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Abstract

Background: Mixed phenotype acute leukemia (MPAL) is a rare subgroup of leukemia
characterized by blast cells that display both myeloid and lymphoid lineage features, making this
cancer difficult to diagnose and treat. A deeper characterization of MPAL at the molecular level is
essential to better understand similarities/differences to the more common and better-studied
leukemias, acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). Therefore,
we performed single-cell RNA sequencing (scRNAseq) on MPAL bone marrow (BM) samples in

an attempt to develop a more granular map of the MPAL microenvironment landscape.

Methods: We analyzed ~16,000 cells from five pediatric MPAL BM samples collected at
diagnosis to generate a single-cell transcriptomic landscape of B/Myeloid (B/My) and T/Myeloid
(T/My) MPAL blasts and associated microenvironment cells. Cell clusters were identified using
principal component analysis and uniform manifold approximation and projection (UMAP).
Unsupervised analysis was performed to determine the overall relationship among B/My MPAL,
T/My MPAL, and other acute leukemias — B-ALL, T-ALL, and AML. Supervised differentially
expressed gene (DEG) analysis was performed to identify B/My and T/My MPAL blast-specific
signatures. MPAL sample transcriptome profiles were compared with normal BM stem and
immune cells to identify MPAL-specific dysregulation. Gene set enrichment analysis (GSEA) was
performed, and significantly enriched pathways were compared in MPAL subtypes. Comparative
analysis was performed on diagnostic samples based on their future minimal residual disease

(MRD) and relapse status.

Results: B/My MPAL and T/My MPAL blasts displayed distinct subtype-specific blast signatures.
UMAP analysis revealed that B/My MPAL samples had greater overlap with B-ALL samples, while
T/My MPAL samples clustered separately from other acute leukemia subtypes. Genes
overexpressed in both MPAL subtypes’ blasts compared to other leukemias and healthy controls
included PLIN2, CD81, and UBE2S. B/My MPAL blast-specific genes included IRS2, SMIM3, and
HBEGF, whereas T/My MPAL blast-overexpressed genes included /IER5, BOD1L1, and HPGD.
Sirtuin signaling, p38 MPAK signaling, and PI3K signaling pathways were upregulated in B/My
MPAL blasts while oxidative phosphorylation and Rho family GTPases signaling pathways were
upregulated in T/My MPAL blasts. Transcriptomic, pathways, and cell communication level
differences were observed in the MPAL samples based on future MRD and clinical outcome

status.
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Conclusions: We have for the first time described the single-cell landscape of pediatric MPAL
and demonstrate that B/My and T/My MPAL have unique scRNAseq profiles distinct from each
other as well as from ALL and AML.

Keywords: Mixed phenotype acute leukemia, single-cell RNA sequencing, tumor

microenvironment


https://doi.org/10.1101/2022.07.07.499210
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.07.499210; this version posted July 8, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Background

Mixed phenotype acute leukemia (MPAL) is a rare subtype of acute leukemia, accounting for 2-
3% of all newly diagnosed pediatric leukemia cases, with blasts expressing markers of both the
lymphoid and myeloid lineage (1, 2). Antigen expression patterns vary greatly among different
MPAL cases, and given the wide phenotypic variability, the diagnostic criteria for MPAL have
continued to evolve over the past decades. The European Group for the Immunological
Characterization of Leukemias (EGIL) and the World Health Organization (WHO) criteria are the
two MPAL classification systems primarily used; however, despite both systems relying on
immunophenotypic characterization, there remain significant differences in their definitions (1-4).
Given the frequent changes and relative subjectivity in diagnostic criteria, it is extremely difficult
to interpret previously published MPAL literature. Reported survival outcomes for MPAL have
ranged between 36-80%; however, since patients with an MPAL phenotype were excluded from
frontline clinical trials until recently, all available treatment and outcome data for MPAL is
retrospective. While most patients with MPAL respond to acute lymphoblastic leukemia (ALL)

directed therapy (2, 4), there is no clear consensus on how to treat this heterogeneous disease.

The lack of standardized treatment regimens specifically tailored for MPAL is compounded by
fluid diagnostic criteria for classifying MPAL and its subtypes. Current classification systems
divide MPAL into two broad categories, B/myeloid (B/My) MPAL and T/myeloid (T/My) MPAL (5).
Despite these differences in classification and the wide phenotypic diversity, current treatment
approaches have typically considered MPAL to be a single entity with providers primarily choosing
between ALL vs. AML regimens, and not considering specific subtypes. Two recent large MPAL
genomic studies, one in pediatric patients and one in adults, have shown that B/My and T/My
MPAL have distinct genomic signatures (6, 7), supporting the notion that different approaches
may be necessary to treat MPAL subtypes. Furthermore, two large retrospective cohorts have
now shown that the early response to ALL therapy is critical in terms of overall prognosis (7), with
patients having positive measurable/minimal residual disease (MRD) at the end of induction (EOI)
having significantly poorer outcomes. Analyzing the biology and understanding the similarities
and differences is critical for improving outcomes in these rare high-risk leukemias. Thus, a more
in-depth analysis of MPAL biology is essential to determine effective treatments for this unique

disease.

ScRNAseq has revolutionized cancer research by revealing cell types, pathways, and cellular
interactions that play critical roles in malignant cell progression and response to therapy (8, 9).

Identifying changes in cellular and molecular profiles is critical for identifying novel targets for
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diagnosis, risk assessment, and clinical outcomes. Single-cell profiling can be invaluable for deep
characterization, given the wide phenotypic and genomic diversity seen in MPAL. Only one single-
cell study of MPAL has been previously reported, using samples from adults (10). Here, we
present for the first time scRNAseq profiling of five pediatric MPAL samples collected at diagnosis,
along with a comparative analysis with previously generated scRNAseq datasets from pediatric
AML and ALL samples as well as young adult healthy bone marrow (BM) samples (11-13). Our
analysis revealed similarities between B/My MPAL and B-ALL transcriptomes, while T/My MPAL
depicted a unique transcriptome profile distinct from transcriptomes of other leukemias/subtypes.
Our results provide an initial framework of the pediatric MPAL single-cell signature and support

utilizing scRNAseq analysis for further characterization of the MPAL blast and marrow landscape.

Methods
Clinical samples

Primary patient BM samples were obtained from the Aflac Cancer and Blood Disorders Center
Biorepository within Children’s Healthcare of Atlanta (CHOA). Patients provided written informed
consent that permitted the use of biological material in accordance with a protocol that was
approved by the CHOA Institutional Review Board (IRB). The diagnosis of MPAL was made
according to the World Health Organization (WHO) 2016 MPAL criteria (5). BM samples were
collected at initial presentation as part of routine diagnostic evaluation. The study was performed
on five MPAL patient samples (three B/My MPAL and two T/My MPAL immunophenotypes) with
known MRD status and clinical outcome (post-therapy remission or relapse). In addition, for
comparative analysis, we used single-cell datasets of other pediatric leukemias i.e., AML and T-
ALL from previous/ongoing studies in the lab and also, publicly available scRNAseq datasets of
young adult healthy BM and pediatric B-ALL and AML samples (13-15).

Single-cell RNA sequencing and analysis of MPAL samples

Single-cell RNA sequencing (scRNAseq) libraries were prepared from viably revived BM samples
using hashtag B antibodies (Biolegend) and Chromium single cell 3'V3 reagent kits (10x
genomics). Sequencing was performed using NextSeq 500 high output kits (lllumina) (12). The
fastq files were analyzed using Cell Ranger (16) for demultiplexing, alignment to the human

genome (hg38), and generation of gene-count matrices for further bioinformatics analysis.

Single-cell profiling data from other leukemias and healthy bone marrow
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For comparative analysis of MPAL with other pediatric leukemias, we used single-cell datasets
generated in our lab for other leukemias: AML (n=15), and T-ALL (n=10) (13-15). Data were
generated and processed using the uniform approach briefly described in the following paragraph
and previously utilized (13-15). Additionally, we also used publicly available datasets, downloaded
via the GEO portal (GSE154109), for comparative analysis (17). This dataset contained pediatric
B-ALL (n=7), pediatric AML (n=8), and young adult healthy BM (n=4) samples.

Single-cell profiling data analysis

Raw gene-count matrices from samples were merged to generate a raw expression matrix from
all pediatric leukemias and healthy BM. Cells were filtered based on mitochondrial content and
feature count (pct. mitochondrial < 60 and feature count < 200). Expression profiles were
normalized and scaled using the SCTransform function in Seurat v4 (18). Dimensionality
reduction was performed via the UMAP method, and the cells were clustered using the K-nearest
neighbor graph-based clustering approach. Leukemic cells, or blasts, were annotated by
comparing each leukemia set (AML, B-ALL, T-ALL, MPAL) samples with the healthy control and
identified as cells that did not cluster with the healthy control cells. Once the blasts were identified,
the non-blast or canonical lymphoid, myeloid, and erythroid lineage cells were annotated based
on a combination of automatic annotation using the SingleR package (19), and manual annotation
via known marker genes. SingleR is an automatic annotation tool that labels cells based on an
external annotated reference, such as the Human Primary Cell Atlas (ERP122984) (20). A
supervised analysis was performed to generate MPAL blast transcriptome signatures by
comparing gene expression profiles of MPAL subtype blast cells with normal cells using the
Wilcoxon rank test. The transcriptome signatures were generated based on fold change and P-
value cutoffs (adjusted p-value < 0.05, average log2FC > 0.25, and percent cell expression >
50%). The analysis identified transcriptome signatures for MPAL as well as subtypes i.e., T/My
MPAL and B/My MPAL.

Generation of MPAL-specific gene dysregulation

Transcriptome signatures generated from the previous analysis were systematically compared
with normal and stem cell profiles from the human cell atlas (HCA) (21). Blast genes with average
expression >0.5 in normal BM or stem cells from the HCA were considered non-specific and
filtered out. The analysis resulted in the identification of MPAL blast cell-overexpressed gene sets
that were further compared with pediatric ALL and AML leukemia blast cells to identify MPAL
specific gene sets with high potential to be MPAL biomarker candidates (Fig. S1).
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A similar differentially expressed gene (DEG) and biomarker analysis was performed on the future
relapse and remission blast cell profiles to identify genes that are specifically overexpressed in

MPAL remission- or relapse-associated blasts.
Pathway enrichment analysis

MPAL blast-specific pathways were identified by performing pathway analysis using the Ingenuity
Pathway Analysis software (IPA) by QIAGEN Inc. (22). The B/My MPAL blast-specific gene set
was generated by identifying significantly DEGs between B/My MPAL blasts, other leukemia
blasts, as well as immune cells (p-value <0.05 and log2FC >0.25). The same process was
performed to identify a T/My MPAL blast-specific gene set. A detailed description of IPA is
available on the QIAGEN website (23). IPA calculates a p-value for each pathway according to
the fit of the user's data to the IPA database using a one-tailed Fisher exact test. Pathways with p-

values <0.05 were considered significantly affected.

Additionally, we also performed pathway and systems biology analysis on MRD-associated genes
using the MetaCore platform (Clarivate Inc.). The MRD positivity-associated signature was
identified by comparing blast cells from MRD positive and negative samples by linear statistical
analysis using the Wilcoxon rank test (p-value<0.05, absolute log2FC>0.25). The list of DEGs
was submitted to the platform for analysis. The knowledge base of this platform consists of
functions, pathways, and network models derived by systematically exploring peer-reviewed
scientific literature and public databases. It calculates statistical significance based on the
hypergeometric distribution where the p-value represents how likely the observed association
between a specific pathway/function/interactive network and the dataset would be if it were only
due to random chance, by also considering the total number of functions, pathways, and
interactive network eligible genes in the dataset and the Reference Set of genes (those which
potentially could be significant in the dataset). Focus molecules were identified from the integrated
networks based on the degree of connectivity (number of interactions for each gene). Focus hubs
with higher degrees of connectivity are considered critical for the maintenance of the networks,
suggesting that therapeutic targeting of these focus hubs may elicit the strongest impact.

Pathways and networks with a p-value <0.05 were considered statistically significant.
Gene-set enrichment analysis

In addition to individual gene analysis, gene set enrichment analysis (GSEA) was implemented
to determine whether an a priori-defined set of genes showed statistically significant, concordant

differences between different group comparisons (24). GSEA can be more powerful than single-
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gene methods for studying the effects of factors such as MRD in which many genes each make
subtle contributions. GSEA was performed using the escape R package (25). Gene sets with a p-
value <0.05 were considered significantly altered. GSEA was performed on the basis of 3,000
canonical pathways obtained from the MSig database via the msigdbr package (v7.4.1). Once
the significantly upregulated pathways were identified for each leukemia type, the comparative
analysis of pathways resulted in T/My and B/My MPAL-specific pathways from blast cells as well
as major immune cell subtypes including “B, Pro-B, and plasma cells”, “T and NK cells”,

“progenitor cells”, and “monocytes and macrophages”.
Cellular communication analysis

Cellular communication analysis was performed using CellChat version 1.0.0 (26). CellChat uses
ligand-receptor expression to predict intercellular communication among specific signaling
pathways. CellChat first calculates the communication probability of each signaling pathway in
the CellChatDB ligand-receptor database between cell clusters or cell types within a group (e.g.,
diagnostic sample from a patient who relapsed; Dx-Rel). Differences in cellular communication
between groups can be analyzed by calculating the information flow, the sum of communication
probability for each cell cluster predicted interaction, for each signaling pathway. Signaling
network differences between groups can also be analyzed by performing manifold learning and
classification based on functional similarity, or the similarity in sender/receiver cell types between
two pathways. CellChat also allows analysis of specific cell type interactions within each group

for each signaling pathway, and this can be visualized on a circular chord diagram.
Survival analysis

Estimated survival probabilities for the T-Myeloid MPAL and B-Myeloid MPAL Dx-Rel and Dx-
Rem (diagnostic samples from patients that underwent remission) biomarker sets were calculated
using the survMisc (27) and survival (28) R packages. Survival analysis was performed on the
TARGET-ALL-P3 dataset (ambiguous leukemias) after extracting the T-Myeloid and B-Myeloid
MPAL samples (29). The T-Myeloid MPAL Dx-Rel and Dx-Rem gene sets were used to calculate
gene set enrichment values for each sample with a T-Myeloid MPAL diagnosis. Then, the samples
were split into high and low expression groups using the cutP method (27) based on the samples’
gene set enrichment values for each gene set. The survival was calculated, and Kaplan-Meier
survival curves and hazard ratio statistics were produced. The same analysis was also performed
for the B-Myeloid MPAL gene sets.
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Results
Characterizing the single-cell landscape of MPAL BM samples

To characterize the tumor microenvironment (TME) of MPAL, we performed scRNAseq on BM
samples of three B/My MPAL and two T/My MPAL patients, all of whom were treated with an ALL
induction regimen (Table 1). Of three B/My MPAL samples, two were MRD+ (M3, M5) and one
was MRD- (M1), while both T/My MPAL samples (M4, M6) were MRD+ at EOI (Table 1). One
B/My MPAL patient relapsed post-therapy and two achieved remissions while one T/My MPAL

patient relapsed and one achieved remission post-therapy (Table 1).

Comprehensive single-cell transcriptome profiling was performed using the 10x genomics
platform after reviving viably frozen patient BM samples collected at the time of disease diagnosis
(Dx). To identify blast cells, the data from healthy young adult BM samples were included in the
analysis (17). In total, we analyzed 22,348 cells (5,443 from two T/My MPAL, 10,961 from the
three B/My MPAL, and 5,944 from healthy BM samples). After undergoing quality control and
normalization, unsupervised analysis identified 20 transcriptionally distinct clusters of cells (Fig.
1A). Most cellular clusters were labeled based on the expression of canonical cell lineage-
associated markers (Fig. S2); these cell types include erythroid, monocyte/macrophage, T-cells,
and cytotoxic T lymphocytes (CTL), B-cells, Pro-B, NK, and general myeloid progenitors (GMP).
The clusters (M1, M3, M4, M5, and M6 blasts) lacking canonical immune cell markers and
predominantly made up of cells from individual patients were considered putative blast cell
clusters. The putative MPAL leukemic blast clusters depicted segregated clustering from the
healthy control cell clusters (Fig. 1B, lassoed regions). B/My MPAL blasts formed patient-specific
segregated clusters (M1, M3, M5 blasts) indicative of inter-patient heterogeneity (Fig. 1B) while
the T/My MPAL blasts (M4, M6 clusters) showed inter-patient similarity with overlapping clusters
(Fig. 1B). On the other hand, immune cells from both MPAL subtypes clustered together with no
inter-patient heterogeneity (Fig. 1B). The analysis of MPAL and healthy BM samples based on
UMAP depicted that MPAL BM microenvironment cells also have subtle differences as compared
to corresponding healthy cells. To identify the top differences between MPAL microenvironment
cells as compared to healthy immune cells, we performed a supervised differential expression
analysis based on the Wilcoxon rank test (Fig. 1C). The MPAL B cells overexpressed IGHG1,
JCHAIN, and IGHG3 as compared to healthy B-cells, indicating enrichment of plasma cell lineage
in the MPAL samples. Similar supervised analysis of cytotoxic T cells depicted significant
overexpression of NFKBIA, and COTL1, indicating enrichment of T-cell activation regulators (30,

31). Lists of the top 10 upregulated genes in MPAL vs. healthy samples in non-blast clusters are
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available in Table S1. There were no significant differences in cell type abundances between
B/My MPAL and T/My MPAL; however, there were significant differences in healthy and MPAL
cell type abundances in B cells, T cells, and Pro-B cells (Fig. 1D). This reduction in immune cells
in the MPAL bone marrow microenvironment is likely due to marrow infiltration by the malignant

blast cells.

B/My MPAL scRNAseq profile has significant overlap with B-ALL, whereas T/My MPAL has

a unique profile

To assess the similarities and differences between MPAL and other leukemias, we performed
comparative analyses among MPAL, AML, B-ALL, T-ALL, and healthy BM single-cell profiles.
Single-cell transcriptome data for other leukemias were obtained from the Pediatric Cancers
Single-Cell Atlas (15) initiative of our lab. After uniform pre-processing, filtering, and
normalization, the average gene expression of each sample was compared using UMAP and
principal component analysis (PCA) (Fig. 2). UMAP analysis showed the B/My MPAL blasts are
clustered with B-ALL, indicating transcriptional similarity between B/My MPAL and B-ALL (Fig.
2A, B). The T/My MPAL blasts, however, clustered distinctly from T-ALL and other leukemias,
indicating a unique T/My MPAL transcriptional landscape (Fig. 2A, B). Interestingly, a minor
fraction of T-ALL cells (~2% of cells) was observed in the T/My MPAL cluster, suggesting the
existence of rare T/My like blasts in the T-ALL. The 3D PCA analysis also depicted that T/My
MPAL samples are segregated from other leukemias as well as healthy BM controls. On the other

hand, B/My MPAL samples were shown to have a profile overlapping with B-ALL (Fig. 2C).

To identify genes with significant overexpression in MPAL as compared to other leukemias and
healthy controls, DEG analysis was performed based on the Wilcoxon rank test (FC > 1.2 and
adjusted P-value < 0.05). Genes that are overexpressed in both MPAL subtypes’ blasts compared
to other leukemias and healthy controls include PLIN2, CD81, and UBE2S (Fig. 2D). B/My MPAL
blast genes include /RS2, SMIM3, and HBEGF. T/My MPAL blast genes include IER5, BOD1L1,
and HPGD. To ensure the MPAL blast markers are tumor-specific, a few additional filtering steps
based on expression in the BM immune cells and hematopoietic stem cells (HSCs) were
implemented. The BM single-cell data of 391,505 immune cells and HSCs were obtained from
the Human Cell Atlas (HCA) Initiative (21). MPAL blast-specific genes had minimal expression in
the HCA immune cells and the HCA HSCs (Fig. 2E), whereas canonical immune cell markers
such as B cell gene CD79A and T cell gene CD3D had high expression in the HCA immune cells
and well-known HSC marker genes such as CD44 and CD34 had high expression in the HSCs.

The complete lists of MPAL blast markers with average log2 fold change and p-values from each
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step of the filtering process (Fig. $1) are listed in Table S2. The biomarker genes (Fig. 2D) had
minimal or no expression in normal immune and stem cells (Fig. S3), making these genes ideal

candidates to be explored for developing targeted therapies to improve MPAL outcomes.

To further understand the biological pathways level of dysregulation in MPAL blast genes,
pathways enrichment analysis was performed on the top significantly expressed genes (p-value
<0.05, average log2FC >0.5). Sirtuin signaling, p38 MPAK signaling, and PI3K signaling pathways
were upregulated in B/My MPAL blasts and have been found to promote leukemia cell survival in
other types of leukemia (32-34) (Fig. 2F). In T/My MPAL blasts, oxidative phosphorylation, and
Rho family GTPases signaling pathways were upregulated (Fig. 2G) and have been shown to
promote leukemia cell survival (35). Common pathways that were significantly impacted in both
B/My and T/My MPAL included ILK signaling (36), ERK/MAPK signaling (37), and PISK/AKT
signaling (38) (Fig. S4). The complete lists of significantly affected pathways with p-values and

Z-scores are shown in Table S3.

MPAL microenvironment cells display specific dysregulations at the pathway and cellular

communication network levels

Cellular communications between cell types in the MPAL subtypes were compared against cell
communication in other leukemias and controls (Fig. $5). For each signaling pathway found to
be enriched in the MPAL subtypes, the analysis identified cell types and their levels (i.e., heatmap
color intensity) of involvement in the incoming (receptor) or outgoing (ligand) signaling (Fig. 3A).
Of the signaling pathways that were estimated to be present in B/My MPAL samples, the neuronal
growth receptor (NEGR) signaling pathway was significantly enriched in B/My MPAL (Fig. S5) but
not in other leukemias or control groups. The NEGR pathway had incoming and outgoing
signaling exclusively present in Pro-B cells (Fig. 3A). Similarly, T/My MPAL blasts demonstrated
the strongest outgoing signal in the TGF beta pathway, which was specifically enriched in T/My
MPAL samples, with Pro-B cells being the receiving cell type. Overall, the CD99, MHC-II, MIF,
GALECTIN, CLEC, and MHC-I pathways had the highest information flow among the enriched
pathways of B/My MPAL. Among the T/My MPAL pathways, the MIF, CLEC, and MHC-I| pathways
had the highest information flow (Fig. 3A).

To further characterize transcriptome and pathway level differences among microenvironment
cell types of different leukemias including MPAL, and healthy BM, we performed a focused
analysis of microenvironment cell types only. Fig. 3B shows the annotated UMAP of immune and

other microenvironment cells, with four major lineages: subset 1: B-lymphoid (B-, pro-B-, and
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plasma- cells), subset 2: T/NK-lymphoid (exhausted-T-, T-, T-reg, and NK- cells), subset 3:
progenitor cells, and subset 4: myeloid (monocytes and macrophages). Comparative analysis of
different leukemias (AML, B-ALL, T-ALL, B/My MPAL, and T/My MPAL) and healthy BM revealed
that most cell types are detected across all groups with subtle differences in enrichment (Fig. 3C).
DEG analysis comparing expression profiles among MPAL subtypes vs. other leukemias, and
healthy BM defined key B/My (shown by orange bars) and T/My (shown by purple bars) MPAL-
specific markers for different cell types (Fig. 3D). The B-lymphoid lineage (subset 1) of B/My
MPAL shows specific overexpression of cell proliferation and differentiation genes including
JUND, DNTT, and ID2, whereas T/My MPAL shows overexpression of immunoglobin genes
including IGHG1, IGHA2, and JChain (Fig. 3D). The T/NK-lymphoid lineage (subset 2) shows a
significantly similar transcriptome profile between T/My and B/My subtypes with overexpression
of genes like CALM1 and NEAT1 (Fig. 3D). NEAT1 plays a key regulatory role in T cell function
and could be an important target for enhancing the efficiency of immunotherapy (39, 40). The
progenitor lineage (subset 3) of B/My and T/My MPAL shows specific overexpression of YBX3
and CDK®6, respectively, which are key regulators of gene expression and cell cycle regulation
(41, 42) (Fig. 3D). The canonical cell type markers for the different lineages are also included in

the four plots in Fig. 3D.

To further characterize MPAL microenvironment-associated transcriptome differences, we
performed pathway level analysis using the gene set enrichment approach (43, 44). The pathways
for B/My MPAL and T/My MPAL only included those that were specific to the subtype and not
upregulated in any other leukemia (Fig. 3E). Among the top unique pathways enriched in B/My
MPAL, T-lymphoid lineage cells were those involved in corticotropin-releasing hormone (CRH)
signaling, nerve growth factor (NGF) signaling, and activator protein-1 (AP1) (Fig. 3E). The B/My
MPAL B-lymphoid lineage demonstrated significant enrichment of FOSB pathways, which has
been associated with poor outcomes in AML (45). The TNFA signaling pathway via NF-kB was
also found to be specifically enriched in a progenitor lineage that is known to promote leukemia
cell survival in AML (Fig. 3E) (46). The B-lymphoid lineage of T/My MPAL showed significant
enrichment of the IL-10 pathway that has been extensively explored as a prognostic marker for
leukemias (47). Also, in T/My MPAL B cells, the upregulated CSK pathway is associated with the
promotion of B-cell activation, while the IFN-y pathway is associated with inhibition of B-cell
activation (Fig. 3E) (48).

Comparative analysis of diagnostic B/My MPAL samples based on future EOl MRD status

reveals distinct blast cells associated with expression profiles
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To explore the association between MRD status of the blast cells and transcriptome profile at
baseline, we performed a focused analysis of B/My MPAL MRD positive vs. negative blast cells.
There were two MRD positive and one MRD negative sample among the B/My MPAL samples.
Clustering and UMAP embeddings based on MRD status revealed distinct blast cell transcriptome
profiles (Fig. 4A). Blast cells from each sample depicted heterogenous transcriptome profiles
evident from patient-specific clusters whereas non-blast cells (B, CTL, Erythroid, GMP/Prog,
Mono/Mac, NK, Pro-B, T/CTL) formed mostly overlapping clusters (Fig. 4A). MRD positivity
associated genes were identified through differential expression analysis by comparing the profile
of blast cells from MRD positive and negative samples based on the Wilcoxon rank test. The
analysis identified 609 genes that were significantly differentially expressed, 95 upregulated and
514 downregulated in MRD-positive samples (Fig. 4B). To identify the key pathways and
regulators affected by the MRD positive blast-associated genes, we performed a pathways and
systems biology-oriented analysis. Interestingly, antigen presentation and inflammatory
response-related pathways emerged as the top pathways that were significantly affected in the
MRD positive group (Fig. 4C). The induction of antigen presentation machinery by MHC | was
significantly more activated in the MRD negative compared to MRD+ samples, indicative of the
critical role of the immune response in eradicating the disease (Fig. 4C). Further network analysis
identified significant activation of regulatory immune networks related to IRF1 (Fig. 4D), MHC
Class Il, LAPTM5, and C-Fos (Fig. 4E), suggesting their role in MRD positivity.

Transcriptomic differences in MPAL blast cells based on future relapse or remission status

MPAL subtype diagnostic samples were split into future relapse (Dx-Rel) and remission (Dx-Rem)
groups based on the clinical outcome; there were two B/My MPAL Dx-Rem samples and one Dx-
Rel sample, and one of each group for T/My MPAL. The comparative analysis of Dx-Rel and Dx-
Rem groups based on UMAP embedding showed differences in the cellular enrichment as well
as transcriptome profile (Fig. 5A). To identify genes showing dysregulation between blast cells of
relapse and remission groups, we performed DEG analysis on individual MPAL subtypes and
outcomes (i.e., Dx-Rel, Dx-Rem) (Fig. 5B). To identify markers that are specifically dysregulated
in relapse/remission blast cells, we also performed a comparative analysis with HCA (21) healthy
bone marrow cells and stem cells to filter out genes that are ubiquitously expressed. For B/My
MPAL, Dx-Rel markers included ECM1, SPATS2L, and HLA-DQA2, and Dx-Rem markers
included ATF3, MKNK2, and RBM38. For T/My MPAL, Dx-Rel markers included HPGD, KRT1,
and HHIP-AS1, and Dx-Rem markers included CDKN2A and GLS. These genes associated with

outcomes (Fig. 5B) represent potential prognostic blast markers for MPAL subtypes and can be
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explored in the future as potential therapeutic targets. Further, to understand pathway level
differences among Dx-Rel and Dx-Rem groups for both MPAL subtypes, we performed pathways
analysis (Fig. 5C). For B/My MPAL, Dx-Rel enriched pathways included T cell receptor signaling,
the Th1 pathway, and NFAT involvement in the immune response, and Dx-Rem enriched
pathways included PD-1 and PD-L1 immune checkpoints, BAG2 signaling, and p38 MAPK
signaling. For T/My MPAL, Dx-Rel enriched pathways included CDC42 signaling, Rho regulation
of actin-based mobility, and TNFR1 signaling, and Dx-Rem enriched pathways include EIF2

signaling, protein kinase A signaling, and ERKS signaling.

To explore the survival association of the top overexpressed genes (log2FC >1.25 and adjusted
p-value <0.01) in Dx-Rel and Dx-Rem MPAL samples, we used external bulk RNA-seq data of
acute leukemias of ambiguous lineage (ALAL) from the TARGET initiative. The TARGET Phase
Il dataset includes expression profiles for 115 pediatric leukemia ALAL patients generated using
the bulk RNA sequencing approach. The B/My MPAL (n = 25) and T/M MPAL (n = 29) cases were
extracted from the TARGET dataset for this analysis. The Cox hazard ratio (HR), Cox p-value,
and logrank p-value were determined using the cutP method (27) for each gene set (n = 25 genes
for B/My MPAL Dx-Rel, n = 14 for B/My MPAL Dx-Rem, n = 12 for T/My MPAL Dx-Rel, and n =
15 for T/My MPAL Dx-Rem, Table S4). For B/My MPAL, the Dx-Rel overall gene set included
S100A8, HLA-DRB5, and FCN1, and the Dx-Rem set included IGHM, NR4A1, and IER2. For
T/My MPAL, the Dx-Rel overall gene set included HES4, GSTP1, and KRT1, and the Dx-Rem
gene set included ACTG1, RACK1, and NEAT1. Of the four sets of genes, only the sets for T/My
MPAL Dx-Rel and Dx-Rem had significant survival associations (Cox p-value <0.05) (Fig. 5D).
The T/My MPAL Dx-Rel genes had a Cox HR of 9.85 (Cox p-value = 0.033, logRank p-value =
0.009), the Dx-Rem genes had a Cox HR of 0.20 (Cox p-value = 0.026, logRank p-value = 0.018).
The B/My MPAL outcome-associated genes demonstrated no significant association with

outcome (Fig. S7).

Comparison of MPAL microenvironment cells and communication networks based on

clinical outcomes

To characterize the MPAL microenvironment in future remission (Dx-Rem) and relapse (Dx-Rel)
samples, we performed a cellular communication analysis based on the expression of ligand and
receptor pairs among various cell types. The overall cellular communication of MPAL was
estimated and the number of signaling interactions was quantified for each cell type in the Dx-Rel
and Dx-Rem groups (Fig. 6A). Due to the limited number of non-blast cells for each cell type

present in the diagnostic samples, the MPAL subtypes were combined for this stage of the
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analysis. The future remission subset (Dx-Rem - Blue) had a higher number of interactions
involving the GMP, Mono/Mac, NK, Pro-B, and T cell types as compared to the future relapse
subset (Dx-Rel - Red). The Dx-Rel subset had a higher number of interactions between the blasts
and B cells, as well as GMP and NK to blast cells. The higher number of B cell interactions in the
future relapse samples might be due to the difference in the number of B cells in the Dx-Rel (n =

10) and Dx-Rem (n = 193) samples, therefore requiring further validation.

In addition, specific signaling pathways were estimated and functional similarities between the
pathways inferred. The signaling pathways that were significantly enriched in each subset were
compared using manifold and classification learning analysis and clustered based on their
similarities (Fig. 6B). The dimensionality plot represents the overall functional similarity of the
individual pathways for each clinical group. Cluster 1 consists of 5 pathways that include
PECAM1, SEMA4, and ADGRES5 for the Dx-Rel group and SELPG and PECAM1 for the Dx-Rem
group. These five signaling pathways have similar cell types and senders and receivers based on
ligand and receptor expression, therefore, playing similar roles in the MPAL. In contrast, the CD99
pathway is significantly dysregulated in cluster 3 for the Dx-Rem group and cluster 4 for the Dx-
Rel group indicating different functionality and association with outcomes (i.e., Dx-Rel and Dx-
Rem). Further comparative analysis of the information flow or interaction strength of each
signaling pathway in the Dx-Rem (blue bars) and Dx-Rel (red bars) groups is summarized in Fig.
6C. The CD99, BAG, SELPG, ADGRES5, and MIF signaling pathways were the top differentially
enriched pathways (marked with an asterisk) based on their functional similarities/differences. To
further explore differences in cellular contributions for the top 5 differentially expressed pathways,
we generated chord diagrams showing the information flow and interactions among cell types for
these pathways (Fig. S$8). For example, the chord diagram for BAG signaling (Fig. 6D), shows
that GMP, Mono/Mac, and Pro-B cells are the sender cell types for Dx-Rel samples, and blast
cells are the sender cell type for Dx-Rem samples. In both cases, NK cells are the receiver cell
type. The top ligand-receptor pair for this pathway found to be expressed in the samples is BAG6
to NCR3 (Fig. 6E). These results reveal that microenvironment cells have different
communication machinery in the DX-Rel and DX-Rem groups even at baseline (disease

diagnosis) that might be playing a role in disease progression and post-therapy clinical outcomes.
Discussion

The emergence and optimization of single-cell profiling as a powerful tool to characterize the
tumor microenvironment has revealed the heterogeneity of cancers, particularly different

leukemia subtypes. Most MPAL biology studies to date, however, have focused on genetics and
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bulk RNA-sequencing profiling that measures an average signal from the amalgam of blast and
immune microenvironment cells in the bone marrow, failing to address blast cell heterogeneity,
blast and immune cell interactions, and the role of the immune microenvironment in clinical
outcome. There has only been one study published utilizing a single-cell approach to analyze this
rare leukemia. In this study, Granja et al. analyzed samples from five adult MPAL patients and
compared their findings to controls for normal hematopoiesis (10). They demonstrated that
despite widespread epigenetic heterogeneity within the patient cohort, common malignant
signatures across patients were observed. Pediatric MPAL research is critical because in other
leukemias like AML, significant differences have been demonstrated between adult and pediatric
leukemia microenvironments (49-51). Also, the analysis by Granja et al. only included one patient
with B/My MPAL; hence they did not perform a comparative analysis between the different B/My
MPAL subtypes (10). Therefore, besides being the first study to characterize the single-cell tumor
landscape in pediatric MPAL patients, our study is also the first study to compare single-cell

expression profiles between the two major MPAL subtypes.

Comparative analysis of gene expression patterns showed that the two MPAL subtypes, B/My
and T/My MPAL, had distinct single-cell transcriptomic profiles. The B/My MPAL cases had
greater inter-patient heterogeneity and showed significant overlap with B-ALL and to a lesser
extent with AML. The T/My MPAL cases, on the other hand, had less inter-patient variability but
formed a single distinct expression profile unique from the other leukemia subtypes. These results
support the findings from the large pediatric MPAL genomic study published in 2018, in which
Alexander et al. showed that B/My MPAL and T/My MPAL had distinct genetic profiles based on
transcriptome and whole-genome sequencing (7). B/My MPAL shared common genomic features
with both B-ALL and AML, and T/My MPAL showed a similar mutational profile to early T-cell
precursor ALL (ETP-ALL) (52). These findings suggest that the two MPAL subtypes should be
considered distinct entities; this may have implications for differing treatment regimens if validated
in future studies. While there is no clear consensus as to how to treat MPAL patients, more recent
literature has suggested utilizing an ALL-directed therapy approach. While our results do support
this treatment approach for B/My MPAL given the overlap with the B-ALL gene expression profile,
the T/My MPAL treatment regimen may need to be re-considered based on its unique profile

compared to other leukemias.

Genes that were overexpressed in the blasts of both MPAL subtypes compared to other acute
leukemias included CD871 and UBEZ2S. CD81 has been associated with a poor prognosis in AML
(63) and is also a known marker in B-ALL (54, 55) while the E2 family of a ubiquitin-conjugating
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enzyme, UBE2s has arole in the cell cycle progression (56). AML cells are dependent on UBE2N-
dependent oncogenic immune signaling states (57). DEG-associated pathway analysis showed
that Sirtuin signaling, p38 MPAK signaling, and PI3K signaling were upregulated in B/My MPAL
blasts. Sirtuin signaling genes such as SIRT1, SIRT2, and SIRT6 promote B-ALL, AML, and T-
ALL leukemia cell survival, and SIRT1 is proposed as an unfavorable prognosis marker in the
adult AML (32, 58-60). In T/My MPAL blasts, oxidative phosphorylation, and Rho family GTPases

signaling were upregulated, known to promote leukemia cell survival (35).

Single-cell profiling of the non-blast bone marrow microenvironment cells showed MPAL B cells
overexpressed IGHG1, JCHAIN, and IGHG3 and cytotoxic T cells overexpressed NFKBIA,
SYNE2, and COTL1. Pathway analysis of the microenvironment cells showed that in B/My MPAL,
T cells were involved in CRH signaling, NGF signaling, and the AP1 pathway. Studies show that
NGF regulates T cell proliferation (61), and that exhausted T cells have low expression of AP-1,
which is a regulator of T cell activation (62). The upregulation of these pathways in B/My MPAL T
cells suggests that there may be activity related to immunosuppression, T cell proliferation, and
T cell activation present. Enrichment of the FOSB pathways in B/My MPAL B cells and the TNFA
signaling pathway via NF-kB in progenitor cells have been associated with poor leukemia
outcomes (45). For T/My MPAL, B-lymphoid cells showed enrichment of multiple pathways
including IL-10 signaling, the CSK pathway, and IFN-y signaling. IL-10 is an immune-suppressive
cytokine and while expressed in B cells has been associated with the inhibition of pro-
inflammatory cytokines (63). Because IL-10 signaling is uniquely upregulated in T/My MPAL B

cells, this suggests there is a more immune-suppressive environment than in other leukemias.

Finally, more recent literature has shown that pediatric MPAL patients with MRD at EOI have
significantly poorer outcomes (4, 64). In the multi-national iBFM-AMBI2012 study, Hrusak et al.
showed that patients with MRD at EOI had a significantly worse event-free survival (EFS) and
overall survival (OS), despite their analysis being complicated by the inclusion of a myriad of
treatment regimens (4). A more recent multicenter study by Oberley et al. on MPAL showed that
MRD positivity was highly predictive of relapse and death, with significantly worse EFS and OS
among MRD-positive patients. Based on these findings, we performed a comparative analysis of
our diagnostic samples based on EOl MRD and future remission or relapse status. Although we
had a limited number of samples, our data suggest that unique transcriptome profiles at diagnosis
can be associated with MRD at EOI as well as future relapse. Thus, identifying specific gene
expression profiles associated with MRD positivity and relapse would allow for better risk

stratification and more tailored therapy for MPAL in future prospective clinical trials.
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Conclusions

Our data provide an initial framework of the single-cell landscape of pediatric MPAL. Gene
signatures and pathways specifically enriched in B/My and T/My MPAL subtypes were identified.
While a larger sample size is needed to validate these findings, these signatures could be used

to identify potential targets for the development of novel diagnostics and therapies in the future.
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Figure Legends

Figure 1: Single-cell landscape of MPAL and healthy control bone marrow samples. A)
Uniform manifold approximation and projection (UMAP) embedding of the MPAL and healthy
control samples consisting of 22,348 cells. The cells are colored by distinct cell type clusters and
labeled manually based on overexpression of cell type-specific markers (T-lymphocytes (T),
cytotoxic T cells (CTL), B-lymphocytes (B), progenitor B cells (Pro-B), natural killer cells (NK),
monocytes/macrophages (Mono/Mac), erythroid, granulocyte-monocyte progenitor (GMP), and
patient-specific clusters). B) Split UMAP based on the clinical groups (B/My-MPAL, Healthy,
T/My-MPAL). T/My-MPAL and B/My-MPAL clinical group-specific clusters are marked with a
lasso. C) Heatmap showing the top highly expressed (yellow) genes in each of the MPAL immune
cell types in comparison to corresponding healthy cell types. D) Bar plots showing the percentage
of various immune cells across three clinical groups (Healthy, T/My-MPAL, and B/My-MPAL). The
healthy control samples have a significantly higher percentage of adaptive and innate immune
cells as compared to both MPAL sub-types. Results are expressed using bar graphs representing
the mean and SEM values in the groups (*p-value < 0.05, ** p-value < 0.01 by group-wise

comparisons using ordinary one-way ANOVA).

Figure 2: Comparative analysis of MPAL blast cells with other leukemias and healthy bone
marrow. A) Uniform manifold approximation and projection (UMAP) embedding of the AML, B-
ALL, T-ALL, and healthy bone marrow samples consisting of 122,376 cells. The cells are colored
by distinct cell type clusters and labeled manually based on overexpression of cell type-specific
markers (T-lymphocytes (T), cytotoxic T cells (CTL), B-lymphocytes (B), progenitor B cells (Pro-
B), natural killer cells (NK), monocytes/macrophages (Mono/Mac), erythroid, granulocyte-
monocyte progenitor (GMP), AML blasts, T-ALL blasts, B-ALL blasts, T/My MPAL blasts, and
B/My MPAL blasts). B) UMAP embedding of the AML, B-ALL, T-ALL, T/My MPAL, and B/My
MPAL blast cells, showing overlap of B/My MPAL with B-ALL and unique profile for T/My MPAL.
C) Principal component analysis (PCA)-based comparison of average transcriptome profile of
MPAL, AML, B-ALL, T-ALL, and healthy BM samples. D) Heatmap showing significantly
overexpressed genes among MPAL blast cell clusters compared to blast cells from other
leukemias (AML, B-ALL, T-ALL) and healthy BM. Relative gene expression is shown in pseudo
color, where pink represents low expression, and yellow represents high expression. E) Feature
plots showing the expression of MPAL blast-specific genes in pediatric leukemias and healthy BM
control, HCA (21) immune cell, and HSC datasets. MPAL marker genes (CD81, UBE2S) have a

significant expression in the blast cell clusters and minimal expression in immune cell clusters
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which showed overexpression of immune cell marker genes (CD79A, CD3D), and in stem cell
clusters which showed overexpression of HSC marker genes (CD44, CD34). F, G) Pathways
enrichment analysis of genes significantly overexpressed (p-value < 0.05, average log2FC > 0.5)
in MPAL blast cells. B/IMy and T/My MPAL significantly upregulated pathways based on Z score
and P-value are shown in orange and purple colors, respectively. Pathways with evidence for

promoting (*) or inhibiting (**) leukemia are marked with one or two asterisks, respectively.

Figure 3: Cellular communications and pathways analysis of MPAL microenvironment cell
lineages. A) Cellular communication analysis showing top incoming and outgoing cellular
pathway enrichments in various B/My and T/My MPAL cell types. The relative strengths of
incoming (receptor) or outgoing (ligand) signaling pathways are represented in different shades
of green color. The overall cellular communication activity of different cell types is shown with bar
graphs attached to the heatmap. B) UMAP embedding of the microenvironment cell types of
MPAL, AML, B-ALL, T-ALL, and healthy BM. The individual cell types were colored by distinct cell
type clusters and labeled manually based on overexpression of cell type-specific markers (T-
lymphocytes (T), cytotoxic T cells (CTL), B-lymphocytes (B), progenitor B cells (Pro-B), natural
killer cells (NK), monocytes/macrophages (Mono/Mac), erythroid, and granulocyte-monocyte
progenitor (GMP)). The four major lineages of cell types are marked with the lasso: subset 1; B-
lymphoid (B-, pro-B-, and plasma- cells), subset 2; T/NK-lymphoid (exhausted-T-, T-, T-reg, and
NK- cells), subset 3; progenitor cells, and subset 4; myeloid lineage (monocytes and
macrophages). C) Split UMAP based on clinical groups showing relative enrichment of cell types.
D) Dot plots of top MPAL overexpressed genes across four cell lineages. The canonical cell type
markers for the different cell lineages are also included in the plots for cellular annotations. E)
Gene set pathway enrichment analysis across four cell lineages analysis to identify the top
significantly dysregulated pathways in B/My and T/My MPAL. B/My and T/My MPAL significantly
enriched pathways T-statistics are shown in orange and purple colors, respectively. Pathways
with evidence for promoting (*) or inhibiting (**) leukemia are marked with one or two asterisks,

respectively.

Figure 4: Transcriptomics differences in MPAL blast cells based on MRD status. A) Split
UMAP of blast and microenvironment cell types based on future MRD positive and negative MPAL
samples. Blasts and different microenvironment cells were annotated based on blasts and
canonical cell markers identified in Fig. 1. B) Heatmap of top genes that are significantly
differentially expressive in MRD positive vs negative samples. In the heatmaps, columns and rows

represent the cell types and genes, respectively. The yellow color represents high average gene
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expression while pink represents low gene expression. C) Pathways that are significantly affected
based on DEGs, i.e., significantly upregulated (Blue) and downregulated (Orange) in MRD
positive vs negative samples. Pathways achieved a p-value <.05 based on the hypergeometric
distribution where the p-value represents the probability of mapping between a gene set and
pathways due to random chance. D) IRF1 regulated interactive network that is significantly
activated in MRD positive samples. Each node represents a gene and edges interactions among
them. E) Top network that is significantly activated in MRD positive samples with MHCII and C-
Fos as master regulator genes. The pathways and network analysis were performed using the
MetaCore tool (Clarivate Inc). The legend on the right shows the description of each of the
symbols in parts D and E, with red circles indicating that the particular molecule was found to be

upregulated in MRD positive samples.

Figure 5: Transcriptomics differences in MPAL blast cells based on outcomes (i.e., future
relapse or remission). A) Split UMAP of blast and microenvironment cell types from future
relapse (Dx-Rel) and future remission (Dx-Rem) samples. Blast and different microenvironment
cells were annotated based on blast and canonical cell markers identified in Fig. 1. B) Dx-Rel
and Dx-Rem blast markers for both MPAL subtypes, identified using differential gene expression
analysis and filtering with HCA (21) immune cells and HSCs. C) Dx-Rel and Dx-Rem blast-
activated pathways for both MPAL subtypes, identified using IPA-based pathways enrichment
analysis. The pathways with multiple tests corrected p-value <.05 and Z score >1 were considered
significantly activated. D) Survival association of T/My MPAL remission and relapsed associated
gene signatures (log2FC > 1.25 and adjusted p-value < 0.01). Kaplan Meier plots show high
expression of T/My MPAL relapse-associated genes were associated with poorer OS in the
TARGET acute leukemias of ambiguous lineage (ALAL) dataset. Similar analysis of T/My genes
with greater expression in the remission enriched blast cells showed a significant association with
better OS.

Figure 6: Cell communication analysis reveals enriched signaling pathways and ligand-
receptor interaction differences between future relapse and remission groups. A) A circle
plot showing the overall communication between cell types in Dx-Rel and Dx-Rem groups. The
lines in the plot depict the communication network among the cell types. Lines are colored by the
outcome groups (Red=Dx-Rel, Blue=Dx-Rem), with their thickness corresponding to the relative
intensity of cellular communication measured based on ligand and receptor correlation. Dx-Rel
and Dx-Rem groups show very different communication patterns between cell types. B)

Clustering analysis of signaling pathways that were significantly enriched in each outcome group
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using manifold and classification learning analysis. The pathways form 4 major clusters with
representation from Dx-Rel and Dx-Rem groups. Each cluster is represented with different colors.
C) Comparison of signaling structure for individual ligands in Dx-Rel and Dx-Rem groups. Ligands
in Dx-Rel and Dx-Rem samples were embedded based on the similarity of the sender and receiver
cell types involved for said ligands. Ligands with similar sender and receiver cell types will have
similar embeddings. A bar plot displaying the distance between Dx-Rel and Dx-Rem embeddings
for each ligand is displayed. APP and CD99 have large differences in their pathway
embedding. D) Detailed analysis of the BAG signaling pathway. Circos plots indicate the sender
and receiver cell types involved in Dx-Rel and DX-Rem. Chords are colored by the sender cell
type. BAG shows a very different signaling structure, with Blast cells as senders and NK cells as
receivers in DX-rem only. In the case of Dx-Rel, Blast cells lack communication with most of the
immune cells. E) Violin plot comparing the expression of the ligands (BAG6) and receptors

(NCR3) between Dx-Rel (red) and Dx-Rem (green) samples across all cell types.
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Tables

Table 1: MPAL patient clinical information. Patient characteristics and clinical information with sample ID, leukemia subtype
diagnosis, initial white blood cell (WBC) count, clinical peripheral blood (PB) blast percentage, clinical BM aspirate (BMA) blast
percentage, World Health Organization (WHO) MPAL immunophenotyping markers, minimal residual disease (MRD) status (< 0.01%

classified as MRD negative, > 0.01% classified as MRD positive) at end of induction (EQOI), and clinical status (relapse vs remission).

Initial .
. . PB Blast | BMA Blast EOI MRD | Patient
Sample ID | Diagnosis WBC a 2 WHO MPAL markers
(x103/uL) (%) (%) Status Relapsed
B-lineage: CD19, CD22; .
M1 B/My MPAL 134.6 95.7 97.7 Myeloid: CD11c, CD64 Negative | No
B-lineage: CD10, CD19,
M3 B/My MPAL 49.97 31.8 82.0 CD22; Myeloid: CD11c, Positive Yes
MPO
T-lineage: CD3; Myeloid: "
M4 T/My MPAL 33.03 73.5 81.4 CD11c, CD64 Positive | Yes
B-lineage: CD10, CD19,
M5 B/My MPAL 12.83 48.0 94.4 CD22; Myeloid: CD14, Positive No
CD64, MPO
T-lineage: CD3; Myeloid: "
M6 T/My MPAL 71 5.0 40.2 CD11c, CD64, MPO Positive No
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Supplementary Figure Legends

Figure S1: Workflow for MPAL biomarker identification steps. The flowchart diagram shows
the filtering steps performed to identify the Mixed Phenotype Acute Leukemia (MPAL) subtype
biomarkers in Fig. 2 and Fig. 4. Each oval in the flowchart represents a yes/no decision, if the
gene does not meet the requirements (N: No) it is removed from the potential biomarker list and
if the gene does meet the requirements (Y: Yes) it moves on to the next analysis step. Step 1:
consists of the three filtering criterions (p-value < 0.05, log2FC > 0.25 or Fold change >1.2, and
percent cells expressing gene > 50%). Step 2: filtering out genes with >0.5 average expression
levels in healthy immune clusters of the Human Cell Atlas (HCA) (21). Step 3: filtering out genes
with >0.5 average expression levels among HCA hematopoietic stem cells (HSCs). Step 4:
checking gene expression by feature plots (little to no expression in feature plots of HCA immune

cells and HSCs, see Figure S3 for examples).

Figure S2: Expression profile of canonical cell-type markers in MPAL and healthy BM
samples. The dot plot shows the expression of canonical cell-lineage markers in the different cell
types from MPAL, and young adult healthy BM samples shown in Fig. 1. The dot size represents
the percentage of cells expressing a specific gene, and the color represents its level of expression

with red and blue colors showing high and low expression, respectively.

Figure S3: HCA feature plots showing expression of MPAL biomarker genes. The feature
plots show the expression of the different MPAL biomarkers in the Human Cell Atlas (HCA) (21)
immune cells (Fig. S3A) and hematopoietic stem cells (Fig. S3B). The cells are colored on a

color scale from grey (low) to dark purple (high) based on the gene expression.

Figure S4: Pathways enriched in B/My and T/My MPAL blast cells. The bar plot shows the
common significantly enriched pathways (P-value <.05) of B/My and T/My MPAL blasts on the Y-
axis and the Z-score representing potential activation or inhibition on the X-axis. A single asterisk
(*) next to a pathway name represents whether the pathway is associated with promoting
leukemia in the literature, and two asterisks (**) represent a pathway that is associated with
inhibiting leukemia. The z-scores of B/My MPAL blasts are shown in orange, and T/My MPAL is
shown in purple. The analysis was performed using the Ingenuity pathways analysis platform

(Qiagen Inc.)

Figure S5: Comparative analysis of cellular communication among different leukemias.
The comparative analysis of cellular communication was performed among different leukemias

and healthy bone marrow samples to identify pathways showing different communication in
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MPAL. The bar plots show the relative (left) and absolute (right) information flow. Information flow
(x-axis) represents the sum of communication probability for each cell type for specific signaling
pathways (y-axis). For example, T-ALL (blue) microenvironment cells have the highest
communication probability in the Selectin P Ligand (SELPLG) signaling pathway. See Figure S8

for information on the specific cell type communication for the MPAL top signaling pathways.

Figure S6: Expression of canonical cell type markers in leukemia and healthy bone marrow
samples. The dot plot shows the expression of canonical cell-lineage markers in the different cell
types present in the annotated leukemia and healthy sample microenvironment shown in Figure
3. The dot size represents the percentage of cells expressing a specific gene, and the color
represents its level of expression with red and blue colors showing high and low expression

respectively.

Figure S7: Kaplan-Meier survival curves for B/My Dx-Rel and Dx-Rem genesets. Survival
analysis was performed on bulk RNA-seq data from B/My MPAL samples in the TARGET-ALL-
P3 (ambiguous leukemia) dataset. The samples were split into high (red) and low (blue)
expression groups based on the enrichment values calculated by performing gene set enrichment
analysis using the gene sets from the Dx-Rel (future relapse) and Dx-Rem (future remission)
groups. Survival of the high and low expression groups was calculated and plotted using the
survival and survMisc packages in R. The Dx-Rel (A) gene set survival analysis resulted in a
logRank p-value of 0.054 and Cox hazard ratio (HR) and p-value of 0.17 and 0.091. The Dx-Rem
(B) gene set survival analysis resulted in a logRank p-value of 0.326 and Cox HR and p-value of

2.17 and 0.338, respectively.

Figure S8: CellChat chord diagrams for top differentially enriched signaling pathways in
MPAL Dx-Rel and Dx-Rem samples. CellChat analysis was performed on the MPAL Dx-Rel
(future relapse) and Dx-Rem (future remission) samples to determine the differences in cell type
interactions between the two groups. Functional similarity was calculated to identify the top
differentially enriched signaling pathways between the two groups (ADGRES5, BAG, MIF,
SELPLG, and CD99). The resulting chord diagrams are shown for each signaling pathway (A-E).
The arrows show the information flow from the predicted sender to the receiver cell types in Dx-

Rel (future relapse) and Dx-Rem (future remission) groups.
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Supplementary Table Legends
Table S1. List of top 10 upregulated genes in MPAL microenvironment cell types as

compared to corresponding cells in healthy bone marrow samples.

Table S2. List of significantly differentially expressed genes in MPAL as compared to
healthy control and blast cells from other leukemias. A) The table lists genes that are
significantly differently expressed in either MPAL or specific subtype (i.e., B/My MPAL, T/My
MPAL) blast cells as compared to healthy control and blast cells from other leukemias based on
Wilcoxon rank test estimated P-Val < 0.05, log2FC > 0.25, and percent expression in the target
group(pct.1) > 0.5. B) List of B/My MPAL, T/My MPAL, and MPAL blast markers after filtering out
genes with >0.5 average expressions in clusters of the HCA (21) healthy immune cell dataset. C)
List of B/My MPAL, T/My MPAL, and MPAL blast markers after filtering out genes with >0.5
average expressions in stem cell clusters of the HCA healthy hematopoietic stem cell (HSC)
dataset. D) List of B/My MPAL, T/My MPAL, and MPAL blast markers that show minimal
expression in any immune cell and stem cell clusters of the HCA datasets. E) List of genes that
show no patient-specific heterogeneity in MPAL samples determined using visual analysis of

heatmaps.

Table S3. The top upregulated signaling pathways for MPAL blasts. The significantly
enriched (P-value <.01) and activated (Z score >1) signaling pathways for A) B/My and B) T/My
MPAL blasts. The table contains the pathway names, the -log(p-value), the z-score, and the

genes.

Table S4. Gene sets associated with MPAL remission or relapse outcomes. The gene sets
were identified based on differential expression analysis between remission and relapse samples
for each MPAL subtype. The significance of the differentially expressed genes was determined
based on the Wilcoxon rank test based on P-value and fold change (P-value < 0.01 and average
log2FC > 1.25).
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