

A rigidity phase transition of Stomatin condensates governs a switch from transport to mechanotransduction

Neus Sanfeliu-Cerdán¹, Borja Mateos², Carla Garcia-Cabau²,
Frederic Català-Castro¹, Maria Ribera², Iris Ruider¹, Montserrat Porta-de-la-Riva¹,
Stefan Wieser¹, Xavier Salvatella^{2,3} and
Michael Krieg^{1*}

¹ ICFO, Institut de Ciències Fotòniques, Castelldefels, Spain,

² IRB, Institute for Research in Biomedicine, Barcelona, Spain

³ ICREA, Barcelona, Spain

* Correspondence to michael.krieg@icfo.eu

July 8, 2022

Abstract

A large body of work suggests that biomolecular condensates ensuing from liquid-liquid phase separation mature into various material states. How this aging process is controlled and if the naive and mature phases can have differential functions is currently unknown. Using *Caenorhabditis elegans* as a model, we show that MEC-2 Stomatin undergoes a rigidity phase transition during maturation from fluid to viscoelastic, glass-like condensates that facilitate either transport or mechanotransduction. This switch is promoted by the SH3 domain of UNC-89/Titin/Obscurin through a direct interaction with MEC-2 and suggests a physiological role for a percolation transition in force transmission during body wall touch. Together, our data demonstrate a novel function for rigidity maturation during mechanotransduction and a previously unidentified role for Titin homologs in neurons.

Main Text

- 1 The ability of cells to sustain and transmit mechanical force is intricately coupled to the con-
- 2 trolled assembly, localization and mechanical properties of the constituent protein complexes
- 3 (1). Stomatin family members are highly conserved scaffolding proteins that are involved in

4 membrane organization (2) and modulate ion channel activity (3–5). The *Caenorhabditis ele-*
5 *gans* (*C. elegans*) ortholog MEC-2 is essential for the sense of touch (6,7) and interacts with the
6 N-terminus of the pore-forming subunit of the mechano-electrical transduction (MeT) channel
7 MEC-4 at its stomatin domain (8). Like in other Stomatin proteins, the N and the C-termini
8 have regions with low complexity composed of repetitive sequences of proline, glycines and
9 serines and little homology to other proteins (fig. S1). In MEC-2, the C-terminal domain
10 was hypothesized as a gating tether thought to modulate mechanosensitive ion channel open
11 probability by a yet elusive protein-protein interaction (9–11).

12 Recent studies have shown that many proteins with intrinsically disordered domains have
13 the propensity to separate from the bulk cytoplasm to form liquid-like condensates in a pro-
14 cess akin to phase separation (12–14). Evidence is mounting that these liquid-like properties
15 are impermanent and the condensates undergo a maturation to glass-like (15) and even solid
16 aggregates (16). Such rigidity transitions have frequently been observed in proteins that form
17 amyloid fibers in neurons and are implicated in disease, thus they are often hypothesized to
18 drive neurodegeneration (17, 18). Accordingly, the processes leading to the condensation and
19 fibril formation are of great interest in pathophysiology and drug discovery (19), especially
20 the interactions within the condensate and their client proteins (20). *In vivo*, these condens-
21 sates bind to, or coacervate other proteins, but their interaction are usually weak and transient
22 in nature. It was proposed recently, that the transient cross-links evolve into stable interac-
23 tions during a percolation transition (19), however, with deleterious consequences on their
24 functionality. On the other hand, by definition, liquid-like condensates cannot sustain me-
25 chanical forces, and it is plausible that liquid-solid transitions also occur in physiologically
26 relevant processes, for example in protein condensates at tight junctions (21, 22), focal ad-
27 hesions (23) during mechanotransduction, or at scaffolding proteins found at sites of active
28 mechano-electrical transduction.

29 MEC-2 Stomatin exists as three phases *in vivo*

30 In order to shed light onto the molecular and cellular function of MEC-2 Stomatin *in vivo*,
31 we first created transgenic animals carrying a single copy of fluorescently labeled MEC-2 and
32 investigated its dynamics within touch receptor neurons (TRNs; movie S1) of immobilized
33 animals. In agreement with previous results, we found that MEC-2 is distributed in discrete
34 punctae along the sensory neurite (8, 24), however, with different dynamic signatures (Fig.
35 1A). MEC-2 resides in two distinct populations within the TRN neurite: in distal regions,
36 punctae were predominantly static with little or no mobility. Closer to the cell body, however,
37 we observed larger fluorescent punctae that rapidly trafficked towards the distal neurite with
38 high processivity and occasional reversals, indicative for motor-driven, ballistic transport on
39 short timescales (movie S1 and Fig. 1A). Based on their behavior and location, we termed the
40 two pools mature and naive, respectively. Interestingly, the naive pool displays rich behavior
41 reminiscent of liquid-like droplets (14) as we frequently observed fusion events between par-
42 ticles that encountered each other, fission of a single compartment and gel-like deformation
43 presumably induced due to motor protein activity (Fig. 1B and movie S2). We thus reasoned
44 that MEC-2 existed as phase separated biomolecular condensates (BMCs) *in vivo* with spa-
45 tially distinct properties.

46 To establish that MEC-2 forms different BMCs with distinct properties along the neurites
47 *in vivo*, we compared the behavior of the mature and naive populations. Because the naive
48 pool is very dynamic in TRNs, we established a transgenic model that expressed MEC-2 in
49 hypodermal cells, where these condensates remained primarily static. We selectively bleached
50 individual punctae in the mature and naive pools and imaged their fluorescence recovery after
51 photobleaching during 3 minutes (FRAP; Fig. 1C). We observed that the naive, dynamic pool
52 recovered quickly, while the mature, immobile pool did not recover at all during the course
53 of the experiment. This suggests that the naive punctae are more liquid-like than the mature
54 ($D \approx 0.2\mu\text{m}^2/\text{s}$ vs. $\approx 0\mu\text{m}^2/\text{s}$) presumably due to rapid exchange of MEC-2 between the

55 condensed and the dilute phases (25).

56 We hypothesized that C-terminal domain drives the transition from the naive to the mature
57 pool, which constitute the sites of mechano-electrical transduction. We engineered a fluores-
58 cent protein followed by a proteolytic TEV cleavage site into MEC-2, that separated the PHB
59 domain and the C-terminus (Fig. 1D, arrow). In absence of the TEV protease, this construct
60 localized in discrete regions within distal parts of the sensory neurite, indistinguishably from
61 wildtype MEC-2 proteins. When we coexpressed the TEV protease under the TRN-specific
62 *mec-17* promotor, we did not observe distinct punctae of the N-terminal, fluorescently labeled
63 fragment, indicating that the C-terminal domain is necessary for condensation of MEC-2 into
64 distinct domains (Fig. 1D). We next compared the dynamics of the continuous MEC-2 phase
65 with the MEC-2 within the mature complexes in the distal neurite using FRAP. Whereas the
66 cleaved MEC-2 lacking the C-terminal domain recovered quickly and completely after photo-
67 bleaching (Fig. 1E and movie S3, $D \approx 0.25 \mu\text{m}^2/\text{s}$), the MEC-2 inside the individual spots re-
68 covered only partially over the course of the experiments ($D = 1 \cdot 10^{-3} \mu\text{m}^2/\text{s}$). To understand if
69 the MEC-2 C-terminal domain and its propensity to form distinct punctae relate to its function
70 in sensing mechanical touch, we assayed the effect of the TEV cleavage on aversive behavior.
71 Consistent with the idea that the mature punctae constitute active sites of mechanotransduc-
72 tion, the conditional C-terminally truncated MEC-2 was not able to transduce external touch
73 into avoidance behavior (Fig. 1F).

74 Taken together, MEC-2 forms distinct, liquid-like punctae that undergo a striking mobility
75 and viscosity switch along the neurite, suggesting a role of the C-terminal domain for proper
76 protein maturation, localization and function.

77 **MEC-2 forms condensates that mature into a viscoelastic, glass-like mate-
78 rial**

79 Protein structure prediction algorithms based on the AlphaFold2 (26) (Fig. 2A) did not fold the
80 MEC-2 C-terminal domain in a well-defined three-dimensional structure. Indeed, this domain

81 presents high propensity to be intrinsically disordered (ID) and undergo liquid liquid phase
82 separation (LLPS) (27) (Fig. 2B, PScore (28)). To confirm this, we expressed and purified the
83 domain (residues 371-481) and assessed its structural and phase separation properties *in vitro*.
84 As expected in an ID protein, the solution-state nuclear magnetic resonance (NMR) ^1H - ^{15}N
85 spectrum displayed low ^1H chemical shift dispersion (Fig. 2C) and the main chain chemical
86 shifts largely corresponded to those of a statistical coil (Fig. 2D) (29). The intensities of
87 the NMR signals across the sequence of the C-terminal domain where however non-uniform:
88 in particular the signals corresponding to the region $^{382}\text{KKIRSCCLYKY}^{392}$ appeared broad
89 beyond detection (Fig. 2, C and D). This behavior has been observed in ID proteins that can
90 undergo LLPS, in which low signal intensity identify regions of sequence involved in intra- or
91 inter-molecular interactions that stabilize the phase separated state (30, 31). Next we tested the
92 phase separation properties of the MEC-2 C-terminal domain *in vitro* and indeed observed that
93 it forms liquid droplets (Fig. 2E and fig. S2A) upon heating (Fig. 2F) and at high ionic strength
94 (fig. S2B), suggesting that the droplets are stabilized by hydrophobic interactions. The liquid
95 droplets fused and their fluorescence quickly recovered after photobleaching, confirming their
96 liquid character (Fig. 2, G and H, fig. S2C, and movie S4); these results are qualitatively
97 equivalent to those observed for the BMCs formed by the full length protein *in vivo* (Fig. 1, B
98 and C).

99 Taken together, our data establishes that the MEC-2 C-terminal domain is intrinsically
100 disordered and drives the formation of BMCs at distal sites of the TRN neurite, supporting
101 the idea that the correct condensation and compartmentalization at the membrane is due to a
102 liquid-solid transition.

103 We next directly tested the idea that MEC-2 undergoes spontaneous maturation from liq-
104 uid to gel-like droplets. We set up an *in vitro* optical tweezer rheology assay (15, 32) to de-
105 termine the viscoelastic properties of phase separated MEC-2 condensates (Fig. 2I). To do
106 so, we performed step-indentations of 100 nm with a trapped microsphere and recorded the
107 time-dependent viscoelastic stress relaxation (fig. S3, A and B). Freshly prepared droplets

108 (t=0h) rapidly relaxed to a constant value close to the baseline level with a single time con-
109 stant, indicating that naive MEC-2 condensates cannot store mechanical stress. In contrast, the
110 relaxation time progressively increased with age for all time points tested (fig. S3C), remi-
111 niscent of a glass transition with an age-dependent increase in viscosity but without apparent
112 effects on condensates stiffness (fig. S3, D and E). To better understand the mechanical be-
113 havior of MEC-2, we deformed the droplet sinusoidally (Fig. 2I iii) with an optically trapped
114 microsphere at varying frequencies and recorded the resultant force (Fig. 2J). To our surprise,
115 we observed that slow oscillations barely resulted in a measurable force for naive and mature
116 droplets, but increased substantially for faster oscillations, especially for droplets of 48h in
117 age (Fig. 2J). This suggests that the mechanical response of purified MEC-2 strongly depends
118 on its age and on the rate of deformation, and might have pronounced consequences on the
119 frequency selection during touch sensation *in vivo*.

120 Altogether, MEC-2 forms phase-separated liquid droplets that age into stress-storing, slowly
121 relaxing condensates. We reasoned that the aging properties are important for mechanosens-
122 ing.

123 **A C-terminal proline-rich motif is critical for mechanotransduction**

124 Several MEC-2 point mutations have a strong touch defect without affecting trafficking of
125 MEC-2 into the sensory neurite of the TRNs (8). One of these alleles, *u26*, encodes an
126 arginine-to-histidine conversion at position 385 of its C-terminus (R385H) within the intrinsi-
127 cally disordered region (IDR), close to a proline rich motif (PRiM) with the consensus PxxP,
128 reminiscent of SH3-binding domains (33, 34) .

129 Animals carrying the R385H mutation neither displayed a behavioral response (fig. S4A)
130 nor mechanoreceptor calcium transients in TRNs when punched into the body wall within a
131 microfluidic chip (fig. S4, B and C, and movie S5) (35). Importantly, the MEC-2(R385H) lo-
132 calized to TRN dendrites indistinguishably to wildtype MEC-2 *in vivo* (fig. S5) and colocalized
133 with the MeT MEC-4 channel (fig. S4D), indicating that they sort into the same biomolecu-

134 lar complex. In order to investigate the role of the C-terminus in an interaction in *trans*, we
135 overexpressed a peptide derived from the MEC-2 C-terminus encompassing the wildtype or
136 the mutant PRiM, and assayed the animals's response to touch. Whereas the mutant PRiM did
137 not interfere with touch when overexpressed in wildtype animals, the wildtype PRiM domain
138 led to a significantly reduced touch response (fig. S4E). This indicates that the wildtype but
139 not the mutant PRiM domain can competitively interfere with the sense of touch and raises
140 the possibility that the MEC-2 PRiM acts in *trans*, through an interaction with an unknown
141 binding partner, rather than misfolding.

142 To understand why a single residue completely abrogates a behavioral phenotype with-
143 out any visible defect in trafficking and axonal localization, we expressed the R385H mutant
144 MEC-2 C-terminal domain *in vitro* and studied its structural propensities and LLPS behaviour.
145 We found that it formed droplets indistinguishable from wildtype MEC-2 (fig. S4, F-J). The
146 NMR spectra of the R385H mutation, however, showed a strong signal intensity reduction
147 close to the PRiM as compared to wildtype MEC-2 (fig. S4, K-M), indicating that the R385H
148 point mutation affects MEC-2 homotypic interactions. Indeed, the mutant MEC-2 forms
149 closer contacts within mature condensates *in vivo* compared to wildtype MEC-2, as deter-
150 mined through FRET experiments from doubly transgenic animals expressing MEC-2::Venus
151 or MEC-2(R385H)::Venus and MEC-2::mCherry (fig. S4N), however, with unchanged viscos-
152 ity (fig. S4 O-Q).

153 Together, these analyses suggest that the R385H mutant MEC-2 has stronger homotypical
154 intermolecular interaction that involves a sticky region proximal to a PRiM SH3 binding motif
155 and leads to a defective touch response.

156 **MEC-2/Stomatin and UNC-89/Titin/Obscurin co-assemble into punctate 157 structures**

158 One proposed function of BMCs is to locally concentrate binding partners to accelerate bio-
159 chemical reactions (14, 36), e.g. nucleate actin filaments (37). Based on the stereotypic PRiM

160 present in the C-terminal part, we hypothesized that MEC-2 interacts with an SH3 domain (38).
161 There are in total 81 proteins with an SH3 domain in the *C. elegans* proteome (39), many of
162 which are unrelated to a specifically neuronal function. In order to identify the potential inter-
163 action partners of the SH3 binding motif, we performed a neuronal RNAi feeding experiment
164 (Fig. 3A, inset) to knock-down 35 of 41 proteins with an SH3-domain (39) that are reportedly
165 expressed in TRNs (40, 41) (table S1) and available in the collection (42, 43). We used mutant
166 animals for systemic RNAi (44), but specifically sensitized in TRNs. When we cultured these
167 animals on bacteria expressing *mec-4* or *mec-2* RNAi constructs (42, 45), they significantly
168 decreased their response to touch, whereas the empty vector did not affect touch sensitivity.
169 Surprisingly, we found that only the knockdown of *unc-89*, a member of the Titin family (Fig.
170 3A and fig. S6A; (46, 47)), gave a reproducible and robust reduction in the response to touch.
171 The incomplete knockdown was enhanced in the *unc-89/mec-2* double feeding, suggesting a
172 role in the mechanotransduction pathway. Because the function of UNC-89 and Titin in gen-
173 eral was previously unknown in neurons, we chose to study its role in neuronal physiology in
174 general and touch in particular.

175 We first confirmed *unc-89* expression in TRNs with a driver construct that contained a GFP
176 fusion to the genomic fragment including its promotor and the first three exons. In addition
177 to TRNs, we observed noticeable expression in motor neurons and some neurons in the head
178 and the tail, apart from the previously described expression in body wall muscles (fig. S6B
179 and ref (46)). Next, we generated a knockout of the largest SH3-containing isoforms using
180 CRISPR/Cas9 (fig. S6, C and D). Even though these knockout animals had a modest reduction
181 in the behavioral response to touch compared to wildtype animals (fig. S6E), they consistently
182 displayed lower calcium activity after mechanical stimulation in the body wall chip (35) as
183 compared to controls (Fig. 3B and fig. S6F). To further confirm the cell-specific role of
184 UNC-89, we conditionally deleted *unc-89* through the combination of site-specific CRE/lox
185 recombination and auxin-induced degradation (AID, (48)). Coexpression of a panneuronal
186 (fig. S6G) or a TRN-restricted CRE recombinase and TIR ligase after feeding the animals

187 with auxin led to a slight but significantly decreased animals's touch response (Fig. 3C).
188 Collectively, this indicates that UNC-89/Titin/Obscurin is involved in the sense of touch in
189 TRNs of *C. elegans*.

190 We next sought to decipher how UNC-89 enables full touch sensitivity in TRN neurites.
191 Several components of the MeT channel complex associate into a punctate pattern (8, 24) and
192 we asked if the *unc-89* knockout disrupts the punctate distribution of MEC-2 in the distal
193 neurites. Even though the overall distribution of MEC-2 in the UNC-89 knockout is similar to
194 the wildtype animals (fig. S5), we consistently observed that the median interpunctum interval
195 (IPI) is significantly smaller ($IPI_{wt} = 3.1\mu\text{m}$ vs $IPI_{u89} = 2.1\mu\text{m}$). We were also interested
196 in the distribution of UNC-89 and expected to see a similar pattern for MEC-2. However,
197 when we tagged the endogenous *unc-89* locus at the N-terminus with GFP (fig. S6C), we
198 visualized expression that was largely restricted to the muscles (fig. S6H). With the previous
199 functional results in mind (Fig. 3, A-C and fig. S6, E and G), we conjectured that UNC-
200 89 is expressed in TRNs (table S1, fig. S6B), however, in quantities that cannot be detected
201 above background level if tagged with a single fluorophore. Thus, we sought to visualize
202 the endogenous distribution using multiplexed split FP complementation (49) by tagging the
203 endogenous locus with 5x wrmScarlet(11) and coexpressing wrmScarlet(1-10) selectively in
204 TRNs. In this case, we could observe cortical UNC-89 in the cell body of TRNs and a faint
205 expression in the neurites (Fig. 3D), which partially colocalized with MEC-2. This may
206 indicate a possible interaction with MEC-2.

207 We then directly addressed whether MEC-2 colocalizes with UNC-89 through multivalent
208 interactions of their corresponding PRiM and SH3 domain. Specifically, we tested if the SH3
209 domain of UNC-89 would co-condensate with MEC-2 along the neurite. To explore this idea,
210 we expressed the UNC-89 SH3 domain fused to GFP together with a MEC-2::mCherry. Strik-
211 ingly, we observed that both proteins sorted into the same punctae and colocalized along the
212 neurite (Fig. 3E). In contrast, we neither observed colocalization of UNC-89 with the MEC-
213 2(R385H) mutant nor with a GFP fusion to an SH3 domain borrowed from a protein that does

214 not interfere with touch sensation (*spc-1*, see above, Fig. 3, A and E). The picture that is
215 emerging suggests that MEC-2 C-terminus recruits UNC-89 through its SH3 binding domain
216 in TRNs *in vivo*. To further challenge this result, we expressed full-length MEC-2 in body
217 wall muscles, where it is normally not expressed, but contains prominent expression of UNC-
218 89. Consistently, we observed that it formed a characteristic pattern composed of punctae and
219 stripes, that seemingly overlapped and colocalized with the stripes seen for UNC-89 (fig. S6I).

220 Lastly, we investigated whether MEC-2 and UNC-89 could interact and co-phase separate
221 *in vitro*. We first prepared MEC-2 samples that undergo LLPS and doped them with UNC-
222 89, at molar ratios 1:0.1 and 1:1 (MEC-2:UNC-89). The samples at ratio 1:0.1 showed that
223 UNC-89 can indeed partition into the MEC-2 droplets, both of the WT and the R385H mu-
224 tant (Fig. 3F). Interestingly, the samples at 1:1 ratio showed complete dissolution of MEC-2
225 droplets (fig. S7A), indicative of a direct interaction between MEC-2 and UNC-89, that com-
226 petes against the homotypic interactions driving phase separation. To confirm these results,
227 we co-assembled purified MEC-2 C-terminus with the UNC-89 SH3 domain and tested the in-
228 teraction by NMR. When we added the unlabeled SH3 to ¹⁵N labeled MEC-2, we observed a
229 weak but consistent intensity reduction in residues adjacent to the PRiM. This signal intensity
230 reduction was nearly absent in the MEC-2(R385H) mutant, indicating that the mutation abro-
231 gates binding (Fig. 3G and fig. S7, B and C). We also performed the reciprocal experiment
232 (unlabeled MEC-2 with a ¹⁵N labeled UNC-89 SH3 domain) (fig. S7, D and E) and identified
233 that binding occurs between the RT and nSrc loops of the UNC-89 SH3 domain, as expected
234 for a canonical SH3 binding mode (34) (Fig. 3H). Taken together, these results show that
235 MEC-2 binds with low affinity to UNC-89 *in vitro* and can contribute to organizing UNC-89
236 at mechano-electrical transduction sites *in vivo*. The low affinity of SH3 domain interactions
237 could play a functional role, allowing protein-protein interactions to be rapidly remodeled in
238 response to cellular stimuli (34, 50).

239 Finally, we assessed whether UNC-89 partitioning and binding to MEC-2 had an influence
240 in the maturation propensity of MEC-2 droplets *in vitro*. We incubated MEC-2 (WT and

241 R385H) phase separated samples without or with UNC-89 (1:0.1) over 24h and assessed the
242 morphology of the liquid droplets. Strikingly, the MEC-2 WT with UNC-89 sample clearly
243 underwent a liquid-to-solid transition giving rise to the formation of fibrilar-like structures,
244 which was not observed in the case of MEC-2 R285H mutant or in the samples without UNC-
245 89 (Fig. 3I). This result indicates that UNC-89 partitioning and binding to the PRiM in MEC-
246 2 weakens a heterotypic interaction between MEC-2 molecules that kinetically stabilizes the
247 MEC-2 condensates against maturation. This process, known as heterotypic buffering (19), is
248 one of the mechanisms that preserves the liquid character of condensates *in vivo*. Although
249 heterotypic buffering is considered key for preventing the liquid to solid transitions thought to
250 be associated with neurodegeneration, we speculate that it here acts as a mechanism to keep
251 MEC-2 primed for undergoing fast functional maturation upon stimulation.

252 **MEC-2 transmits force during body wall touch**

253 Until here we showed that mature MEC-2 condensates stiffen *in vivo* and endow mechanosen-
254 sitivity to external touch at distinct mechanoreceptor sites along the neurite (Fig. 3). We next
255 sought to establish whether or not MEC-2 is able to sustain mechanical load during touch
256 and act directly in transmitting force to the MeT channel. We thus engineered a genetically
257 encoded FRET-tension sensor module (TSMod, (51, 52)) into full-length MEC-2 between the
258 stomatin domain and the PRiM (Fig. 4A), with the aim to visualize changes in FRET during
259 touch. Importantly, this insertion did not disrupt localization of MEC-2 (Fig. 4B, fig. S5
260 and fig. S8A) and preserved partial touch sensitivity (Fig. 4C). We then immobilized these
261 transgenic animals into the body wall chip (35) and applied increasing pressure to the side of
262 the animal and released the pressure in one step (Fig. 4D), while imaging FRET signal in a
263 confocal microscope (53). In animals bearing the tension sensitive MEC-2 FRET module, we
264 observed a steady decline in the FRET efficiency that is negatively correlated to the pressure
265 applied. Upon sudden pressure release, the FRET index increased again to the same value as
266 before the indentation, indicating that the MEC-2 can reversibly transmit force between the

267 PHB and the C-terminal domain. Consistent with previous reports, tension was highest in re-
268 gions directly below the actuator and did not propagate into the distal regions of the axon (54).
269 In the C-terminal TSMod fusion intended to serve as a pressure-insensitive control (fig. S8B)
270 and in the transgenic animals bearing the MEC-2(R385H) mutation (Fig. 4) we did not ob-
271 serve changes in FRET index with the applied pressure. Importantly, artificially separating the
272 FRET cassette with a 200 amino acid spacer domain led to constitutively low FRET values
273 (fig. S8A), indicating that our FRET measurements report reliable values. Lastly, we asked
274 whether or not the naive, sol-like fraction of MEC-2 would be able to transmit forces. Due to
275 the difficulty of performing the FRET measurements on moving spots under the application of
276 an external pressure, we resorted to the conditionally, C-terminally truncated construct after
277 TEV cleavage. This truncated protein was not able to mature into distinct gel-like condensates
278 and is characterized by high FRET values (fig. S8A), similar to the C-terminal no-force control
279 (fig. S8B). Together, this suggests that MEC-2 is under mechanical tension during touch and
280 therefore is an integral component of the force transmission pathway in *C. elegans* TRNs.

281 Discussion

282 Despite the efforts in framing a unifying principle of mechanosensation (55, 56), the diversity
283 of mechanisms describing the transduction of mechanical stress into biological signals is ever
284 expanding (53, 57, 58). We have added a new spotlight on stress-responsive biomolecular
285 condensates that coral mechanosensitive ion channels and host components of the cytoskeleton
286 to activate force gated ion channels.

287 Our notion that MEC-2 forms BMCs is consistent with previous observations that Stomatin
288 forms higher order oligomers (4), while the IDR of MEC-2 directly mediates protein-protein
289 interactions (7, 59) and maturation from the liquid into gel-like pools. Because the diameter
290 of *C. elegans* neuronal axons is not constant along their length, we propose that the liquid-
291 like property facilitates transport along the neurite with varying caliber, where material needs

292 to be squeezed through constrictions along the way. Moreover, material can easily be ex-
293 changed with the target sites where it assembles into mechanoresponsive clusters, as observed
294 in tight junctions of zebrafish and MDCK epithelia (21, 22). We speculate that the increase
295 in relaxation time observed *in vitro* (Fig. 2 and fig. S3) has profound consequences on their
296 mechanical function as a tension sensor (15). Once at their target, the MEC-2 condensates
297 undergo liquid-solid transition such that they are able to sustain mechanical stress over long
298 timescales during body wall touch, which is providing a focus for force transmission to the
299 ion channel. In addition, the solid transition might itself produce a stress that reshapes the
300 neuronal membrane (14, 60). If additional factors and proteins promote the maturation is an
301 open question for future experiments.

302 The data presented here point towards a mechanism by which MEC-2/Stomatin conden-
303 sates host UNC-89/Titin/Obscurin with its SH3 domain, however, it is unlikely that UNC-89
304 is directly involved in force transfer. Rather, we propose that the SH3 binding to MEC-2
305 accelerates a rigidity percolation through crosslinking of the condensate with homotypic and
306 heterotypic interactions that lead to a dynamic arrest and changes in material properties. This
307 increase in the timescale of crosslink failure determines the efficiency of force transmission
308 during touch. Indeed, a change in a single residue within the MEC-2 PRiM that determines
309 the binding to UNC-89 changes the percolation threshold with consequences on material prop-
310 erties, neuronal activity and the touch response. Our results thus demonstrate for the first time
311 a physiological role of a rigidity percolation in mechanotransduction within a biomolecular
312 condensate.

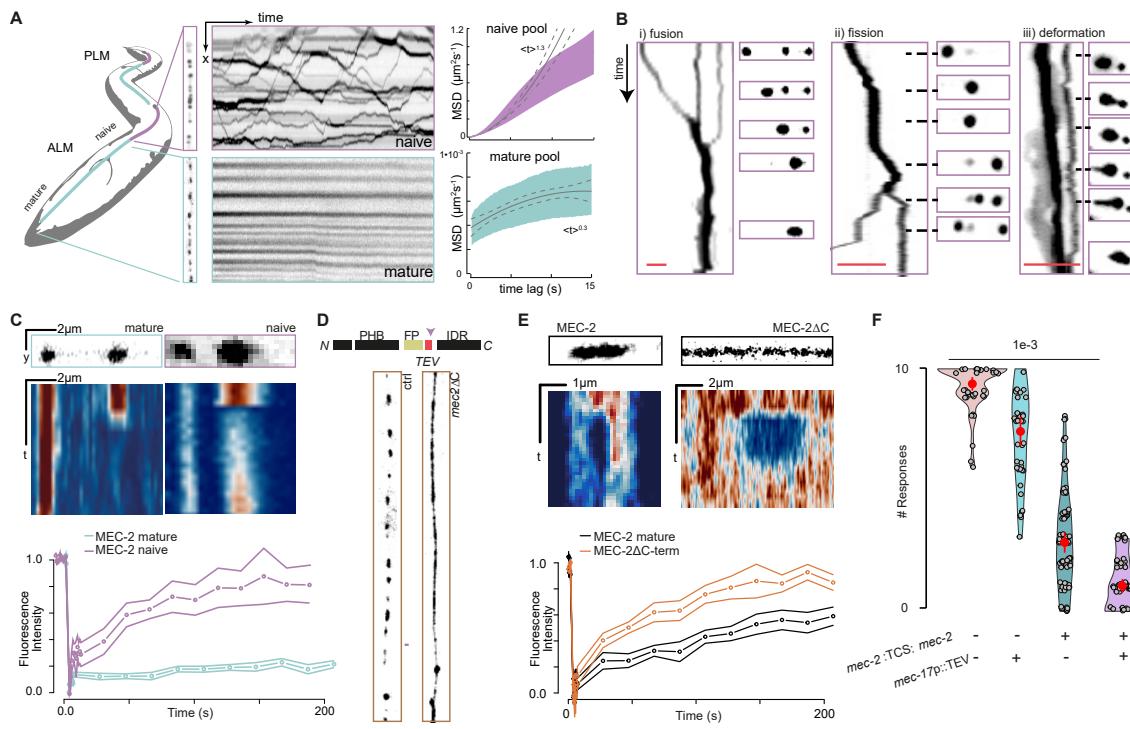
313 Our results show that UNC-89/Titin/Obscurin is expressed and functional in neurons (Fig.
314 3). We observed expression in touch receptor neurons, but also motor neurons and amphid
315 cells of *C. elegans*, confirming recent neuronal RNAseq data (41). The mammalian homolog
316 ObscurinB is also expressed in the brain (47), and might have implications for neurodegenera-
317 tive diseases. Several reports indicate a potential role of Titin in motor neuron diseases. Copy
318 number variations and single nucleotide polymorphism with potential pathogenicity have been

319 identified in patients with spontaneous amyotrophic lateral sclerosis, a fatal motor neuron dis-
320 ease (61, 62). It was hypothesized that these changes in motor neuron function were induced
321 by aberrant Titin expression in muscles (62). Our data showing functional Titin expression in
322 neurons, including motor neurons of *C. elegans*, motivates to revisit the neuronal expression
323 pattern in mammals and the contribution of Titin in motor neuron diseases in humans.

324 Taken together, we identified a mechanism by which the coacervation of a scarce SH3 do-
325 main induces a rigidity percolation in a disordered network, that confers mechanical stability
326 and mechanotransmission during external touch. Future work needs to address how mechani-
327 cal force is transmitted to the percolated networks and modulates the UNC-89/Titin/Obscurin
328 interaction within the condensate.

329 **Acknowledgments** We thank the NMSB and SLN labs for discussions and suggestion through-
330 out the work and for use of their microscopes. We thank the ICFO BIL and NFL for support
331 with animal maintenance and SU8 lithography, respectively. We thank Li-Chun Lin and Shadi
332 Karimi for help with MATLAB code and fabrication of microfluidic devices, respectively. We
333 thank the ICTS NMR facility, managed by the scientific and technological centers of the Uni-
334 versity of Barcelona (CCiTUB), for their help in NMR. We thank the IRB Barcelona advanced
335 digital microscopy facility, for their help with microscopy experiments. We thank Martin Chal-
336 fie, Miriam Goodman, Martin Harterink, Carlo Carolis and the CGC (National Institutes of
337 Health - Office of Research Infrastructure Programs (P40 OD010440)) for providing reagents;
338 Ben Lehner and Julian Cerón for sharing their RNAi libraries.

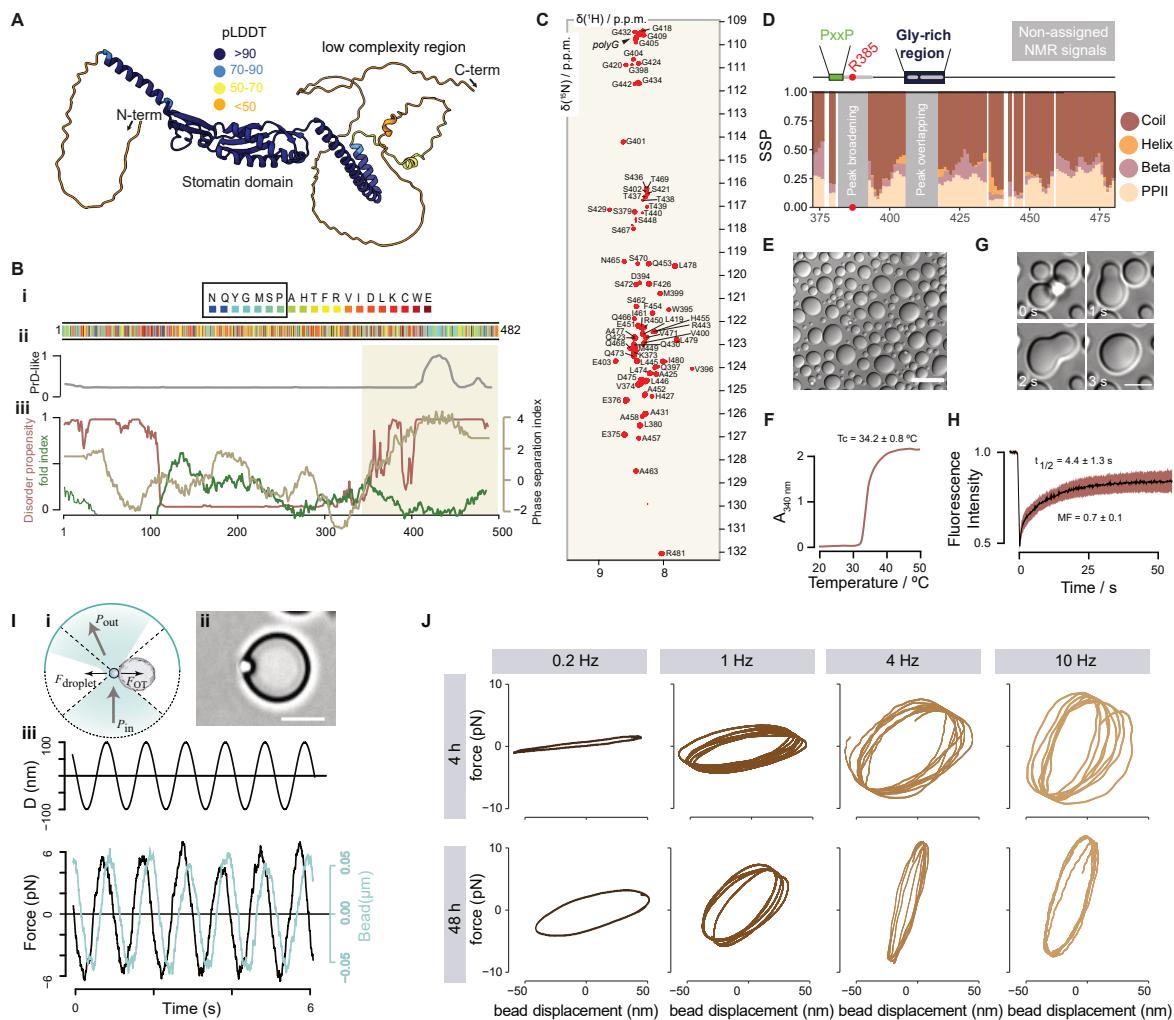
339 **Funding** MK acknowledges financial support from the ERC (MechanoSystems, 715243),
340 HFSP (CDA00023/2018), MCIN/ AEI/10.13039/501100011033/ FEDER “A way to make
341 Europe”, Plan Nacional (NoMeStress, PGC2018-097882-A-I00; FEDER Musico EQC2018-
342 005048-P), “Severo Ochoa” program for Centres of Excellence in R&D (CEX2019-000910-
343 S) and the Ramon y Cajal (RYC-2016-21062 funded by MCIN/AEI /10.13039/501100011033


344 and ESF “Investing in your future”), from Fundació Privada Cellex, Fundació Mir-Puig, and
345 from Generalitat de Catalunya through the CERCA and Research program (2017 SGR 1012),
346 in addition to funding through MINECO (FPIPRE2019-088840 funded by
347 MCIN/AEI/10.13039/501100011033 and ESF “Investing in your future” to NSC). XS ac-
348 knowledges funding from AGAUR (2017 SGR 324), MINECO (BIO2015-70092-R and PID2019-
349 110198RB-I00), and the European Research Council (CONCERT, contract number 648201).
350 BM acknowledges financial support from the Asociación Española contra el Cáncer (FCAECC
351 project #POSTD211371MATE). CGC acknowledges an FPI fellowship awarded by MINECO
352 in the 2018 call. IRB Barcelona is the recipient of a Severo Ochoa Award of Excellence from
353 MINECO (Government of Spain).

354 **Authors contributions** NSC: animal husbandry, molecular biology, CRISPR, CRE recom-
355 bination, optogenetic and behavioral experiments, FRET and FRAP assays, calcium imaging,
356 data analysis and manuscript writing. BM: NMR and LLPS characterization. CGC and MR:
357 LLPS characterization and FRAP. FCC: optical tweezer microrheology. IR: particle track-
358 ing and MSD calculations. MP: molecular biology. XS: study conceptualization. MK: study
359 conceptualization, acquisition of funding, data analysis and manuscript writing.

360 **Competing interests** X.S. is founder and scientific advisor of Nuage Therapeutics. All other
361 authors declare no competing or financial interests.

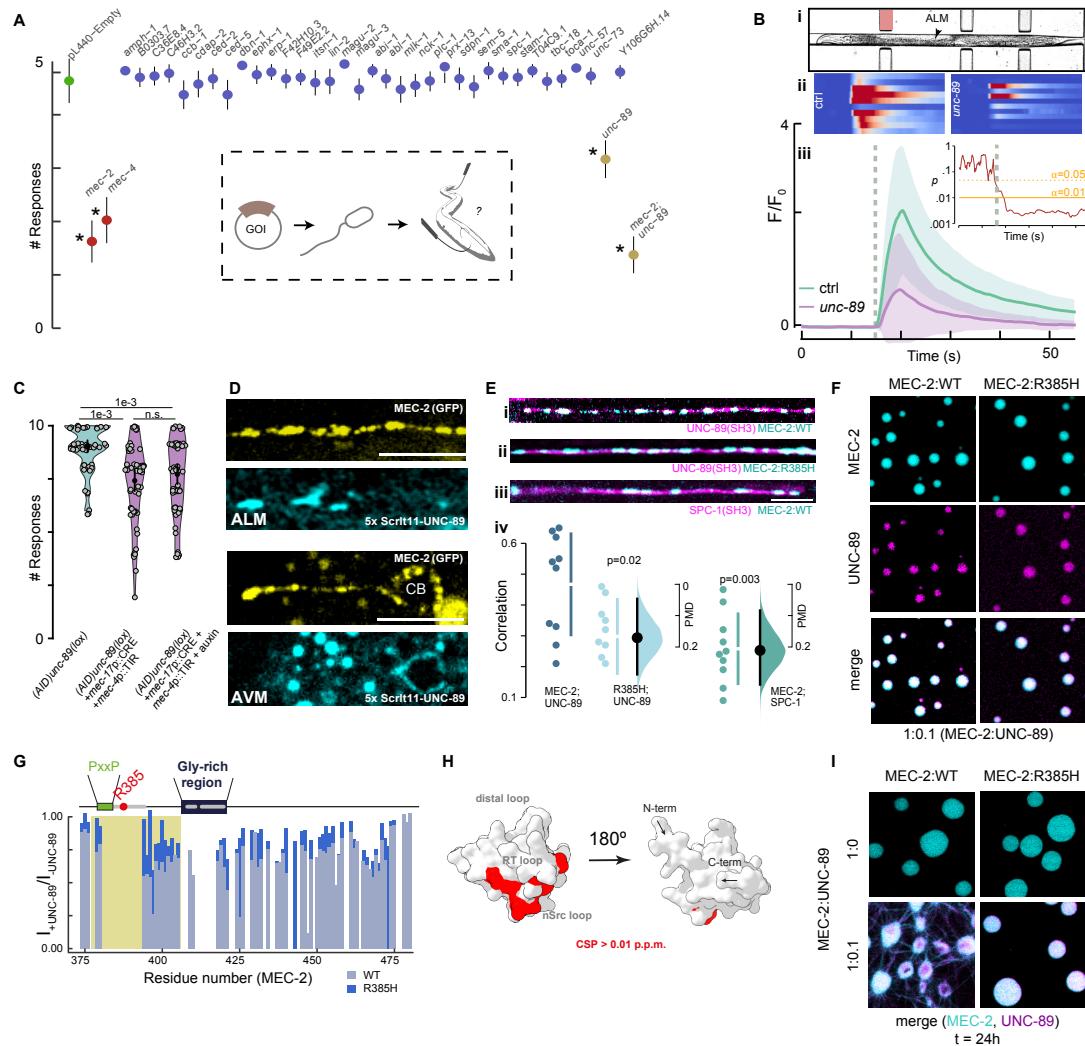
362 **Data and materials availability** All data is available in the manuscript or the supplementary
363 materials.


364 **Figures**

365

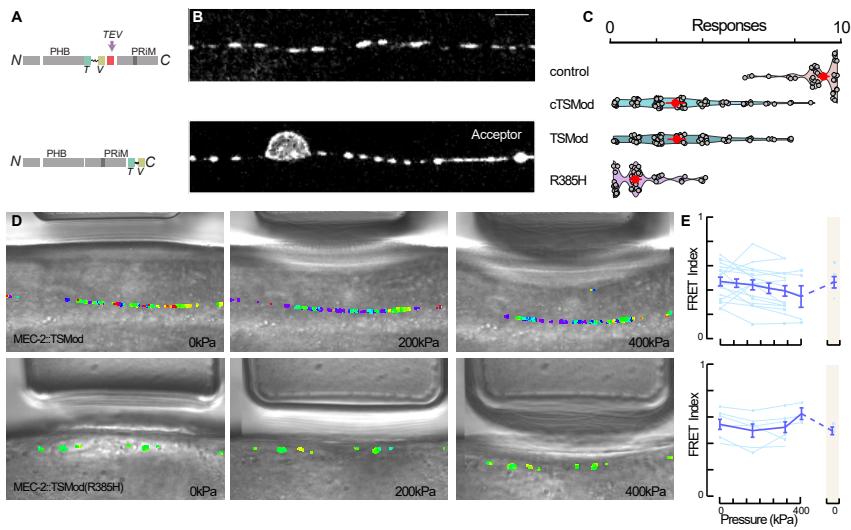
366

367 **Figure 1. Dynamics of sol-gel transition.** (A) Scheme of an animal indicating the naive
368 and the mature pools of MEC-2 within an ALM touch receptor neuron. Representative image
369 and kymograph of the naive, mobile pool and the mature, immobile pool of MEC-2 in the
370 proximal and distal part of the TRN neurite, respectively. Mean square displacement (MSD)
371 vs. timelag for MEC-2 in the naive and the mature fractions as indicated in the scheme to
372 the left. The exponent of $\langle x \rangle^n$ indicates the best fit to a power law. (B) Representative
373 examples of MEC-2 condensates in the naive fraction of the TRN (labelled in purple in the
374 scheme): (i) fusion, (ii) fission and (iii) deformation events plotted in a kymograph and snap-
375 shots during the course of the videos. Scale bar = 5 μm ; sequence length = 5, 13 and 22 s, re-
376 spectively. (C) Representative kymographs (top) and the fluorescence recovery dynamics after
377 photobleaching of *mec-2::mCherry* in the mature pool of TRNs (green) and *mec-2::mCherry*
378 in the naive pool expressed in hypodermal cells (purple). Mean \pm SD , N \geq 10 TRNs. (D)
379 Schematic of the construct and representative images of MEC-2 distribution in TRNs of a
380 *mec-2::TCSMod::TEV::mec-2* animal (see scheme of the protein domains) in absence (left) and
381 presence (right) of TEV protease. PHB, prohibitin domain; FP, fluorescent protein; TEV,
382 Tobacco etch virus cleavage site; IDR, intrinsically disordered region. See quantification of
383 interpunctum distances in fig. S5. (E) Representative kymographs (top) and the fluorescence
384 recovery dynamics after photobleaching for fulllength MEC-2 (inside mature puncta, black)
385 and conditionally truncated MEC-2 (orange). Mean \pm SD , N \geq 10 TRNs. (F) Violin plot of the
386 body touch response derived from wildtype and conditionally truncated animals in absence or
387 presence of TEV protease, and wildtype animals with only TEV protease expression. Circle
388 indicates median, vertical bar indicates SD, N \geq 60 animals. *p*-value derived from Tukey HSD
389 test.



390

391


Figure 2. MEC-2 undergoes a viscoelastic switch during maturation from liquid to solid-like condensates. (A) AlphaFold prediction of MEC-2 Stomatin. Low confidence pLDDT values <50 suggest the presence of disorder in the N- and the C-terminal regions. (B) i) Color coded primary sequence of MEC-2 visualizes clustering of residues implicated in the formation of biomolecular condensates. ii) Prediction of prion-like sequences involved in higher order oligomerization or amyloid formation. iii) Bioinformatic analysis of the MEC-2 primary sequence according to its phase separation index (right axis, beige), disorder property calculation (left axis, red) and fold index (left axis, olive). (C) 2D NMR spectrum of MEC-2 C-terminal domain. (D) Secondary structure propensity of MEC-2 based on NMR chemical shifts. Schematic representation of MEC-2 motifs (PxxP, proline rich motif (green); and a glycine rich region (blue)). Grey boxes represent the non-assignable signals by NMR. (E) DIC microscopy image of MEC-2 liquid droplets *in vitro*, of a 400 μ M sample with 2 M NaCl at 37 °C. Scale bar = 20 μ m. (F) Apparent absorbance measurement as a function of temperature of 200 μ M MEC-2 with 2 M NaCl. The indicated T_c value is the mean and standard deviation of three independent measurements. (G) MEC-2 droplets fusion *in vitro* at the indicated time points from movie S4. Scale bar = 5 μ m. (H) FRAP experiment *in vitro* of 370 μ M MEC-2 with 2 M NaCl at 20 °C. (I) i) Scheme of the optical tweezer based indentation assay, during which a trapped microsphere is oscillated into an immobilized droplet. ii) Representative picture

410 showing the sphere in contact with the droplet. Scale bar = 5 μ m. iii) Representative force-
411 time signal of a typical sinusoidal rheology test. Upper graph indicates trap trajectory, lower
412 graph the bead displacement and force. (J) Force-displacement plot (Lissajous-curve) showing
413 the mechanical response of naive (4h) and mature (48h) droplet with increasing frequency.
414 Opening of the circle indicates increased viscoelastic hysteresis.

Figure 3. UNC-89/Titin/Obscurin is a component of the mechanoreceptor complex in TRNs. (A) Neuronal feeding RNAi screen with SH3-containing proteins naturally expressed in TRNs (see Methods and table S1). Mean \pm SD of head touch responses, N=40. Asterisk indicates a significant *p*-value compared to the empty vector (negative control) derived from nonparametric multiple comparison post-hoc Dunn's test. *p*-values were: *mec-2*: 1e-19; *mec-4*: 3e-15; *unc-89*: 1e-7; *mec-2/unc-89*: 5e-37. Inset shows the scheme of the experimental pipeline. GOI, gene of interest. (B, C) UNC-89 knockout influence in *C. elegans* touch sensation. (B) (i) Brightfield image of an animal inside the body wall chip. (ii) Stacked kymographs of individual calcium recordings for ≥ 10 different animals. (iii) Average normalized fluorescence intensity \pm SD for the GCaMP signal in a wildtype (green) or a UNC-89 KO animal (purple) upon body wall touch inside the microfluidic device (35). The calcium-independent mtagRFP-T as a control measurement is shown in fig S6F. Inset shows the *p*-value for each time point testing the Hypothesis H_0 : wt = *unc-89* with $\alpha=0.01$. Pressure applied for 2 s at the time indicates as grey dotted line. (C) Violin plot showing the body touch response for TRN-specific knockout of *unc-89* by using double effect of CRE/loxP and auxin-induced degradation (AID) compared to the AID and loxP flanked control animals in absence of the *mec-17p::CRE*, the *mec-4p::TIR* or the auxin. Circle indicates mean, vertical bar indicates 95% confidence inter-

434 val, N=60 animals. *p*-value derived from Tukey HSD test. **(D)** Representative images of split
435 wrmScarlet(11)x5::unc-89 complemented with TRN-specific *mec-4p*::wrmScarlet1-10 in *mec-*
436 2::GFP background animals. Scale bar = 10 μ m. CB, cell body. **(E)** Representative images of
437 individual TRNs expressing a translational GFP fusion of the SH3 domain derived from UNC-
438 89 and (i) MEC-2 wildtype or (ii) MEC-2(R385H) mutant, and (iii) SPC-1 α -spectrin SH3
439 domain::GFP together with the wildtype MEC-2::mCherry. Scale bar = 10 μ m. (iv) Altman-
440 Gardner plot of the correlation between the SH3 domains and the MEC-2 condensates (63).
441 **(F)** Confocal fluorescence microscopy images of 200 μ M MEC-2 C-terminus (WT or R385H
442 mutant) labeled with Alexa Fluor 647 together with UNC-89 SH3 domain labeled with Dy-
443 Light 488, at a molar ratio of 1:0.1 (MEC-2:UNC-89), with 2 M NaCl at 37 °C. Scale bar
444 = 20 μ m. **(G)** Intensity ratio between the ^1H - ^{15}N NMR spectra of the C-terminal domain of
445 MEC-2 (WT (light blue) and R385H mutant (blue)) in the presence or the absence of the SH3
446 domain of UNC-89. **(H)** Structural map of the MEC-2 binding to the UNC-89 SH3 domain
447 (represented as an AlphaFold model), derived from the chemical shift perturbations (CSP) in
448 fig. S7D. Red residues correspond to CSP higher than 0.01 p.p.m (threshold). The binding
449 is located at the surface between the RT and nSrc loops of the SH3, as previously described
450 for other SH3 domains. **(I)** Confocal fluorescence microscopy images of 200 μ M MEC-2 C-
451 terminus (WT or R385H mutant) labeled with Alexa Fluor 647 without (1:0) or with (1:0.1)
452 UNC-89 SH3 domain labeled with DyLight 488 (molar ratio MEC-2:UNC-89), with 2 M NaCl
453 after 24 hours of sample incubation at 37 °C. Maturation into fibrillar structures was observed
454 for MEC-2 (WT):UNC-89, but not for MEC-2(R385H):UNC-89 or in absence of UNC-89.
455 Scale bar = 20 μ m.

458 **Figure 4. MEC-2 sustains tension during body wall touch.** (A) Scheme of the FRET-
459 based tension sensing module (TSMod) integrated between the PRIM and the PHB domains
460 (top), or control with free TSMod at the C-terminus (bottom). PRIM, proline-rich motif; PHB,
461 prohibitin domain; TEV, Tobacco etch virus cleavage site; T, donor; V, acceptor fluorophore.
462 (B) Representative images of TRNs expressing the internal and C-terminal MEC-2:TSMod
463 fusion protein. Scale bar = 5 μ m (C) Violin plot of the body touch response derived from
464 N2 wildtype control animals, internal (TSMod) embedded between amino acids 370-371, C-
465 terminal TSMod (cTSMod) fusion and internal TSMod in R385H mutant MEC-2. Circle
466 indicates median, vertical bar indicates SD, $N \geq 60$ animals. p -value derived from Tukey
467 HSD test. (D) Representative brightfield images of wildtype (top) and R385H mutant MEC-
468 2::TSMod::MEC-2 (bottom) transgenic animals within the body wall chip under increasing
469 force application (0-200-400 kPa, indicated by the actuator deflection) overlaid with their
470 corresponding FRET index representation. Scale bar=10 μ m. (E) Quantification of the FRET
471 index vs. pressure delivered to the body wall for $N=6$ animals. Shaded column indicates the
472 resting FRET value at 0 pressure after the pressure is relieved, indicating reversibility of the
473 FRET response.

474

Supplementary material

475

476 A rigidity percolation of Stomatin condensates governs a switch 477 from transport to mechanotransduction

478 Neus Sanfeliu-Cerdán¹, Borja Mateos², Carla Garcia-Cabau², Frederic Català-Castro¹, Maria
479 Ribera², Iris Ruider¹, Montserrat Porta-de-la-Riva¹, Stefan Wieser¹, Xavier Salvatella^{2,3} and
480 Michael Krieg^{1*}

481 ¹ ICFO, Institut de Ciències Fotòniques, Castelldefels, Spain,

482 ² IRB, Institute for Research in Biomedicine, Barcelona, Spain

483 ³ ICREA, Barcelona, Spain

484 * Correspondence to michael.krieg@icfo.eu

485 This material includes:

- 486 • Materials and Methods
- 487 • Figs. S1 to S8
- 488 • Captions to Movies S1 to S5
- 489 • Captions to Tables S1 to S5

490 Other Supplementary Materials for this manuscript include the following

- 491 • Movies S1 to S5
- 492 • Tables S1 to S5

493 Materials and Methods

494 *C. elegans* culture

495 Animals were maintained on Nematode Growth Medium (NGM) plates seeded with *Escherichia*
496 *coli* OP50 bacteria. Age-synchronized young adult animals were used for all the experiments
497 and handled as described (64). All strains generated in this study are listed in table S2.

498

499 Molecular biology and transgenesis

500 All plasmids listed in table S3 were generated using the Gibson assembly method. All coding
501 sequences were verified by sequencing.

502 **Expression of WT and R385H *mec-2* and *unc-89* for *in vitro* purification** Wild-type complementary DNA ranging from position 371 to 481 of MEC-2, which includes the C-terminal domain, was subcloned into a pCoofy expression vector (donated by Carlo Carolis lab) containing an N-terminal polyhistidine affinity tag and a NusA solubility tag for posterior MEC-2 purification, giving to pNS66. This plasmid was used as a template to incorporate the R385H single point mutation (*u26* allele) in MEC-2 by site-directed mutagenesis, giving to pNS73. Wild-type complementary DNA encoding 61-128 amino acids of UNC-89, which includes the SH3 domain, was subcloned into a pET-24 expression vector (ordered from Twist Bioscience) with an N-terminal polyhistidine affinity tag for posterior UNC-89 purification, giving to pNS75. A previous version including 1-454 amino acids of UNC-89 led to unfolded purified protein.

513 **Expression of WT and R385H *mec-2::mCherry*** Wild-type complementary DNA encoding full-length MEC-2 (A isoform) was subcloned into pBCN27 (65) to replace puromycin resistance gene, and fused to mCherry, generating pMK8. Site-directed mutagenesis was used 516 to introduce the R385H single point mutation (*u26* allele) in MEC-2, giving pMK9. Both

517 plasmids were integrated by the MosSCI method (66) in the EG6699 strain, that contains com-
518 patible MosSCI landing sites in Chr. II, leading to MSB87 and MSB88, respectively.

519 **Generation of the *u37* allele in *mec-2*** The *mec-2(u37)* allele (W119Stop), which introduces
520 a premature stop codon, was reproduced by CRISPR/Cas9 genome editing as described in
521 (67). Two crRNAs were designed to cut few base pairs before the target site together with a
522 donor consisting of a ssODN with 35 basepair (bp) homology arms flanking the polypyrimidine
523 adjacent motif (PAM) sequence, the desired single point mutation and 5 other silent mutations
524 to facilitate the posterior screening of the edit by PCR. Briefly, the Cas9-crRNA-tracrRNA
525 RNP complex and the homology repair template (HDR) were assembled in Mili-Q water,
526 together with the Cas9 complexes and HDR for the marker gene *dpy-10*, to introduce the semi-
527 dominant *cn64* allele. 20-30 young adult hermaphrodites were injected with the CRISPR mix
528 and recovered onto individual plates. After 3 days cultured at 25°C, the progeny was screened
529 based on the *dpy* or roller phenotype and singled onto individual plates. Mothers were lysed,
530 screened by PCR for the corresponding edit and verified by sequencing. Sequences of crRNAs
531 and ssODN donors are provided in table S4.

532 **Expression of *mec-2* in muscles and hypodermis** *mec-2* full-length cDNA and mCherry
533 fluorescent protein were amplified from pMK8 and pNS10, respectively, and cloned as trans-
534 lational fusion under the *myo-3* muscle promotor from pNS60. The resulting plasmid, pNS68,
535 was injected in MSB523 animals at 10 ng/ul, as well as the control plasmid pMK23 (*myo-*
536 *3p::mCherry*), leading to MSB938 and MSB937, respectively. For *mec-2* expression in hypo-
537 dermis, the *wrt-2* hypodermal promotor was amplified from genomic DNA (1376 bp), *mec-*
538 *2::mCherry::coLOVpep* was amplified from pNS13 and cloned into pNMSB35 backbone giv-
539 ing pNS70. It was injected at 30 ng/ul leading to MSB991.

540 **Generation of the FRET constructs** The TSMod cassette containing mTFP, 40-amino acid-
541 long flexible linker, mVenus and a TEV protease site, was amplified from pMG319 (68) and

542 inserted between 370-371 amino acids of *mec-2*, leading to pNS2. This plasmid was used
543 as a template to introduce the R385H mutation by site-directed mutagenesis to yield pNS24.
544 The TSMod cassette was also inserted at the C-term of *mec-2* in the plasmid pMK13. These
545 plasmids were integrated by the MosSCI method (66) in Chr II in strains with *mec-2(u37)*
546 background in the endogenous copy (Chr X), generating MSB341, MSB357 and MSB74, re-
547 spectively. The low FRET construct was made by replacing the TSMod cassette in pNS2 with
548 a mTFP-TRAF-mVenus cassette derived from pMG352 (68), which constitutively separates
549 the donor and acceptor fluorophores, and it was injected as extrachromosomal array giving to
550 MSB907. A TEV protease site was fused to mCherry through a spliced leader SL2 (gpd-2-
551 gpd-3) under TRN-specific *mec-17* promotor, giving to pMK97. It was injected into MSB341
552 leading to MSB403.

553 **Promotor trapping of *unc-89*** The *unc-89* promotor expression vector, was generated by
554 amplifying 4 kb upstream to *unc-89* gene and the first three exons, including the SH3 domain,
555 from *C. elegans* genomic DNA (table S3). It was transcriptionally fused to GFP through a
556 spliced leader SL2 (gpd-2-gpd-3), generating pNS49, which was injected in MSB87 animals,
557 leading to MSB656.

558 **Generation of (mEGFP(*loxP*)::AID knock-in)*unc-89*** The Nested CRISPR/Cas9 genome
559 editing (69) was used to knock-in mEGFP at the *unc-89* gene. Two crRNAs were used to
560 cut the N-term of *unc-89* and it was repaired by 200 bp ssODN containing parts 1 and 3 of
561 mEGFP including a *loxP* within a synthetic intron of the mEGFP, along with a flexible linker
562 and a degron site (AID). A new PAM site and a protospacer sequence was inserted in the
563 first fragment to allow the in-frame insertion of the remaining sequence mEGFP2, designed as
564 an IDT gBlock. For the second step, the same universal crRNA mentioned in (69) was used
565 to make the double stranded break (see table S4). The correct in-frame insertion of the full
566 length mEGFP was sequence verified and correct UNC-89 expression was checked by green

567 fluorescence expression in muscles. The knock-in was done on top of MSB87, generating
568 MSB523.

569 **Generation of the conditional and constitutive *unc-89* knock-out** *unc-89* knock-out was
570 generated by CRISPR/Cas9 genome editing using two crRNAs to cut exon 3 of *unc-89* and a
571 108 bp ssODN that led to a frame-shift and absence of the largest isoforms (a,b,e,f,k,l,m,n,o)
572 of *unc-89*, see table S4. It was done on MSB523 mEGFP(*loxP*)::degron::*unc-89*, generating
573 MSB590. Animals were verified by sequencing and by absence of green fluorescence in mus-
574 cles. The resulting animals move normally but show a slight delay in development and body
575 size (fig. S6D).

576 **CRE/loxP and AID degradation** Tissue specific *unc-89* knock-out was generated by in-
577 serting an in-frame *loxP* site at the C-term of the *unc-89* largest isoforms by CRISPR/Cas9
578 genome editing. Two crRNAs were used to cut the C-term of *unc-89* and it was repaired by a
579 129 bp ssODN that carried a *loxP* and 5 silent mutations for posterior screening by PCR (see
580 table S4). It was injected in MSB523 (mEGFP(*loxP*)::AID::*unc-89*) giving to MSB930. The
581 correct in-frame insertion was sequence verified and correct UNC-89 expression was checked
582 by green fluorescence expression in muscles. MSB930 was crossed to MSB926, which carries
583 the TRN-specific *mec-17*p::CRE and the *mec-4*p::TIR (53) leading to MSB953. Alternatively,
584 MSB930 was crossed to MSB933 which carries the panneuronal (*rgef-1*)p::CRE leading to
585 MSB941.

586 **Tagging of *unc-89* SH3 domain** The plasmid to tag *unc-89* SH3 domain (63-127 amino
587 acids) was generated by amplifying the SH3 motif from N2 genomic DNA and cloning it un-
588 der the TRN-specific *mec-18* promotor from pMK105. It was fused to GFP with a 5 amino
589 acids linker from IR83 giving to pNS41. For *spc-1* SH3 tagging, the *mec-17* promotor and *spc-1*
590 SH3 motif were taken from the pMK32 backbone and fused to GFP with a 3 amino acids
591 linker from pDD282 giving to pMK101. They were injected at 20 ng/ul giving to MSB493

592 and MSB544, respectively.

593

594 **Prediction of phase separation behavior**

595 The primary sequence of the MEC-2 A isoform was imported into AlphaFold2 and trans-
596 form restraint Rosetta for structure prediction using the standard parameters for folding. Prion
597 like sequences were predicted using the methodology described in reference (27) with the *C.*
598 *elegans* proteome as a background sequence. Phase separation index was calculated using
599 software presented in (28).

600

601 ***In vitro* assays**

602 **Protein Expression and purification** To obtain unlabelled MEC-2 protein, *E. coli* B834
603 (DE3) cells were transformed with the MEC-2 C-terminal (371-481) plasmid (pNS66). The
604 cells were grown in LB medium at 37 °C until OD=0.6 and induced by the addition of iso-
605 propyl β-D-1-thiogalactopyranoside (IPTG) to a final concentration of 1 mM. The cultures
606 were grown overnight at 25 °C. After 30 min centrifugation at 4000 rpm, the cells were resus-
607 pended in 50 mM Tris, 50 mM NaCl and 1 mM dithiothreitol (DTT) buffer at pH=7.4. The
608 cells were lysed by sonication and centrifuged for 30 min at 20000 rpm. The supernatant was
609 loaded in a nickel affinity column (HisTrap HP 5mL, Cytiva) and eluted with a gradient from 0
610 to 500 mM imidazole. The histidine affinity tag was cleaved with 3C protease through dialysis
611 for 2 h in cleavage buffer (50 mM Tris-HCl, 50 mM NaCl, 1 mM DTT, pH 7.4). 8 M urea
612 was added in order to separate NusA and MEC-2. The reverse nickel column was run with 8
613 M urea to remove the cleaved tag and uncleaved protein. After loading, MEC-2 was eluted
614 with a buffer containing 50 mM Tris-HCl, 300 mM NaCl, 20 mM imidazole, 1 mM DTT and
615 8 M urea at pH=8.0. The eluted protein was injected in a size exclusion Superdex 75 (Cytiva),
616 running in 20 mM sodium phosphate buffer with 1 mM TCEP and 0.05% NaN3 at pH 7.4. The

617 fractions with protein were joined and concentrated to 400 μ M, fast frozen in liquid nitrogen
618 and stored at -80 °C.

619 To obtain unlabelled UNC-89 protein, *E. coli* B834 (DE3) cells were transformed with the
620 UNC-89 SH3 (59-128) plasmid (pNS75). The cells were grown in LB medium at 37 °C until
621 OD=0.6 and induced by the addition of IPTG to a final concentration of 1 mM. After growing
622 4 h at 37 °C, the cells were centrifuged for 30 min at 4000 rpm and resuspended in 50 mM
623 Tris and 50 mM NaCl buffer at pH=7.4. The cells were lysed by sonication and centrifuged
624 for 30 min at 20000 rpm. The pellet was washed twice with washing buffer (PBS, 1 mM DTT,
625 500 mM NaCl, 1% TritonX-100, PIC, PMSF, DNase and RNase, at pH 7.4). The pellet was
626 resuspended in resuspension buffer (25 mM Tris-HCl, 8 M urea, 500 mM NaCl, 10 mM im-
627 idazole, pH 8.0) and centrifuged for 30 min at 20000 rpm. The supernatant was loaded in a
628 nickel affinity column (HisTrap HP 5 mL, Cytiva) and eluted with a gradient from 0 to 500
629 mM imidazole. The histidine affinity tag was cleaved with 3C protease through dialysis for 2
630 h in cleavage buffer (50 mM Tris-HCl, 200 mM NaCl, 1 mM DTT, pH 8). The reverse nickel
631 column was run to remove the cleaved tag and uncleaved protein. After loading, UNC-89 was
632 eluted with a buffer containing 50 mM Tris-HCl, 300 mM NaCl, 20 mM imidazole, 1 mM
633 DTT and 8 M urea at pH=8.0. The eluted protein was injected in a size exclusion Superdex 75
634 (Cytiva), running in 20 mM sodium phosphate buffer with 1 mM TCEP and 0.05% NaN_3 at
635 pH 7.4. The fractions with protein were joined and concentrated to 1 mM, fast frozen in liquid
636 nitrogen and stored at -80 °C.

637 Isotopically $^{15}\text{N}/^{13}\text{C}$ - and ^{15}N -labelled proteins were produced by growing transformed *E.*
638 *coli* B834 cells in M9 minimal medium containing 1 g·L⁻¹ of $^{15}\text{N}-\text{NH}_4\text{Cl}$ and 2 g·L⁻¹ of $^{13}\text{C}_6$ -
639 D-glucose.

640 **NMR experiments** *Backbone assignment.* NMR experiments were recorded at 278 K on a
641 Bruker Avance NEO 800 MHz spectrometer or a Bruker Avance III 600 MHz, both equipped
642 with a TCI cryoprobe. A 400 μ M ^{15}N , ^{13}C double labelled MEC-2 (371-481) sample in

643 NMR buffer (20 mM sodium phosphate (pH 7.4), 1 mM TCEP, 0.05 % (w:w) NaN_3) was
644 used for backbone resonance assignment. A series of 3D triple resonance experiments were
645 recorded, including the BEST-TROSY version of HNCO, HN(CA)CO, HNCA, HNCACB,
646 and HN(CO)CACB (70). Chemical shifts were deposited in BMRB (ID:51491). Secondary
647 structure propensities were derived from the H, N, C', C^α and C^β chemical shifts measured
648 by using solution state NMR and using the δ 2D software (29). A 1200 μM ^{15}N , ^{13}C double
649 labelled UNC-89 SH3 domain (59-128) sample in NMR buffer (20 mM sodium phosphate
650 (pH 7.4), 1 mM TCEP, 0.05 % (w:w) NaN_3) was assigned using the same NMR experiments
651 as described above. Chemical shifts were deposited in BMRB (ID:51490).

652 *Binding mapping.* Chemical shift perturbations (CSP) and signal intensity changes (I/I_0)
653 were extracted by measuring ^1H - ^{15}N correlation spectra of ^{15}N , ^{13}C double labelled MEC-2
654 (371-481) with 10 molar equivalents of UNC-89 SH3 domain, and vice versa. Data analysis
655 was performed with CcpNmr V3 (71).

656 **Sample preparation for *in vitro* experiments** All samples were prepared as follows. First,
657 a buffer stock solution consisting of 20 mM sodium phosphate, 1 mM TCEP and 0.05 % NaN_3
658 was pH adjusted to 7.4 and filtered using 0.22 μm sterile filters (Buffer Stock). A 5 M NaCl
659 solution in the same buffer was also pH adjusted to 7.4 and filtered (Salt Stock). Then, the
660 protein samples were thawed from -80 °C on ice, pH adjusted to 7.4 and centrifuged for 5
661 minutes at 15000 rpm. The supernatant (Protein Stock) was transferred to a new Eppendorf
662 tube and the protein concentrations were determined by their absorbance at 280 nm. The
663 indicated samples were prepared by mixing the right amounts of Buffer Stock, Protein Stock
664 and Salt Stock to reach the desired final protein and NaCl concentrations.

665 **Apparent absorbance as a function of temperature** Absorbance of the samples was mea-
666 sured at 350 nm ($A_{350\text{nm}}$) using 1 cm pathlength cuvettes and a Cary100 ultraviolet-visible
667 spectrophotometer equipped with a multicell thermoelectric temperature controller. The tem-

668 perature was increased progressively from 10 to 60 °C at a ramp rate of 1 °C/min. The cloud
669 temperatures (Tc) were determined as the maximum of the first order derivatives of the curves.

670 **Differential interference contrast microscopy** 1.5 μ L of sample was deposited in a sealed
671 chamber comprising a slide and a coverslip sandwiching double sided tape (3 M 300 LSE high-
672 temperature double-sided tape of 0.17 mm thickness). The used coverslips were previously
673 coated with PEG-silane following the published protocol in ref. (72). The DIC images were
674 taken using an automated inverted Olympus IX81 microscope with a 60x/1.20 water UPlan
675 SApo objective using the Xcellence rt 1.2 software.

676 ***In vitro* confocal fluorescence microscopy** MEC2 WT or R385H were labeled with Alexa
677 Fluor 647 and UNC-89cysmutant with DyLight 488, following provider's instructions (Thermo
678 Fisher Scientific). The samples for fluorescence microscopy were prepared as previously de-
679 scribed but containing 1 μ M of labeled protein molecules. UNC-89cysmutant plasmid was
680 generated by directed mutagenesis on top of pNS75 backbone to incoporate a Ser to Cys
681 change in amino acid 62 for posterior fluorescence labeling giving to pNS77.

682 Fluorescence microscopy images and FRAP experiments were recorded using a Zeiss
683 LSM780 confocal microscope system with a Plan ApoChromat 63x 1.4 oil objective. For
684 the FRAP experiments, 10 or 11 droplets of similar size were selected for MEC2-R385H or
685 MEC2-WT, respectively. The bleached region was 30% of their diameter, and the intensity
686 values were monitored for ROI1 (bleached area), ROI2 (entire droplet) and ROI3 (background
687 signal). The data was fitted using the EasyFrap software (73) to extract the kinetic parameters
688 such as the half-time of recovery and the mobile fraction.

689 **Optical tweezer mechanics measurements** Droplet assembly was initiated by mixing Salt
690 Stock Buffer for a final salt concentration of 2 M and a final protein concentration of 370 μ M,
691 adjusted to a final volume of 10 μ L with Stock Buffer. The Salt Stock Buffer contained 1 μ m
692 polystyrene microbeads (Micromod 01-54-103, PEG300 modified) diluted 1:1000 ($9.3 \cdot 10^7$

693 mL^{-1}). Bottom glass dishes (GWST-5040, WillCo Wells) were coated with PDMS as de-
694 scribed elsewhere (74). After curing for 1 h at 65°C, a 5x5 mm hole was drawn out and the
695 glass surface was treated with PLL(20)-g[3.5]-PEG(2) (30 min, 0.5 mg/mL, SuSoS) to yield
696 protein condensation with a spherical shape (Fig. 2E). A 10 μl drop of the aforementioned
697 solution was added in the middle of the cavity, which was later closed with a 1x1 inch cov-
698 erglass very gently to avoid air bubbles. An optical trap was created at the focal plane of a
699 water-immersion objective (60x, NA=1.2, Plan Apo, Nikon), using an optical micromanipula-
700 tion unit (Sensocell, Impetux Optics) coupled to the rear epi-fluorescence port of an inverted
701 microscope (Nikon Eclipse Ti2). Optical traps were equipped with a light momentum force
702 detection module (Sensocell, Impetux Optics) that substituted the microscope brightfield illu-
703 mination condenser. The trap stiffness, $k_{OT}(\text{pN})$, was obtained by performing a fast scan over
704 the trapped particle and fitting a line over the linear range, i.e. $-100 \text{ nm} < x < 100 \text{ nm}$, as de-
705 scribed elsewhere (75). After that, the bead was brought into contact with the protein droplet
706 surface (Fig. 2I). Upon contact, the optical trap measured a steep increase in the force expe-
707 rienced by the bead against the droplet surface. The optical trap was programed to perform
708 different trajectories using the software provided by the manufacturer (LightAce, Impetux Op-
709 tics). For the Lissajous curves displayed in Fig. 2J, sinusoidal pushing onto the droplet was
710 performed at frequencies $f=0.2, 1, 4, 10 \text{ Hz}$, with an amplitude of $A=\pm 100 \text{ nm}$, while the actual
711 bead position was obtained as $x_{bead} = x_{trap} - F/k_{OT}$. Stress relaxation measurements (fig. S3B)
712 were obtained by applying a square oscillation (0.2 Hz, $A=\pm 100 \text{ nm}$, Fig. S3B). The force
713 relaxation curves were fitted with an exponential decay to determine the time constant, τ (s),
714 and the droplet stiffness, $k = f_p/\delta$ ($\mu\text{N}/\text{m}$) (fig. S3, C and E, and fig. S4, O and P). Mechanical
715 measurements on protein droplets were repeated at $t=4, 24$ and 48 h . Microchambers contain-
716 ing the droplets and the polystyrene microspheres were kept at room temperature meanwhile.
717 Data processing was carried out with custom scripts in Matlab.

718

719 Behavioral assays

720 **Gentle body touch assays** Gentle body touch assays were carried out as described elsewhere (76). An eyebrow hair was used to gently touch 20-30 young adult worms for ten times with alternative anterior and posterior touches (five each). Unless otherwise stated, these experiments were repeated at least 3 different days to determine an average response and SD.

724 The results of the touch assays are included in table S5.

725 **TRN-specific RNAi feeding** RNAi bacterial clones were obtained from Ahringer (42) (*mec-2, mec-4, ced-5, sem-5, toca-1, tbc-18, sdpn-1, F49E2.2, unc-73, spc-1, mlk-1, abl-1, sma-1, plc-1, itsn-1, nck-1, magu-3, ccb-1, C46H3.2, prx-13, erp-1, ephx-1*) or Vidal (ORFeome-Based) (77) (*B0303.7, abi-1, magu-2, unc-89, stam-1, lin-2, F42H10.3, amph-1, dbn-1, C36E8.4, T04C9.1, unc-57, Y106G6H.14, ced-2*) libraries, donated by Cerón and Lehner labs. First, clones were verified by colony PCR and sequencing. NGM plates were supplemented with 731 6 mM IPTG (I1001-25 Zymo Research) and 50 µg/mL ampicillin. Unseeded feeding plates 732 were completely dried in a laminar airflow hood and kept in the dark at 4°C. RNAi bacterial 733 clones were grown in 4 mL LB with 50 µg/mL ampicillin. Next day, each plate was inoculated 734 with 200 µL of the corresponding bacterial culture and dried for 1 h under the hood. The 735 expression of dsRNA was induced in the presence of IPTG overnight at room temperature, or in 736 an incubator at 37°C for 4 h, in the dark. Then, 6 gravid hermaphrodites (TU3403 (44)) were 737 transferred onto the plates and grown at 25°C for 48 h. The progeny were tested for body touch 738 sensitivity at young adult stage, a total of 40 worms in 2 different days. Importantly, wildtype 739 animals are insensitive for neuronal RNAi due to the lack of dsRNA transporter in neurons. 740 Thus, animals were sensitized to RNAi through a TRN-specific SID-1 rescue construct (*mec- 741 18p::sid-1(+); (44)*) in a systemic RNAi mutant *sid-1(qt2)* background.

742 **Auxin-induced degradation experiment** Auxin plates were prepared as described elsewhere (78), by adding 250 mM stock of 1-naphthaleneacetic acid (NAA Auxin, Sigma Aldrich

744 317918) dissolved in 95% ethanol to cooled NGM before pouring the plates at a final concen-
745 tration of 1 mM auxin. Plates were dried out under a laminar airflow hood, seeded with 10X
746 concentrated *E. coli* OP50 and dried for 1 h under the hood. Next day, 6 gravid hermaphrodites
747 were transferred onto the plates and grown at 25°C for 48 h. The progeny were tested for body
748 touch sensitivity at young adult stage.

749

750 **Calcium imaging of TRNs from microfluidically-immobilized animals af-
751 ter body wall touch**

752 **Device preparation** Devices were replica-molded from SU8 photolithography mold as de-
753 scribed previously (35).

754 **Animal loading into a microfluidic trap** Loading of the animals in the body wall chip was
755 performed as described in detail elsewhere (79). Briefly, 2-3 young adult animals were trans-
756 ferred to a M9-filtered droplet. Then, worms were aspirated through a SC23/8 gauge metal
757 tube (Phymep) connected to a 3 mL syringe (Henke Sass Wolf) with a PE tube (McMaster-
758 Carr). Once the tube was inserted in the inlet of the chip, the animals were loaded on the
759 waiting chamber by applying gentle pressure with the syringe. In general, animals were ori-
760 ented head-first.

761 **Calcium imaging** *In vivo* calcium imaging of TRNs was performed by positioning the worm-
762 loaded microfluidic device in a Leica DMI8 microscope with a 40x/1.1 water immersion lens,
763 Lumencor Spectra X LED light source, fluorescence cube with beam splitter (Semrock Quad-
764 band FF409/493/573/652) and a Hamamatsu Orca Flash 4 V3 sCMOS camera. Cyan-488 nm
765 (\approx 6.9 mW) and yellow-575 nm (\approx 12.6 mW) illuminations were used to excite the green and
766 red fluorescence of the TRN::GCaMP6s and mttagRFP, which was used to correct possible ar-
767 tifacts from animal movement and TRN identification. The incident power of the excitation
768 light was measured with a Thorlabs microscope slide power meter head (S170C) attached to

769 PM101A power meter console. Emission was split with a Hamamatsu Gemini W-View with
770 a 538 nm edge dichroic (Semrock, FF528-FDi1-25-36) and collected through two single band
771 emission filters, 512/525 nm for GCaMP (Semrock, FF01-512/23-25) and 620/60 for mtagRFP
772 (Chroma, ET620/60m). The emission spectra was split by the image-splitter, allowing different
773 exposure times for each signal. For mechanical load application to body wall of the animal, the
774 stimulation channel was connected to a piezo-driven pressure controller (OB1-MK3, Elveflow)
775 as described (80). To follow calcium transients, videos were taken at 10 frames-per-second
776 with 80 ms exposure time, using the master pulse from the camera. The camera SMA trigger
777 out was used to synchronize the stimulation protocol in Elveflow sequencer, which consisted
778 on 20 s pre-stimulation, 2 s stimulation (2500 mbar buzz) and 40 s post-stimulation.

779 **Calcium analysis** Images were processed using MATLAB in-house procedures to extract
780 GCaMP signal intensity (53). First, the TRN was manually labelled based on the mtagRFP
781 calcium insensitive channel. The position was automatically tracked in the following frames
782 and used to extract the GCaMP intensity. A smooth filter (moving average filter) was applied.
783 The calcium sensitive signal was normalized to the first 100 frames pre-stimulation ($F-F_0/F_0$)
784 and the results were plotted in Python.

785 **Fluorescence resonance energy transfer (FRET)**

786 **Data acquisition** FRET imaging of worms loaded within the body wall chip as described
787 above was performed on a Leica DMI6000 SP5 confocal microscope using the 63x/1.4 NA oil
788 immersion lens. As described in detail in (68), three images were collected: the direct donor
789 (mTFP2) excitation and emission, donor excitation and acceptor emission and direct acceptor
790 (mVenus) excitation and emission. mTFP2 was excited with 458 nm ($\approx 9 \mu\text{W}$), mVenus with
791 514 nm ($\approx 4 \mu\text{W}$) line of an Argon ion laser at 80% and 11% transmission respectively (25%
792 power). The incident power of the excitation light was measured with a Thorlabs microscope
793 slide power meter head (S170C) attached to PM101A power meter console. A single set

794 of images was collected before and after pressure delivery, while recording images for each
795 pressure. Due to defocussing immediately after the pressure delivery, manual refocussing was
796 necessary to keep the focus in the plane of the MEC-2 clusters.

797 **Data analysis** Due to the spectral overlap of the donor and the acceptor, the resulting FRET
798 images are contaminated with donor bleedthrough and acceptor cross-excitation. To eliminate
799 this spurious signal, a linear unmixing procedure as a bleedthrough correction was employed.
800 The images were first bleedthrough corrected with a factor that was predetermined prior to
801 each experiment with animals that express either fluorophore alone (for details about the pro-
802 cedure, see Ref. (53, 68)). The corrected FRET channel was then normalized by the sum of
803 the background corrected donor channel and the corrected FRET channel on a pixel-by pixel
804 basis. With the aim to eliminate pixels outside of the region of interest and ubiquitous autoflu-
805 orescence inherent to living *C. elegans*, we applied a mask on the acceptor channel to separate
806 the MEC-2 clusters from the background.

807

808 **Fluorescence recovery after photobleaching (FRAP)**

809 **Data acquisition** FRAP imaging was performed on a Leica DMI6000 SP5 confocal micro-
810 scope using the 63x/1.4 NA oil immersion lens. Animals were imaged live in 3 mM levamisole
811 on 5-6% agarose pads. The FRAP protocol consisted on 5 frames pre-bleach (every 371 ms),
812 5 frames of bleach (every 344 ms), 10 frames post-bleach 1 (every 371 ms) and 10 frames
813 post-bleach 2 (every 20 s). mCherry from MSB547 or mVenus from MSB403 were excited
814 with a 594 or 514 nm line of an Argon ion laser, respectively, at 5% of total power, except for
815 the bleach step for which it was set at 100%. For bleaching a small ROI within MEC-2 punc-
816 tae, same protocol was applied, except for the bleach step where 60% 594 nm line of Argon
817 ion laser was used. For bleaching a small ROI within MEC-2 condensates in hypodermis, the
818 protocol consisted on 5 frames pre-bleach (every 97 ms), 5 frames of bleach (every 66 ms), 10

819 frames post-bleach 1 (every 1 s) and 10 frames post-bleach 2 (every 20 s).

820 **Data analysis** Images were pre-processed using ImageJ/Fiji. First, ROI1 was manually
821 drawn in the bleached area and used to track the intensity measurement in the following frames.
822 The same was done for the total fluorescence area (ROI2) and the background area (ROI3).
823 This data was processed by the easyFRAP online tool (73) to compute the normalized recov-
824 ery curves using full scale normalization, which corrects for differences in the starting intensity
825 in ROI1, differences in total fluorescence during the time course of the experiment and differ-
826 ences in bleaching depth. For the analysis of the conditions where we bleached a small region
827 within MEC-2 punctae or MEC-2 condensate in hypodermis, an extra step of normalization
828 to the bleaching rate (considering first frames of pre-bleach from another ROI in a different
829 punctae/condensate) was added, since the intensity of the whole punctae/condensate decreased
830 during bleaching and could not be used to correct for fluorescence changes during the course
831 of the experiment.

832

833 **Confocal microscopy**

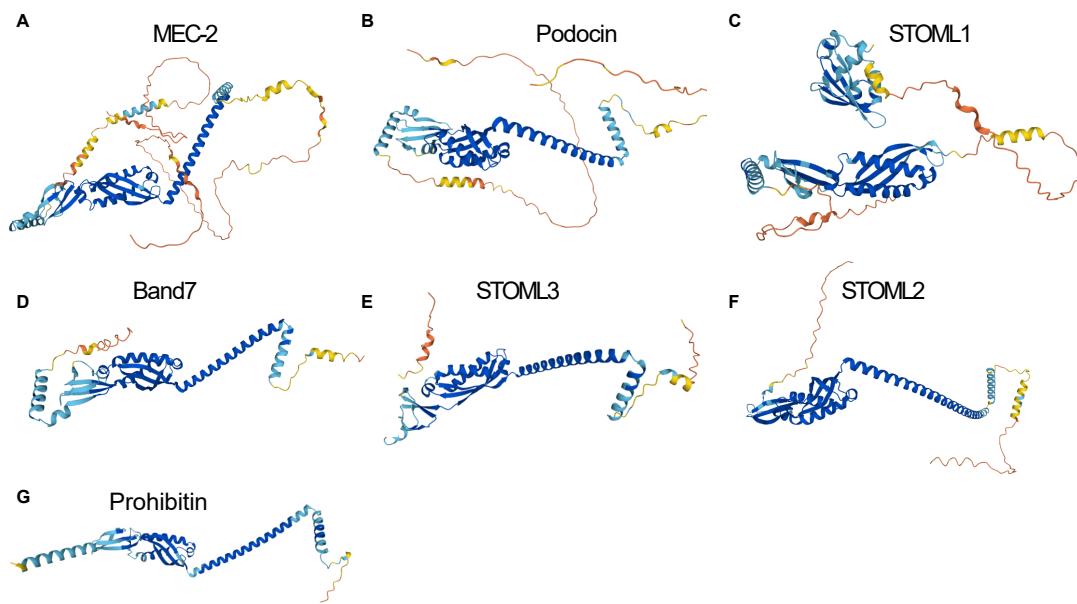
834 Fluorescence images were taken using an inverted confocal microscope (Nikon Ti2 Eclipse)
835 with a 60x/1.4 NA oil immersion lens. Animals were imaged live in 3 mM levamisole on
836 5-6% agarose pads. mCherry was excited using the 561 nm laser, 20-30% power intensity
837 and transmitted through a 594 nm emission filter. Exposure time was 100-200 ms, depending
838 on the strain to image. GFP was excited with a 488 nm laser, 20-40% power intensity and
839 transmitted through a 521 nm emission filter. Exposure time was 100-200 ms.

Tracking of MEC-2 along TRN Fluorescently labelled MEC-2 was imaged in the axons of the TRNs using a Leica DMi8 microscope with a 63x/1.4 oil immersion lens. Imaging was performed at a frame rate of 100 ms. The naive pool was imaged in close proximity to the cell

body and the mature pool at the periphery of the axon. MEC-2 trajectories of the mobile pool were extracted using MTrackJ (81) and the trajectories for the immobile pool were obtained with the ImageJ Plugin TrackMate (82). The resulting trajectories were further analysed using a Python script to compute the mean squared displacement defined as

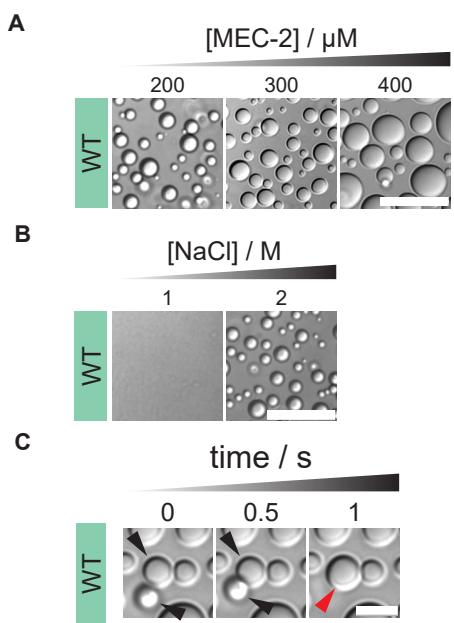
$$MSD(\tau) = \langle (\vec{x}(t) - \vec{x}(t + \tau))^2 \rangle \quad (1)$$

840 The average was taken over the time and the ensemble of the measured trajectories.

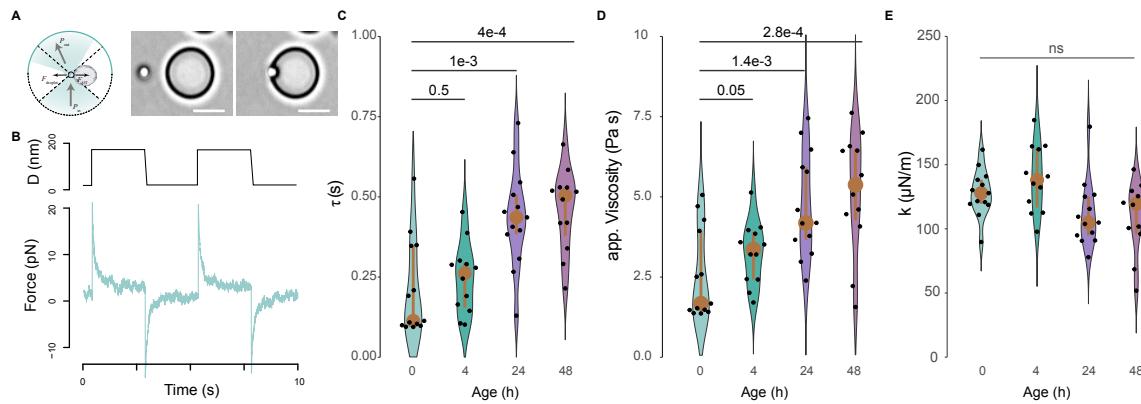

841 **Interpunctum interval analysis** For calculating the *mec-2* interpunctum interval, a 160-190
842 μm length ROI was drawn in TRN axon images in ImageJ. A threshold value and background
843 subtraction were applied to remove the particles outside TRNs. The ImageJ particle counting
844 tool was used to infer the position of each particle and the difference between them was de-
845 rived. The resulting values were used to calculate the mean difference using Python.

846

847 **Statistics and reproducibility**

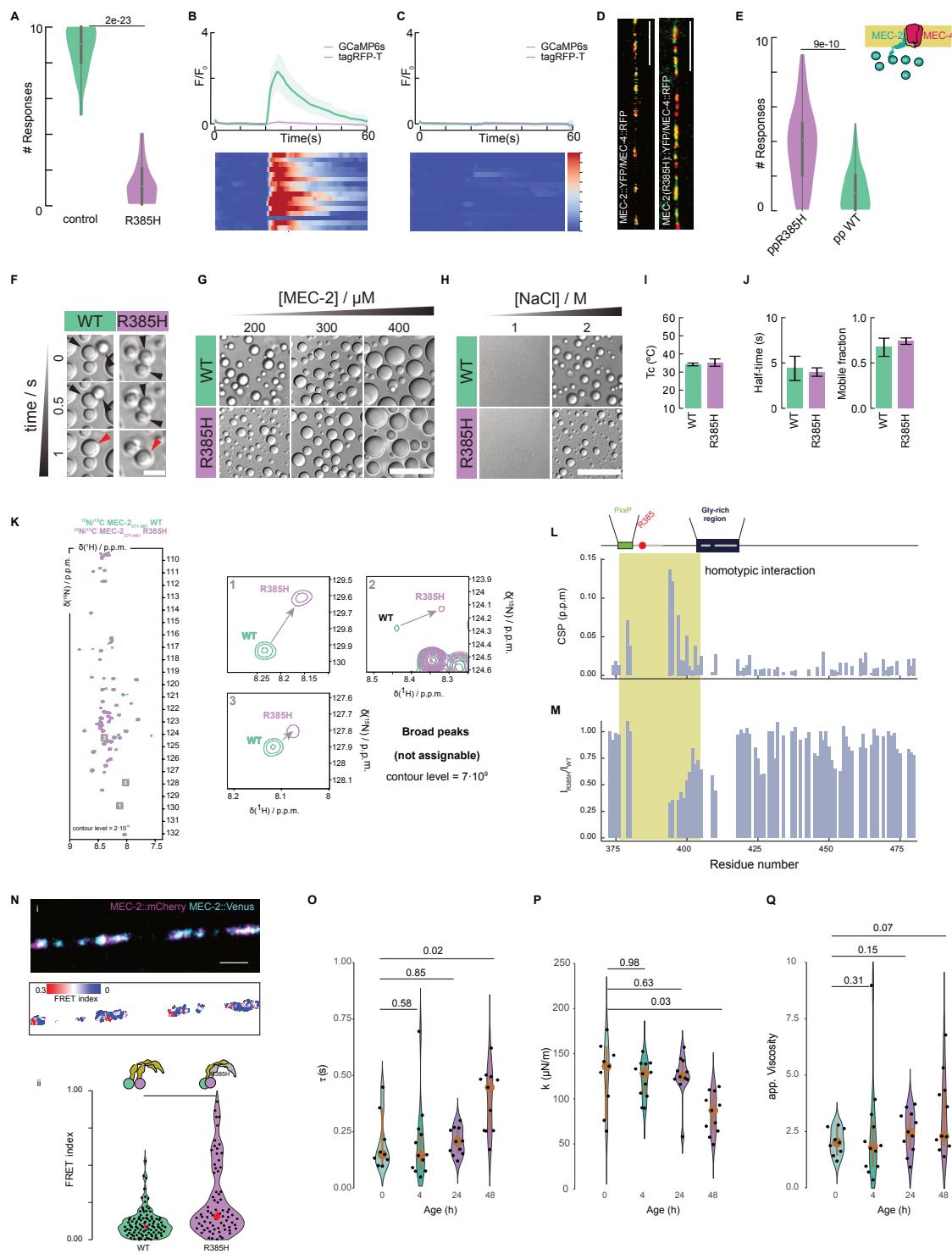

848 No statistic method was used to predetermine sample sizes. Statistical methods, repeatability of
849 experiments and N values are indicated within the figure legends.

850 **Figs. S1 to S8**



851

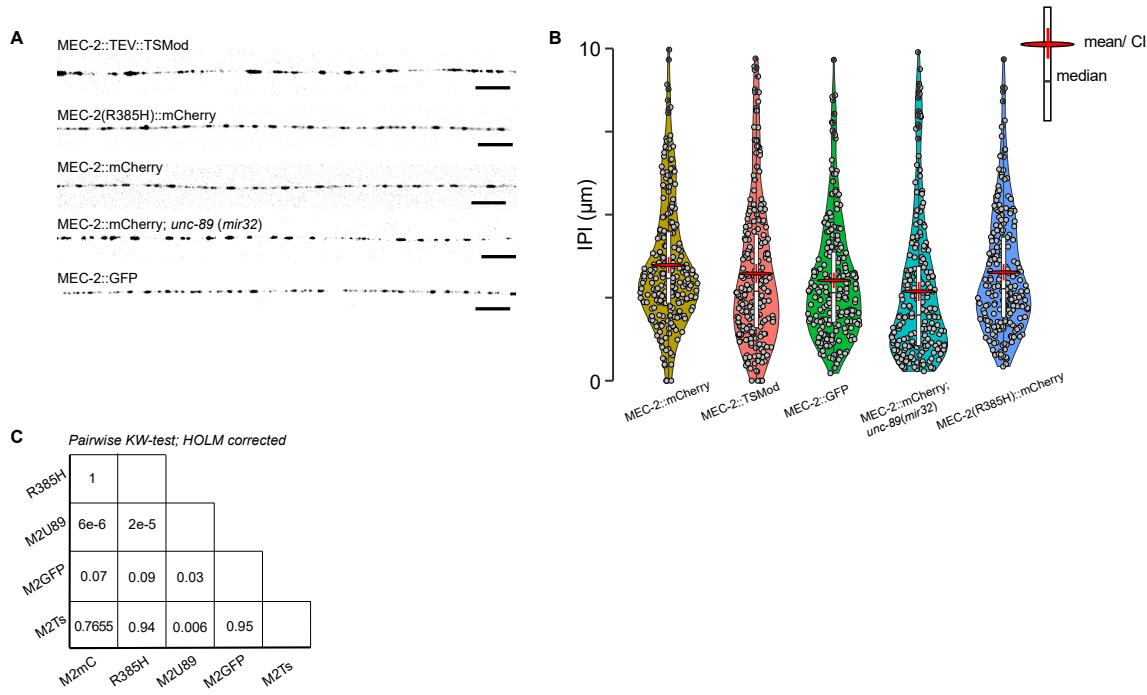
852 **Fig. S1. Stomatin proteins structure.** Structural prediction of (A) worm MEC-2 (Q27433),
853 (B) human Podocin (Q9NP85), (C) human STOML1 (Q9UBI4), (D) Band7 (P27105), (E) hu-
854 man STOML3 (Q8TAV4), (F) human STOML2 (Q9UJZ1) and (G) human Prohibitin (P35232)
855 generated with AlphaFold2.



857 **Fig. S2. MEC-2 liquid droplets characterization *in vitro*.** (A) DIC microscopy images of
858 MEC-2 WT at increasing protein concentrations of 200, 300 and 400 μM , with 2 M NaCl at
859 37 °C. Scale bar = 20 μm . (B) DIC microscopy images of 200 μM MEC-2 WT with 1 and 2 M
860 NaCl at 37 °C. Scale bar = 20 μm . (C) DIC microscopy images showing fusion events of 300
861 μM MEC-2 WT with 2 M NaCl at 37°C. Scale bar = 5 μm .

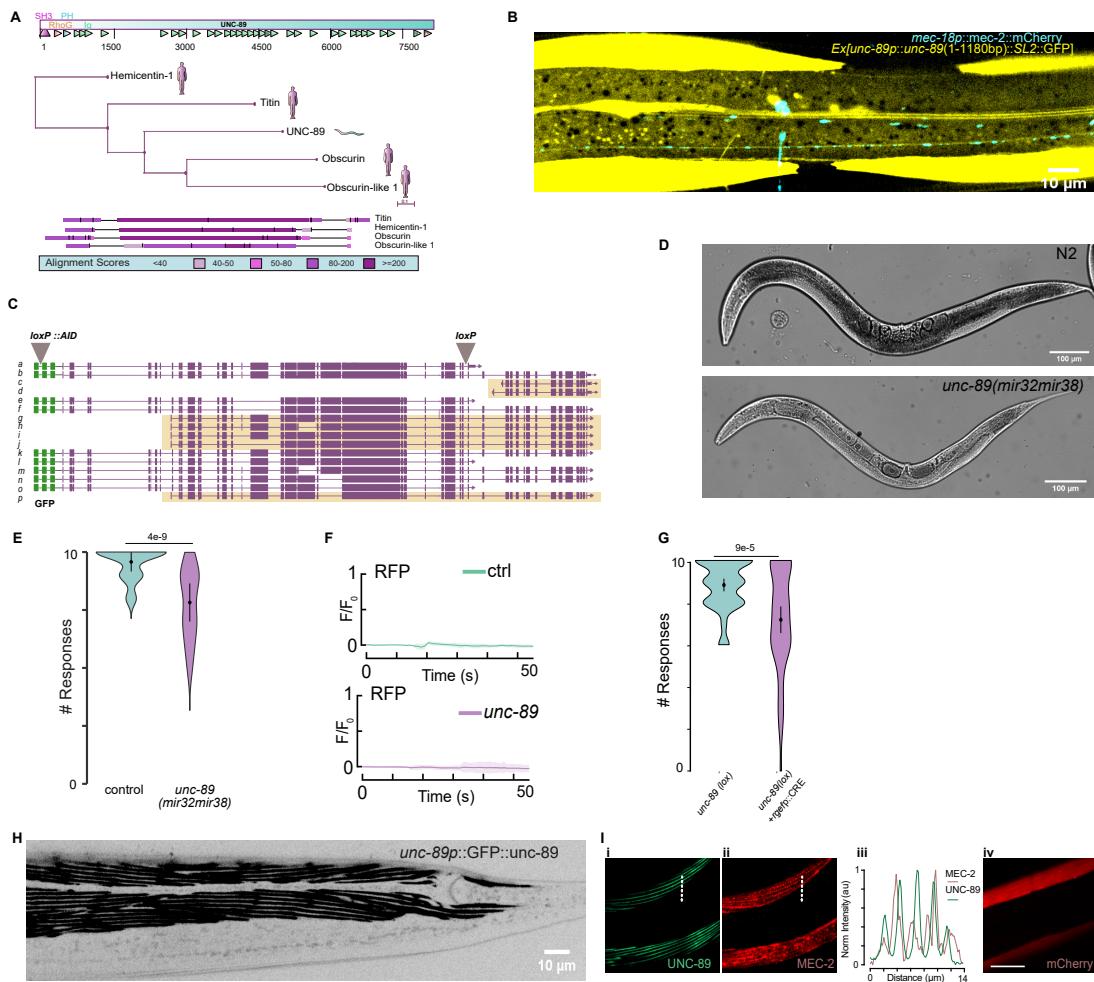
862

863 **Fig. S3. Viscoelastic maturation of MEC-2.** (A) Scheme of the optical tweezer based
864 indentation assay, during which a trapped microsphere is driven onto an immobilized droplet.
865 Two representative pictures showing the sphere before and after droplet contact. Scale bar = 5
866 μm . (B) Representative force-time signal of a typical indentation test. Upper graph indicates
867 trap trajectory, lower graph stress relaxation. (C) Time decay constant measured for step-
868 stress relaxation experiments on protein condensates of increasing age. *p*-values derived from
869 non-parametric Wilcoxon test. (D) Viscosity ($\eta = k \cdot \tau$) of the droplets as derived from
870 the measurements in (C) and (D). Statistics derived from non-parametric Wilcoxon test. (E)
871 Stiffness measured on the same protein condensates as in (C). Statistics derived from non-
872 parametric Wilcoxon test.



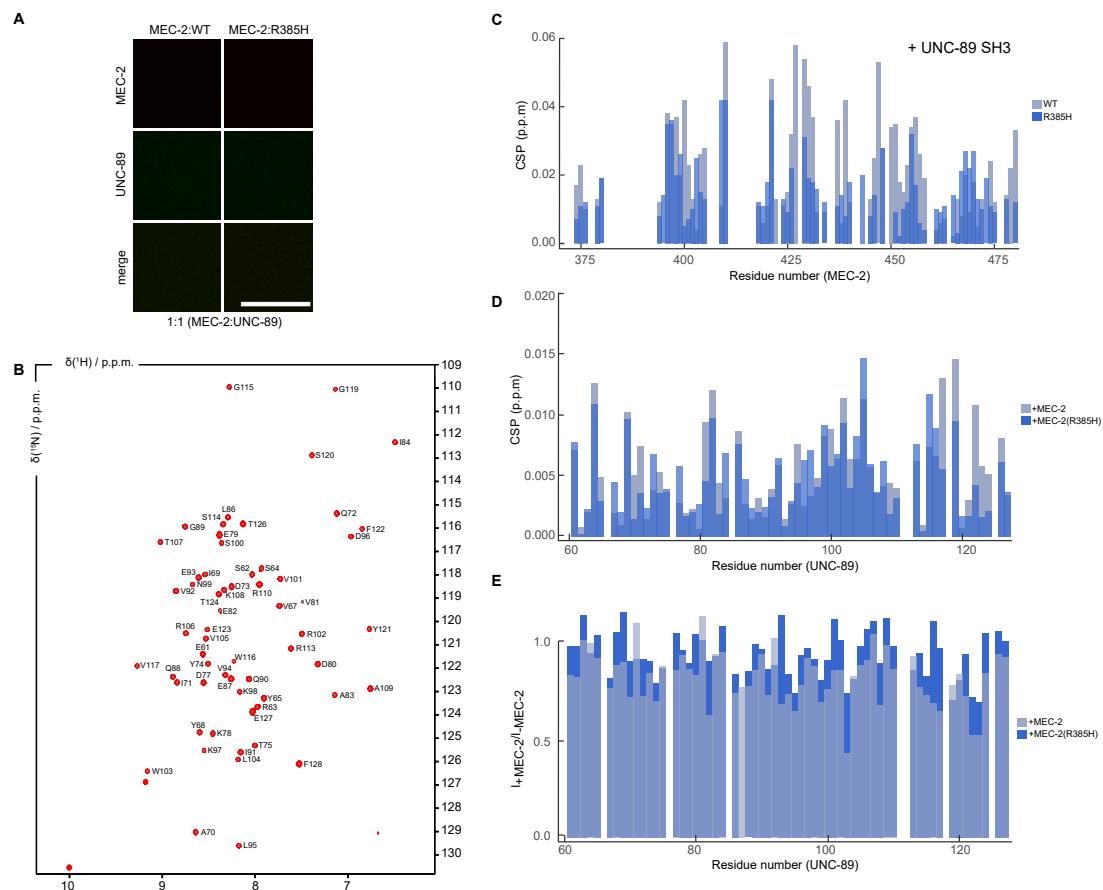
873

874 **Fig. S4. MEC-2 proline-rich domain is essential for the sense of touch.** (A) Body touch
 875 response of wildtype vs. MEC-2(R385H) mutant. Vertical bar indicates SD, $N \geq 60$ ani-

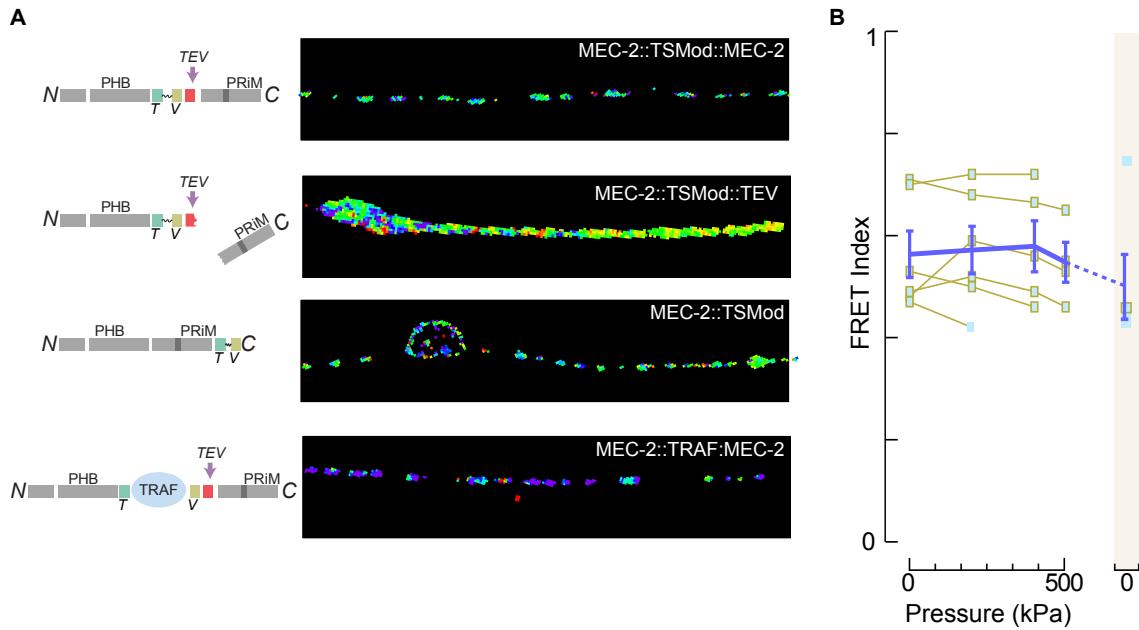

876 mals. *p*-value derived from Kruskal-Wallis test. **(B and C)** Average GCaMP6s and calcium-
877 independent tagRFP-T intensities recorded from TRNs of **(B)** wildtype and **(C)** MEC-2(R385H)
878 mutant animals trapped inside the body wall chip. A 300kPa 'buzz' stimulus was delivered for
879 2 s after recording 10 s baseline fluorescence. Individual recordings visualized as stacked
880 kymographs (N=number of recordings). **(D)** Representative images of wildtype or MEC-
881 2(R385H)::YFP mutant in green and MEC-4::RFP in red. Colocalization indicated in yellow.
882 Scale bar = 10 μ m **(E)** Touch response of wildtype animals with an overexpression of R385H
883 mutant or wildtype proline-rich (PRiM) MEC-2 motifs specifically in TRNs. Mean \pm SD, N \geq
884 60 animals. *p*-value derived from Kruskal-Wallis test. Scheme of the experiment at the top
885 right. **(F)** DIC microscopy images showing fusion events of 300 μ M MEC-2 WT and R385H
886 with 2 M NaCl at 37°C. Scale bar = 5 μ m. **(G)** DIC microscopy images of MEC-2 WT and
887 R385H at increasing protein concentrations of 200, 300 and 400 μ M, with 2 M NaCl at 37 °C.
888 Scale bar = 20 μ m. **(H)** DIC microscopy images of 200 μ M MEC-2 WT and R385H with 1 and
889 2 M NaCl at 37 °C. Scale bar = 20 μ m. **(I)** T_c value of the apparent absorbance measurement
890 as a function of temperature of 200 μ M MEC-2 WT and R385H mutant with 2 M NaCl. **(J)**
891 Recovery half time and mobile fraction of MEC-2 WT and R385H mutant quantified from a
892 FRAP experiment *in vitro* of a 370 μ M sample with 2 M NaCl at 20 °C. **(K)** 2D ^1H - ^{15}N NMR
893 correlation spectra of MEC-2 WT and R385H mutation and the close-up of low-intensity (non-
894 assignable) signals from 2D NMR spectra of the WT (green) and the R385H mutant (purple)
895 MEC-2 C-terminal domain. **(L, M)** Chemical shift (CSP, **L**) and intensity ratio (**M**) for each
896 residue for the comparison between WT and R385H. The lower intensities around the PRiM
897 indicate a homotypic interaction between different MEC-2(R385H) molecules. **(N)** (i) Rep-
898 resentative dual color confocal image of the mixed MEC-2 (MEC-2::Venus and MEC-
899 2::mCherry) population and the corresponding FRET map. Scalebar = 2 μ m. (ii) Distribution
900 of FRET values derived from >50 measurements, showing a higher median (red dot) for the
901 mutant MEC-2. **(O)** Time decay constant measured for step-stress relaxation experiments on
902 protein condensates of increasing age, formed from MEC-2 (R385H) mutant. *p*-values derived

903 from non-parametric Wilcoxon test. **(P)** Stiffness measured on the same protein condensates
904 as in **(O)**. Statistics derived from non-parametric Wilcoxon test. **(Q)** Viscosity ($\eta = k \cdot \tau$) of
905 the droplets as derived from the measurements in **(O)** and **(P)**. Statistics derived from non-
906 parametric Wilcoxon test.

907


908 **Fig. S5. MEC-2 unchanged punctae pattern among genotypes.** (A) Representative ex-
 909 amples for the indicated MEC-2 alleles and genotypes. Scale bar = 10 μm . (B and C) Violin
 910 plot for all *mech-2* alleles and mutant backgrounds (B) and table indicating the *p*-values of
 911 the pairwise comparison (C) of their distribution from a Kruskall-Wallis test with Holm's ad-
 912 justment for multiple comparisons. The C-terminal truncated MEC-2 was not tested, as not
 913 punctum interval (IPI) could be extracted (IPI = 0 for a continuous distribution). Mean
 914 indicated as red lentil with vertical bar indicating the 95% confidence interval of the mean.
 915 Box encompasses 50% of all datapoint centered around the median (black, horizontal line). N
 916 = 230 MEC-2 puncta from 5-6 different animals's TRNs.

917


918 **Fig. S6. Non-muscular function of UNC-89.** (A) Scheme of UNC-89 protein domains,
 919 BLAST against *Homo sapiens* genome and representation of the closest proteins Hemicentin-
 920 1, Titin, Obscurin and Obscurin-like 1 in a phylogenetic tree and protein alignment. (B) Repre-
 921 sentative micrograph of an animal expressing an *unc-89* promotor trap encompassing 4265 bp
 922 and the first 1180 bp of the genomic fragment (Exon1-Intron1-Exon2-Intron2-Exon3) show-
 923 ing expression of the largest isoforms in muscles and neurons. (C) Genomic organization of
 924 GFP-tagged *unc-89* locus and location of the two loxP sites. Yellow shadow shows remain-
 925 ing isoforms in the *unc-89(mir32)* allele knocking out the largest isoforms, which contains
 926 the SH3 domain. *mir32* was generated using a frameshift causing an aberrant initiation site.

927 (D) Micrograph comparing young adult N2 and *unc-89(mir32)* animals. (E) Touch response
928 of *unc-89(mir32)* KO allele compared to control wildtype animals. Circle indicates mean,
929 vertical bar indicates 95% confidence interval, N=60 animals. *p*-value derived from Tukey
930 HSD test. (F) Fluorescence intensity vs time of the calcium-independent fluorophore in the
931 mechanical stimulation experiment showed in Fig. 3B. (G) Touch response of panneuronal
932 (*rgef1*) knockout of UNC-89 compared to loxP flanked control animals in absence of CRE
933 recombinase. Circle indicates mean, vertical bar indicates 95% confidence interval, N=60 an-
934 imals. *p*-value derived from Tukey HSD test. (H) Representative fluorescence image of an
935 animal with an N-terminal GFP tag at the endogenous locus of *unc-89* in frame with the SH3
936 domain. (I) Colocalization of MEC-2 heterologously expressed in body wall muscles with
937 endogenous UNC-89 distribution (i, ii). (iii) Plot of the intensity profile taken on the dotted
938 line indicated in i and ii. Soluble mCherry does not colocalize with UNC-89 (iv).

939

940 **Fig. S7. Structural changes upon binding of MEC-2 to UNC-89 SH3 domain** (A) Con-
 941 focal fluorescence microscopy images of 200 μM MEC-2 C-terminus (WT or R385H mutant)
 942 labeled with Alexa Fluor 647 together with UNC-89 SH3 domain labeled with DyLight 488, at
 943 a molar ratio of 1:1 (MEC-2:UNC-89), with 2 M NaCl at 37 $^{\circ}\text{C}$. Observed dissolution of MEC-
 944 2 droplets. Scale bar = 20 μm . (B) 61/62 H^{N} assignment annotated 2D NMR spectrum of the
 945 UNC-89 SH3 domain (BMRD ID: 51490). (C) Change in peak intensity of MEC-2 C-terminal
 946 wildtype (light blue) or R385H mutant (blue) upon binding to SH3 domain of UNC-89 (1:10
 947 molar ratio). (D) Change in peak intensity of each of the SH3 residues of UNC-89 upon bind-
 948 ing to wildtype (light blue) and R385H mutant (blue) MEC-2 (1:9 molar ratio). (E) Intensity
 949 ratio of the NMR spectra of the SH3 domain of UNC-89 in the presence or the absence of the
 950 C-terminal domain of MEC-2 (WT (light blue) and R385H mutant (blue)).

951

952 **Fig. S8. MEC-2::TSMod reports forces during body wall touch.** (A) Scheme of the
953 different tension sensor modules and control constructs employed, with their corresponding
954 FRET maps. From top to bottom: TSMod in MEC-2 wildtype; in wildtype after TEV cleav-
955 age; in the C-terminal fusion as no force control; force-insensitive, low-FRET control replac-
956 ing the flagelliform spring with a space domain domain. PHB, prohibitin domain; T, donor
957 fluorophore; V, acceptor fluorophore; PRiM, proline-rich motif; TRAF, tumor necrosis fac-
958 tor receptor associated factor (83), TEV, Tobacco etch virus cleavage site. (B) FRET index
959 changes with increasing pressure applied to the body wall of C-terminally tagged MEC-2
960 serving as a no-force control.

961 **Movies S1 to S5**

962 **Movie S1. Organization and dynamics of MEC-2 in TRNs.** Representative videos of the
963 MEC-2::mCherry dynamic and static pools in touch receptor neurons: 4 ALM and 4 PLM
964 neurons.

965 **Movie S2. Dynamics of MEC-2 condensates *in vivo*.** Three representative videos of a
966 MEC-2 condensate undergoing deformation (a), fission (b) and fusion (c) events during translo-
967 cation along the neurite. Frame rate = 20 fps. Scalebar=2 μ m

968 **Movie S3. MEC-2 dynamics using FRAP.** Representative FRAP dynamics of the MEC-
969 2::TEV::MEC-2 static pool and the C-terminally truncated construct after TEV coexpression.

970 **Movie S4. Fusion dynamics of MEC-2 condensates *in vitro*** Representative videos of the
971 MEC-2 droplets undergoing fusion events *in vitro*.

972 **Movie S5. Touch-induced calcium transients.** Representative videos of a wildtype and
973 a MEC-2::R385H mutant animal expressing a GCaMP6s calcium reporter in TRNs. A two
974 second buzz was delivered after 10s. Top images are the calcium sensitive, lower images are
975 the calcium insensitive channel (tagRFPt).

976 **Tables S1 to S5**

977 **Table S1** List of candidate genes used for the RNAi experiment according to a preselection
978 of *C. elegans* proteins with an SH3 domain (39) and proteins expressed in TRNs (40). Included
979 the library chosen for each clone and the result of the touch assays after RNAi knock-down
980 (Mean±SD).

981 **Table S2** List of strains used in this study.

982 **Table S3** List of plasmids and sequences used in this study.

983 **Table S4** List of CRISPR reagents: crRNAs and ssODNs used in this study.

984 **Table S5** List of touch response results for all the experiments, including Mean±SD and N
985 for each assay.

986 References

- 987 1. M. Krieg, A. R. Dunn, M. B. Goodman, *BioEssays* **37**, 335 (2015).
- 988 2. Y. Qi, *et al.*, *Nature Communications* **6**, 8512 (2015).
- 989 3. J. Brand, *et al.*, *The EMBO Journal* **31**, 3635 (2012).
- 990 4. K. Poole, M. Moroni, G. R. Lewin, *Pflügers Archiv - European Journal of Physiology* pp.
991 1–12 (2014).
- 992 5. M. P. Price, R. J. Thompson, J. O. Eshcol, J. A. Wemmie, C. J. Benson, *Journal of Bio-
993 logical Chemistry* **279**, 53886 (2004).
- 994 6. M. B. Goodman, *et al.*, *Nature* **415**, 1039 (2002).
- 995 7. M. Huang, G. Gu, E. L. Ferguson, M. Chalfie, *Nature* **378**, 292 (1995).
- 996 8. X. Zhang, *et al.*, *Am J Physiol Heart Circ Physiol* **286**, H359 (2004).
- 997 9. P. Syntichaki, N. Tavernarakis, *Physiological Reviews* **84**, 1097 (2004).
- 998 10. O. P. Hamill, B. Martinac, *Physiological Reviews* **81**, 685 (2001).
- 999 11. G. Gu, G. A. Caldwell, M. Chalfie, *Proceedings of the National Academy of Sciences of
1000 the United States of America* **93**, 6577 (1996).
- 1001 12. C. P. Brangwynne, *et al.*, *Science* **5** (2009).
- 1002 13. E. R. Dufresne, *et al.*, *Soft Matter* **5**, 1792 (2009).
- 1003 14. S. Alberti, A. Gladfelter, T. Mittag, *Cell* **176**, 419 (2019).
- 1004 15. L. Jawerth, *et al.*, *Science* **370**, 1317 (2020).
- 1005 16. Y. Shen, *et al.*, *Nature Nanotechnology* **15**, 841 (2020).

1006 17. A. Zbinden, M. Pérez-Berlanga, P. De Rossi, M. Polymenidou, *Developmental Cell* **55**,
1007 45 (2020).

1008 18. S. Wegmann, *et al.*, *The EMBO Journal* **37**, 1 (2018).

1009 19. C. Mathieu, R. V. Pappu, J. Paul Taylor, *Science* **370**, 56 (2020).

1010 20. X. Zhou, *et al.*, *Science* **377**, 1 (2022).

1011 21. C. Schwayer, *et al.*, *Cell* **179**, 937 (2019).

1012 22. O. Beutel, R. Maraspini, K. Pombo-García, C. Martin-Lemaitre, A. Honigmann, *Cell* **179**,
1013 923 (2019).

1014 23. Y. Wang, *et al.*, *Developmental Cell* **56**, 1313 (2021).

1015 24. J. G. Cueva, A. Mulholland, M. B. Goodman, *Journal of Neuroscience* **27**, 14089 (2007).

1016 25. N. O. Taylor, M. T. Wei, H. A. Stone, C. P. Brangwynne, *Biophysical Journal* **117**, 1285
1017 (2019).

1018 26. J. Jumper, *et al.*, *Nature* **596**, 583 (2021).

1019 27. A. K. Lancaster, A. Nutter-Upham, S. Lindquist, O. D. King, *Bioinformatics* **30**, 2501
1020 (2014).

1021 28. R. M. C. Vernon, *et al.*, *eLife* **7**, 1 (2018).

1022 29. C. Camilloni, A. De Simone, W. F. Vranken, M. Vendruscolo, *Biochemistry* **51**, 2224
1023 (2012).

1024 30. E. Gibbs, B. Perrone, A. Hassan, R. Kümmeler, R. Kriwacki, *Journal of Magnetic Reso-*
1025 *nance* **310**, 106646 (2020).

1026 31. A. Sponga, *et al.*, *Science Advances* **7**, 1 (2021).

1027 32. F. Catala-Castro, E. Schaffer, M. Krieg, *Journal of Cell Science* (in press).

1028 33. S. S. Li, *Biochemical Journal* **390**, 641 (2005).

1029 34. B. J. Mayer, *Journal of Cell Science* **114**, 1253 (2001).

1030 35. A. L. Nekimken, *et al.*, *Lab Chip* **17**, 1116 (2017).

1031 36. S. F. Banani, H. O. Lee, A. A. Hyman, M. K. Rosen, *Nature Reviews Molecular Cell*
1032 *Biology* **18**, 285 (2017).

1033 37. P. Li, *et al.*, *Nature* **483**, 336 (2012).

1034 38. K. Saksela, P. Permi, *FEBS Letters* **586**, 2609 (2012).

1035 39. X. Xin, *et al.*, *Molecular Systems Biology* **9**, 1 (2013).

1036 40. D. Lockhead, *et al.*, *Molecular biology of the cell* **27**, 3717 (2016).

1037 41. S. R. Taylor, *et al.*, *Cell* **184**, 1 (2021).

1038 42. R. S. Kamath, *et al.*, *Nature* **421**, 231 (2003).

1039 43. J. F. Rual, *et al.*, *Genome Research* **14**, 2162 (2004).

1040 44. A. Calixto, D. Chelur, I. Topalidou, X. Chen, M. Chalfie, *Nature Methods* **7**, 554 (2010).

1041 45. A. G. Fraser, *et al.*, *Nature* **408**, 325 (2000).

1042 46. G. M. Benian, T. L. Tinley, X. Tang, M. Borodovsky, *Journal of Cell Biology* **132**, 835
1043 (1996).

1044 47. M. A. Ackermann, M. Shriver, N. A. Perry, L. Y. R. Hu, A. Kontrogianni-
1045 Konstantopoulos, *PLoS ONE* **9** (2014).

1046 48. L. Zhang, J. D. Ward, Z. Cheng, A. F. Dernburg, *Development (Cambridge)* **142**, 4374
1047 (2015).

1048 49. J. Goudeau, *et al.*, *Genetics* **217** (2021).

1049 50. J.-P. Demers, A. Mittermaier, *Journal of the American Chemical Society* **131**, 4355 (2009).

1050 51. C. Grashoff, *et al.*, *Nature* **466**, 263 (2010).

1051 52. M. D. Brenner, *et al.*, *Nano Lett* **16**, 2096 (2016).

1052 53. R. Das, *et al.*, *Science Advances* **7**, 1 (2021).

1053 54. A. L. Nekimken, B. L. Pruitt, M. B. Goodman, *Molecular Biology of the Cell* **31**, 1735
1054 (2020).

1055 55. C. Kung, *Nature* **436**, 647 (2005).

1056 56. S. Katta, M. Krieg, M. B. Goodman, *Annual Review of Cell and Developmental Biology*
1057 **31**, 347 (2015).

1058 57. S. Sukharev, F. Sachs, *Journal of Cell Science* **125**, 3075 (2012).

1059 58. J. M. Kefauver, A. B. Ward, A. Patapoutian, *Nature* **587**, 567 (2020).

1060 59. X. Liang, C. Calovich-benne, A. Norris, *Nucleic Acids Research* pp. 1–16 (2021).

1061 60. L.-P. Bergeron-Sandoval, *et al.*, *PNAS* **118**, e211378911 (2021).

1062 61. G. Morello, *et al.*, *Journal of Personalized Medicine* **10**, 1 (2020).

1063 62. H. Watanabe, *et al.*, *Journal of Neurology, Neurosurgery and Psychiatry* **87**, 851 (2016).

1064 63. J. Ho, T. Tumkaya, S. Aryal, H. Choi, A. Claridge-Chang, *Nature Methods* **16**, 565 (2019).

1065 64. M. Porta-de-la Riva, L. Fontrodona, A. Villanueva, J. Cerón, *Journal of Visualized Exper-
1066 iments* p. e4019 (2012).

1067 65. J. I. Semple, R. Garcia-Verdugo, B. Lehner, *Nature Methods* **7**, 725 (2010).

1068 66. C. Frøkjær-Jensen, *et al.*, *Nat. Genet.* **40**, 1375 (2008).

1069 67. A. Paix, A. Folkmann, G. Seydoux, *Methods* **121-122**, 86 (2017).

1070 68. M. Krieg, A. R. Dunn, M. B. Goodman, *Nature Cell Biology* **16**, 224 (2014).

1071 69. J. Vicencio, C. Martínez-Fernández, X. Serrat, J. Cerón, *Genetics* **211**, 1143 (2019).

1072 70. Z. Solyom, *et al.*, *Journal of Biomolecular NMR* **55**, 311 (2013).

1073 71. S. P. Skinner, *et al.*, *Journal of Biomolecular NMR* **66**, 111 (2016).

1074 72. S. Alberti, *et al.*, *Journal of Molecular Biology* **430**, 4806 (2018).

1075 73. G. Koulouras, *et al.*, *Nucleic Acids Research* **46**, W467 (2018).

1076 74. F. Català-Castro, V. Venturini, S. Ortiz-Vásquez, V. Ruprecht, M. Krieg, *Journal of Visualized Experiments* **2021**, 1 (2021).

1077

1078 75. K. C. Vermeulen, *et al.*, *Review of Scientific Instruments* **77**, 1 (2006).

1079 76. M. Goodman, *WormBook* pp. 1–14 (2006).

1080 77. S. Li, *et al.*, *Science (New York, N.Y.)* **303**, 540 (2004).

1081 78. M. A. Martinez, *et al.*, *G3: Genes, Genomes, Genetics* **10**, 267 (2020).

1082 79. H. Fehlauer, *et al.*, *Journal of Visualized Experiments* **2018**, 1 (2018).

1083 80. M. Porta-de-la Riva, *et al.*, *bioRxiv* (2021).

1084 81. E. Meijering, O. Dzyubachyk, I. Smal, *Methods in Enzymology* **504**, 183 (2012).

1085 82. J. Y. Tinevez, *et al.*, *Methods* **115**, 80 (2017).

1086 83. R. N. Day, C. F. Booker, A. Periasamy, *Journal of biomedical optics* **13**, 31203 (2008).