

1 **Grapevine leaf size influences vine canopy temperature**

2

3 Zoë Migicovsky^{1,2*}, Joel F. Swift³, Zachary Helget⁴, Laura L. Klein³, Anh Ly⁵, Matthew
4 Maimaitiyiming⁶, Karoline Woodhouse⁴, Anne Fennell⁴, Misha Kwasniewski^{6,7}, Allison J.
5 Miller³, Daniel H. Chitwood^{8,9}, Peter Cousins¹⁰

6

7 ¹Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie
8 University, Truro, Nova Scotia, B2N 5E3, Canada

9 ²Present address: Department of Biology, Acadia University, Wolfville, Nova Scotia, B4P 2R6,
10 Canada

11 ³Department of Biology, Saint Louis University, St. Louis, MO, 63103, USA

12 ⁴Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD,
13 57007, USA

14 ⁵Department of Natural and Applied Sciences, Missouri State University, Springfield, MO,
15 65897, USA

16 ⁶Division of Food Sciences, University of Missouri, Columbia, MO, 65211, USA

17 ⁷Department of Food Sciences, The Pennsylvania State University, University Park, PA, 16802,
18 USA

19 ⁸Department of Horticulture, Michigan State University, East Lansing, MI 48823 USA

20 ⁹Department of Computational Mathematics, Science & Engineering, Michigan State University,
21 East Lansing, MI, 48823, USA

22 ¹⁰E. & J. Gallo Winery, Modesto, CA 95354, USA

23

24 *corresponding author: zoe.migicovsky@acadiau.ca

25

26 **Abstract**

27

28 Premise: Grapevine leaves have diverse shapes and sizes. Their shape and size is known to be
29 influenced by many factors including genetics, vine phytosanitary status, environment, leaf and
30 vine age, and node position on the shoot. In order to determine the importance of grapevine leaf

31 shape and size to canopy temperature, we examined the relationship in five seedling populations
32 grown in a vineyard in California, USA.

33

34 **Methods:** All of the populations had one parent with compound leaves of the *Vitis piasezkii* type
35 and each population had a different second parent with non-compound leaves. In previous work,
36 we measured leaf shape and size using 21 homologous landmarks. Here, we paired these
37 morphology data with measurements taken using an infrared thermometer to measure the
38 temperature of the canopy. By recording time of sampling and canopy temperature, we were able
39 to determine which vines were cooler or hotter than expected, using a linear model.

40

41 **Results:** We established a relationship between leaf size and canopy temperature: vines with
42 larger leaves were cooler than expected. In contrast, leaf shape was not strongly correlated with
43 variation in temperature.

44

45 **Conclusions:** Ultimately, these findings indicate that vines with larger leaves may contribute to
46 the reduction of overall vine canopy temperature, but further work is needed to determine if this
47 is due to variation in leaf size, differences in the openness of the canopy, or other related traits.

48

49 **Keywords:** ampelography, grapevine, leaf morphology, leaf temperature, leaf shape, *Vitis*

50

51 **Introduction**

52

53 Grapevine (*Vitis* spp.) leaves have diverse shapes and sizes. The field of ampelography (“vine” +
54 “writing”) is dedicated to the study of grapevine leaves, enabling the identification of both
55 species and individual cultivars (Galet, 1979; Chitwood et al., 2016a; Chitwood, 2021). The
56 shape and size of grapevine leaves is influenced by genetics (Chitwood et al., 2014; Demmings
57 et al., 2019), vine phytosanitary status (Klein et al., 2017), environment (Chitwood et al., 2016b,
58 2021), leaf age as well as node position (Chitwood et al., 2016a; b; Bryson et al., 2020),
59 rootstock (Migicovsky et al., 2019; Harris et al., 2021), and many other factors.

60

61 As the primary photosynthetic organs of the plant, increasing leaf size increases photosynthetic
62 potential of the plant. However, the increase in leaf size may also have negative consequences:
63 larger leaves with a thicker boundary layer may slow heat loss, increasing respiration at a rate
64 greater than the increase in photosynthesis (Givnish, 1987; Westoby et al., 2002). Both the size
65 of an individual leaf and the combined size of all leaves, also known as the total leaf area, may
66 have an effect on plant growth and health. For example, in grapevine, the higher water demand
67 for transpiration associated with a larger total leaf area may increase vine water stress, and as a
68 result, reduce yield (Mirás-Avalos et al., 2017).

69

70 In addition, the overall temperature of a vine or canopy temperature is an important
71 consideration. Canopy temperature can be measured by infrared thermometry, including remote
72 thermal imaging, and is therefore non-invasive and non-destructive (Leinonen and Jones, 2004;
73 Giménez-Gallego et al., 2021). Temperature can influence many developmental processes in
74 grapevines, with higher temperatures accelerating development, including the timing of
75 budbreak, bloom, and onset of fruit ripening, a particular concern in the face of climate change
76 (Keller and Tarara, 2010; Parker et al., 2011). While ambient temperature plays a critical role,
77 canopy temperature is also important. For example, it is the bud temperature, rather than air
78 temperature, that determines the timing of budbreak (Keller and Tarara, 2010).

79

80 Canopy temperature can not only influence vine development, but also performance. In a
81 controlled study of three different canopy temperatures for *Vitis vinifera* ‘Semillon’ vines,
82 differences in up to 3°C in mean canopy temperature over the growing season impacted the
83 vines. In particular, reproductive growth was impacted with berry expansion and sugar
84 accumulation being the highest at the lowest temperature, although yield was generally not
85 affected (Greer and Weedon, 2019).

86

87 The role of canopy temperature is not restricted to vine development and characteristics, it can
88 also be an indicator of water availability. Transpiration contributes to cooling of the leaf and can
89 be particularly important in sunlit leaves. When the air is still or wind speeds are very low, the
90 amount of transpiration occurring has a larger effect on leaf temperature. In cases where leaf

91 temperature approaches a lethal temperature, the effect of transpiration on leaf temperature can
92 be critical to survival (Gates, 1964).

93

94 Many grapevines are irrigated and efficient management of water stress in both vines and other
95 plants requires that the grower knows when water stress has begun and how much water to
96 apply. Canopy temperature can be used to assess plant water status using the crop water stress
97 index (CWSI) which is calculated based on the difference between canopy and air temperature
98 (Cohen et al., 2005). For example, work in common bean (*Phaseolus vulgaris* L.) using the
99 CWSI found that the above ground measurements of air and leaf temperature were as effective at
100 predicting plant water stress as soil-based measurements (Durigon and de Jong van Lier, 2013).

101

102 Similar to other crops, the CWSI may also be used in grapevines to determine the need for and
103 effect of irrigation (Ahi et al., 2015). Thus, canopy temperature both plays an important role in
104 vine development and is a critical indicator of vine water status. How the shape and size of
105 grapevine leaves interact with the environment to influence canopy temperature is poorly
106 understood. Given that grapevine leaf shape is at least partly controlled by genetics (Chitwood et
107 al., 2014; Demmings et al., 2019), if particular leaf shapes or sizes have a positive impact on
108 canopy temperature, such as keeping vine temperature low in hotter climates and reducing the
109 need for irrigation, this could be a desirable target for grape breeders.

110

111 In this study, we examined the importance of grapevine leaf shape and size to canopy
112 temperature. Using an infrared thermometer to measure the temperature of the canopy we
113 determined which vines were cooler or hotter than expected. We established a relationship
114 between leaf size and leaf temperature: vines with larger leaves were cooler than expected. In
115 contrast, leaf shape was not strongly correlated with variation in vine temperature. These
116 findings provide evidence that leaf size, but not shape, may contribute to canopy temperature.

117

118

119

120

121

122 **Materials and Methods**

123

124 *Experimental design*

125

126 Leaves were sampled from seedlings of five biparental *Vitis* populations located in San Joaquin
127 Valley, Madera County, California. As described in Migicovsky et al. (In Press), and copied here
128 for convenience, the populations consisted of a total of 500 seedlings. 450 seedlings had DVIT
129 2876 as one parent. The remaining 50 seedlings had DVIT 2876 as a grandparent. DVIT 2876
130 'Olmo b55-19' is a compound-leaved accession from the USDA-ARS National Clonal
131 Germplasm repository, suspected to include *Vitis piasezkii* Maximowicz, as one of its parents (or
132 grandparents). Thus, all of the populations had one parent with compound leaves of the *V.*
133 *piasezkii* type and each population had a different second parent with non-compound leaves. The
134 populations were created to examine variation in leaf lobing and the resulting progeny from each
135 cross had a range of leaf shapes from very lobed to entire.

136

137 Sampled populations (Figure 1A) included 125 individuals from a DVIT 2876 x unnamed *Vitis*
138 *vinifera* selection cross (Pop1), 100 individuals from a DVIT 2876 x a different unnamed *Vitis*
139 *vinifera* selection cross (Pop2), 150 individual from a DVIT 2876 x unnamed *Vitis* hybrid cross
140 (Pop3), 75 individual from a DVIT 2876 x a different unnamed *Vitis* hybrid cross (Pop4), and 50
141 individuals from a seedling (DVIT 2876 x unnamed *Vitis vinifera* selection) x DVIT 3374 (*Vitis*
142 *mustangensis* Buckley) cross (Pop5). Selections used in these crosses are unnamed because they
143 are the result of breeding crosses. Vines were planted in 2017. They were trained to a unilateral
144 cordon and spur pruned.

145

146 *Sampling*

147

148 Three representative leaves were collected and scanned from each vine across June and July in
149 2018, and then again across June and July 2019. For full details of leaf collection and scanning,
150 see Migicovsky et al. (In Press).

151

152 Leaf temperature measurements took place twice in 2018 (July 19 and August 10) and twice in
153 2019 (July 24 and August 1). For three of the four dates, measurements were taken from
154 approximately 9 AM to 11 AM, but on one date (July 24 2019) measurements were taken from
155 approximately 11:30 AM to 1:30 PM. Measurements were taken using an infrared thermometer
156 (Extech 42515 InfraRed Thermometer) to measure the temperature of the canopy. These
157 measurements were taken by using the thermometer to scan across the outside of the canopy and
158 then recording the mean temperature of the vine.

159

160 In most cases, the exact time of the measurement was also recorded. However, in some cases,
161 time was recorded every few vines. In these instances, the time of sampling was interpolated by
162 dividing the difference in time between two measurements by the number of measurements taken
163 between those two times, and adding that to the initial time. For example, if a vine was measured
164 at 9:11 AM and a second vine was measured at 9:13 AM, the unlabelled vine in between those
165 two measurements would have been recorded as 9:12 AM. If breaks were needed or a new row
166 of measurements began, the time was always recorded on the last and first vine measured
167 before/after those periods.

168

169 Vines which were too small to accurately measure, for example, those with only a few leaves, or
170 those that were dead, were not measured. For the purposes of this study, vines were reduced to
171 only those with at least one leaf scanned for shape in both 2018 and 2019, and with canopy
172 temperature measurements recorded at all four timepoints. As a result, the total number of unique
173 accessions across all time points used for the analyses in this study was 388 out of the 500 vines
174 initially planted.

175

176 Weather data for each of the dates was downloaded from an on-site weather station, which
177 included temperature measurements taken once per hour for a total of 24 measurements per day.
178 Precipitation was also recorded although there was no precipitation during the sampling days.

179

180 *Data analysis*

181

182 Image analysis of the leaf scans is fully described in Migcovsky et al. (In Press) and scans are
183 available on Dryad (Migcovsky et al., 2022). Briefly, leaves were analyzed using 21 landmarks
184 as previously described by (Chitwood et al., 2016b, 2021; Bryson et al., 2020). Leaf area was
185 calculated using the shoelace algorithm, which calculates the area of a polygon using the
186 landmarks as vertices, following previously described methods (Chitwood et al., 2021). In
187 addition, we calculated the ratio of vein to blade area of each leaf as well as the degree of distal
188 and proximal lobing. Following adjustment using a generalized Procrustes analysis in the shapes
189 package in R (Dryden, 2021) principal components analysis (PCA) was performed to determine
190 the primary sources of variation in leaf shape.

191

192 Subsequent analyses were performed in R and code is available at the following GitHub
193 repository https://github.com/zoemigcovsky/grape_leaf_temp. All visualizations were
194 performed using ggplot2 v3.3.5 (Wickham, 2016).

195

196 For this study, instead of using shape measurements for individual leaves, morphometric values
197 were averaged across measurements taken from a vine in a given year in order to be able to
198 connect average leaf shape and size with canopy temperature measurements. Given that
199 representative leaves were selected, even vines with fewer than three leaves sampled were
200 retained and averaged (when more than one leaf was sampled).

201

202 Only three measurements exceeded 105 °F, and only one value was less than 64 °F, and thus,
203 these were considered likely errors and removed from the dataset. Temperature measurements
204 were converted from Fahrenheit to Celsius using the weathermetrics version 1.2.2 package in R
205 (Anderson and Peng, 2012) for downstream analyses.

206

207 Using the broom package in R (Robinson et al., 2021), a linear model was performed for each
208 date, to determine the effect of time of sampling on canopy temperature (Equation 1):

209

210 temperature~time

211

212 by extracting the residuals from this model. This approach was necessary because ambient
213 temperature increased throughout the period of sampling, and using residuals instead of raw
214 temperature measurements allowed us to account for time of sampling on a particular day of
215 sampling. Residuals from these models were used in all downstream analyses.

216

217 To perform subsequent analyses, we merged leaf morphology and area measurements from
218 Migicovsky et al. (In Press) with residuals from the temperature model.

219

220 First, we performed a type 2 anova using the car R package v.3.0-11 (Fox and Weisberg, 2019).
221 We used the following model (Equation 2), in which each of the principal component (PC)
222 values are morphometric PCs calculated using the landmark data:

223

224 temperature residuals ~ population + date + PC1 + PC2 + PC3 + PC4 + PC5 + PC6 +
225 PC7 + PC8 + PC9 + PC10 + PC11 + PC12 + PC13 + PC14 + PC15 + PC16 + PC17 +
226 PC18 + PC19 + PC20 + ln(area) + vein to blade ratio + proximal lobing + distal lobing

227

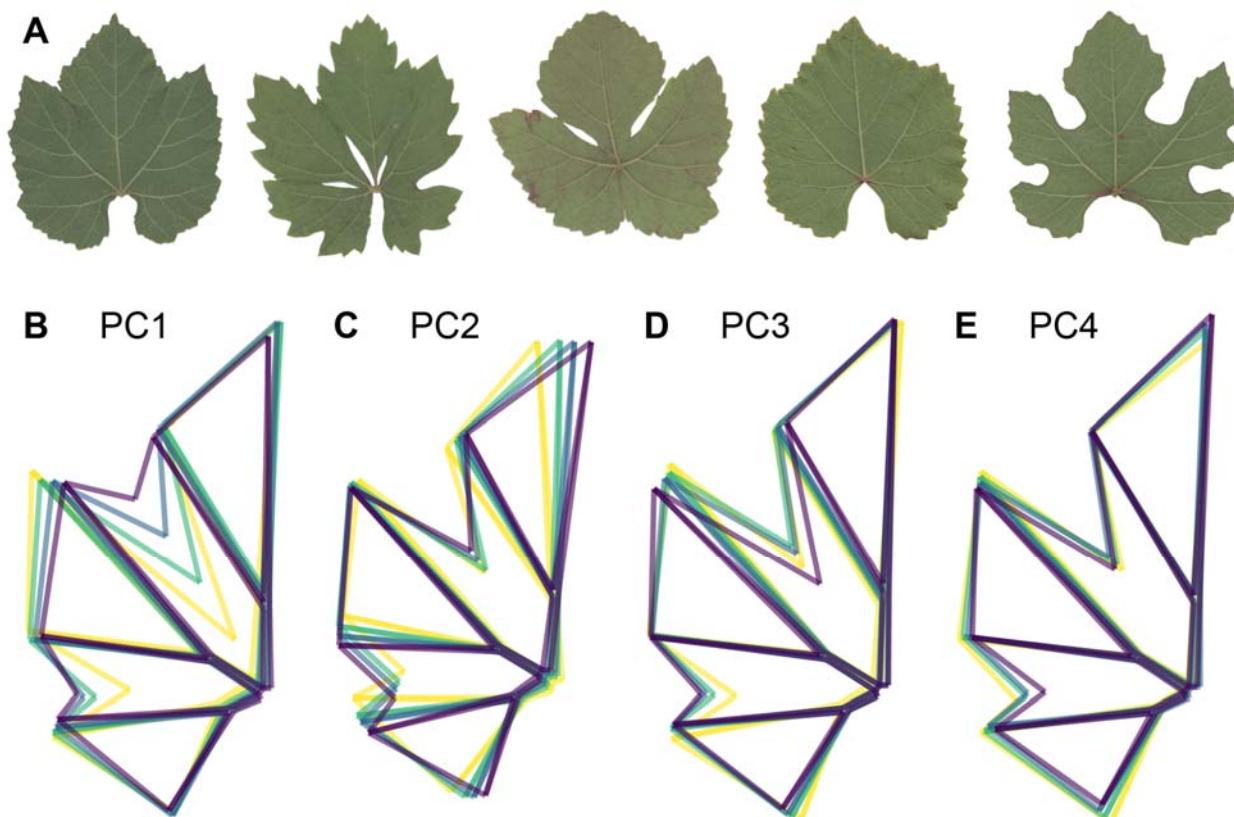
228 The first 20 morphometric PCs were used because cumulatively they explain 99.7% of the
229 variance in leaf shape. The percent variation was calculated for all terms by calculating the Sum
230 of Squares for a particular term, divided by the Total Sum of Squares, then multiplied by 100.

231 The results for significant terms ($p < .05$) were plotted.

232

233 Since the highest amount of variance was explained by ln(area), scatterplots showing the
234 relationship between ln(area) and the temperature residuals were plotted. In addition, to
235 determine the correlation between these two measurements, a repeated measures correlation
236 coefficient (r_{rm}) was calculated. r_{rm} was used because correlation assumes independence of
237 measures, but in this study we have four days of sampling of the same vines. The r_{rm} calculation
238 accounts for this non-independence and was performed using the rmcrr R package version 0.4.5
239 (Bakdash and Marusich, 2021). Lastly, we used the weather data to calculate the average
240 temperature, minimum temperature, and maximum temperature for each day of sampling.

241


242 **Results**

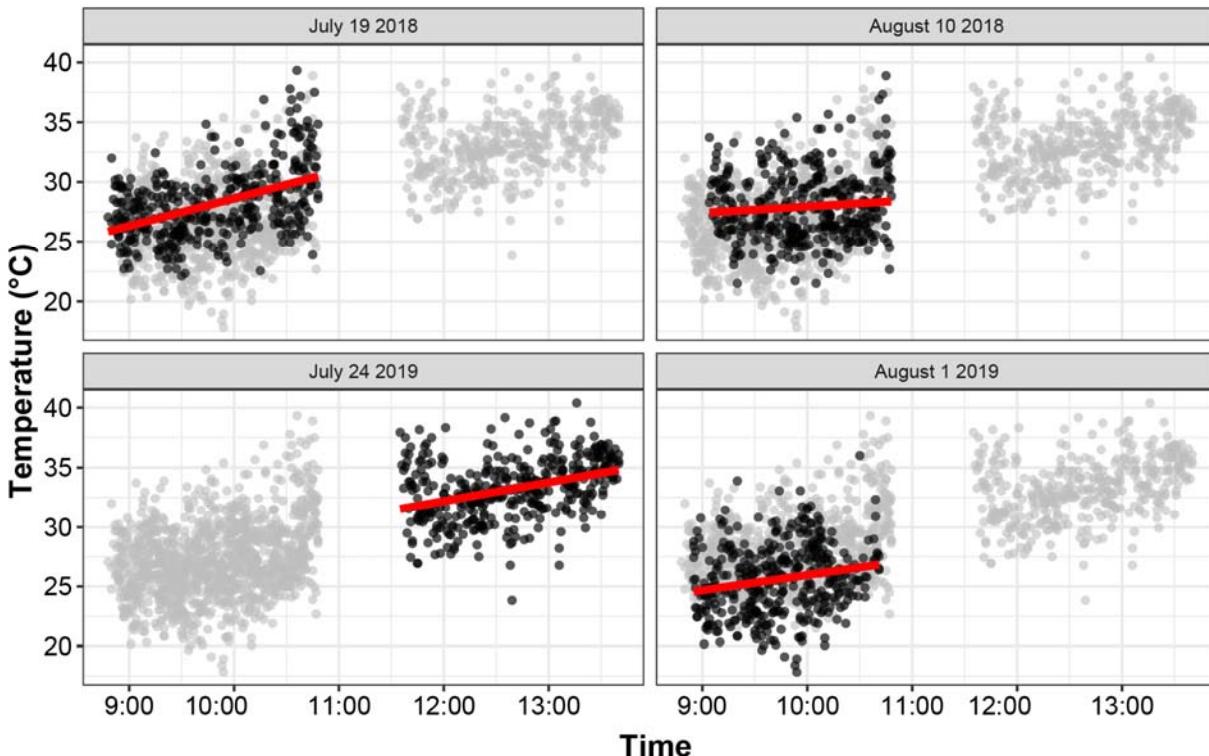
243

244 In this study, we build on the findings of Migicovsky et al. (In Press) to explore the
245 consequences of leaf shape variation on vine canopy temperature across 388 unique accessions
246 resulting from five biparental crosses. Each biparental cross had one parent with compound
247 leaves and a different second parent with non-compound leaves, and so these accessions vary
248 primarily in the extent of lobing (Figure 1) but also differ in leaf area.

249

250

251

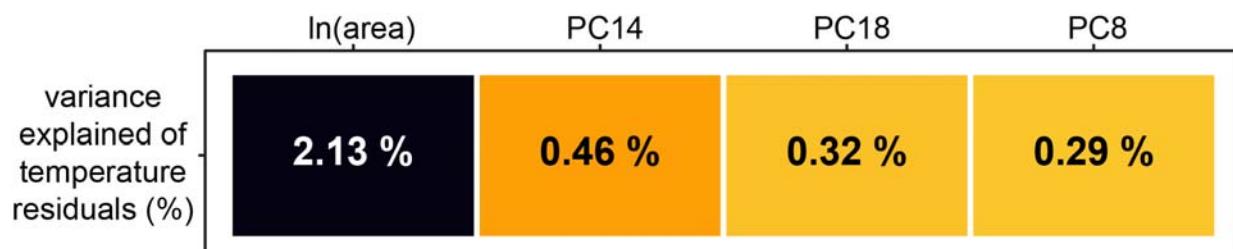

252 **Figure 1. Real and eigenleaves showing variation in shape across the populations**
253 **sampled.** (A) A leaf from each of the five populations (Pop1 to 5 shown from left to
254 right) showing the range of lobing present across the accessions. Given the extensive
255 range of lobing within a population, the leaf shown is not representative of a particular
256 population, but rather used to show the range across all populations. (B-E) For each PC
257 quartile, a mean leaf is plotted, with the lowest PC quartile shown in yellow, increasing in
258 color to dark blue across quartiles. PC1 to PC4, explaining a total of 78% of the variance
259 in leaf shape, are shown.

260 The canopy temperature of grapevines is both a critical indicator of water availability as well as
261 having the potential to influence developmental timing/phenology. By recording both the time of
262 sampling and vine canopy temperature, we were able to determine which vines were cooler or
263 hotter than expected, and link this information with leaf morphology and size measurements.

264

265 The first objective of this study was to account for the time of sampling on canopy temperature,
266 as measured using an infrared thermometer. To do this, we calculated a linear model for
267 temperature ~ date of sampling, and determined the value of each vine for a particular date,
268 based on the residuals from that model (Figure 2). The slope of the line differed between dates,
269 indicating that both date and time of sampling influenced canopy temperature.

270



271

272 **Figure 2. Scatterplots modeling canopy temperature vs time of sampling for each of**
273 **the four dates measurements were taken.** Each dot represents the temperature of a
274 particular vine at a particular sampling day and time (n = 388). For each date, the
275 measurements taken on that date are black, while the measurements from the remaining
276 three dates are plotted in gray. The linear model for a particular date is shown using a red
277 line.

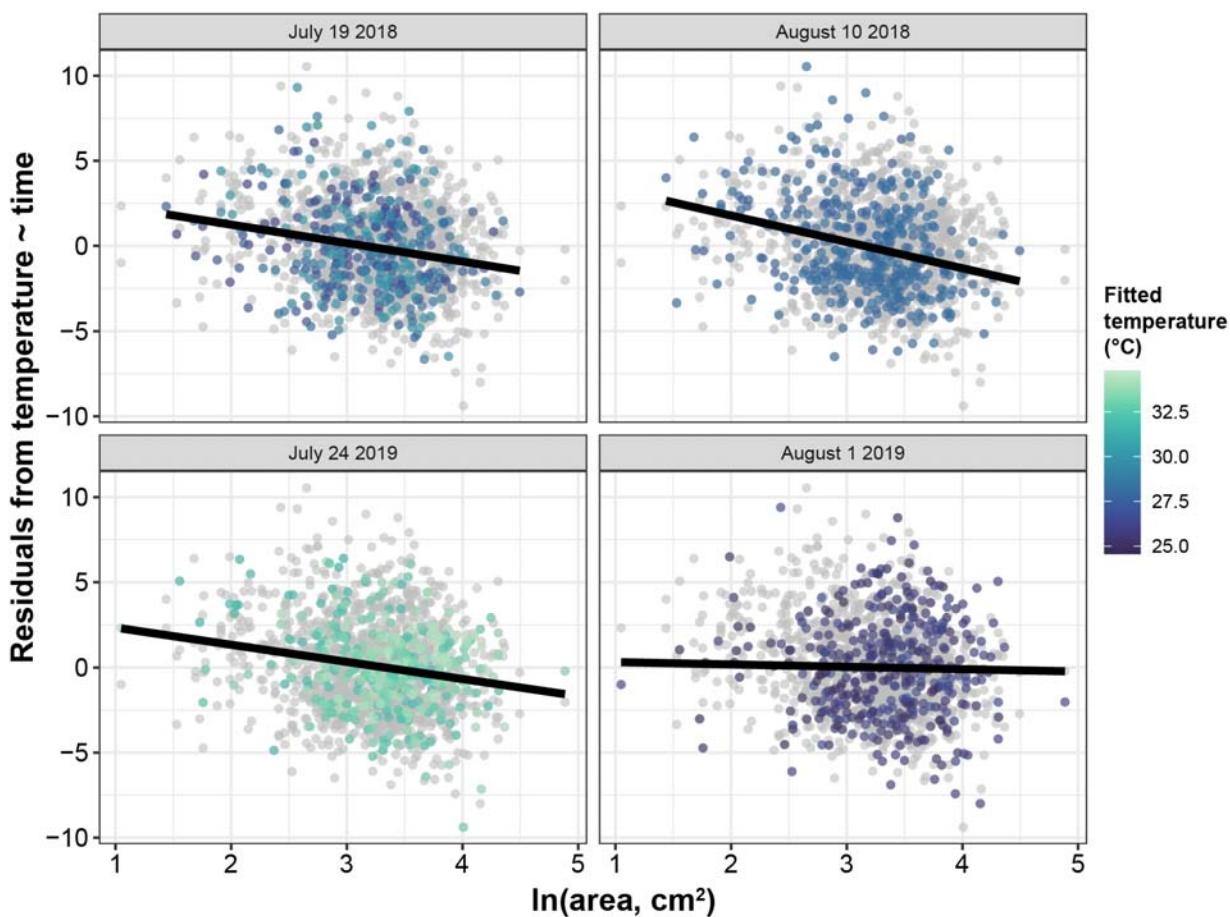
278 After accounting for the time of sampling, we estimated whether leaf shape and size significantly
279 influenced variation in temperature residuals. Temperature residuals were used because they
280 allowed us to estimate whether a vine was cooler or hotter than expected, given the time of
281 sampling. We performed a type 2 anova which accounted for morphometric PCs 1 to 20 (which
282 cumulatively explain 99.7% of the variance in leaf shape), as well as leaf area on a natural
283 logarithm scale, the vein to blade ratio, proximal lobing, distal lobing, which of the five
284 populations the vines originated from, and the date of sampling. Across these factors, 4 were
285 significant, including 3 morphometric PCs: PC14, PC18, and PC8, as well as leaf area (Figure 3).
286 In all cases, less than 2.5% of the variance was explained by a given factor, with 0.5% or less
287 explained for the morphometric PCs. Distal lobing, the primary source of variation in shape in
288 the populations, was not significant (Migicovsky et al., In Press). In comparison, leaf area
289 explained 2.13% of the variance in temperature residuals, which was the highest amount of any
290 significant factors. Overall, these results indicate that leaf size, not leaf shape, has a stronger
291 influence on variation in vine temperature.

292

293

294 **Figure 3. Percent variance explained by factors of interest estimated using a linear**
295 **model (Equation 2) and type 2 anova.** Only factors which explained a significant
296 amount of variance ($p < 0.05$) are included, with the color and text indicating the percent
297 variance explained. Significant factors are sorted left to right from most variance
298 explained to least variance explained.

299


300 Once we established a relationship between leaf area and canopy temperature, we used the
301 repeated measures correlation coefficient to account for the non-independence of the four days of
302 sampling and examined how the residuals from the temperature ~ time model change in response
303 to leaf area (Figure 4). We found that leaf area and the residuals were significantly negatively

304 correlated ($r = -0.178$, $p = 1.52 \times 10^{-12}$). This negative correlation indicates that vines with larger
305 leaves were cooler than expected, given the time of sampling.

306

307

308

309

310

311

312

313

314

315

316

317

318

Figure 4. Scatterplot modeling the relationship between ln(area) and residuals from the linear model for temperature ~ time. Each dot represents the measurement of a particular vine at a particular sampling day and time ($n = 388$). For each date, the measurements taken on that date are shown in the colour of the fitted temperature value, as shown in Figure 2, while the measurements from the remaining three dates are plotted in gray. The linear model for a particular date is shown using a black line, but the overall correlation was calculated using r_{rm} to account for the non-independence of the four days of sampling.

319 While the overall correlation is significant, it is clear that the relationship is strongest on the first
320 three sampling days and not present on the final date of August 1 2019. When examining the
321 weather data for these dates, the average temperature on August 1 2019 was cooler than the other
322 3 dates (24.6 °C in comparison to 26.9 to 28.1 °C) with the coolest max temperature values of
323 34.5 °C in comparison to 37.3 to 39.1 °C. A visual examination of the fitted temperature values
324 which were adjusted based on time of sampling confirms that on August 1 2019 the canopy
325 temperatures were the lowest (Figure 4).

326

327 **Discussion**

328

329 On a global scale, smaller leaves are generally found at drier sites in warm regions in comparison
330 to large-leaved species which are found in wet and hot environments. In wet and cold
331 environments, species with smaller leaves predominate (Wright et al., 2017). The difference for
332 leaf sizes based on access to water is due to the thicker boundary layer that large leaves have,
333 which makes them more reliant on transpirational water loss for cooling (Gates, 1968; Wright et
334 al., 2017). Although the climate in Madera County, California is dry and hot, vines were fully
335 irrigated and thus water was not a limiting factor. The cooler temperature of the canopy for vines
336 with larger leaves may indicate that transpirational cooling was occurring at a higher rate,
337 reducing the risk of high temperatures more efficiently in comparison to vines with smaller
338 leaves. This relationship seems particularly probable when considered in the context of the
339 ambient temperatures on days of sampling: on the coolest day, August 1 2019, the temperature
340 was on average over 2 °C cooler than any of the other days, with a maximum temperature
341 reached that was 2.8 to 4.6 °C less than the three other dates. This was the same day of sampling
342 when we did not observe a relationship between leaf size and temperature residuals, indicating
343 this trend is strongest on hotter days, when the transpirational cooling benefit provided by large
344 leaves may be greater. In comparison, larger leaves may not provide the same benefit on cooler
345 days when the vines are under less stress from temperature.

346

347 In one study of an Australian heat wave, some vines were covered with a protective layer to
348 reduce heating while others were exposed. In exposed vines, transpiration increased by nearly
349 three times while photosynthesis was reduced by 35%, delaying ripening and causing a reduction

350 in berry quality (Greer and Weedon, 2013). These results clearly indicate the negative impact
351 that excessive increases in canopy temperature can have on vine health and berry quality. The
352 ability to maintain a cooler canopy temperature on hot days is desirable for grape growers, and
353 our preliminary findings indicate that this may be possible with larger leaves.

354

355 While we measured both leaf size and shape in our study, we did not measure canopy
356 architecture, photosynthesis, or water use efficiency, as the heterogeneity of individual seedling
357 canopies is very high, and this substantially complicates these observations on unreplicated
358 seedlings. Therefore, it is possible that while overall reduction in vine canopy temperature occurs
359 with larger leaves, this may not be due to leaf size, but rather, for example, differences in the
360 openness of the canopy. Future work making use of thermal remote sensing imaging (Still et al.,
361 2021) would be particularly useful in order to estimate the canopy temperature across numerous
362 vines at the same time, reducing the effect of timing and human error on the results. Indeed,
363 thermal imaging partnered with the CWSI could ultimately facilitate precision viticulture by
364 assessing water stress and the need for irrigation, and work in this area is ongoing (Tanda and
365 Chiarabini, 2019). There are also numerous areas for further work based on this preliminary
366 study, including research which captures both individual leaf size as well as total leaf area of
367 vine.

368

369 **Conclusions**

370

371 This study builds on our previous work which determined that more highly lobed leaves
372 compensated for what would otherwise result in a reduction in leaf area by having longer veins
373 and a higher vein to blade ratio (Migcovsky et al., In Press). In this study, we determined that
374 vines with larger leaves had cooler canopies than anticipated. Taking these findings together
375 indicates that it should be possible to select for large, highly lobed leaves with the corresponding
376 benefits in reducing canopy temperature and improving photosynthetic capacity, while still
377 allowing light to permeate the canopy. Given the established link between water status and
378 canopy temperature, this study lays the groundwork for future studies examining the effect of
379 grapevine leaf size and shape. Ultimately, if grape breeders could harness variation in the size of

380 grapevine leaves for reduction in canopy temperature, this could serve as a valuable target for
381 future cultivar improvement.

382

383 **Acknowledgments**

384

385 The research conducted for this study was supported by the National Science Foundation (NSF)
386 Plant Genome Research Program 1546869. JFS was supported by an NSF Graduate Research
387 Fellowship under Grant No. 1758713, and Saint Louis University. This research is also funded
388 through the USDA National Institute of Food and Agriculture and Michigan State University
389 AgBioResearch.

390

391 We acknowledge all of the individuals involved in maintaining the vineyard evaluated for this
392 study. We acknowledge Leah Brand (Missouri State University), Julie Curless (Missouri State
393 University), Dalton Gilig (University of Missouri), and Ilona Natsch (Saint Louis University) for
394 assistance in sampling and landmarking of the leaves. We would also like to acknowledge Laszlo
395 Kovacs (Missouri State University) for student supervisory support.

396 **Conflicts of Interest**

397 PC is employed by E. & J. Gallo Winery. The remaining authors declare that the research was
398 conducted in the absence of any commercial or financial relationships that could be construed as
399 a potential conflict of interest. Any opinion, findings, and conclusions or recommendations
400 expressed in this material are those of the authors(s) and do not necessarily reflect the views of
401 the National Science Foundation.

402 **Data Availability**

403 All data and code used in this study can be found on GitHub
404 (https://github.com/zoemigcovsky/grape_leaf_temp). All original scans used in this study are
405 available from Dryad (Migcovsky et al., 2022)

406

407 **Author Contributions**

408 PC generated the seedlings and supervised the maintenance of the vineyard. ZM, JFS, PC, and
409 DHC conceived of the initial idea for this study. ZM coordinated the research. ZM, JFS, ZH,
410 LLK, AL, MM, and KW sampled the leaves for this study. AF, MK, AJM, PC, and DHC
411 acquired the funding for this study and provided supervisory support. ZM performed the data
412 analysis with input from DHC. ZM wrote the first draft of the manuscript, which all authors read,
413 commented on, and edited.

414

415 **References**

416

417 Ahi, Y., H. Orta, A. Gündüz, and H. T. Gültas. 2015. The Canopy Temperature Response to
418 Vapor Pressure Deficit of Grapevine cv. Semillon and Razaki. *Agriculture and*
419 *Agricultural Science Procedia* 4: 399–407.

420 Anderson, G., and R. Peng. 2012. weathermetrics: Functions to convert between weather metrics
421 (R package).

422 Bakdash, J. Z., and L. R. Marusich. 2021. rmcrr: Repeated Measures Correlation.

423 Bryson, A. E., M. W. Brown, J. Mullins, W. Dong, K. Bahmani, N. Bornowski, C. Chiu, et al.
424 2020. Composite modeling of leaf shape along shoots discriminates *Vitis* species better
425 than individual leaves. *Applications in Plant Sciences* 8: e11404.

426 Chitwood, D. H. 2021. The shapes of wine and table grape leaves: An ampelometric study
427 inspired by the methods of Pierre Galet. *PLANTS, PEOPLE, PLANET* 3: 155–170.

428 Chitwood, D. H., L. L. Klein, R. O'Hanlon, S. Chacko, M. Greg, C. Kitchen, A. J. Miller, and J.
429 P. Londo. 2016a. Latent developmental and evolutionary shapes embedded within the
430 grapevine leaf. *New Phytologist* 210: 343–55.

431 Chitwood, D. H., J. Mullins, Z. Migicovsky, M. Frank, R. VanBuren, and J. P. Londo. 2021.
432 Vein-to-blade ratio is an allometric indicator of leaf size and plasticity. *American Journal*
433 *of Botany* 108: 571–579.

434 Chitwood, D. H., A. Ranjan, C. C. Martinez, L. R. Headland, T. Thiem, R. Kumar, M. F.
435 Covington, et al. 2014. A modern ampelography: a genetic basis for leaf shape and
436 venation patterning in grape. *Plant Physiology* 164: 259–72.

437 Chitwood, D. H., S. M. Rundell, D. Y. Li, Q. L. Woodford, T. T. Yu, J. R. Lopez, D. Greenblatt,
438 et al. 2016b. Climate and Developmental Plasticity: Interannual Variability in Grapevine
439 Leaf Morphology. *Plant Physiology* 170: 1480–91.

440 Cohen, Y., V. Alchanatis, M. Meron, Y. Saranga, and J. Tsipris. 2005. Estimation of leaf water
441 potential by thermal imagery and spatial analysis*. *Journal of Experimental Botany* 56:
442 1843–1852.

443 Demmings, E. M., B. R. Williams, C.-R. Lee, P. Barba, S. Yang, C.-F. Hwang, B. I. Reisch, et
444 al. 2019. Quantitative Trait Locus Analysis of Leaf Morphology Indicates Conserved
445 Shape Loci in Grapevine. *Frontiers in Plant Science* 10.

446 Dryden, I. L. 2021. shapes: Statistical Shape Analysis.

447 Durigon, A., and Q. de Jong van Lier. 2013. Canopy temperature versus soil water pressure head

448 for the prediction of crop water stress. *Agricultural Water Management* 127: 1–6.

449 Fox, J., and S. Weisberg. 2019. An R Companion to Applied Regression. Third. Sage, Thousand

450 Oaks, CA.

451 Galet, P. 1979. A practical ampelography. Cornell University Press.

452 Gates, D. M. 1964. Leaf Temperature and Transpiration. *Agronomy Journal* 56: 273–277.

453 Gates, D. M. 1968. Transpiration and Leaf Temperature. *Annual Review of Plant Physiology* 19:

454 211–238.

455 Giménez-Gallego, J., J. D. González-Teruel, F. Soto-Valles, M. Jiménez-Buendía, H. Navarro-

456 Hellín, and R. Torres-Sánchez. 2021. Intelligent thermal image-based sensor for

457 affordable measurement of crop canopy temperature. *Computers and Electronics in*

458 *Agriculture* 188: 106319.

459 Givnish, T. J. 1987. Comparative Studies of Leaf Form: Assessing the Relative Roles of

460 Selective Pressures and Phylogenetic Constraints. *The New Phytologist* 106: 131–160.

461 Greer, D. H., and M. M. Weedon. 2019. Can a small differential in canopy temperature influence

462 performance of Semillon in a vineyard? *New Zealand Journal of Crop and Horticultural*

463 *Science* 47: 63–82.

464 Greer, D., and M. M. Weedon. 2013. The impact of high temperatures on *Vitis vinifera* cv.

465 Semillon grapevine performance and berry ripening. *Frontiers in Plant Science* 4.

466 Harris, Z. N., M. Awale, N. Bhakta, D. H. Chitwood, A. Fennell, E. Frawley, L. L. Klein, et al.

467 2021. Multi-dimensional leaf phenotypes reflect root system genotype in grafted

468 grapevine over the growing season. *GigaScience* 10: giab087.

469 Keller, M., and J. M. Tarara. 2010. Warm spring temperatures induce persistent season-long

470 changes in shoot development in grapevines. *Annals of Botany* 106: 131–141.

471 Klein, L. L., M. Caito, C. Chapnick, C. Kitchen, R. O'Hanlon, D. H. Chitwood, and A. J. Miller.

472 2017. Digital Morphometrics of Two North American Grapevines (*Vitis*: Vitaceae)

473 Quantifies Leaf Variation between Species, within Species, and among Individuals.

474 *Frontiers in Plant Science* 8.

475 Leinonen, I., and H. G. Jones. 2004. Combining thermal and visible imagery for estimating

476 canopy temperature and identifying plant stress. *Journal of Experimental Botany* 55:

477 1423–1431.

478 Migicovsky, Z., Z. N. Harris, L. L. Klein, M. Li, A. McDermaid, D. H. Chitwood, A. Fennell, et

479 al. 2019. Rootstock effects on scion phenotypes in a 'Chambourcin' experimental

480 vineyard. *Horticulture Research* 6: 64.

481 Migicovsky, Z., J. F. Swift, Z. Helget, L. L. Klein, A. Ly, M. Maimaitiyiming, K. Woodhouse, et

482 al. 2022. Data from: Increases in vein length compensate for leaf area lost to lobing in

483 grapevine. *Dryad Digital Repository*.

484 Migicovsky, Z., J. F. Swift, Z. Helget, L. L. Klein, A. Ly, M. Maimaitiyiming, K. Woodhouse, et

485 al. In Press. Increases in vein length compensate for leaf area lost to lobing in grapevine.

486 *American Journal of Botany*.

487 Mirás-Avalos, J. M., I. Buesa, E. Llacer, M. A. Jiménez-Bello, D. Risco, J. R. Castel, and D. S.

488 Intrigliolo. 2017. Water Versus Source–Sink Relationships in a Semiarid Tempranillo

489 Vineyard: Vine Performance and Fruit Composition. *American Journal of Enology and*

490 *Viticulture* 68: 11–22.

491 Parker, A. K., I. G. de Cortazar-Atauri, C. van Leeuwen, and I. Chuine. 2011. General

492 phenological model to characterise the timing of flowering and veraison of *Vitis vinifera*

493 L. *Australian Journal of Grape and Wine Research* 17: 206–216.

494 Robinson, D., A. Hayes, and S. Couch. 2021. *broom: Convert Statistical Objects into Tidy*
495 *Tibbles.*

496 Still, C. J., B. Rastogi, G. F. M. Page, D. M. Griffith, A. Sibley, M. Schulze, L. Hawkins, et al.
497 2021. Imaging canopy temperature: shedding (thermal) light on ecosystem processes.
498 *New Phytologist* 230: 1746–1753.

499 Tanda, G., and V. Chiarabini. 2019. Use of multispectral and thermal imagery in precision
500 viticulture. *Journal of Physics: Conference Series*, 012034. IOP Publishing.

501 Westoby, M., D. S. Falster, A. T. Moles, P. A. Vesk, and I. J. Wright. 2002. Plant Ecological
502 Strategies: Some Leading Dimensions of Variation Between Species. *Annual Review of*
503 *Ecology and Systematics* 33: 125–159.

504 Wickham, H. 2016. *ggplot2: elegant graphics for data analysis*. Springer.

505 Wright, I. J., N. Dong, V. Maire, I. C. Prentice, M. Westoby, S. Díaz, R. V. Gallagher, et al.
506 2017. Global climatic drivers of leaf size. *Science*.