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Abstract

The brain’s structural connectome supports signal propagation between neuronal
elements, shaping diverse coactivation patterns that can be captured as functional
connectivity. While the link between structure and function remains an ongoing challenge,
the prevailing hypothesis is that the structure-function relationship may itself be gradually
decoupled along a macroscale functional gradient spanning unimodal to transmodal
regions. However, this hypothesis is strongly constrained by the underlying models which
may neglect requisite signaling mechanisms. Here, we transform the structural
connectome into a set of orthogonal eigenmodes governing frequency-specific diffusion
patterns and show that regional structure-function relationships vary markedly under
different signaling mechanisms. Specifically, low-frequency eigenmodes, which are
considered sufficient to capture the essence of the functional network, contribute little to
functional connectivity reconstruction in transmodal regions, resulting in structure-
function decoupling along the unimodal-transmodal gradient. In contrast, high-frequency
eigenmodes, which are usually on the periphery of attention due to their association with
noisy and random dynamical patterns, contribute significantly to functional connectivity
prediction in transmodal regions, inducing gradually convergent structure-function
relationships from unimodal to transmodal regions. Although the information in high-
frequency eigenmodes is weak and scattered, it effectively enhances the structure-function
correspondence by 35% in unimodal regions and 56% in transmodal regions. Altogether,
our findings suggest that the structure-function divergence in transmodal areas may not be

Page 1 0f 29


https://doi.org/10.1101/2022.07.08.499148
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.08.499148; this version posted July 10, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

an intrinsic property of brain organization, but can be narrowed through multiplexed and
regionally specialized signaling mechanisms.

MAIN TEXT

Introduction
The structural connectome shapes and constrains signaling transmission between neuronal
populations, giving rise to complex neuronal coactivation patterns that are thought to
support perception, cognition, and other mental functions [1]. Understanding the
relationship between structure and function is a fundamental question in neuroscience [2].
Numerous models have been proposed to quantify and articulate this relationship,
including statistical models, communication models, and biophysical models [3]. A
gradually emerging consensus is that functional connections can be inferred by collective,
high-order interactions among neural elements. Despite these modeling advances, the
structure-function correspondence is relatively moderate, with structural connectivity
rarely accounting for more than 50% of the variance in empirical functional connectivity

[4].

Recently, studies of regional structure-function relationships, using different approaches,
have independently found that the coupling strength systematically varies across the brain
[5-7]. Structure and function are tightly coupled in primary sensorimotor areas but diverge
in polysensory association areas, gradually decoupling along a macroscale functional
gradient from unimodal to transmodal cortex [8, 9]. Such heterogeneous structure-function
correspondence raises the possibility that function cannot be completely predicted by
structure alone, implying that the observed structure-function decoupling might be a
natural consequence of brain hierarchical microscale organization, including
cytoarchitecture [5], intracortical myelination [10], and laminar differentiation [11]. One
prominent account posits that the rapid evolutionary expansion of the cortical mantle
effectively releases association areas from early sensory-motor hierarchies, resulting in
great signal variance and weak structure-function relationship in transmodal cortex [12].

Though widely accepted, the corollary that the structure-function relationship may itself
be decoupling in transmodal cortex seems to contradict reality. First, it has been widely
believed that the brain network is organized under a trade-off between cost minimization
and functionality maximization [13]. If structure contributed little to function, it would be
unnecessary to invest such substantial material and metabolic resources to white matter
construction in transmodal cortex [14-16]. Second, structure-function divergence confers
considerable flexibility to structural connectome organization: any wiring diagram that
guarantees the connection profile of unimodal cortex would be as good as any other in
maintaining normal brain function. However, abundant empirical evidence indicates that
structural connections exhibit a high level of consistency and specificity [17-19]. Third,
the structure and function of association areas always change simultaneously. The
development of human advanced cognitive capabilities was accompanied by pronounced
modifications to connections linking association areas [20] and abnormalities in these
connections were reported to be associated with many neuropsychiatric disorders [21-23].
Such covariation implies a close correspondence between structure and function in
polysensory transmodal areas.

If structure and function are indeed related, why do we observe the decoupling
relationship in transmodal cortex? A possible explanation is that current models leave out
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requisite neurophysiological processes and signaling patterns when linking structural and
functional connectivity. Neuromodulation and microstructural variations fundamentally
influence how signals are routed, transformed, and integrated on the underlying
anatomical backbone, ultimately manifesting as complicated functional connectivity
patterns at the macroscale. Specifically, neuromodulation enables the static structural
network to support distinct spatiotemporal propagation regimes [24] while local attributes
may elicit regional heterogeneity in signaling strategies and transmission events [25].
Nevertheless, most exiting models only embody several putative neurophysiological
mechanisms and tend to relate structure and function in the same way across the brain,
inherently limiting the extent to which functional connectivity can be explained by
structural connections. For instance, geometric and topological relationships (such as
Euclidean distance, path length, and communicability) between nodes in the structural
network are common and powerful predictors in functional connectivity reconstruction.
However, these correlated predictors open the possibility of potentially homogeneous
communication patterns, potentially inducing systematic deviation in structure-function
coupling strength across the brain.

Hence, it remains a debate whether the structure-function divergence in association cortex
is an inherent property of brain organization or a limitation of existing models. Although
recent evidence from a machine learning approach demonstrates that structure-function
prediction accuracies can be significantly improved [26], it does not provide mechanistic
insight into dynamical processes and activation patterns that underlie functional
interactions. Whether structure and function are related in transmodal cortex, and if so,
what mechanisms and dynamics govern this relationship remain exciting open questions.
Here, we aim to shed light on these questions by assessing regional structure-function
relationships using distinct frequency-specific spatiotemporal patterns generated by the
eigenmode approach [27,28]. First, we demonstrate that low-frequency eigenmodes,
which are shown sufficient to capture the essentials of the whole-brain functional network,
contribute little to functional connectional profiles of transmodal cortex, leading to
systematically decoupling relationships across the brain. Next, we compare the prediction
performance of empirical eigenmodes with pseudo-eigenmodes and find that a large
number of high-frequency eigenmodes significantly contribute to structure-function
mapping. These high-frequency components used to be associated with noisy and random
patterns and were overlooked in previous structure-function relationship analyses.
However, our findings suggest that they can effectively enhance the explanation of
neuronal coactivation patterns in association areas despite the fact that critical information
in high-frequency eigenmodes is weak, scattered, and prone to be obscured by excessive
background noise. Finally, we show a gradual convergence between structure and function
when only using high-frequency eigenmodes as predictors, directly challenging the
speculation that the structure-function relationship may itself be decoupling from
unimodal to transmodal cortex. These findings indicate that different brain regions utilize
specialized parallel signaling protocols, that is, global, persistent signaling patterns
preferentially govern the structure-function tethering in unimodal cortex whereas local,
transient dynamical processes play dominant roles in functional connectional profiles of
transmodal cortex.

Results
Laplacian eigenmodes of the structural connectome
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To explore how brain function coupled with structure through different signal
mechanisms, we applied the eigendecomposition to the structural connectome Laplacian
and obtained a set of orthogonal eigenmodes governing frequency-specific spatiotemporal
patterns of signal propagation (Fig. 1: left to middle panels). The role of eigenmodes as
mediators of information transmission within the brain arises naturally from the network
diffusion model, where the eigenvalues closely relate to spatial complexity and persistent
time of spreading processes. Specifically, eigenmodes with near-zero eigenvalues, which
are referred to as low-frequency eigenmodes, correspond to global and persistent
spreading processes whereas eigenmodes with large eigenvalues, which are referred to as
high-frequency eigenmodes, correspond to local and transient spreading processes.
Moreover, benefiting from their orthogonality, eigenmodes have been used as a
parsimonious basis in the prediction of resting-state functional networks. Functional
interactions between neuronal populations can be modeled as a weighted linear
combination of eigenmodes (Fig. 1: middle to right panels). The coupling strength was
quantified as the goodness of fit, i.e., the Pearson correlation coefficient between predicted
and empirical functional connectivity. Our methodology followed the eigenmode
approach [27-29] with the important difference that we focused on the regional structure-
function relationships estimated by the extracted low-frequency and high-frequency
components. Details of the analysis were provided in Materials and Methods.

Regionally heterogeneous roles of Low-frequency eigenmodes

According to current literatures [7,30], a small number of low-frequency eigenmodes are
sufficient to capture the essence of the functional connectivity matrix (See Supplementary
Materials, Fig. S1). This observation, however, was made on whole-brain prediction
where regional heterogeneity was neglected. It remains unclear what role low-frequency
eigenmodes play in regional structure-function relationships.

To address this question, we estimated the regional structure-function relationships using a
multilinear regression model that only comprise low-frequency eigenmodes (See Materials
and Methods). The resultant coupling strength mirrors the contribution of low-frequency
eigenmode to functional connectivity reconstruction. As shown in Fig. 2A, the distribution
of coupling strength was broad (from R=0.2 to R=0.8), suggesting highly variable roles of
low-frequency eigenmodes in local structure-function prediction. We then examined the
spatial distribution of the coupling strengths (Fig. 2B). We found weak structure-function
coupling in the bilateral inferior parietal lobule, lateral temporal cortex, precuneus, and
inferior and middle frontal gyri. Conversely, strong structure-function coupling resided
bilaterally in the visual and primary somatosensory cortices. Aggregating coupling
strength by seven resting-state networks proposed by Yeo et al [31], we found structure
and function were gradually decoupled from the primary sensorimotor cortex (visual and
somatomotor networks) to the transmodal cortex (default mode network), suggesting that
the contribution of low-frequency eigenmodes varies systematically across functional
systems (Fig. 2C).

To demonstrate that the heterogeneous contribution of low-frequency eigenmodes is not a
trivial pattern driven by network size, we calculated the average R of each resting-state
network and compared it with the null distribution generated by randomly permuting brain
nodes’ assignments (10,000 repetitions). As illustrated in Fig. 2D, we found that the
coupling strength in visual and somatomotor networks was significantly larger than
expected by chance while default mode, limbic, and ventral attention networks exhibited
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significantly weaker structure-function coupling (P < 10~%). We further compared the
distribution of well-predicted nodes whose prediction accuracy was higher than the
average level with the distribution of seven resting-state network sizes (Fig. 2E). If low-
frequency eigenmodes contribute equally to the structure-function coupling across brain
regions, these two distributions would exhibit strong similarity. However, we observed an
apparent discrepancy between the distributions. We found that 61% of well-predicted
nodes were concentrated in visual and somatomotor networks, which greatly exceeded the
corresponding network size (37%). In contrast, 27% of well-predicted nodes were
observed in default mode, limbic, and ventral attention networks, which was much smaller
than the corresponding network size (51%). Finally, we transformed the node-wise R to its
z score concerning the null distribution of each resting-state network. Positive values
indicate that structure and function are tightly linked by low-frequency eigenmodes
whereas negative values indicate that low-frequency eigenmodes play a poor role in
predicting functional connectivity. As shown in Fig. 2F, we observed a gradually
worsening performance of low-frequency eigenmodes in relating structure to function
from unimodal to transmodal cortex.

Collectively, these findings suggest that the contribution of low-frequency eigenmodes to
structure-function prediction is not uniform across the brain. The persistent, spatially
slow-varying diffusion patterns captured by low-frequency eigenmodes can adequately
explain functional connection profiles of unimodal regions. However, they contribute little
to the functional connectivity of transmodal regions, leading to the observed structure-
function divergence in these regions.

Structure-function decoupling induced by low-frequency eigenmodes

Besides the spatially heterogeneous contribution of low-frequency eigenmodes, there
exist many other systematic variations [32] in brain organization. Margulies et al [8]
reported a cortical organization from unimodal to transmodal cortex, which
simultaneously corresponds to a spectrum of increasingly abstract cognitive functions.
Here, we associated the regional structure-function relationship estimated by low-
frequency eigenmodes with this macroscale functional gradient to examine whether
coupling heterogeneities vary along the unimodal-transmodal hierarchy.

We derived the functional gradient (Fig. 3A) following the method in [8] and correlated it
with the node-wise coupling strength. As shown in Fig. 3B, we found a negative
correlation between coupling strength R and the functional gradient (Pearson p=-0.557).
To examine whether such anticorrelation is a meaningful feature of the empirical
structural connectome, we generated two types of null models. The first one kept the
structural connection topology fixed but randomly permuted nodes’ positions along the
gradient. The second one preserved the original functional gradient but incorporated no
structural information except the degree sequence. As shown in Fig. 3C&D, the
correlation coefficient between the coupling R and the functional gradient in the empirical
data was significantly lower than those generated by the two null models (P < 1074,
10,000 simulations). This observation suggests that structure-function decoupling from
unimodal to transmodal cortex is a nontrivial pattern induced by low-frequency
eigenmodes. More specifically, if we link brain structure and function only through
signaling processes sustained by low-frequency eigenmodes, the resulting structure-
function relationships will become increasingly divergent along the unimodal-transmodal
hierarchy.
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Critical information in high-frequency eigenmodes

Although whole-brain functional connectivity can be efficiently captured by a few low-
frequency eigenmodes, the correspondence between structure and function is far from
perfect. It remains a matter of debate whether structure-function divergence in transmodal
regions is an inherent property of brain organization or a consequence of neglecting
information requisite for precise prediction.

To test the latter possibility, we first examined whether eigenmodes apart from low-
frequency components made significant contributions to functional brain connectivity. We
applied each eigenmode to whole-brain structure-function prediction and transformed the
prediction accuracy R into a z score relative to the null distribution generated by the
corresponding pseudo-eigenmode. The pseudo-eigenmodes are the randomization of the
original eigenmodes but preserve the spatial smoothness [33]. We found that a large
number of eigenmodes with large eigenvalues significantly outperform the corresponding
pseudo-eigenmodes in structure-function prediction, although the prediction accuracy
decreased steeply from low-frequency to high-frequency domains (See Supplementary
Materials, Fig. S2). This observation suggests that high-frequency eigenmodes may
contain weak but valuable information for structure-function coupling.

We then investigated how regional functional connectivity emerges from the underlying
structure substrate through transient, geometrically complex diffusion patterns captured by
high-frequency eigenmodes. For comparison, high-frequency eigenmodes were selected in
descending order of their eigenvalues until the prediction accuracy of the selected set
equals that of the low-frequency components (See Methods and Materials). In Fig. 4A, we
showed that the accuracy R of the regional prediction using models with high-frequency
eigenmodes varies from 0.25 to 0.75, suggesting heterogeneous roles of high-frequency
eigenmodes across the brain cortex. Furthermore, the spatial distribution of R values
indicates a systematic variation in structure-function coupling strength (Fig. 4B). Structure
and function are closely aligned in prefrontal and paracentral cortices but decoupled in
visual and primary somatosensory cortices, exhibiting a coupling pattern inverse to that
induced by the low-frequency eigenmodes. Aggregating prediction R by seven functional
systems, we found the default mode network exhibited the strongest structure-function
coupling while the visual network exhibited the weakest coupling strength (Fig. 4C).

Similarly, to confirm that the regionally heterogeneous contribution of high-frequency
eigenmodes is a nontrivial pattern, we compared the average R of each functional system
with the null distribution generated by randomizing network geometry. We found that the
coupling strength in ventral attention and default mode networks was significantly higher
than expected by chance while the coupling strength in the visual network was
significantly lower (Fig. 4D). We further compared the distribution of well-predicted
nodes with the distribution of functional network size to rule out the influence of
differences in network size. In concert with the previous finding, the proportion of well-
predicted nodes in ventral attention and default mode networks is much higher than the
corresponding network size (59% > 41%) whereas the reverse is true for the visual
network (2% < 15%) (Fig. 4E). Mapping coupling z scores back to individual brain
regions, we found that strong structure-function correspondence was concentrated in
transmodal regions (Fig. 4F). This observation suggests that the diffusion patterns
captured by high-frequency eigenmodes preferentially contribute to the interpretation of
functional interactions in transmodal regions.
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Structure-function convergence in transmodal cortex induced by high-frequency
eigenmodes

To investigate how local structure-function relationships estimated by high-frequency
eigenmodes vary along the unimodal-transmodal hierarchy, we associated the regional
coupling strength with the macroscale functional gradient. As shown in Fig. 5A, we found
these two measures were positively correlated (Pearson p=0.513), suggesting that
structural and functional connectivity are increasingly coupled from unimodal to
transmodal regions under transient and spatially complex signaling protocols. We further
compared the empirical correlation coefficient with two null distributions which were
respectively generated by randomizing geometry (Fig. 5B) and topology (Fig. 5C). In both
cases, the empirical correlation coefficient was significantly larger than the null values

(P < 107%, 10,000 simulations). These results deliver novel insights into structure-
function tethering, directly challenging the widely held speculation that the structure-
function relationship itself may be gradually decoupled along the unimodal-transmodal
gradient.

Enhanced structure-function tethering via introducing high-frequency eigenmodes

As a final step, we sought to shed light on two important questions: Can high-frequency
eigenmodes compensate for the critical information neglected in previous structure-
function predictions? If so, how is this information distributed in high-frequency
eigenmodes?

Firstly, we focused on the structure-function coupling strength estimated by prediction
models with and without high-frequency eigenmodes. The brain regions were divided into
two groups based on whether their function gradient values were larger than zero, yielding
a unimodal group of 590 and a transmodal group of 410. We found that the prediction
accuracy R of both unimodal and transmodal groups significantly improved with the
addition of high-frequency eigenmodes (t-test, P < 107*), suggesting that high-frequency
eigenmodes provide important supplementary information for structure-function tethering
(Fig. 6A). The accuracy R increased by 0.25 for the transmodal group, greater than 0.19
for the unimodal group (Fig. 6B). This between-group difference was magnified when
absolute increments were converted to percentage increases (56.19%>34.69%). These
findings indicate that the information in high-frequency eigenmodes is biased to
characterize signaling mechanisms in transmodal regions. Furthermore, we found that the
top 10% of brain regions with the highest percentage increases were mostly located in the
transmodal cortex, including the inferior parietal cortex, precuneus, insula, cingulate, and
lateral prefrontal cortex (Fig. 6C). The coupling strength between structure and function in
these regions increased dramatically with the assistance of high-frequency eigenmodes,
jumping by 98.6%-196.2%, highlighting the critical role of high-frequency eigenmodes in
enhancing the explanation of neuronal coactivation patterns in transmodal areas.

Further, to address the second question, we quantified the percentage increases in R along
with the progressive addition of high-frequency eigenmodes. The high-frequency
eigenmode added at each step was randomly selected and the adding process was repeated
100 times. The mean and the standard deviation of the percentage increase in R were
illustrated in Fig. 6D. We found that the prediction accuracy R in both unimodal and
transmodal groups increased steadily as high-frequency eigenmodes were added
gradually, suggesting that the information requisite for structure-function prediction is
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uniformly distributed in high-frequency eigenmodes. It is noteworthy that the growth
curve of the transmodal group is steeper than that of the unimodal group, which
consolidates the preference of high-frequency eigenmode for interpreting functional
interaction in transmodal regions.

Robustness and reliability

In previous sections, we have illustrated the regionally heterogeneous roles of different
signaling processes sustained by low-frequency and high-frequency eigenmodes in local
structure-function prediction. To confirm the robustness and reliability of these results, we
replicated the main findings in another four spatial resolutions (68, 114, 219, 448 nodes)
and an independent dataset (Human Connectome Project HCP). We observed that spatial
distributions of R values were consistent at different spatial resolutions (See
Supplementary Materials, Fig. S3). Moreover, the correlation between node-wise coupling
strength and the functional gradient was preserved despite the distinct acquisition and
processing techniques in different datasets (See Supplementary Materials, Fig. S4). We
further adjusted the range of low-frequency and high-frequency eigenmodes to examine
the robustness of our findings to the definition of “low-frequency” and “high-frequency”.
As shown in Supplementary Materials, Fig. S5, the results exhibit high stability across
different ranges.

Discussion

The imperfect correspondence between structure and function in macroscale brain
networks is an ongoing challenge in network neuroscience [3]. The prevailing hypothesis
is that structure and function may be gradually untethered along a macroscale functional
gradient spanning from unimodal sensory areas to transmodal areas [5,7,11]. In this work,
we revisit this hypothesis on the grounds that typically prediction models may neglect
signal propagation patterns that are critical for functional interactions in transmodal
cortex. To gain a deeper understanding of how functional connectivity emerges from the
underlying anatomical substrate, we take into account distinct signaling protocols by
decomposing the structure connectome into frequency-specific diffusion patterns captured
by orthogonal eigenmodes [34-36]. Concordant with previous findings [5,37], a gradual
decoupling between structure and function along unimodal-transmodal hierarchy is
reproduced based on low-frequency eigenmodes which are reported as prominent
predictors of whole-brain functional connectivity. Next, we show that apart from low-
frequency eigenmodes, high-frequency eigenmodes also significantly contribute to
structure-function prediction, even though the information they contain is weak and
scattered. Unexpectedly, these high-frequency eigenmodes reverse the decoupling pattern
between structure and function across the brain, inducing increasingly convergent
structure-function relationships along the unimodal-transmodal hierarchy. Finally, we
show that with the assistance of high-frequency eigenmodes, the strength of structure-
function coupling exhibits dramatic increases in association areas, especially in the
inferior parietal cortex, precuneus, insula, cingulate, and lateral prefrontal cortex.

Our work contributes to understanding the link between structural and functional
connectivity from a parallel communication perspective. The structure-function
relationship has been fruitfully investigated by formulating models of potential
communication dynamics, ranging from centralized forms such as the shortest path to
decentralized forms such as the random walk [38-40]. However, the correlation of typical
predictors such as path length, navigation, and communicability [41] mirrors the
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homogeneity of potential signal propagation patterns which may drive systematic
deviations in structure-function alignment. A key challenge lies in aggregating
heterogeneous signaling protocols in a simple and unified framework and articulating their
roles in functional interactions among neuronal elements. In our work, a variety of
possible signaling processes (orthogonal eigenmodes) were gleaned from the
eigendecomposition of the structural Laplacian, with distinct eigenvalues reflecting
different frequencies of spatiotemporal patterns of signal spreading. Interregional
functional interactions can be interpreted by activating these frequency-specific networked
persistent modes in appropriate proportion. This methodology is in line with recent
biophysical models which suggest the coexistence of a set of self-sustained, stimulus-
selective activity states, with each one storing a memory item for optimal preparation for
stimulus processing [42,43]. Studies investigating temporal dynamics of interregional
synchrony also suggest that frequency-specific interactions, which form transient
frequency-specific networks, modulate cortical computations and information
transformation in the brain [44,45].

For the present analysis, we focus on low-frequency and high-frequency eigenmodes that
cover two fundamentally different types of signaling patterns, one sustaining persistent
and widespread diffusion processes while the other capturing faster and more
geometrically complex signal spreading [35,46]. A rich literature supports the notion that
brain activity is preferentially expressed in low frequencies [7] and argues that a small
number of low-frequency eigenmodes are sufficient to reconstruct the functional network
[30,47]. However, this perspective was largely based on the whole-brain prediction where
structure-function relationships are assumed to be uniform across the cortex. We show that
low-frequency eigenmodes contribute little to structure-function prediction in transmodal
areas. In contrast, high-frequency eigenmodes, which are typically associated with noisy
and random activation patterns [48,49], could significantly improve the prediction
accuracy in these areas. These findings advance the understanding of the roles of
different-frequency eigenmodes in structure-function prediction, emphasizing the
importance of high-frequency eigenmodes that used to be on the periphery of attention in
eigenmode analyses. The significant contribution of low-frequency and high-frequency
patterns highlights multiplexed strategies and multiple mechanisms involved in
interregional communication [50-52], suggesting that synchrony among neuronal
populations results from the aggregation of global, persistent and local, transient signaling
patterns. Physiological signals from distributed brain regions compete and cooperate in
different frequency bands, manifesting as distinct synchronization patterns to serve
flexible cognitive behaviors [53-55]. These various and abundant frequency-specific
patterns allow neuronal elements to share and transmit signals through dynamical
reconfiguration on multiple timescales, potentially relaxing the restriction on the material
and energy cost of the structural connectome [40,56]. Our findings gain valuable insight
into how flexible flow of information is achieved, opening the possibility to address the
major unsolved question that how static structural connectome supports fast and flexible
reconfiguration of functional networks [1].

Furthermore, our findings suggest regionally heterogeneous roles of different signaling
mechanisms across the brain. Persistent and global diffusion patterns described by low-
frequency eigenmodes predominantly explain functional connectional profiles of primary
unimodal regions. Transient and geometrically complex diffusion processes captured by
high-frequency eigenmodes instead support functional interactions in association
transmodal cortex. These systematic variations in the prediction performance of different
diffusion patterns may be induced by latent microstructural configurations and
hierarchical organizing principles in the brain, including morphometric similarity,
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transcription profiles, and laminar differentiation [10,11,25]. The organization of primary
areas is strongly constrained by molecular gradients and early activity cascades [57].
Information is step-wise progressively transformed along serial and hierarchical pathways
[58]. Such consistent hierarchical property of unimodal cortex may thus elicit widespread
and persistent signaling processes that can be captured by low-frequency eigenmodes. In
contrast, the rapid expansion of the cerebral cortex detaches polysensory association areas
from the canonical sensory-motor hierarchy, resulting in noncanonical circuit organization
that lacks consistent laminar projection patterns [12,59]. Such variation in connectivity
patterns may alter the way signals are generated, transformed, and integrated, potentially
eliciting fundamentally different signaling mechanisms in association areas [60,61].
Association transmodal cortex is configured to bridge widely distributed functional
systems and integrate diverse signals from multiple sources [62-64]. Transient and
geometrically complex signaling processes captured by high-frequency eigenmodes may
enable transmodal cortex to participate in different communication events in a spatially
and temporally precise manner, facilitating efficient information routing and flexible state
switching in cognitive behaviors. Our findings are also corroborated by the previous work
which suggests that primary sensory and motor networks are closely associated with low-
frequency connectome harmonics while higher-order cognitive networks match a broader
range of frequency spectrum [46].

Low-frequency and high-frequency eigenmodes respectively induce gradually divergent
and convergent structure-function relationships along the unimodal-transmodal gradient.
These two reverse coupling patterns offer an alternative perspective for understanding the
link between structure and function, that is, structural and functional connectivity may be
tightly tethered but current models neglect requisite communication dynamics for precise
prediction. With the assistance of high-frequency eigenmodes, the tethering between
structure and function is enhanced by 35% in unimodal regions and 56% in transmodal
regions. In particular, dramatic increases in coupling strength (98.6%-196.2%) appear in
the inferior parietal cortex, precuneus, insula, cingulate, and lateral prefrontal cortex,
suggesting that structure-function divergence in transmodal areas may not be an inherent
property of brain organization. This is in accordance with the recent study [26] which
exploits a machine learning approach to achieve a substantially closer structure-function
correspondence than previously implied. Although the information in high-frequency
eigenmodes is prone to be obscured by background noise and the exact mechanism
underlying structure-function association requires further exploration, our findings open a
new opportunity to break the glass ceiling on the performance of structure-function
prediction. Considering the steady and continuous growth of prediction accuracy with the
increasing number of added high-frequency eigenmodes, the information is expected to be
uniformly distributed in the high-frequency domain. Meanwhile, the growth curve of
transmodal areas is steeper than that of unimodal areas, suggesting that high-frequency
patterns have a propensity to explain neuronal coactivation in transmodal cortex. These
results provide fundamental references for future work on distilling information from
high-frequency eigenmodes to adequately capture the structure-function relationship.

Since high-frequency eigenmodes are usually on the periphery of attention in structure-
function prediction due to their association with noisy and random patterns, there may be
some concerns about the reliability of the information they provide. We address this
problem in the following three directions. First, the averaged node-wise prediction
accuracy of high-frequency eigenmodes equals that of low-frequency components (mean
R=0.5), roughly concordant with previous structure-function prediction performance
[28,29], suggesting that high-frequency eigenmodes can provide sufficient information for
an effective structure-function relationship construction. Second, regional structure-
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function coupling relationships estimated by high-frequency eigenmodes vary in parallel
with a macroscale functional gradient [8] which links the cortical organization to an
increasingly abstract functional spectrum. This systematic variation demonstrates the
functional relevance of the extent to which function couples with structure, suggesting that
high-frequency eigenmodes capture meaningful patterns which cannot be ascribed to
noise. Finally, our findings exhibit high stability across 4 spatial resolutions (68, 114, 219,
448 nodes), an independently collected dataset (HCP), and different definitions of “low-
frequency” and “high-frequency”, demonstrating the reliability of critical information
contained in high-frequency eigenmodes.

There are some limitations to our work. Although we demonstrate the important roles of
high-frequency eigenmodes in structure-function tethering, it is difficult to distill effective
information from a large amount of background noise. Meanwhile, the present work is
conducted at the group level, however, recent studies demonstrate that structure-function
alignments vary with individual differences such as age, sex, and cognitive performance
[6,65,66]. Moreover, we represent functional interactions among neuronal elements
simply as static and dyadic connectivity networks, neglecting the possibility of temporal
dynamics [67] and high-order interactions [68]. Future work could investigate structure-
function coupling with more nuanced models enriched with inter-subject variation and
high-order interactions.

Materials and Methods
Data acquisition

The analyses were performed in two independent datasets. The main dataset was collected
by Department of Radiology, University Hospital Center and University of Lausanne
(LAU). The dataset [69] was collected from a cohort of 70 healthy participants (27
females, 28.819.1 years old). Informed content approved by the Ethics Committee of
Clinical Research of the Faculty of Biology and Medicine, University of Lausanne was
obtained from all participants. Diffusion spectrum images (DSI) were acquired on a 3-
Tesla MRI scanner (Trio, Siemens Medical, Germany) using a 32-channel head-coil. The
protocol was comprised of (1) a magnetization-prepared rapid acquisition gradient echo
(MPRAGE) sequence sensitive to white/gray matter contrast (1-mm in-plane resolution,
1.2-mm slice thickness), (2) a DSI sequence (128 diffusion-weighted volumes and a single
b0 volume, maximum b-value 8,000 s/mm2, 2.2X2.2x3.0 mm voxel size), and (3) a
gradient echo EPI sequence sensitive to blood oxygen level-dependent (BOLD) contrast
(3.3-mm in-plane resolution and slice thickness with a 0.3-mm gap, TR 1,920 ms,
resulting in 280 images per participant). The supplementary analyses were performed in
the dataset from the Human Connectome Project (HCP). This dataset consisted of 56
participants. Informed content, including consent to share de-identified data, approved by
the Washington University institutional review board was obtained from all participants.
All fMRI acquisitions were preprocessed according to HCP-minimal preprocessing
guidelines. For more details regarding acquisitions see ref [70,71].

Structural and functional network construction

Gray matter was divided into 68 brain regions following Desikan—Killiany atlas [72].
These regions were further subdivided into 114, 219, 448, and 1,000 approximately
equally sized nodes according to the Lausanne anatomical atlas using the method
proposed by [73]. Individual structural networks were constructed using deterministic
streamline tractography, initiating 32 streamline propagations per diffusion direction for
each white matter voxel [74]. The structural adjacency matrix that preserved the density
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and the edge-length distribution of the individual participant matrices was then estimated
using a group-consensus approach [75-77]. Functional data were pre-processed using
routines designed to facilitate subsequent network exploration [78,79]. A group-average
functional connectivity matrix was constructed by averaging individual correlation
matrices which consist of correlation among regional time series.

Laplacian eigenmodes

To generate a dissociation of distinct signaling processes, we performed the
eigendecomposition of the structural Laplacian. Specifically, we expressed the structural
connectome as an undirected, weighted adjacency matrix A. Then, the normalized
structural Laplacian can be defined as

L=D-A,

where D represents the diagonal weighted degree matrix. Following ref. [49], the
structural Laplacian was normalized as L' = L/A,,,4, to preclude the influence of network
sizes and densities, where 4,,,,, indicated the largest eigenvalues of L. Through the
eigendecomposition of the normalized structural Laplacian L'U = UA, we obtained a set
of orthogonal eigenmodes u; €U that correspond to distinct spatiotemporal patterns of
signal propagation [35,46]. Their eigenvalues A, €A are closely related to persistent time
and spatial complexity signaling processes. Specifically, eigenmodes with near-zero
eigenvalues sustain global and persistent diffusion patterns while eigenmodes with large
eigenvalues capture geometrically complex spreading processes that delay quickly.
Benefiting from their orthogonality, eigenmodes have been used as a parsimonious basis
in the prediction of resting-state functional connectivity [34].

Regional structure-function prediction

The eigenmode approach is considered as a powerful tool for structure-function prediction
due to its appealing feature of representing the relationship simply and explicitly [30].
Functional connectivity matrix F can be interpreted as the aggregation of activating
networked persistent modes captured by eigenmodes in appropriate proportion [28,29],
that is,

F=UCUT =X}, cp upug,
where C is a diagonal matrix with elements ¢, to be estimated.

The above formulation can also be derived from the network-diffusion model [35]

dx(t) _
dt - ﬁ LX(t)9
where x(t) denotes the time evolution of neural activity and parameter f§ corresponds to
the decay rate. It has the analytical solution x(t) = e~PLtx,, where X, denotes the initial
configuration of the diffusion process. Under the hypothesis that the configuration at a
critical time t.,;+ evolving from an initial configuration with only region i active is simply
the functional connectivity between region i and all other regions [39,30], the whole-brain
functional connectivity matrix can be estimated as

F= exp(_ﬁLtCTit)‘
By eigendecompositing the matrix L into L = UAUT , the above equation can be rewritten

as F = UeAltcrieUT. When expressing unknown parameters e ~Alecrit a5 a diagonal
matrix C, we obtained the same formulation

F = UCUT = Zﬁ:l Ck uku;;.
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For regional structure-function prediction, the functional connectivity between node i and
remaining node j#i can be expressed as

F = exp (—BLtyi) (0] ... €], ... |0)
= UCUT (0] ...|e;], ... |0)

n

= Z Cr Ujr Uy,

k=1
== buk

where e; denotes the unit vector in the ith direction and b = (by, ..., by) is the vector of
parameters that can be estimated using ordinary least squares method (OLS). Local
structure-function correspondence is quantified as the goodness of fit, which is computed
as the Pearson correlation coefficient R between predicted and empirical functional
connectivity.

Extraction of low-frequency and high-frequency eigenmodes

It is widely accepted that a small number of low-frequency eigenmodes are sufficient to
capture the essence of functional connectivity [47,49]. We, therefore, defined low-
frequency eigenmodes as those outperform pseudo-eigenmodes [47] in whole-brain
structure-function prediction. Specifically, we constructed pseudo-eigenmodes that
preserved the spatial smoothness of empirical eigenmodes following the method in ref.
[33]. Next, we sequentially added eigenmodes to structure-function prediction in an order
of increasing eigenvalues. At each step, we compared the increase in prediction accuracy
R based on empirical eigenmodes with that based on pseudo-eigenmodes. This process
was executed until the pseudo-eigenmode outperformed the empirical eigenmode. The
resulting eigenmodes were preserved to constitute low-frequency eigenmodes.

As for high-frequency eigenmodes, we started from the eigenmode with the largest
eigenvalue, and sequentially added eigenmodes to the prediction model in decreasing
order of their eigenvalues until the averaged node-wise prediction accuracy equaled that
based on low-frequency components. We selected high-frequency eigenmodes in this way
for two considerations. On the one hand, it ensured that high-frequency eigenmodes
encompassed sufficient information on structure-function relationships. On the other hand,
it benefited a direct comparison between low-frequency and high-frequency eigenmodes.
Certainly, the definition of "low-frequency" and "high-frequency" is not absolute and our
findings are robust to moderate adjustment of the eigenmode range (See Supplementary
Materials, Fig. S5).
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Fig. 1. Method pipeline. Through the Laplacian eigendecomposition of the structural
network, we obtained a series of orthogonal eigenmodes governing frequency-
specific spatiotemporal patterns of signal propagation. The low-frequency and
high-frequency components were respectively extracted to predict functional
connection profiles of individual brain regions. The structure-function coupling

strength was measured as the Pearson correlation coefficient R between predicted
and empirical functional connections.
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Fig. 2. Heterogeneous contribution of low-frequency eigenmodes in regional

structure-function prediction. Low-frequency eigenmodes, which are considered
to be sufficient to capture the essence of the whole-brain functional network, are
exploited to predict functional connection profiles of individual nodes. (A), The
histogram of node-wise prediction accuracy R. (B), The spatial distribution of R.
(C), Nodes are aggregated by seven resting-state networks (RSNs): visual(vis),
somatomotor(sm), dorsal attention(da), frontoparietal(fpn), ventral attention(va),
limbic(lim), default mode(dmn) networks. These RSNs are ordered according to
their average R-values and the boxplot shows the medians(circles), interquartile
ranges(boxes), and outliers(whiskers). (D), The empirical average R of each RSN
was compared with the null distribution generated by randomly permuting nodes'
assignments (10,000 repetitions). Red stars indicate statisitically significant
differences between empirical and null values. (E), The distribution of well-
predicted nodes and the distribution of network size across seven RSNs. (F),
Node-wise R values were transformed into z-scores distributed within each RSN.
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Fig. 3. Structure-function decoupling along the unimodal-transmodal hierarchy. (A),
A macroscale functional gradient spanning from unimodal to transmodal cortex.
(B), The structure-function coupling strength R is negatively correlated with the
macroscale functional gradient. (C), Red line: correlation coefficient between R
and the functional gradient. Blue curve: the null distribution of correlation
coefficients generated by randomly permuting nodes' locations along the
functional gradient. (D), Red line: correlation coefficient of empirical data. Blue
curve: the null distribution generated by randomizing structural architecture.

Page 21 of 29


https://doi.org/10.1101/2022.07.08.499148
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.08.499148; this version posted July 10, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A B C
.
250 I&g
200 Y 08
Lot * o, o o dmn F e ——
150 : ;.'o %o -§ va ——
= ~ % 083 fpn .
2 s . i =% g I
§ 100 %a v; o 4‘). . 0s g lim
= 2 2 o o sm
o e N
50 r"" e X e j' b 03 17; vis | e ——
tf.ﬁ igs ' ° I 03 0.4 05 0.6 07
0 R
03 04 05 06 07 o
R =
D E
0.7 T T T Well-predicted node Network size

T
null M empirical
0.6 - % —%—

0.5

0.4

41%

02 59%

0.1

vis da sm lim fpn va

N

vis da sm limbic fpn

seee,

o *ﬁ s
£iN £_<‘ ) 596
. v ol
’y “ s y}'" e of & 196
LosSdade “‘:" Ses T
L~ '..rﬁ:ﬁ? oo ot Voo

Fig. 4. The regional prediction contribution of high-frequency eigenmodes. (A), A
wide distribution of node-wise prediction accuracy R across 1,000 nodes. (B), The
corresponding brain map where nodes are colored from blue to red in increasing
order of R values. (C), Boxplot of structure-function R where RSNs are ordered by
the average of R values. (D), The average R-value of each RSN is compared with
those calculated after random permutation of nodes' assignments (10,000
repetitions); red stars indicate significant differences. (E), The distribution of well-
predicted nodes across seven RSNs is compared with the distribution of network
size. (F), The spatial distribution of z scores within each RSN.
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Fig. 5. Convergent structure-function relationships along the unimodal-transmodal
gradient. (A), Coupling strength R estimated by high-frequency eigenmodes is
positively correlated with the functional gradient. (B), The empirical correlation
coefficient (red line) is significantly larger than null distribution generated by
randomly permuting nodes' gradient positions (blue). (C), The empirical
correlation coefficient (red line) is significantly larger than those obtained from
artificial structural networks (blue).
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Fig. 6. Enhanced structure-function tethering by high-frequency eigenmodes. (A),
Blue: Coupling strength between structure and function estimated by low-
frequency predictors. Bed: Coupling strength estimated by both low-frequency and
high-frequency predictors. Standard deviations are represented by error bars and
statistically significant differences are marked by red stars (P < 1073). (B), The
average increments in prediction accuracy R for unimodal and transmodal groups
are expressed as absolute (red) and relative (blue) values. (C), The spatial
distribution of the top 10% of nodes with the highest percentage increases in R.
(D), Growth curves of prediction accuracy R for unimodal and transmodal groups.
The horizontal axis indicates the proportion of high-frequency eigenmodes added
to the prediction model while the vertical axis is the percentage increase in R. At
each adding step, the high-frequency eigenmode is randomly selected. The average
percentage increase in R is shown in solid lines while standard deviations are
expressed as dash lines (100 repetitions).
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Fig. S1.

Extracting low-frequency eigenmodes. (A), The empirical functional connectivity matrix
across 1,000 nodes. (B), The estimated functional connectivity matrix based on whole-brain
regression model using all eigenmodes as predictors. The prediction performance is
estimated as fitting errors €4, and Pearson correlation R between predicted and empirical
functional connectivity. (C), Blue: the null distribution of prediction accuracy R generated
by pseudo-eigenmodes. Red: the prediction accuracy R of empirical eigenmodes. (D), The
estimated functional connectivity matrix predicted by low-frequency eigenmodes. (E), The
histogram shows the contribution of individual eigenmodes to structure-function prediction.
Orange area extracts low-frequency eigenmodes that have significant prediction
contribution with respect to pseudo-eigenmodes. The inset figure shows the growth curve
of prediction accuracy R with the number of eigenmodes. The red star indicates the
prediction accuracy of low-frequency eigenmodes.
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Fig. S2.

Prediction performance of single eigenmodes. (A), The significance of prediction
contribution estimated by z scores transformed from R values. (B), The whole-brain
prediction accuracy R estimated by each individual eigenmode.
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Fig. S3.

Consistency across spatial resolutions. The node-wise structure-function predictions based
on low-frequency and high-frequency eigenmodes are respectively repeated in another four
spatial resolutions (68, 114, 219, 448 nodes). The spatial patterns of structure-function R
are visually similar.
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Verification on an independent dataset. The main results (structure-function divergence and
convergence along the unimodal-transmodal gradient) are replicated in an independently
collected dataset (Human Connectome Project HCP).
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Robustness to frequency thresholds. The relationship between coupling strength R and the
functional gradient is stable under different definitions of low-frequency and high-
frequency eigenmodes.
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