of the tumor suppressor gene

ARID1A causes de-differentiation of neuroblastoma cells supports this hypothesis (Shi et al., 2020).

SEs are large genomic regions marked heavily by H3K27ac and densely bound by transcription factors
(Parker et al., 2013; Whyte et al., 2013). These regions control cell fate-determining genes, and
disruptions to SEs occur in cancers including neuroblastoma (Gartlgruber et al., 2021; Lovén et al.,
2013; van Groningen et al., 2017). We found that neuroblastoma cells marked by high or low CD49b
expression have distinct SE profiles, which is strong evidence that the CD49b antigen distinguishes
different biological states. Additionally, one of the SEs we identified in CD49b-high cells overlaps with
the ltga2 gene, which encodes the CD49b antigen. This suggests that CD49b is not merely a marker of
proliferative, immature cells, but may have an important role in establishing such a state. Intriguingly,
CDA49b activates the AKT pathway in esophageal squamous cell carcinoma and hepatocellular
carcinoma (Huang et al., 2021; Juratli et al., 2022), suggesting a mechanistic link between the antigen
and a correlated signaling network. While functional studies of CD49b are outside the scope of this

report, we anticipate it will be an interesting avenue for future studies.

Although SEs active in CD49b-high cells have diminished H3K27ac signal in CD49b-low cells, we
found these same SEs to maintain high levels of H3K4mel. Similarly, maintenance of the H3K4me?2
priming mark at SEs has been observed across macrophage subtypes (Gosselin et al., 2014). H3K4mel
marks act by recruiting the BAF complex to ordinary enhancers (Local et al., 2018), where the BAF
complex establishes accessible chromatin as a key step in enhancer activation (Vierbuchen et al., 2017).
To our knowledge, whether the H3K4mel mark plays a priming role in SEs as well as at traditional
enhancers has not been explored. We speculate that multipotent cells may maintain alternate fate
potentials by mono- or dimethylating H3K4 in SE regions, thus recruiting the BAF complex and

generating open chromatin that can be rapidly activated to initiate expression of novel fate-determining
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transcripts. This model would correlate with the recent description of domains of regulatory chromatin
(DORC:s), which are large regions around fate-determining genes with an open chromatin structure (Ma
et al., 2020). DORC:s correlate highly with SEs identified by H3K27ac signal, and chromatin
accessibility at DORCs generally precedes gene expression. Future work to test these hypotheses and

establish the underlying mechanisms could yield valuable insights for neuroblastoma therapy.

Materials and Methods

Cell Lines and Cell Culture

3T3 Swiss (CCL-92), N2a (CCL-131) and SH-SYS5Y (CRL-2266) cells without mycoplasma detection
were obtained from ATCC (Manassas, VA). SH-SYS5Y cell identity was confirmed by short tandem
repeat testing by ATCC. 3T3 cells were maintained in DMEM media (#11965-118 ThermoFisher,
Waltham, MA) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin (pen-
strep). N2a cells were maintained in EMEM media (#12-611F Lonza, Basil, Switzerland) supplemented
with 10% FBS and 1% pen-strep. SH-SYS5Y cells were maintained in DMEM/F12 (1:1) media
(#11330-032 ThermoFisher) supplemented with 15% FBS and 1% pen-strep. Cells were monitored
daily and passaged when they reached 80% confluency. All experiments were performed on cells less

than ten passages from delivery from ATCC.

Flow Cytometry and Cell Sorting

All flow cytometry and cell sorting was performed at the Harvard Stem Cell Institute Center for
Regenerative Medicine Flow Cytometry Core facility on FACSAria instruments (BD Biosciences, East
Rutherford, NJ). Cells were trypsinized, spun down, resuspended in PBS plus 10% FBS, and counted.
Cells were blocked in PBS with 10% FBS on ice for 20 minutes, stained for 20 minutes on ice with the
following antibodies at the following concentrations: anti-mouse CD49b 1:500 (#103511 Biolegend,
San Diego, CA), anti-human CD49b 1:750 (#359310 Biolegend), anti-mouse gp130 1:100 (#149404
Biolegend), anti-human gp130 1:100 (#362010 Biolegend), anti-phospho-Akt 1:50 (#4071 Cell
Signaling Technology, Danvers, MA). Scatter profile and DAPI staining were used to exclude debris,
doublets, and dead cells. Gating for analysis was performed as described in the Results section. All

analysis was conducted using FlowJo software (BD Biosciences).
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349  Quantitative PCR

350

351 Total RNA was isolated from cells using RNEasy mini kits (Qiagen, Germantown, MD). Reverse

352 transcription and cDNA amplification were done using the iTaq Universal SYBR Green One-Step Kit
353 (Bio-Rad, Hercules, CA) and a CFX96 real-time system (Bio-Rad, Hercules, CA). Primer sequences
354  for the murine genes ltga2, Ngfr, Elavi4, Phox2a, Phox2b, Snap25, Actl6b, and Gapdh (normalization
355 control) and for the human genes ELAVL4, PHOX2A, PHOX2B, SNAP25, ACTL6B, TUBB3, and

356 GAPDH (normalization control) were obtained from the Harvard Medical School PCR PrimerBank.
357  Primer sequences are included in Supplementary Table 1.

358

359  RNA Sequencing and Data Analysis

360

361 Cells were isolated by sorting, after which total RNA was isolated using RNEasy mini kits (Qiagen)
362 and treated with RNase-free DNase (Qiagen). RNA was quantified using the Qubit RNA HS Assay Kit
363 (ThermoFisher). Poly(A)-enriched libraries for sequencing were then generated using the NEBNext
364  Ultra II Directional RNA Library Prep Kit for Illumina and the NEBNext Poly(A) mRNA Magnetic
365 Isolation Module (New England Biolabs, Ipswich, MA). Paired-end sequencing was performed on the
366 Illumina NextSeq instrument at the Harvard University Bauer Core. Reads were aligned to the mm10
367 (mouse) and hg38 (human) reference genomes using STAR 2.7.3 on the Mass General Brigham

368 ERISOne Cluster. Counts were computed using featureCounts 2.0.3 on the ERISOne Cluster.

369 Differential gene expression analysis was performed using the DESeq2 package in R 4.1.0, with count
370 normalization done by DESeq2’s default median of ratios method. Heatmaps were generated with the
371 ComplexHeatmap R package, and volcano plots were generated with the EnhancedVolcano R package.
372 Gene Set Enrichment Analysis (GSEA) was performed using the clusterProfiler R package.

373

374 CUT&RUN and Data Analysis

375

376  Cells were isolated by sorting, after which the CUT&RUN assay was performed using the CUT&RUN
377  Assay Kit (Cell Signaling Technology). The following antibodies were used at 1:50 dilution: H3K4mel
378 (#5326, Cell Signaling Technology) and H3K27ac (#8173, Cell Signaling Technology). Sequencing
379 libraries were built using DNA Library Prep Kit for Illumina (Cell Signaling Technology, Danvers,
380 MA). Paired-end sequencing was performed on the Illumina NextSeq instrument at the Harvard

381 University Bauer Core. Reads were aligned to the mm10 (mouse) and hg38 (human) reference
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genomes using Bowtie 2.4.1 on the Mass General Brigham ERISOne Cluster. SAM files output by
Bowtie were converted to BAM format using Samtools View in the Samtools 1.4.1 package, and BAM
files were filtered for uniquely mapped reads using Sambamba 0.4.7. BAM files were then randomly
downsampled to contain equivalent numbers of reads using Samtools View. Peak calling was
performed on downsampled BAM files using the MACS2 algorithm version 2.1. H3K27ac peaks with
differential signal in CD49b-neg and CD49b-high cells were then identified using the DiffBind package
in R 4.1.0. Super enhancers (SEs) were identified using the ROSE algorithm on downsampled
H3K27ac BAM files (Whyte et al., 2013) in Python 2.7.3, and SEs specifically active in CD49b-neg
and CD49-high cells were then identified using DiffBind. Heatmaps and profile plots were generated
using deepTools 3.5.1. Genome browser tracks were created with the Integrative Genomics Viewer

2.11.1 (Robinson et al., 2011).

Published scRNA-seq Data

Previously-published scRNA-seq data of primary neuroblastoma lesions was queried (Dong et al.,
2020). Data are available from the NCBI Gene Expression Omnibus under accession GSE137804. Raw
data was obtained from the NCBI Sequence Run Archive using the SRA Toolkit “fastq-dump”
command. Genome alignment and feature-barcode matrix generation was performed with the Cell
Ranger “cellranger count” command on the Mass General Brigham ERISOne Cluster. Further analysis
was performed with Seurat in the R environment. Patient samples T10, T34, T69, T71, and T92 were
selected for being high-risk lesions lacking MYCN amplification. Tumor cells were identified based on
cellular barcodes provided in meta data from the depositing authors. Single-cell heatmaps were
generated using the ComplexHeatmap R package, and dot plots were generated using the Seurat

package’s DotPlot function.

Cell Proliferation Assay

5x10° SH-SY5Y cells were plated in each well of 48-well culture dishes after sorting into CD49b-neg
and CD49b-pos populations. At the indicated time points, cell viability was assayed using the CellTiter-

Glo Luminescent Cell Viability Assay (Promega, Madison, WI).

In Vivo Tumor Model
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All animal procedures were approved by the Institutional Animal Care and Use Committee at
Massachusetts General Hospital. A/J albino mice (strain #000646, Jackson Laboratory, Bar Harbor,
ME) at 3 weeks of age were injected on the right flank with 10° N2a cells sorted into either CD49b-neg
or CD49b-high populations. 5 mice were injected with each group of cells. Ten days after injection,
mice were euthanized and tumors were explanted. Tumors were weighed and fixed overnight in 10%

formalin, after which they were transferred to 70% ethanol for long-term storage.

Tumor Histology

Fixed tumors were sectioned, mounted on slides, and stained with hematoxylin and eosin or with
antibodies against Ki-67 or CD49b by the staff at the Histopathology Research Core at Massachusetts
General Hospital. Slides were reviewed and imaged by a board-certified pathologist with expertise in
neuroblastoma (KMC).

Statistical Analysis

Statistical comparisons were performed using the unpaired, two-tailed t-test with p<<0.05 set as the
predetermined level of significance. Statistical testing was performed using GraphPad Prism (San
Diego, CA).
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Figure Legends

Figure 1. Neuroblastoma cells express the CD49b cell-surface antigen

A) gPCR for the indicated genes in the mouse Neuro-2a neuroblastoma cell line, as well as the mouse
3T3 Swiss fibroblast cell line. Bars indicate mean, dots indicate individual replicates, and error bars
indicate standard deviation. Gapdh expression was used for normalization. Two-tailed t-test used to
calculate p-value.

B) Representative flow cytometry plots showing CD49b antigen expression on mouse Neuro-2a
neuroblastoma cells.

C) Representative flow cytometry plots showing CD49b antigen expression on human SH-SY5H

neuroblastoma cells.

Figure 2. CD49b expression distinguishes transcriptionally disparate subpopulations within
neuroblastoma cell lines

A) gPCR for the indicated genes in N2a cells sorted into CD49b-neg and CD49b-high fractions. Bars
indicate mean, dots indicate individual replicates, and error bars indicate standard deviation. Gapdh

expression was used for normalization. Two-tailed t-tests used to calculate p-value.
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B) qPCR for the indicated genes in SH-SYSY cells sorted into CD49b-neg and CD49b-pos fractions.
Bars indicate mean, dots indicate individual replicates, and error bars indicate standard deviation.
GAPDH expression was used for normalization. Two-tailed t-tests used to calculate p-value.

C) Volcano plot showing differentially expressed genes in CD49b-neg N2a cells relative to CD49b-
high N2a cells identified by poly(A)-enriched RNA sequencing. 4251 genes had and absolute value
log2-fold expression difference > 1 and p-value < 0.001.

D) Volcano plot showing differentially expressed genes in CD49b-neg SH-SYS5Y cells relative to
CD49b-pos SH-SYS5Y cells identified by poly(A)-enriched RNA sequencing. 8409 genes had and
absolute value log2-fold expression difference > 1 and p-value < 0.001.

E) Heatmap showing enrichment of selected neuronal marker genes in CD49b-high N2a cells relative
to CD49b-neg N2a cells. For E and F, Heatmaps reflect z-score of log2-scale differences in gene
expression.

F) Heatmap showing enrichment of selected neuronal marker genes in CD49b-pos SH-SYS5Y cells
relative to CD49b-neg SH-SYSY cells.

Figure 3. Single-cell RNA sequencing confirms primary neuroblastoma lesions are heterogeneous
and expression of neuronal genes correlates with cell cycle status

A) Single-cell heatmap showing expression of the indicated neuronal markers in 34,501 tumor cells
isolated from 5 children with high-risk tumors without MYCN amplification.

B) Dot plot showing the proportion of cells expressing the indicated neuronal marker genes, stratified
by cell cycle status inferred from gene expression patterns. Dot size indicates the proportion of cells
expressing each gene, and color indicates the relative level of expression.

C) Proliferation in culture of SH-SYSY cells sorted into CD49b-pos and CD49b-neg fractions. Two-

tailed t-tests used to calculate p-value.

Figure 4. CD49b-neg cells have a distinct repertoire of active enhancers, but maintain the
priming H3K4mel mark on enhancers active in CD49b-high cells

A) Identification of enhancers with greater H3K27ac signal in CD49b-neg or CD49-high cells. Greater
distance below the red line indicates greater specificity for CD49b-high cells, and greater distance
above the red line indicates greater specificity for CD49b-neg cells. Enhancers with a false discovery

rate < 0.001 were deemed specific to one population.
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B) Heatmap and profile plot showing H3K27ac signal at CD49b-high specific enhancers in CD49b-
high (green) and CD49b-neg (blue) cells. For B and D, Heatmaps are centered at enhancer summits and
show 500 base pairs up- and downstream.

C) Heatmap and profile plot showing H3K4mel signal at CD49b-high specific enhancers in CD49b-
high (green) and CD49b-neg (blue) cells. For C and E, Heatmaps are centered at enhancer summits and
show 1000 base pairs up- and downstream.

D) Heatmap and profile plot showing H3K27ac signal at CD49b-neg specific enhancers in CD49b-high
(green) and CD49b-neg (blue) cells.

E) Heatmap and profile plot showing H3K4mel signal at CD49b-neg specific enhancers in CD49b-
high (green) and CD49b-neg (blue) cells.

Figure 5. CD49b-negative cells have a distinct super enhancer profile, but maintain H3K4mel
marks on within super enhancers active in CD49b-high cells

A) Identification of super enhancers with greater H3K27ac signal in CD49b-neg or CD49-high cells.
Greater distance below the red line indicates greater specificity for CD49b-high cells, and greater
distance above the red line indicates greater specificity for CD49b-neg cells. Super enhancers with a
false discovery rate < 0.000001 were deemed specific to one population.

B) Profile plot showing H3K27ac signal at CD49b-high specific super enhancers in CD49b-high
(green) and CD49b-neg (blue) cells. For B-E, Super enhancers are scaled to 25,000 base pairs, and
12,500 base pairs up- and downstream are shown.

C) Profile plot showing H3K27ac signal at CD49b-neg specific super enhancers in CD49b-high (green)
and CD49b-neg (blue) cells.

D) Profile plot showing H3K4mel signal at CD49b-high specific super enhancers in CD49b-high
(green) and CD49b-neg (blue) cells.

E) Profile plot showing H3K4mel signal at CD49b-neg specific super enhancers in CD49b-high
(green) and CD49b-neg (blue) cells.

F) Tracks plot showing signal for H3K27ac, H3K4mel, and input at the /7ga2 super enhancer in N2a
cells. CD49b-high cells are green, CD49b-neg cells are blue. Solid blue bar at the bottom indicates the
super enhancer region, and hashed blue line indicates /¢tga2 coding region. Shaded grey regions are
hand-selected to highlight diminished H3K27ac signal in CD49b-neg cells despite maintenance of
H3K4mel signal. All windows are scaled equally.

Figure 6. Neuroblastoma cells transition between CD49b expression profiles in culture
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A) Representative flow cytometry plots showing reanalysis of N2a cells 7 days after cultures were
initiated with the indicated sorted population.

B) Quantification of the proportion of N2a cells in each CD49b expression category 7 days after
cultures were initiated with the indicated sorted population. Bars indicate mean, dots indicate
individual replicates, and error bars indicate standard deviation.

C) Representative flow cytometry plots showing reanalysis of SH-SYS5Y cells 21 days after cultures
were initiated with the indicated sorted population.

D) Quantification of the proportion of SH-SYS5Y cells in each CD49b expression category 21 days after
cultures were initiated with the indicated sorted population. Bars indicate mean, dots indicate

individual replicates, and error bars indicate standard deviation.

Figure 7. CD49b-neg cells and CD49b-high cells both form CD49b-expressing tumors in vivo

A) Tumor weight immediately after euthanizing mice. Bars indicate mean, dots indicate individual
replicates, and error bars indicate standard deviation.

B) Microscopic examination of tumors grown from CD49b-neg cells. Immunostaining for CD49b
(bottom left) and Ki-67 (bottom right) shows that tumors are diffusely reactive for CD49b and highly
proliferative.

C) Microscopic examination of tumors grown from CD49b-high cells. High-power images of H&E
stains show that there is more eosinophilic cytoplasm that in tumors grown from CD49b-neg cells (top
right). Immunostaining for CD49b (bottom left) and Ki-67 (bottom right) shows that tumors are

diffusely reactive for CD49b and highly proliferative, except in areas of necrosis.

Supplemental Figure 1. Gating strategies for identifying CD49b populations

A) Representative examples of unstained (left) and CD49b-stained (right) N2a cells, with the gates
used to identify CD49b-neg, CD49b-low, and CD49b-high cells.

B) Representative examples of unstained (left) and CD49b-stained (right) SH-SYSY cells, with the
gates used to identify CD49b-neg and CD49b-pos cells.

Supplemental Figure 2. Expression of transcription factor genes associated with adrenergic and
mesenchymal neuroblastoma cell states, as described by van Groningen et al (2017)
A) Heatmaps showing expression of genes encoding for transcription factors associated with the

adrenergic neuroblastoma cell state, showing enrichment in CD49b-neg cells in the indicated cell lines.
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A) Heatmaps showing expression of genes encoding for transcription factors associated with the
mesenchymal neuroblastoma cell state, showing enrichment in CD49b-pos/high cells in the indicated

cell lines.

Supplemental Figure 3. CD49b differentiates neuroblastoma cells with different signaling milieus
A) GSEA enrichment plots showing enrichment of genes associated with the P I3K-AKT Signaling
Pathway GSEA term CD49b-high or CD49b-pos cells in the indicate cell lines relative to CD49b-neg
cells.

B) GSEA enrichment plots showing enrichment of genes associated with the Cytokine-Cytokine
Receptor Interaction GSEA term in CD49b-high or CD49b-pos cells the indicated cell lines relative to
CD49b-neg cells.

C) Heatmaps showing enrichment of genes associated with PI3K-AKT Signaling Pathway GSEA term
in CD49b-pos or CD49b-high populations of the indicate cell lines.

D) Heatmaps showing enrichment of genes associated with Cytokine-Cytokine Receptor Interaction
GSEA term in CD49b-pos or CD49b-high populations of the indicate cell lines.

E) Quantification of flow cytometry analysis demonstrating increased p-Akt/p-AKT levels in CD49b-
expresing cells relative to CD49b-neg cells. Bars indicate mean, dots indicate individual replicates, and
error bars indicate standard deviation.

E) Quantification of flow cytometry analysis demonstrating increased gp130 levels in CD49b-
expresing cells relative to CD49b-neg cells. Bars indicate mean, dots indicate individual replicates, and

error bars indicate standard deviation.

Supplemental Table 1. qPCR primer sequences

Supplemental Table 2. GSEA pathway enrichment in N2a CD49b-neg cells relative to CD49b-
high cells

Supplemental Table 3. GSEA pathway enrichment in SH-SYS5Y CD49b-neg cells relative to
CD49b-pos cells
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