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Abstract

Non-small cell lung cancer (NSCLC) accounts for 80-85% cases of lung cancer cases.
Diagnosis at advanced stages is common, after which therapy-refractory disease progression
frequently occurs. Therefore, a better understanding of the molecular mechanisms that control
NSCLC progression is necessary to develop new therapies. Overexpression of IkB kinase a
(IKKa) in NSCLC correlates with poor patient survival. IKKa is an NF-kB-activating kinase that is
important in cell survival and differentiation, but its regulation of oncogenic signaling is not well
understood. We recently demonstrated that IKKa promotes NSCLC cell migration by physically
interacting with dopamine- and cyclic AMP-regulated phosphoprotein, Mr 32000 (DARPP-32),
and its truncated splice variant, t-DARPP. Here, we show that IKKa phosphorylates DARPP-32
at threonine 34, resulting in DARPP-32-mediated inhibition of protein phosphatase 1 (PP1),
subsequent PP1-mediated dephosphorylation of ERK, and activation of ERK signaling to
promote lung oncogenesis. Correspondingly, DARPP-32 ablation in human lung
adenocarcinoma cells reduced their anchorage-independent growth in soft agar. Mice
challenged with IKKa-ablated HCC827 cells exhibited less lung tumor growth than mice
orthotopically administered control HCC827 cells. Our findings suggest that IKKa drives NSCLC

growth through activation of ERK signaling via DARPP-32-mediated inhibition of PP1 activity.
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Introduction

Lung cancer is the second most frequently diagnosed cancer in both men and women and the
leading cause of cancer-related deaths worldwide, with an estimated 2.2 million new cases and
1.8 million deaths per year*2. Non—-small cell lung cancer (NSCLC) is the most common type of
lung cancer and accounts for 85% of total diagnoses®. Substantial improvements in the
application of predictive biomarkers, smoking cessation, and modification of current treatment
paradigms have led to notable progress in managing NSCLC and have transformed outcomes
for many patients*®. However, the 5-year relative survival of lung cancer patients is dismal
(22.9%) due to the emergence of therapy-resistant disease and metastasis’®. Therefore,
improving the general understanding of disease biology, implementing screening programs to
diagnose patients early, and identifying alternative treatment strategies to circumvent treatment-
refractory disease progression is required to improve the lung cancer survival rate. Here, we
introduce a new mechanism for the molecular regulation of oncogenic signaling that builds upon
current knowledge of lung cancer biology and may inform the development of novel anticancer

therapies.

Inhibitor-kB kinase a (IKKa), a serine/threonine protein kinase, is encoded by the conserved
helix-loop-helix ubiquitous kinase (CHUK) gene®. Phosphorylation of IkBa, a nuclear factor-kB
(NF-xB) inhibitor, by IKKa and IKKp, catalytical subunits of the IKK complex, promotes IkBa
protein degradation, which initiates nuclear translocation of NF-kB dimers. In the nucleus, NF-
KB functions as a transcription factor to regulate immunity, infection, lymphoid organ/cell
development, cell death/growth, and tumorigenesis®*2. In noncanonical signaling, NF-kB—
inducing kinase activates IKKa protein via phosphorylation upon activation of upstream
membrane-bound receptors by their cognate ligands. Active IKKa then phosphorylates and
cleaves the p100 protein to generate p52, which complexes with the RelB NF-kB subunit,

resulting in nuclear translocation of the p52/RelB dimer to regulate several immune functions,
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including lymphoid organ development, the priming function of dendritic cells, B-cell survival,
generation and maintenance of effector- and memory- T cells, and antiviral innate

immunity®1415,

The tumor-promoting role of IKKa has been documented in breast, prostate, nonmelanoma skin,
and lung cancer!®18, Aberrant overexpression of IKKa protein is associated with decreased
patient survival and promotes the growth of lung adenocarcinoma; it may therefore be used as a
biomarker to predict clinical response in lung adenocarcinoma patients?®. In a separate study,
investigators showed that overexpression of cytosolic and nuclear IKKa protein promotes
NSCLC cell proliferation, survival, and migration through activating the ERK, p38/MAPK, and
mammalian target of rapamycin (mTOR) cell signaling pathways. Additionally, activation of
protumorigenic cell signaling pathways depends on the subcellular localization of IKKa8,
Although the role of IKKa in promoting cancer has been well established, in the context of lung
cancer driven by Kras-activating mutations it may have tumor-suppressing activity: in a
Kras®*P-driven spontaneous mouse model of NSCLC, lung-specific Ikka deletion induced by
intratracheally injected adenovirus-Cre recombinase promoted NSCLC initiation and growth by
elevating the expression of inflammatory cytokines and chemokines, including NF-kB targets?®.
We sought to understand the role of IKKa protein overexpression in tumor growth and

progression in Kras-wildtype NSCLC.

Dopamine- and cyclic AMP-regulated phosphoprotein, Mr 32000 (DARPP-32), is primarily
expressed in the brain, including the caudate nucleus, cerebral cortex, and striatum. It acts as a
downstream signaling molecule through dopamine receptor 1 (D;1R) and is negatively regulated
by dopamine receptor 2 (D;2R) and glutamate signaling?-2. Phosphorylation of DARPP-32 in
response to cCAMP in dopamine-responsive nerve tissue attenuates protein phosphatase 1
(PP1) activity, affecting the regulation of several cell signaling pathways?*. Although expression

of DARPP-32 proteins is typically restricted to neuronal cell types in the brain, DARPP-32 and
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its truncated isoform t-DARPP are aberrantly overexpressed in many types of cancer, including
lung cancer®>3%, t-DARPP, which was originally discovered in gastric cancer tissues, lacks the
N-terminal domain responsible for modulating PP1 function?. It is phosphorylated by cyclin-
dependent kinase (CDK) 1 and 5 and activates protein kinase A (PKA), thereby conferring
resistance to trastuzumab, a HER2-targeted anticancer agent, via sustained signaling through
the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI13K)/AKT pathway?®?23, Since this
discovery, the DARPP-32 and t-DARPP isoforms overexpressed in breast, colon, esophageal,
gastric, pancreas, prostate, lung, and ovarian cancer tissues have been shown to activate
robust anti-apoptotic signaling through the activation of the AKT and ERK cell signaling
pathways; to increase metabolism by forming a complex with the insulin-like growth factor 1
receptor (IGF1R); and to promote cell survival in the presence of receptor tyrosine kinase
inhibitors, including gefitinib and trastuzumab?5-27:29.303437 _Qur previous work, which serves as
the rationale for this current study, revealed that DARPP-32 isoforms increase NSCLC cell
migration via increasing the expression of NF-kB2—controlled migratory genes by establishing a
direct physical interaction with IKKa?®. However, the precise role of the DARPP-32/IKKa

complex in regulating NSCLC progression has yet to be determined.

In this study, we report that IKKa protein inhibits PP1 function through phosphorylation of the
DARPP-32 protein at the Thr-34 position. Pharmacologic inhibition of PP1 activates ERK cell
signaling pathways, leading to NSCLC growth promotion in vitro. Furthermore, we show in an
orthotopic mouse model that depletion of IKKa protein reduces NSCLC growth. Taken together,
our findings suggest that IKKa protein directly phosphorylates DARPP-32 to stimulate
oncogenic kinase activity through the inhibition of PP1 function to promote NSCLC growth and

oncogenesis.
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Results

Phosphorylation of DARPP-32 at Thr-34 is regulated by IKKa

Given our prior observation that the physical association between IKKa and DARPP-32
promotes NSCLC cell migration?®, we postulated that DARPP-32 phosphorylation is controlled
by the kinase function of IKKa. To test our hypothesis, we first performed immunoprecipitation
experiments in three separate human NSCLC cell lines, which confirmed that IKKa establishes
a direct physical interaction with DARPP-32 (Fig. 1a-c). We next performed nonradioactive in
vitro kinase assays using commercially available kinase-active IKKa protein. Briefly, DARPP-32
and its short isoform, t-DARPP, were purified from lysates of four different lung adenocarcinoma
cell lines using anti-FLAG M2 affinity beads and then incubated with purified IKKa protein in
kinase assay buffers containing ATP. Reaction end products were subjected to immunoblotting
with anti-phosphorylated DARPP-32 (both T34 and T75) and -total DARPP-32 antibodies. Our
western blotting results confirm that purified full-length DARPP-32 protein (but not t-DARPP)
serves directly as a substrate for IKKa (Fig. 2a-b). Based on our results, it is evident that IKKa
phosphorylates DARPP-32 at the Thr-34 position only (Fig. 2a-b). As expected, IKKa does not
phosphorylate t-DARPP because it lacks the first 36 amino acids of full-length DARPP-32 (Fig.
2a,c). However, the presence of strong signals on the immunaoblot using anti-phosphorylated
DARPP-32 (T75) suggests that t-DARPP is phosphorylated at Thr-75 by unknown endogenous
kinase(s) (Fig. 2a,c). In summary, our results indicate that IKKa physically associates with

DARPP-32 protein and phosphorylates full-length DARPP-32 protein at the Thr-34 position.

Increased expression of p-ERK is regulated by IKKa via DARPP-32/PP1a signaling

A seminal report suggested that the neuronal phosphoprotein DARPP-32 acts as a potent
inhibitor of PP1 following phosphorylation by PKA at the Thr-34 position?. On the basis of this

report, we hypothesized that IKKa-mediated DARPP-32 phosphorylation inhibits PP1a activity in
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116  NSCLC cells and promotes oncogenic growth by activating cell signaling pathways. To test our
117  premise, we transiently overexpressed constitutively active and kinase-dead IKKa plasmids in
118 HCCB827 and H1650 cells and performed an immunoblotting experiment with antibodies directed
119  against phosphorylated DARPP-32 (T34). In line with our previous in vitro kinase results, we
120  observed that expression of phosphorylated DARPP-32 increases more in HCC827 and H1650
121 cell lysates overexpressing active IKKa than in GFP- or kinase-dead IKKa—expressing cell

122 lysates (Fig. 3a-b). Phosphorylation of PP1a by cdc2 kinases inhibits PP1a phosphatase activity
123 in a cell cycle-dependent manner®, and phosphorylation of DARPP-32 at the T34 position

124  leads to DARPP-32—mediated phosphorylation and inactivation of PP1a in neurons and cancer
125  cells?*%, We therefore sought to determine the effect of IKKa expression on the levels of

126  inactive PP1a protein in immunoblotting experiments using anti-phosphorylated PP1a

127  antibodies. Expression of phosphorylated (inactive PP1a proteins increased in cells

128  overexpressing active IKKa (Fig. 3a-b), suggesting that overexpression of IKKa leads to

129  increased DARPP-32 phosphorylation at the T34, which inhibits PP1 phosphatase activity. To
130 test how repression of PP1 function by the IKKa/DARPP-32 complex stimulates downstream
131  oncogenic cell signaling, we focused on the ERK/MAPK signaling pathway because

132 pharmacologic inhibition of PP1 activity has been reported to increase ERK activity*°. In

133  immunoblotting experiments, we observed an increase in the expression of phosphorylated

134 ERK in HCC827 and H1650 cells exogenously expressing active IKKa (Fig. 3a-b). Expression of
135  phosphorylated ERK proteins remained unchanged in cells expressing GFP or overexpressing
136  kinase-dead IKKa (Fig. 3a-b). To validate our theory that phosphorylation of ERK protein is

137  controlled by PP1a phosphatase, we performed western blotting experiments in HCC827 cells
138 treated with a pharmacological inhibitor of PP1a, calyculin A. The expression of phosphorylated
139 (i.e., phosphatase-inactivated) PP1a as well as phosphorylated (i.e., activated) ERK was higher

140 in calyculin A—treated HCC827 cells than in vehicle-treated cells (Fig. 3c). In summary, our
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results indicate that overexpression of kinase-active IKKa protein positively regulates the ERK-

MAPK pathway through the DARPP-32/PP1a axis.

IKKa controls the inhibition of PP1a phosphatase activity

To test our hypothesis that IKKa prevents PP1a phosphatase activity in NSCLC cells by
phosphorylating DARPP-32 at Thr-34, we performed an in vitro phosphatase assay in lung
adenocarcinoma cells stably overexpressing DARPP-32 protein. Briefly, kinase-dead, full-
length, and constitutively active IKKa plasmids, as well as GFP-expressing control plasmids,
were transiently transfected into HCC827 and H1650 cells stably overexpressing DARPP-32
protein. Endogenous PP1a was immunoprecipitated from the cell lysates and subjected to
phosphatase assays. We observed a decrease in PP1a phosphatase activity (i.e., lower
concentrations of released phosphates) in the lysates of cells overexpressing full-length or
kinase-active IKKa than in lysates of GFP-expressing cells (Fig. 4a-b). As expected,
overexpression of kinase-dead IKKa in both cell lines failed to inhibit PP1a phosphatase activity
(Fig. 4a-b). To ensure that equal amounts of immunoprecipitated PP1a were used in the in vitro
phosphatase assay, we performed immunoblotting experiments to measure the expression level
of PP1a in different groups. We observed that equal amounts of PP1a were immunoprecipitated
in HCC827 and H1650 cells exogenously expressing kinase-dead, full-length, or constitutively
active IKKa or GFP (Fig. 4c-d). To further test whether IKKa blocks PP1a phosphatase activity
via DARPP-32 phosphorylation at Thr-34, we stably overexpressed mutant DARPP-32 (T34A)
in HCC827 and H1650 cells and repeated the in vitro phosphatase assay. As expected, no
PP1a inhibition activity was seen in cells overexpressing full-length or constitutively active IKKa
in the presence of mutant DARPP-32 (Supplementary Fig. 1a-d). Taken together, our findings

indicate that IKKa-mediated DARPP-32 phosphorylation inhibits PP1a phosphatase activity.
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Depletion of IKKa expression in tumor cells inhibits oncogenic growth advantage

To test the premise that IKKa promotes oncogenic tumor growth, we first performed a soft agar
anchorage-independent growth assay in human lung adenocarcinoma HCC827 and PC9 cells
because anchorage-independent growth is considered one of the most reliable markers of
malignant transformation*'. We observed less anchorage-independent growth (number of
colonies formed on the soft-agar plates) of HCC827 and PC9 cells transduced with IKKa
shRNAs than of LacZ shRNA—transduced controls (Fig. 5a-c), suggesting that IKKa promotes
anchorage-independent oncogenic growth in lung cancer. We then tested whether IKKa
ablation reduces lung tumor growth in an orthotopic xenograft mouse model. Briefly, luciferase-
labeled human HCC827 NSCLC cells were injected into the left thorax of anesthetized SCID
mice. After establishment of the lung tumor, mice were imaged for bioluminescence signals
weekly over the course of 7 weeks. Mice challenged with IKKa-ablated HCC827 cells showed
less lung tumor growth than those transduced with control LacZ shRNA (Fig. 6a-b). Taken
together, our in vitro cell line and in vivo mouse data suggest that IKKa. protein drives lung

oncogenic tumor growth, and ablation of IKKa expression reduces lung cancer growth.

Discussion

The IKK complex, consisting either of IKKa, -, and -y kinases (canonical) or IKKa homodimers
(noncanonical), has been studied in the context of inflammation and innate immunity as a
regulator of interferon regulatory factors and NF-kB signaling***4. Recently, it has been
appreciated that IKKa and related kinases also phosphorylate proteins involved in regulating
biological processes, including cell growth, metabolism, apoptosis, cell cycle, cell migration, and
invasion, independent of NF-kB—regulated cell signaling pathways*34%4¢, Here, we show that the
kinase function of IKKa promotes lung tumor growth by activating the ERK cell signaling

pathway through the DARPP-32/PP1 axis. Overexpression of constitutively active IKKa
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influences the proliferation of mammary epithelium through regulation of RANK signaling in a
genetically engineered mouse model*’; thus, it is expected that aberrant IKKa expression
promotes breast tumorigenesis. Indeed, Bennett et al. reported that overexpression of cytosolic
IKKa protein is associated with reduced time to recurrence and worsened disease-free survival
in estrogen receptor—positive breast cancer patients*®. Additionally, the role of IKKa in
promoting breast cancer growth in the presence of anti-estrogen therapy via activation of the
Notch pathway has been well studied and provides a mechanism for hormone therapy
resistance in an NF-kB—independent manner*. Recently, Dan and colleagues reported that
IKKa protein activates the AKT cell signaling pathway by phosphorylating the mTOR complex 2
in cervical, prostate, lung, and pancreatic cell lines, establishing the oncogenic role of IKKa
protein in promoting tumor growth®. Additionally, transcripts of CHUK (IKKa), but not IKBKB
(IKKPB), are overexpressed in lung adenocarcinoma tissues compared with normal lung
tissues?®. A previous study by our group also demonstrated that NSCLC patients with elevated
IKKa expression have significantly shorter overall survival than those with low IKKa expression,
and that IKKa regulates NSCLC cell migration by forming a complex with DARPP-32 to
influence the noncanonical NF-kB cell signaling pathway?®. Here, we propose an alternative
mechanism in which activated IKKa protein promotes NSCLC growth through a DARPP-32/PP1

cell signaling cascade in an NF-kB—independent manner.

DARPP-32 protein, encoded by the PPP1R1B gene, has been well studied in the nervous
system to understand the complexity of signal transduction in neurons, especially striatal
projection neurons®!. The function of DARPP-32 in amplifying responses to many external
stimuli is tightly regulated by its phosphorylation on multiple sites by different protein kinases.
Notably, DARPP-32 phosphorylation at Thr-34 by PKA in response to extracellular signals has
been shown to inhibit PP1 function in neurons®*°t, In agreement with the previous finding

showing DARPP-32 is phosphorylated by PKA, Hansen and colleagues showed that Wnt-5A-

10
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mediated phosphorylation of DARPP-32 Thr-34 reduces breast cancer cell migration, and
DARPP-32 phosphorylation is tightly regulated by intracellular cAMP levels and subsequent
PKA activation®. Recently, it was shown that breast cancer patients with elevated DARPP-32
expression but low PP1 expression have worse overall survival than those with low expression
of DARPP-32%, suggesting a strong inverse correlation between PP1 and DARPP-32 proteins
in patient outcome. This supports the notion that DARPP-32—mediated inactivation of PP1
functions via phosphorylation leads to increased activation of kinases involved in oncogenic
signaling pathways. Moreover, PKA protein expression in breast tumor tissues shows a strong
correlation with DARPP-32 and PP1 protein expression, warranting further investigation to
understand their molecular role in regulating breast tumorigenesis®2. In a separate study,
Hansen et al. reported that PKA protein activated by Wnt-5a ligands regulates breast cancer cell
migration by phosphorylating DARPP-32 at Thr-34 in a PP1/CREB-dependent manner®. In line
with this observation, our current study provides strong evidence that NSCLC cell growth is
regulated by the IKKa/DARPP-32/PP1/ERK cell signaling pathway. Overexpression of t-DARPP
has been shown to confer resistance to trastuzumab, a HER2-targeted monoclonal antibody, via
activation of PKA and PI3K/AKT cell signaling in HER2* breast cancer cells®*°*. The molecular
mechanism has been recently uncovered in which t-DARPP phosphorylated by CDK -1 and -5
activates PKA kinase function by forming a direct complex with PKA regulatory subunits in
breast cancer cells overexpressing t-DARPP3233, Here, we demonstrate that phosphorylation of
t-DARPP is not regulated by IKKa, as expected, due to the absence of first 36 amino acids. The
strong presence of t-DARPP protein phosphorylated at Thr-39 (equivalent to DARPP-32 Thr-75)
in our assays requires further investigation to identify the molecular mechanism of t-DARPP

regulation by upstream kinases in NSCLC cells.

The catalytic subunit of PP1, a major protein phosphatase in human cells composed of a, 3, and

y subunits, regulates critical cellular processes including cell cycle progression, apoptosis, and

11
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metabolism by catalyzing dephosphorylation of a wide range of proteins®®. The role of PP1 as a
tumor suppressor or oncogene depends on the type of cancer, the cancer staging, and the
regulatory proteins that interact with it. The pathways are further complicated because both
oncogenes and tumor suppressor proteins are known substrates of PP1, and dephosphorylation
events can activate or downregulate downstream cell signaling pathways®®. Therefore, detailed
mechanistic insight is needed to understand the role of PP1 in lung cancer. The complex of PP1
with the leucine-rich repeat protein SHOC2 promotes tumor growth in a subset of KRAS-mutant
NSCLC cell lines by dephosphorylating a critical inhibitory site on RAF kinases, resulting in
RAF-ERK pathway activation. Moreover, genetic inhibition of SHOC2 suppresses tumor
development in autochthonous murine Kras-driven lung cancer models®’. In contrast, activated
PP1, upon forming a complex with protein 4.1N, a neuronal homolog of the erythrocyte
membrane cytoskeletal protein 4.1, inhibits lung tumor progression by depressing the JNK cell
signaling pathway®®. Our results indicate that PP1-mediated dephosphorylation of ERK is
inhibited by the DARPP-32/PP1 complex, which in turn promotes lung tumor growth by
increasing ERK activity, which is associated with increased oncogenic potential due to the

central position of ERK downstream of several oncogenic growth signaling pathways.

Manipulation of PP1 activity has long been considered a potential approach to treating cancer
because of the involvement of PP1 in several cancer-related cellular processes. The small
molecule inhibitors calyculin A and okadaic acid have been used to mitigate PP1 and PP2A
activity, thereby impairing progression of hormone therapy-resistant prostate cancer by
stimulating cell death®®. However, PP1 small molecule inhibitors have unwanted cellular toxicity
because PP1 is involved in a broad range of cellular processes. Moreover, homology of the
active sites among different phosphatases contributes to the limited efficacy of these inhibitors
in treating cancer. Therefore, targeting PP1 complexes, instead of focusing on the catalytic sites

of PP1, is a promising solution to suppress sustained growth and survival in cancer.
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Recent findings of novel phosphorylation substrates of IKK family kinases, including DARPP-32
in this study, expands current knowledge of critical biological and disease-related mechanisms.
To comprehensively understand the function of these pleiotropic kinases, further experiments
are needed to assess the roles of IKK family members in regulating phosphorylation-dependent
substrates in different settings and diseases. In this regard, it will be interesting to see whether
DARPP-32 phosphorylation is regulated by IKKa protein in the presence of anticancer agents
routinely used in the clinic to treat lung cancers. Another critical question—which upstream
kinases regulate IKKa activation—warrants further investigation because EGFR and KRAS are
highly mutated in lung cancer patients®®. Targeting IKK and IKK-related kinases with the small
molecule IKK inhibitors SAR-113945 and MLN-0415 has shown encouraging results in
preclinical studies, although they failed to meet the primary endpoints of a phase 2 clinical trial
and the safety profile of a phase 1 clinical trial, respectively®!. Because NF-kB functions in many
different systems, targeting IKKa and IKK-related kinases to treat disease, including cancers,
can result in unpredictable adverse events. Therefore, development of more selective, isoform-
specific, non-ATP-competitive inhibitors against IKK family kinases to use in combination
therapies and/or as part of a targeted delivery approach is required, particularly in cancers that

aberrantly express IKKa protein.

Methods

Cell lines and inhibitors

Human NSCLC cell lines A549 and H1650, as well as a transformed human embryonic kidney
epithelial cell line, HEK-293T, were purchased from the American Type Culture Collection. The
epidermal growth factor receptor (EGFR)-mutated human NSCLC cell lines HCC827, PC9, and
H1975 were kindly provided by Dr. Pasi A. Janne at the Dana-Farber Cancer Institute®?, Dr.

Aaron N. Hata at Massachusetts General Hospital®®, and Dr. Anthony C. Faber at Virginia
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Commonwealth University®*, respectively. Dulbecco’s modified Eagle’s medium (DMEM,;
Corning) supplemented with 10% fetal bovine serum (FBS; Millipore) was used to grow HEK-
293T cells. Human NSCLC cell lines A549, H1650, HCC827, PC9, and H1975 were maintained
in Roswell Park Memorial Institute (RPMI)-1640 medium (Corning) supplemented with 10% FBS
(Millipore), 1% penicillin/streptomycin antibiotics (Corning), and 25 pg/mL plasmocin
prophylactic (Invivogen). All cell lines were routinely authenticated via morphologic inspection
and tested negative for mycoplasma contamination. A serine/threonine protein phosphatase
inhibitor, calyculin A, purchased from Cell Signaling Technology (CST), was used to mitigate

PP1a function.

Generation of stable cell lines

Human full-length DARPP-32 and mutant DARPP-32 (T34A) cDNAs cloned into the pcDNA3.1
vector were kindly provided by Dr. Wael El-Rifai at University of Miami Health System®.
Retrovirus containing FLAG-tagged full-length and mutant DARPP-32 cDNAs were prepared by
following a previously described procedure®. NSCLC cells seeded at a density of 3 x 10° cells
per 10-cm cell culture dish were transduced with 1 mL retrovirus diluted in 5 mL fresh medium
supplemented with 10 ug/mL polybrene solution (Millipore). Cells were used for subsequent

experiments 48 h after transduction.

Human HEK-293T cells transfected with either LacZ shRNA (control) or IKKa shRNAs (Sigma)
along with their corresponding packaging plasmids were used to prepare lentiviruses from cell
culture medium 48 h after transfection. Lentiviruses concentrated in Lenti-X concentrator
(Takara) were used immediately to transduce HCC827 and PC9 lung cancer cell lines, as
reported previously®’. Transduced cells were incubated in puromycin (Sigma)-containing

medium for 72 h to select stable IKKa knockdown cells.
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Lentiviruses containing the luciferase gene were prepared in HEK-293T cells as described
previously?®. Luciferase-labeled stable human NSCLC cells were used to determine tumor

growth in orthotopic murine models.

Antibodies

Primary antibodies (1 pg/pl) identifying two different phosphorylated sites on DARPP-32 (T34:
cat no. 12438; dilution 1:1000; and T75: cat no. 2301; dilution 1:1000), phosphorylated PP1a
(T320; cat no. 2581; dilution 1:1000), IKKa (cat no. 2682; dilution 1:1000), phosphorylated
p44/42 MAPK (T202/Y204; cat no. 4370; dilution 1:1000), and total p44/42 MAPK (cat no. 4695;
dilution 1:1000) were purchased from CST. Antibodies (200 pg/ml) against DARPP-32 (cat no.
sc-398360; dilution 1:200), PP1 (cat no. sc-7482; dilution 1:100), and a-tubulin (cat no. sc-5286;
dilution 1:500) were obtained from Santa Cruz Biotechnology. Horseradish peroxidase (HRP)—
conjugated secondary antibodies against the heavy chains of anti-rabbit (cat no.: 7074; dilution

1:5000) and anti-mouse (cat no.: 7076; dilution 1:5000) IgG were purchased from CST.

Plasmids

Expression vectors of full-length (#15467), kinase-dead (#15468), and constitutively kinase-
active (#64608) IKKa were purchased from Addgene. Briefly, the investigators constructed full-
length IKKa in-frame with DNA encoding an N-terminal FLAG epitope in pCR-3 vectors®®.
Kinase-dead IKKa (K44A) was generated from full-length IKKa expression plasmids by using a
site-directed mutagenesis kit®®. Expression vectors for V5 epitope—tagged kinase-active IKKa
(S176E, S180E) were constructed in destination/expression vector pcwl107 via the Gateway
cloning system®. Expression plasmids (pCMV) encoding GFP used as transfection controls

were kindly shared by Dr. Georgiy Aslanidi at The Hormel Institute, University of Minnesota.
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Immunoblotting

Radioimmunoprecipitation assay (RIPA) buffer (Millipore) supplemented with protease inhibitor
cocktail (Roche) and phosphatase inhibitors (Millipore) were used to lyse human NSCLC cells.
Equal amounts of cell lysates were separated via 4-20% gradient SDS-PAGE (Bio-Rad) and
transferred to polyvinyl difluoride membranes (Millipore). Prior to primary antibody incubation,
membranes were incubated in Tris-buffered saline (Growcells) containing 5% bovine serum
albumin (Sigma) at room temperature for 1 h. Incubation of diluted primary and secondary
antibodies was carried out overnight and for 2 h, respectively. Chemiluminescence substrate
(Thermo Fisher Scientific) was used to detect antibody-reactive protein bands in the
membranes, and signals were captured electronically using an ImageQuant™ LAS 4000

instrument (GE Healthcare).

Purification of DARPP-32 isoforms

Human lung adenocarcinoma A549, HCC827, PC9, and H1975 cells stably overexpressing
FLAG-tagged DARPP-32 or t-DARPP proteins were lysed on ice using 1x lysis buffer (50 mM
Tris HCI, pH 7.4, with 150 mM NaCl, 1 mM EDTA, and 1% Triton X-100) supplemented with
protease inhibitor cocktail (Roche). Immunoprecipitation of FLAG fusion proteins was performed
using an anti-FLAG M2 affinity gel (Sigma) by following the manufacturer’s instructions. Protein
elution was carried out under native conditions by competition with commercially available 3x
FLAG peptide (Sigma). Eluted proteins separated in 4-20% polyacrylamide gels in denatured

conditions were visualized for purity after Coomassie blue (Bio-Rad) staining.

In vitro kinase assay

Human DARPP-32 isoforms purified from NSCLC cells were incubated with kinase-activated

human IKKa protein (SignalChem) for in vitro kinase assays by following previously described
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methods?. Briefly, 3 ug purified DARPP-32 isoforms as well as 5 pyl ATP (New England Biolabs)
in kinase dilution buffer 11l (SignalChem) were incubated with 1 ug commercially available
human IKKa protein (SignalChem) for 30 minutes at 30°C, then at 95°C for 5 minutes, in which
1x Laemmli sample buffer (Bio-Rad) supplemented with 10% B-mercaptoethanol (Bio-Rad) was
added to stop the kinase reaction. Phosphorylation of DARPP-32 by kinase-activated human
IKKa protein was validated via immunoblotting using monoclonal primary antibodies against

phosphorylated DARPP-32 (T34 and T75, CST).

Transient transfection

Human NSCLC cell lines, HCC827 or H1650, were plated in 6-well cell culture plates at a
concentration of 2 x 10° cells per well. Cells were washed with PBS (Corning) on the following
day prior to transfection, and complete RPMI-1640 medium (Corning) was added to each well.
Based on the protocols from the manufacturer, 2.5 pg of plasmid DNA and 5 ul P3000 reagent
(Invitrogen) diluted in OPTI-MEM medium (Gibco) were incubated with 10 ul Lipofectamine-
3000 transfection reagent (Invitrogen) for 15 min at room temperature. The DNA:Lipofectamine

mixture was then added to each well in a dropwise manner and incubated for 48 h.

Immunoprecipitation

Human NSCLC cell lines transiently transfected with either control GFP or one of three different
IKKa plasmids were lysed in RIPA buffer (Millipore) supplemented with protease inhibitors
(Roche). The concentration of harvested cell lysates was measured by using the Bradford
reagent (Bio-Rad). Anti-PP1a antibody (2 pug) was added to the supplied spin column (Catch
and Release Immunoprecipitation Kit; cat no. 17-500; Millipore) along with the cell lysates

(500 mg) to immunoprecipitate the proteins following the manufacturer’s protocol. The eluted

proteins in native form were subsequently used to perform the in vitro phosphatase assay.
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380 Invitro phosphatase assay

381 The in vitro phosphatase assay was performed in accordance with the manufacturer’s protocol .
382  Briefly, 5 ul PP1a substrates (GRPRTS[p]SFAEG; cat no. P50-58; Signal Chem) or 5 ul control
383  histone H1 peptides (GGGPATP-KKAKKL-COOH; cat no. H10-58; Signal Chem) diluted in

384  phosphatase dilution buffer Il (cat no. P22-09; Signal Chem) was incubated for 15 min at 37 °C
385  with human PP1a protein in its native form immunoprecipitated from human NSCLC cells. The
386 amount of free phosphate molecule generated by the reaction was colorimetrically quantified
387  with a Phosphate Assay Kit (Abcam). The amount of released phosphate was determined from
388 a standard curve generated after plotting the absorbance value against increasing known

389  concentrations of free phosphate molecule.

390 Soft agar colony formation assay

391  Five milliliters of complete RPMI-1640 medium (Corning) containing 0.75% melted agar (Sigma)
392 was added to 60-mm cell culture dishes to create a bottom layer. Cells of the human NSCLC
393 lines HCCB827 and PC9 transduced with lentivirus encoding LacZ shRNA (control) or IKKa

394  shRNAs were suspended in complete RPMI-1640 medium containing 0.36% melted agar and
395 were plated on top of the bottom layer at a concentration of 2.5 x 10* cells per dish. After 2

396  weeks of incubation, images of colonies that had grown on the soft-agar cell culture plates were
397 captured using a 4x Plan S-Apo 0.16 NA objective on an EVOS FL cell imaging system

398 (Thermo Fisher Scientific). The colonies were counted by using ImageJ software and plotted by

399  using GraphPad Prism 9 software.

400 Invivo orthotopic lung cancer model

401  Six- to eight-week-old pathogen-free SCID/NCr mice were purchased from Charles River

402 Laboratories. Mice were allowed one week to acclimate to their surroundings, then bred,
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maintained under specific-pathogen-free conditions in a temperature-controlled room with
alternating 12 h light/dark cycles, and fed a standard diet in accordance with protocols approved
by the University of Minnesota Institutional Animal Care and Use Committee. For each mouse,
luciferase-labeled human HCC827 lung cancer cells (1 x 10°) transduced with either LacZ
shRNA (control) or IKKa shRNAs were suspended in 80 pl PBS and Matrigel. The cells were
then orthotopically injected in the right thoracic cavity of 8- to 12-week-old male and female
mice and allowed to establish tumors over 1 week. Luminescence images of mice were taken
weekly over 7 weeks using an In-Vivo Xtreme xenogen imaging system (Bruker). The luciferase
intensity (total photon count) of each mouse was calculated using Bruker molecular imaging

software and plotted over time in GraphPad Prism 9 software.

Statistics

Statistically significant differences between multiple groups (greater than 2) were determined by
performing one-way analysis of variance (ANOVA) followed by Dunnett’s test. Statistically
significant differences in tumor growth over time between two groups in the mouse experiments
were determined with two-way ANOVA followed by Sidak’s test. Values of P < 0.05 were
considered significant. Data are expressed as mean + SEM of at least three independent

experiments.
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Figure 1: IKKa physically associates with DARPP-32 isoforms. a-c. Human lung adenocarcinoma cell lines HCC827 (a), PC9 (b), and H1975
(c) stably overexpressing FLAG-tagged human DARPP-32 isoforms were lysed and subjected to immunoprecipitation using either anti-IKKa or anti-

FLAG antibody (IP:DARPP-32). Immunoprecipitated lysates were separated in SDS-PAGE and immunoblotted with antibodies against IKKa,
DARPP-32, and a-tubulin (loading control).
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Figure 2: IKKa phosphorylates DARPP-32 at Thr-34. a. Human A549 cell lines stably overexpressing FLAG-tagged human DARPP-32 isoforms
(DARPP-32 and t-DARPP) were lysed and subjected to immunoprecipitation using anti-FLAG antibody—conjugated agarose beads.
Immunoprecipitated lysates were used to perform nonradioactive in vitro kinase assays following incubation with commercially available active IKKa
protein. At the end, the reaction mixtures were subjected to immunoblotting using antibodies against DARPP-32 phosphorylated on Thr-34 or Thr-
75 and total DARPP-32 protein. b-c. Human HCC827, PC9, and H1975 lung adenocarcinoma cell lines retrovirally transduced with either FLAG-
tagged human DARPP-32 (b) or t-DARPP (c) cDNA plasmids were lysed, immunoprecipitated, incubated with active IKKa protein, and subjected to
western blotting using anti-phosphorylated (Thr-34 or Thr-75) DARPP-32 and anti-DARPP-32 antibodies. Data from one experimental replicate are

shown. The experiments were repeated three times independently; each circle in a bar represents one experiment. *P < 0.05; ns, not significant.
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Figure 3: Overexpression of constitutively active IKKa activates ERK signaling. a-b. Human lung cancer cells, HCC827 (a) and H1650 (b),
transfected with GFP (control), constitutively active IKKa, or kinase-dead IKKa were lysed using 1x RIPA buffer supplemented with protease and
phosphatase inhibitors. Equal amounts of proteins were separated with 4-20% SDS-PAGE and transferred to polyvinyl difluoride membranes.
Antigen-coated membranes were incubated overnight with primary antibodies against IKKa, phosphorylated DARPP-32 (Thr34), total DARPP-32,
phosphorylated PP1a, total PP1a, phosphorylated ERK, total ERK, and a-tubulin (loading control). c. Vehicle (DMSO)- or calyculin-A-treated human
HCCB827 cells were lysed with 1x RIPA buffer and subjected to immunoblotting using anti-phosphorylated PP1a, -total PP1a, -phosphorylated ERK,
-total ERK, -DARPP-32, and -a-tubulin (loading control) antibodies. Chemiluminescence signals were detected after incubating membranes with
HRP-tagged secondary antibodies. Representative images from one experiment are shown, but results were validated by performing three
independent biological repeats. Bar graphs at the right show quantification of the results from the three western blotting experiments. *P < 0.05; ns,

not significant.
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Figure 4: Overexpression of IKKa inhibits phosphatase activity of PP1a. a-b. Human NSCLC
HCC827 (a) and H1650 (b) cells transfected with GFP (control), kinase-dead (KD), full-length (FL),

and constitutively active (CA) IKKa cDNAs were lysed using 1x RIPA buffer supplemented with
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protease inhibitors only. Equal amounts of proteins (500 ng) were immunoprecipitated using anti-
PP1a antibodies. Immunoprecipitated cell lysates were subjected to in vitro phosphatase assays
following incubation with either PP1a substrate or histone H1 peptide (control). Released
phosphates in each reaction tube were determined by using a phosphate detection reagent. In
vitro phosphatase experiments were repeated three times independently. Bar graphs represent
mean + SEM of the three repeats, with each circle in a bar representing an independent
experiment. A value of P < 0.05 was considered significant, ns, not significant, one-way ANOVA
followed by Dunnett’s test. c-d Immunoprecipitated HCC827 (c) and H1650 (d) cell lysates
separated with 4-20% SDS-PAGE were subjected to western blotting using anti-PP1a antibodies.
Input cell lysates were blotted with antibodies against IKKa, DARPP-32, and a-tubulin (loading

control).
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Figure 5: Knockdown of IKKa expression blocks anchorage-independent NSCLC cell growth. a-b. Human NSCLC HCC827 (a) and PC9 (b)
cells transduced with lentivirus designed to silence LacZ (control) or IKKa expression were subjected to soft agar colony formation assays to
determine anchorage-independent cell growth. ImageJ was used to count colonies on the cell culture dishes after 2 weeks of incubation, and the
number of counted colonies was plotted. Each circle on a graph represents an independent experiment. Soft agar colony formation experiments
were repeated at least six times. Error bars indicate SEM (n=6). A value of P < 0.05 was considered significant, one-way ANOVA followed by
Dunnett’s test. c. Representative images of HCC827 and PC9 cells transduced with lentivirus encoding either LacZ shRNA or IKKa shRNAs forming

colonies on soft-agar cell culture dishes 2 weeks after plating.
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Figure 6: Depletion of IKKa inhibits lung tumor cell growth and proliferation in vivo. a. Luciferase-labeled IKKa-depleted human HCC827 cells
were orthotopically injected into the left thorax of SCID mice and imaged for luminescence on the indicated days. Total luminescence intensity
(photon count) was calculated using molecular imaging software and plotted as a line graph. Error bars are shown as dotted lines indicating SEM. A
value of P < 0.05 was considered significant, two-way ANOVA followed by Sidak’s test. b. Images of anesthetized mice were captured to detect

luminescence signals on the indicated days.
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Supplementary Figure 1
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Supplementary Figure 1: PP1a activity is controlled by DARPP-32 phosphorylation.

a-b. Human NSCLC HCC827 (a) and H1650 (b) cells transduced with retrovirus designed to
overexpress mutant (T34A) DARPP-32 proteins were transiently transfected with GFP, kinase-

dead (KD), full-length (FL), or constitutively active (CA) IKKa expression plasmids. Following
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immunoprecipitation with anti-PP1a antibodies, cell lysates were subjected to in vitro phosphatase
assays with either PP1a substrate or histone H1 peptide (control). A colorimetric-based phosphate
detection reagent was used to determine the amount of phosphate ions released from each
reaction. Bar graphs represent mean + SEM of three repeats, with each circle in a bar representing
one experiment. ns, not significant; one-way ANOVA followed by Dunnett’s test. c-d
Immunoprecipitated lysates of HCC827 (c) and H1650 (d) cells were separated with 4-20% SDS-
PAGE and blotted using anti-PP1a primary antibodies. Total cell lysates (Input) were subjected to

western blotting using primary antibodies against IKKa, DARPP-32, and a-tubulin (loading control).
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