

1 **Title:**

2 TPH2 knockout male rats are aggressive, show less anxiety, and exhibit an altered oxytocin system

3 Xianzong Meng¹, Joanes Grandjean^{1,3}, Giulia Sbrini², Pieter Schipper¹, Nita Hofwijks¹, Francesca

4 Calabrese², Judith Homberg^{1*}

5

6 **Affiliation:**

7 1. Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour,

8 Radboud University Medical Centre, Nijmegen, The Netherlands.

9 2. Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Via

10 Balzaretti 9, 20133, Milan, Italy

11 3. Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, The Netherlands.

12 *Correspondence: Judith.Homberg@radboudumc.nl

13

14 **Number of pages: 12**

15 **Number of figures and tables: 5**

16 **Number of words**

17 **Abstract: 231**

18 **Introduction: 690**

19 **Discussion: 1276**

20 **Conflict of interest:** The authors declared no potential conflicts of interest with respect to

21 the research, authorship, and/or publication of this article.

22 **Acknowledgments:** The study was supported by the EU H2020 MSCA ITN project “Serotonin and
23 Beyond” (N 953327)

24 **Keywords:** Tryptophan hydroxylase 2, rats, anxiety, social behavior, oxytocin

25

26 **ABSTRACT:**

27 The central serotonergic system is critical for stress responsivity and social behavior, and its
28 dysregulations has been centrally implicated in virtually all neuropsychiatric disorders. Genetic serotonin
29 depletion animal models could provide a tool to elucidate the causes and mechanisms of diseases and to
30 develop new treatment approaches. Previously mice lacking tryptophan hydroxylase 2 (Tph2) have been
31 developed, showing altered behaviors and neurotransmission. However, the effect of congenital serotonin
32 deficiency on emotional and social behavior in rats is still largely unknown, as are the underlying
33 mechanisms. In this study, we used Tph2 knockout ($Tph2^{-/-}$) male rat model to study how the lack of
34 serotonin in the rat brain affects anxiety-like and social behaviors. Since oxytocin is centrally implicated
35 in these behaviors, we furthermore explored whether effects of Tph2 knockout on behavior would relate
36 to changes in the oxytocin system. We show that $Tph2^{-/-}$ rats display reduced anxiety-like behavior and a
37 high level of aggression in social interactions. In addition, oxytocin receptor expression was increased in
38 the infralimbic and prelimbic cortex, paraventricular nucleus, dorsal raphe nucleus and some subregions
39 of hippocampus, which was paralleled by increased levels of oxytocin in the medial frontal cortex,
40 paraventricular nucleus, but not the dorsal raphe nucleus, central amygdala and hippocampus. In
41 conclusion, our study demonstrated reduced anxiety but exaggerated aggression in $Tph2^{-/-}$ male rats and
42 reveals for the first time a potential involvement of altered oxytocin system function.

43 **SIGNIFICANCE STATEMENT**

44 We explored the changes in behavior and oxytocin system functioning in the tryptophan hydroxylase 2
45 (Tph2) knockout rat model, lacking serotonin in the brain. This rat model contributes to our
46 understanding of the role of serotonin in psychiatric transdiagnostic features and underlying mechanisms.
47 We found that Tph2 knockout male rats are aggressive, less anxious, and exhibit an altered oxytocin
48 system. The observed changes in oxytocin signaling may lead to a new target for the treatment of diseases
49 caused by genetic serotonin deficiency.

50 **Introduction:**

51 Serotonin (5-HT) has been long recognized to modulate the stress response and social behavior, and its
52 dysfunction has been implicated in numerous psychiatric disorders. 5-HT synthesis is dependent on the
53 rate-limiting enzyme tryptophan hydroxylase (Tph). There are two Tph isoforms, of which Tph2 is
54 predominantly expressed in the brain (Walther et al., 2003). Indeed, Tph2 mRNA has been detected in
55 multiple brain regions including frontal cortex, thalamus, hippocampus, hypothalamus and amygdala
56 (Zill, Büttner, Eisenmenger, Bondy, & Ackenheil, 2004). The discovery of Tph2 opened up a new area of
57 research. Human studies reported an association between functional Tph2 variants and personality traits
58 (L. Gutknecht et al., 2007) as well as various neuropsychiatric disorders (Waider, Araragi, Gutknecht, &
59 Lesch, 2011).

60 Animals with targeted deletion of genes encoding mediators of the serotonergic transmission have been
61 proven to be a powerful tool for detailed understanding contributions of the genetic basis of traits related
62 to mood disorders. To model human Tph2 gene variance, Tph2 knockout ($Tph2^{-/-}$) mice have been
63 generated. Although they do not exactly mimic human Tph2 polymorphisms, the animals show
64 phenotypes that are grossly in line with the humane gene-association studies. More specifically, $Tph2^{-/-}$
65 males show more aggression (Angoa-Pérez et al., 2012; Mosienko et al., 2012). Even female $Tph2^{-/-}$ mice
66 and weanlings (3-4 weeks old) of both sexes showed elevated aggressive in a modified resident-intruder
67 test (Angoa-Pérez et al., 2012). Furthermore, increased obsessive-compulsive-like behavior was observed
68 in $Tph2^{-/-}$ mice in the marble burying test (Angoa-Pérez et al., 2012; Savelieva et al., 2008). $Tph2^{-/-}$ mice

69 show no difference in total locomotor activity or exploratory behaviors in the open-field test, but they
70 spent less time in the central field, indicative for elevated anxiety-like traits (Savelieva et al., 2008). In
71 some studies it is also reported that $Tph2^{-/-}$ mice either displayed marginally reduced anxiety- and
72 depression-like behavior (Lise Gutknecht et al., 2015), or do not display a depression-like behavioral
73 phenotype (Angoa-Pérez et al., 2014).

74 $Tph2^{-/-}$ rats were introduced in 2016 (Kaplan et al., 2016). Studies employing $Tph2^{-/-}$ rats showed
75 increased aggressive behavior (Peeters et al., 2019), and increased neuroplasticity in basal condition
76 (Brivio et al., 2018), and an impaired response to acute stress exposure (Brivio et al., 2018; Sbrini, Brivio,
77 Bosch, Homberg, & Calabrese, 2020). However, at the behavioral level the study of $Tph2^{-/-}$ rats is still
78 inadequate. As to whether the rat model also demonstrates anxiety- and depression-like phenotypes and
79 further social disturbances like in $Tph2^{-/-}$ mice remains to be established, as well as the potential
80 underlying neurobiological mechanisms.

81 Taking human and mouse $Tph2$ data together, the changes in the expression of enzyme appears to
82 particularly affect the domains of affective and social behavior. One molecule that is centrally implicated
83 in both these behavioral domains is oxytocin. In animal studies, oxytocin was firstly indicated being
84 involved in depressive behaviors originated from the finding that intracerebroventricular oxytocin
85 administration diminished the immobility time in mice in the forced swimming test (Meisenberg, 1981).
86 After that, it has been shown that intraperitoneal oxytocin administration reduced the immobility in this
87 test (Arletti & Bertolini, 1987). The role of oxytocin in depression-related behavior was getting increasing
88 attention due to the findings that this hormone plays an important role in social attraction, affiliative
89 behavior and bonding, which could be potentially important in relation to the development of depression
90 (Insel & Young, 2001; Neumann, 2008).

91 Because 5-HT and oxytocin both have effects on anxiety and social processes, the attention for
92 interactions between 5-HT and oxytocin is increasing. Central administration of selective 5-HT agonists
93 increased the expression of oxytocin mRNA in hypothalamic nuclei (Jørgensen, Kjær, Knigge, Møller, &

94 Warberg, 2003), which is consistent with reports that 5-HT and 5-HT fibers influence brain regions rich
95 in oxytocin (Emiliano, Cruz, Pannoni, & Fudge, 2007; Ho, Chow, & Yung, 2007; Sawchenko, Swanson,
96 Steinbusch, & Verhofstad, 1983). Central injection of oxytocin reduces anxiety in the rat social
97 interaction test, which is fully blocked by an antagonist of 5-HT2A/2C receptors (Yoshida et al., 2009).
98 Based on the above, we hypothesized that the behavioral characteristics of $Tph2^{-/-}$ rats is related to altered
99 oxytocin signaling. To test this hypothesis, we determined oxytocin levels in brain regions that have been
100 reported to be mediated by oxytocinergic mechanisms effecting social and aggressive behaviors as well as
101 expression levels of oxytocin receptors which play a key role in these traits.

102

103 **Materials and methods**

104 **Animals**

105 $Tph2$ knockout ($Tph2^{-/-}$) rats were generated by a truncation mutation (Hodges, Kaplan, Echert, Puissant,
106 & Geurts, 2015). $Tph2^{-/-}$, wild-type ($Tph2^{+/+}$) and heterozygous ($Tph2^{+/-}$) rats were derived by crossing
107 heterozygous rats (dark agouti) that were out crossed with wild-type rats (DA/OlaHsd) (Jacob Human and
108 Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, USA). For behavioral testing,
109 twenty-six male rats ($n_{Tph2^{+/+}} = 10$, $n_{Tph2^{-/-}} = 7$, $n_{Tph2^{+/-}} = 9$) were housed 2-3 per cage (25 x 25 x 35 cm³,
110 length x width x height) with 2 cm sawdust bedding in a 12 h light-dark cycle from 8 am to 8 pm at a
111 temperature of 21±1°C under controlled environmental conditions (humidity 45-60%), with food and
112 water provided ad libitum. Rats between 70 ± 14 days old were used for all experiments, exclusively
113 during the light period. For molecular testing, another cohort of twenty rats ($n_{Tph2^{+/+}} = 10$, $n_{Tph2^{-/-}} = 10$)
114 were housed under same conditions. All efforts to retain animals as humane as possible were made
115 according to the three Rs for all animals used (Russell & Burch, 1959).

116 All procedures were executed in accordance with the Dutch legal ethical guidelines of animal
117 experiments, as approved by the Central Committee Animal Experiments, the Hague, the Netherlands.

118 **Elevated plus maze**

119 Anxiety-like behavior was measured using the elevated plus maze. The maze, elevated 50 cm from the
120 floor, consisted of two open arms (50 x 10 cm, 10 lux) and two closed arms (50 x 10 cm) that were
121 enclosed by a side wall. Rats were placed in the center of the maze, facing the open arm and could freely
122 explore the apparatus for 5 min (Pellow, Chopin, File, & Briley, 1985), while being recorded by a camera
123 suspended above the center of the maze. Total open and closed arm entries, duration and latency as well
124 as total distance travelled on all arms were quantified. Results were collected using Observer Ethovision
125 version (Noldus, Wageningen, the Netherlands) by a researcher blind to treatment conditions.

126 **Social behavior**

127 Two unfamiliar animals with the same genotype were exposed to each other in a novel context for 20 min
128 after being isolated for 3.5 h in a separate housing room. The novel context consisted of a Phenotyper
129 cage (45 x 45 x 45 cm³) with standard sawdust bedding (2 cm). Rats had no access to food or water
130 during the experiment. Each 20 min session was recorded, and videos were scored using J-Watcher
131 version 1.0 (Dan Blumstein's Lab, University of California, Los Angeles; The Animal Behavior Lab,
132 Macquarie University, Sydney, Australia). Social interaction and aggressive interaction parameters for
133 each individual rat were scored by the same experimenter according to Table 1. The data from two Tph2^{-/-}
134 rats were removed from the analysis because of a fierce fight between the two animals, which ended with
135 one of the rats hiding in a corner and not moving anymore.

Table 1. Social interaction and aggressive interaction behaviors measured during the social interaction test.

Social interaction	Aggressive interaction
No contact	Aggressive behavior
Self-grooming	Mounting

Rearing	Chasing
Social exploration	Defending
Grooming the other	Running
Total no contact includes no contact, self-grooming and rearing;	
Total aggressive behaviors includes aggressive behavior, mounting and chasing.	

136

137 Analysis of oxytocin receptor mRNA expression levels

138 To eliminate the effects from behavioral testing on gene expression, another independent group of rats
139 was used for a molecular study for which we used $Tph2^{+/+}$ and $Tph2^{-/-}$ rats. The rats were sacrificed
140 through decapitation and immediately frozen at -80°C . The left hemisphere was used for qPCR. Brain
141 regions were dissected according to The Rat Brain in Stereotaxic Coordinates 6th Edition (Paxinos &
142 Watson, 2006) by brain punching using a Cryostat machine. We punched out the prelimbic cortex
143 (Bregma 4.20mm ~ 2.52mm), infralimbic cortex (Bregma 3.72mm ~ 2.52mm), paraventricular thalamic
144 nucleus (Bregma -1.20mm ~ -3.96mm), central amygdaloid nucleus (Bregma -1.44mm ~ -3.24mm),
145 granular layer of the dentate gyrus (dorsal) (Bregma -2.16mm ~ -3.00mm), granular layer of the dentate
146 gyrus (ventral) (Bregma -4.36mm ~ -5.04mm), field CA1 of the hippocampus (dorsal) (Bregma -2.52mm
147 ~ -3.00mm), field CA1 of the hippocampus (ventral) (Bregma -4.36mm ~ -5.04mm), field CA3 of the
148 hippocampus (dorsal) (Bregma -2.52mm ~ -3.00mm), field CA3 of the hippocampus (ventral) (Bregma -
149 4.36mm ~ -5.04mm), and the dorsal raphe nucleus (Bregma -6.96mm ~ -8.40mm). The location of the
150 brain punches is shown in Figure 3. Total RNA was isolated by a single step of guanidinium
151 isothiocyanate/phenol extraction by using a PureZol RNA isolation reagent (Bio-Rad Laboratories,
152 Segrate, Italy) according to the manufacturer's instructions and quantified by spectrophotometric analysis.
153 The samples were then processed for real-time polymerase chain reaction (RT-PCR) to assess the
154 expression of the oxytocin receptor (primers and probe assay ID: Rn00564446_g1, purchased from Life
155 Technologies). In particular, an aliquot of each sample was treated with DNase (Thermoscientific,
156 Rodano, Italy) to avoid DNA contamination. Purified RNA was analyzed by TaqMan qRT-PCR one-step
157 RT-PCR kit for probes (Bio-Rad laboratories, Italy) with a TaqMan RT-PCR instrument (CFX384 real

158 time system, Bio-Rad Laboratories). After the initial retrotranscription step, 39 cycles of PCR were
159 performed. Samples were run in 384 well formats in triplicate as multiplexed reactions with a normalizing
160 internal control (36b4; Forward primer: TTCCCACTGGCTGAAAAGGT; Reverse primer:
161 CGCAGCCGCAAATGC; Probe: AAGGCCTCCTGGCCGATCCATC, purchased from Eurofins
162 MWG-Operon, Germany). A comparative cycle threshold (Ct) method was used to calculate the relative
163 target gene expression.

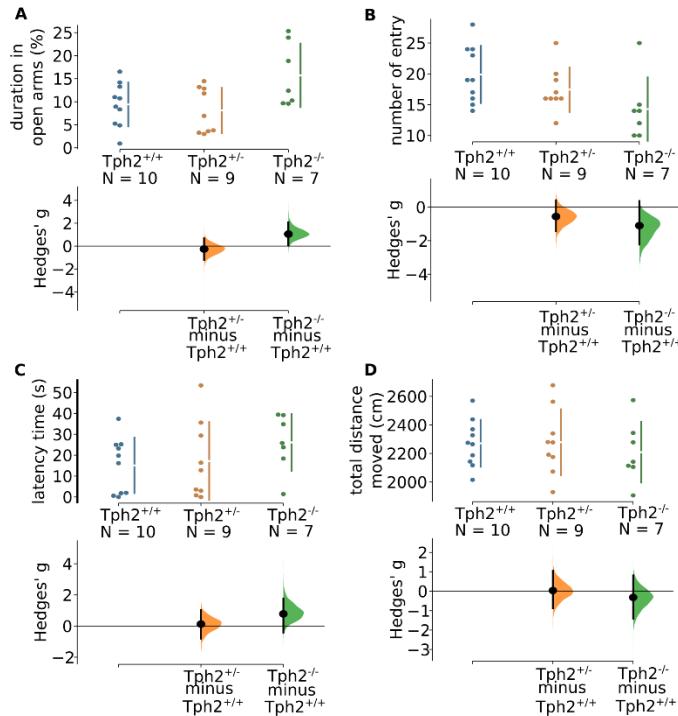
164 Analysis of oxytocin levels

165 The right hemisphere was used to measure oxytocin levels. We focused on the medial frontal cortex,
166 paraventricular thalamic nucleus, dorsal raphe nucleus, central nucleus of the amygdala and the
167 hippocampus. Due to the detection range limit, we pooled the CA1, CA3 and dentate gyrus regions from
168 the ventral and dorsal parts of the hippocampus. Brain regions were punched using the same method as
169 described above. Then the brain punching samples were homogenated in RIPA buffer (Sigma, lot. R0278)
170 with Proteinase inhibitor (Thermo Scientific™ Halt™ Protease Inhibitor Cocktail, Lot. WF327612). The
171 location of the brain punches is shown in Figure 3. After centrifugation at in 4°C at 10,000 rcf for 10 min,
172 the supernatant was collected and diluted by PBS. The protein concentration was measured using Micro
173 BCA Protein Assay Kit (ThermoFisher, lot. WF325481). Finally, the supernatant calibrated into the same
174 protein concentration was used for the measurement of oxytocin levels using an ELISA kit (Abcam, lot.
175 133050), according to the manufacturer's instructions.

176 Statistical analysis

177 Statistical inference was chiefly based on effect size (Hedges'g) and confidence intervals. P-values were
178 estimated using non-parametric permutation tests. Confidence intervals and p-values were estimated by
179 shuffling the group labels over 5000 permutations. The results are represented as Gardner-Altman plots
180 and reported in the text as effect size [lower bound; upper bound of 95% confidence interval], p value.
181 Effect size interpretations follow Cohen's 1998 guidelines (Pellow et al., 1985). Small effect: $g > 0.2$;

182 medium effect: $g > 0.4$; large effect: $g > 0.8$. The code and the table to reproduce this analysis are
183 provided freely: <https://gitlab.socsci.ru.nl/preclinical-neuroimaging/tph2>.


184 **Results**

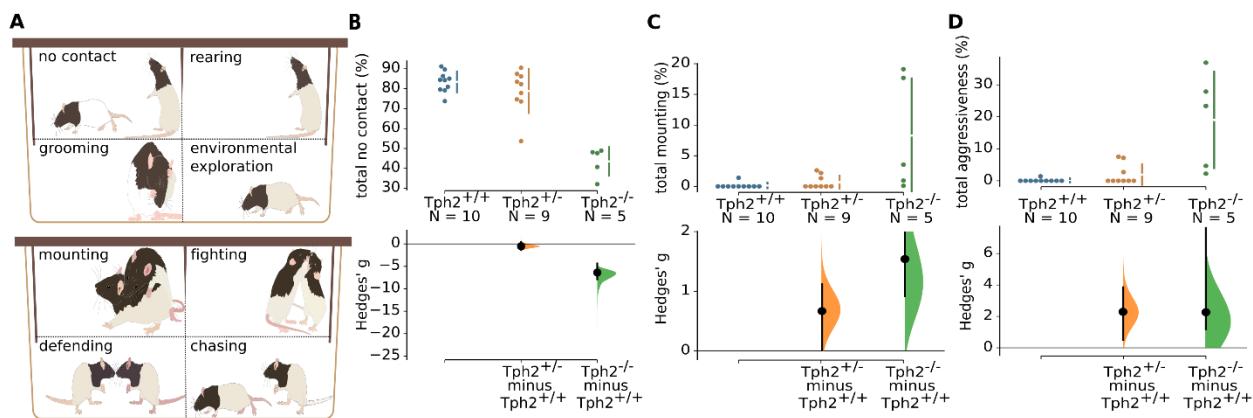
185 **Reduced anxiety in Tph2 knockout rats**

186 Elevated plus maze is a classic assay to assess anxiety levels. $Tph2^{-/-}$ rats spent more time in the open
187 arms relative to $Tph2^{+/+}$ rats (Figure 1A, $g_{Tph2^{+/+} < Tph2^{-/-}} = 1.05$ [0.17; 2.05], $p = 0.04$), indicating a lower
188 anxiety level in $Tph2^{-/-}$ rats. Consistently, $Tph2^{-/-}$ rats entered closed arms less often compared to $Tph2^{+/+}$
189 rats (Figure 1B, $g_{Tph2^{+/+} < Tph2^{-/-}} = 1.1$ [-2.35; 0.08], $p = 0.03$). Notably, there is also a medium, albeit non-
190 significant, effect between $Tph2^{+/+}$ and $Tph2^{-/-}$ groups (Figure 1B, $g_{Tph2^{+/+} < Tph2^{-/-}} = 0.56$ [-1.43; 0.40], $p =$
191 0.22). In other words, the fewer $Tph2$ gene copies, the less frequent the rats enter closed arms.

192 The latency of the first entry into the open arms is a less conventional anxiety-related parameter but is of
193 interest as it reflects the approach-avoidance conflict concerning aversive open arms. In our experiment,
194 we did not find any noticeable effect between $Tph2^{+/+}$ and $Tph2^{-/-}$ groups (figure 1C). However, a
195 trending effect was found between $Tph2^{+/+}$ and $Tph2^{-/-}$ groups ($g_{Tph2^{+/+} < Tph2^{-/-}} = 0.78$ [-0.32; 1.87], $p = 0.$
196 12), which suggests $Tph2^{-/-}$ rats have a higher latency of entering into aversive arms. A higher latency is
197 sometimes interpreted as a sign for elevated anxiety level in rodents. However, in our case, taking all the
198 above information into consideration, we interpret this phenomenon as $Tph2^{-/-}$ rats displaying a lower
199 sensitivity to the environment.

200 Finally, locomotor activity was evaluated by checking total distance rats traveled on elevated plus maze.
201 We could not establish a difference between $Tph2^{+/+}$ and $Tph2^{-/-}$ or between $Tph2^{+/+}$ and $Tph2^{-/-}$ groups
202 (Figure 1D, $g_{Tph2^{+/+} < Tph2^{-/-}} = -0.32$ [-1.37; 0.75], $p = 0.51$). In conclusion, there is no discernible
203 differences in the locomotor activity among three groups. We therefore conclude that differences in the
204 elevated plus maze assay reflect reduced anxiety levels in the $Tph2^{-/-}$ rats, which is not due to a change in
205 locomotor activity.

206


207 Figure 1. Elevated plus maze test. (A) time spent in open arms, (B) closed arms entries, (C) latency to enter
 208 open arms, (D) total distance moved on the elevated plus maze. $n_{Tph2^{+/+}} = 10$, $n_{Tph2^{-/-}} = 7$, $n_{Tph2^{+/-}} = 9$. The
 209 Hedges' g for 2 comparisons against the shared control Tph2^{+/+} are shown in the Cumming estimation plot.
 210 The raw data are plotted on the upper axes. On the lower axes, mean differences are plotted as bootstrap
 211 sampling distributions. Each mean difference is depicted as a dot. Each 95% confidence interval is indicated
 212 by the ends of the vertical error bars.

213 Elevated aggressiveness in Tph2 knockout rats

214 Following the elevated plus maze test (24 hours later), two unfamiliar rats from the same genotype were
 215 exposed to each other in a novel context for 20 min after being isolated for 3.5 h in a separate housing
 216 room (Figure 2A). We found a large genotype effect on total no contact behavior (Figure 2B, $g_{Tph2^{+/+} < Tph2^{-/-}} = -6.38$ [-7.98; -4.5], $p < 0.01$), indicating that Tph2^{-/-} rats have a higher level of active social
 217 interaction compared with Tph2^{+/+} rats. However, the prolonged social interaction of Tph2^{-/-} rats
 218 manifested as increased mounting behaviors. Indeed, Tph2^{+/+} groups showed a trend towards more
 219 mounting behaviors than Tph2^{+/+} group (Figure 2C, $g_{Tph2^{+/+} < Tph2^{-/-}} = 0.64$ [-0.42; 1.36], $p = 0.16$).
 220 Meanwhile, mounting behavior was significantly increased in Tph2^{-/-} in comparison with Tph2^{+/+} rats (g

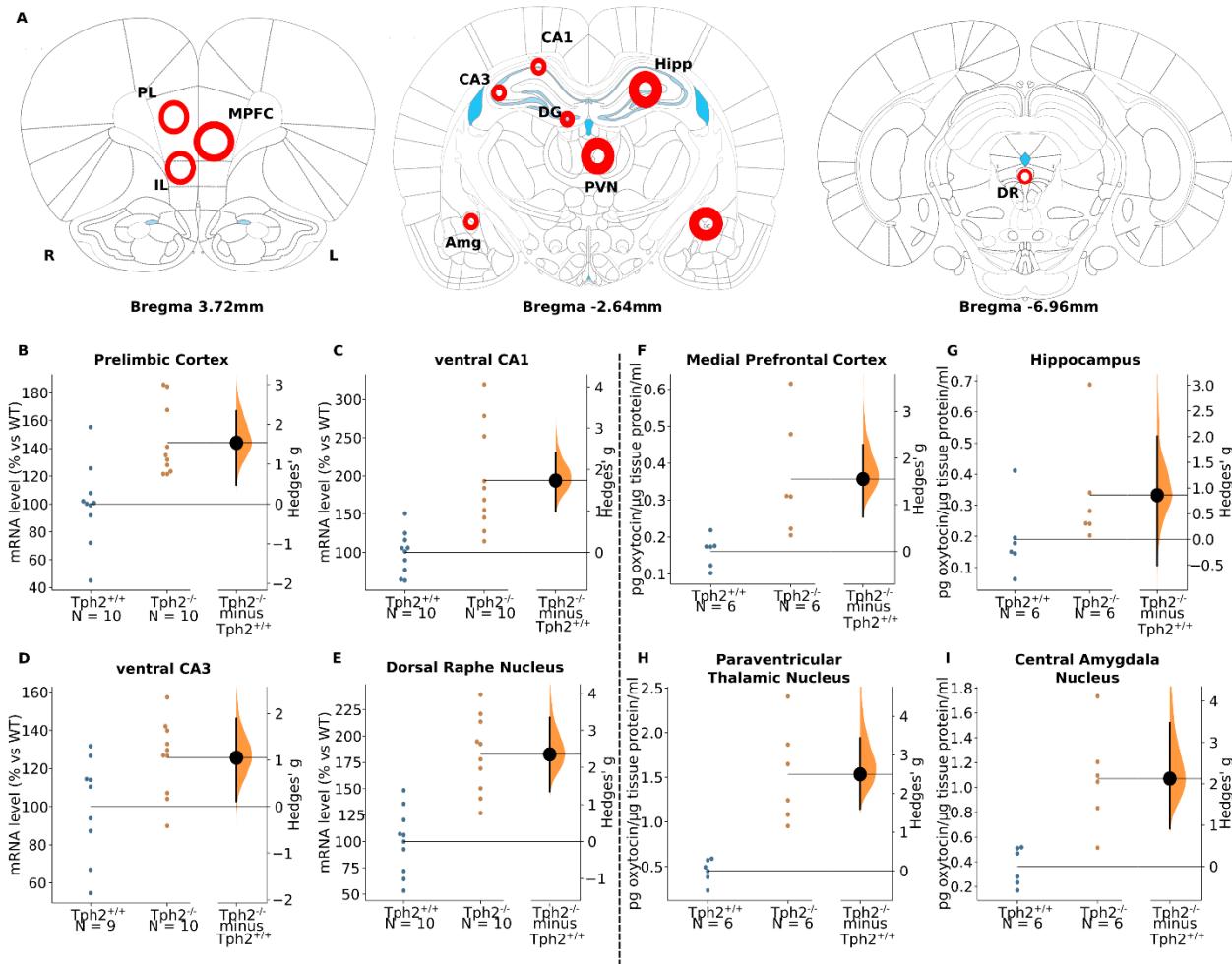
222 $Tph2^{+/+} < Tph2^{-/-} = 1.47$ [0.80; 3.83], $p = 0.01$). In other words, the disruption of $Tph2$ gene leads to more
223 mounting behavior.

224 Inter-male mounting may be a marker for dominance or aggressiveness. Finally, we assessed the total
225 time spent on aggressiveness, which included aggressive behaviors, mounting, and chasing behaviors all
226 together. We found that $Tph2^{-/-}$ and $Tph2^{+/+}$ male rats spent more time on aggressive behaviors compared
227 to wild-type controls (Figure 2D, $g_{Tph2^{+/+} < Tph2^{-/-}} = 2.13$ [1.09; 7.78], $p < 0.01$, $g_{Tph2^{+/+} < Tph2^{+/+}} = 0.77$
228 [0.184; 1.56], $p = 0.10$). We concluded that $Tph2$ gene knockout is sufficient to increase aggressiveness in
229 male rats.

230
231 Figure 2. Social behavior test. (A) behavioral categories, (B) total no contact (%), (C) total mounting (%),
232 (D) total aggressiveness (combined time mounting, fighting, defending, and chasing, %). $n_{Tph2^{+/+}} = 10$,
233 $n_{Tph2^{-/-}} = 7$, $n_{Tph2^{+/+}} = 9$. The Hedges' g for 2 comparisons against the shared control $Tph2^{+/+}$ are shown in
234 the Cumming estimation plot. The raw data are plotted on the upper axes. On the lower axes, mean
235 differences are plotted as bootstrap sampling distributions. Each mean difference is depicted as a dot.
236 Each 95% confidence interval is indicated by the ends of the vertical error bars.

237 Altered oxytocin receptor mRNA expression in $Tph2$ knockout rats

238 We found that homozygous and heterozygous $Tph2$ knockout was sufficient to alter both anxiety and
239 aggressive behaviors in male rats relative to wild-type controls. Due to its role in intensive interactions
240 with serotonin, we proposed that oxytocin may be a relevant mediator. To test this, we first examined
241 oxytocin receptor gene expression (mRNA levels) in areas previously associated with anxiety and


242 aggression (Figure 3A). We presented 4 subregions to parallel the receptor and oxytocin levels in Figure
243 3, while some other data was presented in Table 2.

244 Oxytocin receptor mRNA expression levels were found to be increased in the infralimbic cortex (Table 2,
245 $g_{Tph2^{+/+} < Tph2^{-/-}} = 1.14$ [0.07; 2.18], $p = 0.02$), paraventricular nucleus (Table 2, $g_{Tph2^{+/+} < Tph2^{-/-}} = 1.49$ [0.52;
246 2.66], $p < 0.01$), prelimbic cortex (Figure 3B, $g_{Tph2^{+/+} < Tph2^{-/-}} = 1.54$ [0.44; 2.33], $p < 0.01$), and dorsal
247 raphe nucleus (Figure 3E, $g_{Tph2^{+/+} < Tph2^{-/-}} = 2.35$ [1.34; 3.37], $p < 0.01$). In this study, the hippocampus
248 was functionally segmented into dorsal and ventral compartments, and three regions were tested including
249 CA1, CA3 and granular layer of dentate gyrus. In the dorsal hippocampal compartment, the expression of
250 oxytocin receptors was largely increased in dentate gyrus (Table 2, $g_{Tph2^{+/+} < Tph2^{-/-}} = 0.93$ [-0.02; 1.64], $p =$
251 0.05). In the CA3 region a small change was found, and no change was found in the CA1 region.
252 However, in the ventral hippocampal compartment, the expression in CA1 (Figure 3C, $g_{Tph2^{+/+} < Tph2^{-/-}} =$
253 1.74 [0.99; 2.39], $p < 0.01$), CA3 (Figure 3D, $g_{Tph2^{+/+} < Tph2^{-/-}} = 1.05$ [0.13; 1.91], $p = 0.03$) and dentate
254 gyrus (Table 2, $g_{Tph2^{+/+} < Tph2^{-/-}} = 1.22$ [0.32; 2.05], $p = 0.02$) were all largely increased. We conclude that
255 oxytocin receptor expression was elevated consistently throughout the brain in $Tph2^{-/-}$ relative to $Tph2^{+/+}$
256 rats.

257 Table 2. The oxytocin receptor mRNA expression levels in different brain regions.
258

Location	Hedge's g [95%CI] $Tph2^{+/+} < Tph2^{-/-}$	P value
Infralimbic cortex	1.14 [0.07; 2.18]	0.02
Dorsal dentate gyrus	0.93 [-0.02; 1.64]	0.05
Ventral dentate gyrus	1.22 [0.32; 2.05]	0.02
Paraventricular thalamic nucleus	1.49 [0.52; 2.66]	<0.01
Central nucleus of the amygdala	0.44 [-0.52; 1.31]	0.32

259

260

261 Figure 3. Oxytocin receptor mRNA expression and oxytocin levels (left side: oxytocin receptor mRNA
 262 expression; right side: oxytocin level). (A) brain punching sites diagram, (B) prelimbic cortex, (C) ventral
 263 CA1 region, (D) ventral CA3 region, (E) dorsal raphe nucleus, (F) medial frontal cortex, (G) hippocampus,
 264 (H) paraventricular thalamic nucleus, (I) central nucleus of the amygdala. For oxytocin ELISA results, $n =$
 265 WT (6), $Tph2^{-/-}$ (6), for oxytocin receptor PCR results, $Tph2^{+/+} = 10$, $n_{Tph2^{-/-}} = 10$. The Hedges' g between
 266 $Tph2^{+/+}$ and $Tph2^{-/-}$ is shown in the above Gardner-Altman estimation plot. Both groups are plotted on the
 267 left axes; the mean difference is plotted on floating axes on the right as a bootstrap sampling distribution.
 268 The mean difference is depicted as a dot, the 95% confidence interval is indicated by the ends of the vertical
 269 error bar. Abbreviations: PL, prelimbic cortex; MPFC, medial prefrontal cortex; IL, infralimbic cortex;
 270 CA1, field CA1 of the hippocampus; CA3, field CA3 of the hippocampus; DG, granular layer of dentate
 271 gyrus; PVN, paraventricular thalamic nucleus; Amg, central amygdala nucleus; Hipp, hippocampus; DR,
 272 dorsal raphe nucleus.

273 Altered oxytocin levels in $Tph2$ knockout rats

274 In addition to examining receptor expression levels, we also determined oxytocin concentration (Figure
 275 3A). Because of the sensitivity of the assay, several areas were merged to achieve sufficient peptide levels

276 (e.g., prelimbic and infralimbic cortex). This is justified because of the indiscriminate receptor mRNA
277 elevation in the pooled regions. Our oxytocin ELISA results indicated that the oxytocin level was largely
278 increased in the medial prefrontal cortex (Figure 3F, $g_{Tph2+/+ < Tph2/-} = 1.55$ [0.80; 2.3], $p = 0.02$),
279 hippocampus (Figure 3G, $g_{Tph2+/+ < Tph2/-} = 0.86$ [-0.64; 1.94], $p = 0.14$), paraventricular thalamic nucleus
280 (Figure 3H, $g_{Tph2+/+ < Tph2/-} = 2.5$ [1.69; 3.63], $p < 0.01$) and central nucleus of the amygdala (Figure 3I, g
281 $Tph2+/+ < Tph2/- = 2.13$ [0.9; 3.57], $p < 0.01$). We conclude that, similar to the oxytocin receptor, the ligand is
282 found more abundantly in the areas sampled of $Tph2^{-/-}$ male rats, relative to wild-type controls.

283

284 **Discussion**

285 The results from this study reveal that the knockout of $Tph2$ significantly affects rat's behavior and
286 influences oxytocin levels and the expression of its receptors. $Tph2^{-/-}$ rats are less anxious and show more
287 social interaction. However, social interaction is dominated by high levels of aggression and mounting.
288 $Tph2^{-/-}$ rats exhibited less anxiety-like behaviors in the elevated plus maze as supported by a longer
289 duration in open arms and a reduction in closed arms entries. However, if the rats were less anxious, rats
290 should have entered the open arm quicker but data we collected showed the opposite. Contrary to $Tph2^{-/-}$
291 rats, serotonin transporter knockout rats, which harbor a high brain serotonin concentration, showed high
292 sensitivity to environmental stimuli (Homberg & Lesch, 2011; Sbrini et al., 2020). Hence, it is possible
293 that the reduced anxiety level of $Tph2^{-/-}$ rats relates to an attenuated environmental sensitivity, reducing
294 awareness of the difference between the open and closed arms. At the same time, the decreased anxiety
295 level is independent of activity, as total distance traveled does not differ between genotypes. Interestingly,
296 an 82% serotonergic neurotoxin-induced depletion of 5-HT in the rat medial prefrontal cortex increased
297 anxiety-like behavior on the elevated plus-maze (Pum, Huston, & Müller, 2009). Given the fact that the
298 depletion of serotonin *ab origine* probably leads to compensatory responses as often seen in conventional
299 knockout animal model (Knobelman, Hen, Blendy, Lucki, & Therapeutics, 2001), the finding that $Tph2^{-/-}$

300 rats were less anxious may also be due to serotonin-mediated developmental or compensatory changes
301 contribute to the anxiolytic profile.

302 As 5-HT regulates the aggression in both sexes, enhanced serotonergic activity could inhibit intermale
303 aggression, while hindering 5-HT signaling will stimulate aggression (Carrillo, Ricci, Coppersmith, &
304 Melloni, 2009; Yanowitch & Coccaro, 2011). Serotonin transporter knockout rats exhibit less aggression,
305 more prosocial behaviors with a high sensitivity to social stimuli (Homberg & Lesch, 2011). In our case,
306 $Tph2^{-/-}$ rats had outburst aggressive behaviors almost immediately when housed together with another rat
307 in a novel environment (Supplementary Fig1), as reported $Tph2^{-/-}$ rats have more dense social networks, a
308 more unstable hierarchy and normal social memory (Alonso et al., 2021). Therefore, we propose that
309 $Tph2^{-/-}$ rats have a deficit in updating environmental information, leading to disrupted transmission of
310 social information like hierarchy and social network etc. At the same time, we noticed that $Tph2^{-/-}$ rats
311 spent more time on social contact with their assigned partner, but in a ‘antisocial’ manner with increased
312 mounting behavior. As the animals were tested in male-male social interactions, the mounting behavior
313 might be an act of showing social dominance which is in line with our previous finding in the resident
314 intruder test (Peeters et al., 2019).

315 The reduced anxiety in $Tph2^{-/-}$ rats may relate to altered oxytocin signaling. Oxytocin infusion into the
316 prelimbic cortex decreased anxiety-like behavior, and pharmacological blockade of the oxytocin receptor
317 prevented this anxiolytic effect, indicating that the anxiolytic effects of oxytocin are mediated, at least in
318 part, through oxytocin receptors in the prelimbic cortex (Sabihi, Dong, Maurer, Post, & Leuner, 2017).
319 Although we did not measure oxytocin levels and oxytocin receptor mRNA expression levels in the same
320 animals, it is well possible that the anxiolytic phenotype of $Tph2^{-/-}$ rats related to elevated oxytocin levels
321 in the medial frontal cortex and enhanced oxytocin receptor expression in the prelimbic cortex. Besides,
322 amygdala plays a key role in emotional processing (LeDoux, 2000) including anxiety, fear learning and
323 memory (Duvarci & Pare, 2014; Janak & Tye, 2015) with γ -aminobutyric acid-ergic (GABAergic)
324 interneurons serving critically for some inhibitory circuits (Stefanits et al., 2018). Presumably, serotonin

325 could alter the GABAergic tone via 5-HT2A receptors (Jiang et al., 2009; McDonald & Mascagni, 2007;
326 Rainnie, 1999). Meanwhile, oxytocin also serves as a potent modulator of inhibitory GABA transmission
327 in the central amygdala. For instance, oxytocin infusion into the central amygdala increased GABA
328 activity in this region (Huber, Veinante, & Stoop, 2005). In line with a previous report that oxytocin
329 infusion into central amygdala could decrease anxiety (Bale, Davis, Auger, Dorsa, & McCarthy, 2001), in
330 our experiment $Tph2^{-/-}$ rats exhibit a lower anxiety level with the oxytocin levels being largely increased
331 in the central nucleus of the amygdala. We therefore suspect that increased oxytocin in this nucleus
332 lowers anxiety levels in $Tph2^{-/-}$ rats by enhancing GABA transmission. The hippocampus can be
333 functionally segmented into dorsal, intermediate and ventral compartments, with the dorsal part mediating
334 cognitive functions and the ventral part implicated in stress, emotion and affect (Dale et al., 2016;
335 Fanselow & Dong, 2010). Previously, it has been reported that a serotonergic lesion of the ventral
336 hippocampus leads to increased anxiety-like behaviors in the elevated plus maze, showing that serotonin
337 has an anxiety dampening role in the ventral hippocampus (Tu et al., 2014). Surprisingly, in our $Tph2^{-/-}$
338 rat model, under conditions of life-long deficiency of brain serotonin, rats expressed reduced anxiety. At
339 the same time, we noticed that oxytocin receptor mRNA expression levels were mostly increased in the
340 ventral, but not dorsal compartment of $Tph2^{-/-}$ rats. As intracerebroventricular infusion of oxytocin into
341 the lateral ventricle has anxiolytic effects (Peters, Slattery, Uschold-Schmidt, Reber, & Neumann, 2014;
342 Windle, Shanks, Lightman, & Ingram, 1997), the decreased anxiety as observed in $Tph2^{-/-}$ rats may relate
343 in part to increased oxytocin signaling in the hippocampus. Further investigation is needed to delineate
344 the specific role of oxytocin in the hippocampal subregions and their contribution to $Tph2^{-/-}$ behavior.
345 Also, the altered social behaviors in $Tph2^{-/-}$ rats may relate to altered oxytocin signaling. The prelimbic
346 cortex participates in the regulation of social interaction (Gonzalez et al., 2000) and oxytocin regulates
347 social approach and preference behaviors (Lukas et al., 2011). Therefore, together with social interaction
348 data from our experiment, we propose that oxytocin in the prelimbic cortex promotes social interaction in
349 $Tph2^{-/-}$ rats. Selective deletion of oxytocin receptors on serotonergic dorsal raphe neurons reduced

350 resident-intruder aggression in males (Pagani et al., 2015). In line with this finding, the oxytocin receptor
351 mRNA expression level in the dorsal raphe nucleus is greatly increased in $Tph2^{-/-}$ rats, which may explain
352 their increased aggressiveness during social interaction. As the change of oxytocin in the dorsal raphe
353 nucleus is slightly decreased in $Tph2^{-/-}$ rats, the increased oxytocin receptor mRNA expression levels
354 could reflect a compensation for reduced oxytocin levels in this region. At the same time, altered GABA
355 transmission in the amygdala also results in exaggerated fear which may explain the high aggressiveness
356 level of $Tph2^{-/-}$ rats during social interaction.

357 Although in human beings $Tph2$ complete dysfunction is a very rare situation, there is an association
358 between $Tph2$ polymorphisms and neuropsychiatric disorders (Zhang, Beaulieu, Gainetdinov, & Caron,
359 2005; Xiaodong Zhang et al., 2005). $Tph2$ knockout rat magnifies the phenotype and provides
360 information in the context of serotonin and transdiagnostic behavior. At the same time, some limitations
361 should be taken into account. We only tested male animals, while sex difference could impact the
362 development of oxytocin system (Tamborski, Mintz, & Caldwell, 2016) and oxytocin-dependent
363 behaviors (Dumais, Bredewold, Mayer, & Veenema, 2013). Besides, due to the small brain-punching
364 sample volume, samples used to assess oxytocin levels in the hippocampus and medial prefrontal cortex
365 involve a mixture of subregions.

366 In conclusion, we demonstrated that rats lacking the $Tph2$ display a series of behavioral changes which
367 gives us more insights into the effects of long-term serotonin deficiency. Meanwhile, the behavioral
368 changes originating from congenital brain serotonin deficiency sometimes are different from acquired
369 short-term serotonin deficiency due to medical intervention, which suggests that compensatory pathways
370 developed in $Tph2^{-/-}$ rats, with participation of the oxytocin system. The overall increase in oxytocin
371 levels and receptor expression suggests that interventions decreasing oxytocin signaling may have the
372 potential to normalize the anxiolytic and anti-social behavior in those suffering from low $Tph2$
373 availability.

374

375 **Reference**

376 Alonso, L., Peeva, P., Stasko, S., Bader, M., Alenina, N., Winter, Y., & Rivalan, M. (2021). Constitutive
377 depletion of brain serotonin differentially affects rats' social and cognitive abilities.
378 2021.2009.2023.461469. doi:10.1101/2021.09.23.461469 %J bioRxiv
379 Angoa-Pérez, M., Kane, M. J., Briggs, D. I., Herrera-Mundo, N., Sykes, C. E., Francescutti, D. M., & Kuhn,
380 D. M. (2014). Mice genetically depleted of brain serotonin do not display a depression-like
381 behavioral phenotype. *ACS chemical neuroscience*, 5(10), 908-919. doi:10.1021/cn500096g
382 Angoa-Pérez, M., Kane, M. J., Briggs, D. I., Sykes, C. E., Shah, M. M., Francescutti, D. M., . . . Kuhn, D. M.
383 (2012). Genetic depletion of brain 5HT reveals a common molecular pathway mediating
384 compulsion and impulsivity. *Journal of neurochemistry*, 121(6), 974-984. doi:10.1111/j.1471-
385 4159.2012.07739.x
386 Arletti, R., & Bertolini, A. J. L. s. (1987). Oxytocin acts as an antidepressant in two animal models of
387 depression. 41(14), 1725-1730.
388 Bale, T. L., Davis, A. M., Auger, A. P., Dorsa, D. M., & McCarthy, M. M. (2001). CNS region-specific
389 oxytocin receptor expression: importance in regulation of anxiety and sex behavior. *J Neurosci*,
390 21(7), 2546-2552. doi:10.1523/jneurosci.21-07-02546.2001
391 Brivio, P., Sbrini, G., Peeva, P., Todiras, M., Bader, M., Alenina, N., & Calabrese, F. (2018). TPH2
392 Deficiency Influences Neuroplastic Mechanisms and Alters the Response to an Acute Stress in a
393 Sex Specific Manner. 11(389). doi:10.3389/fnmol.2018.00389
394 Carrillo, M., Ricci, L. A., Coppersmith, G. A., & Melloni, R. H., Jr. (2009). The effect of increased
395 serotonergic neurotransmission on aggression: a critical meta-analytical review of preclinical
396 studies. *Psychopharmacology (Berl)*, 205(3), 349-368. doi:10.1007/s00213-009-1543-2

397 Dale, E., Pehrson, A. L., Jeyarajah, T., Li, Y., Leiser, S. C., Smagin, G., . . . Sanchez, C. J. C. s. (2016). Effects
398 of serotonin in the hippocampus: how SSRIs and multimodal antidepressants might regulate
399 pyramidal cell function. *21*(2), 143-161.

400 Dumais, K. M., Bredewold, R., Mayer, T. E., & Veenema, A. H. (2013). Sex differences in oxytocin
401 receptor binding in forebrain regions: Correlations with social interest in brain region- and sex-
402 specific ways. *Hormones and Behavior*, *64*(4), 693-701.
403 doi:<https://doi.org/10.1016/j.yhbeh.2013.08.012>

404 Duvarci, S., & Pare, D. (2014). Amygdala microcircuits controlling learned fear. *Neuron*, *82*(5), 966-980.
405 doi:[10.1016/j.neuron.2014.04.042](https://doi.org/10.1016/j.neuron.2014.04.042)

406 Emiliano, A. B., Cruz, T., Pannoni, V., & Fudge, J. L. J. N. (2007). The interface of oxytocin-labeled cells
407 and serotonin transporter-containing fibers in the primate hypothalamus: a substrate for SSRIs
408 therapeutic effects? , *32*(5), 977-988.

409 Fanselow, M. S., & Dong, H.-W. (2010). Are the dorsal and ventral hippocampus functionally distinct
410 structures? *Neuron*, *65*(1), 7-19. doi:[10.1016/j.neuron.2009.11.031](https://doi.org/10.1016/j.neuron.2009.11.031)

411 Gonzalez, L. E., Rujano, M., Tucci, S., Paredes, D., Silva, E., Alba, G., & Hernandez, L. (2000). Medial
412 prefrontal transection enhances social interaction. I: behavioral studies. *Brain Res*, *887*(1), 7-15.
413 doi:[10.1016/s0006-8993\(00\)02931-0](https://doi.org/10.1016/s0006-8993(00)02931-0)

414 Gutknecht, L., Jacob, C., Strobel, A., Kriegebaum, C., Müller, J., Zeng, Y., . . . Lesch, K. P. (2007).
415 Tryptophan hydroxylase-2 gene variation influences personality traits and disorders related to
416 emotional dysregulation. *The international journal of neuropsychopharmacology*, *10*(3), 309-
417 320. doi:[10.1017/s1461145706007437](https://doi.org/10.1017/s1461145706007437)

418 Gutknecht, L., Popp, S., Waider, J., Sommerlandt, F. M. J., Göppner, C., Post, A., . . . Lesch, K.-P. (2015).
419 Interaction of brain 5-HT synthesis deficiency, chronic stress and sex differentially impact

420 emotional behavior in Tph2 knockout mice. *Psychopharmacology*, 232(14), 2429-2441.

421 doi:10.1007/s00213-015-3879-0

422 Ho, S. S., Chow, B. K., & Yung, W. H. J. E. J. o. N. (2007). Serotonin increases the excitability of the

423 hypothalamic paraventricular nucleus magnocellular neurons. 25(10), 2991-3000.

424 Hodges, M., Kaplan, K., Echert, A., Puissant, M., & Geurts, A. (2015). Genomic Tryptophan Hydroxylase 2

425 (Tph2) Mutation in Rats Increases Mortality and Disrupts Eupneic Breathing During Postnatal

426 Development. 29(S1), 861.862. doi:https://doi.org/10.1096/fasebj.29.1_supplement.861.2

427 Homberg, J. R., & Lesch, K.-P. (2011). Looking on the Bright Side of Serotonin Transporter Gene

428 Variation. *Biol Psychiatry*, 69(6), 513-519. doi:<https://doi.org/10.1016/j.biopsych.2010.09.024>

429 Huber, D., Veinante, P., & Stoop, R. (2005). Vasopressin and oxytocin excite distinct neuronal

430 populations in the central amygdala. *Science*, 308(5719), 245-248. doi:10.1126/science.1105636

431 Insel, T. R., & Young, L. J. J. N. R. N. (2001). The neurobiology of attachment. 2(2), 129-136.

432 Janak, P. H., & Tye, K. M. (2015). From circuits to behaviour in the amygdala. *Nature*, 517(7534), 284-

433 292. doi:10.1038/nature14188

434 Jiang, X., Xing, G., Yang, C., Verma, A., Zhang, L., & Li, H. (2009). Stress impairs 5-HT2A receptor-

435 mediated serotonergic facilitation of GABA release in juvenile rat basolateral amygdala.

436 *Neuropsychopharmacology*, 34(2), 410-423. doi:10.1038/npp.2008.71

437 Jørgensen, H., Kjær, A., Knigge, U., Møller, M., & Warberg, J. J. J. o. n. (2003). Serotonin stimulates

438 hypothalamic mRNA expression and local release of neurohypophysial peptides. 15(6), 564-571.

439 Kaplan, K., Echert, A. E., Massat, B., Puissant, M. M., Palygin, O., Geurts, A. M., & Hodges, M. R. (2016).

440 Chronic central serotonin depletion attenuates ventilation and body temperature in young but

441 not adult Tph2 knockout rats. *Journal of applied physiology (Bethesda, Md. : 1985)*, 120(9),

442 1070-1081. doi:10.1152/japplphysiol.01015.2015

443 Knobelman, D. A., Hen, R., Blendy, J. A., Lucki, I. J. J. o. P., & Therapeutics, E. (2001). Regional patterns of
444 compensation following genetic deletion of either 5-hydroxytryptamine1A or 5-
445 hydroxytryptamine1B receptor in the mouse. *298*(3), 1092-1100.

446 LeDoux, J. E. J. A. r. o. n. (2000). Emotion circuits in the brain. *23*(1), 155-184.

447 Lukas, M., Toth, I., Reber, S. O., Slattery, D. A., Veenema, A. H., & Neumann, I. D. (2011). The
448 neuropeptide oxytocin facilitates pro-social behavior and prevents social avoidance in rats and
449 mice. *Neuropsychopharmacology*, *36*(11), 2159-2168. doi:10.1038/npp.2011.95

450 McDonald, A. J., & Mascagni, F. (2007). Neuronal localization of 5-HT type 2A receptor immunoreactivity
451 in the rat basolateral amygdala. *Neuroscience*, *146*(1), 306-320.
452 doi:10.1016/j.neuroscience.2007.01.047

453 Meisenberg, G. J. P. (1981). Short-term behavioral effects of neurohypophyseal peptides in mice. *2*, 1-8.

454 Mosienko, V., Bert, B., Beis, D., Matthes, S., Fink, H., Bader, M., & Alenina, N. (2012). Exaggerated
455 aggression and decreased anxiety in mice deficient in brain serotonin. *Translational Psychiatry*,
456 *2*(5), e122-e122. doi:10.1038/tp.2012.44

457 Neumann, I. D. J. J. o. n. (2008). Brain oxytocin: a key regulator of emotional and social behaviours in
458 both females and males. *20*(6), 858-865.

459 Pagani, J. H., Williams Avram, S. K., Cui, Z., Song, J., Mezey, É., Senerth, J. M., . . . Young, W. S. (2015).
460 Raphe serotonin neuron-specific oxytocin receptor knockout reduces aggression without
461 affecting anxiety-like behavior in male mice only. *Genes Brain Behav*, *14*(2), 167-176.
462 doi:10.1111/gbb.12202

463 Paxinos, G., & Watson, C. (2006). *The rat brain in stereotaxic coordinates: hard cover edition*: Elsevier.

464 Peeters, D. G. A., de Boer, S. F., Terneusen, A., Newman-Tancredi, A., Varney, M. A., Verkes, R.-J., &
465 Homberg, J. R. (2019). Enhanced aggressive phenotype of Tph2 knockout rats is associated with

466 diminished 5-HT1A receptor sensitivity. *Neuropharmacology*, 153, 134-141.

467 doi:<https://doi.org/10.1016/j.neuropharm.2019.05.004>

468 Pellow, S., Chopin, P., File, S. E., & Briley, M. J. J. o. n. m. (1985). Validation of open: closed arm entries in

469 an elevated plus-maze as a measure of anxiety in the rat. 14(3), 149-167.

470 Peters, S., Slattery, D. A., Uschold-Schmidt, N., Reber, S. O., & Neumann, I. D. (2014). Dose-dependent

471 effects of chronic central infusion of oxytocin on anxiety, oxytocin receptor binding and stress-

472 related parameters in mice. *Psychoneuroendocrinology*, 42, 225-236.

473 doi:<https://doi.org/10.1016/j.psyneuen.2014.01.021>

474 Pum, M., Huston, J., & Müller, C. J. B. n. (2009). The role of cortical serotonin in anxiety and locomotor

475 activity in Wistar rats. 123(2), 449.

476 Rainnie, D. G. (1999). Serotonergic modulation of neurotransmission in the rat basolateral amygdala. *J*

477 *Neurophysiol*, 82(1), 69-85. doi:10.1152/jn.1999.82.1.69

478 Russell, W. M. S., & Burch, R. L. (1959). *The principles of humane experimental technique*: Methuen.

479 Sabihi, S., Dong, S. M., Maurer, S. D., Post, C., & Leuner, B. (2017). Oxytocin in the medial prefrontal

480 cortex attenuates anxiety: Anatomical and receptor specificity and mechanism of action.

481 *Neuropharmacology*, 125, 1-12. doi:10.1016/j.neuropharm.2017.06.024

482 Savelieva, K. V., Zhao, S., Pogorelov, V. M., Rajan, I., Yang, Q., Cullinan, E., & Lanthorn, T. H. (2008).

483 Genetic Disruption of Both Tryptophan Hydroxylase Genes Dramatically Reduces Serotonin and

484 Affects Behavior in Models Sensitive to Antidepressants. *PLOS ONE*, 3(10), e3301.

485 doi:10.1371/journal.pone.0003301

486 Sawchenko, P., Swanson, L., Steinbusch, H., & Verhofstad, A. J. B. r. (1983). The distribution and cells of

487 origin of serotonergic inputs to the paraventricular and supraoptic nuclei of the rat. 277(2), 355-

488 360.

489 Sbrini, G., Brivio, P., Bosch, K., Homberg, J. R., & Calabrese, F. (2020). Enrichment Environment Positively
490 Influences Depression- and Anxiety-Like Behavior in Serotonin Transporter Knockout Rats
491 through the Modulation of Neuroplasticity, Spine, and GABAergic Markers. *Genes (Basel)*,
492 11(11). doi:10.3390/genes11111248

493 Stefanits, H., Milenkovic, I., Mahr, N., Pataria, E., Hainfellner, J. A., Kovacs, G. G., . . . Czech, T. J. J. o. C.
494 N. (2018). GABAA receptor subunits in the human amygdala and hippocampus:
495 Immunohistochemical distribution of 7 subunits. 526(2), 324-348.

496 Tamborski, S., Mintz, E. M., & Caldwell, H. K. (2016). Sex Differences in the Embryonic Development of
497 the Central Oxytocin System in Mice. *J Neuroendocrinol*, 28(4). doi:10.1111/jne.12364

498 Tu, W., Cook, A., Scholl, J. L., Mears, M., Watt, M. J., Renner, K. J., & Forster, G. L. (2014). Serotonin in
499 the ventral hippocampus modulates anxiety-like behavior during amphetamine withdrawal.
500 *Neuroscience*, 281, 35-43. doi:10.1016/j.neuroscience.2014.09.019

501 Waider, J., Araragi, N., Gutknecht, L., & Lesch, K.-P. (2011). Tryptophan hydroxylase-2 (TPH2) in
502 disorders of cognitive control and emotion regulation: A perspective.
503 *Psychoneuroendocrinology*, 36(3), 393-405. doi:<https://doi.org/10.1016/j.psyneuen.2010.12.012>

504 Walther, D. J., Peter, J. U., Bashammakh, S., Hörtnagl, H., Voits, M., Fink, H., & Bader, M. (2003).
505 Synthesis of serotonin by a second tryptophan hydroxylase isoform. *Science*, 299(5603), 76.
506 doi:10.1126/science.1078197

507 Windle, R. J., Shanks, N., Lightman, S. L., & Ingram, C. D. (1997). Central oxytocin administration reduces
508 stress-induced corticosterone release and anxiety behavior in rats. *Endocrinology*, 138(7), 2829-
509 2834. doi:10.1210/endo.138.7.5255

510 Yanowitch, R., & Coccaro, E. F. (2011). The neurochemistry of human aggression. *Adv Genet*, 75, 151-
511 169. doi:10.1016/b978-0-12-380858-5.00005-8

512 Yoshida, M., Takayanagi, Y., Inoue, K., Kimura, T., Young, L. J., Onaka, T., & Nishimori, K. (2009). Evidence
513 That Oxytocin Exerts Anxiolytic Effects via Oxytocin Receptor Expressed in Serotonergic Neurons
514 in Mice. *The Journal of Neuroscience*, 29(7), 2259. doi:10.1523/JNEUROSCI.5593-08.2009

515 Zhang, X., Beaulieu, J. M., Gainetdinov, R. R., & Caron, M. G. (2005). Functional polymorphisms of the
516 brain serotonin synthesizing enzyme tryptophan hydroxylase-2. *Cellular and Molecular Life
Sciences*, 63(1), 6. doi:10.1007/s00018-005-5417-4

517 Zhang, X., Gainetdinov, R. R., Beaulieu, J.-M., Sotnikova, T. D., Burch, L. H., Williams, R. B., . . . Caron, M.
519 G. J. N. (2005). Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar
520 major depression. *45*(1), 11-16.

521 Zill, P., Büttner, A., Eisenmenger, W., Bondy, B., & Ackenheil, M. (2004). Regional mRNA expression of a
522 second tryptophan hydroxylase isoform in postmortem tissue samples of two human brains. *Eur
523 Neuropsychopharmacol*, 14(4), 282-284. doi:10.1016/j.euroneuro.2003.10.002

524