

IKK α promotes lung adenocarcinoma growth through activation of ERK signaling via DARPP-32-mediated inhibition of PP1 activity

Sk. Kayum Alam^{1#}, Li Wang¹, Zhu Zhu¹, and Luke H. Hoeppner^{1,2#}

¹The Hormel Institute, University of Minnesota, Austin, MN, USA.

²Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.

#Corresponding Authors:

Luke H. Hoeppner, Ph.D.

The Hormel Institute, University of Minnesota

801 16th Avenue NE

Austin, MN 55912

Phone: +1 (507) 437-9623

Email: hoepp005@umn.edu

Sk. Kayum Alam, Ph.D.

The Hormel Institute, University of Minnesota

801 16th Avenue NE

Austin, MN 55912

Phone: +1 (507) 355-5223

Email: skalam@umn.edu

1 **Abstract**

2 Non–small cell lung cancer (NSCLC) accounts for 80–85% cases of lung cancer cases.
3 Diagnosis at advanced stages is common, after which therapy-refractory disease progression
4 frequently occurs. Therefore, a better understanding of the molecular mechanisms that control
5 NSCLC progression is necessary to develop new therapies. Overexpression of I κ B kinase α
6 (IKK α) in NSCLC correlates with poor patient survival. IKK α is an NF- κ B-activating kinase that is
7 important in cell survival and differentiation, but its regulation of oncogenic signaling is not well
8 understood. We recently demonstrated that IKK α promotes NSCLC cell migration by physically
9 interacting with dopamine- and cyclic AMP-regulated phosphoprotein, Mr 32000 (DARPP-32),
10 and its truncated splice variant, t-DARPP. Here, we show that IKK α phosphorylates DARPP-32
11 at threonine 34, resulting in DARPP-32-mediated inhibition of protein phosphatase 1 (PP1),
12 subsequent PP1-mediated dephosphorylation of ERK, and activation of ERK signaling to
13 promote lung oncogenesis. Correspondingly, DARPP-32 ablation in human lung
14 adenocarcinoma cells reduced their anchorage-independent growth in soft agar. Mice
15 challenged with IKK α -ablated HCC827 cells exhibited less lung tumor growth than mice
16 orthotopically administered control HCC827 cells. Our findings suggest that IKK α drives NSCLC
17 growth through activation of ERK signaling via DARPP-32-mediated inhibition of PP1 activity.

18 **Introduction**

19 Lung cancer is the second most frequently diagnosed cancer in both men and women and the
20 leading cause of cancer-related deaths worldwide, with an estimated 2.2 million new cases and
21 1.8 million deaths per year^{1,2}. Non–small cell lung cancer (NSCLC) is the most common type of
22 lung cancer and accounts for 85% of total diagnoses³. Substantial improvements in the
23 application of predictive biomarkers, smoking cessation, and modification of current treatment
24 paradigms have led to notable progress in managing NSCLC and have transformed outcomes
25 for many patients^{4–6}. However, the 5-year relative survival of lung cancer patients is dismal
26 (22.9%) due to the emergence of therapy-resistant disease and metastasis^{7,8}. Therefore,
27 improving the general understanding of disease biology, implementing screening programs to
28 diagnose patients early, and identifying alternative treatment strategies to circumvent treatment-
29 refractory disease progression is required to improve the lung cancer survival rate. Here, we
30 introduce a new mechanism for the molecular regulation of oncogenic signaling that builds upon
31 current knowledge of lung cancer biology and may inform the development of novel anticancer
32 therapies.

33 Inhibitor-κB kinase α (IKKα), a serine/threonine protein kinase, is encoded by the conserved
34 helix-loop-helix ubiquitous kinase (*CHUK*) gene⁹. Phosphorylation of IκBα, a nuclear factor-κB
35 (NF-κB) inhibitor, by IKKα and IKKβ, catalytical subunits of the IKK complex, promotes IκBα
36 protein degradation, which initiates nuclear translocation of NF-κB dimers. In the nucleus, NF-
37 κB functions as a transcription factor to regulate immunity, infection, lymphoid organ/cell
38 development, cell death/growth, and tumorigenesis^{9–13}. In noncanonical signaling, NF-κB–
39 inducing kinase activates IKKα protein via phosphorylation upon activation of upstream
40 membrane-bound receptors by their cognate ligands. Active IKKα then phosphorylates and
41 cleaves the p100 protein to generate p52, which complexes with the RelB NF-κB subunit,
42 resulting in nuclear translocation of the p52/RelB dimer to regulate several immune functions,

43 including lymphoid organ development, the priming function of dendritic cells, B-cell survival,
44 generation and maintenance of effector- and memory- T cells, and antiviral innate
45 immunity^{9,14,15}.

46 The tumor-promoting role of IKK α has been documented in breast, prostate, nonmelanoma skin,
47 and lung cancer¹⁶⁻¹⁸. Aberrant overexpression of IKK α protein is associated with decreased
48 patient survival and promotes the growth of lung adenocarcinoma; it may therefore be used as a
49 biomarker to predict clinical response in lung adenocarcinoma patients¹⁹. In a separate study,
50 investigators showed that overexpression of cytosolic and nuclear IKK α protein promotes
51 NSCLC cell proliferation, survival, and migration through activating the ERK, p38/MAPK, and
52 mammalian target of rapamycin (mTOR) cell signaling pathways. Additionally, activation of
53 protumorigenic cell signaling pathways depends on the subcellular localization of IKK α ¹⁸.
54 Although the role of IKK α in promoting cancer has been well established, in the context of lung
55 cancer driven by *Kras*-activating mutations it may have tumor-suppressing activity: in a
56 *Kras*^{G12D}-driven spontaneous mouse model of NSCLC, lung-specific *Ikka* deletion induced by
57 intratracheally injected adenovirus-Cre recombinase promoted NSCLC initiation and growth by
58 elevating the expression of inflammatory cytokines and chemokines, including NF- κ B targets²⁰.
59 We sought to understand the role of IKK α protein overexpression in tumor growth and
60 progression in *Kras*-wildtype NSCLC.

61 Dopamine- and cyclic AMP-regulated phosphoprotein, Mr 32000 (DARPP-32), is primarily
62 expressed in the brain, including the caudate nucleus, cerebral cortex, and striatum. It acts as a
63 downstream signaling molecule through dopamine receptor 1 (D₁R) and is negatively regulated
64 by dopamine receptor 2 (D₂R) and glutamate signaling²¹⁻²³. Phosphorylation of DARPP-32 in
65 response to cAMP in dopamine-responsive nerve tissue attenuates protein phosphatase 1
66 (PP1) activity, affecting the regulation of several cell signaling pathways²⁴. Although expression
67 of DARPP-32 proteins is typically restricted to neuronal cell types in the brain, DARPP-32 and

68 its truncated isoform t-DARPP are aberrantly overexpressed in many types of cancer, including
69 lung cancer²⁵⁻³¹. t-DARPP, which was originally discovered in gastric cancer tissues, lacks the
70 N-terminal domain responsible for modulating PP1 function²⁸. It is phosphorylated by cyclin-
71 dependent kinase (CDK) 1 and 5 and activates protein kinase A (PKA), thereby conferring
72 resistance to trastuzumab, a HER2-targeted anticancer agent, via sustained signaling through
73 the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT pathway^{32,33}. Since this
74 discovery, the DARPP-32 and t-DARPP isoforms overexpressed in breast, colon, esophageal,
75 gastric, pancreas, prostate, lung, and ovarian cancer tissues have been shown to activate
76 robust anti-apoptotic signaling through the activation of the AKT and ERK cell signaling
77 pathways; to increase metabolism by forming a complex with the insulin-like growth factor 1
78 receptor (IGF1R); and to promote cell survival in the presence of receptor tyrosine kinase
79 inhibitors, including gefitinib and trastuzumab^{25-27,29,30,34-37}. Our previous work, which serves as
80 the rationale for this current study, revealed that DARPP-32 isoforms increase NSCLC cell
81 migration via increasing the expression of NF-κB2–controlled migratory genes by establishing a
82 direct physical interaction with IKK α ²⁵. However, the precise role of the DARPP-32/IKK α
83 complex in regulating NSCLC progression has yet to be determined.

84 In this study, we report that IKK α protein inhibits PP1 function through phosphorylation of the
85 DARPP-32 protein at the Thr-34 position. Pharmacologic inhibition of PP1 activates ERK cell
86 signaling pathways, leading to NSCLC growth promotion in vitro. Furthermore, we show in an
87 orthotopic mouse model that depletion of IKK α protein reduces NSCLC growth. Taken together,
88 our findings suggest that IKK α protein directly phosphorylates DARPP-32 to stimulate
89 oncogenic kinase activity through the inhibition of PP1 function to promote NSCLC growth and
90 oncogenesis.

91

92 **Results**

93 **Phosphorylation of DARPP-32 at Thr-34 is regulated by IKK α**

94 Given our prior observation that the physical association between IKK α and DARPP-32
95 promotes NSCLC cell migration²⁵, we postulated that DARPP-32 phosphorylation is controlled
96 by the kinase function of IKK α . To test our hypothesis, we first performed immunoprecipitation
97 experiments in three separate human NSCLC cell lines, which confirmed that IKK α establishes
98 a direct physical interaction with DARPP-32 (Fig. 1a-c). We next performed nonradioactive in
99 vitro kinase assays using commercially available kinase-active IKK α protein. Briefly, DARPP-32
100 and its short isoform, t-DARPP, were purified from lysates of four different lung adenocarcinoma
101 cell lines using anti-FLAG M2 affinity beads and then incubated with purified IKK α protein in
102 kinase assay buffers containing ATP. Reaction end products were subjected to immunoblotting
103 with anti-phosphorylated DARPP-32 (both T34 and T75) and -total DARPP-32 antibodies. Our
104 western blotting results confirm that purified full-length DARPP-32 protein (but not t-DARPP)
105 serves directly as a substrate for IKK α (Fig. 2a-b). Based on our results, it is evident that IKK α
106 phosphorylates DARPP-32 at the Thr-34 position only (Fig. 2a-b). As expected, IKK α does not
107 phosphorylate t-DARPP because it lacks the first 36 amino acids of full-length DARPP-32 (Fig.
108 2a,c). However, the presence of strong signals on the immunoblot using anti-phosphorylated
109 DARPP-32 (T75) suggests that t-DARPP is phosphorylated at Thr-75 by unknown endogenous
110 kinase(s) (Fig. 2a,c). In summary, our results indicate that IKK α physically associates with
111 DARPP-32 protein and phosphorylates full-length DARPP-32 protein at the Thr-34 position.

112 **Increased expression of p-ERK is regulated by IKK α via DARPP-32/PP1 α signaling**

113 A seminal report suggested that the neuronal phosphoprotein DARPP-32 acts as a potent
114 inhibitor of PP1 following phosphorylation by PKA at the Thr-34 position²⁴. On the basis of this
115 report, we hypothesized that IKK α -mediated DARPP-32 phosphorylation inhibits PP1 α activity in

116 NSCLC cells and promotes oncogenic growth by activating cell signaling pathways. To test our
117 premise, we transiently overexpressed constitutively active and kinase-dead IKK α plasmids in
118 HCC827 and H1650 cells and performed an immunoblotting experiment with antibodies directed
119 against phosphorylated DARPP-32 (T34). In line with our previous in vitro kinase results, we
120 observed that expression of phosphorylated DARPP-32 increases more in HCC827 and H1650
121 cell lysates overexpressing active IKK α than in GFP- or kinase-dead IKK α -expressing cell
122 lysates (Fig. 3a-b). Phosphorylation of PP1 α by cdc2 kinases inhibits PP1 α phosphatase activity
123 in a cell cycle-dependent manner³⁸, and phosphorylation of DARPP-32 at the T34 position
124 leads to DARPP-32-mediated phosphorylation and inactivation of PP1 α in neurons and cancer
125 cells^{24,39}. We therefore sought to determine the effect of IKK α expression on the levels of
126 inactive PP1 α protein in immunoblotting experiments using anti-phosphorylated PP1 α
127 antibodies. Expression of phosphorylated (inactive PP1 α proteins increased in cells
128 overexpressing active IKK α (Fig. 3a-b), suggesting that overexpression of IKK α leads to
129 increased DARPP-32 phosphorylation at the T34, which inhibits PP1 phosphatase activity. To
130 test how repression of PP1 function by the IKK α /DARPP-32 complex stimulates downstream
131 oncogenic cell signaling, we focused on the ERK/MAPK signaling pathway because
132 pharmacologic inhibition of PP1 activity has been reported to increase ERK activity⁴⁰. In
133 immunoblotting experiments, we observed an increase in the expression of phosphorylated
134 ERK in HCC827 and H1650 cells exogenously expressing active IKK α (Fig. 3a-b). Expression of
135 phosphorylated ERK proteins remained unchanged in cells expressing GFP or overexpressing
136 kinase-dead IKK α (Fig. 3a-b). To validate our theory that phosphorylation of ERK protein is
137 controlled by PP1 α phosphatase, we performed western blotting experiments in HCC827 cells
138 treated with a pharmacological inhibitor of PP1 α , calyculin A. The expression of phosphorylated
139 (i.e., phosphatase-inactivated) PP1 α as well as phosphorylated (i.e., activated) ERK was higher
140 in calyculin A-treated HCC827 cells than in vehicle-treated cells (Fig. 3c). In summary, our

141 results indicate that overexpression of kinase-active IKK α protein positively regulates the ERK-
142 MAPK pathway through the DARPP-32/PP1 α axis.

143 **IKK α controls the inhibition of PP1 α phosphatase activity**

144 To test our hypothesis that IKK α prevents PP1 α phosphatase activity in NSCLC cells by
145 phosphorylating DARPP-32 at Thr-34, we performed an in vitro phosphatase assay in lung
146 adenocarcinoma cells stably overexpressing DARPP-32 protein. Briefly, kinase-dead, full-
147 length, and constitutively active IKK α plasmids, as well as GFP-expressing control plasmids,
148 were transiently transfected into HCC827 and H1650 cells stably overexpressing DARPP-32
149 protein. Endogenous PP1 α was immunoprecipitated from the cell lysates and subjected to
150 phosphatase assays. We observed a decrease in PP1 α phosphatase activity (i.e., lower
151 concentrations of released phosphates) in the lysates of cells overexpressing full-length or
152 kinase-active IKK α than in lysates of GFP-expressing cells (Fig. 4a-b). As expected,
153 overexpression of kinase-dead IKK α in both cell lines failed to inhibit PP1 α phosphatase activity
154 (Fig. 4a-b). To ensure that equal amounts of immunoprecipitated PP1 α were used in the in vitro
155 phosphatase assay, we performed immunoblotting experiments to measure the expression level
156 of PP1 α in different groups. We observed that equal amounts of PP1 α were immunoprecipitated
157 in HCC827 and H1650 cells exogenously expressing kinase-dead, full-length, or constitutively
158 active IKK α or GFP (Fig. 4c-d). To further test whether IKK α blocks PP1 α phosphatase activity
159 via DARPP-32 phosphorylation at Thr-34, we stably overexpressed mutant DARPP-32 (T34A)
160 in HCC827 and H1650 cells and repeated the in vitro phosphatase assay. As expected, no
161 PP1 α inhibition activity was seen in cells overexpressing full-length or constitutively active IKK α
162 in the presence of mutant DARPP-32 (Supplementary Fig. 1a-d). Taken together, our findings
163 indicate that IKK α -mediated DARPP-32 phosphorylation inhibits PP1 α phosphatase activity.
164

165 **Depletion of IKK α expression in tumor cells inhibits oncogenic growth advantage**

166 To test the premise that IKK α promotes oncogenic tumor growth, we first performed a soft agar
167 anchorage-independent growth assay in human lung adenocarcinoma HCC827 and PC9 cells
168 because anchorage-independent growth is considered one of the most reliable markers of
169 malignant transformation⁴¹. We observed less anchorage-independent growth (number of
170 colonies formed on the soft-agar plates) of HCC827 and PC9 cells transduced with IKK α
171 shRNAs than of LacZ shRNA–transduced controls (Fig. 5a-c), suggesting that IKK α promotes
172 anchorage-independent oncogenic growth in lung cancer. We then tested whether IKK α
173 ablation reduces lung tumor growth in an orthotopic xenograft mouse model. Briefly, luciferase-
174 labeled human HCC827 NSCLC cells were injected into the left thorax of anesthetized SCID
175 mice. After establishment of the lung tumor, mice were imaged for bioluminescence signals
176 weekly over the course of 7 weeks. Mice challenged with IKK α -ablated HCC827 cells showed
177 less lung tumor growth than those transduced with control LacZ shRNA (Fig. 6a-b). Taken
178 together, our in vitro cell line and in vivo mouse data suggest that IKK α protein drives lung
179 oncogenic tumor growth, and ablation of IKK α expression reduces lung cancer growth.

180 **Discussion**

181 The IKK complex, consisting either of IKK α , - β , and - γ kinases (canonical) or IKK α homodimers
182 (noncanonical), has been studied in the context of inflammation and innate immunity as a
183 regulator of interferon regulatory factors and NF- κ B signaling⁴²⁻⁴⁴. Recently, it has been
184 appreciated that IKK α and related kinases also phosphorylate proteins involved in regulating
185 biological processes, including cell growth, metabolism, apoptosis, cell cycle, cell migration, and
186 invasion, independent of NF- κ B–regulated cell signaling pathways^{43,45,46}. Here, we show that the
187 kinase function of IKK α promotes lung tumor growth by activating the ERK cell signaling
188 pathway through the DARPP-32/PP1 axis. Overexpression of constitutively active IKK α

189 influences the proliferation of mammary epithelium through regulation of RANK signaling in a
190 genetically engineered mouse model⁴⁷; thus, it is expected that aberrant IKK α expression
191 promotes breast tumorigenesis. Indeed, Bennett et al. reported that overexpression of cytosolic
192 IKK α protein is associated with reduced time to recurrence and worsened disease-free survival
193 in estrogen receptor–positive breast cancer patients⁴⁸. Additionally, the role of IKK α in
194 promoting breast cancer growth in the presence of anti-estrogen therapy via activation of the
195 Notch pathway has been well studied and provides a mechanism for hormone therapy
196 resistance in an NF- κ B–independent manner⁴⁹. Recently, Dan and colleagues reported that
197 IKK α protein activates the AKT cell signaling pathway by phosphorylating the mTOR complex 2
198 in cervical, prostate, lung, and pancreatic cell lines, establishing the oncogenic role of IKK α
199 protein in promoting tumor growth⁵⁰. Additionally, transcripts of *CHUK* (IKK α), but not *IKBKB*
200 (IKK β), are overexpressed in lung adenocarcinoma tissues compared with normal lung
201 tissues¹⁹. A previous study by our group also demonstrated that NSCLC patients with elevated
202 IKK α expression have significantly shorter overall survival than those with low IKK α expression,
203 and that IKK α regulates NSCLC cell migration by forming a complex with DARPP-32 to
204 influence the noncanonical NF- κ B cell signaling pathway²⁵. Here, we propose an alternative
205 mechanism in which activated IKK α protein promotes NSCLC growth through a DARPP-32/PP1
206 cell signaling cascade in an NF- κ B–independent manner.

207 DARPP-32 protein, encoded by the *PPP1R1B* gene, has been well studied in the nervous
208 system to understand the complexity of signal transduction in neurons, especially striatal
209 projection neurons⁵¹. The function of DARPP-32 in amplifying responses to many external
210 stimuli is tightly regulated by its phosphorylation on multiple sites by different protein kinases.
211 Notably, DARPP-32 phosphorylation at Thr-34 by PKA in response to extracellular signals has
212 been shown to inhibit PP1 function in neurons^{23,51}. In agreement with the previous finding
213 showing DARPP-32 is phosphorylated by PKA, Hansen and colleagues showed that Wnt-5A-

214 mediated phosphorylation of DARPP-32 Thr-34 reduces breast cancer cell migration, and
215 DARPP-32 phosphorylation is tightly regulated by intracellular cAMP levels and subsequent
216 PKA activation³⁹. Recently, it was shown that breast cancer patients with elevated DARPP-32
217 expression but low PP1 expression have worse overall survival than those with low expression
218 of DARPP-32⁵², suggesting a strong inverse correlation between PP1 and DARPP-32 proteins
219 in patient outcome. This supports the notion that DARPP-32-mediated inactivation of PP1
220 functions via phosphorylation leads to increased activation of kinases involved in oncogenic
221 signaling pathways. Moreover, PKA protein expression in breast tumor tissues shows a strong
222 correlation with DARPP-32 and PP1 protein expression, warranting further investigation to
223 understand their molecular role in regulating breast tumorigenesis⁵². In a separate study,
224 Hansen et al. reported that PKA protein activated by Wnt-5a ligands regulates breast cancer cell
225 migration by phosphorylating DARPP-32 at Thr-34 in a PP1/CREB-dependent manner³⁹. In line
226 with this observation, our current study provides strong evidence that NSCLC cell growth is
227 regulated by the IKK α /DARPP-32/PP1/ERK cell signaling pathway. Overexpression of t-DARPP
228 has been shown to confer resistance to trastuzumab, a HER2-targeted monoclonal antibody, via
229 activation of PKA and PI3K/AKT cell signaling in HER2⁺ breast cancer cells^{53,54}. The molecular
230 mechanism has been recently uncovered in which t-DARPP phosphorylated by CDK -1 and -5
231 activates PKA kinase function by forming a direct complex with PKA regulatory subunits in
232 breast cancer cells overexpressing t-DARPP^{32,33}. Here, we demonstrate that phosphorylation of
233 t-DARPP is not regulated by IKK α , as expected, due to the absence of first 36 amino acids. The
234 strong presence of t-DARPP protein phosphorylated at Thr-39 (equivalent to DARPP-32 Thr-75)
235 in our assays requires further investigation to identify the molecular mechanism of t-DARPP
236 regulation by upstream kinases in NSCLC cells.

237 The catalytic subunit of PP1, a major protein phosphatase in human cells composed of α , β , and
238 γ subunits, regulates critical cellular processes including cell cycle progression, apoptosis, and

239 metabolism by catalyzing dephosphorylation of a wide range of proteins⁵⁵. The role of PP1 as a
240 tumor suppressor or oncogene depends on the type of cancer, the cancer staging, and the
241 regulatory proteins that interact with it. The pathways are further complicated because both
242 oncogenes and tumor suppressor proteins are known substrates of PP1, and dephosphorylation
243 events can activate or downregulate downstream cell signaling pathways⁵⁶. Therefore, detailed
244 mechanistic insight is needed to understand the role of PP1 in lung cancer. The complex of PP1
245 with the leucine-rich repeat protein SHOC2 promotes tumor growth in a subset of *KRAS*-mutant
246 NSCLC cell lines by dephosphorylating a critical inhibitory site on RAF kinases, resulting in
247 RAF-ERK pathway activation. Moreover, genetic inhibition of SHOC2 suppresses tumor
248 development in autochthonous murine *Kras*-driven lung cancer models⁵⁷. In contrast, activated
249 PP1, upon forming a complex with protein 4.1N, a neuronal homolog of the erythrocyte
250 membrane cytoskeletal protein 4.1, inhibits lung tumor progression by depressing the JNK cell
251 signaling pathway⁵⁸. Our results indicate that PP1-mediated dephosphorylation of ERK is
252 inhibited by the DARPP-32/PP1 complex, which in turn promotes lung tumor growth by
253 increasing ERK activity, which is associated with increased oncogenic potential due to the
254 central position of ERK downstream of several oncogenic growth signaling pathways.

255 Manipulation of PP1 activity has long been considered a potential approach to treating cancer
256 because of the involvement of PP1 in several cancer-related cellular processes. The small
257 molecule inhibitors calyculin A and okadaic acid have been used to mitigate PP1 and PP2A
258 activity, thereby impairing progression of hormone therapy-resistant prostate cancer by
259 stimulating cell death⁵⁹. However, PP1 small molecule inhibitors have unwanted cellular toxicity
260 because PP1 is involved in a broad range of cellular processes. Moreover, homology of the
261 active sites among different phosphatases contributes to the limited efficacy of these inhibitors
262 in treating cancer. Therefore, targeting PP1 complexes, instead of focusing on the catalytic sites
263 of PP1, is a promising solution to suppress sustained growth and survival in cancer.

264 Recent findings of novel phosphorylation substrates of IKK family kinases, including DARPP-32
265 in this study, expands current knowledge of critical biological and disease-related mechanisms.
266 To comprehensively understand the function of these pleiotropic kinases, further experiments
267 are needed to assess the roles of IKK family members in regulating phosphorylation-dependent
268 substrates in different settings and diseases. In this regard, it will be interesting to see whether
269 DARPP-32 phosphorylation is regulated by IKK α protein in the presence of anticancer agents
270 routinely used in the clinic to treat lung cancers. Another critical question—which upstream
271 kinases regulate IKK α activation—warrants further investigation because EGFR and KRAS are
272 highly mutated in lung cancer patients⁶⁰. Targeting IKK and IKK-related kinases with the small
273 molecule IKK inhibitors SAR-113945 and MLN-0415 has shown encouraging results in
274 preclinical studies, although they failed to meet the primary endpoints of a phase 2 clinical trial
275 and the safety profile of a phase 1 clinical trial, respectively⁶¹. Because NF- κ B functions in many
276 different systems, targeting IKK α and IKK-related kinases to treat disease, including cancers,
277 can result in unpredictable adverse events. Therefore, development of more selective, isoform-
278 specific, non-ATP-competitive inhibitors against IKK family kinases to use in combination
279 therapies and/or as part of a targeted delivery approach is required, particularly in cancers that
280 aberrantly express IKK α protein.

281 **Methods**

282 **Cell lines and inhibitors**

283 Human NSCLC cell lines A549 and H1650, as well as a transformed human embryonic kidney
284 epithelial cell line, HEK-293T, were purchased from the American Type Culture Collection. The
285 epidermal growth factor receptor (EGFR)-mutated human NSCLC cell lines HCC827, PC9, and
286 H1975 were kindly provided by Dr. Pasi A. Jänne at the Dana-Farber Cancer Institute⁶², Dr.
287 Aaron N. Hata at Massachusetts General Hospital⁶³, and Dr. Anthony C. Faber at Virginia

288 Commonwealth University⁶⁴, respectively. Dulbecco's modified Eagle's medium (DMEM;
289 Corning) supplemented with 10% fetal bovine serum (FBS; Millipore) was used to grow HEK-
290 293T cells. Human NSCLC cell lines A549, H1650, HCC827, PC9, and H1975 were maintained
291 in Roswell Park Memorial Institute (RPMI)-1640 medium (Corning) supplemented with 10% FBS
292 (Millipore), 1% penicillin/streptomycin antibiotics (Corning), and 25 µg/mL plasmocin
293 prophylactic (Invivogen). All cell lines were routinely authenticated via morphologic inspection
294 and tested negative for mycoplasma contamination. A serine/threonine protein phosphatase
295 inhibitor, calyculin A, purchased from Cell Signaling Technology (CST), was used to mitigate
296 PP1 α function.

297 **Generation of stable cell lines**

298 Human full-length DARPP-32 and mutant DARPP-32 (T34A) cDNAs cloned into the pcDNA3.1
299 vector were kindly provided by Dr. Wael El-Rifai at University of Miami Health System⁶⁵.
300 Retrovirus containing FLAG-tagged full-length and mutant DARPP-32 cDNAs were prepared by
301 following a previously described procedure⁶⁶. NSCLC cells seeded at a density of 3×10^5 cells
302 per 10-cm cell culture dish were transduced with 1 mL retrovirus diluted in 5 mL fresh medium
303 supplemented with 10 µg/mL polybrene solution (Millipore). Cells were used for subsequent
304 experiments 48 h after transduction.

305 Human HEK-293T cells transfected with either LacZ shRNA (control) or IKK α shRNAs (Sigma)
306 along with their corresponding packaging plasmids were used to prepare lentiviruses from cell
307 culture medium 48 h after transfection. Lentiviruses concentrated in Lenti-X concentrator
308 (Takara) were used immediately to transduce HCC827 and PC9 lung cancer cell lines, as
309 reported previously⁶⁷. Transduced cells were incubated in puromycin (Sigma)-containing
310 medium for 72 h to select stable IKK α knockdown cells.

311 Lentiviruses containing the luciferase gene were prepared in HEK-293T cells as described
312 previously²⁶. Luciferase-labeled stable human NSCLC cells were used to determine tumor
313 growth in orthotopic murine models.

314 **Antibodies**

315 Primary antibodies (1 µg/µl) identifying two different phosphorylated sites on DARPP-32 (T34:
316 cat no. 12438; dilution 1:1000; and T75: cat no. 2301; dilution 1:1000), phosphorylated PP1α
317 (T320; cat no. 2581; dilution 1:1000), IKKα (cat no. 2682; dilution 1:1000), phosphorylated
318 p44/42 MAPK (T202/Y204; cat no. 4370; dilution 1:1000), and total p44/42 MAPK (cat no. 4695;
319 dilution 1:1000) were purchased from CST. Antibodies (200 µg/ml) against DARPP-32 (cat no.
320 sc-398360; dilution 1:200), PP1 (cat no. sc-7482; dilution 1:100), and α-tubulin (cat no. sc-5286;
321 dilution 1:500) were obtained from Santa Cruz Biotechnology. Horseradish peroxidase (HRP)–
322 conjugated secondary antibodies against the heavy chains of anti-rabbit (cat no.: 7074; dilution
323 1:5000) and anti-mouse (cat no.: 7076; dilution 1:5000) IgG were purchased from CST.

324 **Plasmids**

325 Expression vectors of full-length (#15467), kinase-dead (#15468), and constitutively kinase-
326 active (#64608) IKKα were purchased from Addgene. Briefly, the investigators constructed full-
327 length IKKα in-frame with DNA encoding an N-terminal FLAG epitope in pCR-3 vectors⁶⁸.
328 Kinase-dead IKKα (K44A) was generated from full-length IKKα expression plasmids by using a
329 site-directed mutagenesis kit⁶⁸. Expression vectors for V5 epitope–tagged kinase-active IKKα
330 (S176E, S180E) were constructed in destination/expression vector pcw107 via the Gateway
331 cloning system⁶⁹. Expression plasmids (pCMV) encoding GFP used as transfection controls
332 were kindly shared by Dr. Georgiy Aslanidi at The Hormel Institute, University of Minnesota.

333

334 **Immunoblotting**

335 Radioimmunoprecipitation assay (RIPA) buffer (Millipore) supplemented with protease inhibitor
336 cocktail (Roche) and phosphatase inhibitors (Millipore) were used to lyse human NSCLC cells.
337 Equal amounts of cell lysates were separated via 4-20% gradient SDS-PAGE (Bio-Rad) and
338 transferred to polyvinyl difluoride membranes (Millipore). Prior to primary antibody incubation,
339 membranes were incubated in Tris-buffered saline (Growcells) containing 5% bovine serum
340 albumin (Sigma) at room temperature for 1 h. Incubation of diluted primary and secondary
341 antibodies was carried out overnight and for 2 h, respectively. Chemiluminescence substrate
342 (Thermo Fisher Scientific) was used to detect antibody-reactive protein bands in the
343 membranes, and signals were captured electronically using an ImageQuant™ LAS 4000
344 instrument (GE Healthcare).

345 **Purification of DARPP-32 isoforms**

346 Human lung adenocarcinoma A549, HCC827, PC9, and H1975 cells stably overexpressing
347 FLAG-tagged DARPP-32 or t-DARPP proteins were lysed on ice using 1× lysis buffer (50 mM
348 Tris HCl, pH 7.4, with 150 mM NaCl, 1 mM EDTA, and 1% Triton X-100) supplemented with
349 protease inhibitor cocktail (Roche). Immunoprecipitation of FLAG fusion proteins was performed
350 using an anti-FLAG M2 affinity gel (Sigma) by following the manufacturer's instructions. Protein
351 elution was carried out under native conditions by competition with commercially available 3×
352 FLAG peptide (Sigma). Eluted proteins separated in 4-20% polyacrylamide gels in denatured
353 conditions were visualized for purity after Coomassie blue (Bio-Rad) staining.

354 **In vitro kinase assay**

355 Human DARPP-32 isoforms purified from NSCLC cells were incubated with kinase-activated
356 human IKK α protein (SignalChem) for in vitro kinase assays by following previously described

357 methods⁷⁰. Briefly, 3 µg purified DARPP-32 isoforms as well as 5 µl ATP (New England Biolabs)
358 in kinase dilution buffer III (SignalChem) were incubated with 1 µg commercially available
359 human IKK α protein (SignalChem) for 30 minutes at 30°C, then at 95°C for 5 minutes, in which
360 1× Laemmli sample buffer (Bio-Rad) supplemented with 10% β -mercaptoethanol (Bio-Rad) was
361 added to stop the kinase reaction. Phosphorylation of DARPP-32 by kinase-activated human
362 IKK α protein was validated via immunoblotting using monoclonal primary antibodies against
363 phosphorylated DARPP-32 (T34 and T75, CST).

364 **Transient transfection**

365 Human NSCLC cell lines, HCC827 or H1650, were plated in 6-well cell culture plates at a
366 concentration of 2×10^5 cells per well. Cells were washed with PBS (Corning) on the following
367 day prior to transfection, and complete RPMI-1640 medium (Corning) was added to each well.
368 Based on the protocols from the manufacturer, 2.5 µg of plasmid DNA and 5 µl P3000 reagent
369 (Invitrogen) diluted in OPTI-MEM medium (Gibco) were incubated with 10 µl Lipofectamine-
370 3000 transfection reagent (Invitrogen) for 15 min at room temperature. The DNA:Lipofectamine
371 mixture was then added to each well in a dropwise manner and incubated for 48 h.

372 **Immunoprecipitation**

373 Human NSCLC cell lines transiently transfected with either control GFP or one of three different
374 IKK α plasmids were lysed in RIPA buffer (Millipore) supplemented with protease inhibitors
375 (Roche). The concentration of harvested cell lysates was measured by using the Bradford
376 reagent (Bio-Rad). Anti-PP1 α antibody (2 µg) was added to the supplied spin column (Catch
377 and Release Immunoprecipitation Kit; cat no. 17-500; Millipore) along with the cell lysates
378 (500 mg) to immunoprecipitate the proteins following the manufacturer's protocol. The eluted
379 proteins in native form were subsequently used to perform the in vitro phosphatase assay.

380 **In vitro phosphatase assay**

381 The in vitro phosphatase assay was performed in accordance with the manufacturer's protocol .
382 Briefly, 5 μ l PP1 α substrates (GRPRTS[p]SFAEG; cat no. P50-58; Signal Chem) or 5 μ l control
383 histone H1 peptides (GGGPATP-KKAKKL-COOH; cat no. H10-58; Signal Chem) diluted in
384 phosphatase dilution buffer II (cat no. P22-09; Signal Chem) was incubated for 15 min at 37 °C
385 with human PP1 α protein in its native form immunoprecipitated from human NSCLC cells. The
386 amount of free phosphate molecule generated by the reaction was colorimetrically quantified
387 with a Phosphate Assay Kit (Abcam). The amount of released phosphate was determined from
388 a standard curve generated after plotting the absorbance value against increasing known
389 concentrations of free phosphate molecule.

390 **Soft agar colony formation assay**

391 Five milliliters of complete RPMI-1640 medium (Corning) containing 0.75% melted agar (Sigma)
392 was added to 60-mm cell culture dishes to create a bottom layer. Cells of the human NSCLC
393 lines HCC827 and PC9 transduced with lentivirus encoding LacZ shRNA (control) or IKK α
394 shRNAs were suspended in complete RPMI-1640 medium containing 0.36% melted agar and
395 were plated on top of the bottom layer at a concentration of 2.5×10^4 cells per dish. After 2
396 weeks of incubation, images of colonies that had grown on the soft-agar cell culture plates were
397 captured using a 4 \times Plan S-Apo 0.16 NA objective on an EVOS FL cell imaging system
398 (Thermo Fisher Scientific). The colonies were counted by using ImageJ software and plotted by
399 using GraphPad Prism 9 software.

400 **In vivo orthotopic lung cancer model**

401 Six- to eight-week-old pathogen-free SCID/NCr mice were purchased from Charles River
402 Laboratories. Mice were allowed one week to acclimate to their surroundings, then bred,

403 maintained under specific-pathogen-free conditions in a temperature-controlled room with
404 alternating 12 h light/dark cycles, and fed a standard diet in accordance with protocols approved
405 by the University of Minnesota Institutional Animal Care and Use Committee. For each mouse,
406 luciferase-labeled human HCC827 lung cancer cells (1×10^6) transduced with either LacZ
407 shRNA (control) or IKK α shRNAs were suspended in 80 μ l PBS and Matrigel. The cells were
408 then orthotopically injected in the right thoracic cavity of 8- to 12-week-old male and female
409 mice and allowed to establish tumors over 1 week. Luminescence images of mice were taken
410 weekly over 7 weeks using an In-Vivo Xtreme xenogen imaging system (Bruker). The luciferase
411 intensity (total photon count) of each mouse was calculated using Bruker molecular imaging
412 software and plotted over time in GraphPad Prism 9 software.

413 **Statistics**

414 Statistically significant differences between multiple groups (greater than 2) were determined by
415 performing one-way analysis of variance (ANOVA) followed by Dunnett's test. Statistically
416 significant differences in tumor growth over time between two groups in the mouse experiments
417 were determined with two-way ANOVA followed by Sidak's test. Values of $P \leq 0.05$ were
418 considered significant. Data are expressed as mean \pm SEM of at least three independent
419 experiments.

420 **Acknowledgements:** This work was supported by a Research Scholar Grant RSG-21-034-01-
421 TBG from the American Cancer Society, a Windfeldt Cancer Research Award, the Elsa U.
422 Pardee Foundation, and The Hormel Foundation (to L.H.H.) as well as the Fifth District Eagles
423 Cancer Telethon Postdoctoral Fellowship Award (to S.K.A.). We thank Sam Hagan and Brianna
424 Kriesel for providing assistance with culturing cells, immunoblotting studies, and plasmid
425 preparations. We thank Naomi Ruff for helpful comments on the manuscript. We are grateful to
426 Wael El-Rifai for sharing DARPP-32 plasmids, Georgiy Aslanidi for sharing expression

427 plasmids, and Pasi A. Jänne, Aaron N. Hata, and Anthony C. Faber for generously providing
428 NSCLC cells. We thank The Hormel Institute and its staff for administrative, shared equipment,
429 animal facility, and institutional support. We appreciate the data acquisition assistance provided
430 by Todd Schuster and Tanner Conway.

431 **Author contributions:** S.K.A. conducted in vitro cell line-based experiments, including
432 immunoprecipitation experiments, soft agar colony formation assays, and in vitro kinase and
433 phosphatase assays. S.K.A. and L.H.H. managed the immunocompromised SCID/NCr mouse
434 colony and performed tumor studies in mice. S.K.A. and L.W. conducted murine in vivo
435 bioluminescence imaging and necropsy. L.W. purified full-length and truncated DARPP-32
436 protein from mammalian cells. S.K.A. and Z.Z. performed western blotting experiments. Z.Z.
437 assisted with imaging and analysis of soft agar colony formation assays. S.K.A, L.W., and
438 L.H.H. provided technical and scientific support. S.K.A. and L.H.H. performed experimental
439 troubleshooting, reviewed relevant scientific literature, critically analyzed data, prepared figures,
440 and wrote the manuscript. L.H.H. conceived the aims, led the project, and acquired funding to
441 complete the reported research.

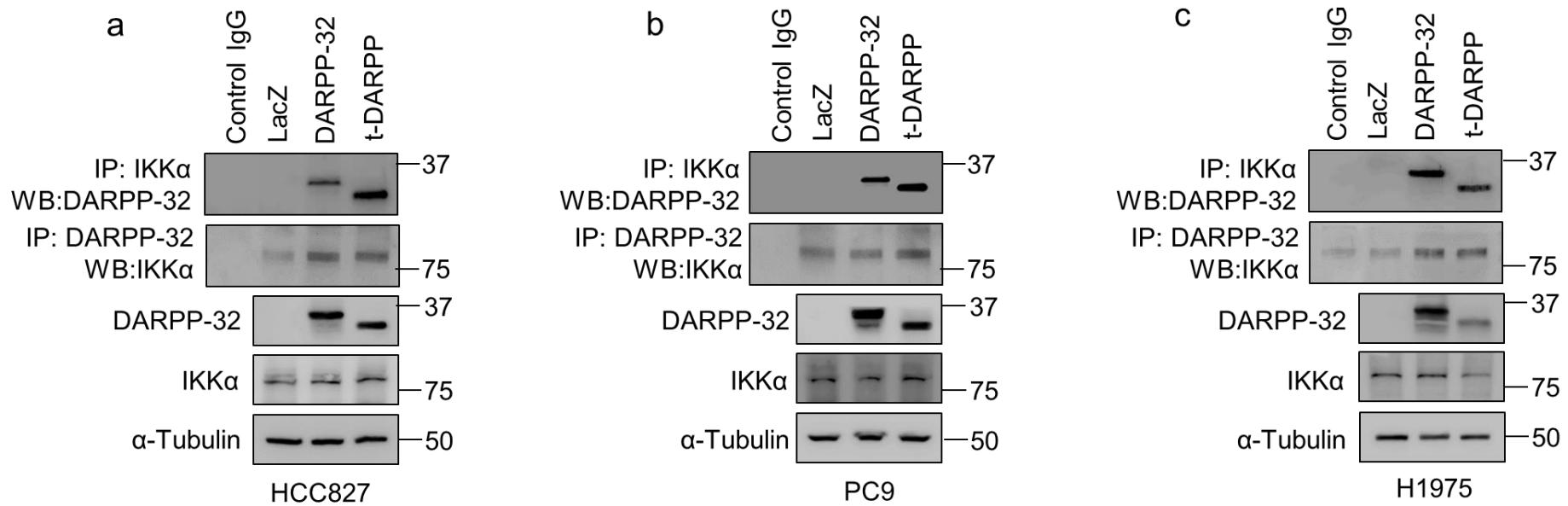
442 **Data Availability:** The authors declare that the data supporting the findings of this study are
443 available within the article and its supplementary information. Any other associated data
444 supporting the findings of this study are available from the corresponding author upon request.

445 **Competing interests:** The authors declare no competing interests.

References:

1. Sung, H. *et al.* Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. *CA Cancer J Clin* **71**, 209-249 (2021). <https://doi.org/10.3322/caac.21660>
2. Ferlay, J. *et al.* Cancer statistics for the year 2020: An overview. *International journal of cancer* (2021). <https://doi.org/10.1002/ijc.33588>
3. Travis, W. D. *et al.* The 2015 World Health Organization Classification of Lung Tumors: Impact of Genetic, Clinical and Radiologic Advances Since the 2004 Classification. *Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer* **10**, 1243-1260 (2015). <https://doi.org/10.1097/ito.0000000000000630>
4. Howlader, N. *et al.* The Effect of Advances in Lung-Cancer Treatment on Population Mortality. *New England Journal of Medicine* **383**, 640-649 (2020). <https://doi.org/10.1056/NEJMoa1916623>
5. Ng, M. *et al.* Smoking Prevalence and Cigarette Consumption in 187 Countries, 1980-2012. *Jama* **311**, 183-192 (2014). <https://doi.org/10.1001/jama.2013.284692>
6. Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2022. *CA Cancer J Clin* **72**, 7-33 (2022). <https://doi.org/10.3322/caac.21708>
7. Islami, F. *et al.* Annual Report to the Nation on the Status of Cancer, Part 1: National Cancer Statistics. *JNCI: Journal of the National Cancer Institute* **113**, 1648-1669 (2021). <https://doi.org/10.1093/jnci/djab131>
8. Thai, A. A., Solomon, B. J., Sequist, L. V., Gainor, J. F. & Heist, R. S. Lung cancer. *The Lancet* **398**, 535-554 (2021). [https://doi.org/https://doi.org/10.1016/S0140-6736\(21\)00312-3](https://doi.org/https://doi.org/10.1016/S0140-6736(21)00312-3)
9. Senftleben, U. *et al.* Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. *Science (New York, N.Y.)* **293**, 1495-1499 (2001). <https://doi.org/10.1126/science.1062677>
10. Hayden, M. S., West, A. P. & Ghosh, S. NF- κ B and the immune response. *Oncogene* **25**, 6758-6780 (2006). <https://doi.org/10.1038/sj.onc.1209943>
11. Ghosh, S. & Karin, M. Missing Pieces in the NF- κ B Puzzle. *Cell* **109**, S81-S96 (2002). [https://doi.org/https://doi.org/10.1016/S0092-8674\(02\)00703-1](https://doi.org/https://doi.org/10.1016/S0092-8674(02)00703-1)
12. Zandi, E., Rothwarf, D. M., Delhase, M., Hayakawa, M. & Karin, M. The I κ B Kinase Complex (IKK) Contains Two Kinase Subunits, IKK α and IKK β , Necessary for I κ B Phosphorylation and NF- κ B Activation. *Cell* **91**, 243-252 (1997). [https://doi.org/https://doi.org/10.1016/S0092-8674\(00\)80406-7](https://doi.org/https://doi.org/10.1016/S0092-8674(00)80406-7)
13. Mercurio, F. *et al.* IKK-1 and IKK-2: Cytokine-Activated I κ B Kinases Essential for NF- κ B Activation. *Science (New York, N.Y.)* **278**, 860-866 (1997). <https://doi.org/doi:10.1126/science.278.5339.860>
14. Sun, S.-C. The non-canonical NF- κ B pathway in immunity and inflammation. *Nature Reviews Immunology* **17**, 545-558 (2017). <https://doi.org/10.1038/nri.2017.52>
15. Li, X. & Hu, Y. Attribution of NF- κ B Activity to CHUK/IKK α -Involved Carcinogenesis. *Cancers* **13** (2021). <https://doi.org/10.3390/cancers13061411>

16. Zhang, W. *et al.* A NIK-IKK α module expands ErbB2-induced tumor-initiating cells by stimulating nuclear export of p27/Kip1. *Cancer Cell* **23**, 647-659 (2013). <https://doi.org/10.1016/j.ccr.2013.03.012>
17. Luo, J. L. *et al.* Nuclear cytokine-activated IKKalpha controls prostate cancer metastasis by repressing Maspin. *Nature* **446**, 690-694 (2007). <https://doi.org/10.1038/nature05656>
18. Page, A. *et al.* IKK α Promotes the Progression and Metastasis of Non-Small Cell Lung Cancer Independently of its Subcellular Localization. *Computational and structural biotechnology journal* **17**, 251-262 (2019). <https://doi.org/10.1016/j.csbj.2019.02.003>
19. Vreka, M. *et al.* I κ B Kinase α Is Required for Development and Progression of KRAS-Mutant Lung Adenocarcinoma. *Cancer Res* **78**, 2939-2951 (2018). <https://doi.org/10.1158/0008-5472.can-17-1944>
20. Song, N. Y. *et al.* IKK α inactivation promotes Kras-initiated lung adenocarcinoma development through disrupting major redox regulatory pathways. *Proc Natl Acad Sci U S A* **115**, E812-e821 (2018). <https://doi.org/10.1073/pnas.1717520115>
21. Brené, S. *et al.* Expression of mRNAs encoding ARPP-16/19, ARPP-21, and DARPP-32 in human brain tissue. *The Journal of neuroscience : the official journal of the Society for Neuroscience* **14**, 985-998 (1994). <https://doi.org/10.1523/jneurosci.14-03-00985.1994>
22. Brené, S. *et al.* Distribution of messenger RNAs for D1 dopamine receptors and DARPP-32 in striatum and cerebral cortex of the cynomolgus monkey: relationship to D1 dopamine receptors. *Neuroscience* **67**, 37-48 (1995). [https://doi.org/10.1016/0306-4522\(95\)00037-i](https://doi.org/10.1016/0306-4522(95)00037-i)
23. Svenningsson, P. *et al.* DARPP-32: an integrator of neurotransmission. *Annu Rev Pharmacol Toxicol* **44**, 269-296 (2004). <https://doi.org/10.1146/annurev.pharmtox.44.101802.121415>
24. Hemmings, H. C., Jr., Greengard, P., Tung, H. Y. & Cohen, P. DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1. *Nature* **310**, 503-505 (1984). <https://doi.org/10.1038/310503a0>
25. Alam, S. K. *et al.* DARPP-32 and t-DARPP promote non-small cell lung cancer growth through regulation of IKK α -dependent cell migration. *Communications Biology* **1**, 43 (2018). <https://doi.org/10.1038/s42003-018-0050-6>
26. Alam, S. K. *et al.* ASCL1-regulated DARPP-32 and t-DARPP stimulate small cell lung cancer growth and neuroendocrine tumour cell proliferation. *British journal of cancer* (2020). <https://doi.org/10.1038/s41416-020-0923-6>
27. Ebihara, Y. *et al.* DARPP-32 expression arises after a phase of dysplasia in oesophageal squamous cell carcinoma. *British journal of cancer* **91**, 119-123 (2004). <https://doi.org/10.1038/sj.bjc.6601899>
28. El-Rifai, W. *et al.* Gastric cancers overexpress DARPP-32 and a novel isoform, t-DARPP. *Cancer Res* **62**, 4061-4064 (2002).
29. Martin, S. G. *et al.* Dopamine and cAMP-regulated phosphoprotein 32kDa (DARPP-32), protein phosphatase-1 and cyclin-dependent kinase 5 expression in ovarian cancer. *Journal of cellular and molecular medicine* **24**, 9165-9175 (2020). <https://doi.org/10.1111/jcmm.15553>
30. Tiwari, A. *et al.* Loss of HIF1A From Pancreatic Cancer Cells Increases Expression of PPP1R1B and Degradation of p53 to Promote Invasion and Metastasis.


Gastroenterology **159**, 1882-1897.e1885 (2020).
<https://doi.org/10.1053/j.gastro.2020.07.046>

31. Christenson, J. L. & Kane, S. E. Darpp-32 and t-Darpp are differentially expressed in normal and malignant mouse mammary tissue. *Mol Cancer* **13**, 192 (2014).
<https://doi.org/10.1186/1476-4598-13-192>
32. Theile, D., Geng, S., Denny, E. C., Momand, J. & Kane, S. E. t-Darpp stimulates protein kinase A activity by forming a complex with its RI regulatory subunit. *Cellular signalling* **40**, 53-61 (2017). <https://doi.org/10.1016/j.cellsig.2017.08.012>
33. Momand, J. *et al.* t-Darpp is an elongated monomer that binds calcium and is phosphorylated by cyclin-dependent kinases 1 and 5. *FEBS open bio* **7**, 1328-1337 (2017). <https://doi.org/10.1002/2211-5463.12269>
34. Alam, S. K. *et al.* DARPP-32 promotes ERBB3-mediated resistance to molecular targeted therapy in EGFR-mutated lung adenocarcinoma. *Oncogene*, 1-16 (2021).
<https://doi.org/10.1038/s41388-021-02028-5>
35. Avanes, A., Lenz, G. & Momand, J. Darpp-32 and t-Darpp protein products of PPP1R1B: Old dogs with new tricks. *Biochemical pharmacology* **160**, 71-79 (2019).
<https://doi.org/10.1016/j.bcp.2018.12.008>
36. Lenz, G. *et al.* t-Darpp Activates IGF-1R Signaling to Regulate Glucose Metabolism in Trastuzumab-Resistant Breast Cancer Cells. *Clin Cancer Res* (2017).
<https://doi.org/10.1158/1078-0432.ccr-17-0824>
37. Zhu, S., Belkhiri, A. & El-Rifai, W. DARPP-32 increases interactions between epidermal growth factor receptor and ERBB3 to promote tumor resistance to gefitinib. *Gastroenterology* **141**, 1738-1748 e1731-1732 (2011).
<https://doi.org/10.1053/j.gastro.2011.06.070>
38. Kwon, Y. G., Lee, S. Y., Choi, Y., Greengard, P. & Nairn, A. C. Cell cycle-dependent phosphorylation of mammalian protein phosphatase 1 by cdc2 kinase. *Proc Natl Acad Sci U S A* **94**, 2168-2173 (1997). <https://doi.org/10.1073/pnas.94.6.2168>
39. Hansen, C. *et al.* Wnt-5a-induced phosphorylation of DARPP-32 inhibits breast cancer cell migration in a CREB-dependent manner. *J Biol Chem* **284**, 27533-27543 (2009).
<https://doi.org/10.1074/jbc.M109.048884>
40. Mitsuhashi, S. *et al.* Usage of Tautomycetin, a Novel Inhibitor of Protein Phosphatase 1 (PP1), Reveals That PP1 Is a Positive Regulator of Raf-1 in Vivo *. *Journal of Biological Chemistry* **278**, 82-88 (2003). <https://doi.org/https://doi.org/10.1074/jbc.M208888200>
41. Akagi, T., Sasai, K. & Hanafusa, H. Refractory nature of normal human diploid fibroblasts with respect to oncogene-mediated transformation. *Proc Natl Acad Sci U S A* **100**, 13567-13572 (2003). <https://doi.org/10.1073/pnas.1834876100>
42. Schröfelbauer, B., Polley, S., Behar, M., Ghosh, G. & Hoffmann, A. NEMO Ensures Signaling Specificity of the Pleiotropic IKK β by Directing Its Kinase Activity toward I κ B α . *Molecular Cell* **47**, 111-121 (2012).
<https://doi.org:https://doi.org/10.1016/j.molcel.2012.04.020>
43. Hinz, M. & Scheidereit, C. The I κ B kinase complex in NF- κ B regulation and beyond. *EMBO reports* **15**, 46-61 (2014). <https://doi.org:https://doi.org/10.1002/embr.201337983>

44. Hayden, M. S. & Ghosh, S. NF- κ B, the first quarter-century: remarkable progress and outstanding questions. *Genes & development* **26**, 203-234 (2012). <https://doi.org/10.1101/gad.183434.111>
45. Chariot, A. The NF- κ B-independent functions of IKK subunits in immunity and cancer. *Trends in Cell Biology* **19**, 404-413 (2009). <https://doi.org/https://doi.org/10.1016/j.tcb.2009.05.006>
46. Antonia, R. J., Hagan, R. S. & Baldwin, A. S. Expanding the View of IKK: New Substrates and New Biology. *Trends in Cell Biology* **31**, 166-178 (2021). <https://doi.org/https://doi.org/10.1016/j.tcb.2020.12.003>
47. Cao, Y. *et al.* IKK α Provides an Essential Link between RANK Signaling and Cyclin D1 Expression during Mammary Gland Development. *Cell* **107**, 763-775 (2001). [https://doi.org/https://doi.org/10.1016/S0092-8674\(01\)00599-2](https://doi.org/https://doi.org/10.1016/S0092-8674(01)00599-2)
48. Bennett, L. *et al.* High IKK α expression is associated with reduced time to recurrence and cancer specific survival in oestrogen receptor (ER)-positive breast cancer. *International journal of cancer* **140**, 1633-1644 (2017). <https://doi.org/10.1002/ijc.30578>
49. Hao, L. *et al.* Notch-1 activates estrogen receptor-alpha-dependent transcription via IKK α in breast cancer cells. *Oncogene* **29**, 201-213 (2010). <https://doi.org/10.1038/onc.2009.323>
50. Dan, H. C., Antonia, R. J. & Baldwin, A. S. PI3K/Akt promotes feedforward mTORC2 activation through IKK α . *Oncotarget* **7**, 21064-21075 (2016). <https://doi.org/10.18632/oncotarget.8383>
51. Girault, J. A. & Nairn, A. C. DARPP-32 40 years later. *Advances in pharmacology (San Diego, Calif.)* **90**, 67-87 (2021). <https://doi.org/10.1016/bs.apha.2020.09.004>
52. Saidy, B. *et al.* PP1, PKA and DARPP-32 in breast cancer: A retrospective assessment of protein and mRNA expression. *Journal of cellular and molecular medicine* **25**, 5015-5024 (2021). <https://doi.org/10.1111/jcmm.16447>
53. Gu, L., Waliany, S. & Kane, S. E. Darpp-32 and its truncated variant t-Darpp have antagonistic effects on breast cancer cell growth and herceptin resistance. *PloS one* **4**, e6220 (2009). <https://doi.org/10.1371/journal.pone.0006220>
54. Gu, L., Lau, S. K., Loera, S., Somlo, G. & Kane, S. E. Protein kinase A activation confers resistance to trastuzumab in human breast cancer cell lines. *Clin Cancer Res* **15**, 7196-7206 (2009). <https://doi.org/10.1158/1078-0432.ccr-09-0585>
55. Matos, B., Howl, J., Jerónimo, C. & Fardilha, M. Modulation of serine/threonine-protein phosphatase 1 (PP1) complexes: A promising approach in cancer treatment. *Drug Discovery Today* **26**, 2680-2698 (2021). <https://doi.org/https://doi.org/10.1016/j.drudis.2021.08.001>
56. Felgueiras, J., Jerónimo, C. & Fardilha, M. Protein phosphatase 1 in tumorigenesis: is it worth a closer look? *Biochimica et biophysica acta. Reviews on cancer* **1874**, 188433 (2020). <https://doi.org/10.1016/j.bbcan.2020.188433>
57. Jones, G. G. *et al.* SHOC2 phosphatase-dependent RAF dimerization mediates resistance to MEK inhibition in RAS-mutant cancers. *Nature communications* **10**, 2532 (2019). <https://doi.org/10.1038/s41467-019-10367-x>
58. Wang, Z. *et al.* Protein 4.1N acts as a potential tumor suppressor linking PP1 to JNK-c-Jun pathway regulation in NSCLC. *Oncotarget* **7** (2015).

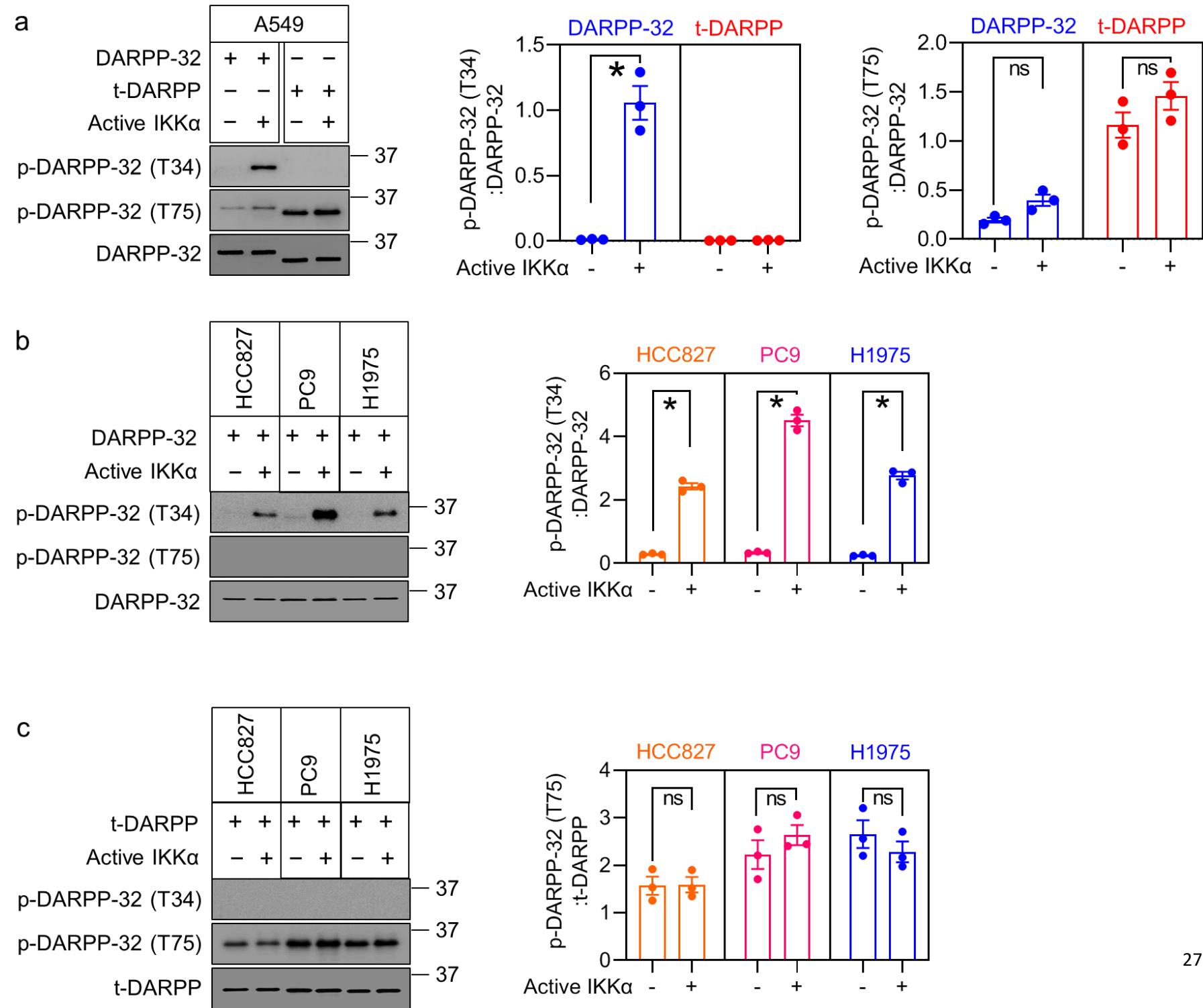

59. Cirak, Y. *et al.* Zoledronic acid in combination with serine/threonine phosphatase inhibitors induces enhanced cytotoxicity and apoptosis in hormone-refractory prostate cancer cell lines by decreasing the activities of PP1 and PP2A. *BJU International* **110**, E1147-E1154 (2012). <https://doi.org/https://doi.org/10.1111/j.1464-410X.2012.11392.x>
60. Singal, G. *et al.* Association of Patient Characteristics and Tumor Genomics With Clinical Outcomes Among Patients With Non-Small Cell Lung Cancer Using a Clinicogenomic Database. *Jama* **321**, 1391-1399 (2019).
<https://doi.org/10.1001/jama.2019.3241>
61. Ramadass, V., Vaiyapuri, T. & Tergaonkar, V. Small Molecule NF- κ B Pathway Inhibitors in Clinic. *International journal of molecular sciences* **21**, 5164 (2020).
<https://doi.org/10.3390/ijms21145164>
62. Engelman, J. A. *et al.* MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. *Science (New York, N.Y.)* **316**, 1039-1043 (2007).
<https://doi.org/10.1126/science.1141478>
63. Hata, A. N. *et al.* Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. *Nat Med* **22**, 262-269 (2016).
<https://doi.org/10.1038/nm.4040>
64. Song, K. A. *et al.* Epithelial-to-Mesenchymal Transition Antagonizes Response to Targeted Therapies in Lung Cancer by Suppressing BIM. *Clin Cancer Res* **24**, 197-208 (2018). <https://doi.org/10.1158/1078-0432.ccr-17-1577>
65. Chen, Z. *et al.* Gastric tumour-derived ANGPT2 regulation by DARPP-32 promotes angiogenesis. *Gut* **65**, 925-934 (2016). <https://doi.org/10.1136/gutjnl-2014-308416>
66. Alam, S. K. *et al.* DARPP-32 promotes ERBB3-mediated resistance to molecular targeted therapy in EGFR-mutated lung adenocarcinoma. *bioRxiv*, 2021.2002.2012.430856 (2021). <https://doi.org/10.1101/2021.02.12.430856>
67. Alam, S. K. *et al.* DNA damage-induced ephrin-B2 reverse signaling promotes chemoresistance and drives EMT in colorectal carcinoma harboring mutant p53. *Cell Death Differ* **23**, 707-722 (2016). <https://doi.org/10.1038/cdd.2015.133>
68. Nakano, H. *et al.* Differential regulation of IkappaB kinase alpha and beta by two upstream kinases, NF-kappaB-inducing kinase and mitogen-activated protein kinase/ERK kinase kinase-1. *Proc Natl Acad Sci U S A* **95**, 3537-3542 (1998).
<https://doi.org/10.1073/pnas.95.7.3537>
69. Martz, C. A. *et al.* Systematic identification of signaling pathways with potential to confer anticancer drug resistance. *Science signaling* **7**, ra121 (2014).
<https://doi.org/10.1126/scisignal.aaa1877>
70. Wang, L. *et al.* Suppressing STAT3 activity protects the endothelial barrier from VEGF-mediated vascular permeability. *Dis Model Mech* **14** (2021).
<https://doi.org/10.1242/dmm.049029>

Figure 1

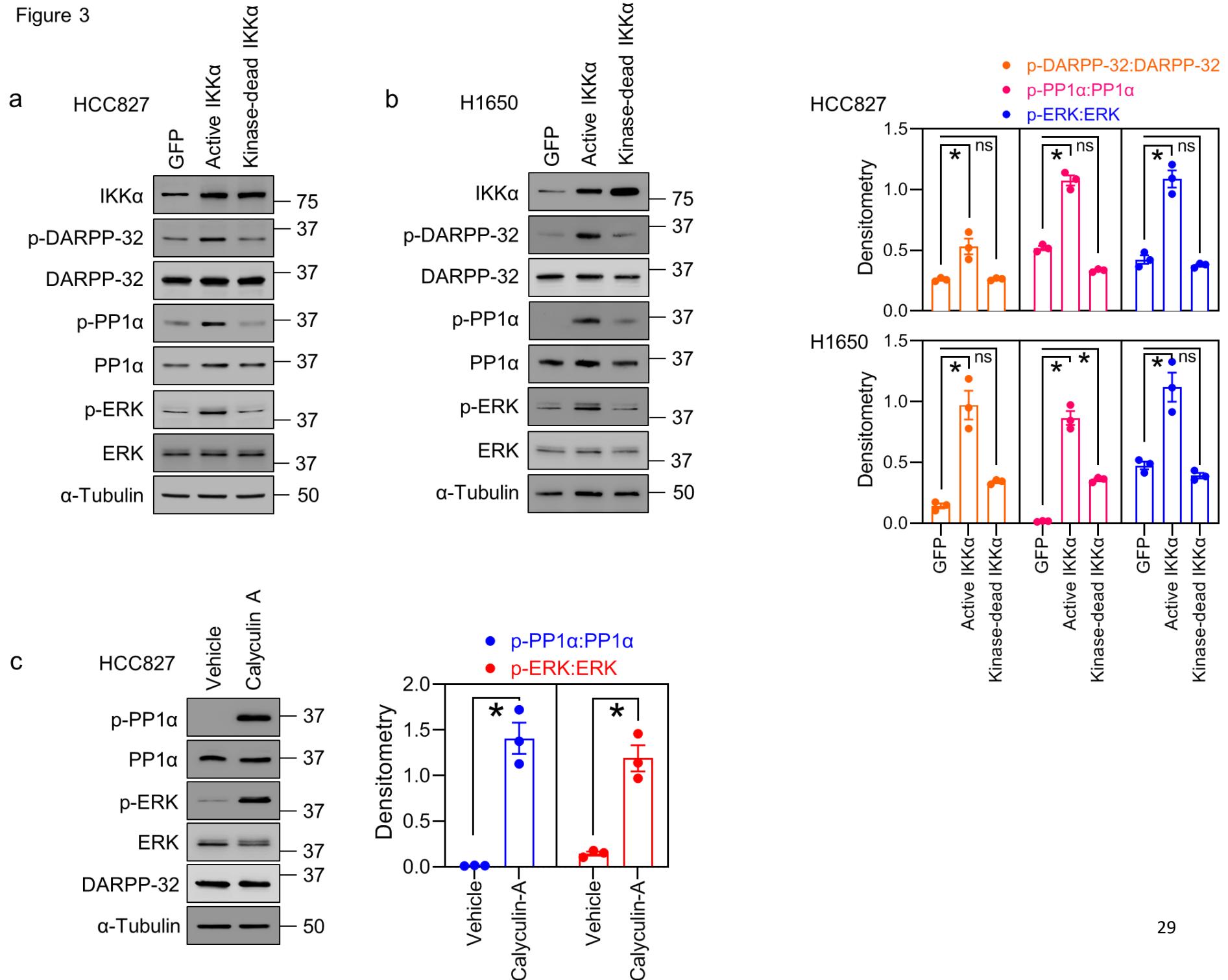

Figure 1: IKK α physically associates with DARPP-32 isoforms. a-c. Human lung adenocarcinoma cell lines HCC827 (a), PC9 (b), and H1975 (c) stably overexpressing FLAG-tagged human DARPP-32 isoforms were lysed and subjected to immunoprecipitation using either anti-IKK α or anti-FLAG antibody (IP:DARPP-32). Immunoprecipitated lysates were separated in SDS-PAGE and immunoblotted with antibodies against IKK α , DARPP-32, and α -tubulin (loading control).

Figure 2

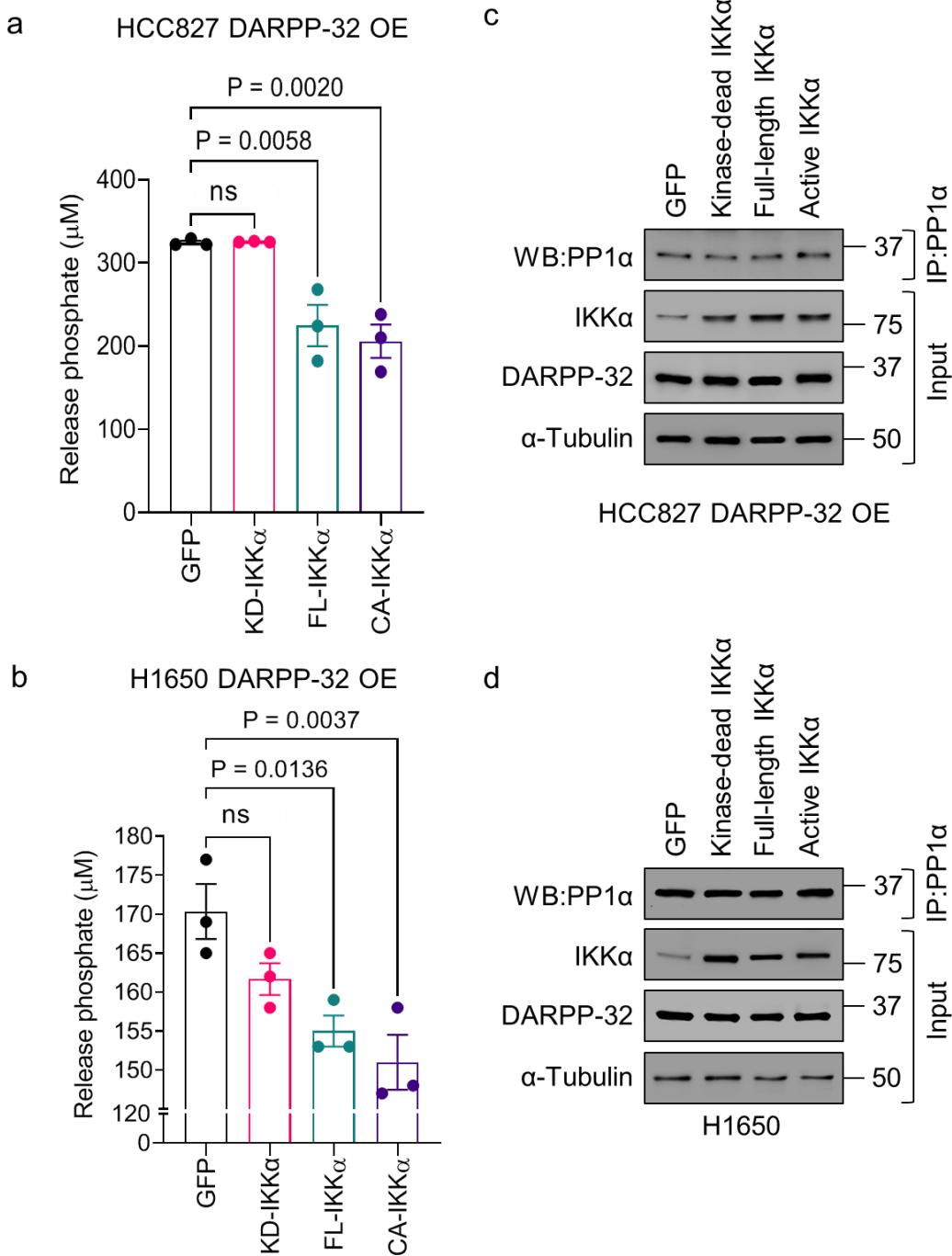

Figure 2: IKK α phosphorylates DARPP-32 at Thr-34. **a.** Human A549 cell lines stably overexpressing FLAG-tagged human DARPP-32 isoforms (DARPP-32 and t-DARPP) were lysed and subjected to immunoprecipitation using anti-FLAG antibody-conjugated agarose beads. Immunoprecipitated lysates were used to perform nonradioactive in vitro kinase assays following incubation with commercially available active IKK α protein. At the end, the reaction mixtures were subjected to immunoblotting using antibodies against DARPP-32 phosphorylated on Thr-34 or Thr-75 and total DARPP-32 protein. **b-c.** Human HCC827, PC9, and H1975 lung adenocarcinoma cell lines retrovirally transduced with either FLAG-tagged human DARPP-32 (b) or t-DARPP (c) cDNA plasmids were lysed, immunoprecipitated, incubated with active IKK α protein, and subjected to western blotting using anti-phosphorylated (Thr-34 or Thr-75) DARPP-32 and anti-DARPP-32 antibodies. Data from one experimental replicate are shown. The experiments were repeated three times independently; each circle in a bar represents one experiment. * $P < 0.05$; ns, not significant.

Figure 3

Figure 3: Overexpression of constitutively active IKK α activates ERK signaling. **a-b.** Human lung cancer cells, HCC827 (a) and H1650 (b), transfected with GFP (control), constitutively active IKK α , or kinase-dead IKK α were lysed using 1 \times RIPA buffer supplemented with protease and phosphatase inhibitors. Equal amounts of proteins were separated with 4-20% SDS-PAGE and transferred to polyvinyl difluoride membranes. Antigen-coated membranes were incubated overnight with primary antibodies against IKK α , phosphorylated DARPP-32 (Thr34), total DARPP-32, phosphorylated PP1 α , total PP1 α , phosphorylated ERK, total ERK, and α -tubulin (loading control). **c.** Vehicle (DMSO)- or calyculin-A-treated human HCC827 cells were lysed with 1 \times RIPA buffer and subjected to immunoblotting using anti-phosphorylated PP1 α , -total PP1 α , -phosphorylated ERK, -total ERK, -DARPP-32, and - α -tubulin (loading control) antibodies. Chemiluminescence signals were detected after incubating membranes with HRP-tagged secondary antibodies. Representative images from one experiment are shown, but results were validated by performing three independent biological repeats. Bar graphs at the right show quantification of the results from the three western blotting experiments. * P < 0.05; ns, not significant.

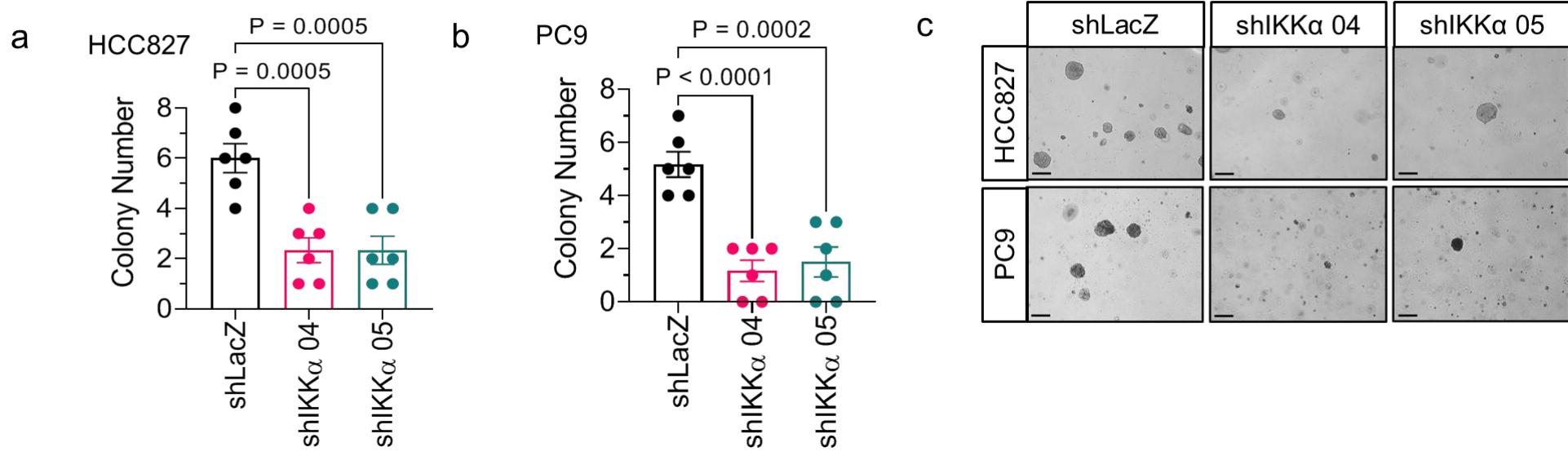

Figure 4

Figure 4: Overexpression of IKK α inhibits phosphatase activity of PP1 α . **a-b.** Human NSCLC HCC827 (a) and H1650 (b) cells transfected with GFP (control), kinase-dead (KD), full-length (FL), and constitutively active (CA) IKK α cDNAs were lysed using 1 \times RIPA buffer supplemented with

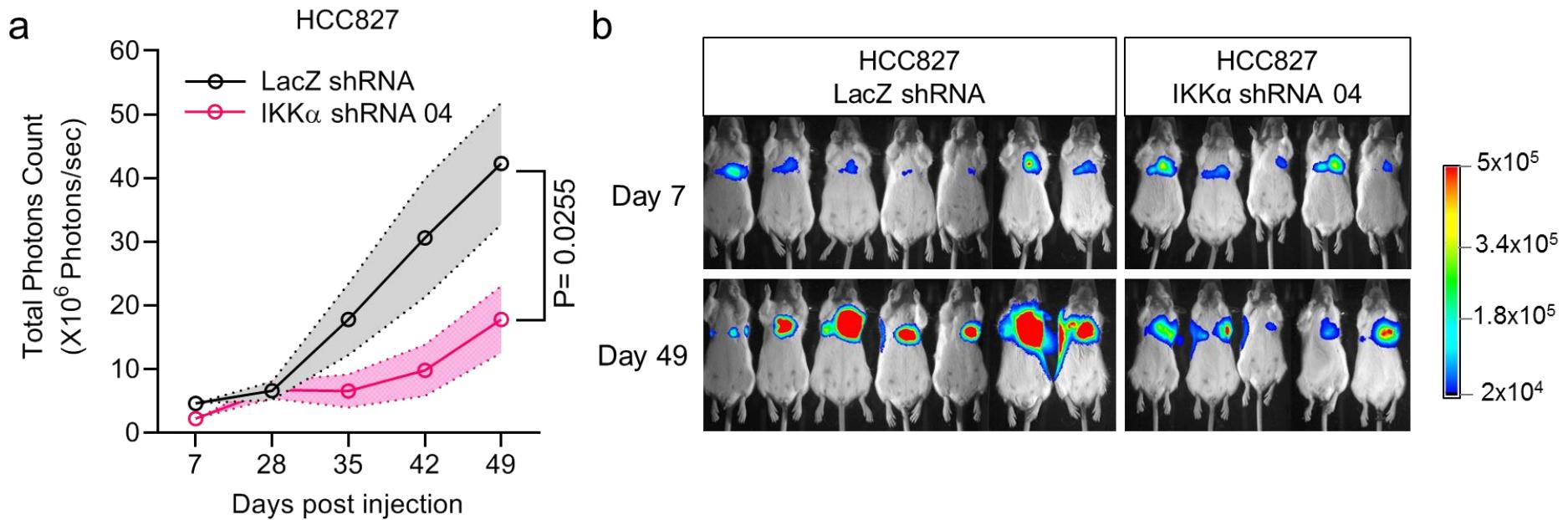

protease inhibitors only. Equal amounts of proteins (500 ng) were immunoprecipitated using anti-PP1 α antibodies. Immunoprecipitated cell lysates were subjected to in vitro phosphatase assays following incubation with either PP1 α substrate or histone H1 peptide (control). Released phosphates in each reaction tube were determined by using a phosphate detection reagent. In vitro phosphatase experiments were repeated three times independently. Bar graphs represent mean \pm SEM of the three repeats, with each circle in a bar representing an independent experiment. A value of $P \leq 0.05$ was considered significant, ns, not significant, one-way ANOVA followed by Dunnett's test. **c-d** Immunoprecipitated HCC827 (c) and H1650 (d) cell lysates separated with 4-20% SDS-PAGE were subjected to western blotting using anti-PP1 α antibodies. Input cell lysates were blotted with antibodies against IKK α , DARPP-32, and α -tubulin (loading control).

Figure 5

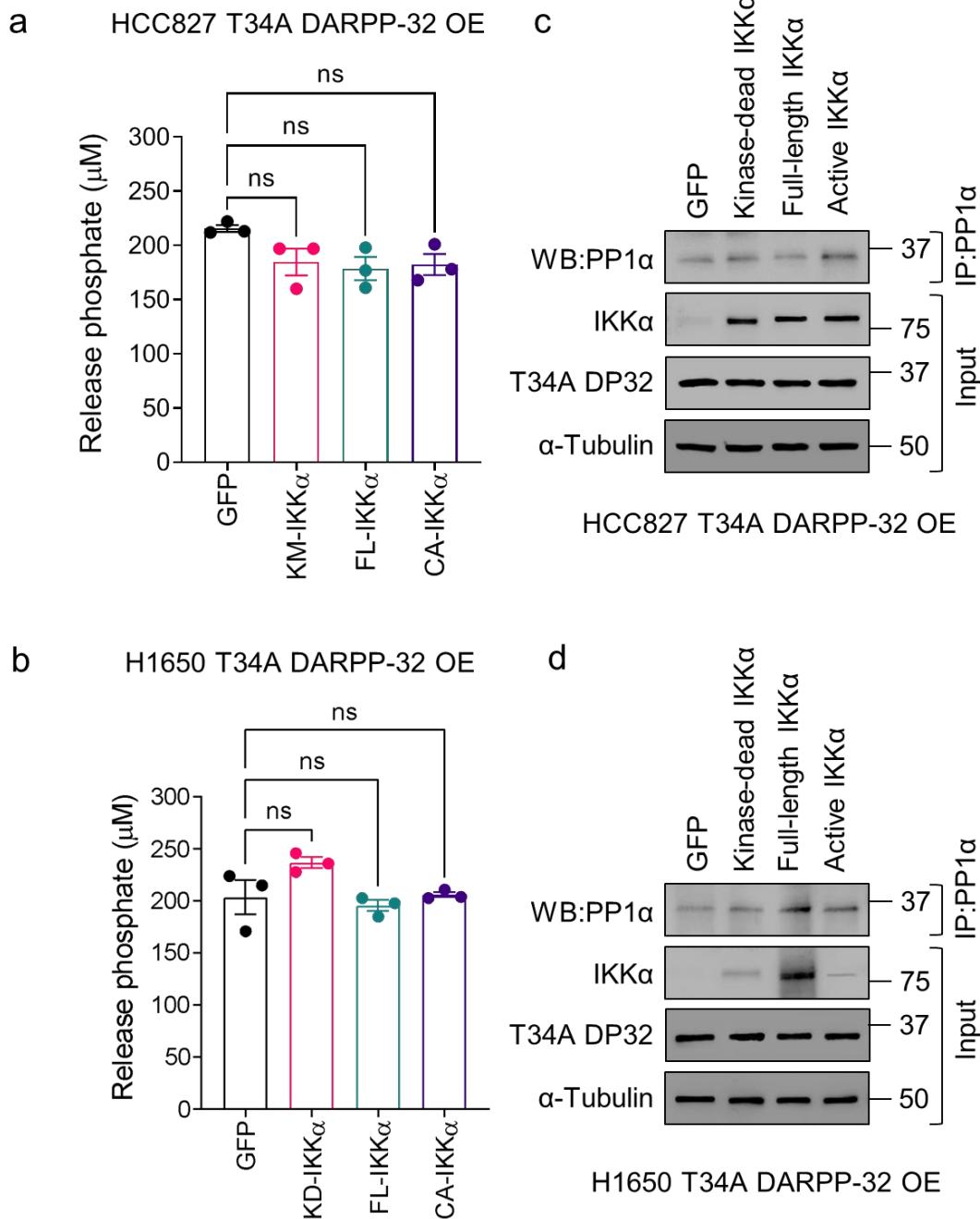

Figure 5: Knockdown of IKK α expression blocks anchorage-independent NSCLC cell growth. a-b. Human NSCLC HCC827 (a) and PC9 (b) cells transduced with lentivirus designed to silence LacZ (control) or IKK α expression were subjected to soft agar colony formation assays to determine anchorage-independent cell growth. ImageJ was used to count colonies on the cell culture dishes after 2 weeks of incubation, and the number of counted colonies was plotted. Each circle on a graph represents an independent experiment. Soft agar colony formation experiments were repeated at least six times. Error bars indicate SEM ($n=6$). A value of $P \leq 0.05$ was considered significant, one-way ANOVA followed by Dunnett's test. **c.** Representative images of HCC827 and PC9 cells transduced with lentivirus encoding either LacZ shRNA or IKK α shRNAs forming colonies on soft-agar cell culture dishes 2 weeks after plating.

Figure 6

Figure 6: Depletion of $\text{IKK}\alpha$ inhibits lung tumor cell growth and proliferation in vivo. **a.** Luciferase-labeled $\text{IKK}\alpha$ -depleted human HCC827 cells were orthotopically injected into the left thorax of SCID mice and imaged for luminescence on the indicated days. Total luminescence intensity (photon count) was calculated using molecular imaging software and plotted as a line graph. Error bars are shown as dotted lines indicating SEM. A value of $P \leq 0.05$ was considered significant, two-way ANOVA followed by Sidak's test. **b.** Images of anesthetized mice were captured to detect luminescence signals on the indicated days.

Supplementary Figure 1

Supplementary Figure 1: PP1 α activity is controlled by DARPP-32 phosphorylation.

a-b. Human NSCLC HCC827 (a) and H1650 (b) cells transduced with retrovirus designed to overexpress mutant (T34A) DARPP-32 proteins were transiently transfected with GFP, kinase-dead (KD), full-length (FL), or constitutively active (CA) IKK α expression plasmids. Following

immunoprecipitation with anti-PP1 α antibodies, cell lysates were subjected to in vitro phosphatase assays with either PP1 α substrate or histone H1 peptide (control). A colorimetric-based phosphate detection reagent was used to determine the amount of phosphate ions released from each reaction. Bar graphs represent mean \pm SEM of three repeats, with each circle in a bar representing one experiment. ns, not significant; one-way ANOVA followed by Dunnett's test. **c-d**

Immunoprecipitated lysates of HCC827 (c) and H1650 (d) cells were separated with 4-20% SDS-PAGE and blotted using anti-PP1 α primary antibodies. Total cell lysates (Input) were subjected to western blotting using primary antibodies against IKK α , DARPP-32, and α -tubulin (loading control).