

1 **CNS myelination requires VAMP2/3-mediated membrane expansion in oligodendrocytes**

2

3 Mable Lam^{1*}, Koji Takeo^{1,2*}, Rafael G. Almeida³, Madeline H. Cooper¹, Kathryn Wu¹, Manasi
4 Iyer¹, Husniye Kantarci¹, J. Bradley Zuchero^{1,4}

5

6 **Affiliations:**

7 ¹Department of Neurosurgery, Stanford University School of Medicine; Stanford, CA, USA.

8 ²Current Address: Pharmaceutical Research Laboratories, Toray Industries, Inc.; Kamakura,
9 Kanagawa, Japan

10 ³Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK

11 *These authors contributed equally to this work.

12 ⁴Correspondence should be addressed to J.B.Z. (zuchero@stanford.edu)

13

14 **Abstract**

15 Myelin is required for rapid nerve signaling and is emerging as a key driver of CNS plasticity and
16 disease. How myelin is built and remodeled remains a fundamental question of neurobiology.

17 Central to myelination is the ability of oligodendrocytes to add vast amounts of new cell
18 membrane, expanding their surface areas by many thousand-fold. However, how
19 oligodendrocytes add new membrane to build or remodel myelin is unknown. Here, we show
20 that CNS myelin membrane addition requires exocytosis mediated by the vesicular SNARE
21 proteins VAMP2/3. Genetic inactivation of VAMP2/3 in myelinating oligodendrocytes caused
22 severe hypomyelination and premature death without overt loss of oligodendrocytes. Through
23 live imaging, we discovered that VAMP2/3-mediated exocytosis drives membrane expansion
24 within myelin sheaths to initiate wrapping and power sheath elongation. In conjunction with
25 membrane expansion, mass spectrometry of oligodendrocyte surface proteins revealed that
26 VAMP2/3 incorporates axon-myelin adhesion proteins that are collectively required to form

27 nodes of Ranvier. Together, our results demonstrate that VAMP2/3-mediated membrane
28 expansion in oligodendrocytes is indispensable for myelin formation, uncovering a cellular
29 pathway that could sculpt myelination patterns in response to activity-dependent signals or be
30 therapeutically targeted to promote regeneration in disease.

31

32 **Introduction**

33 Myelinating oligodendrocytes spirally wrap and elongate numerous myelin sheaths on neuronal
34 axons, tailoring myelin sheath thickness and length to modulate conduction velocity according to
35 developmental and activity-dependent neuronal signals¹⁻³. Each myelin sheath is a continuous
36 extension of the oligodendrocyte plasma membrane, and a single oligodendrocyte has been
37 estimated to increase its membrane area by several thousand-fold⁴, requiring extensive addition
38 of new membrane. Myelin sheaths are thought to grow in thickness and length by extending
39 their innermost layer, or inner tongue, around and along the axon^{5,6}, but the cellular machinery
40 that adds new membrane to power myelination is unknown. Beyond developmental myelination,
41 experience and learning during adulthood can induce oligodendrocytes to form new myelin or
42 restructure existing myelin sheaths, adapting myelination patterns to altered neural circuitry and
43 potentially accelerating regeneration after demyelination⁷⁻¹³. This dynamic ability to make new
44 myelin depends upon spatially coordinated membrane expansion. How oligodendrocytes add
45 new membrane to build and remodel myelin sheaths remains an important, unanswered
46 question in neurobiology.

47 Oligodendrocytes may add new membrane through several mechanisms, including
48 vesicular trafficking to the cell surface^{14,15}, non-vesicular lipid transport¹⁶, or membrane
49 incorporation of lipoproteins¹⁷. These membrane addition mechanisms have known roles in
50 regulating cell signaling (e.g. synaptic vesicle release) and lipid metabolism, but less is known
51 about their role in shaping cell morphology and size. Vesicular membrane addition occurs
52 through membrane fusion by soluble *N*-ethylmaleimide sensitive factor attachment protein

53 receptor (SNARE) complexes, where vesicular SNARE proteins (v-SNAREs) pair with their
54 cognate SNARE partners on the target membrane to trigger exocytosis. In myelin, vesicles have
55 been observed in the inner tongue and are thought to travel through “myelinic channels”
56 extending through compact myelin regions^{5,6,18–20}, but the molecular components and function of
57 these vesicles are unclear. Previous studies reported the upregulation of v-SNARE isoforms
58 VAMP3 and VAMP7 in myelinating oligodendrocytes^{21,22}. However, knockout of VAMP3 has no
59 effect on myelination, and mislocalization of VAMP7 causes only mild developmental
60 dysmyelination²². Thus, whether SNARE-mediated exocytosis is required for myelination
61 remains unresolved.

62 More recently, RNA sequencing data revealed that *Vamp2* is expressed at levels
63 comparable to *Vamp3* and *Vamp7* in oligodendrocytes, with little to no expression of other
64 *Vamp* isoforms (Supplementary Fig. 1a-b)^{23,24}. Although VAMP2 is best-characterized in
65 synaptic vesicle release, recent studies demonstrate that VAMP2-mediated exocytosis is also
66 necessary for membrane expansion of growing neurons in culture^{25,26}. Since VAMP2 and
67 VAMP3 are individually sufficient to drive vesicle fusion with the plasma membrane²⁷,
68 compensation by VAMP2 may have limited the ability of previous VAMP3 KO studies to reveal
69 the requirement of SNARE-mediated exocytosis in myelination. Therefore, we investigated the
70 role of both v-SNARE isoforms in assembling myelin ultrastructure in nervous system
71 development.

72 Here we demonstrate that VAMP2 and VAMP3, herein referred to as VAMP2/3, drive
73 large-scale membrane expansion to power myelin sheath wrapping and elongation by directing
74 vesicle fusion within myelin sheaths. VAMP2/3-associated vesicles coordinately deliver new
75 membrane and axon-myelin adhesion proteins to the inner tongue and paranodes to assemble
76 nodes of Ranvier. Thus, VAMP2/3-mediated exocytosis in oligodendrocytes represents a
77 regulatory nexus for myelin sheath growth and node of Ranvier formation to sculpt neural
78 circuitry during development.

79

80 **Results**

81 **VAMP2/3-mediated exocytosis is required for CNS myelination**

82 We first examined the expression of *Vamp2* and *Vamp3* across the oligodendrocyte lineage in
83 the developing spinal cord white matter using multiplexed fluorescence RNA *in situ* hybridization
84 (RNAscope) (Supplementary Fig. 1c-d). *Vamp2* was expressed at all differentiation stages of
85 oligodendrocyte-lineage cells *in vivo*, while *Vamp3* was upregulated in mature oligodendrocytes
86 marked by *Aspa* (Supplementary Fig. 1e-f). To address the potential redundant functions of
87 VAMP2 and VAMP3 targeting to the plasma membrane, we used a transgenic mouse line
88 (“iBot”) with Cre-dependent expression of botulinum neurotoxin B light chain and GFP to mark
89 recombined cells²⁸ (Fig. 1a). Botulinum neurotoxin B specifically cleaves and inactivates
90 VAMP1, 2, and 3 (VAMP1/2/3) to prevent vesicle fusion with the plasma membrane (i.e.
91 exocytosis) and has no other known targets^{29,30} (Fig. 1b). We crossed iBot and *Cnp*-Cre mice to
92 conditionally inactivate VAMP2/3 in pre-myelinating cells of the CNS and PNS³¹, hereafter
93 referred to as iBot;*Cnp*-Cre (Fig. 1a). Strikingly, iBot;*Cnp*-Cre mice were significantly smaller
94 than their littermate controls (iBot^{+/+}) during the second postnatal week and rarely survived into
95 the third postnatal week (Supplementary Fig. 1g-i). Given this early death, we first focused on
96 an early-myelinating region of the mouse CNS for our studies—the dorsal thoracic spinal cord.

97 We first quantified the specificity and penetrance of *Cnp*-Cre-driven iBot expression, as
98 marked by GFP, using immunohistochemistry of spinal cord cross sections harvested at P12
99 (Supplementary Fig. 2a-c). On average, ~88% of iBot-expressing cells (GFP⁺) in iBot;*Cnp*-Cre
100 mice were oligodendrocyte-lineage cells (Olig2⁺;GFP⁺); of these, ~74% were differentiated
101 oligodendrocytes (CC1⁺;GFP⁺) while the remaining ~14% were oligodendrocyte precursors
102 (Olig2⁺;GFP⁺;CC1⁻) (consistent with the known premature expression of *Cnp* promoter in a
103 subset of oligodendrocyte precursors) (Supplementary Fig. 2d). Only 2% of iBot-expressing
104 cells corresponded to neurons (NeuN⁺;GFP⁺) (Supplementary Fig. 2c-d). As a measure of

105 penetrance, 79% of differentiated oligodendrocytes (CC1+) detectably expressed iBot
106 (Supplementary Fig. 2e). The number of oligodendrocytes (differentiated and precursors) were
107 not significantly affected (Supplementary Fig. 2f-g). Thus, iBot expression was highly penetrant
108 and specific for oligodendrocytes without causing gross changes to their proliferation or survival.

109 To assess the role of VAMP2/3-mediated exocytosis in myelination, we first
110 immunostained for myelin basic protein (MBP), a major structural component of myelin. Relative
111 to littermate controls, iBot;*Cnp*-Cre exhibited a significant reduction in white matter area in the
112 spinal cord (Fig. 1c-d, Supplementary Fig. 2h), brain cortex, and cerebellum (Supplementary
113 Fig. 3), with no obvious effect on axonal abundance (Fig. 1e, Supplementary Fig. 2j). We next
114 determined how myelin ultrastructure was affected in iBot;*Cnp*-Cre mice, using electron
115 microscopy of the dorsal white matter of the thoracic spinal cord, which is comprised of parallel
116 axon tracts³² (Fig. 1f-g). iBot;*Cnp*-Cre mice were severely hypomyelinated, showing only 3% of
117 axons with wrapped myelin compared to 28% of axons in the control at P12 (Fig. 1h).
118 Furthermore, the wrapped axons in iBot;*Cnp*-Cre exhibited thinner myelin (higher *g*-ratio) than
119 controls (Supplementary Fig. 2k-l). Interestingly, the iBot;*Cnp*-Cre and control samples showed
120 no significant difference in the number of partially and fully ensheathed axons (defined as
121 oligodendrocyte contact with at least half the circumference of an axon), suggesting that *Cnp*-
122 Cre-driven inactivation of VAMP2/3 inhibits myelin wrapping but has less of an effect on the
123 earlier process of axonal ensheathment (Fig. 1h). Surprisingly, when we examined myelination
124 in the PNS, we found no gross changes in MBP staining or myelin wrapping by electron
125 microscopy between sciatic nerve samples, despite prevalent iBot (GFP) expression in
126 iBot;*Cnp*-Cre mice (Supplementary Fig. 4; see Discussion). All together, these data indicated
127 that VAMP2/3-mediated exocytosis plays an essential role in CNS myelination.

128

129 **VAMP2/3-mediated exocytosis occurs preferentially in myelin sheaths.**

130 Since myelin wrapping and longitudinal growth are likely to require spatially regulated
131 membrane addition, we asked if VAMP2/3-mediated exocytosis is spatially organized in
132 oligodendrocytes. We transfected primary rat oligodendrocyte precursors with VAMP2- or
133 VAMP3-pHluorin, a pH-sensitive variant of GFP that is quenched inside the acidic environment
134 of a vesicle and fluoresces upon exocytosis^{25,33}. In the absence of neurons, oligodendrocyte
135 precursors differentiate in culture by extending numerous processes in the pre-myelinating
136 stage and expanding into large, compact myelin membrane sheets as they mature^{34,35} (Fig. 2a).
137 We measured the frequency of exocytotic events per cell per minute, detected as a punctate
138 increase and subsequent decay in fluorescence²⁵ (Fig. 2b, Supplementary Video 1). In
139 differentiating oligodendrocytes, both VAMP2- and VAMP3-mediated exocytotic events occurred
140 more frequently in the processes or myelin membrane sheets, as opposed to the soma (Fig. 2c,
141 Supplementary Fig. 5a)^{34,35}. Deacidification with NH₄Cl revealed an abundance of VAMP2/3-
142 vesicles in the soma that had not yet undergone exocytosis, suggesting that vesicles marked by
143 VAMP2 and VAMP3 traffic away from the soma prior to exocytosis out in myelin sheets
144 (Supplementary Fig. 5b). Consistent with prior work showing that overexpressed VAMP2-
145 pHluorin in neurons localizes correctly and does not perturb exocytic function³⁶, neither the
146 frequency of exocytic events nor oligodendrocyte cell area was affected by VAMP-pHluorin
147 expression levels (Supplementary Fig. 5c-d).

148 To examine the spatial pattern of VAMP2/3 activity in myelin sheaths *in vivo*, we used
149 live imaging of developing zebrafish expressing oligodendrocyte-targeted VAMP2- and VAMP3-
150 pHluorin (Fig. 2d, Supplementary Video 2). The frequency of exocytosis was highest in the
151 processes of oligodendrocyte precursors and pre-myelinating oligodendrocytes, consistent with
152 the enrichment found in highly arborized pre-myelinating oligodendrocytes in culture (Fig. 2e,
153 2c). Of the exocytotic events within myelin sheaths, 50% of VAMP2 events occurred at the
154 sheath edges (i.e. paranodes) (Fig. 2f), which was higher than the predicted frequency (34%)
155 for uniform distribution of exocytosis (Supplementary Table 3). In contrast, VAMP3 events were

156 uniformly distributed between the internode and sheath edges (Fig. 2f). Resolving how VAMP2-
157 and VAMP3-mediated exocytosis are spatially regulated in sheaths remains an interesting
158 question for future studies.

159 To determine if VAMP2/3-exocytosis contributes to membrane expansion, we
160 determined the proportion of events that resulted in full-vesicle fusion rather than kiss-and-run
161 exocytosis in cultured oligodendrocytes, where the outspread membrane allows for
162 quantification of fluorescence spreading of exocytotic puncta. Full-vesicle fusion events
163 integrate lipids and transmembrane proteins into the plasma membrane, and exhibit radial
164 fluorescence spreading as pHluorin molecules diffuse from the initial site of fusion
165 (Supplementary Fig. 5e, top). In contrast, kiss-and-run events recycle vesicles after secreting
166 molecules with no net addition of membrane, and do not exhibit fluorescence spreading
167 (Supplementary Fig. 5e, bottom)^{25,26,37}. We distinguished full-vesicle fusion as events with radial
168 fluorescence spreading, where the half-life of the bordering membrane fluorescence closely
169 matched the half-life of the event center (Supplementary Fig. 5e-g). In pre-myelinating
170 oligodendrocytes, full-vesicle fusion was the predominant mode of exocytosis for both VAMP2
171 and VAMP3 events, indicating an increased rate of membrane addition during early
172 differentiation (Supplementary Fig. 5g, yellow). Based on our calculations (see Discussion), the
173 frequency of full-vesicle fusion events we observed could, in theory, provide sufficient
174 membrane for oligodendrocyte membrane growth during myelination. Thus, we next aimed to
175 test the role of VAMP2/3 in myelin membrane expansion.

176

177 **VAMP2/3-mediated membrane expansion is required for myelin sheath elongation.**

178 Our discovery that VAMP2/3 mediate full-vesicle fusion in pre-myelinating oligodendrocytes
179 suggested that VAMP2/3 may function to drive membrane expansion during myelination. To test
180 this, we first purified primary oligodendrocyte precursors from neonatal brains of iBot;Cnp-Cre
181 versus control littermates and induced differentiation in culture³⁸ (Fig. 3a). By the pre-

182 myelinating stage (Day 3), 65% of iBot;*Cnp*-Cre cells expressed GFP as a marker of iBot
183 expression, which increased to 80% of mature oligodendrocytes (Day 7) (Supplementary Fig.
184 6a-b). iBot;*Cnp*-Cre and control oligodendrocytes both produced arborized branches at the pre-
185 myelinating stage (Day 3) with no difference in membrane area (Fig. 3b-c). Between Day 3 and
186 Day 5 as oligodendrocytes formed myelin sheets, control oligodendrocytes doubled their
187 membrane area, consistent with the increase in full-vesicle fusion events we measured at this
188 time point (Supplementary Fig. 5g). However, iBot;*Cnp*-Cre oligodendrocytes stalled in an
189 arborized state and did not form full myelin sheets (Fig. 3b-c). After 7 days of differentiation,
190 iBot;*Cnp*-Cre oligodendrocytes reached only half the area of control oligodendrocytes (~8,700
191 μm^2 vs. ~16,200 μm^2 ; Supplementary Fig. 6e). iBot expression did not affect oligodendrocyte
192 differentiation (as marked by GalCer lipid or MBP) or oligodendrocyte survival (Supplementary
193 Fig. 6c-d, 7). Thus, inactivating VAMP2 and VAMP3 in pre-myelinating oligodendrocytes
194 reduces membrane expansion without significantly affecting differentiation or cell survival.

195 We next asked whether VAMP2/3-mediated membrane expansion is necessary for
196 myelin formation on axons. To investigate the initial stages of sheath formation, we used an
197 oligodendrocyte-neuron co-culture system in which we seeded oligodendrocyte precursors
198 purified from iBot;*Cnp*-Cre or control littermates onto dense arrays of axons generated by
199 aggregating retinal ganglion cells (Fig. 4-b, Supplementary Fig. 8)^{39,40}. iBot;*Cnp*-Cre
200 oligodendrocytes did not have a statistically significant difference in the number of sheaths per
201 cell body compared to controls (Fig. 4c) but formed significantly shorter sheaths (Fig. 4d,
202 average length of 60.5 μm in iBot;*Cnp*-Cre vs. 90.9 μm in controls), indicating a defect in lateral
203 sheath elongation.

204 Is VAMP2/3-mediated membrane expansion necessary for myelin sheath elongation in
205 vivo? We measured myelin sheath lengths in the corpus callosum and deep cortical layers at
206 P12 (Fig. 4e-f), where myelin is still relatively sparse in the second postnatal week⁴¹. Average

207 myelin sheath lengths were decreased in iBot;*Cnp*-Cre mice (39.6 μ m) compared to littermate
208 controls (54.2 μ m) (Fig. 4g-h), corroborating the sheath elongation defect we observed in
209 myelinating co-cultures of iBot-expressing oligodendrocytes (Fig. 4d). We estimated that shorter
210 myelin sheaths (Fig. 4g) combined with a trend towards slightly fewer sheaths per
211 oligodendrocyte (Fig. 4c) is sufficient to fully explain the high degree of unmyelinated stretches
212 of axons we observed in electron microscopy cross-sections (Fig. 1f-h) in iBot;*Cnp*-
213 Cre mice (see “Quantification of myelin coverage” in Methods).

214 Additionally, we tested the requirement of VAMP2/3 using a method orthogonal to iBot
215 through the exogenous expression of dominant negative VAMP proteins (dn-VAMP2/3), in
216 which the cytosolic portion of the v-SNARE blocks binding and fusion of endogenous v-SNAREs
217 to the plasma membrane (Supplementary Fig. 9a)^{42,43}. Expressing dn-VAMP2 or dn-VAMP3
218 individually in cultured oligodendrocytes was sufficient to reduce membrane expansion
219 (Supplementary Fig. 9b-d). To determine if dn-VAMP2 affected myelin sheath elongation *in vivo*,
220 we used adeno-associated virus (AAV)-mediated transgene expression to sparsely express dn-
221 VAMP2 with the membrane marker GFP-caax under the oligodendrocyte-specific *Mbp* promoter
222 (Supplementary Fig. 9e-f)⁴⁴⁻⁴⁶. In the mouse spinal cord at P12, dn-VAMP2 expression reduced
223 sheath lengths (84.0 μ m) compared to GFP-caax expression alone (110 μ m) (Supplementary
224 Fig. 9g-i). Together, our results from two orthogonal methods indicate that blocking exocytosis
225 in pre-myelinating oligodendrocytes does not prevent their initial ensheathment of axons but
226 results in shorter sheaths that leads to pronounced hypomyelination.

227
228 **Vesicles accumulate in the inner tongue of myelin sheaths upon inactivation of VAMP2/3**
229 From finding an essential role for VAMP2/3 in oligodendrocyte membrane expansion and myelin
230 sheath elongation, we next asked if and where membrane vesicles accumulated in
231 oligodendrocytes upon inactivation of VAMP2 and VAMP3. High-resolution imaging revealed

232 that GalCer-positive vesicular structures accumulated within stunted processes and along the
233 membrane periphery of iBot;Cnp-Cre oligodendrocytes both in monocultures (Supplementary
234 Fig. 10a) and in co-cultures with neurons (Supplementary Fig. 10b). *In vivo*, super-resolution
235 microscopy showed that the majority of MBP signal from control samples appeared as paired,
236 parallel tracks separated by an average distance of $0.89 \pm 0.13 \mu\text{m}$, which is within reported
237 diameter ranges for myelinated fibers in the corpus callosum (Fig. 5a,c)⁴⁷. In contrast, iBot;Cnp-
238 Cre sheaths exhibited bulges along MBP-stained tracks, which averaged a diameter of $1.46 \pm$
239 $0.08 \mu\text{m}$ (Fig. 5a,c) and appeared similar to the vesicular structures observed in
240 oligodendrocyte-neuron co-cultures (Supplementary Fig. 10b). Super-resolution microscopy of
241 iBot;Cnp-Cre spinal cord cross sections revealed multiple enclosed vesicular structures within a
242 bulged myelin sheath (Fig. 5b, Supplementary Video 3-4). By electron microscopy, we found
243 structures resembling enlarged vesicles in 31% of myelin cross sections from iBot;Cnp-Cre, as
244 opposed to only 8% in controls (Fig. 5d). The accumulated vesicles in iBot;Cnp-Cre most
245 frequently occurred at the inner tongue (innermost layer) of the myelin sheath, suggesting that
246 VAMP2/3 normally mediate vesicle fusion at the axon-myelin interface (Fig. 5d-e). Interestingly,
247 these large, pleomorphic vesicles, observed by both super-resolution fluorescence microscopy
248 and electron microscopy, reached up to $0.5 \mu\text{m}$ in diameter, suggesting that, in the absence of
249 VAMP2/3, vesicles may instead undergo homotypic fusion, which is known to form large
250 secretory granules⁴⁸ in a VAMP2/3-independent manner⁴⁹ and has been postulated to occur
251 during myelin wrapping¹⁵ (See Discussion).

252

253 **Oligodendrocyte VAMP2/3 is required for delivery of myelin adhesion proteins and node
254 of Ranvier formation.**

255 Given the spatial organization of VAMP2/3 activity within internodes, we next asked which
256 myelin-associated proteins depend on VAMP2/3-mediated membrane trafficking. We covalently

257 labeled surface proteins in cultured control and iBot;*Cnp*-Cre oligodendrocytes using NHS-biotin
258 and immunoprecipitated surface-biotinylated proteins and membrane-proximal interactors for
259 mass spectrometry (Fig. 6a, Supplementary Fig. 12a). In parallel, control unbiotinylated
260 oligodendrocytes were analyzed to exclude non-specific interactions. We identified 123 proteins
261 that were specifically depleted from iBot;*Cnp*-Cre oligodendrocytes (Fig. 6b, Supplementary
262 Table 5). 98% of the VAMP2/3-dependent hits had also been detected in acutely isolated
263 oligodendrocytes from mouse brains and from purified myelin, validating the ability of primary
264 culture to recapitulate *in vivo* oligodendrocytes^{24,50,51}. Gene ontology analysis revealed a
265 significant enrichment of proteins that localize to myelin sheaths, paranodes, cell-cell junctions,
266 and vesicles (Fig. 6c).

267 The paranode consists of specialized axon-myelin junctions that flank the nodes of
268 Ranvier and are essential for action potential propagation^{52,53}. Notably, top VAMP2/3-dependent
269 hits included myelin adhesion proteins that normally localize to the oligodendrocyte-axon
270 interface: contactin-1 (*Cntn1*), neurofascin (*Nfasc*), and myelin-associated glycoprotein (MAG)
271 (Fig. 6d). *Cntn1* and glial *Nfasc* (*Nfasc-155*) are required for the establishment of axon-myelin
272 junctions at paranodes, and MAG is required to maintain axon-myelin interactions at
273 internodes⁵⁴⁻⁵⁸. Surface staining of MAG was reduced in iBot;*Cnp*-Cre oligodendrocytes,
274 validating MAG as a substrate of VAMP2/3-mediated exocytosis (Supplementary Fig. 12b-d).
275 Other VAMP2/3-dependent hits included intracellular membrane-proximal proteins such as MBP
276 and ankyrin-G (*AnkG*), a cytoskeletal scaffolding protein that directly interacts with *Nfasc-155* in
277 oligodendrocytes, where it is required for paranode assembly⁵⁹.

278 Finally, given that VAMP2/3 mediates myelin sheath elongation and the surface insertion
279 of myelin adhesion proteins with known roles in regulating axoglial junctions, we asked if
280 oligodendrocyte VAMP2/3 is required for node of Ranvier assembly. We immunostained
281 longitudinal sections of the spinal cord for contactin-associated protein (*Caspr*), an axonal
282 membrane protein enriched at paranodal regions, and *AnkG*, which (in addition to its

283 aforementioned role at the paranode) anchors sodium channels at nodes of Ranvier (Fig.
284 6e)^{53,60}. Mature nodes of Ranvier appear as puncta of AnkG flanked by Caspr on both sides
285 (Fig. 6f). Immature nodes include heminodes, which consist of adjacent, singular clusters of
286 Caspr and AnkG, or Caspr clusters lacking flanked AnkG (Fig. 6f). Control spinal cord white
287 matter showed a nearly equal distribution of mature nodes, heminodes, and other Caspr
288 clusters at P12 (Fig. 6g), which is consistent with the nodal distribution reported for early CNS
289 myelination in mice⁵². In iBot;Cnp-Cre mice, we found a severe reduction in the formation of
290 Caspr or AnkG clusters (Fig. 6g). Consistent with the premature death of iBot;Cnp-Cre mice
291 observed two weeks after birth (Supplementary Fig. 1i), mice lacking node of Ranvier formation
292 die between P12 and P18^{52,54,61}. Thus, VAMP2/3-mediated exocytosis acts as an indispensable
293 mechanism by which oligodendrocytes regulate node of Ranvier assembly. Together, our
294 results indicate that VAMP2/3-mediated exocytosis is required in oligodendrocytes for myelin
295 wrapping, sheath elongation, and formation of nodes of Ranvier (Fig. 7).

296

297 **Discussion**

298 How new membrane is added to power myelination is an important, unanswered question in
299 neurobiology. In this study, we identify VAMP2/3-mediated exocytosis as a critical mechanism
300 for membrane expansion during myelin sheath formation. By integrating cellular and *in vivo*
301 approaches, we discovered spatial organization of VAMP2/3-mediated exocytosis in myelin
302 sheaths that delivers both membrane material and select adhesion proteins to the paranodes
303 and inner tongue. Our mass spectrometry data identified myelin proteins that were delivered by
304 oligodendrocyte-regulated VAMP2/3 exocytosis, positioning key myelin-axon adhesion proteins,
305 intracellular junction scaffolding proteins, and vesicle sorting components to establish
306 oligodendrocyte-axon interactions. Inactivating VAMP2/3 in pre-myelinating oligodendrocytes
307 prevented them from initiating myelin wrapping and inhibited their ability to elongate along
308 axons, leading to thinner, shorter sheaths (Supplementary Fig. 13a). Myelin sheath thickness

309 and length are increasingly recognized to be dynamic regulatory parameters for information
310 processing in the CNS^{7,10,62,63}, but little is known about the cellular mechanisms controlling
311 activity-dependent membrane remodeling in oligodendrocytes. Together, our findings suggest
312 that developmental and experience-dependent regulation of myelination may converge on
313 coordinating VAMP2/3-mediated exocytosis in oligodendrocytes.

314 Our results raise several questions. First, how much membrane does VAMP2/3-
315 mediated exocytosis contribute, and is it likely that this is the sole mechanism of
316 oligodendrocyte membrane expansion during myelination? In primary oligodendrocyte
317 cultures—where the entire membrane is visible in 2D—we measured that a pre-myelinating
318 oligodendrocyte adds an average of 6,000 μm^2 over 48 hrs, similar to in vivo estimates⁴. During
319 this phase of rapid membrane expansion, cultured oligodendrocytes exhibit an average of 23
320 exocytotic events per minute for VAMP2 and VAMP3 combined, with 80% resulting in full-
321 vesicle fusion. Assuming spherical vesicles with a diameter range of 100-200 nm^{19,25}, VAMP2/3-
322 mediated exocytosis would add 1,670-6,650 μm^2 over 48 hrs, accounting for 27-110% of the
323 added surface area. Thus, VAMP2/3-mediated exocytosis could theoretically provide sufficient
324 new membrane for myelination, at least during the early stages of myelination that are modeled
325 in culture. However, neurons can induce trafficking of myelin proteolipid protein (PLP1) through
326 an orthogonal exocytic pathway in culture, likely via VAMP7^{22,64}. The absence of PLP1 from our
327 mass spectrometry results (Supplementary Table 5) is consistent with a VAMP2/3-independent
328 mechanism of trafficking for PLP1. Such VAMP2/3-independent transport mechanisms may be
329 necessary to spatially partition membrane proteins for axon-myelin adhesion at paranodes from
330 myelin-myelin adhesion between wraps and may contribute additional membrane for
331 myelination.

332 How might neuronal activity regulate membrane dynamics in myelin? One exciting
333 possibility is that neuronal activity could stimulate VAMP2/3-mediated exocytosis in

334 oligodendrocytes. Both VAMP2 and VAMP3 can drive exocytosis in a Ca^{2+} -dependent
335 manner²⁷. Recent studies identified local Ca^{2+} transients in nascent myelin sheaths in response
336 to neuronal activity or axonal release of glutamate, and provided evidence that these Ca^{2+}
337 transients influence myelin sheath length^{65–67}. Moreover, glutamate release from axons
338 selectively occurs adjacent to growing myelin sheaths and consequently stimulates elongation⁶⁸.
339 By live imaging exocytosis in vivo, we found that oligodendrocyte VAMP2 events were
340 preferentially distributed at sheath edges (Fig. 2f), consistent with a model in which local axonal
341 release of glutamate could spatially restrict oligodendrocyte exocytosis to drive sheath
342 elongation. Moreover, electron microscopy revealed that VAMP2/3-mediated exocytosis along
343 internodes occurs at the innermost layer, positioning VAMP2/3 at the axon-myelin interface.
344 VAMP2/3-mediated exocytosis in oligodendrocytes may thus be the downstream driver that
345 couples activity-induced Ca^{2+} transients to myelin membrane addition. However, the extent to
346 which Ca^{2+} transients in oligodendrocytes depend on neuronal activity is debated⁶⁹, so this
347 remains an important question for future work.

348 Long-term stability of axo-glial units would also depend on maintaining myelin adhesion
349 at paranodes and between wraps. Does VAMP2/3-mediated exocytosis contribute to myelin
350 maintenance? Recent studies report the breakdown of myelin sheaths upon inducing the
351 genetic ablation of PLP1 or MBP during adulthood, suggesting that continuous transport of new
352 material is necessary for myelin maintenance^{70,71}. Single-cell transcriptomics of adult and aged
353 mice revealed that VAMP2 and VAMP3 continue to be the highest expressed v-SNAREs in
354 oligodendrocytes through the lifetime of a mouse⁷² (Supplementary Fig. 13b). Our current study
355 is limited by the premature death of iBot;Cnp-Cre at 2-3 weeks, but iBot expression in adult
356 oligodendrocytes may be inducible through *Pdgfra*-CreERT2 or *Plp1*-CreERT. Thus, whether
357 VAMP2 and VAMP3 also play an essential role in myelin maintenance is an interesting question
358 for future investigation.

359 Furthermore, what mechanisms power membrane expansion for PNS myelination?

360 Surprisingly, we found no evidence that PNS myelination requires VAMP1/2/3, despite strong

361 expression of iBot in Schwann cells (Supplementary Fig. 4). Earlier studies had also suggested

362 that Schwann cells and oligodendrocytes may use distinct mechanisms for membrane addition

363 during myelination. Pulse labeling of lipids and glycoproteins in PNS myelin demonstrated that

364 new myelin material appeared first at the outer wraps and then later in the inner wraps^{73,74}. In

365 contrast, pulse-labeled glycoproteins in CNS myelin appeared first at the inner wraps and later

366 at the outer wraps⁵. Thus, dedicated vesicle trafficking to the inner tongue may not be required

367 for myelination in Schwann cells. Alternatively, vesicle trafficking in Schwann cells may rely on

368 v-SNAREs insensitive to iBot cleavage. Recent RNA sequencing data from sciatic nerves

369 revealed that the expression levels of iBot-insensitive *Vamp4*, *Vamp7*, and *Vamp8* are

370 comparable to *Vamp2* in myelinating Schwann cells⁷⁵. Understanding how membrane

371 expansion differs between PNS and CNS myelination may offer insight into why myelin can

372 robustly regenerate in the PNS but not in the CNS.

373 Finally, what is the role of SNARE-mediated exocytosis in remyelination? As the loss of

374 myelin causes cumulative nerve damage in multiple sclerosis (MS), repair of myelin is hindered

375 by pre-myelinating oligodendrocytes that fail to wrap or only generate thinner, shorter sheaths^{76–}

376 ⁷⁸. Ribosome sequencing of a cuprizone-induced mouse model for MS showed that VAMP3 was

377 the only v-SNARE with increased translation in oligodendrocytes during the initial remyelination

378 phase⁷⁹ (Supplementary Fig. 13c). Moreover, 34 of the VAMP2/3-dependent substrates and

379 interactors we identified were also upregulated during initial remyelination, including MAG,

380 Nfasc, and Rab31 (Supplementary Table 6), suggesting active VAMP3-mediated exocytosis

381 during acute remyelination. However, in human MS patient samples, VAMP3 mRNA is

382 downregulated in differentiation-committed oligodendrocytes (COP) across all MS lesion types

383 relative to normal-appearing white matter, suggesting deficient VAMP3 levels in MS pathology

384 (Supplementary Fig. 13d)⁸⁰. Our findings suggest the possibility that restoring VAMP2/3-

385 mediated exocytosis in oligodendrocytes may represent a therapeutic avenue to promote
386 remyelination.

387 In summary, our findings demonstrate that VAMP2/3-mediated exocytosis drives
388 membrane addition in oligodendrocytes to power myelination, raising several questions about its
389 role and regulation in myelin plasticity, maintenance, and regeneration. Future studies of
390 VAMP2/3-mediated exocytosis in myelin will further our understanding of the diverse modes and
391 functions of regulated exocytosis in the nervous system and potentially identify specific
392 modulators of membrane expansion that act as therapeutic targets to restore white matter
393 function in neurological disorders.

394

395 **Limitations of this study and alternative interpretations**

396 One limitation of our study is that the *Cnp*-Cre transgenic mouse line has been shown to
397 mediate recombination in some classes of neurons^{81,82}. Since suppressing exocytosis in
398 neurons (e.g. synaptic vesicle release) has been shown to inhibit myelination in a cell-non-
399 autonomous manner^{68,83,84}, this raises the question of whether part of the myelination
400 phenotypes we observed could be due to “leaky” expression of Cre in neurons. However, we
401 found that only ~2% of iBot-expressing cells were neurons (NeuN+;GFP+), which is unlikely to
402 account for the magnitude of myelin defects we observed (Supplementary Fig. 2d). In support of
403 this interpretation, iBot expression in oligodendrocyte-lineage cells using two different Cre lines
404 (NG2-Cre and PDGFR α -CreERT2) caused similar myelin defects as iBot;*Cnp*-Cre, including
405 decreased white matter area and hypomyelination^{85,86}. Although we cannot exclude that iBot
406 expression outside of oligodendrocyte-lineage cells contributed to reduced mouse body weight
407 and premature death, mice mutants that are unable to assemble nodes of Ranvier in the CNS
408 exhibited premature death within 2-3 weeks of birth, consistent with the phenotype and
409 consequence of our iBot;*Cnp*-Cre mice⁵². Together with our orthogonal AAV-mediated

410 expression of dominant negative v-SNAREs (Supplementary Fig. 9), our results argue that
411 oligodendrocyte VAMP2/3-dependent exocytosis is required for myelination in the rodent CNS.

412 Our data and interpretation support a model in which VAMP2/3 directly drive membrane
413 addition but do not exclude indirect mechanisms that contribute to myelin growth. For instance,
414 we hypothesized that large vesicular structures form in iBot;Cnp-Cre myelin due to blocked
415 exocytosis (Fig. 5). An alternative explanation may be that these vesicular structures occur due
416 to loss of myelin membrane integrity caused by the depletion of membrane proteins, as
417 observed in oligodendrocytes lacking connexins and potassium channels^{87–89}. Future studies to
418 obtain a time course of vesicle appearance in vivo may distinguish between unfused vesicles in
419 transit and vacuolization. In addition, cultured iBot-expressing oligodendrocytes eventually
420 expand in membrane area (albeit at a slower rate than wild-type oligodendrocytes). Potential
421 explanations include the possibility that the cell-intrinsic upregulation of VAMP2/3 during
422 differentiation outcompetes iBot activity, leading to incomplete cleavage of VAMP2/3 at later
423 stages, or that VAMP2/3-independent mechanisms of membrane addition (such as the iBot-
424 insensitive VAMP7 discussed above) may compensate at later stages. Although our study has
425 uncovered critical roles for VAMP2/3 in membrane addition and adhesion protein localization,
426 VAMP2/3-mediated exocytosis may also regulate myelination through the proper localization of
427 cell-surface receptors necessary for growth factor signaling and/or the secretion of soluble
428 signals⁸⁶. How oligodendrocyte exocytosis mediates intercellular communication among glia and
429 neurons, and how those mechanisms may be coupled to myelin membrane expansion, remains
430 a ripe area for future investigation.

431

432 **Acknowledgements**

433 We thank current and past members of the Zuchero lab (especially Alexandra Munch, Miguel A.
434 Garcia, Graham Jones); Akiko Nishiyama, Ye Zhang, Christopher Fekete, and Lin Pan for their
435 discussion and support; Jonah Chan, Suzanne Pfeffer, and Mark von Zastrow for valuable input
436 at the beginning of the project; Klaus Nave for kindly sharing the *Cnp*-Cre mouse line; Frank
437 Pfrieger and Shane Hentges for the iBot mouse line; and Stephanie Gupton for the VAMP-
438 pHluorin plasmids. Images and diagrams were created using BioRender.com. We gratefully
439 acknowledge the Stanford University Cell Sciences Imaging Core Facility for EM data
440 collection, especially John Perrino and Ibanri Phanwar for processing and staining EM
441 samples (RRID:SCR_017787: supported by ARRA Award Number 1S10RR026780-01 from the
442 National Center for Research Resources [NCRR]. Its contents are solely the responsibility of the
443 authors and do not necessarily represent the official views of the NCRR or the National
444 Institutes of Health). We thank Ryan Leib, Fang Liu, Norah Brown, and Kratika Singhal at the
445 Vincent Coates Foundation Mass Spectrometry Laboratory, Stanford University Mass
446 Spectrometry for data collection and input on analysis (supported in part by NIH P30 CA124435
447 utilizing the Stanford Mass Spectrometry Shared Resource RRID:SCR_017801). We also thank
448 the Stanford Neuroscience Gene Vector and Virus Core for producing the adeno-associated
449 viruses (pMBP-GFP-caax and pMBP-dn-VAMP2-P2AT2A-GFP-caax) used in this study.

450 This project was supported by the NEI T32 Vision Research Training Grant
451 [T32EY027816] (ML), Toray Industries, Inc. (KT), Chancellor's Fellowship from the University of
452 Edinburgh (RGA), Stanford Medical Scientist Training Program [T32 GM007365-45] and
453 Stanford Bio-X Interdisciplinary Graduate Fellowship (MHC), Stanford Graduate Fellowship (MI),
454 the McKnight Endowment Fund for Neuroscience (JBZ), the Stanford Bio-X Interdisciplinary
455 Initiatives Seed Grants Program (IIP) [R9-24] (JBZ), the National Multiple Sclerosis Society
456 Harry Weaver Neuroscience Scholar Award (JBZ), the Beckman Young Investigator Award
457 (JBZ), the Myra Reinhard Family Foundation (JBZ), and the Koret Family Foundation (JBZ). ML

458 is a Merck-sponsored fellow of the Helen Hay Whitney Foundation and a Wu Tsai
459 Neurosciences Interdisciplinary Scholar.

460

461 **Author Contributions**

462 JBZ, KT, and ML conceived of the project. ML and KT designed, performed, and analyzed all
463 experiments, with the following exceptions. RGA designed, performed, and analyzed the live
464 imaging in zebrafish in Fig. 2d-f. MHC produced the reagents and optimized the protocol for the
465 co-culture experiments in Fig. 4a-d. KW harvested the sciatic nerves in Supplementary Fig. 4.
466 MI optimized the transfection protocol and initial rounds of pHluorin imaging for Fig. 2a-c. HK
467 optimized the methodology for AAV-mediated sparse labeling of oligodendrocytes in the spinal
468 cord for Supplementary Fig. 9f. ML, KT, and JBZ wrote the manuscript. All authors reviewed
469 and gave feedback on the manuscript.

470

471 **Competing Interests**

472 KT is an employee of Toray Industries, Inc. The remaining authors declare no competing
473 interests.

474

475 **Materials and Methods**

476 **Mouse experiments**

477 All rodent procedures were approved by Stanford University's Administrative Panel on
478 Laboratory Animal Care (APLAC) and followed the National Institutes of Health guidelines. Mice
479 were group-housed under standard 12:12 light-dark cycles with free access to food and water,
480 and disposable bedding in plastic cages. All mice were regularly monitored by veterinary and
481 animal care staff and were not involved in prior procedures or testing. Sprague-Dawley rats and
482 C57BL/6 mice were ordered from Charles River Laboratories. Both male and female mice were
483 studied for all in vivo experiments.

484 The transgenic iBot mice line, which contains the floxed-STOP site upstream of the
485 *Clostridium botulinum* neurotoxin light chain followed by an IRES-GFP, was kindly gifted by Dr.
486 Frank Pfrieger (University of Strasbourg) and Dr. Shane Hentges (Colorado State University).
487 The previously created *Cnp1*-Cre mouse line³¹ was a kind gift from Dr. Klaus Nave (Max Planck
488 Institute for Experimental Medicine) and was maintained as heterozygotes by breeding with
489 C57BL/6 mice. Males and females were pooled for analysis because no sexual dimorphism for
490 myelination defects were observed after the conditional expression of iBot.
491 To establish new conditional mouse lines, heterozygous iBot/+ mice were crossed with
492 heterozygous *Cnp1*-Cre/+ mice. Offspring were genotyped using the following primers: Cre
493 allele (forward): 5'-GCTAAGTGCCTCTCTACACCTGC-3', (reverse): 5'-
494 GGAAAATGCTTCTGTCCGTTG-3'; eGFP (forward): 5'- CGTGTCCACTCGAAGAGTT-3',
495 (reverse): 5'- GGCAAAACTTCATTGCATT -3'. For further reference, *Cnp1*-Cre/+;iBot/+ is
496 referred to as iBot;*Cnp*-Cre.

497 For histological analysis, mice were anesthetized by injecting a cocktail of ketamine (100
498 mg/kg) and xylazine (20 mg/kg). The animals were then transcardially perfused with PBS and
499 then with 4% paraformaldehyde (PFA) (diluted into 1xPBS from 16% PFA, Electron Microscopy
500 Sciences), followed by post-fixation with 4% PFA for immunohistochemistry or Karlsson and
501 Schultz (KS) buffer⁹⁰ for transmission electron microscopy.

502

503 **Antibodies for immunostaining**

504 The following primary antibodies were used at the specified dilution: rat anti-MBP (Abcam
505 ab7349, 1:100 for tissue, 1:400 for cultured cells; knockout-validated³⁵, rabbit anti-Olig2 (Sigma
506 AB9610, 1:1000), mouse anti-CC1 (Oncogene OP80, 1:100), mouse anti-NeuN (Clone A60,
507 EMD Millipore MAB377, 1:1000), rabbit anti-Caspr (Abcam ab34151, 1:1000), mouse anti-AnkG
508 (Sigma MABN466, 1:500), mouse anti-NF200 (Sigma N0142, 1:100), chicken anti-GFP (Abcam
509 13970, 1:1000), mouse-anti MAG clone 513 (EMD Millipore, 1:20 for surface staining, 1:100 for

510 total MAG), and mouse anti-galactosylceramide (GalCer) hybridoma (Emery and Dugas, 2013,
511 1:50).

512 The following secondary antibodies were used at a 1:1000 dilution for tissue and cell
513 staining: donkey anti-rat Alexa Fluor 594 (Thermo Scientific A-21209), goat anti-rat Alexa Fluor
514 647 (Thermo Scientific A-21247), donkey anti-rabbit Alexa Fluor 647 (Thermo Scientific A-
515 31573), donkey anti-mouse Alexa Fluor 594 (Thermo Scientific A-21203), donkey anti-mouse
516 Alexa Fluor 647 (Thermo Scientific A-31571), and goat anti-chicken Alexa Fluor 488 (Thermo
517 Scientific A-32931).

518

519 **RNAscope for fluorescent *in situ* hybridization**

520 The protocols for sample preparation, probe hybridization, and imaging were adapted from
521 manufacturer guidelines for the RNAscope HiPlex8 Reagent Kit (Advanced Cell Diagnostics,
522 #324100). Briefly, freshly dissected spinal cords from P10 mice were embedded and frozen in
523 O.C.T. The frozen tissues were sliced into 20- μ m thin cross sections using a cryostat (CM3050
524 S, Leica Microsystems), dried onto Superfrost Plus slides (VWR) at -20°C, and stored at -80°C
525 without fixation.

526 Prior to probe hybridization, samples were fixed in 4% PFA for 60 min at RT and then
527 dehydrated through washes of 50%, 70%, and 100% ethanol (v/v in water) for 5 minutes each.
528 The final 100% ethanol wash was allowed to air dry for 5 min at RT. Samples were treated with
529 Protease IV reagent for 30 min at RT and then washed twice with 2-min incubations in 1xPBS.
530 All target probes were ordered from Advanced Cell Diagnostics, unless otherwise indicated.
531 Samples were incubated with pooled target probes against *Mus musculus* *Olig2*, *Pdgfra*,
532 *Vamp2*, *Aspa*, and *Vamp3* mRNA (#447091-T1, #480661-T2, #573151-T3, #425891-T5, and
533 #573161-T6, respectively) for 2 hrs at 40°C. Unbound probes were washed off with 1xPBS in
534 two 2-min incubations. For the first round of target probe visualization, probes were amplified
535 with 30-min incubations at 40°C in RNAscope HiPlex solutions Amp1-3 with two 2-min washes.

536 After the final washes, selected secondary fluorescent probes (RNAscope Fluoro T1-T3)
537 targeting *Olig2*, *Pdgfra* and *Vamp2* were incubated with the sample at 40°C for 15 min. Excess
538 probe was washed off with two 2-min washes and counterstained with DAPI for 30 sec at RT.
539 Samples were treated with ProLong Gold Antifade Mountant (Life Technologies #10144),
540 covered with coverslips, and imaged by confocal microscopy (Zeiss LSM 880) with 20x/NA0.80
541 objective lens. Slides were stored in the dark at 4°C overnight.

542 Prior to the second round of probe hybridization, the RNAscope Fluoro T1-T3
543 fluorophores were cleaved according to manufacturer's protocols. In summary, the slide was
544 incubated in 4xSSC (RNAscope kit) at RT for 30 min until the coverslips detached without force.
545 The samples were then washed again with 4x SSC and then treated with freshly diluted 10%
546 cleaving solution in 4x SSC (RNAscope kit) for 15 min at RT, and then washed with two 2-min
547 incubations in 0.5% Tween-20 in 1x PBS at RT. Another round of 10% cleaving solution was
548 incubated on the samples for 15 min at RT and washed. The RNAscope Fluoro probes T5-T6
549 were then incubated at 40°C for 15 min to anneal to *Aspa* and *Vamp3* mRNA. The samples
550 were then washed, mounted, and imaged as described for the first round of probes. RNAscope
551 HiPlex Registration software (Advanced Cell Diagnostics) was used to align images between
552 the first and second round of probe hybridization with DAPI images as reference. Background
553 subtraction and quantification of signal intensity was done by ImageJ (NIH).

554

555 **Immunohistochemistry**

556 Tissue for spinal cords, brains, or sciatic nerves were dissected and fixed in cold 4% PFA for 3
557 hours on ice, rinsed in cold PBS, and immersed in 30% sucrose at 4°C overnight. Samples were
558 embedded in O.C.T. (Tissue-Tek) and sliced into 30-µm thin cross sections or 30-µm
559 longitudinal sections for the spinal cord, 30-µm sagittal sections for brains using a cryostat
560 (CM3050 S, Leica Microsystems). Tissue slices were air dried on Superfrost Plus slides (VWR)
561 and frozen at -80°C. After drying, borders were drawn between samples on the same slide with

562 a Super PAP Pen (ThermoScientific 008899). For fluorescent staining, samples were
563 permeabilized with PBST (0.1% Triton X-100 in 1xPBS) for 5 min at RT, blocked with 10%
564 donkey serum (abcam #ab7475) for goat-hosted primary antibodies and normal goat serum
565 (ThermoScientific #PCN5600) for other antibodies in PBST at RT for 20 min, rinsed with 1%
566 donkey or goat serum in PBST, and incubated in primary antibody solution (dilutions specified
567 above) containing 1% goat or donkey serum at 4°C overnight. The following day primary
568 antibody was rinsed off with PBST for a 1-min wash, followed by three 20-min washes. Samples
569 were then incubated with secondary antibody solutions in 1% goat or donkey serum in PBST for
570 2 hr at RT. Excess secondary solution was washed off with one quick 1-min rinse in PBST,
571 followed by three 20-min washes. Lastly, samples were washed with PBS and then mounted in
572 Vectashield with DAPI (Vector, H-1200) with a coverslip.

573

574 **Imaging and quantification of immunohistochemistry on spinal cord cross sections**

575 Fixed spinal cord cross sections were imaged using a Zeiss LSM 800 laser scanning confocal
576 microscope with the Plan-Apochromat 10x objective. Images were acquired using the Zeiss Zen
577 Blue software and quantified with the researcher blinded to the genotype. 4-5 animals per
578 genotype were analyzed and the N number was specified in the Figures and Figure Legends.
579 For quantification of white matter area (MBP) and axonal abundance (NF200), the maximum
580 intensity projection of a z-stack containing 6 slices with a z-step of 5 μm was analyzed using Fiji
581 (ImageJ, NIH) through batch processing. First, the total area of the sample was measured
582 through Percentile thresholding of the DAPI stain. Then, the area of MBP (2° rat AlexaFluor-
583 594) or NF200 (2° mouse AlexaFluor-647) staining was determined by Otsu thresholding and
584 divided by the total area.

585 For quantification of CC1, Olig2, NeuN, and GFP-positive cells, the maximum intensity
586 projection of a z-stack containing 6 slices with a z-step of 5 μm was analyzed using Fiji through

587 batch processing. The threshold was set at 2.5x the mean intensity, which was a stringent cutoff
588 that excluded all signal from the secondary antibody staining alone: CC1 (2° mouse Alexa Fluor
589 594), Olig2 (2° rabbit Alexa Fluor 647), NeuN (2° mouse Alexa Fluor 594), and GFP (2° chicken
590 Alexa Fluor 488). The ROIs for cells of each marker (total) were detected using the “Analyze
591 Particles” function with a binary thresholding of 2.5x the mean intensity and an area range of
592 100-2000 μm . Then, then number of cells with signal in a different channel were measured by a
593 binary thresholding of 2.5x the mean intensity and divided by the total.

594

595 **Electron microscopic analysis**

596 Tissue samples for transmission electron microscopy (TEM) were prepared as previously
597 described³⁵ and then submitted to the Stanford Cell Science Imaging Facility for serial
598 dehydration, embedding, and sectioning. Images were acquired on a JEOL 1400 TEM.
599 Spinal cord and sciatic nerve samples were prepared as previously described⁹². Briefly, animals
600 were anesthetized and perfused with PBS and 4% PFA. Tissues were immediately and carefully
601 dissected out and post-fixed in cold KS-fixative at 4°C, treated with 2% osmium tetroxide in cold
602 Karlsson-Schultz fixative, serially dehydrated, and embedded in EmBed812 (EMS CAT#14120).
603 Spinal cord samples were then sectioned at 1 μm and stained with Toluidine Blue to locate the
604 dorsal column. 75-90 nm sections were acquired onto formvar/carbon- coated 50 mesh copper
605 grids, stained for 30 seconds in 3% uranyl acetate in 50% acetone followed by staining for 3 min
606 in 0.2% lead citrate. Images were acquired with a JEOL 1400 TEM.

607 All imaging and analysis were conducted blinded to the genotype. The myelination
608 status of each axon was classified into one of three categories: 1) unmyelinated, 2) partially/fully
609 ensheathed (defined as oligodendrocyte contact with at least half the circumference of an axon),
610 and 3) wrapped/wrapping (defined as encircled by 2 or more compacted layers of electron-
611 dense lines [“major dense lines”]). Approximately 500-800 axons from control samples and 900-

612 1200 from iBot; *Cnp*-Cre samples were categorized over an area of 520 μm^2 per animal from 2
613 nonadjacent fields.

614

615 **Purification and culturing of cells**

616 Primary oligodendrocyte precursors were purified by immunopanning from P5-P7 Sprague
617 Dawley rat and P6-P7 transgenic mouse brains as previously described^{38,93}. oligodendrocyte
618 precursors were typically seeded at a density of 150,000-250,000 cells/10-cm dish and allowed
619 to recover for 4 days in culture before lifting cells via trypsinization and distributing for
620 transfection, proliferation, or differentiation assays. All plasticware for culturing oligodendrocyte
621 precursors were coated with 0.01 mg/ml poly-D-lysine hydrobromide (PDL, Sigma P6407)
622 resuspended in water. All glass coverslips for culturing oligodendrocyte precursors were coated
623 with 0.01 mg/ml PDL, which was first resuspended at 100x in 150 mM boric acid pH 8.4 (PDL-
624 borate).

625 To proliferate primary oligodendrocyte precursors, cells were cultured in serum-free
626 defined media (DMEM-SATO base medium) supplemented with 4.2 $\mu\text{g}/\text{ml}$ forskolin (Sigma-
627 Aldrich, Cat#F6886), 10 ng/ml PDGF (Peprotech, Cat#100-13A), 10 ng/ml CNTF (Peprotech,
628 Cat#450-02), and 1 ng/ml neurotrophin-3 (NT-3; Peprotech, Cat#450-03) at 37°C with 10%
629 CO₂. To induce differentiation, cells were switched to DMEM-SATO base media containing
630 4.2 $\mu\text{g}/\text{ml}$ forskolin (Sigma-Aldrich, Cat#F6886), 10 ng/ml CNTF (Peprotech, Cat#450-02),
631 40 ng/ml thyroid hormone (T3; Sigma-Aldrich, Cat#T6397), and 1x NS21-MAX (R&D Systems
632 AR008).

633

634 **Cloning of pH-sensitive exocytosis reporters (VAMP2/3-pHluorin)**

635 For live imaging of exocytosis in cultured oligodendrocyte precursors/oligodendrocytes, all
636 reporter constructs contained super ecliptic pHluorin (referred to as pHluorin). Plasmids

637 containing murine VAMP2-pHluorin and VAMP3-pHluorin were gifts from Dr. Stephanie Gupton
638 (UNC Chapel Hill). VAMP2- and VAMP3-pHluorin were cloned into a pAAV vector backbone
639 with a CMV promoter. The following plasmids were used to transfect rat oligodendrocyte
640 precursors: CMV promoter-driven VAMP2-pHluorin, CMV promoter-driven VAMP3-pHluorin,
641 and CMV promoter-driven mRuby3-caax (a membrane-bound marker).

642

643 **Cloning of dominant-negative VAMP proteins (dn-VAMP2/3)**

644 The dn-VAMP2/3 constructs were assembled by InFusion cloning (Takara Bio) to anneal three
645 DNA fragments in a pAAV vector backbone. The parent plasmid (pBZ-281), which contains the
646 MBP promoter in a pAAV vector backbone, was linearized using the BamHI and BstEII
647 restriction sites. The first fragment contained the cytosolic domain of either VAMP2 (aa 1-94) or
648 VAMP3 (aa 1-81), and was cloned from the VAMP-pHluorin constructs provided by Dr.
649 Stephanie Gupton. The second fragment contained the P2AT2A sequence, cloned from
650 AddGene #87828⁹⁴, to encode a tandem self-cleaving peptide downstream of dn-VAMPs. The
651 third fragment contained a GFP-caax cloned from pBZ-282. The final DNA plasmid contains
652 MBP promoter – dnVAMP – P2AT2A – GFP-caax.

653

654 **Transfection of oligodendrocyte precursors**

655 Proliferating rat oligodendrocyte precursors were lifted from tissue culture dishes, and
656 centrifuged at 90xg for 10 min. 250,000 oligodendrocyte precursors were gently resuspended
657 into 20 µl of nucleofector solution (Lonza P3 Primary Cell 4D-Nucleofector V4XP-3032) with
658 transfection-grade, endotoxin-free DNA prepared at 400 ng/µl using Qiagen Plasmid Plus Midi
659 Kit (Qiagen 12945). For live-cell imaging of exocytosis, 300 ng of VAMP-pHluorin and 300 ng of
660 mRuby-caax plasmids were co-transfected. For expression of dominant negative-VAMP
661 proteins, 400 ng of GFP-caax, dn-VAMP2-P2AT2A-GFP-caax, or dn-VAMP3-P2AT2A-GFP-

662 caax was used. In the co-transfection of dn-VAMP2 and dn-VAMP3, 200 ng of dn-VAMP2-
663 P2AT2A-GFP-caax was combined with 200 ng of dn-VAMP3-P2AT2A-GFP-caax for 400 ng
664 DNA total. Cells were then electroporated in a Lonza 4D-Nucleofector X Unit (AAF-1003X)
665 assembled with a 4D-Nucleofector Core Unit (AAF-1002B) with pulse code DC-218.
666 Electroporated cells rested for 10 min at RT before resuspension in antibiotic-free DMEM-SATO
667 base media supplemented with proliferation or differentiation factors.
668 Each batch of 250,000 cells was distributed into 4 35-mm dishes with No. 1.5 glass coverslips
669 (MatTek Corporation P35G-1.5-20-C) coated with PDL-borate for differentiation timepoints and
670 technical replicates. Each dish was half-fed with freshly supplemented DMEM-SATO media
671 every two days. For live-cell imaging of cells transfected with pHluorin, media was replaced with
672 FluoroBrite DMEM-SATO (made with Fisher Scientific A1896701) supplemented with
673 differentiation factors for 2 hours at 37°C, 10% CO₂ before imaging.
674 For imaging of cells transfected with dn-VAMP constructs, cell media was removed, washed
675 with 1xPBS, and fixed with 4% PFA for 15 min at RT. No further antibody staining was
676 necessary to visualize GFP-caax. See “Image analysis of immunofluorescence of primary
677 oligodendrocytes and transfected oligodendrocytes” below.

678

679 **Live-cell imaging of exocytosis in primary oligodendrocyte-lineage cells**

680 Time-lapse imaging of exocytic events was performed on a Zeiss Axio Observer Z1 inverted
681 microscope equipped with a Zeiss Axiocam 506 monochrome 6-megapixel camera, a stage top
682 incubator (Okolab, H301-K-Frame) set to 37°C, and a digital gas blender (Okolab, CO₂-UNIT-
683 3L) set to 10% CO₂ during image acquisition. Samples were imaged with a Plan-Apo 63x/1.40
684 Oil objective using widefield epifluorescence with a 12V halogen lamp. Due to a high baseline
685 level of VAMP-pHluorin intensity on the cell surface, cells were subjected to initial “pre-
686 bleaching” consisting of 20 50-ms exposure at a 250-ms frame rate. Then, time-lapse

687 sequences for exocytotic events were captured using an acquisition rate of 250 ms/frame for 1
688 min using the Zen Blue software. Images were viewed using Fiji/ImageJ software.

689

690 **Analysis of exocytotic events in primary oligodendrocyte cultures**

691 Exocytotic events were quantified using a modified workflow adapted from the analysis pipeline
692 published by the Gupton lab^{25,26,95}, which defines exocytotic events as non-motile Gaussian-
693 shaped puncta with transient intensity increases that reach four standard deviations above the
694 local background intensity. The analysis was performed blinded to the timepoint of
695 differentiation.

696 The total frequency and positions of exocytotic events within individual cells was
697 extracted using published software, and then manually inspected. The soma for each cell was
698 determined by thresholding the first frame of the pHluorin time-lapse to capture an ROI for the
699 cell body, where baseline VAMP-pHluorin fluorescence was highest. All events with x,y
700 positions within the cell body ROI were designated as soma, while others were designated as
701 processes/sheet.

702 The built-in parameters for predicting exocytotic fusion modes modeled on neuronal
703 studies did not properly distinguish fusion modes for our events measured in oligodendrocytes.
704 We instead assigned fusion modes in oligodendrocytes using the fluorescence decay of the
705 event versus its bordering membrane, based on published observations that full-vesicle fusion
706 events exhibit radial fluorescence spreading while kiss-and-run events do not. For each event,
707 the intensity was determined for a circular ROI with a radius of 250 nm ($\text{intensity}^{\text{center}}$) and a
708 radius of 500 nm ($\text{intensity}^{\text{border+center}}$) over time. We calculated the intensity of the bordering
709 membrane as ($\text{intensity}^{\text{border+center}} - \text{intensity}^{\text{center}}$). Then, we aligned the fluorescent time traces of
710 each event by reassigning the maximum $\text{intensity}^{\text{center}}$ to t_0 . We fit intensity over time to an
711 exponential decay model using RStudio scripts developed in the Gupton lab to determine the
712 half-life of fluorescence for time traces of $\text{intensity}^{\text{center}}$ ($t_{1/2}^{\text{center}}$) and of $\text{intensity}^{\text{border}}$ ($t_{1/2}^{\text{border}}$). We

713 reasoned that a full vesicle fusion event with radial fluorescence spreading would exhibit a
714 $t_{1/2}^{\text{border}}$ that is proportional to its $t_{1/2}^{\text{center}}$, while a kiss-and-run event would exhibit a rapid border
715 decay with a $t_{1/2}^{\text{border}}$ that is relatively small. Therefore, we calculated a border decay ratio
716 ($t_{1/2}^{\text{border}}/t_{1/2}^{\text{center}}$) for each event. The distribution of border decay ratios for all events clustered
717 into two peaks, reflecting a population of events with radial fluorescence spreading centered
718 around (0.89 ± 0.14) and events without. Events with border decay ratios within 3 standard
719 deviations of (0.89 ± 0.14) were designated as full-vesicle fusion events, and events with ratios
720 less than 3 standard deviations of (0.89 ± 0.14) were designated as kiss-and-run.

721

722 **Live imaging of oligodendrocyte exocytosis in zebrafish**

723 All zebrafish were maintained under standard conditions at the University of Edinburgh with
724 approval from the UK Home Office according to its regulations.

725 To generate VAMP2/3-pHluorin constructs to image exocytosis in zebrafish, we first
726 cloned zebrafish *vamp2/3* cDNA from a pool of total cDNA from 5dpf zebrafish of the AB strain,
727 by carrying out high-fidelity PCR using Phusion DNA polymerase and primers 5'-
728 AACCCGGTTCAAAATGTCTGCC-3' (*vamp2* F, start codon underlined), 5'-
729 CGCTTTAGGTGCTGAAGTACACAATG-3' (*vamp2* R, stop codon underlined), 5'-
730 GTCCGCTCCAGGTGCAGATG-3' (*vamp3* F, start codon underlined, completed through
731 subsequent cloning steps), 5'-CACAACCAGACTCTGTGCCACTT-3' (*vamp3* R, stop codon
732 underlined). PCR products were TOPO-cloned (Zero Blunt™ TOPO™ PCR Cloning Kit, Thermo
733 Fisher Scientific) into pCRII vector backbones. We then recombined *vamp2/3* cDNA including a
734 Kozak sequence upstream of the start codon, and excluding the stop codons, into Gateway-
735 compatible middle-entry vectors to use with the tol2kit. To do this, we used Phusion and primers
736 5'-GGGGACAAGTTGTACAAAAAAGCAGGCTGCCACCATGTCTGCCCCAGGCCGGAGC-3'
737 (*attB1-vamp2*, Kozak and start codon underlined), 5'-
738 GGGGACCACTTGTACAAGAAAGCTGGGTGGTGCTGAAGTACACAATGATTATAATG-3'

739 (attB2R-vamp2-nostop, cDNA underlined), 5'-
740 **GGGGACAAGTTGTACAAAAAAGCAGGCTGCCACCATGTCCGCTCCAGGTGCAG-3'** (attB1-
741 vamp3, Kozak and start codon underlined), and 5'-
742 **GGGGACCACTTTGTACAAGAAAGCTGGGTTACTGCGACCAGATGACAATGATG-3'**
743 (attB2R-vamp3-nostop, cDNA underlined) to amplify attB-vamp2/3 PCR products from the
744 pCRII vectors, and recombined these with pDONR221 using BP Clonase II to generate pME-
745 VAMP2/3-nostop. We then generated a Gateway-compatible 3'-entry vector containing 4
746 tandem copies of super ecliptic pHluorin, using pcDNA3-SypHluorin4x (Addgene #37005)⁹⁶ as a
747 template for PCR and primers 5'-
748 **GGGGACAGCTTCTTGTACAAAGTGGTCCCCATGGATCTAGCCACCATGG-3'** (attB2-
749 (linker)4xpHluorin F, linker region underlined and pHluorin coding sequence in bold) and 5'-
750 **GGGGACAACTTTGTATAATAAAAGTTTTACGATAAGCTTGATCGAGCTCCA-3'** (attB3R-
751 4xpHluorin R, terminal linker underlined and stop codon in bold) to amplify an attB-containing
752 product, and recombining it with pDONRP2RP3 using BP clonase II. This plasmid maintains the
753 reading frame when recombined with the coding sequences in pME-vamp2/3. All entry vectors
754 were verified by Sanger sequencing. To generate final Tol2 expression vectors, a 5'-entry
755 plasmid containing 10 upstream activating sequence (UAS) repeats (plasmid #327 from the
756 tol2kit), the vamp2/3 middle-entry plasmids and the 3'-4xpHluorin plasmids were recombined
757 with a destination vector pDestTol2pA2 from the tol2kit in a LR reaction using LR Clonase II
758 Plus. All expression vectors were verified by diagnostic restriction digest and colony PCR.
759 To express the vectors 10UAS:vamp2/3-4xpHluorin (VAMP2/3-pHluorin) in individual
760 oligodendrocyte-lineage cells, we injected 1-5pg of vector DNA with 25pg of tol2 transposase
761 mRNA into one-cell stage eggs of the transgenic lines Tg(olig1:KalTA4)⁹⁷ or
762 Tg(claudinK:Gal4)⁹⁸. This approach leads to sparse expression in olig1+ cells
763 (OPC/premyelinating stage) or claudinK+ cells (early myelinating/mature OL stage) since the
764 transcription factors KalTA4/Gal4 specifically recognize the UAS repeats and drive expression

765 of the downstream genes in a mosaic manner. The morphology of each cell was used to
766 distinguish between stages: OPCs/premyelinating OLs had many ramified processes and no
767 myelin sheaths; early OLs had many (average 25) but short sheaths (5-11 μ m); mature OLs had
768 on average 11-12 sheaths of longer length (19-34 μ m).

769 For live-imaging of VAMP2/3-pHluorin, 4-5dpf larvae were first pre-screened for isolated
770 cells of interest (typically only one cell per animal was imaged) and then anaesthetised with
771 tricaine and mounted on their sides in a drop of 1.5% low-melting point agarose on a glass-
772 bottom petri dish. Larvae were imaged with a Zeiss LSM880 confocal with Airyscan in Fast
773 mode and a Zeiss W Plan-Apochromat 20x/1.0 NA water-dipping objective, and a 488nm laser.
774 We used 3-6.5X zoom and acquired 500-1500 (X) x 110-390 (Y) pixels (6-15 pixels/ μ m) in a
775 small z-stack (7-16 z-slices, 1.2-2.1 μ m z-step), sampling the entire cell of interest repeatedly at
776 a frequency of 0.6-2Hz (mean 1Hz), for 8-26 minutes. To increase the signal-to-noise ratio of
777 pHluorin-reported exocytosis events, we bleached the baseline level of VAMP2/3-pHluorin at
778 the cell's membrane by setting the laser power to 100% during the first ~30-45 seconds of
779 acquisition (we excluded the bleaching period from image analysis).

780 For image analysis, we used Fiji/ImageJ⁹⁹ and Python scripts for most processing. Time-
781 lapses were first pre-processed by bleach-correction with exponential curve fitting and
782 registration, where needed, using the TurboReg plugin¹⁰⁰ with rigid transformation. Putative
783 pHluorin events were identified in the pre-processed timelapse, aligned to a $\Delta F/F_{avg}$ timelapse
784 (proportional change over the all-time average intensity) to aid discrimination of the event start.
785 For each potential event, we defined its region of interest using Fiji's Wand tool to select the
786 maximum intensity pixel and connected region over a third of the maximum fluorescence
787 intensity. We used this ROI to determine the increase in fluorescence intensity relative to the
788 baseline (F0), defined as the mean intensity in the four frames preceding the event, and only
789 considered events in which fluorescence increased at least to four standard deviations above

790 the baseline, persisting in at least 3 consecutive frames (~3 s). We excluded from further
791 analysis events that showed significant motion throughout their duration (but included events
792 with limited displacement). Collection of these parameters was automated using custom written
793 ImageJ macros, but all events were manually inspected.

794 **Immunofluorescence of primary mouse oligodendrocytes**

795 Primary oligodendrocyte precursors from iBot;Cnp-Cre and control littermate mice were
796 harvested and cultured as described above in “Purification and Culturing of Cells”. Cells were
797 seeded onto 12-mm glass coverslips (Carolina Biological Supply No. 63-3029) at a density of
798 10,000 cells/coverslip in differentiation media.

799 At the specified day of differentiation, cell media was removed and replaced with one
800 wash of 1xPBS. Cells were then treated with 4% PFA for 15 min at RT, followed by three
801 washes with 1xPBS and permeabilization in 0.1% Triton X-100 in PBS for 3 min at RT. Prior to
802 staining, cells were incubated in a blocking solution of 3% BSA in PBS for 20 min at RT. Then,
803 primary antibodies (mouse anti-GalCer hybridoma and rat anti-MBP) were added in a 3% BSA
804 solution for overnight incubation at 4°C. On the following day, the primary antibody solution was
805 rinsed off with three washes of PBS, and then incubated with secondary antibodies (anti-mouse
806 AlexaFluor 594 and anti-rat AlexaFluor 647) in 3% BSA for 1 hr at RT. After one wash with PBS,
807 CellMask Blue stain (1:1000) was incubated to stain all cells for 10 min at RT, followed by three
808 additional rounds of washing with PBS. Stained cells were mounted onto microscope slides
809 (Fisher Scientific 12-550-143) in Fluoromount G (SouthernBioTech, 0100-20).

810 Cells were imaged by widefield epifluorescence with a Zeiss Axio Observer Z1 using the
811 Plan-Apo 20x/0.8 NA objective for membrane area quantification and using the Plan-Apo
812 63x/1.40 Oil objective for visualizing vesicle accumulation in cultured cells. Images were
813 acquired blinded to the genotype with identical illumination and acquisition conditions per
814 biological replicate.

815

816 **Image analysis of immunofluorescence of primary oligodendrocytes and transfected**
817 **oligodendrocytes**

818 Images were analyzed through batch processing in Fiji/Image J⁹⁹. For primary oligodendrocytes,
819 data from 2-4 replicate coverslips per biological replicate were averaged. Cells from 5 biological
820 replicates (n = 5 pairs of control and iBot;Cnp-Cre pups) were analyzed.

821 To quantify the percentage of cells expressing a specific marker (Supplementary Fig. 6a-
822 d), the CellMask Blue image was first thresholded against unstained samples to create cell body
823 ROIs for the total number of cells per image. Then, the GFP, GalCer, and MBP images were
824 separately thresholded against their respective secondary antibody controls to make binary
825 masks. The number of cell body ROIs with positive signal in each channel was quantified.

826 To quantify the membrane area of primary oligodendrocytes (Fig. 3c), cells were
827 manually segmented and thresholded in the GalCer channel to create a refined ROI selection
828 that closely outlined the membrane border of each cell. The area of the refined ROI was then
829 measured (See Supplementary Fig. 6e).

830 To quantify the membrane area and mean expression of dn-VAMP-transfected
831 oligodendrocytes (Supplementary Fig. 9b-d), cells were manually segmented and thresholded in
832 the GFP channel to create a refined ROI selection that closely outlined the membrane border of
833 each cell for the area and the mean GFP intensity to compare expression levels.

834

835 **Measuring cell survival**

836 Primary oligodendrocyte precursors from iBot;Cnp-Cre and control littermate mice were
837 harvested and cultured as described above in “Purification and Culturing of Cells”. Cells were
838 re-seeded onto 24-well plates (Fisher Scientific 08-772-1) at a density of 5,000 cells/well in
839 media with proliferation factors. After 48 hours of recovery, fresh media with proliferation and
840 differentiation factors was added, and the plates were transferred to an IncuCyte ZOOM live cell

841 imaging system (Essen Bioscience) set at 37°C, 10% CO₂ and imaged every 12 hours by phase
842 contrast with the 20x objective in 9 different regions per well. Half the media was replaced in
843 each well every 48 hours. After 5 days, ethidium homodimer-1 (EthD-1, Thermo Fisher Scientific
844 E1169) was added to the wells at a 1:1000 dilution and incubated for 30 min before imaging for
845 phase contrast, green, and red fluorescence.

846 Images were analyzed blinded to the genotype through batch processing in Fiji/Image J.
847 Phase contrast images were inverted and thresholded to create ROIs using the “Analyze
848 Particles” function with an area range of 100-5000 μm^2 and a circularity of 0.05-1.00, recording
849 the number of total cells per image. Images for red fluorescence were thresholded against
850 unstained cells, and the intensity above threshold for each ROI in the red channel was
851 measured. ROIs with positive intensity in the red channel were counted as dead cells, and the
852 number of live cells was calculated by subtracting the dead cells from the total. 9 images per
853 well were used to calculate the total and percentage for each biological replicate.

854

855 **Myelinating co-cultures with RGCs**

856 Our protocol for myelinating co-cultures with CNS-derived axons was adapted from previous
857 publications^{39,40} with minor modifications. Dissection and dissociation of retina, immunopanning
858 for retinal ganglion cells (RGCs) with anti-Thy 1.1, and media composition with growth factor
859 supplementation was performed as previously published.

860 To create re-aggregates, we seeded freshly harvested RGCs into UV-sterilized PCR
861 tubes (Fisherbrand 14-230-215) at a density of 10,000 cells/100 μl of media. After 24 hours of
862 recovery, we half-fed each tube by exchanging 50 μl of media with freshly supplemented growth
863 factors. After 48 hours of recovery, we transferred the 100 μl -cell suspension containing “re-
864 aggregated” clumps of RGCs from each tube onto a PDL-borate coated 12-mm glass coverslip

865 situated in a 24-well plate. Each well was half-fed with fresh growth factors every 72-96 hours.

866 After 10-14 days, the RGC re-aggregates formed dense beds of radially protruding axons.

867 Mouse oligodendrocyte precursors freshly harvested from P5-P7 brains were seeded

868 directly onto RGCs at a density of 40,000-50,000 cells/well. After 24 hours, 1 μ m of the gamma-

869 secretase inhibitor DAPT (Calbiochem Cat. No. 565784) was added to each well to promote

870 ensheathment. The co-cultures were fed every 48-72 hours and fixed after 7 days for

871 immunofluorescence as previously described in published protocols. Fixed co-cultures were

872 stained with rat anti-MBP and mouse anti-NF200, followed by anti-rat AlexaFluor 594 and anti-

873 mouse AlexaFluor 647.

874 Image acquisition and sheath analysis for axon-oligodendrocyte co-cultures

875 Axon-oligodendrocyte co-cultures were imaged by widefield epifluorescence with a Zeiss Axio

876 Observer Z1 using the Plan-Apo 20x/0.8 NA objective using 3x3 tiling with 10% overlap on

877 ZenBlue software. Images were acquired blinded to the genotype of the oligodendrocytes.

878 Regions with dense axon signal (NF200 staining) adjacent to the re-aggregated cell bodies

879 were chosen. For all images acquired, the axon density ranged from 16-20% of the total field of

880 view.

881 Images were analyzed blinded to the genotype through batch processing in Fiji/Image J.

882 Cells from 4 biological replicates (n = 4 pairs of control and iBot;Cnp-Cre pups) were analyzed.

883 First, individual oligodendrocytes were manually segmented in the MBP channel. For each

884 segmented region, linear MBP tracks were manually traced and saved as line ROIs (see

885 Supplementary Fig. 8). The number of sheaths was quantified as the number of line ROIs per

886 oligodendrocyte, and the length of sheaths was measured as the lengths of the line ROIs. For

887 regions where sheaths of two oligodendrocyte cell bodies overlapped, the total number of

888 sheaths were divided by two to obtain an average sheath number per cell body. The quantified

889 number of sheaths per cell may be underestimated in the control samples due to the limited

resolution of clustered sheaths. In each biological replicate, 34-48 individual oligodendrocytes were analyzed.

892

893 Quantification of sheath length in deep cortical layers

894 Fixed sagittal brain slices were imaged using a Zeiss LSM 800 laser scanning confocal as
895 described in “Imaging and quantification of immunohistochemical staining”. For sheath length
896 analysis, we focused on the deep cortical layers above the cingulate cortex, where myelination
897 is sparse during the second postnatal week⁴¹. Discrete, linear MBP signal were manually traced
898 blinded to the genotype of the sample. For each biological replicate, 176-440 individual sheaths
899 were traced in Fiji/ImageJ and analyzed.

900

901 Quantification of myelin coverage from IHC internode analysis and electron microscopy 902 sections

903 Transmission EM (TEM) micrographs reveal only an ultrathin (~75-90 nm) section of tissue,
904 while the length of myelin sheaths are much larger (on the order of 100 μm). Hypomyelination
905 (lower percentage of myelinated axons per section) could be due to a *bona fide* ensheathment
906 defect, or instead due to a combination of fewer oligodendrocytes, reduced myelin sheath
907 length, and/or reduced sheath number per oligodendrocyte. To distinguish between these
908 possibilities, we compared estimated values for myelin coverage from our immunostaining
909 analysis (Supplementary Fig. 2, Fig. 4) to our TEM quantification of myelination (Fig. 1g).
910 Myelin coverage (percent of total axonal surface myelinated) in a region of white matter can be
911 approximated from the product of total number of oligodendrocytes (N) times the average length
912 of myelin sheaths (L) times the average number of sheaths per oligodendrocyte, assuming the
913 number of axons is the same:

914 Approximated myelin coverage = $N \bullet L \bullet I$ [Formula 1]

915 The relative amount of myelin coverage between iBot and wild-type (WT) mice can be
916 expressed as the ratio of estimated myelin coverage between the two genotypes:

917
$$\text{Relative myelin coverage (iBot to WT)} = \frac{N(\text{iBot}) \cdot L(\text{iBot}) \cdot I(\text{iBot})}{N(\text{WT}) \cdot L(\text{WT}) \cdot I(\text{WT})} \quad [\text{Formula 2}]$$

918

919 To determine whether the hypomyelination seen in iBot mice by EM can be explained entirely
920 by reduced myelin coverage (primarily due to shorter sheaths), we calculated the expected
921 relative myelin coverage of both iBot and WT mice using numbers measured in the following
922 experiments:

923 Number of oligodendrocytes, **N**: CC1+ cells in dorsal spinal cord white matter,
924 Supplementary Fig. 2f.

925 Average length of myelin sheaths (i.e., internodes), **L**: In vivo sheath length measurements,
926 Fig. 4g. (Note that myelin was too dense in WT spinal cord tissue sections to accurately
927 measure the length of individual sheaths, so we used available measurements from the
928 deep cortical layers that are still sparsely myelinated at P12 when samples were acquired.
929 Although myelin sheaths are on average shorter in the cortex than in the spinal cord^{101,102},
930 our estimations rely on the ratio of iBot to control rather than exact lengths.)

931 Average number of myelin sheaths per oligodendrocyte, **I**: Myelinating co-culture
932 measurements, Fig. 4c. (Note, as above, due to myelin density in the WT spinal cord, we
933 were able to make the most precise measurements of sheath number per oligodendrocyte
934 from our co-culture experiments.)

935 Plugging in these values to Formula 2 (see calculation below in Table 1):

936

937 **Relative myelin coverage by IHC analysis (iBot to WT) = $\frac{N(iBot) \cdot L(iBot) \cdot I(iBot)}{N(WT) \cdot L(WT) \cdot I(WT)} = 0.399$**

938
$$\frac{N(WT) \cdot L(WT) \cdot I(WT)}$$

939 How closely does this estimate match the observed myelin coverage from spinal cord TEM
940 images? We calculated the total number of axons myelinated (ensheathed plus
941 wrapping/wrapped) in the dorsal white matter in both iBot and WT littermate mice (see
942 calculation below in Table 2):

943 **Relative myelin coverage by TEM (iBot to WT) = $\frac{\text{number of axons myelinated (iBot)}}{\text{number of axons myelinated (WT)}} = 0.401$**

944
$$\frac{\text{number of axons myelinated (WT)}}$$

945 Therefore, the hypomyelination seen in iBot spinal cords by TEM (~40% coverage compared to
946 WT) can be explained due to the significantly shorter sheaths made by iBot oligodendrocytes
947 and small (albeit not reaching significance) reductions in number of oligodendrocytes and
948 number of sheaths per oligodendrocyte (see Supplementary Fig. 13a).

949 **Table 1. Calculation for relative myelin coverage by internode analysis (iBot to WT)**

	N (# of oligodendrocytes, from spinal cord CC1 staining)	L (avg. internode length, in vivo from cortex)	I (avg. internode #), from co-cultures	Product (Estimated myelin coverage)	Ratio (iBot to control)
iBot	1558	39.6	6.85	422,623.1	0.399
control	1999	54.2	9.78	1,059,621.9	

950

951 **Table 2. Calculation for relative myelination by cross-sectional TEM (iBot to WT)**

	Number of axons myelinated per $200 \mu\text{m}^2$ (ensheathed + wrapped/wrapping)	Ratio (iBot to control)
iBot	28.4	0.401
control	70.9	

952

953 **AAV-mediated sparse labeling of oligodendrocytes in mouse spinal cord**

954 Serotype AAV-DJ was prepared by the Stanford Neuroscience Gene Vector and Virus Core,
955 and stored at -80°C until use. Wild-type C57BL6 neonatal mouse pups were injected within 6-24
956 hours after birth. Each pup was wrapped in a Kimwipe and incubated on ice for 4-5 minutes until
957 the pup was unresponsive to a toe-pinch. Cryoanesthetized pups were injected using a 10 μ l
958 Hamilton syringe (Model 80308 701SN, Point Style 4, 32 gauge, 20 mm length, and 12°). 1 μ l of
959 AAV (diluted to 1.0×10^{13} viral genome/ml in PBS) was mixed with 0.5 μ l of Trypan blue and
960 slowly injected into the lumbar spinal cord, which appeared as a blue stripe that colors the
961 spinal cord. The pups were incubated on a heating bench set at 34-37°C for 15 minutes until
962 they were able to move, and then returned to their home cage.

963 Spinal cords were extracted at P12 as detailed in the “Immunohistochemistry” section.
964 30 μ m-thick longitudinal sections were mounted onto Superfrost Plus slides (VWR) in
965 Vectashield with DAPI (Vector, H-1200) with a coverslip. No antibody staining was necessary to
966 visualize the GFP fluorescence. Tissue samples were imaged blinded to the virus condition
967 using the Zeiss LSM 880 with the Plan-Apochromat 20x objective as a z-stack containing 6
968 slices with a z-step of 5 μ m. The maximum intensity projection of each stack was analyzed
969 using Fiji by manually tracing discrete sheaths blinded to the virus condition.

970

971 **Confocal imaging and analysis of myelin bulges**

972 For high-resolution comparison of myelin morphology, the cingulate cortex of MBP-stained
973 sagittal brain slices were imaged blinded to the genotype using the Zeiss LSM 800 laser
974 scanning confocal microscope with a Plan-Apo 63x/1.4 NA oil objective. Z-stacks with 25- μ m
975 range and 2.5- μ m z-steps were acquired using identical settings for the frame size and scan
976 speed with no averaging between samples and biological replicates.

977 To quantify the regional diameter of myelin sheaths, maximum intensity projections were
978 thresholded to preserve gray-level moments (“Moments”), which highlighted discrete regions of

979 high MBP intensity within each sample. Then, lines perpendicular to the longest width of
980 discrete MBP regions were manually drawn and saved as ROIs. Line scans for each ROIs were
981 processed in batch to identify the distance between local intensity maxima, which represented
982 the diameter between two linear tracks of MBP signal. Heterogeneity in MBP staining was
983 depicted in BatlowK, which was developed as a perceptually uniform, universally-readable look
984 up table.

985 For the volume reconstruction of a myelin bulge, a 5 to 7- μ m z-stack of an MBP-stained
986 spinal cord cross section from a control or iBot;Cnp-Cre P12 mouse was acquired using the
987 Zeiss LSM 800 laser scanning confocal microscope with a Plan-Apo 63x/1.4 NA oil objective
988 with the 32-channel Airyscan detector. The frame size (1952x1952 pixels), scan speed, and z-
989 step (170 nm) were optimized by the Zeiss ZenBlue software to satisfy the Nyquist criteria for
990 3D imaging. The acquired z-stack was then deconvoluted using the default Wiener filter settings
991 in Airyscan processing from the Zeiss ZenBlue software. The deconvoluted z-stack was then
992 reconstructed and visualized using the Volume Viewer plugin from Fiji/ImageJ.

993

994 **Surface biotinylation and immunoprecipitation**

995 Our protocol for surface biotinylation of primary oligodendrocytes was adapted from a previously
996 published protocol¹⁰⁴. 1x10⁶ primary oligodendrocyte precursors were replated onto 10-cm
997 dishes directly into differentiation media. Two 10-cm dishes were grown for each biological
998 condition in each biological replicate. After 5 days of differentiation in culture, cells were washed
999 with cold PBS (10 ml x 3 rinses on the plate) and then incubated with 1 mg of Sulfo-NHS-SS-
1000 biotin (BioVision #2323) dissolved in 10 ml of cold PBS on a rotating platform at 4°C. Non-
1001 biotinylated samples were incubated with cold PBS only. After 1 hr, excess biotinylation reagent
1002 was quenched with 65 mM Tris pH 7.5 at 4°C, 150 mM NaCl, 1 mM MgSO₄, 1 mM CaCl₂. (10 ml
1003 for 5 min x 3) followed by a rinse with cold PBS. Cells were harvested by cell scraping into 2 ml
1004 of PBS with a protease inhibitor cocktail (Roche cOmplete 4693159001). The cell suspension

1005 was centrifuge at 200xg for 10 min, and the supernatant was discarded to isolate the pellet. The
1006 cell pellet was flash-frozen in liquid nitrogen for storage at -80°C.

1007 For immunoprecipitation, the cell pellets were resuspended in 500 µl of cold lysis buffer
1008 (150 mM NaCl, 0.5% SDS, 50 mM Tris, pH 8.0) supplemented with Roche protease inhibitor
1009 cocktail. Cells were lysed by mechanical shearing through a 27.5G needle with 15 passes, on
1010 ice. Unlysed cells were cleared via centrifuging at 3000xg for 10 min at 4°C. Meanwhile,
1011 streptavidin magnetic beads (Pierce 88817, 25 ul of beads per sample) were washed with three
1012 rounds of 500 ul of lysis buffer. Then, cleared cell lysate was incubated with the streptavidin
1013 beads on a rotating platform overnight in the cold room. After removing the flow-through, the
1014 beads are washed with 2x 1 ml of lysis buffer for 10 min, followed by 1 M KCl for 10 min, and
1015 another 2x 1 ml lysis buffer for 10 min. Beads were finally washed with cold PBS before mass
1016 spectrometry analysis.

1017 10 µl of the cleared cell lysate was loaded onto a 4-12% Bis-Tris pre-cast gel
1018 (ThermoFisher NW04120BOX) and transferred onto a nitrocellulose membrane using the iBlot 2
1019 dry blotting system (ThermoFisher). The membrane was then blocked in 3% BSA in 1xPBST
1020 (PBS with 0.1% Tween-20) for 1 hour at RT, and then incubated with a streptavidin-horseradish
1021 peroxidase (HRP) conjugate (1:10000, ThermoFisher S-911) to visualize biotinylated proteins
1022 and anti-GFP conjugated to Alexa Fluor 488 (1:1000, Santa Cruz sc-9996 AF488) in 3% BSA
1023 1xPBST overnight at 4°C. The membrane was washed 3x 10 min at RT before incubating with
1024 the HRP chemiluminescent substrate (SuperSignal West Dura 34075) and imaging for
1025 chemiluminescence and fluorescence in the 488 nm channel.

1026

1027 **Mass spectrometry and analysis**

1028 In a typical mass spectrometry experiment, beads were reconstituted in TEAB prior to reduction
1029 in 10 mM DTT followed by alkylation using 30 mM acrylamide to cap cysteine residues.

1030 Digestion was performed using Trypsin/LysC (Promega) in the presence of 0.02% ProteaseMax
1031 (Promega) overnight. Following digestion and quenching, eluted peptides were desalted, dried,
1032 and reconstituted in 2% aqueous acetonitrile prior to analysis. Mass spectrometry experiments
1033 were performed using liquid chromatography (LC/MS) using an Acquity M-Class UPLC (Waters)
1034 followed by mass spectrometry using an Orbitrap Q Exactive HF-X (Thermo Scientific). For a
1035 typical LC/MS experiment, a flow rate of 300 nL/min was used, where mobile phase A was 0.2%
1036 (v/v) formic acid in water and mobile phase B was 0.2% (v/v) formic acid in acetonitrile.
1037 Analytical columns were prepared in-house by pulling and packing fused silica with an internal
1038 diameter of 100 microns. These columns were packed with NanoLCMS solutions 1.9 μ m C18
1039 stationary phase to a length of approximately 25 cm. Peptides were directly injected into the
1040 analytical column using a gradient (2% to 45% B, followed by a high-B wash) of 90 min. Mass
1041 spectrometry was operated in a data-dependent fashion using Higher Energy Collision
1042 Dissociation (HCD) for peptide fragmentation on the HF-X.

1043 For data analysis, the .RAW data files were checked using Preview (Protein Metrics) to
1044 verify calibration and quality metrics. Data were processed using Byonic v4.1.5 (Protein Metrics)
1045 to identify peptides and infer proteins using the isoform-containing *Mus musculus* database from
1046 Uniprot, concatenated with common contaminant proteins, e.g., human keratins. Proteolysis
1047 with Trypsin/LysC was assumed to be semi-specific allowing for ragged n-termini with up to two
1048 missed cleavage sites, and allowing for common modifications. Precursor and fragment mass
1049 accuracies were held within 12 ppm. Proteins were held to a false discovery rate of 1%, using
1050 standard approaches described previously¹⁰⁵.

1051 The label-free peptide counts from all runs were compiled and further analyzed using
1052 Perseus (version 1.6.5.0)¹⁰⁶. The peptide counts were \log_2 transformed with missing values
1053 imputed from the normal distribution to calculate \log_2 fold change between control (n = 2) and
1054 iBot;Cnp-Cre (n = 3) samples. Statistical significance of fold changes was assessed by an

1055 unpaired Student's t-test with two-tailed distribution. This analysis workflow was repeated for
1056 biotinylated control versus non-biotinylated control samples.

1057 Non-specific interactions were filtered away as proteins with less than a 2-fold difference
1058 between biotinylated and non-biotinylated control samples. For the remaining surface
1059 biotinylation-enriched proteins, the \log_2 fold change between control and iBot;Cnp-Cre with false
1060 discovery rate-adjusted p-values were plotted in Fig. 6b. VAMP2/3-dependent hits were defined
1061 as proteins that were at least 2-fold depleted from iBot;Cnp-Cre with an adjusted p-value < 0.05.
1062 A functional gene enrichment analysis was performed with the VAMP2/3-dependent hits listed
1063 as an ordered query on the g:Profiler web server¹⁰⁷ for GO cellular components with a term size
1064 cutoff at 1000. Protein interaction networks were extracted from the STRING database and
1065 visualized on Cytoscape 3.9.0 software.

1066

1067 **Surface staining of primary oligodendrocytes**

1068 Primary oligodendrocyte precursors from iBot;Cnp-Cre and control littermate mice were
1069 harvested and cultured as described above in "Purification and Culturing of Cells". Cells were
1070 seeded onto 12-mm glass coverslips (Carolina Biological Supply No. 63-3029) at a density of
1071 10,000 cells/coverslip in differentiation media.

1072 After 5 days in differentiation media, cell media was removed and replaced with one
1073 wash of 1xPBS. Cells were then treated with 4% PFA for 15 min at RT, followed by three
1074 washes with 1xPBS with no permeabilization. Cells were blocked with 3% BSA in PBS for 20
1075 min at RT. Then, anti-MAG clone 513 (1:20, EMD Millipore MAB1567) in 3% BSA was
1076 incubated overnight at 4°C to mark surface-exposed MAG. On the following day, the MAG
1077 antibody solution was washed with three rinses of PBS, and then incubated with the secondary
1078 anti-mouse IgG-Alexa Fluor 594 conjugate (Fisher Scientific A21203) in 3% BSA for 1 hr at RT.
1079 Excess secondary was washed, and the surface MAG-bound secondary was fixed by another
1080 round of 4% PFA for 10 min at RT.

1081 Following three PBS rinses to remove PFA, the cells were permeabilized with 0.1%
1082 TritonX-100 to reveal intracellular MAG. Then, the cells were re-incubated with anti-MAG clone
1083 513 (1:100, EMD Millipore MAB1567) in 3% BSA overnight at 4°C to mark intracellular MAG.
1084 The next day, excess MAG antibody solution was washed with three rinses of PBS, and then
1085 incubated with the secondary anti-mouse IgG-Alexa Fluor 647 conjugate (Fisher Scientific
1086 A31571) in 3% BSA for 1 hr at RT. After one wash with PBS, CellMask Blue stain (1:1000) was
1087 incubated to stain all cells for 10 min at RT, followed by three additional rounds of washing with
1088 PBS. Stained cells were mounted onto microscope slides (Fisher Scientific 12-550-143) in
1089 Fluoromount G (SouthernBioTech, 0100-20). Cells were visualized by widefield epifluorescence
1090 with a Zeiss Axio Observer Z1 using the Plan-Apo 20x/0.8 NA objective. Cells were imaged
1091 blinded to the genotype with identical illumination and acquisition conditions.

1092 To quantify the ratio of surface-to-total MAG intensity, cells were manually segmented
1093 on the CellMask Blue channel using the freehand tool and thresholded in the 647 nm channel
1094 (total MAG) to create a refined ROI that outlines the cell. For each ROI, the integrated intensity
1095 was measured in each channel for surface-exposed MAG in the 594-nm channel (intensity^{surface})
1096 and total MAG in the 647-nm channel (intensity^{total}).

1097 To correct for baseline differences in the intensity values of each channel, the mean
1098 background intensity of 4 non-overlapping 25,000 μm^2 regions with no cells was measured. For
1099 each cell, the mean background was multiplied by the ROI area to obtain the background
1100 intensity, which was subtracted from the integrated intensity in each channel, i.e. (intensity^{surface})
1101 – (area^{cell}*background⁵⁹⁴). These corrected integrated intensity values was used to obtain a ratio
1102 for surface-to-total MAG.

1103

1104 **Imaging and analysis of nodes of Ranvier**

1105 Longitudinal sections of the lumbar spinal cord were imaged using the Zeiss LSM 880 with the
1106 Plan-Apochromat 20x objective as a z-stack containing 5 slices with a z-step of 1 μm . The

1107 maximum intensity projection of each stack was analyzed using Fiji through batch processing.
1108 First, separate binary images for Caspr staining (2° rabbit AlexaFluor-647) and for AnkG
1109 staining (2° mouse AlexaFluor-594) were created by thresholding by preserving gray-level
1110 moments (“Moments”). Then the binary images were overlaid to obtain elliptical ROIs for the
1111 combined paranodes and node. Line ROIs were generated to span the bounding rectangle of
1112 each elliptical ROI and cross through the centroid. Intensity line scans of Caspr and AnkG were
1113 used to determine the number of local maxima present within each node ROI. Mature nodes
1114 were defined as ROIs with two local maxima for Caspr and one maxima for AnkG. Heminodes
1115 were defined as ROIs with one local maximum for both Caspr and AnkG. Clusters were defined
1116 as ROIs with one maximum in either Caspr or AnkG.

1117

1118 **Data Analysis and Statistics**

1119 All analysis was conducted blinded to the genotype. Data analysis and statistics were done
1120 using GraphPad Prism 9.0 software. Descriptive statistics (mean, standard error of mean, and
1121 N) were reported in Figure Legends or Supplementary Tables. Most often, statistical
1122 significance was determined between biological replicate (n = 3-5) by an unpaired, two-tailed t-
1123 test, unless otherwise stated in the Figure Legends. For cellular assays, the biological replicate
1124 represented the mean of technical replicates from one mouse brain.

1125

1126 **Data availability**

1127 The data that support the findings of this study and step-by-step protocols are available from the
1128 corresponding or first authors upon request. Source data are provided with this paper. All DNA
1129 constructs created in this study will be deposited at Addgene for distribution at the time of
1130 publication. Correspondence and requests for all other materials should be addressed to M.L or
1131 J.B.Z.

1132 **References**

- 1133 1. Bechler, M. E., Swire, M. & ffrench-Constant, C. Intrinsic and adaptive myelination—A
1134 sequential mechanism for smart wiring in the brain. *Dev. Neurobiol.* **78**, 68 (2018).
- 1135 2. Monje, M. Myelin Plasticity and Nervous System Function.
1136 <https://doi.org/10.1146/annurev-neuro-080317-061853> **41**, 61–76 (2018).
- 1137 3. Almeida, R. G. The Rules of Attraction in Central Nervous System Myelination. *Front.*
1138 *Cell. Neurosci.* **12**, 15 (2018).
- 1139 4. Pfeiffer, S. E., Warrington, A. E. & Bansal, R. The oligodendrocyte and its many cellular
1140 processes. *Trends Cell Biol.* **3**, 191–197 (1993).
- 1141 5. Snaidero, N. *et al.* Myelin membrane wrapping of CNS axons by PI(3,4,5)P3-dependent
1142 polarized growth at the inner tongue. *Cell* **156**, 277–290 (2014).
- 1143 6. Edgar, J. M. *et al.* Río-Hortega's drawings revisited with fluorescent protein defines a
1144 cytoplasm-filled channel system of CNS myelin. *J. Anat.* **239**, 1241–1255 (2021).
- 1145 7. Hughes, E. G., Orthmann-Murphy, J. L., Langseth, A. J. & Bergles, D. E. Myelin
1146 remodeling through experience-dependent oligodendrogenesis in the adult
1147 somatosensory cortex. *Nat. Neurosci.* *2018* **21**, 696–706 (2018).
- 1148 8. Bacmeister, C. M. *et al.* Motor Learning Promotes Remyelination via New and Surviving
1149 Oligodendrocytes. *Nat. Neurosci.* **23**, 819 (2020).
- 1150 9. McKenzie, I. A. *et al.* Motor skill learning requires active central myelination. *Science* **346**,
1151 318–322 (2014).
- 1152 10. Yang, S. M., Michel, K., Jokhi, V., Nedivi, E. & Arlotta, P. Neuron class-specific
1153 responses govern adaptive myelin remodeling in the neocortex. *Science (80-.)* **370**,
1154 (2020).
- 1155 11. Osso, L. A., Rankin, K. A. & Chan, J. R. Experience-dependent myelination following
1156 stress is mediated by the neuropeptide dynorphin. *Neuron* **109**, 3619–3632.e5 (2021).
- 1157 12. Makinodan, M., Rosen, K. M., Ito, S. & Corfas, G. A critical period for social experience-

1158 dependent oligodendrocyte maturation and myelination. *Science* **337**, 1357–1360 (2012).

1159 13. Liu, J. *et al.* Impaired adult myelination in the prefrontal cortex of socially isolated mice.
1160 *Nat. Neurosci.* **15**, 1621–1623 (2012).

1161 14. Krämer, E.-M., Schardt, A. & Nave, K.-A. Membrane traffic in myelinating
1162 oligodendrocytes. *Microsc. Res. Tech.* **52**, 656–671 (2001).

1163 15. Szuchet, S., Nielsen, L. L., Domowicz, M. S., Austin, J. R. & Arvanitis, D. L. CNS myelin
1164 sheath is stochastically built by homotypic fusion of myelin membranes within the bounds
1165 of an oligodendrocyte process. *J. Struct. Biol.* **190**, 56–72 (2015).

1166 16. Reinisch, K. M. & Prinz, W. A. Mechanisms of nonvesicular lipid transport. *J. Cell Biol.*
1167 **220**, (2021).

1168 17. Johnson, W. J., Mahlberg, F. H., Rothblat, G. H. & Phillips, M. C. Cholesterol transport
1169 between cells and high-density lipoproteins. *Biochim. Biophys. Acta* **1085**, 273–298
1170 (1991).

1171 18. Snaidero, N. *et al.* Antagonistic Functions of MBP and CNP Establish Cytosolic Channels
1172 in CNS Myelin. *Cell Rep.* **18**, 314–323 (2017).

1173 19. Trapp, B. D., Andrews, S. B., Cootauro, C. & Quarles, R. The myelin-associated
1174 glycoprotein is enriched in multivesicular bodies and periaxonal membranes of actively
1175 myelinating oligodendrocytes. *J. Cell Biol.* **109**, 2417–2426 (1989).

1176 20. Peters, A. Observations on the connexions between myelin sheaths and glial cells in the
1177 optic nerves of young rats. *J. Anat.* **98**, 125 (1964).

1178 21. Feldmann, A., Winterstein, C., White, R., Trotter, J. & Krämer-Albers, E. M.
1179 Comprehensive analysis of expression, subcellular localization, and cognate pairing of
1180 SNARE proteins in oligodendrocytes. *J. Neurosci. Res.* **87**, 1760–1772 (2009).

1181 22. Feldmann, A. *et al.* Transport of the major myelin proteolipid protein is directed by
1182 VAMP3 and VAMP7. *J. Neurosci.* **31**, 5659–5672 (2011).

1183 23. Zhang, Y. *et al.* An RNA-sequencing transcriptome and splicing database of glia,

1184 neurons, and vascular cells of the cerebral cortex. *J. Neurosci.* **34**, 11929–11947 (2014).

1185 24. Marques, S. *et al.* Oligodendrocyte heterogeneity in the mouse juvenile and adult central
1186 nervous system. *Science (80-)* **352**, 1326–1329 (2016).

1187 25. Urbina, F. L., Gomez, S. M. & Gupton, S. L. Spatiotemporal organization of exocytosis
1188 emerges during neuronal shape change. *J. Cell Biol.* **217**, 1113–1128 (2018).

1189 26. Urbina, F. L. *et al.* TRIM67 regulates exocytic mode and neuronal morphogenesis via
1190 SNAP47. *Cell Rep.* **34**, (2021).

1191 27. Borisovska, M. *et al.* v-SNAREs control exocytosis of vesicles from priming to fusion.
1192 *EMBO J.* **24**, 2114–2126 (2005).

1193 28. Slezak, M. *et al.* Relevance of Exocytotic Glutamate Release from Retinal Glia. *Neuron*
1194 **74**, 504–516 (2012).

1195 29. Schiavo, G. G. *et al.* Tetanus and botulinum-B neurotoxins block neurotransmitter release
1196 by proteolytic cleavage of synaptobrevin. *Nature* **359**, 832–835 (1992).

1197 30. Yamamoto, H. *et al.* Specificity of botulinum protease for human VAMP family proteins.
1198 *Microbiol. Immunol.* **56**, 245–253 (2012).

1199 31. Lappe-Siefke, C. *et al.* Disruption of Cnp1 uncouples oligodendroglial functions in axonal
1200 support and myelination. *Nat. Genet.* **33**, 366–374 (2003).

1201 32. Matthews, M. A. & Duncan, D. A quantitative study of morphological changes
1202 accompanying the initiation and progress of myelin production in the dorsal funiculus of
1203 the rat spinal cord. *J. Comp. Neurol.* **142**, 1–22 (1971).

1204 33. Miesenböck, G., De Angelis, D. A. & Rothman, J. E. Visualizing secretion and synaptic
1205 transmission with pH-sensitive green fluorescent proteins. *Nature* **394**, 192–195 (1998).

1206 34. Aggarwal, S. *et al.* A size barrier limits protein diffusion at the cell surface to generate
1207 lipid-rich myelin-membrane sheets. *Dev. Cell* **21**, 445–456 (2011).

1208 35. Zuchero, J. B. *et al.* CNS Myelin Wrapping Is Driven by Actin Disassembly. *Dev. Cell* **34**,
1209 152–167 (2015).

1210 36. Sankaranarayanan, S. & Ryan, T. A. Real-time measurements of vesicle-SNARE
1211 recycling in synapses of the central nervous system. *Nat. Cell Biol.* **2**, 197–204 (2000).

1212 37. Bowser, D. N. & Khakh, B. S. Two forms of single-vesicle astrocyte exocytosis imaged
1213 with total internal reflection fluorescence microscopy. *Proc. Natl. Acad. Sci. U. S. A.* **104**,
1214 4212–4217 (2007).

1215 38. Emery, B. & Dugas, J. C. Purification of oligodendrocyte lineage cells from mouse
1216 cortices by immunopanning. *Cold Spring Harb. Protoc.* **2013**, 854–868 (2013).

1217 39. Watkins, T. A., Emery, B., Mulinyawe, S. & Barres, B. A. Distinct Stages of Myelination
1218 Regulated by γ -Secretase and Astrocytes in a Rapidly Myelinating CNS Coculture
1219 System. *Neuron* **60**, 555–569 (2008).

1220 40. Watkins, T. A. & Scholze, A. R. Myelinating cocultures of purified oligodendrocyte lineage
1221 cells and retinal ganglion cells. *Cold Spring Harb. Protoc.* **2014**, 1023–1026 (2014).

1222 41. Vincze, A., Mázló, M., Seress, L., Komoly, S. & Ábrahám, H. A correlative light and
1223 electron microscopic study of postnatal myelination in the murine corpus callosum. *Int. J.
1224 Dev. Neurosci.* **26**, 575–584 (2008).

1225 42. Pascual, O. *et al.* Neurobiology: Astrocytic purinergic signaling coordinates synaptic
1226 networks. *Science (80-)* **310**, 113–116 (2005).

1227 43. Zhang, Q. *et al.* Fusion-related release of glutamate from astrocytes. *J. Biol. Chem.* **279**,
1228 12724–12733 (2004).

1229 44. von Jonquieres, G. *et al.* Glial Promoter Selectivity following AAV-Delivery to the
1230 Immature Brain. *PLoS One* **8**, e65646 (2013).

1231 45. Ayers, J. I. *et al.* Widespread and efficient transduction of spinal cord and brain following
1232 neonatal AAV injection and potential disease modifying effect in ALS mice. *Mol. Ther.* **23**,
1233 53–62 (2015).

1234 46. Gow, A., Friedrich, V. L. & Lazzarini, R. A. Myelin basic protein gene contains separate
1235 enhancers for oligodendrocyte and Schwann cell expression. *J. Cell Biol.* **119**, 605–616

1236 (1992).

1237 47. West, K. L., Kelm, N. D., Carson, R. P. & Does, M. D. Quantitative analysis of mouse
1238 corpus callosum from electron microscopy images. *Data Br.* **5**, 124–128 (2015).

1239 48. Cochilla, A. J., Angleson, J. K. & Betz, W. J. Differential Regulation of Granule-to-Granule
1240 and Granule-to-Plasma Membrane Fusion during Secretion from Rat Pituitary
1241 Lactotrophs. *J. Cell Biol.* **150**, 839–848 (2000).

1242 49. Song, H., Tornq, T. L., Orr, A. S., Brunger, A. T. & Wickner, W. T. Sec17/sec18 can
1243 support membrane fusion without help from completion of snare zippering. *Elife* **10**,
1244 (2021).

1245 50. Sharma, K. *et al.* Cell type- and brain region-resolved mouse brain proteome. *Nat.*
1246 *Neurosci.* **18**, 1819–1831 (2015).

1247 51. Gargareta, V.-I. *et al.* Conservation and divergence of myelin proteome and
1248 oligodendrocyte transcriptome profiles between humans and mice. *Elife* **11**, (2022).

1249 52. Susuki, K. *et al.* Three mechanisms assemble central nervous system nodes of ranvier.
1250 *Neuron* **78**, 469–482 (2013).

1251 53. Rasband, M. N. & Peles, E. Mechanisms of node of Ranvier assembly. *Nature Reviews*
1252 *Neuroscience* vol. 22 7–20 (2021).

1253 54. Çolakoğlu, G., Bergstrom-Tyrberg, U., Berglund, E. O. & Ranscht, B. Contactin-1
1254 regulates myelination and nodal/paranodal domain organization in the central nervous
1255 system. *Proc. Natl. Acad. Sci. U. S. A.* **111**, E394 (2014).

1256 55. Tait, S. *et al.* An oligodendrocyte cell adhesion molecule at the site of assembly of the
1257 paranodal axo-glial junction. *J. Cell Biol.* **150**, 657–66 (2000).

1258 56. Dubessy, A.-L. *et al.* Role of a Contactin multi-molecular complex secreted by
1259 oligodendrocytes in nodal protein clustering in the CNS. *Glia* **67**, 2248–2263 (2019).

1260 57. Marcus, J., Dupree, J. L. & Popko, B. Myelin-associated glycoprotein and myelin
1261 galactolipids stabilize developing axo-glial interactions. *J. Cell Biol.* **156**, 567 (2002).

1262 58. Li, C. *et al.* Myelination in the absence of myelin-associated glycoprotein. *Nature* **369**,
1263 747–750 (1994).

1264 59. Chang, K. J. *et al.* GLIAL ANKYRINS FACILITATE PARANODAL AXOGLIAL JUNCTION
1265 ASSEMBLY. *Nat. Neurosci.* **17**, 1673 (2014).

1266 60. Rasband, M. N. & Peles, E. The nodes of Ranvier: Molecular assembly and maintenance.
1267 *Cold Spring Harb. Perspect. Biol.* **8**, a020495 (2016).

1268 61. Pillai, A. M. *et al.* Spatiotemporal ablation of myelinating glia-specific neurofascin (Nfasc
1269 NF155) in mice reveals gradual loss of paranodal axoglial junctions and concomitant
1270 disorganization of axonal domains. *J. Neurosci. Res.* **87**, 1773–1793 (2009).

1271 62. Ford, M. C. *et al.* Tuning of Ranvier node and internode properties in myelinated axons to
1272 adjust action potential timing. *Nat. Commun.* **6**, (2015).

1273 63. Bacmeister, C. M. *et al.* Motor Learning Drives Dynamic Patterns of Intermittent
1274 Myelination on Behaviorally-Activated Axons. *bioRxiv* 2021.10.13.464319 (2021)
1275 doi:10.1101/2021.10.13.464319.

1276 64. Trajkovic, K. *et al.* Neuron to glia signaling triggers myelin membrane exocytosis from
1277 endosomal storage sites. *J. Cell Biol.* **172**, 937–948 (2006).

1278 65. Micu, I. *et al.* The molecular physiology of the axo-myelinic synapse. *Exp. Neurol.* **276**,
1279 41–50 (2016).

1280 66. Krasnow, A. M., Ford, M. C., Valdivia, L. E., Wilson, S. W. & Attwell, D. Regulation of
1281 developing myelin sheath elongation by oligodendrocyte calcium transients in vivo. *Nat.*
1282 *Neurosci.* **2017** *211* **21**, 24–28 (2017).

1283 67. Baraban, M., Koudelka, S. & Lyons, D. A. Ca²⁺ activity signatures of myelin sheath
1284 formation and growth in vivo. *Nat. Neurosci.* **2017** *211* **21**, 19–23 (2017).

1285 68. Almeida, R. G. *et al.* Myelination induces axonal hotspots of synaptic vesicle fusion that
1286 promote sheath growth. *Curr. Biol.* **31**, 3743-3754.e5 (2021).

1287 69. Battefeld, A., Popovic, M. A., de Vries, S. I. & Kole, M. H. P. High-Frequency

1288 Microdomain Ca 2+ Transients and Waves during Early Myelin Internode Remodeling.

1289 *Cell Rep.* **26**, 182-191.e5 (2019).

1290 70. Meschkat, M. *et al.* White matter integrity in mice requires continuous myelin synthesis at

1291 the inner tongue. *Nat. Commun.* **2022** *13* 1–18 (2022).

1292 71. Lüders, K. A. *et al.* Maintenance of high proteolipid protein level in adult central nervous

1293 system myelin is required to preserve the integrity of myelin and axons. *Glia* **67**, 634–649

1294 (2019).

1295 72. Ximerakis, M. *et al.* Single-cell transcriptomic profiling of the aging mouse brain. *Nat.*

1296 *Neurosci.* **22**, 1696–1708 (2019).

1297 73. Gould, R. M. Incorporation of glycoproteins into peripheral nerve myelin. *J. Cell Biol.* **75**,

1298 326–338 (1977).

1299 74. Gould, R. M. & Dawson, R. M. C. Incorporation of newly formed lecithin into peripheral

1300 nerve myelin. *J. Cell Biol.* **68**, 480–496 (1976).

1301 75. Gerber, D. *et al.* Transcriptional profiling of mouse peripheral nerves to the single-cell

1302 level to build a sciatic nerve ATlas (SNAT). *Elife* **10**, (2021).

1303 76. Chang, A., Tourtellotte, W. W., Rudick, R. & Trapp, B. D. Premyelinating

1304 oligodendrocytes in chronic lesions of multiple sclerosis. *N. Engl. J. Med.* **346**, 165–173

1305 (2002).

1306 77. Duncan, I. D., Marik, R. L., Bromman, A. T. & Heidari, M. Thin myelin sheaths as the

1307 hallmark of remyelination persist over time and preserve axon function. *Proc. Natl. Acad.*

1308 *Sci. U. S. A.* **114**, E9685–E9691 (2017).

1309 78. Yeung, M. S. Y. *et al.* Dynamics of oligodendrocyte generation in multiple sclerosis. *Nat.*

1310 *2019* **5667745** *566*, 538–542 (2019).

1311 79. Voskuhl, R. R. *et al.* Gene expression in oligodendrocytes during remyelination reveals

1312 cholesterol homeostasis as a therapeutic target in multiple sclerosis. *Proc. Natl. Acad.*

1313 *Sci. U. S. A.* **116**, 10130–10139 (2019).

1314 80. Jäkel, S. *et al.* Altered human oligodendrocyte heterogeneity in multiple sclerosis. *Nature*
1315 **566**, 543–547 (2019).

1316 81. Goebbels, S. & Nave, K. A. Conditional Mutagenesis in Oligodendrocyte Lineage Cells.
1317 *Methods Mol. Biol.* **1936**, 249–274 (2019).

1318 82. Tognatta, R. *et al.* Transient Cnp expression by early progenitors causes Cre-Lox-based
1319 reporter lines to map profoundly different fates. *Glia* **65**, 342–359 (2017).

1320 83. Mensch, S. *et al.* Synaptic vesicle release regulates myelin sheath number of individual
1321 oligodendrocytes in vivo. *Nat. Neurosci.* **18**, 628–630 (2015).

1322 84. Hines, J. H., Ravanelli, A. M., Schwindt, R., Scott, E. K. & Appel, B. Neuronal activity
1323 biases axon selection for myelination in vivo. *Nat. Neurosci.* **18**, 683–689 (2015).

1324 85. Fekete, C. & Nishiyama, A. Regulation of oligodendrocyte lineage development by
1325 VAMP2/3 in the developing mouse spinal cord. *Manuscr. Rev.* (2022).

1326 86. Pan, L. *et al.* Oligodendrocyte-lineage cell exocytosis and L-type prostaglandin D
1327 synthase promote oligodendrocyte development and myelination. *bioRxiv*
1328 2022.02.14.480339 (2022) doi:10.1101/2022.02.14.480339.

1329 87. Neusch, C., Rozengurt, N., Jacobs, R. E., Lester, H. A. & Kofuji, P. Kir4.1 potassium
1330 channel subunit is crucial for oligodendrocyte development and in vivo myelination. *J.*
1331 *Neurosci.* **21**, 5429–5438 (2001).

1332 88. Menichella, D. M., Goodenough, D. A., Sirkowski, E., Scherer, S. S. & Paul, D. L.
1333 Connexins are critical for normal myelination in the CNS. *J. Neurosci.* **23**, 5963–5973
1334 (2003).

1335 89. Menichella, D. M. *et al.* Genetic and physiological evidence that oligodendrocyte gap
1336 junctions contribute to spatial buffering of potassium released during neuronal activity. *J.*
1337 *Neurosci.* **26**, 10984–10991 (2006).

1338 90. Karlsson, U. & Schultz, R. L. Fixation of the central nervous system for electron
1339 microscopy by aldehyde perfusion. I. Preservation with aldehyde perfusates versus direct

1340 perfusion with osmium tetroxide with special reference to membranes and the
1341 extracellular space. *J. Ultrastructure Res.* **12**, 160–186 (1965).

1342 91. Schultz, R. L. & Karlsson, U. Fixation of the central nervous system for electron
1343 microscopy by aldehyde perfusion. II. Effect of osmolarity, pH of perfusate, and fixative
1344 concentration. *J. Ultrastructure Res.* **12**, 187–206 (1965).

1345 92. Möbius, W. *et al.* Electron Microscopy of the Mouse Central Nervous System. *Methods*
1346 *Cell Biol.* **96**, 475–512 (2010).

1347 93. Dugas, J. C. & Emery, B. Purification of oligodendrocyte precursor cells from rat cortices
1348 by immunopanning. *Cold Spring Harb. Protoc.* **2013**, 745–758 (2013).

1349 94. Pan, D. *et al.* CDK-regulated dimerization of M18BP1 on a Mis18 hexamer is necessary
1350 for CENP-A loading. *Elife* **6**, (2017).

1351 95. Urbina, F. & Gupton, S. L. Automated Detection and Analysis of Exocytosis. *JoVE*
1352 (*Journal Vis. Exp.* **2021**, e62400 (2021)).

1353 96. Zhu, Y., Xu, J. & Heinemann, S. F. Two Pathways of Synaptic Vesicle Retrieval Revealed
1354 by Single-Vesicle Imaging. *Neuron* **61**, 397–411 (2009).

1355 97. Marisca, R. *et al.* Functionally distinct subgroups of oligodendrocyte precursor cells
1356 integrate neural activity and execute myelin formation. *Nat. Neurosci.* **23**, 363–374
1357 (2020).

1358 98. Münzel, E. J. *et al.* Claudin k is specifically expressed in cells that form myelin during
1359 development of the nervous system and regeneration of the optic nerve in adult
1360 zebrafish. *Glia* **60**, 253–270 (2012).

1361 99. Schindelin, J. *et al.* Fiji: an open-source platform for biological-image analysis. *Nat.*
1362 *Methods* **2012** *97* **9**, 676–682 (2012).

1363 100. Thévenaz, P., Ruttimann, U. E. & Unser, M. A pyramid approach to subpixel registration
1364 based on intensity. *IEEE Trans. Image Process.* **7**, 27–41 (1998).

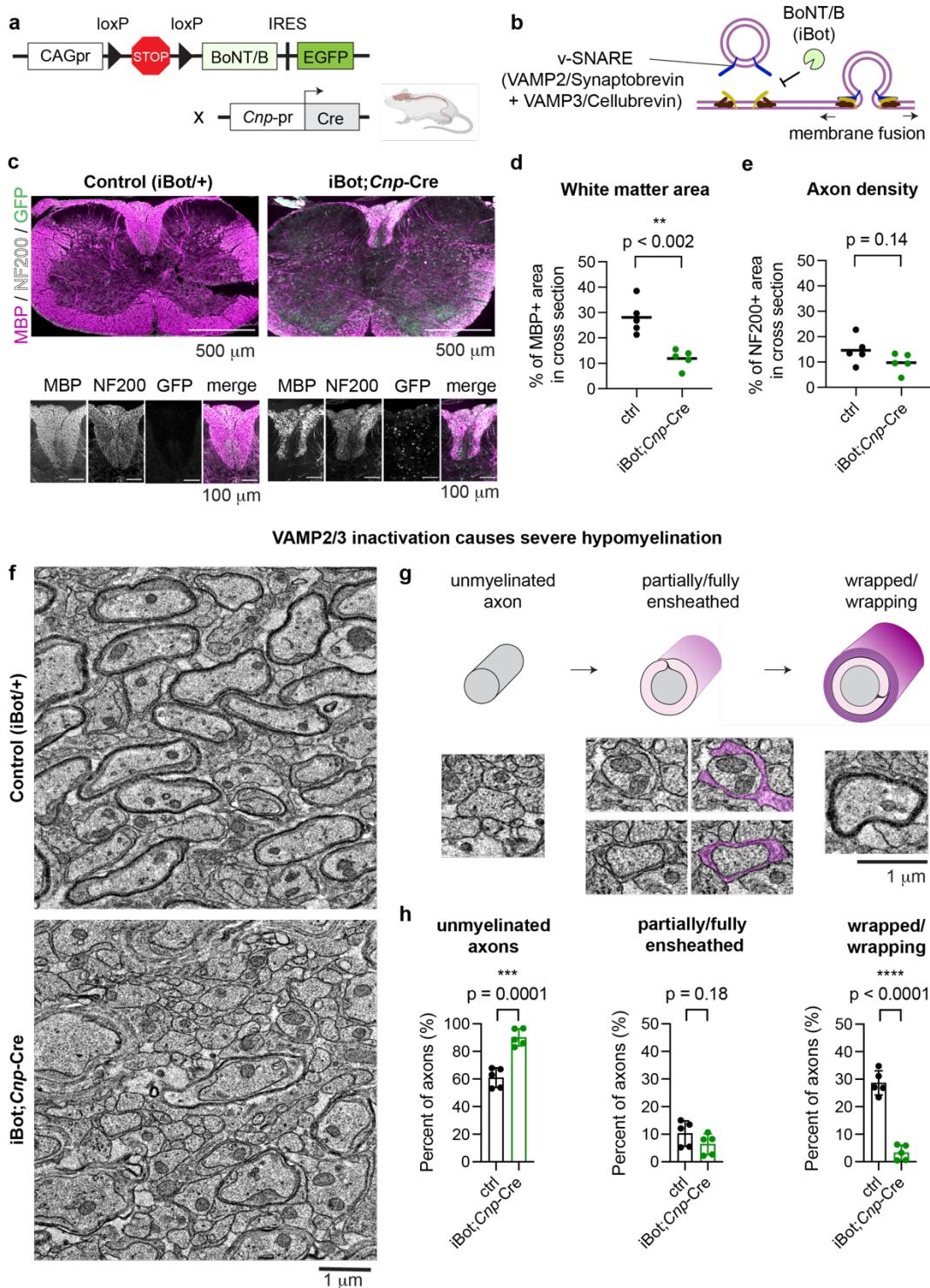
1365 101. Hildebrand, C., Remahl, S., Persson, H. & Bjartmar, C. Myelinated nerve fibres in the

1366 CNS. *Prog. Neurobiol.* **40**, 319–384 (1993).

1367 102. Chong, S. Y. C. *et al.* Neurite outgrowth inhibitor Nogo-A establishes spatial segregation
1368 and extent of oligodendrocyte myelination. *Proc. Natl. Acad. Sci. U. S. A.* **109**, 1299–
1369 1304 (2012).

1370 103. Crameri, F., Shephard, G. E. & Heron, P. J. The misuse of colour in science
1371 communication. *Nat. Commun.* **2020** *11* **11**, 1–10 (2020).

1372 104. Klunder, B. *et al.* Sorting signals and regulation of cognate basolateral trafficking in
1373 myelin biogenesis. *J. Neurosci. Res.* **86**, 1007–1016 (2008).

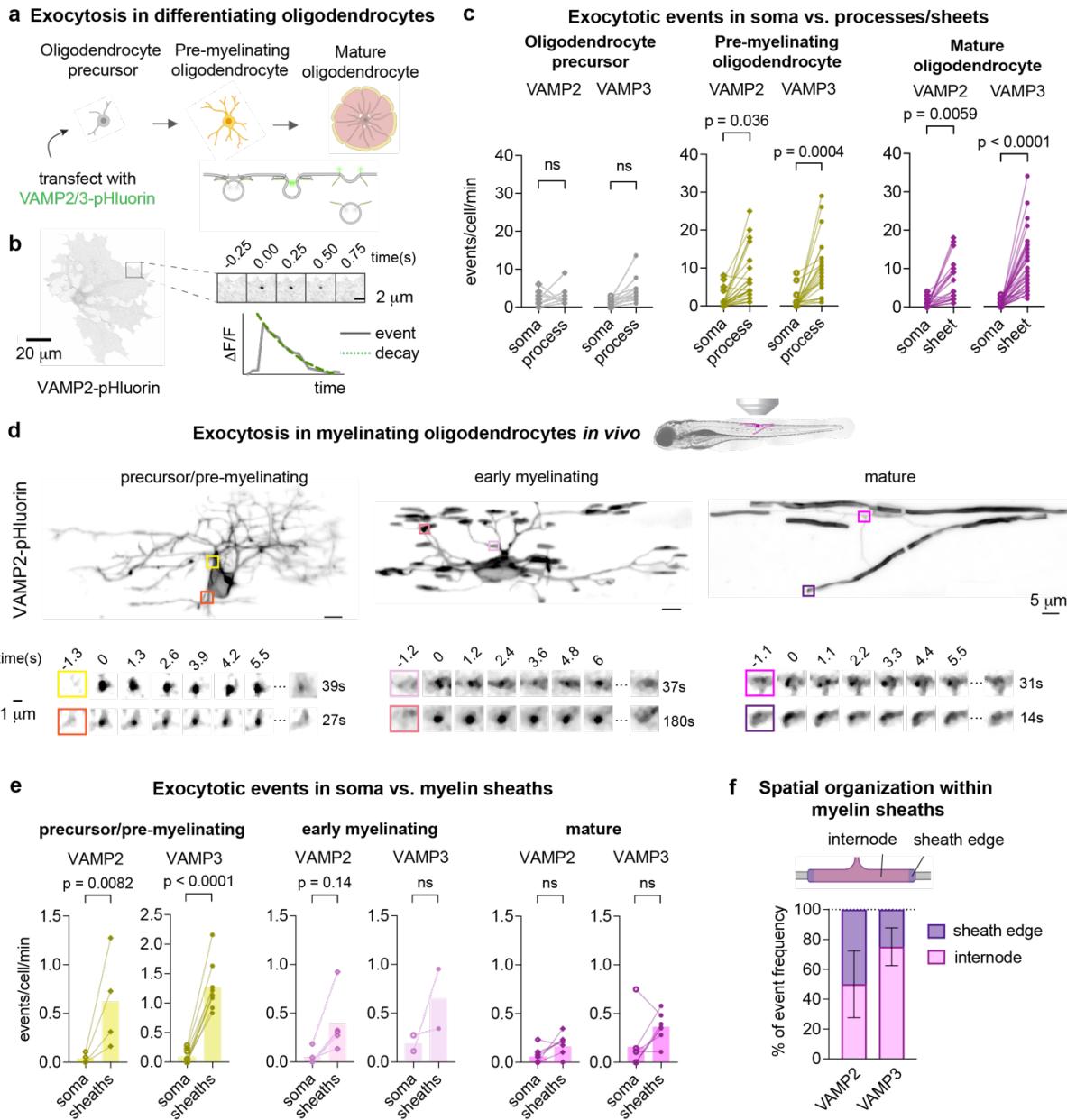

1374 105. Elias, J. E. & Gygi, S. P. Target-decoy search strategy for increased confidence in large-
1375 scale protein identifications by mass spectrometry. *Nat. Methods* **2007** *43* **4**, 207–214
1376 (2007).

1377 106. Tyanova, S. *et al.* The Perseus computational platform for comprehensive analysis of
1378 (prote)omics data. *Nat. Methods* **13**, 731–740 (2016).

1379 107. Raudvere, U. *et al.* g:Profiler: a web server for functional enrichment analysis and
1380 conversions of gene lists (2019 update). *Nucleic Acids Res.* **47**, W191–W198 (2019).

1381

1382 **FIGURES**



1383

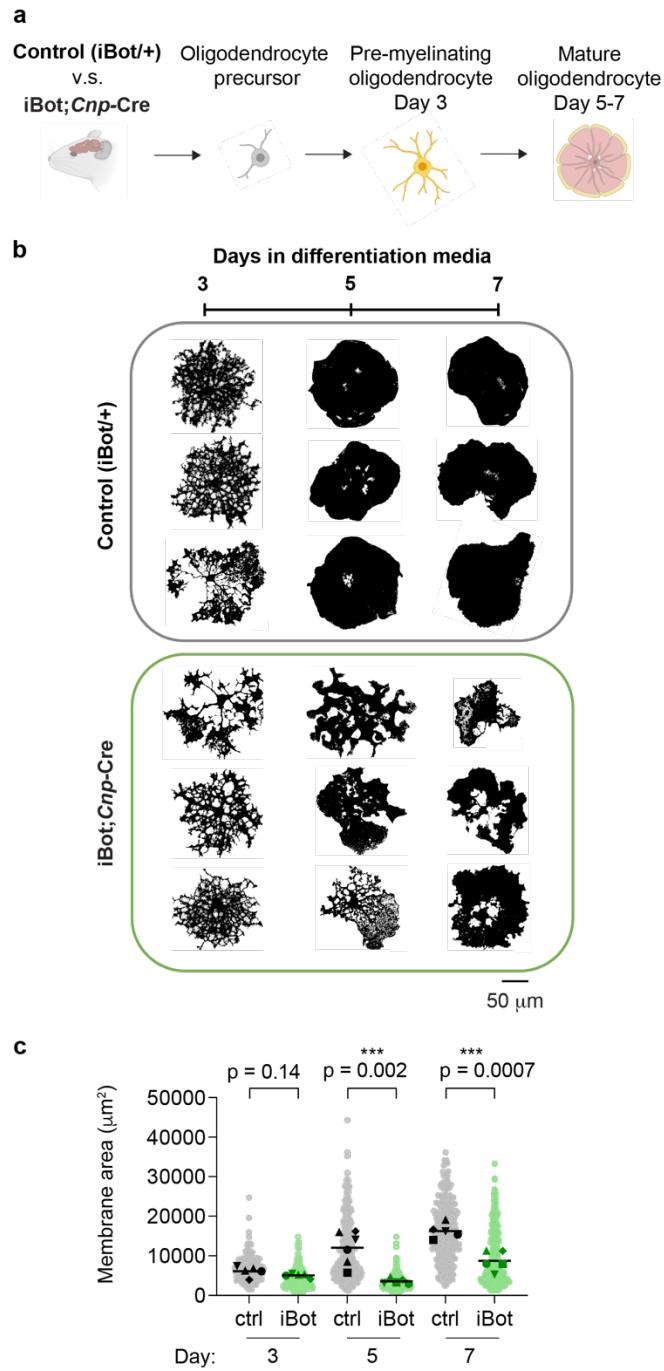
1384 **Fig. 1 | VAMP2/3-mediated exocytosis is required for CNS myelination.**

1385 (a) Genetic cross for Cre-induced expression of botulinum toxin light chain B (BoNT/B; or “iBot”)
1386 under the constitutive CAG promoter (CAGpr) in pre-myelinating oligodendrocytes.
1387 (b) iBot cleaves and inactivates v-SNAREs including VAMP2 and VAMP3, blocking vesicular
1388 fusion to the plasma membrane (exocytosis).
1389 (c) Immunolabeling of P12 spinal cord cross sections from control (iBot/+, left) and iBot;Cnp-Cre
1390 (right) mice for MBP (magenta), neurofilament heavy chain 200 (NF200, white), and GFP to
1391 mark iBot expression (green). Scale bar, 500 μ m. Bottom insets depict the dorsal column
1392 containing parallel tracts of axons. Scale bar, 100 μ m. See Supplementary Fig. 2h for MBP
1393 staining of n = 5 biological replicate pairs.
1394 (d) Quantification of white matter area (percent of P12 spinal cord cross section area
1395 immunolabeled by the myelin marker MBP; average \pm SEM for n = 5; control: 28.1 \pm 2.97%;
1396 iBot;Cnp-Cre: 11.9 \pm 1.63%).
1397 (e) Quantification of the percent of P12 spinal cord cross section area immunolabeled by the
1398 axon marker NF200 (average \pm SEM for n = 5; control: 14.6 \pm 2.41%; iBot;Cnp-Cre: 9.76 \pm
1399 1.70%).
1400 (f) Transmission electron microscopy images from P12 mouse spinal cord dorsal column cross
1401 sections (top: control (iBot/+); bottom: iBot;Cnp-Cre). Scale bar, 1 μ m. Note the dramatic
1402 hypomyelination in iBot;Cnp-Cre mice.
1403 (g) Top: categories of myelination stages observed from cross sections of myelinated axons,
1404 with the axon in gray and myelin in magenta. Bottom: representative electron microscopy
1405 images of each myelination stage. Scale bar 1 μ m.
1406 (h) Quantification of the percent of axons in each myelination stage from electron microscopy in
1407 (f), showing reduced wrapping and increased unmyelinated axons in iBot;Cnp-Cre mice.
1408 (Average \pm SEM for n = 5; unmyelinated: control (61.0 \pm 3.17%), iBot;Cnp-Cre (90.2 \pm 2.76%);

1409 partially/fully ensheathed: control ($10.3 \pm 2.06\%$), iBot;*Cnp-Cre* ($6.38 \pm 1.68\%$);
1410 wrapped/wrapping: control ($28.6 \pm 1.96\%$), iBot;*Cnp-Cre* ($3.28 \pm 1.23\%$)).

1411

1412 **Fig. 2 | VAMP2/3-mediated exocytosis occurs preferentially in myelin sheaths.**

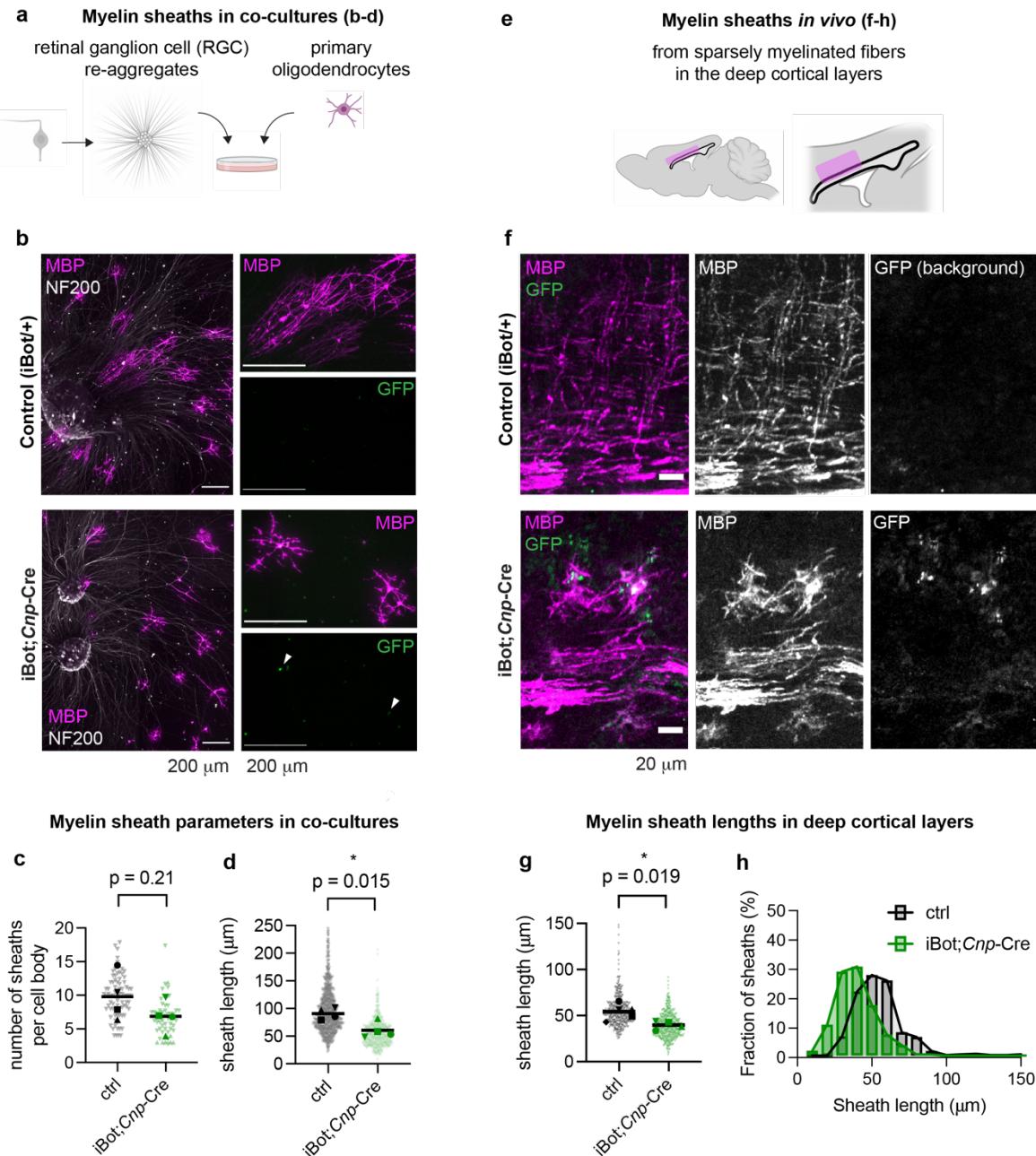

1413 (a) Top: diagram depicting oligodendrocyte differentiation in culture; bottom: transfection of
 1414 oligodendrocyte precursors with pHluorin-tagged VAMP2 or VAMP3 to visualize exocytosis.
 1415 (b) Representative image of a pre-myelinating oligodendrocyte expressing VAMP2-pHluorin.
 1416 Montage shows an exocytotic event over time, and the corresponding plot of intensity vs. time
 1417 shows the characteristic fluorescent increase and decay (fitted by the green dotted line).

1418 (c) Frequency of VAMP2- or VAMP3-pHluorin events localized to the soma or to the
1419 processes/sheets in cultured rat oligodendrocyte precursors (gray), pre-myelinating (yellow), or
1420 mature oligodendrocytes (magenta). Each pair of points connected by a line shows events for
1421 one cell. See Supplementary Table 1 for average event frequencies \pm SEM. Statistical
1422 significance was determined using the mean of each biological replicate ($n = 3$) by an ordinary
1423 one-way ANOVA with Tukey correction for multiple comparisons.

1424 (d) Top: representative images of oligodendrocyte-lineage cells expressing VAMP2-pHluorin in
1425 the larval zebrafish spinal cord. Bottom: examples of VAMP2 exocytotic events within
1426 oligodendrocyte processes and sheaths.

1427 (e) Frequency of VAMP2- or VAMP3-pHluorin events in oligodendrocytes of the zebrafish spinal
1428 cord localized to the soma or to the processes/sheaths in precursors/pre-myelinating (yellow),
1429 early myelinating (pale pink), or mature oligodendrocytes (magenta). Each pair of points
1430 connected by a line shows events for one cell (typically from one fish). See Supplementary
1431 Table 2 for average event frequencies \pm SEM. Statistical significance was determined by an
1432 ordinary one-way ANOVA with Tukey correction for multiple comparisons.

1433 (f) Spatial frequency of VAMP2 and VAMP3 exocytotic events within myelin sheaths, where the
1434 paranode is defined as 3 μ m from the sheath edge⁶⁸. The measured frequencies at paranodes
1435 (mean \pm SEM) were $(50 \pm 22.4)\%$ for VAMP2 and $(24.9 \pm 12.7)\%$ for VAMP3, each with $n = 25$
1436 sheaths from 5 experiments. See Supplementary Table 3.


1437

1438 **Fig. 3 | VAMP2/3-mediated exocytosis is required for oligodendrocyte membrane
1439 expansion.**

1440 (a) Oligodendrocyte precursors purified from transgenic mouse brains (control vs. iBot;Cnp-Cre)
1441 and differentiated in culture to investigate cell-intrinsic effects of VAMP2/3 inactivation.

1442 (b) Thresholded masks of primary oligodendrocytes stained for GalCer lipid during a
1443 differentiation time course of 3, 5, and 7 days from control (top) and iBot;Cnp-Cre (bottom) mice
1444 to show cell morphologies. Scale bar, 50 μ m. See Supplementary Fig. 6e for examples of
1445 GalCer staining.

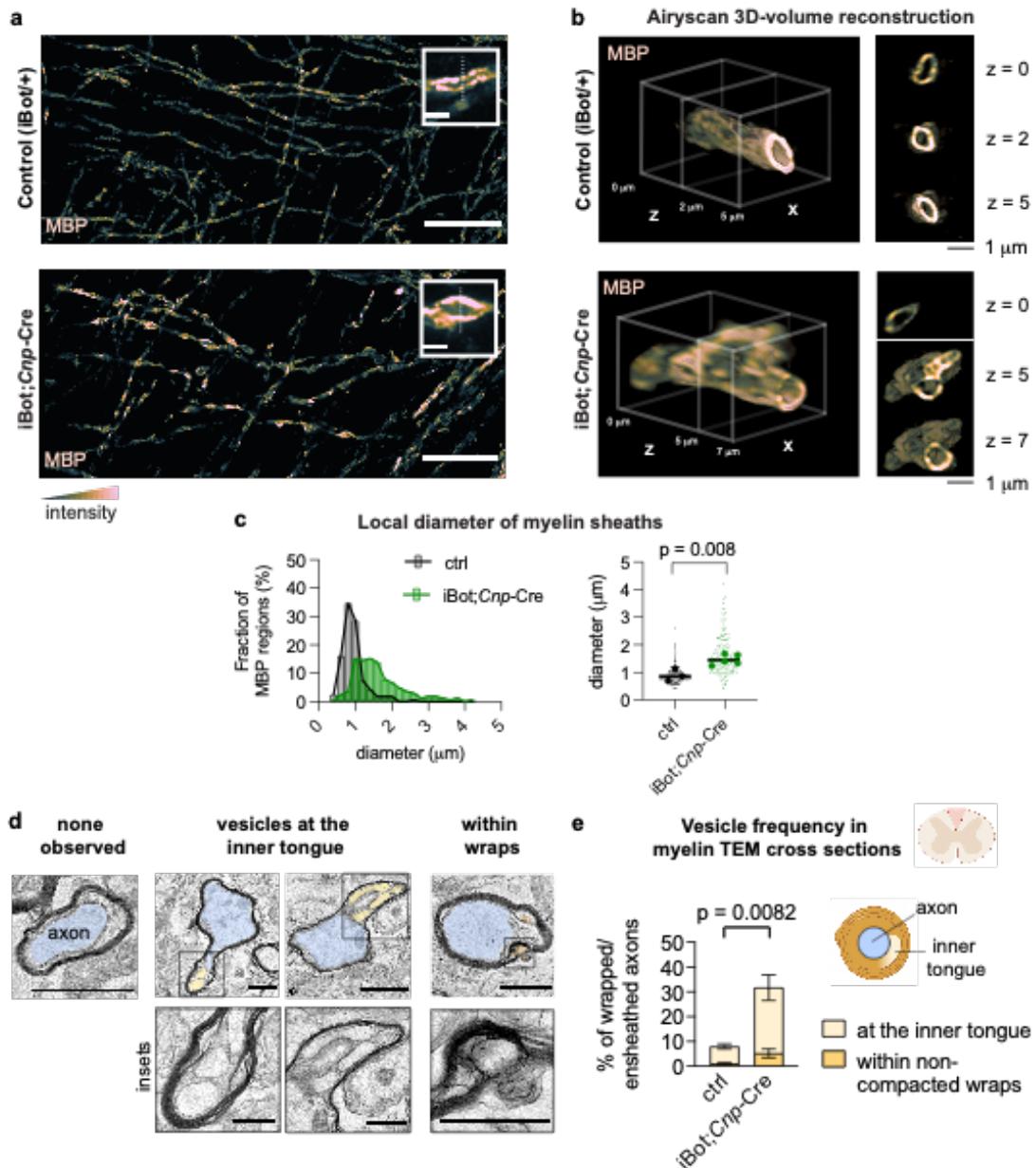
1446 (c) Quantification of membrane surface area marked by GalCer lipid, where each light-shaded
1447 point corresponds to a single cell, each dark-shaded point represents the mean area of cells
1448 from one biological replicate, and the line represents the mean area from $n = 5$ biological
1449 replicates for each condition. See Supplementary Table 4 for descriptive statistics.

1450

1451 **Fig. 4 | VAMP2/3-mediated membrane expansion is required for myelin sheath
1452 elongation.**

1453 (a) Schematic of co-cultures between oligodendrocytes (magenta) and CNS-derived axons from
1454 retinal ganglion cell aggregates with radially protruding axons (gray).
1455 (b) Primary oligodendrocytes purified from control (top) or iBot;Cnp-Cre mouse brains (bottom)
1456 cultured on CNS-derived axons (retinal ganglion cell re-aggregates) for 7 days and stained for

1457 MBP (magenta) and NF200 (white), with GFP to mark iBot expression (green). All scale bars,
1458 200 μ m. See Supplementary Fig. 8 for examples of sheath quantification.


1459 **(c,d)** Quantification of the number of sheaths per oligodendrocyte (c) and the length of sheaths
1460 (d) from co-cultures, where each light-shaded point represents a single sheath, each dark-
1461 shaded point represents the mean length of all sheaths from one biological replicate, and the
1462 line represents the mean sheath length from $n = 4$ biological replicates with 33-63 cells each.

1463 Mean number of sheaths per cell body \pm SEM: control 9.8 ± 1.8 , iBot 6.9 ± 1.2 . Mean sheath
1464 length \pm SEM: control 90.9 ± 5.2 μ m, iBot 60.5 ± 7.4 μ m.

1465 **(e)** Schematic of a brain region containing sparsely myelinated fibers at P12 examined in (f-h).

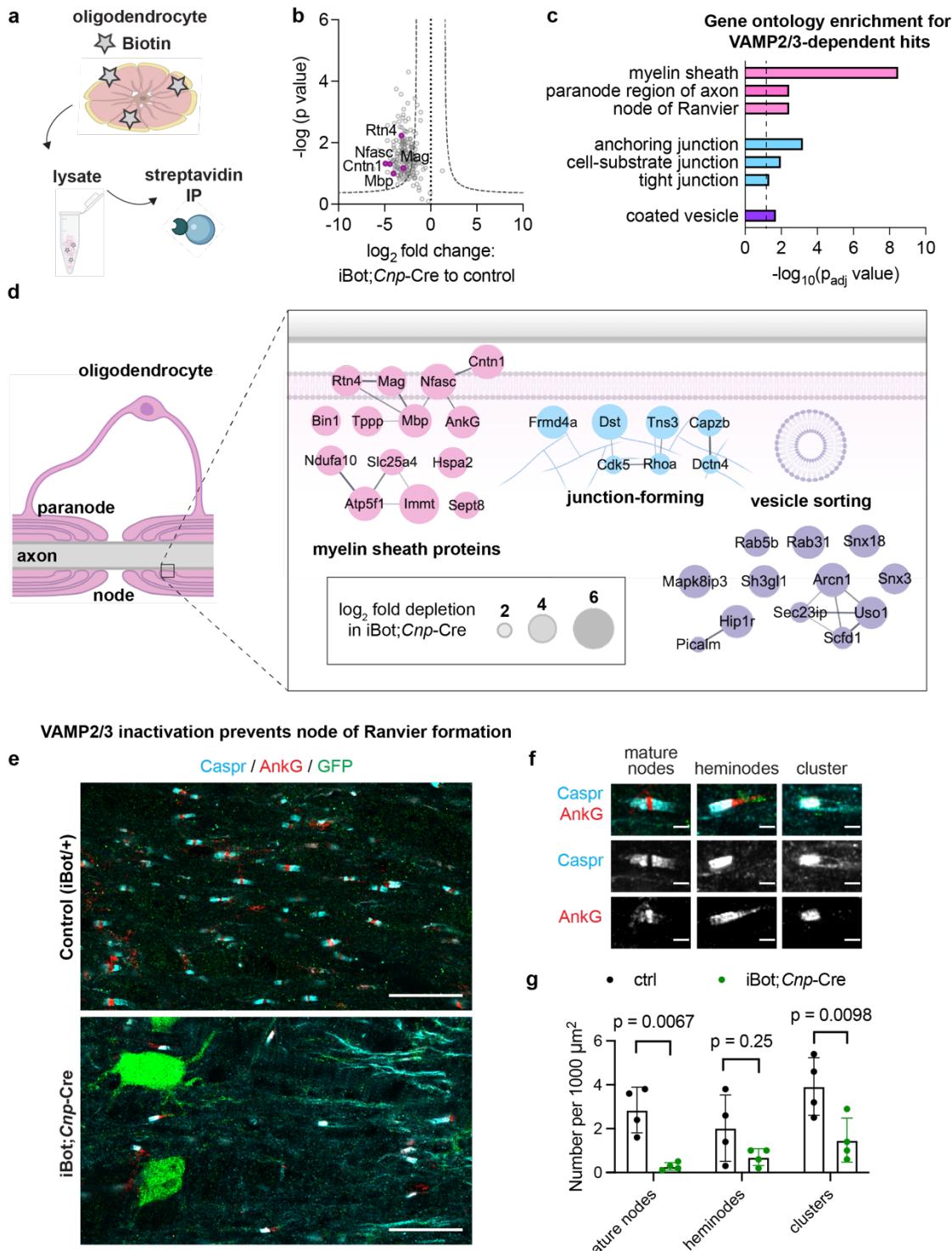
1466 **(f)** Immunolabeling of P12 mouse sagittal brain slices from control (top) and iBot;Cnp-Cre
1467 (bottom) littermates for MBP (magenta) and GFP (green). Control samples do not show GFP
1468 signal, since iBot is not expressed. Scale bar, 20 μ m.

1469 **(g,h)** Quantification of sheath length from P12 brain slices depicting scatter plots (g) and
1470 histogram distribution (h) between control (gray) and iBot;Cnp-Cre (green). Mean sheath length
1471 \pm SEM: control 54.2 ± 3.81 μ m, iBot 39.6 ± 2.38 μ m from $n = 5$ (control) or 4 (iBot;Cnp-Cre)
1472 biological replicates with 441-472 total sheaths quantified per condition.

1473

1474 **Fig. 5 | Vesicles accumulate at the inner tongue of myelin sheaths following inactivation**
 1475 **of VAMP2/3.**

1476 (a) Super-resolution (Airyscan confocal) images of P12 mouse cingulate cortex from control
 1477 (top) and iBot;Cnp-Cre (bottom) littermates immunostained for MBP. Scale bar, 20 μm (inset, 2
 1478 μm).


1479 (b) 3D reconstructed Airyscan confocal z-stack of a myelinated axon cross section from a
1480 control (top) and iBot;*Cnp*-Cre (bottom) mouse spinal cord immunostained for MBP. See also
1481 Supplementary Video 3 and 4.

1482 (c) Quantification of sheath diameter on thresholded regions of high MBP intensity from (a).
1483 Mean sheath diameter \pm SEM: control $0.89 \pm 0.13 \mu\text{m}$ from 161 regions quantified within $n = 3$
1484 biological replicates, iBot $1.46 \pm 0.08 \mu\text{m}$ from 165 regions quantified within $n = 5$ biological
1485 replicates. See Supplementary Fig. 11 for quantification methodology.

1486 (d) Top: representative electron microscopy of myelinated axons from control and iBot;*Cnp*-Cre
1487 spinal cords, where the axon is colored blue and myelin vesicles are colored in yellow/orange
1488 (scale bar $1 \mu\text{m}$). Bottom: insets for myelin vesicles from top row (scale bar $0.5 \mu\text{m}$).

1489 (e) Quantification of electron microscopy data from mouse spinal cord cross sections for the
1490 presence of vesicles within myelinated axons. Control vs. iBot;*Cnp*-Cre mean \pm SEM,
1491 respectively: at the inner tongue $6.87 \pm 1.01\%$ vs. $26.5 \pm 5.19\%$; within non-compacted wraps
1492 $1.12 \pm 0.34\%$ vs. $5.24 \pm 1.80\%$.

1493

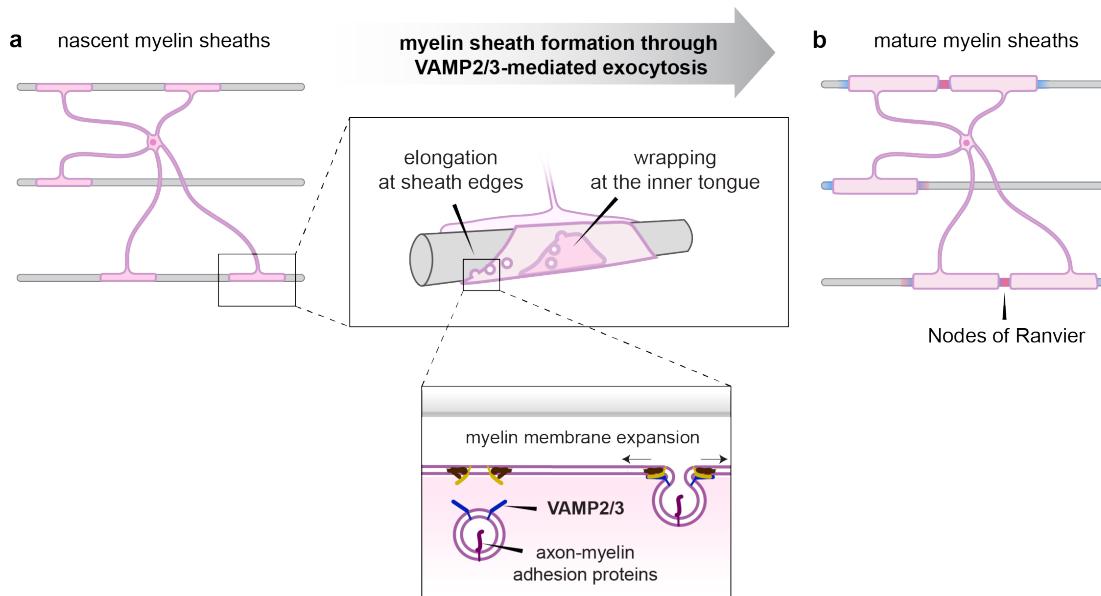
1494

1495 **Fig. 6 | Oligodendrocyte VAMP2/3 is required for delivery of myelin adhesion proteins**
1496 **and node of Ranvier formation.**

1497 (a) Biotinylation of surface proteins on mature oligodendrocytes differentiated in culture followed
1498 by immunoprecipitation (IP) with streptavidin beads for mass spectrometry.

1499 (b) Proteomic analysis of immunoprecipitated surface proteins and interactors from control vs.
1500 iBot;Cnp-Cre oligodendrocytes. Data points exclude non-specific interactors of the streptavidin
1501 IP identified in the non-biotinylated samples. The negative \log_{10} transformed false discovery
1502 rate-adjusted p-value of each specific interactor was plotted against its average \log_2 fold change
1503 between iBot;Cnp-Cre and control samples. The dotted curve corresponds to the threshold
1504 cutoff for a 2-fold change between samples and a permutation-based false discovery rate
1505 correction for multiple comparisons with $p < 0.05$. Magenta points highlight notable myelin
1506 proteins that are significantly dependent on VAMP2/3 for surface delivery.

1507 (c) Selected gene ontology (GO) annotations using gProfiler for VAMP2/3-dependent hits from
1508 the surface proteomic analysis (b) with a dotted line marking $p = 0.05$.

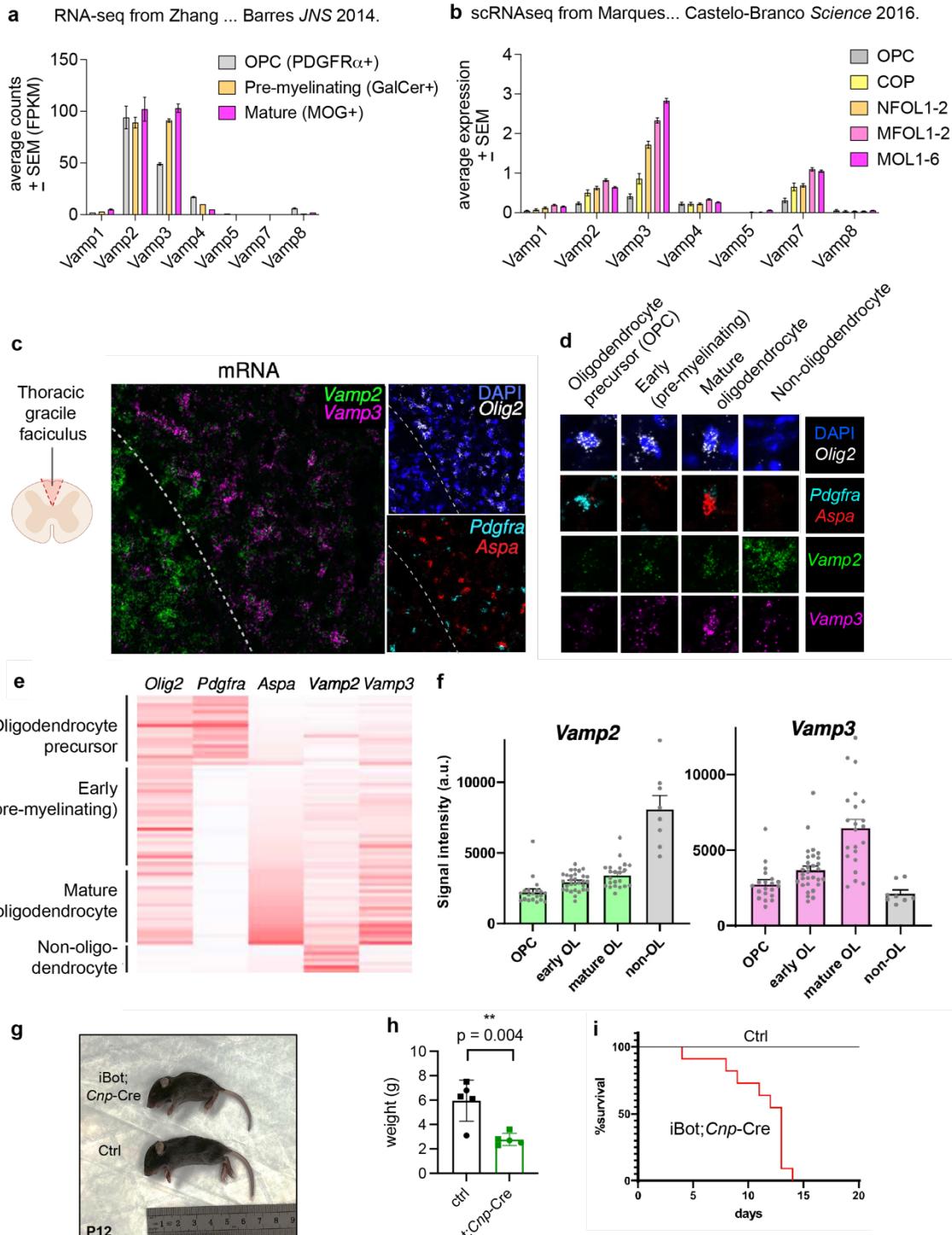

1509 (d) Annotated localization of top VAMP2/3-dependent proteins in oligodendrocytes. The area of
1510 each circle scales linearly to the \log_2 fold depletion in iBot;Cnp-Cre oligodendrocytes. Lines
1511 connecting proteins denote reported and predicted protein interactions from the STRING
1512 database.

1513 (e) Immunohistochemistry of axonal node components Caspr (cyan) and AnkG (red) for
1514 longitudinal sections of the spinal cord harvested from control (top) and iBot;Cnp-Cre (bottom)
1515 littermates at P12. Scale bar, 20 μm .

1516 (f) Representative images of node classifications. Scale bar, 2 μm .

1517 (g) Quantification of the number of nodes in each category over 48,000-72,000 μm^2 of spinal
1518 cord longitudinal section for each of $n = 4$ biological replicates. Mean number of nodes per 1000
1519 $\mu\text{m}^2 \pm \text{SEM}$ for control vs. iBot, respectively: mature nodes 2.85 ± 0.52 vs. 0.28 ± 0.09 ;
1520 heminodes 2.03 ± 0.76 vs. 0.70 ± 0.19 ; clusters 3.93 ± 0.66 vs. 1.48 ± 0.50 . Statistical
1521 significance was determined by one-way ANOVA with multiple comparisons correction.

1522



1523

1524 **Fig. 7 | Model figure of how VAMP2/3-mediated exocytosis drives CNS myelination**

1525 **(a)** In nascent myelin sheaths, VAMP2/3-mediated exocytosis occurs at the inner tongue to
1526 drive wrapping and at sheath edges to drive elongation. VAMP2/3-mediated exocytosis results
1527 in full-vesicle fusion that incorporates myelin membrane material and axon-myelin adhesion
1528 proteins.

1529 **(b)** VAMP2/3-mediated exocytosis coordinates sheath elongation with surface delivery of axon-
1530 myelin adhesion proteins to form nodes of Ranvier in the CNS.

1531

1532 **Supplementary Fig. 1 | Expression of VAMP isoforms in myelinating oligodendrocytes.**

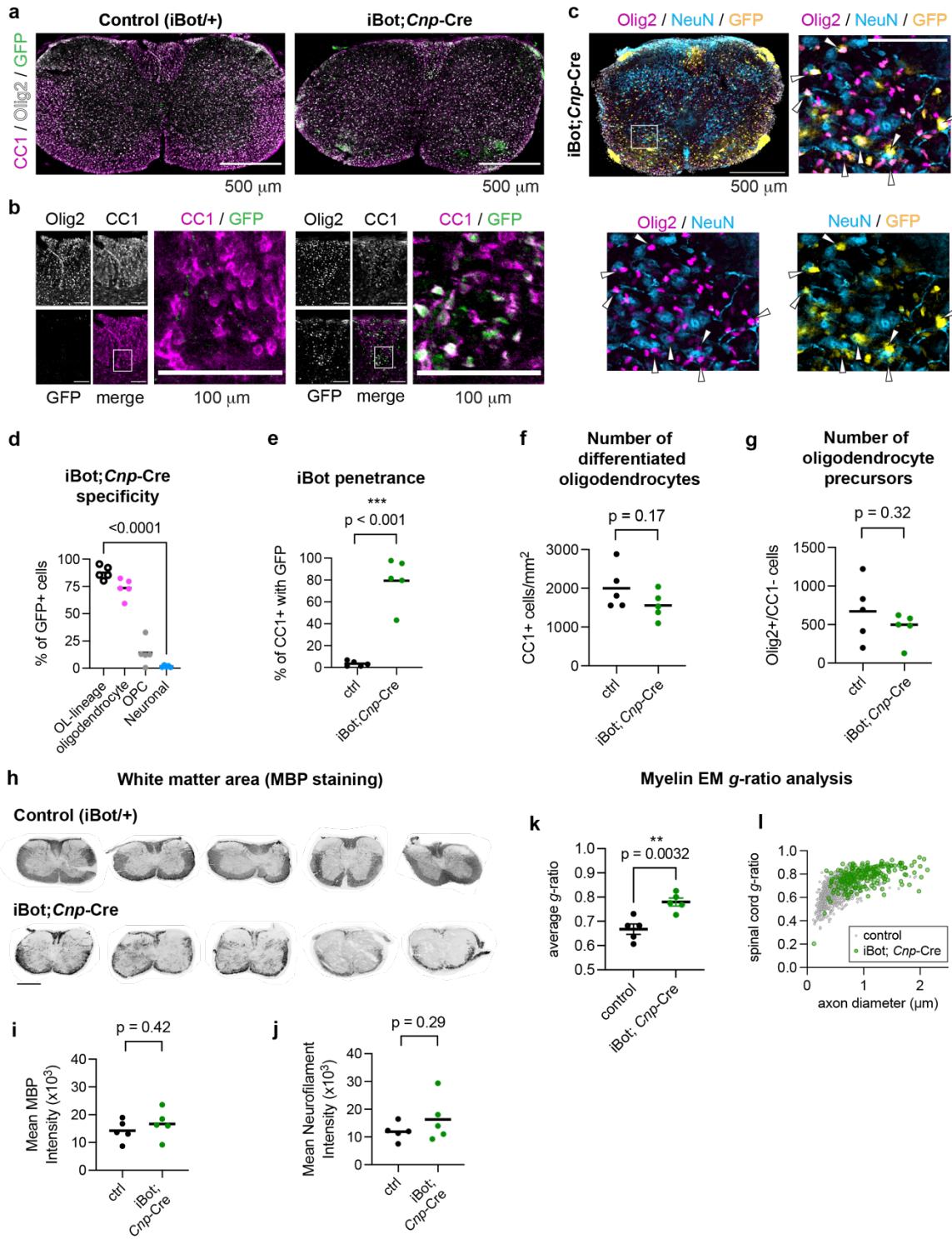
1533 **(a-b)** Expression of v-SNAREs (*Vamp*) in oligodendrocyte-lineage cells from published data

1534 sets. (a) Replotted RNA-seq analysis from Zhang *et al.* JNS 2014 with PDGFR α + to identify

1535 oligodendrocyte precursors (OPC), GalCer+ to identify pre-myelinating, and MOG+ to mark
1536 mature oligodendrocytes. (b) Replotted single cell RNA-seq (scRNA-seq) analysis from
1537 Marques *et al.* *Science* 2016, where OPC = oligodendrocyte precursors; COP = differentiation-
1538 committed oligodendrocyte precursors; NFOL = newly formed oligodendrocytes; MFOL =
1539 myelin-forming oligodendrocytes; MOL = mature oligodendrocytes.

1540 (c) Fluorescent *in situ* hybridization (RNAscope) of P10 wild-type mouse spinal cord cross
1541 section with probes against the mRNAs *Vamp2*, *Vamp3*, *Olig2*, *Pdgfra* and *Aspa*. Dotted lines
1542 show the boundary between gray matter (left) and white matter (right, dorsal column).

1543 (d) Representative images of each cell type, classified by the following markers: OPCs as
1544 *Olig2*+ and *Pdgfra*+ cells; early (pre-myelinating) as *Olig2*+, *Pdgfra*- and low *Aspa*; mature
1545 oligodendrocytes as *Olig2*+, *Pdgfra*- and high *Aspa* cells; non-oligodendrocytes as *Olig2*- cells.


1546 (e) Heat map of fluorescence intensity from each probe in (c), where red is the highest intensity
1547 and white is the lowest within a probe, and each line corresponds to a single cell.

1548 (f) Bar graph of mRNA fluorescence intensity of *Vamp2* and *Vamp3* in for each cell type. Each
1549 datapoint represents an individual cell.

1550 (g) iBot; *Cnp*-Cre mouse and control (ctrl) littermate at P12 with ruler showing cm for scale.

1551 (h) Body weight (mean \pm SEM) at post-natal day 10 for control littermates (5.79 ± 0.84 g) and
1552 iBot; *Cnp*-Cre mice (2.75 ± 0.15 g), where squares denote males and circles indicate female with
1553 $n = 5$ for each genotype.

1554 (i) Survival curve of iBot; *Cnp*-Cre mice ($n = 11$) and control littermates ($n = 21$).

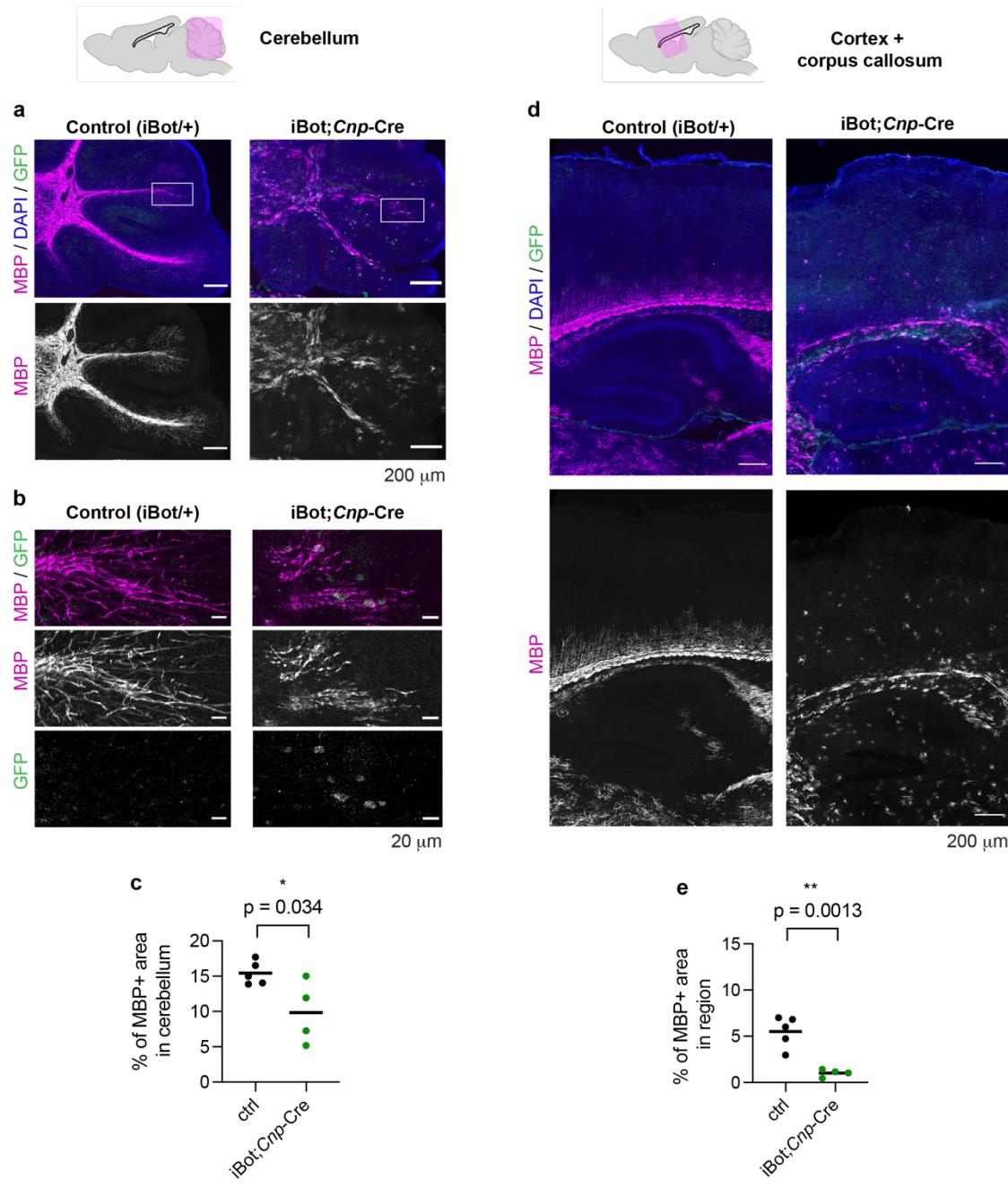
1555

1556 **Supplementary Fig. 2 | Specificity and penetrance of botulinum toxin (iBot) expression in**
 1557 **myelinating oligodendrocytes.**

1558 (a-b) Immunolabeling of P12 spinal cord cross sections from control (left) and iBot;Cnp-Cre
1559 (right) mice for CC1 (magenta), Olig2 (white), and GFP to mark iBot expression (green). Scale
1560 bar, 500 μ m. (b) depicts the dorsal column with enlarged insets to show individual CC1+ cells.
1561 Scale bar, 100 μ m.

1562 (c) Immunolabeling of P12 spinal cord cross sections from iBot;Cnp-Cre mice for Olig2
1563 (magenta), NeuN (cyan), and GFP to mark iBot expression (yellow). Scale bar, 500 μ m. Inset
1564 enlarges a region of the ventral horn, and white arrows point to Olig2+;GFP+ cells. Scale bar,
1565 100 μ m.

1566 (d) Quantification of iBot;Cnp-Cre specificity by counting the % of total GFP+ overlapping with
1567 different cell markers (average \pm SEM): Olig2 (oligodendrocyte-lineage, 87.8 \pm 2.71%), Olig2
1568 and CC1 (oligodendrocyte, 73.5 \pm 4.00%), Olig2 without CC1 (OPC, 14.2 \pm 5.20%), or NeuN
1569 (neuronal, 1.75 \pm 0.435%). n = 5 biological replicates with 1067-2085 GFP+ cells analyzed in
1570 each.


1571 (e) Quantification of iBot penetrance by counting the % of total CC1+ overlapping with GFP
1572 (average \pm SEM) in control (3.5 \pm 1.1%) and iBot;Cnp-Cre (79.4 \pm 9.7%) littermates for n = 5
1573 biological replicates of each genotype with 1096-2881 CC1+ cells analyzed in each.

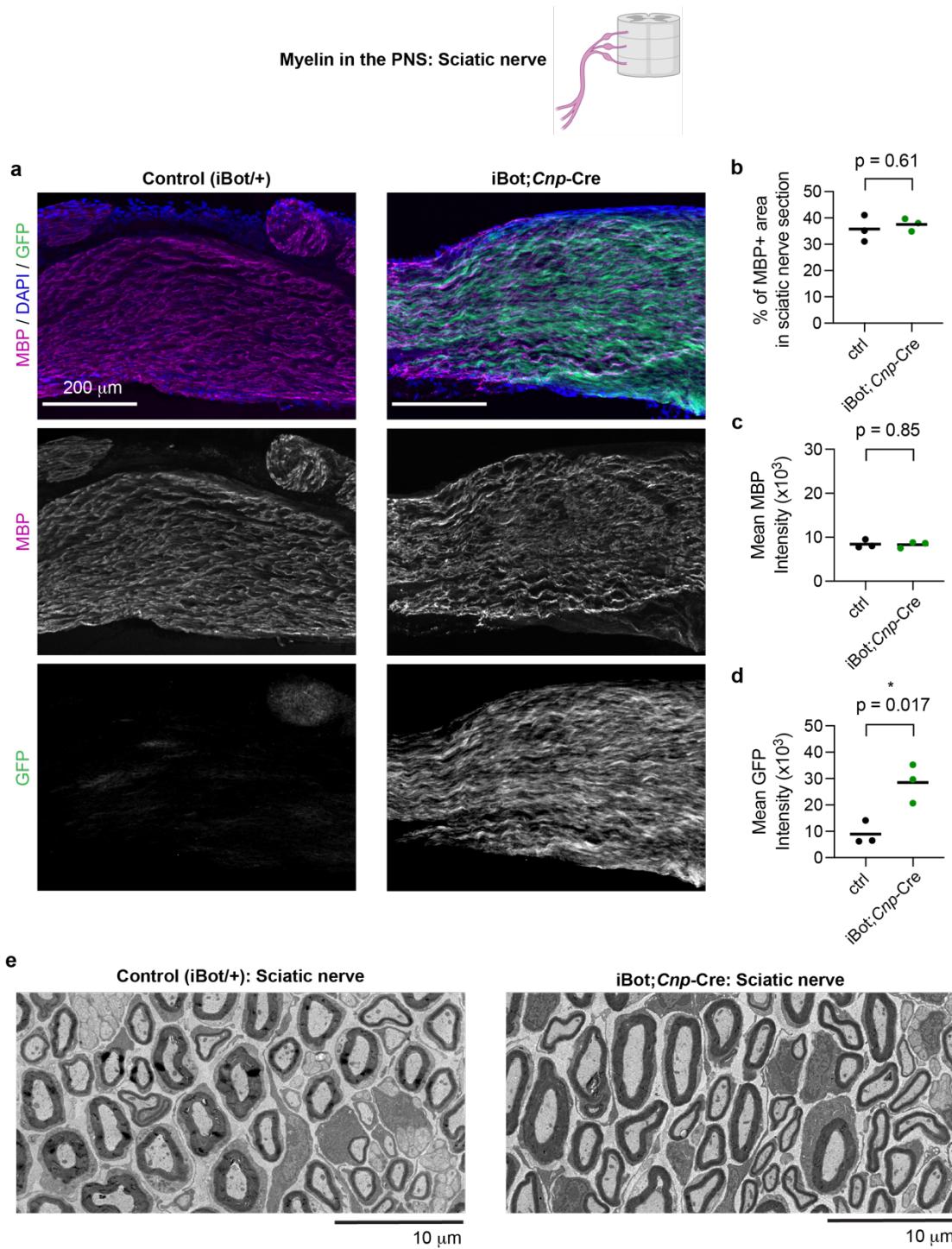
1574 (f) Quantification of the number of CC1+ cells per mm² (average \pm SEM) for control (1999 \pm
1575 249) and iBot;Cnp-Cre (1558 \pm 160) littermates with n = 5 biological replicates for each
1576 genotype.

1577 (g) Quantification of the number of CC1-/Olig2+ cells per mm² (average \pm SEM) for control (672
1578 \pm 176) and iBot;Cnp-Cre (463 \pm 87.4) littermates with n = 5 biological replicates for each
1579 genotype.

1580 (h) Biological replicates of MBP immunolabeling of P12 spinal cord cross sections from control
1581 (top row) and iBot;Cnp-Cre (bottom row) mice for the representative image shown in Fig. 1c.
1582 Scale bar, 500 μ m.

1583 (i) Quantification of mean MBP intensity (a.u.) over the entire spinal cord cross section (P12)
1584 shown in (h); average \pm SEM for n = 5; control: $(14.2 \pm 1.75) \times 10^3$; iBot;Cnp-Cre: (16.7 ± 2.31)
1585 $\times 10^3$).
1586 (j) Quantification of mean neurofilament 200 intensity (a.u.) over the entire spinal cord cross
1587 section (P12) shown in (h); average \pm SEM for n = 5; control: $(11.9 \pm 1.42) \times 10^3$; iBot;Cnp-Cre:
1588 $(16.3 \pm 3.58) \times 10^3$).
1589 (k) Quantification of *g*-ratio for wrapped/wrapping axons in control vs. iBot;Cnp-Cre spinal cords
1590 at P12 as shown in Fig. 1f-g; average \pm SEM for n = 5; control: 0.668 ± 0.0213 ; iBot;Cnp-Cre:
1591 0.780 ± 0.0166).
1592 (l) Distribution of *g*-ratio vs. axon diameter for wrapped/wrapping axons in control vs. iBot;Cnp-
1593 Cre spinal cords at P12 as shown in Fig. 1f-g.

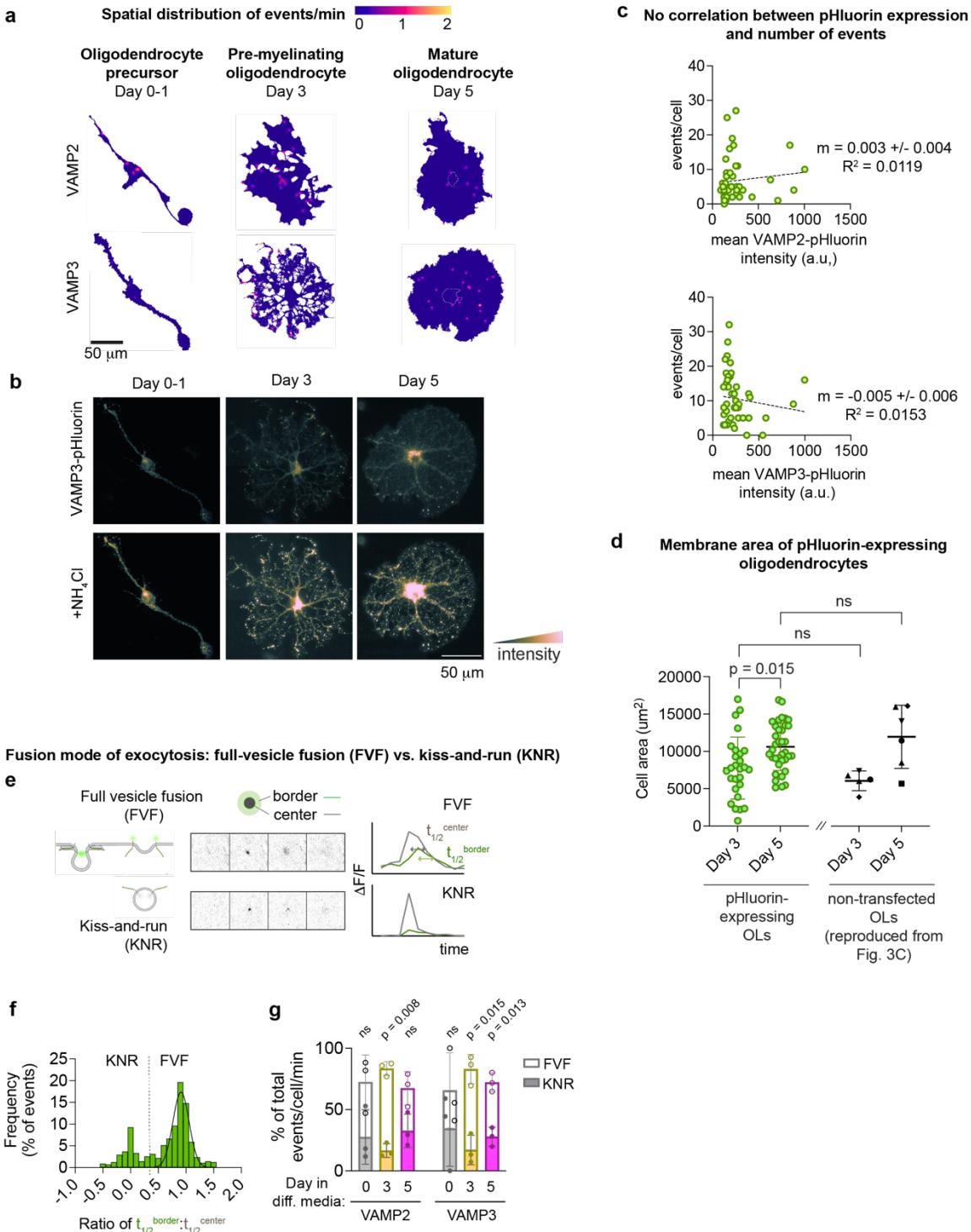
1594


1595 **Supplementary Fig. 3 | VAMP2/3 is required for developmental myelination in the brain.**

1596 (a) Immunolabeling of a P12 cerebellum from control (left) and iBot;Cnp-Cre (right) mice for
1597 MBP (magenta), DAPI (blue), and GFP to mark iBot expression (green). Scale bar, 200 μ m.
1598 (b) Insets from (a) to show differential MBP morphology of iBot-expressing (GFP+)
1599 oligodendrocytes. Scale bar, 20 μ m.

1600 (c) Quantification of the percent of area immunolabeled by the myelin marker MBP (average \pm
1601 SEM) across the cerebellum for control ($15.4 \pm 0.74\%$, n = 5) and iBot;Cnp-Cre ($9.8 \pm 2.2\%$, n =
1602 4).

1603 (d) Immunolabeling of a sagittal slice of the P12 cortex from control (left) and iBot;Cnp-Cre
1604 (right) mice for MBP (magenta), DAPI (blue), and GFP to mark iBot expression (green). Scale
1605 bar, 200 μ m.


1606 (e) Quantification of the percent of area immunolabeled by the myelin marker MBP (average \pm
1607 SEM) across cortical sections for control ($5.5 \pm 0.75\%$, n = 5) and iBot;Cnp-Cre ($1.0 \pm 0.2\%$, n =
1608 4).

1609

1610 **Supplementary Fig. 4 | Inactivation of VAMP2/3 has no gross effect on PNS myelination.**

1611 (a) Immunolabeling of a P12 sciatic nerve longitudinal section from control (left) and iBot;*Cnp*-
1612 Cre (right) mice for MBP (magenta), DAPI (blue), and GFP to mark iBot expression (green).
1613 Scale bar, 200 μ m.
1614 (b) Quantification of the percent of area immunolabeled by the myelin marker MBP (average \pm
1615 SEM) across the sciatic nerve for control ($35.8 \pm 2.9\%$, n = 3) and iBot;*Cnp*-Cre ($37.6 \pm 1.4\%$, n
1616 = 3).
1617 (c) Quantification of mean intensity of MBP (average \pm SEM, a.u. = arbitrary units) in sciatic
1618 nerves for control (8442 ± 550 a.u., n = 3) and iBot;*Cnp*-Cre (8311 ± 407 a.u., n = 3).
1619 (d) Quantification of mean intensity of GFP (average \pm SEM, a.u. = arbitrary units) in sciatic
1620 nerves for control (8942 ± 2599 , n = 3) and iBot;*Cnp*-Cre (28534 ± 4244 , n = 3).
1621 (e) Transmission electron microscopy images from P12 mouse sciatic nerve cross sections (left:
1622 control; right: iBot;*Cnp*-Cre). Scale bar, 10 μ m.

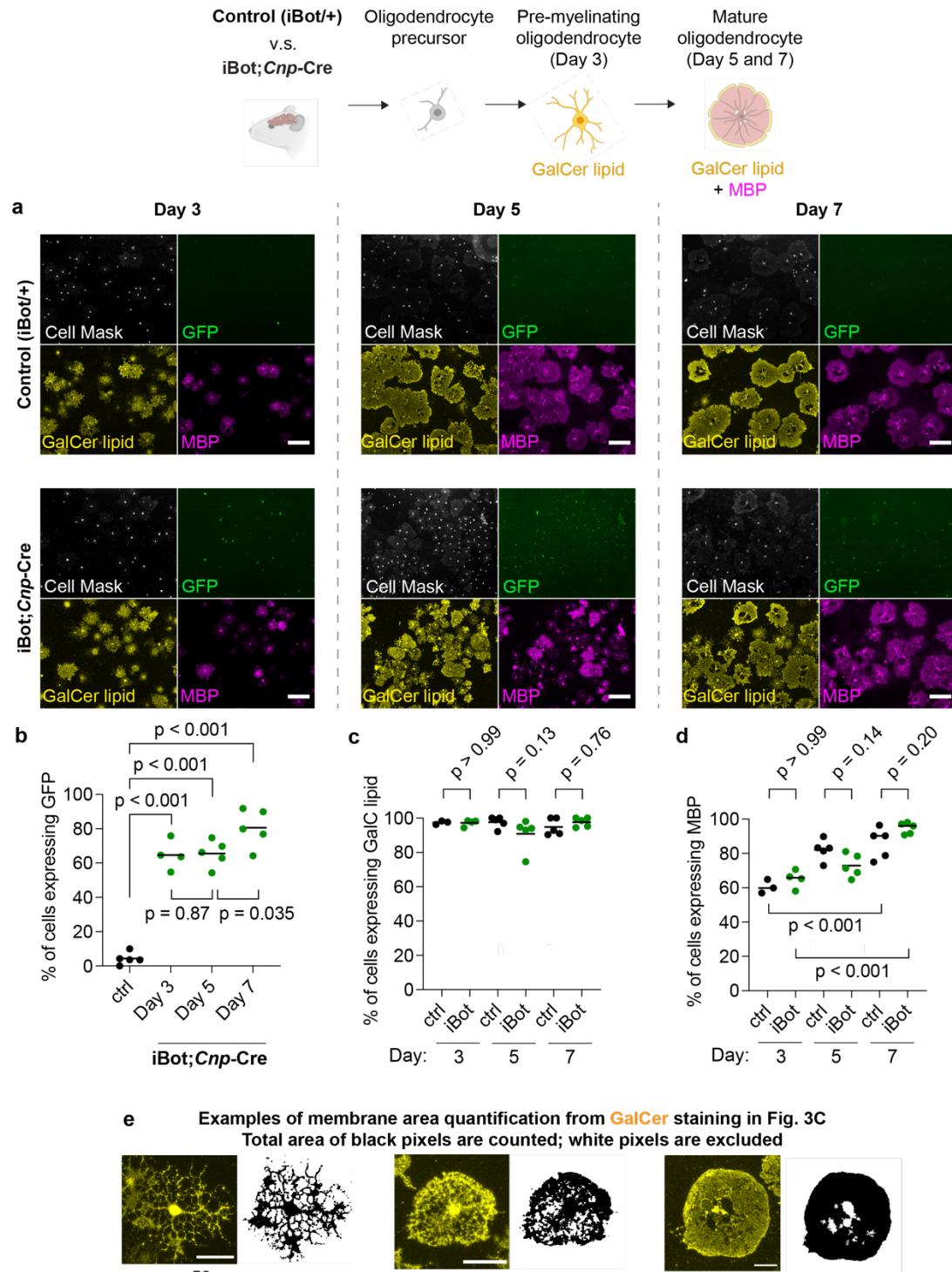
1623

1624 **Supplementary Fig. 5 | Spatial distribution and fusion modes of VAMP2/3-vesicles in**
 1625 **primary oligodendrocytes.**

1626 (a) Heat map of the density of exocytotic events in primary oligodendrocytes differentiated for 0-
1627 1, 3, or 5 days before imaging.

1628 (b) Images of primary oligodendrocytes expressing VAMP3-pHluorin (top) followed by a 10-
1629 second treatment with 30 mM NH₄Cl (bottom) to de-quench all pHluorin-associated vesicles.

1630 (c) Plot of the number of exocytotic events vs. the mean background pHluorin intensity of each
1631 cell at t = 0 as a proxy of expression level for VAMP2-pHluorin (top) and VAMP3-pHluorin
1632 (bottom). Higher number of exocytotic events did not correlate with higher VAMP-pHluorin
1633 expression levels.


1634 (d) Comparison of membrane area between pHluorin-expressing (green, pooled data from
1635 VAMP2 and VAMP3) and non-transfected primary oligodendrocytes (black) at Day 3 and Day 5
1636 of differentiation in culture. Data shown for non-transfected primary oligodendrocytes were
1637 reproduced from the membrane area averages for control oligodendrocytes in Fig. 3c. Mean cell
1638 area \pm SEM: at Day 3, pHluorin-expressing $7,761 \pm 798 \mu\text{m}^2$ (n = 27), non-transfected control
1639 $6,099 \pm 595 \mu\text{m}^2$; at Day 5, pHluorin-expressing $10,607 \pm 528 \mu\text{m}^2$ (n = 36), non-transfected
1640 control $12,022 \pm 1,731 \mu\text{m}^2$. Statistical significance was determined by a one-way ANOVA with
1641 Bonferroni's correction for multiple comparisons.

1642 (e) Examples of exocytotic events resulting in different fusion modes of exocytosis. On the top,
1643 a full-vesicle fusion (FVF) event exhibits radial spreading of fluorescence from the initial
1644 fluorescent punctum. On the bottom, a kiss-and-run (KNR) event appears and disappears
1645 without fluorescence spreading. The half-life of the event center ($t_{1/2}^{\text{center}}$) measures the duration
1646 of initial fluorescent punctum, and the half-life of the bordering event ($t_{1/2}^{\text{border}}$) measures the
1647 decay of the surrounding membrane fluorescence. In FVF events, the $t_{1/2}^{\text{border}}$ (green trace)
1648 should be similar to the $t_{1/2}^{\text{center}}$ (gray trace), yielding a ratio of half-lives of ~ 1 .

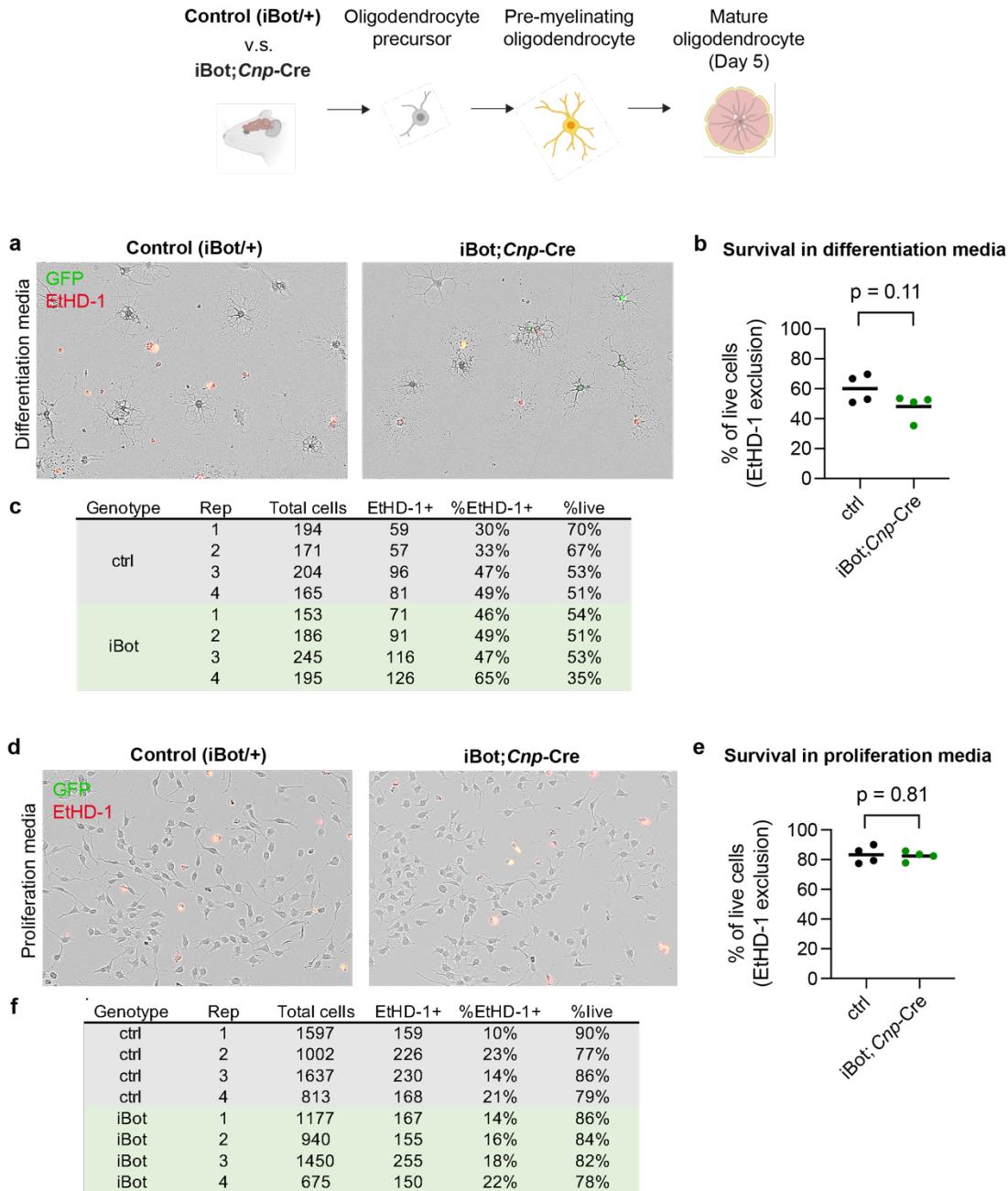
1649 (f) Frequency distribution of the ratio of half-lives from the bordering event to the center event
1650 ($t_{1/2}^{\text{center}}: t_{1/2}^{\text{border}}$) as a measure of radial fluorescence spreading. Ratios of all pHluorin events (n

1651 = 396 for VAMP2 and 539 for VAMP3) distributed into two clusters. FVF was assigned to the
1652 cluster ~ 1 (mean \pm SD of Gaussian fit for VAMP2: 0.89 ± 0.14 ; VAMP3: 0.92 ± 0.15). Ratios
1653 below three standard deviations of the FVF mean (marked by the dotted line) were classified as
1654 KNR.

1655 **(g)** Stacked bar graph for composition of events classified as FVF (top open bars and circles) or
1656 KNR (bottom filled bars and circles) at Day 0, 3, and 5 of differentiation in culture corresponding
1657 to OPC, pre-myelinating, and mature stages, respectively. Statistical significance was
1658 determined by a two-way ANOVA between KNR and FVF at each day of differentiation with
1659 Bonferroni's correction for multiple comparisons. For statistically significant differences, the
1660 mean \pm SEM% of FVF events was $83.4 \pm 4.5\%$ for VAMP2 at Day 3, $82.9 \pm 9.8\%$ for VAMP3 at
1661 Day 3, and $72.1 \pm 6.3\%$ for VAMP3 at Day 5 from $n = 3$ biological replicates.

1662

1663 **Supplementary Fig. 6 | VAMP2/3 inactivation in pre-myelinating oligodendrocytes does**
1664 **not affect oligodendrocyte differentiation in culture.**

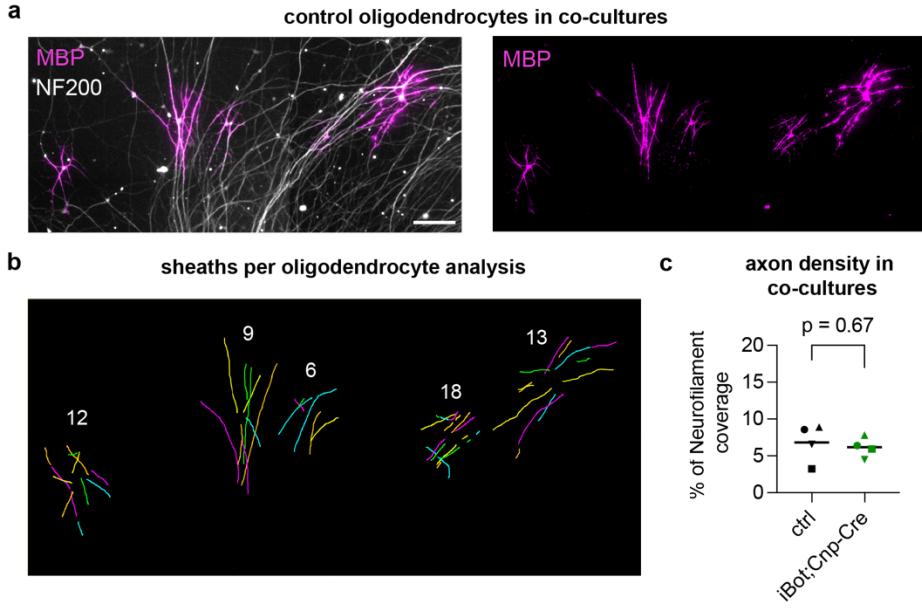

1665 (a) Oligodendrocyte precursors were purified from the brains of control or iBot;*Cnp*-Cre mice
1666 and differentiated in culture for 3, 5, or 7 days. Cells were fixed and stained for Cell Mask Blue
1667 (a marker of morphology), GalCer lipid (a marker of pre-myelinating oligodendrocytes), and
1668 MBP (a marker of mature oligodendrocytes). Scale bar, 200 μ m.

1669 (b) Quantification of iBot expression as % of cells expressing GFP (mean \pm SEM) for n = 5
1670 biological replicates in each condition. Control: $4.3 \pm 1.6\%$. iBot;*Cnp*-Cre Day 3: $64.7 \pm 4.3\%$,
1671 Day 5: $65.6 \pm 3.4\%$, Day 7: $80.6 \pm 4.9\%$. Statistical significance was determined by a one-way
1672 ANOVA with Bonferroni's correction for multiple comparisons.

1673 (c) Quantification of pre-myelinating oligodendrocytes as % of cells expressing GalCer lipid
1674 (mean \pm SEM) for n = 5 biological replicates in each condition. Control Day 3: $97.4 \pm 0.6\%$, Day
1675 5: $97.6 \pm 1.5\%$, and Day 7: $94.8 \pm 2.2\%$. iBot;*Cnp*-Cre Day 3: $97.2 \pm 0.9\%$, Day 5: $90.9 \pm 4.2\%$,
1676 Day 7: $97.7 \pm 1.2\%$. Statistical significance was determined by a one-way ANOVA with
1677 Bonferroni's correction for multiple comparisons.

1678 (d) Quantification of mature oligodendrocytes as % of cells expressing MBP (mean \pm SEM) for n
1679 = 5 biological replicates in each condition. Control Day 3: $60.6 \pm 2.3\%$, Day 5: $82.1 \pm 2.7\%$, and
1680 Day 7: $86.2 \pm 4.0\%$. iBot;*Cnp*-Cre Day 3: $65.1 \pm 2.6\%$, Day 5: $72.9 \pm 3.0\%$, Day 7: $94.7 \pm 1.5\%$.
1681 Statistical significance was determined by a one-way ANOVA with Bonferroni's correction for
1682 multiple comparisons.

1683 (e) Examples of membrane area quantification from GalCer staining in Fig. 3C to show how
1684 unstained regions arising from the reticulated membrane network are excluded from area
1685 quantification.


1686

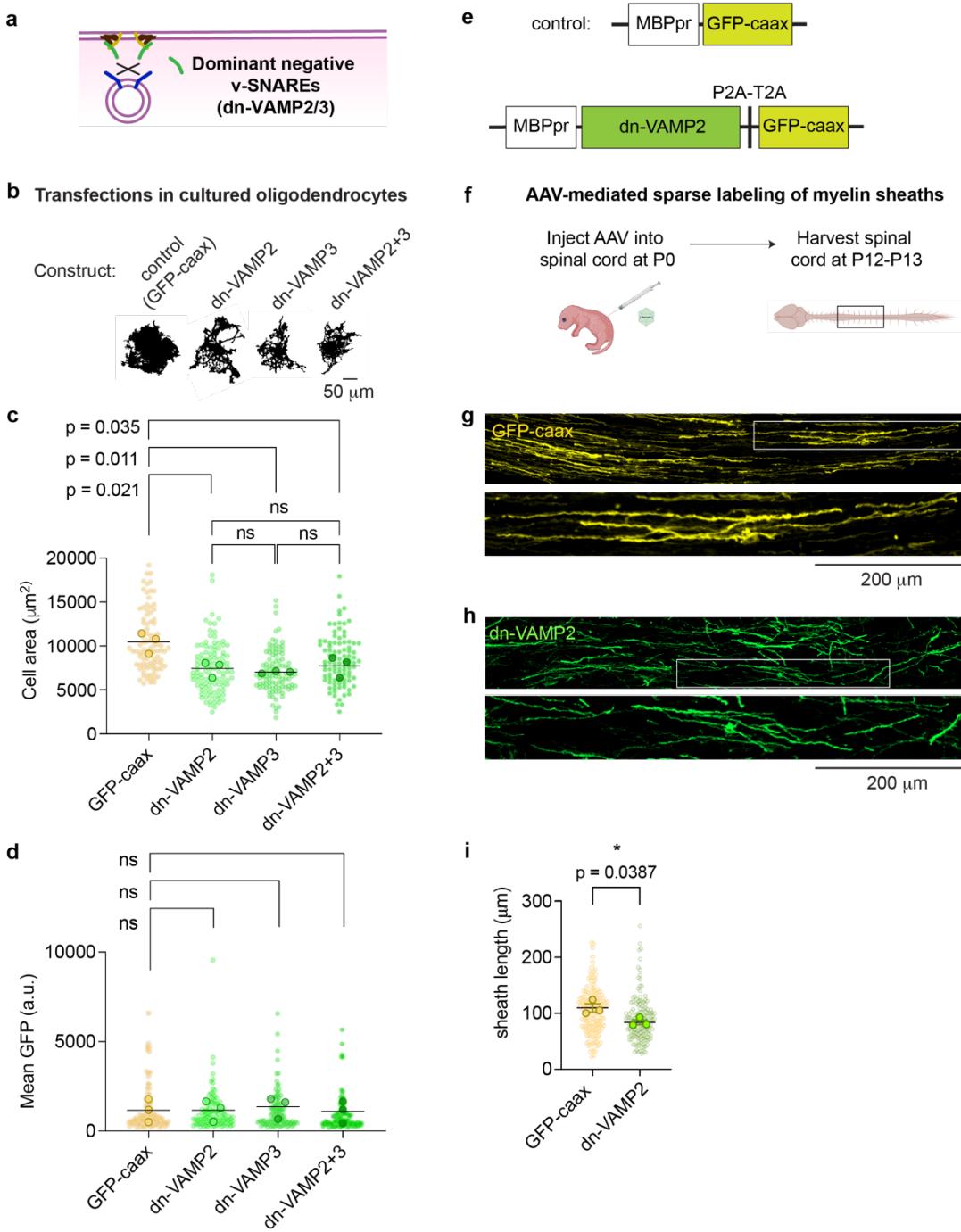
1687 **Supplementary Fig. 7 | VAMP2/3 inactivation does not affect oligodendrocyte cell**

1688 **survival.**

1689 **(a)** Dead cell staining of primary oligodendrocytes at Day 5 in differentiation media with ethidium
1690 homodimer (EtHD-1, red).

1691 (b) Quantification of live oligodendrocytes as % of cells that excluded ethidium homodimer
1692 (mean \pm SEM) with n = 4 biological replicates for control (60.0 \pm 4.7%) and iBot;Cnp-Cre (48.2 \pm
1693 4.3%).
1694 (c) Number of oligodendrocytes quantified in each biological replicate.
1695 (d) Dead cell staining of oligodendrocyte precursors in proliferation media with ethidium
1696 homodimer (EtHD-1, red).
1697 (e) Quantification of live precursors as % of cells that excluded ethidium homodimer (mean \pm
1698 SEM) with n = 4 biological replicates for control (83.2 \pm 2.9%) and iBot;Cnp-Cre (82.4 \pm 1.7%).
1699 (f) Number of oligodendrocyte precursors quantified in each biological replicate.

1700


1701 **Supplementary Fig. 8 | Example of sheath number per cell analysis**

1702 **(a)** Primary oligodendrocytes purified from control mouse brain cultured on CNS-derived axons
1703 (retinal ganglion cell re-aggregates) for 7 days and stained for MBP (magenta) and NF200
1704 (white). Scale bar 100 μ m.

1705 **(b)** Examples of sheath analysis for individual oligodendrocytes in co-cultures, where each color
1706 depicts a distinct sheath. The white number corresponds to the number of sheaths counted per
1707 cell.

1708 **(c)** Quantification of axon density by neurofilament-200 staining in co-cultures shown in Fig. 4b-
1709 d.

1710

1711

1712 **Supplementary Fig. 9 | Expression of dominant negative VAMP (dn-VAMP2/3) as an**
 1713 **orthogonal method of inhibiting VAMP2/3-mediated exocytosis**

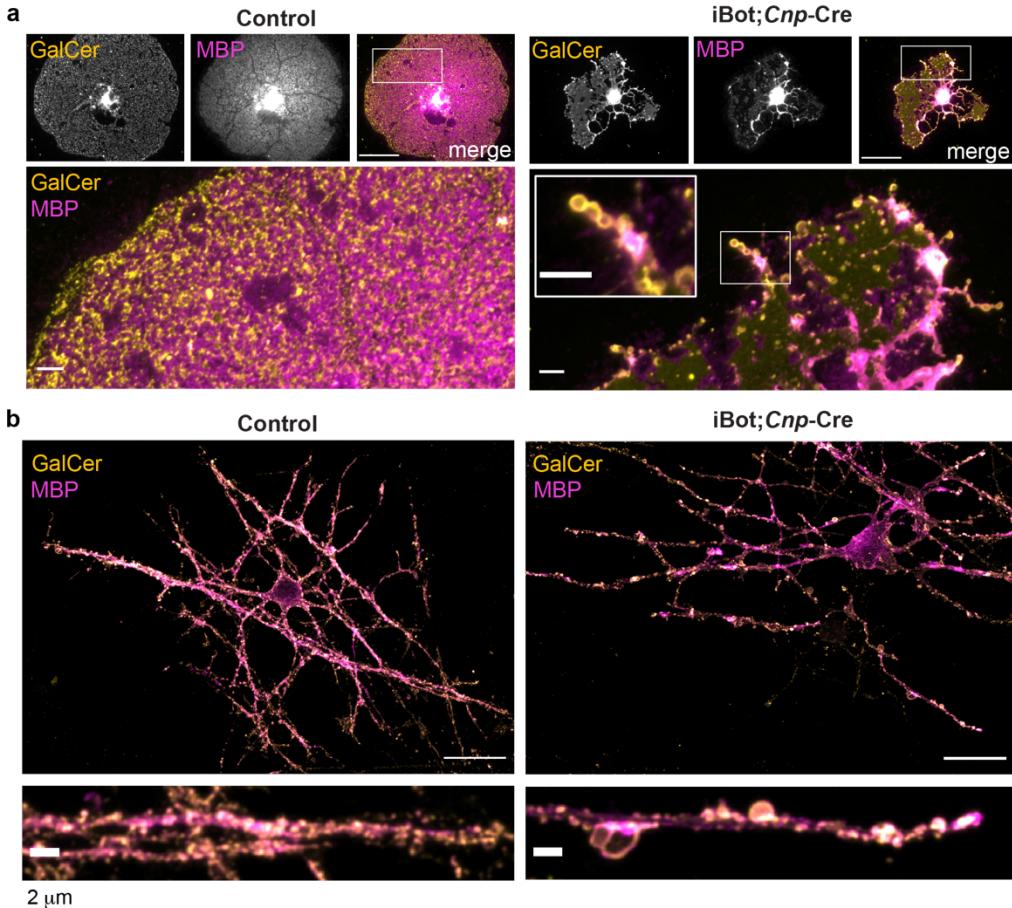
1714 (a) Schematic of dominant negative v-SNAREs (green, dn-VAMP2/3) inhibiting membrane
1715 fusion by sequestering binding sites on the target membrane from endogenous v-SNAREs
1716 (blue).

1717 (b) GalCer lipid-stained masks of primary rat oligodendrocytes transfected with MBP promoter-
1718 driven dn-VAMP2, dn-VAMP3, or both dn-VAMP2 and 3 (dn-VAMP2+3), and differentiated for 5
1719 days in culture to show cell morphologies. Scale bar, 50 μm .

1720 (c) Quantification of membrane surface area marked by GalCer lipid, where each light-shaded
1721 point corresponds to a single cell, each dark-shaded point represents the mean area of cells
1722 from one biological replicate, and the line represents the mean area from $n = 3$ biological
1723 replicates for each condition. Mean cell area \pm SEM after Day 5 of differentiation: GFP-caax
1724 (control) $10,457 \pm 690 \mu\text{m}^2$; dn-VAMP2 $7,454 \pm 531 \mu\text{m}^2$; dn-VAMP3 $7,040 \pm 78.5 \mu\text{m}^2$; dn-
1725 VAMP2+3 $7,745 \pm 687 \mu\text{m}^2$. Statistical significance was determined by a one-way ANOVA with
1726 Bonferroni's correction for multiple comparisons.

1727 (d) Quantification of mean GFP to compare expression levels of dn-VAMP constructs, where
1728 each light-shaded point corresponds to a single cell, each dark-shaded point represents the
1729 mean area of cells from one biological replicate, and the line represents the mean area from $n =$
1730 3 biological replicates for each condition. Mean GFP intensity \pm SEM after Day 5 of
1731 differentiation (a.u.): GFP-caax (control) $1,153 \pm 371$; dn-VAMP2 $1,154 \pm 338$; dn-VAMP3 $1,357$
1732 ± 347 ; dn-VAMP2+3 $1,093 \pm 356$. Statistical significance was determined by a one-way ANOVA
1733 with Bonferroni's correction for multiple comparisons.

1734 (e) Schematic of constructs used for AAV-mediated sparse labeling of oligodendrocytes, where
1735 the control corresponds to MBP promoter (MBPpr)-driven GFP-caax (top), and the experimental
1736 condition uses MBPpr-driven dn-VAMP2 followed by a tandem self-cleaving peptide (P2A-T2A)
1737 and GFP-caax.

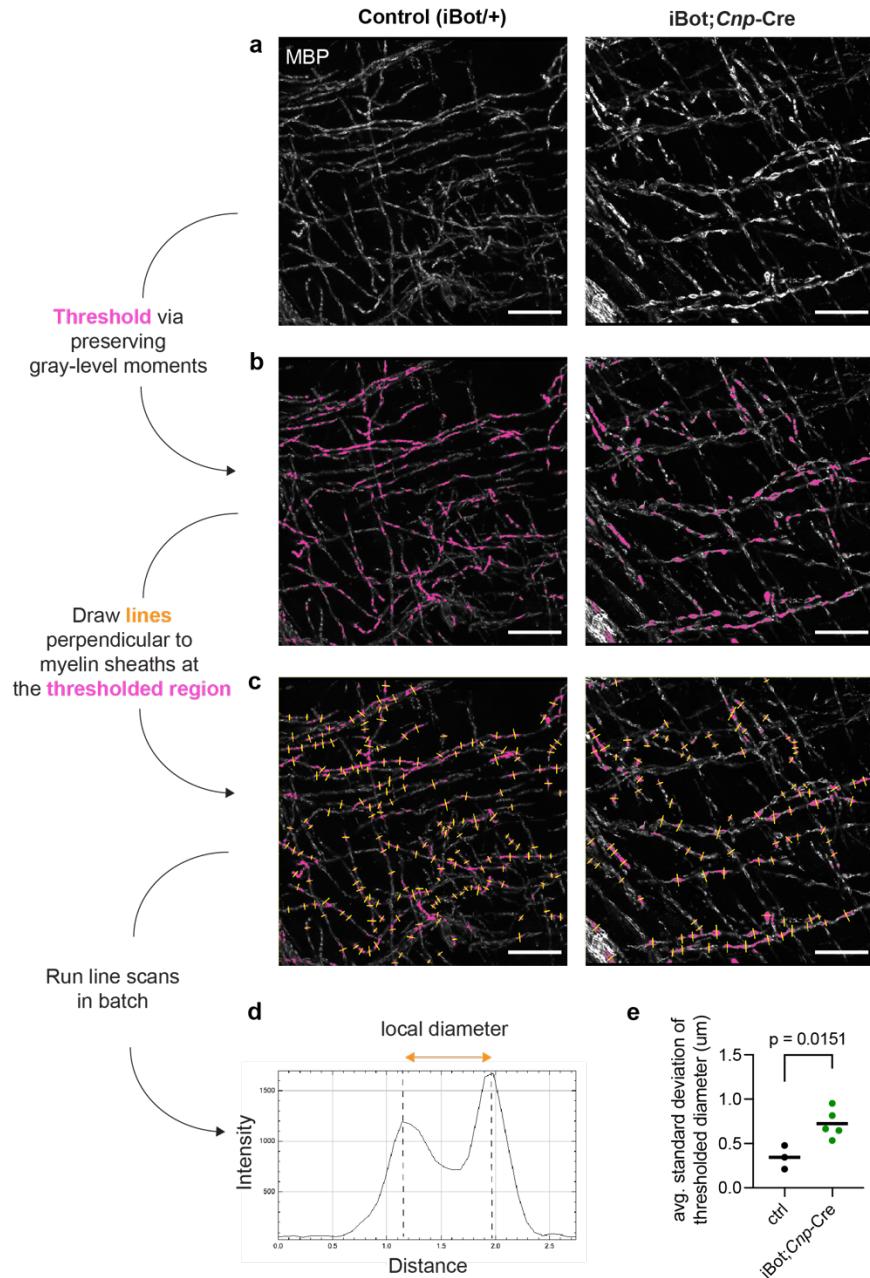

1738 (f) Schematic of neonatal mouse pup spinal cord injections for AAV-mediated sparse labeling of
1739 oligodendrocytes, where the lumbar spinal cord is injected at P0 and the thoracic spinal cord
1740 region is harvested at P12-P13 for sheath analysis.

1741 (g) Representative image of oligodendrocytes expressing GFP-caax in the P12 mouse spinal
1742 cord. Inset depicts a single, discrete oligodendrocyte and its corresponding sheaths. Scale bar
1743 for inset, 200 μ m.

1744 (h) Representative image of oligodendrocytes expressing dn-VAMP2-P2A-T2A-GFP-caax in the
1745 P12 mouse spinal cord. Inset depicts a single, discrete oligodendrocyte and its corresponding
1746 sheaths. Scale bar for inset, 200 μ m.

1747 (i) Quantification of sheath lengths labeled by GFP-caax for control vs. dn-VAMP2, where each
1748 light-shaded point corresponds to a single cell, each dark-shaded point represents the mean
1749 area of cells from one biological replicate, and the line represents the mean area from $n = 3$
1750 biological replicates for each condition. Mean sheath length \pm SEM: GFP-caax (control) 110 \pm
1751 7.31 μ m; dn-VAMP2 84.0 \pm 4.45 μ m.

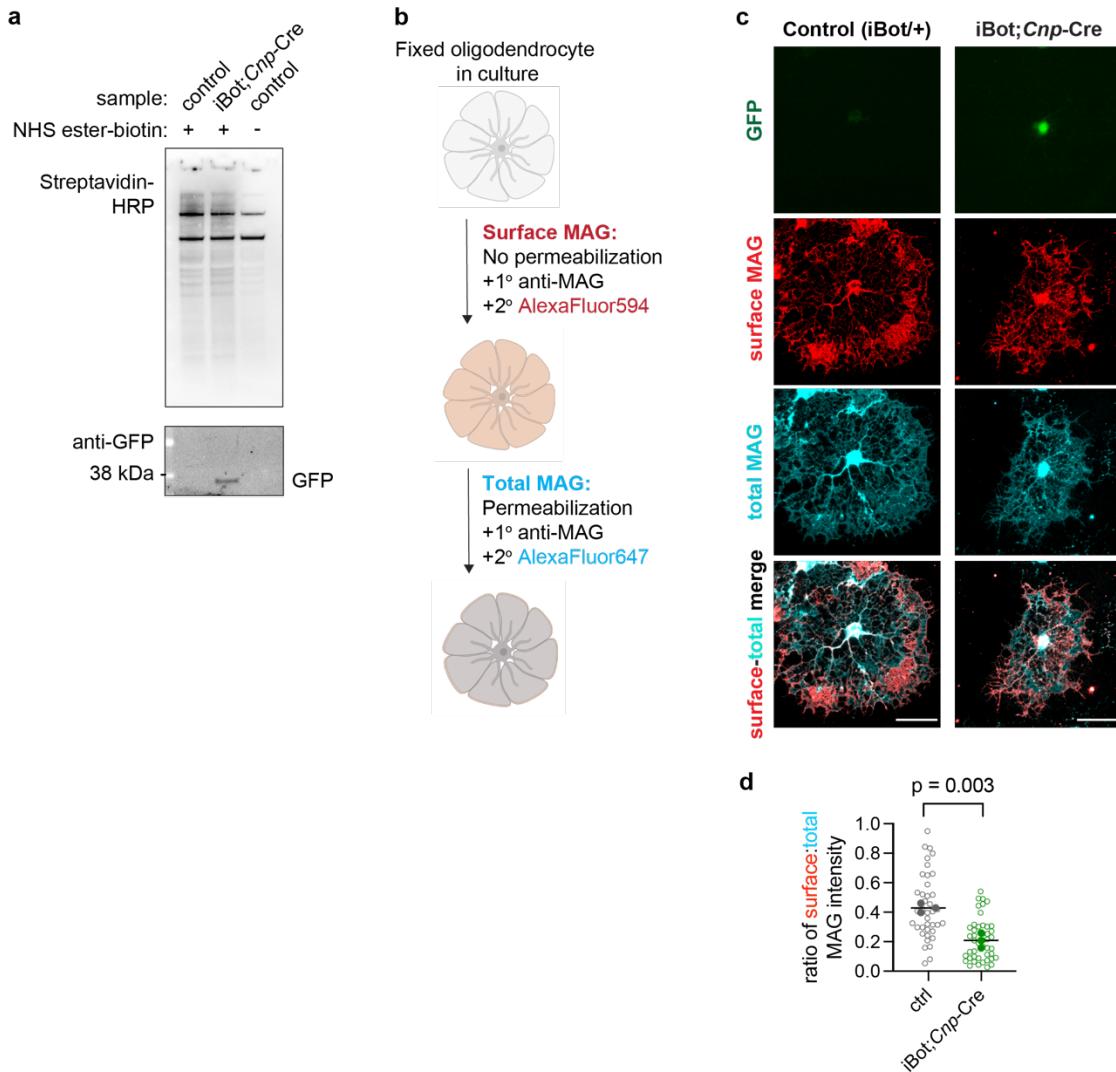
1752



1753

1754 **Supplementary Fig. 10 | VAMP2/3 inactivation induces vesicle accumulation in**
1755 **oligodendrocyte processes and sheaths in culture.**

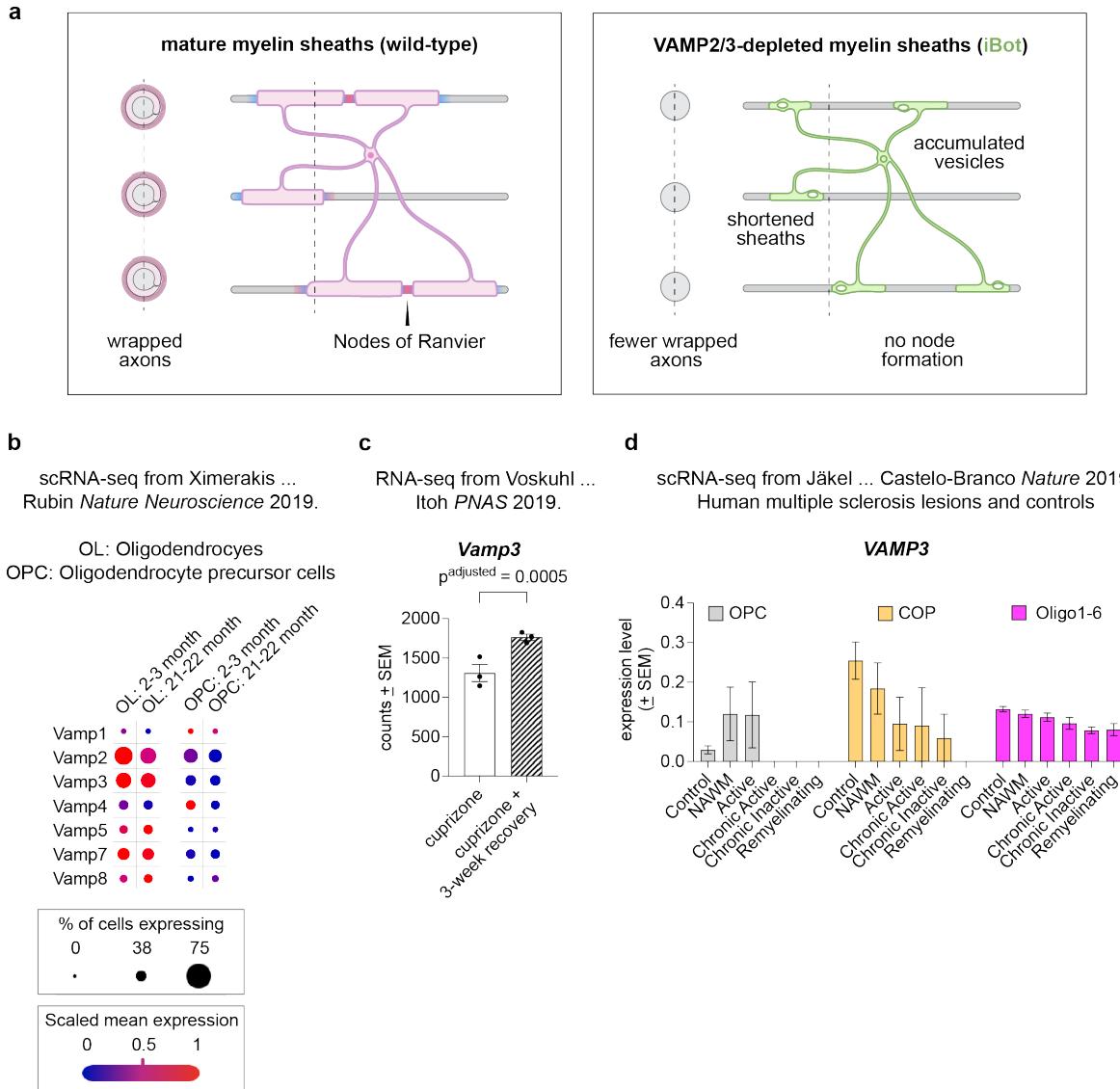
1756 **(a)** Confocal images of mature oligodendrocytes from control (left) and iBot;Cnp-Cre (right) mice
1757 stained for GalCer lipid and MBP. Scale bars: top row, 50 μm; bottom row and inset, 5 μm.
1758 **(b)** Confocal images of oligodendrocyte-neuron co-cultures from control (left) and iBot;Cnp-Cre
1759 (right) oligodendrocytes stained for GalCer lipid and MBP. Scale bars: top row, 20 μm; bottom
1760 row and inset, 2 μm.


1761

1769 (c) Yellow depicts lines that are drawn perpendicular to the longest length of each thresholded
1770 pink region. Each yellow line is perpendicular to a myelin sheath.
1771 (d) A line scan of each yellow line traces the intensity vs. distance along the line, resulting in two
1772 local maxima that correspond to the paired parallel MBP tracks within a sheath. The distance
1773 between the two local maxima corresponds to the local diameter of the myelin sheath.
1774 (e) The average of the standard deviation (st. dev.) among local diameters measured within a
1775 biological replicate. Mean st. dev. \pm SEM: control $0.345 \pm 0.0769 \mu\text{m}$ from $n = 3$ biological
1776 replicates, iBot;Cnp-Cre $0.723 \pm 0.0730 \mu\text{m}$ from $n = 5$ biological replicates.

1777

1778


1779

1780 **Supplementary Fig. 12 | Mass spectrometry of surface-biotinylated proteins from**
1781 **oligodendrocytes reveals that the transport of myelin-associated glycoprotein depends**
1782 **on VAMP2/3.**

1783 (a) Western blot of mass spectrometry inputs probed for biotinylated substrates (with
1784 streptavidin-HRP) and for iBot expression via anti-GFP.

1785 (b) Schematic for co-staining cell surface and intracellular myelin associated glycoprotein
1786 (MAG), where permeabilization refers to treatment with 0.1% Triton X-100.

1787 (c) Representative images of surface and intracellular staining for MAG in control (left) and
1788 iBot;*Cnp*-Cre (right) oligodendrocytes. In control cells, surface MAG localizes to the cell
1789 periphery, outlining the outer rim of the cell.
1790 (d) Quantification of surface MAG intensity relative to total MAG intensity (mean \pm SEM) for
1791 control (0.43 ± 0.02) and iBot;*Cnp*-Cre (0.21 ± 0.03) from $n = 3$ biological replicates.

1793 **Supplementary Fig. 13 | VAMP2/3 expression from published datasets of transcriptomic**
 1794 **changes in aging and multiple sclerosis.**

1795 **(a)** Depletion of VAMP2/3 by botulinum toxin expression (iBot) causes an accumulation of
 1796 unfused vesicles in myelin sheaths, preventing sheath elongation and node of Ranvier
 1797 formation. Shorter sheaths result in reduced myelin coverage of axons, which appears as a
 1798 higher percentage of unmyelinated axons by TEM. See Methods for a quantitative estimation of
 1799 relative myelin coverage by control and iBot;Cnp-Cre.

1800 (b) Dot plot of mean expression of v-SNARE isoforms in oligodendrocytes and OPCs from
1801 single-cell RNAseq of adult (2-3 month) and aged (21-22 month) mice published in Ximerakis *et*
1802 *al. Nat. Neuroscience* 2019. Plots were generated from the interactive viewer on
1803 https://singlecell.broadinstitute.org/single_cell/study/SCP263/aging-mouse-brain.
1804 (c) Replotted RNA-seq counts from Voskuhl *et al. PNAS* 2019 for *Vamp3* mRNA associated
1805 with oligodendrocyte-derived ribosomes. Samples were isolated from the corpus callosum of
1806 mice undergoing demyelination (cuprizone) versus remyelination (cuprizone + 3-week
1807 recovery), where p^{adjusted} reports the p-value corrected for false discovery rate.
1808 (d) Replotted single cell RNA-seq (scRNA-seq) data from Jakel *et al. Nature* 2019 for *VAMP3*
1809 mRNA in white matter from post-mortem tissue of human controls (control) versus patients with
1810 progressive multiple sclerosis (MS). The following white matter areas were from MS patients:
1811 normal-appearing white matter (NAWM), active, chronic active, chronic inactive, and
1812 remyelinating. The different cell types depicted are oligodendrocyte precursors (OPC),
1813 differentiation-committed oligodendrocytes (COP), and differentiated oligodendrocytes (Oligo1-
1814 6).