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ABSTRACT:

The central serotoninergic system is critical for stress responsivity and social behavior, and its
dysregulations has been centrally implicated in virtually all neuropsychiatric disorders. Genetic serotonin
depletion animal models could provide a tool to elucidate the causes and mechanisms of diseases and to
develop new treatment approaches. Previously mice lacking tryptophan hydroxylase 2 (Tph2) have been
developed, showing altered behaviors and neurotransmission. However, the effect of congenital serotonin
deficiency on emotional and social behavior in rats is still largely unknown, as are the underlying
mechanisms. In this study, we used Tph2 knockout (Tph27-) male rat model to study how the lack of
serotonin in the rat brain affects anxiety-like and social behaviors. Since oxytocin is centrally implicated
in these behaviors, we furthermore explored whether effects of Tph2 knockout on behavior would relate
to changes in the oxytocin system. We show that Tph2 rats display reduced anxiety-like behavior and a
high level of aggression in social interactions. In addition, oxytocin receptor expression was increased in
the infralimbic and prelimbic cortex, paraventricular nucleus, dorsal raphe nucleus and some subregions
of hippocampus, which was paralleled by increased levels of oxytocin in the medial frontal cortex,
paraventricular nucleus, but not the dorsal raphe nucleus, central amygdala and hippocampus. In
conclusion, our study demonstrated reduced anxiety but exaggerated aggression in Tph2”- male rats and

reveals for the first time a potential involvement of altered oxytocin system function.
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We explored the changes in behavior and oxytocin system functioning in the tryptophan hydroxylase 2
(Tph2) knockout rat model, lacking serotonin in the brain. This rat model contributes to our
understanding of the role of serotonin in psychiatric transdiagnostic features and underlying mechanisms.
We found that Tph2 knockout male rats are aggressive, less anxious, and exhibit an altered oxytocin
system. The observed changes in oxytocin signaling may lead to a new target for the treatment of diseases

caused by genetic serotonin deficiency.
Introduction:

Serotonin (5-HT) has been long recognized to modulate the stress response and social behavior, and its
dysfunction has been implicated in numerous psychiatric disorders. 5-HT synthesis is dependent on the
rate-limiting enzyme tryptophan hydroxylase (Tph). There are two Tph isoforms, of which Tph2 is
predominantly expressed in the brain (Walther et al., 2003). Indeed, Tph2 mRNA has been detected in
multiple brain regions including frontal cortex, thalamus, hippocampus, hypothalamus and amygdala
(zill, Buttner, Eisenmenger, Bondy, & Ackenheil, 2004). The discovery of Tph2 opened up a new area of
research. Human studies reported an association between functional Tph2 variants and personality traits
(L. Gutknecht et al., 2007) as well as various neuropsychiatric disorders (Waider, Araragi, Gutknecht, &

Lesch, 2011).

Animals with targeted deletion of genes encoding mediators of the serotonergic transmission have been
proven to be a powerful tool for detailed understanding contributions of the genetic basis of traits related
to mood disorders. To model human Tph2 gene variance, Tph2 knockout (Tph27) mice have been
generated. Although they do not exactly mimic human Tph2 polymorphisms, the animals show
phenotypes that are grossly in line with the humane gene-association studies. More specifically, Tph2™
males show more aggression (Angoa-Pérez et al., 2012; Mosienko et al., 2012). Even female Tph2’ mice
and weanlings (3-4 weeks old) of both sexes showed elevated aggressive in a modified resident-intruder
test (Angoa-Pérez et al., 2012). Furthermore, increased obsessive-compulsive-like behavior was observed

in Tph2”- mice in the marble burying test (Angoa-Pérez et al., 2012; Savelieva et al., 2008). Tph2” mice
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show no difference in total locomotor activity or exploratory behaviors in the open-field test, but they
spent less time in the central field, indicative for elevated anxiety-like traits (Savelieva et al., 2008). In
some studies it is also reported that Tph27- mice either displayed marginally reduced anxiety- and
depression-like behavior (Lise Gutknecht et al., 2015), or do not display a depression-like behavioral

phenotype (Angoa-Pérez et al., 2014).

Tph2™ rats were introduced in 2016 (Kaplan et al., 2016). Studies employing Tph2” rats showed
increased aggressive behavior (Peeters et al., 2019), and increased neuroplasticity in basal condition
(Brivio et al., 2018), and an impaired response to acute stress exposure (Brivio et al., 2018; Sbrini, Brivio,
Bosch, Homberg, & Calabrese, 2020). However, at the behavioral level the study of Tph2” rats is still
inadequate. As to whether the rat model also demonstrates anxiety- and depression-like phenotypes and
further social disturbances like in Tph2” mice remains to be established, as well as the potential

underlying neurobiological mechanisms.

Taking human and mouse Tph2 data together, the changes in the expression of enzyme appears to
particularly affect the domains of affective and social behavior. One molecule that is centrally implicated
in both these behavioral domains is oxytocin. In animal studies, oxytocin was firstly indicated being
involved in depressive behaviors originated from the finding that intracerebroventricular oxytocin
administration diminished the immobility time in mice in the forced swimming test (Meisenberg, 1981).
After that, it has been shown that intraperitoneal oxytocin administration reduced the immobility in this
test (Arletti & Bertolini, 1987). The role of oxytocin in depression-related behavior was getting increasing
attention due to the findings that this hormone plays an important role in social attraction, affiliative
behavior and bonding, which could be potentially important in relation to the development of depression

(Insel & Young, 2001; Neumann, 2008).

Because 5-HT and oxytocin both have effects on anxiety and social processes, the attention for
interactions between 5-HT and oxytocin is increasing. Central administration of selective 5-HT agonists

increased the expression of oxytocin mMRNA in hypothalamic nuclei (Jargensen, Kjeer, Knigge, Magller, &


https://doi.org/10.1101/2022.07.08.499134
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.08.499134; this version posted July 10, 2022. The copyright holder for this preprint (which

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Warberg, 2003), which is consistent with reports that 5-HT and 5-HT fibers influence brain regions rich
in oxytocin (Emiliano, Cruz, Pannoni, & Fudge, 2007; Ho, Chow, & Yung, 2007; Sawchenko, Swanson,
Steinbusch, & Verhofstad, 1983). Central injection of oxytocin reduces anxiety in the rat social

interaction test, which is fully blocked by an antagonist of 5-HT2A/2C receptors (Yoshida et al., 2009).

Based on the above, we hypothesized that the behavioral characteristics of Tph2” rats is related to altered
oxytocin signaling. To test this hypothesis, we determined oxytocin levels in brain regions that have been
reported to be mediated by oxytocinergic mechanisms effecting social and aggressive behaviors as well as

expression levels of oxytocin receptors which play a key role in these traits.

Materials and methods

Animals

Tph2 knockout (Tph27) rats were generated by a truncation mutation (Hodges, Kaplan, Echert, Puissant,
& Geurts, 2015). Tph2™", wild-type (Tph2**) and heterozygous (Tph2*") rats were derived by crossing
heterozygous rats (dark agouti) that were out crossed with wild-type rats (DA/OlaHsd) (Jacob Human and
Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, USA). For behavioral testing,
twenty-six male rats (Nrph2+/+ = 10, Nrph2-- = 7, Npha+- = 9) Were housed 2-3 per cage (25 x 25 x 35 cm3,
length x width x height) with 2 cm sawdust bedding in a 12 h light-dark cycle from 8 am to 8 pm at a
temperature of 2141°C under controlled environmental conditions (humidity 45-60%), with food and
water provided ad libitum. Rats between 70 + 14 days old were used for all experiments, exclusively
during the light period. For molecular testing, another cohort of twenty rats (ntph2++ = 10, Ntph2/- = 10)
were housed under same conditions. All efforts to retain animals as humane as possible were made

according to the three Rs for all animals used (Russell & Burch, 1959).
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All procedures were executed in accordance with the Dutch legal ethical guidelines of animal

experiments, as approved by the Central Committee Animal Experiments, the Hague, the Netherlands.
Elevated plus maze

Anxiety-like behavior was measured using the elevated plus maze. The maze, elevated 50 cm from the
floor, consisted of two open arms (50 x 10 cm, 10 lux) and two closed arms (50 x 10 cm) that were
enclosed by a side wall. Rats were placed in the center of the maze, facing the open arm and could freely
explore the apparatus for 5 min (Pellow, Chopin, File, & Briley, 1985), while being recorded by a camera
suspended above the center of the maze. Total open and closed arm entries, duration and latency as well
as total distance travelled on all arms were quantified. Results were collected using Observer Ethovision

version (Noldus, Wageningen, the Netherlands) by a researcher blind to treatment conditions.

Social behavior

Two unfamiliar animals with the same genotype were exposed to each other in a novel context for 20 min
after being isolated for 3.5 h in a separate housing room. The novel context consisted of a Phenotyper
cage (45 x 45 x 45 cm3) with standard sawdust bedding (2 cm). Rats had no access to food or water
during the experiment. Each 20 min session was recorded, and videos were scored using J-Watcher
version 1.0 (Dan Blumstein's Lab, University of California, Los Angeles; The Animal Behavior Lab,
Macquarie University, Sydney, Australia). Social interaction and aggressive interaction parameters for
each individual rat were scored by the same experimenter according to Table 1. The data from two Tph2™"
rats were removed from the analysis because of a fierce fight between the two animals, which ended with

one of the rats hiding in a corner and not moving anymore.

Table 1. Social interaction and aggressive interaction behaviors measured during the social
interaction test.

Social interaction Aggressive interaction
No contact Aggressive behavior
Self-grooming Mounting
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Rearing Chasing
Social exploration Defending
Grooming the other Running

Total no contact includes no contact, self-grooming and rearing;
Total aggressive behaviors includes aggressive behavior, mounting and chasing.

Analysis of oxytocin receptor mRNA expression levels

To eliminate the effects from behavioral testing on gene expression, another independent group of rats
was used for a molecular study for which we used Tph2** and Tph2” rats. The rats were sacrificed
through decapitation and immediately frozen at —80 °C. The left hemisphere was used for gPCR. Brain
regions were dissected according to The Rat Brain in Stereotaxic Coordinates 6th Edition (Paxinos &
Watson, 2006) by brain punching using a Cryostat machine. We punched out the prelimbic cortex
(Bregma 4.20mm ~ 2.52mm), infralimbic cortex (Bregma 3.72mm ~ 2.52mm), paraventricular thalamic
nucleus (Bregma -1.20mm ~ -3.96mm), central amygdaloid nucleus (Bregma -1.44mm ~ -3.24mm),
granular layer of the dentate gyrus (dorsal) (Bregma -2.16mm ~ -3.00mm), granular layer of the dentate
gyrus (ventral) (Bregma -4.36mm ~ -5.04mm), field CA1 of the hippocampus (dorsal) (Bregma -2.52mm
~-3.00mm), field CA1 of the hippocampus (ventral) (Bregma -4.36mm ~ -5.04mm), field CA3 of the
hippocampus (dorsal) (Bregma -2.52mm ~ -3.00mm), field CA3 of the hippocampus (ventral) (Bregma -
4.36mm ~ -5.04mm), and the dorsal raphe nucleus (Bregma -6.96mm ~ -8.40mm). The location of the
brain punches is shown in Figure 3. Total RNA was isolated by a single step of guanidinium
isothiocyanate/phenol extraction by using a PureZol RNA isolation reagent (Bio-Rad Laboratories,
Segrate, Italy) according to the manufacturer’s instructions and quantified by spectrophotometric analysis.
The samples were then processed for real-time polymerase chain reaction (RT-PCR) to assess the
expression of the oxytocin receptor (primers and probe assay 1D: Rn00564446 g1, purchased from Life
Technologies). In particular, an aliquot of each sample was treated with DNAse (Thermoscientific,
Rodano, Italy) to avoid DNA contamination. Purified RNA was analyzed by TagMan qRT-PCR one-step

RT-PCR kit for probes (Bio-Rad laboratories, Italy) with a TagMan RT-PCR instrument (CFX384 real
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time system, Bio-Rad Laboratories). After the initial retrotranscription step, 39 cycles of PCR were
performed. Samples were run in 384 well formats in triplicate as multiplexed reactions with a normalizing
internal control (36b4; Forward primer: TTCCCACTGGCTGAAAAGGT; Reverse primer:
CGCAGCCGCAAATGC; Probe: AAGGCCTTCCTGGCCGATCCATC, purchased from Eurofins
MWG-Operon, Germany). A comparative cycle threshold (Ct) method was used to calculate the relative

target gene expression.
Analysis of oxytocin levels

The right hemisphere was used to measure oxytocin levels. We focused on the medial frontal cortex,
paraventricular thalamic nucleus, dorsal raphe nucleus, central nucleus of the amygdala and the
hippocampus. Due to the detection range limit, we pooled the CA1, CA3 and dentate gyrus regions from
the ventral and dorsal parts of the hippocampus. Brain regions were punched using the same method as
described above. Then the brain punching samples were homogenated in RIPA buffer (Sigma, lot. R0278)
with Proteinase inhibitor (Thermo Scientific™ Halt™ Protease Inhibitor Cocktail, Lot. WF327612). The
location of the brain punches is shown in Figure 3. After centrifugation at in 4°C at 10,000 rcf for 10 min,
the supernatant was collected and diluted by PBS. The protein concentration was measured using Micro
BCA Protein Assay Kit (ThermoFisher, lot. WF325481). Finally, the supernatant calibrated into the same
protein concentration was used for the measurement of oxytocin levels using an ELISA kit (Abcam, lot.

133050), according to the manufacturer's instructions.
Statistical analysis

Statistical inference was chiefly based on effect size (Hedges’g) and confidence intervals. P-values were
estimated using non-parametric permutation tests. Confidence intervals and p-values were estimated by

shuffling the group labels over 5000 permutations. The results are represented as Gardner-Altman plots
and reported in the text as effect size [lower bound; upper bound of 95% confidence interval], p value.

Effect size interpretations follow Cohen’s 1998 guidelines (Pellow et al., 1985). Small effect: g > 0.2;
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182  medium effect: g > 0.4; large effect: g > 0.8. The code and the table to reproduce this analysis are

183  provided freely: https://gitlab.socsci.ru.nl/preclinical-neuroimaging/tph2.

184  Results
185 Reduced anxiety in Tph2 knockout rats

186  Elevated plus maze is a classic assay to assess anxiety levels. Tph2” rats spent more time in the open

187  arms relative to Tph2*"* rats (Figure 1A, g tpno+/+ < Tphe-- = 1.05 [0.17; 2.05], p = 0.04), indicating a lower
188  anxiety level in Tph2” rats. Consistently, Tph2” rats entered closed arms less often compared to Tph2*/*
189  rats (Figure 1B, g tph2++ < pho- = 1.1 [-2.35; 0.08], p = 0.03). Notably, there is also a medium, albeit non-
190  significant, effect between Tph2** and Tph2*" groups (Figure 1B, g phz+/+ < Tphe+- = 0.56 [-1.43; 0.40], p =

191  0.22). In other words, the fewer Tph2 gene copies, the less frequent the rats enter closed arms.

192  The latency of the first entry into the open arms is a less conventional anxiety-related parameter but is of
193  interest as it reflects the approach-avoidance conflict concerning aversive open arms. In our experiment,
194  we did not find any noticeable effect between Tph2** and Tph2*" groups (figure 1C). However, a

195 trending effect was found between Tph2** and Tph2” groups (g Tph2+/+ < Tph2-- = 0.78 [-0.32; 1.87], p = 0.
196  12), which suggests Tph2™ rats have a higher latency of entering into aversive arms. A higher latency is
197  sometimes interpreted as a sign for elevated anxiety level in rodents. However, in our case, taking all the
198  above information into consideration, we interpret this phenomenon as Tph2- rats displaying a lower

199  sensitivity to the environment.

200  Finally, locomotor activity was evaluated by checking total distance rats traveled on elevated plus maze.
201 We could not establish a difference between Tph2** and Tph2*"- or between Tph2** and Tph2” groups
202 (Figure 1D, g tph2+/+ < Tphe-- = -0.32 [-1.37; 0.75], p = 0. 51). In conclusion, there is no discernible

203  differences in the locomotor activity among three groups. We therefore conclude that differences in the
204  elevated plus maze assay reflect reduced anxiety levels in the Tph2” rats, which is not due to a change in

205  locomotor activity.
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207  Figure 1. Elevated plus maze test. (A) time spent in open arms, (B) closed arms entries, (C) latency to enter
208  open arms, (D) total distance moved on the elevated plus maze. Ntpno++ = 10, Nrpho-- = 7, Nrpne+- = 9. The
209  Hedges' g for 2 comparisons against the shared control Tph2** are shown in the Cumming estimation plot.
210  The raw data are plotted on the upper axes. On the lower axes, mean differences are plotted as bootstrap
211 sampling distributions. Each mean difference is depicted as a dot. Each 95% confidence interval is indicated
212 Dby the ends of the vertical error bars.

213 Elevated aggressiveness in Tph2 knockout rats

214 Following the elevated plus maze test (24 hours later), two unfamiliar rats from the same genotype were
215  exposed to each other in a novel context for 20 min after being isolated for 3.5 h in a separate housing
216  room (Figure 2A). We found a large genotype effect on total no contact behavior (Figure 2B, ¢ tph2+/+ <
217 Tpne-- = -6.38 [-7.98; -4.5], p < 0.01), indicating that Tph2™ rats have a higher level of active social

218 interaction compared with Tph2*/* rats. However, the prolonged social interaction of Tph2” rats

219  manifested as increased mounting behaviors. Indeed, Tph2*" groups showed a trend towards more

220  mounting behaviors than Tph2*"* group (Figure 2C, g pho+/+ < Tpho+- = 0.64 [-0.42; 1.36], p = 0.16).

221 Meanwhile, mounting behavior was significantly increased in Tph2” in comparison with Tph2** rats (g
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Tph2+/+ < Tph2-- = 1.47 [0.80; 3.83], p = 0.01). In other words, the disruption of Tph2 gene leads to more

mounting behavior.

Inter-male mounting may be a marker for dominance or aggressiveness. Finally, we assessed the total
time spent on aggressiveness, which included aggressive behaviors, mounting, and chasing behaviors all
together. We found that Tph27 and Tph2*" male rats spent more time on aggressive behaviors compared
to wild-type controls (Figure 2D, g Tph2+/+ < Tph2-- = 2.13 [1.09; 7.78], p < 0.01, g Tpho+/+ < Tpho+- = 0.77

[0.184; 1.56], p = 0.10). We concluded that Tph2 gene knockout is sufficient to increase aggressiveness in

male rats.
A B C D
" g
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< Al S : 2
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Figure 2. Social behavior test. (A) behavioral categories, (B) total no contact (%), (C) total mounting (%),
(D) total aggressiveness (combined time mounting, fighting, defending, and chasing, %). Nrpn2++ = 10,
Nrpne-- = 7, Nrpn2+- = 9. The Hedges' g for 2 comparisons against the shared control Tph2** are shown in
the Cumming estimation plot. The raw data are plotted on the upper axes. On the lower axes, mean
differences are plotted as bootstrap sampling distributions. Each mean difference is depicted as a dot.
Each 95% confidence interval is indicated by the ends of the vertical error bars.

Altered oxytocin receptor mRNA expression in Tph2 knockout rats

We found that homozygous and heterozygous Tph2 knockout was sufficient to alter both anxiety and
aggressive behaviors in male rats relative to wild-type controls. Due to its role in intensive interactions
with serotonin, we proposed that oxytocin may be a relevant mediator. To test this, we first examined

oxytocin receptor gene expression (MRNA levels) in areas previously associated with anxiety and
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242 aggression (Figure 3A). We presented 4 subregions to parallel the receptor and oxytocin levels in Figure

243 3, while some other data was presented in Table 2.

244 Oxytocin receptor mRNA expression levels were found to be increased in the infralimbic cortex (Table 2,
245 g pho++ < Tphe-- = 1.14 [0.07; 2.18], p = 0.02), paraventricular nucleus (Table 2, g tpno+/+ < Tphe-- = 1.49 [0.52;
246 2.66], p < 0.01), prelimbic cortex (Figure 3B, g tph2+/+ < Tph2+- = 1.54 [0.44; 2.33], p < 0.01), and dorsal

247  raphe nucleus (Figure 3E, g tpho+/+ < Tphe-- = 2.35 [1.34; 3.37], p < 0.01). In this study, the hippocampus
248  was functionally segmented into dorsal and ventral compartments, and three regions were tested including
249  CAl, CA3and granular layer of dentate gyrus. In the dorsal hippocampal compartment, the expression of
250  oxytocin receptors was largely increased in dentate gyrus (Table 2, g tpho+/+ < pn2-- = 0.93 [-0.02; 1.64], p =
251  0.05). In the CA3 region a small change was found, and no change was found in the CAL region.

252 However, in the ventral hippocampal compartment, the expression in CA1 (Figure 3C, g tph2+/+ < Tph24- =
253  1.7410.99; 2.39], p < 0.01), CA3 (Figure 3D, g tpho++ < Tphe+-= 1.05 [0.13; 1.91], p = 0.03) and dentate
254  gyrus (Table 2, g tph2++ < Tpho- = 1.22 [0.32; 2.05], p = 0.02) were all largely increased. We conclude that
255 oxytocin receptor expression was elevated consistently throughout the brain in Tph2” relative to Tph2**

256  rats.

257  Table 2. The oxytocin receptor mRNA expression levels in different brain regions.
258

. Hedge’s g [95%CI] P

Location Tph2** < Tph2™" value

Infralimbic cortex 1.1410.07; 2.18] 0.02

Dorsal dentate gyrus 0.93[-0.02; 1.64] 0.05

Ventral dentate gyrus 1.22 [0.32; 2.05] 0.02

Paraventricular thalamic 1.49 [0.52; 2.66] <0.01

nucleus

Central nucleus of the 0.44 [0.52; 1.31] 0.32

amygdala

259
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261  Figure 3. Oxytocin receptor mMRNA expression and oxytocin levels (left side: oxytocin receptor mMRNA
262 expression; right side: oxytocin level). (A) brain punching sites diagram, (B) prelimbic cortex, (C) ventral
263  CAlregion, (D) ventral CA3 region, (E) dorsal raphe nucleus, (F) medial frontal cortex, (G) hippocampus,
264  (H) paraventricular thalamic nucleus, (1) central nucleus of the amygdala. For oxytocin ELISA results, n =
265  WT (6), Tph2' (6), for oxytocin receptor PCR results, tpn2+/+ = 10, Nrpno-- = 10. The Hedges' g between
266  Tph2** and Tph2’ is shown in the above Gardner-Altman estimation plot. Both groups are plotted on the
267 left axes; the mean difference is plotted on floating axes on the right as a bootstrap sampling distribution.
268  The mean difference is depicted as a dot, the 95% confidence interval is indicated by the ends of the vertical
269  error bar. Abbreviations: PL, prelimbic cortex; MPFC, medial prefrontal cortex; IL, infralimbic cortex;
270  CALl, field CA1 of the hippocampus; CA3, field CA3 of the hippocampus; DG, granular layer of dentate
271 gyrus; PVN, paraventricular thalamic nucleus; Amg, central amygdala nucleus; Hipp, hippocampus; DR,
272 dorsal raphe nucleus.

273 Altered oxytocin levels in Tph2 knockout rats

274 In addition to examining receptor expression levels, we also determined oxytocin concentration (Figure

275  3A). Because of the sensitivity of the assay, several areas were merged to achieve sufficient peptide levels
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276  (e.g., prelimbic and infralimbic cortex). This is justified because of the indiscriminate receptor mMRNA
277  elevation in the pooled regions. Our oxytocin ELISA results indicated that the oxytocin level was largely
278  increased in the medial prefrontal cortex (Figure 3F, g tpn2++ < Tpho-- = 1.55 [0.80; 2.3], p = 0.02),

279  hippocampus (Figure 3G, g tph2+/+ < Tpho-- = 0.86 [-0.64; 1.94], p = 0.14), paraventricular thalamic nucleus
280  (Figure 3H, g tpha++ < Tpho-- = 2.5 [1.69; 3.63], p < 0.01) and central nucleus of the amygdala (Figure 31, g
281  fpha++ <Tph2-- = 2.13 [0.9; 3.57], p < 0.01). We conclude that, similar to the oxytocin receptor, the ligand is

282  found more abundantly in the areas sampled of Thp2”- male rats, relative to wild-type controls.
283

284  Discussion

285  The results from this study reveal that the knockout of Tph2 significantly affects rat’s behavior and
286 influences oxytocin levels and the expression of its receptors. Tph2 rats are less anxious and show more

287  social interaction. However, social interaction is dominated by high levels of aggression and mounting.

288  Tph2' rats exhibited less anxiety-like behaviors in the elevated plus maze as supported by a longer

289  duration in open arms and a reduction in closed arms entries. However, if the rats were less anxious, rats
290  should have entered the open arm quicker but data we collected showed the opposite. Contrary to Tph2”-
291  rats, serotonin transporter knockout rats, which harbor a high brain serotonin concentration, showed high
292  sensitivity to environmental stimuli (Homberg & Lesch, 2011; Sbrini et al., 2020). Hence, it is possible
293 that the reduced anxiety level of Tph2™ rats relates to an attenuated environmental sensitivity, reducing
294  awareness of the difference between the open and closed arms. At the same time, the decreased anxiety
295 level is independent of activity, as total distance traveled does not differ between genotypes. Interestingly,
296  an 82% serotonergic neurotoxin-induced depletion of 5-HT in the rat medial prefrontal cortex increased
297  anxiety-like behavior on the elevated plus-maze (Pum, Huston, & Mauller, 2009). Given the fact that the
298  depletion of serotonin ab origine probably leads to compensatory responses as often seen in conventional

299 knockout animal model (Knobelman, Hen, Blendy, Lucki, & Therapeutics, 2001), the finding that Tph2”"


https://doi.org/10.1101/2022.07.08.499134
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.08.499134; this version posted July 10, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

300 rats were less anxious may also be due to serotonin-mediated developmental or compensatory changes

301  contribute to the anxiolytic profile.

302  As5-HT regulates the aggression in both sexes, enhanced serotonergic activity could inhibit intermale
303  aggression, while hindering 5-HT signaling will stimulate aggression (Carrillo, Ricci, Coppersmith, &
304  Melloni, 2009; Yanowitch & Coccaro, 2011). Serotonin transporter knockout rats exhibit less aggression,
305  more prosocial behaviors with a high sensitivity to social stimuli (Homberg & Lesch, 2011). In our case,
306  Tph2' rats had outburst aggressive behaviors almost immediately when housed together with another rat
307 inanovel environment (Supplementary Figl), as reported Tph2” rats have more dense social networks, a
308  more unstable hierarchy and normal social memory (Alonso et al., 2021). Therefore, we propose that
309  Tph2' rats have a deficit in updating environmental information, leading to disrupted transmission of
310  social information like hierarchy and social network etc. At the same time, we noticed that Tph2™ rats
311  spent more time on social contact with their assigned partner, but in a ‘antisocial’ manner with increased
312 mounting behavior. As the animals were tested in male-male social interactions, the mounting behavior
313  might be an act of showing social dominance which is in line with our previous finding in the resident

314  intruder test (Peeters et al., 2019).

315  The reduced anxiety in Tph2” rats may relate to altered oxytocin signaling. Oxytocin infusion into the
316  prelimbic cortex decreased anxiety-like behavior, and pharmacological blockade of the oxytocin receptor
317  prevented this anxiolytic effect, indicating that the anxiolytic effects of oxytocin are mediated, at least in
318  part, through oxytocin receptors in the prelimbic cortex (Sabihi, Dong, Maurer, Post, & Leuner, 2017).
319  Although we did not measure oxytocin levels and oxytocin receptor mRNA expression levels in the same
320 animals, it is well possible that the anxiolytic phenotype of Tph2” rats related to elevated oxytocin levels
321  inthe medial frontal cortex and enhanced oxytocin receptor expression in the prelimbic cortex. Besides,
322 amygdala plays a key role in emotional processing (LeDoux, 2000) including anxiety, fear learning and
323  memory (Duvarci & Pare, 2014; Janak & Tye, 2015) with y-aminobutyric acid-ergic (GABAergic)

324  interneurons serving critically for some inhibitory circuits (Stefanits et al., 2018). Presumably, serotonin
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325  could alter the GABAergic tone via 5-HT2A receptors (Jiang et al., 2009; McDonald & Mascagni, 2007;
326  Rainnie, 1999). Meanwhile, oxytocin also serves as a potent modulator of inhibitory GABA transmission
327  inthe central amygdala. For instance, oxytocin infusion into the central amygdala increased GABA

328  activity in this region (Huber, Veinante, & Stoop, 2005). In line with a previous report that oxytocin

329 infusion into central amygdala could decrease anxiety (Bale, Davis, Auger, Dorsa, & McCarthy, 2001), in
330  our experiment Tph2” rats exhibit a lower anxiety level with the oxytocin levels being largely increased
331 in the central nucleus of the amygdala. We therefore suspect that increased oxytocin in this nucleus

332 lowers anxiety levels in Tph2” rats by enhancing GABA transmission. The hippocampus can be

333  functionally segmented into dorsal, intermediate and ventral compartments, with the dorsal part mediating
334  cognitive functions and the ventral part implicated in stress, emotion and affect (Dale et al., 2016;

335  Fanselow & Dong, 2010). Previously, it has been reported that a serotoninergic lesion of the ventral

336  hippocampus leads to increased anxiety-like behaviors in the elevated plus maze, showing that serotonin
337  has an anxiety dampening role in the ventral hippocampus (Tu et al., 2014). Surprisingly, in our Tph2”
338  rat model, under conditions of life-long deficiency of brain serotonin, rats expressed reduced anxiety. At
339  the same time, we noticed that oxytocin receptor mRNA expression levels were mostly increased in the
340  ventral, but not dorsal compartment of Tph2” rats. As intracerebroventricular infusion of oxytocin into
341 the lateral ventricle has anxiolytic effects (Peters, Slattery, Uschold-Schmidt, Reber, & Neumann, 2014;
342 Windle, Shanks, Lightman, & Ingram, 1997), the decreased anxiety as observed in Tph2” rats may relate
343  in part to increased oxytocin signaling in the hippocampus. Further investigation is needed to delineate

344  the specific role of oxytocin in the hippocampal subregions and their contribution to Tph2” behavior.

345  Also, the altered social behaviors in Tph2” rats may relate to altered oxytocin signaling. The prelimbic
346  cortex participates in the regulation of social interaction (Gonzalez et al., 2000) and oxytocin regulates
347  social approach and preference behaviors (Lukas et al., 2011). Therefore, together with social interaction
348  data from our experiment, we propose that oxytocin in the prelimbic cortex promotes social interaction in

349  Tph2' rats. Selective deletion of oxytocin receptors on serotonergic dorsal raphe neurons reduced
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350 resident-intruder aggression in males (Pagani et al., 2015). In line with this finding, the oxytocin receptor
351  mRNA expression level in the dorsal raphe nucleus is greatly increased in Tph2” rats, which may explain
352  their increased aggressiveness during social interaction. As the change of oxytocin in the dorsal raphe
353  nucleus is slightly decreased in Tph2™ rats, the increased oxytocin receptor mRNA expression levels

354  could reflect a compensation for reduced oxytocin levels in this region. At the same time, altered GABA
355  transmission in the amygdala also results in exaggerated fear which may explain the high aggressiveness

356 level of Tph2 rats during social interaction.

357  Although in human beings Tph2 complete dysfunction is a very rare situation, there is an association
358  between Tph2 polymorphisms and neuropsychiatric disorders (Zhang, Beaulieu, Gainetdinov, & Caron,
359  2005; Xiaodong Zhang et al., 2005). Tph2 knockout rat magnifies the phenotype and provides

360 information in the context of serotonin and transdiagnostic behavior. At the same time, some limitations
361  should be taken into account. We only tested male animals, while sex difference could impact the

362  development of oxytocin system (Tamborski, Mintz, & Caldwell, 2016) and oxytocin-dependent

363 behaviors (Dumais, Bredewold, Mayer, & Veenema, 2013). Besides, due to the small brain-punching
364  sample volume, samples used to assess oxytocin levels in the hippocampus and medial prefrontal cortex

365 involve a mixture of subregions.

366  In conclusion, we demonstrated that rats lacking the Tph2 display a series of behavioral changes which
367  gives us more insights into the effects of long-term serotonin deficiency. Meanwhile, the behavioral

368  changes originating from congenital brain serotonin deficiency sometimes are different from acquired
369  short-term serotonin deficiency due to medical intervention, which suggests that compensatory pathways
370  developed in Tph2” rats, with participation of the oxytocin system. The overall increase in oxytocin

371  levels and receptor expression suggests that interventions decreasing oxytocin signaling may have the
372 potential to normalize the anxiolytic and anti-social behavior in those suffering from low Thp2

373  availability.
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