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Abstract10

The role of the spatial organization of chromosomes in directing transcription remains an outstanding question in gene reg-11

ulation. Here, we analyze two recent single-cell imaging methodologies applied across hundreds of genes to systematically12

analyze the contribution of chromosome conformation to transcriptional regulation. Those methodologies are: 1) single-cell13

chromatin tracing with super-resolution imaging in fixed cells; 2) high throughput labeling and imaging of nascent RNA in14

living cells. Specifically, we determine the contribution of physical distance to the coordination of transcriptional bursts. We15

find that individual genes adopt a constrained conformation and reposition toward the centroid of the surrounding chromatin16

upon activation. Leveraging the variability in distance inherent in single-cell imaging, we show that physical distance – but17

not genomic distance – between genes on individual chromosomes is the major factor driving co-bursting. By combining this18

analysis with live-cell imaging, we arrive at a corrected transcriptional correlation of φ ≈0.3 for genes separated by < 40019

nm. We propose that this surprisingly large correlation represents a physical property of human chromosomes and establishes20

a benchmark for future experimental studies.21

22

Introduction23

The role of spatial heterogeneity in the nucleus in relationship to gene regulation is an enduring question in cell biology (4).24

Heterogeneity or compartmentalization is visible at all length and genomic scales, starting from gene loops and proceeding25

through enhancer-promoter interactions, topologically associated domains, A/B compartments, chromosome territories, up26

to inter-chromosomal interactions such as the nucleolus, Cajal bodies, and histone locus bodies, and extending to prominent27

nucleus-wide features such as lamin-associated domains and heterochromatin (35). The synergy between microscopy (mostly28

light microscopy but also electron microscopy (39)) and chromosome conformation capture approaches has led to fundamen-29

tal insights of how molecular features drive genome organization, the influence they have on gene regulation, and the extent30

to which genome organization varies within individual cells.31

32

Yet, the chromatin-transcription relationship at length scales smaller than the wavelength of visible light (∼ 500 nm) re-33

mains challenging to dissect. Foundational work from Cook and colleagues introduced the notion of the transcriptional34

factory. Transcription factories are areas with an enrichment of transcription machinery (10–12, 15, 25), where genes are35

thought to be transiently bridged to enable efficient transcription (17). Ensemble chromosome conformation capture seems36

to support this model by revealing that promoter-promoter contacts (smaller than 1 Mb) form as transcription levels increase37

(26, 32, 47, 51). The model is that actively transcribed genes are positioned to transcription factories. The prediction is that38

genes which are close in 3d space (nm) will “feel” the same enrichment in transcription machinery and exhibit correlated39

transcriptional bursts. Indeed, genes on the same chromosome (41, 44, 46, 50) and genes that share the same (ensemble)40

topologically associated domain are more co-expressed in individual cells (RNA) (45). However, correlations were not seen41

between nascent transcripts (31) and the genomic distance between genes was found to show a more dominant role in RNA42

co-expression than Hi-C contact frequency (44). Furthermore, single-cell RNA-seq showed little to no difference in correlation43

between genes from the same chromosome with an increased contact frequency, given a similar genomic distance between the44

two, bringing the strength of the hypothesis into question (45).45

46

This static factory view was supplanted by one in which local heterogeneity of the transcription machinery was due to dy-47

namic assembly and disassembly (12, 15, 25). Thus, the “factory” was not a fixed assemblage but rather a transient and48

movable conglomeration of RNA polymerase II, general transcription factors, and nascent RNA which arose in connection49

to active transcription units. It is clear that these diffraction-limited spots observed in the fluorescence microscope exchange50

constituents with the surrounding nucleoplasm. However, the number of terms used to describe these spots – “factories”,51

“foci”, “hubs”, “clusters”, “speckles”, “compartments”, “condensates”, “phases” – emphasises the lack of a consensus model52

in the field. Further, it should be noted that many of the utilized super-resolution methodologies are prone to artifacts (6).53

Consequently, the physical interactions between protein, DNA, and RNA and the dynamic changes in chromosome structure54

which precede RNA synthesis are hotly debated.55

56

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 8, 2022. ; https://doi.org/10.1101/2022.07.07.499202doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.07.499202
http://creativecommons.org/licenses/by-nd/4.0/


Bohrer & Larson 2022 2

Recent advances in single-cell imaging shed light on these questions and motivate the fully theoretical analysis in this pa-57

per. First, the development of chromatin tracing of an entire chromosome using super-resolution light microscopy provides58

a spatial map of the chromatin fiber at ≈ 100 nm resolution (27, 43). When coupled with single-molecule fluorescence59

in situ hybridization (smFISH) to look at nascent RNA, one can then connect chromatin conformation to transcriptional60

activity with single-cell resolution (43). Specifically, the nascent transcription state of ∼80 genes as well as the 3D cen-61

troid positions of 651 50kb chromosomal segments was quantified for thousands of individual chromosomes in IMR90 cells62

(Fig. 1A). Second, the application of single-cell imaging of nascent RNA in living cells provides critical information on63

temporal heterogeneity to interpret the observations of spatial heterogeneity. For example, transcriptional bursting of human64

genes expressed in their native genomic context can be monitored with high spatial and temporal precision for hours (42, 49).65

66

Here, we take advantage of two single-cell data sets – chromatin tracing in fixed cells and nascent RNA imaging in living67

cells to address two questions: 1) do genes reposition upon transcriptional activation? 2) do genes in spatial proximity show68

correlations in transcriptional activity? Our analysis indicates that with transcription, chromatin adopts a constrained struc-69

ture and the gene is positioned toward the centroid of the surrounding chromatin. We then probed the distances between70

genes and found that genes are positioned closer to each other with transcriptional bursts when the genomic distance between71

them below 5 Mb, and genes were positioned further away from each other with transcription if the genomic distance was72

above 5 Mb. Importantly, by capitalizing upon the fluctuations of distances between genes on individual chromosomes, we73

found that the physical distance between genes on individual chromosomes is the major factor driving the transcriptional74

co-bursting between genes. By incorporating temporal information from live-cell imaging of active genes (duration of active75

periods and mobility of active genes) we can infer the correlation between transcriptional bursts for proximal genes to be76

φ ≈ 0.3. Overall, our synthetic analysis of these two single-cell data sets indicates that indeed genes do reposition upon77

activation and show concomitant correlation between individual transcriptional bursts.78

79

Results80

Active promoters are positioned to locations defined by chromatin organization81

To investigate spatial changes in the chromatin fiber for active and inactive genes, we re-analyzed data from combined super-82

resolution imaging of DNA and RNA FISH (43). We performed a spatial metagene analysis consisting of “centering” the83

chromatin around the promoter of the each gene, quantifying the standard deviations (STD) of the distances between the84

chromosomal loci, and then averaging over all available genes. Note, we utilized the centroid position of the chromosomal85

segment which contained the transcriptional start site of each gene as the location of the promoter for the gene and only86

utilized the chromosome tracing by sequential hybridization data (43). This analysis was done for chromosomal segments87

where genes were ‘off’ (0) or ‘on’ (1) (Fig. 1D,E) — we utilize Boolean logic (0 or 1) throughout to describe transcription88

states based on the absence (0) or presence (1) of nascent RNA. We observed that chromatin centered around the promoter89

shows less variability while transcribed, again as determined by the presence of nascent RNA. To more clearly visualize90

distinctions between chromatin configuration +/- nascent RNA, we quantified the difference and found a noticeable red cross91

(Fig. 1F), indicating that the distances from a promoter to the surrounding chromatin are more restricted with transcription.92

93

The change in confinement could be the result of repositioning active genes to a different nuclear environment. To probe94

whether gene positioning varies with transcription, we performed a similar analysis but quantified the median physical dis-95

tance (MPD) between chromosomal loci with and without transcription and quantified the average over all available genes96

(Fig. 1G,H). Again, we quantified the difference between them and found a similar red cross (Fig. 1I), suggesting that when97

a gene is active the promoter is on average closer to the surrounding chromatin and the distances between non-promoter98

chromosomal segments are unperturbed.99

100

Intuitively, a possible reason for the distance to decrease to surrounding chromatin with transcription (on average) is if a gene101

is located closer to the centroid of the surrounding chromatin for single-chromosomes when active. To test this supposition,102

we calculated the mean distance of the promoter of the gene to the centroid of the surrounding chromatin with and without103

transcription (Fig. 1J). The centroid was calculated for windows of various genomic size around each gene — that is, if the104

amount of chromatin around a promoter site included in the centroid calculation was .5Mb, .25Mb on both sides of the gene105

were included in the centroid calculation. Tellingly, we found a definitive difference between active promoters (1) and inactive106

promoters (0): the active promoters were closer to the centroids of the surrounding chromatin (Fig. 1J). Note, that the mean107

distance from a local centroid to an inactive promoter gives one an idea to natural spread of the chromatin. To understand108

this phenomenon on a gene by gene basis, we quantified the difference between the active promoter and inactive promoter109

for each gene (Fig. 1K). We found that even though there are overlaps in the distributions in Fig. 1J, nearly every gene was110

closer to the centroid with nascent transcription — suggesting a general phenomenon. Overall, these results indicate that111

transcriptionally active genes are located toward the centroid of surrounding chromatin.112

113
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Figure 1: Transcription confines chromatin and active promoters are located toward the centroid of their surrounding chromatin: A:
An illustration of the chromatin tracing data where each chromosomal loci is imaged through different rounds of hybridization and the centroid of each
50 kb region is determined, and a gene was determined as ‘on’ (1) or ‘off’ (0) with RNA Fish. B: The median physical distances (MPD) between all loci
determined on chromosome 21. C: The cumulative distribution function of the distance between chromosomal loci separated by various genomic distances
— all loci with a given genomic distance were used to generate these distributions. D: An aggregate analysis, calculating the standard deviation (STD) of
the distances between chromosomal loci for chromosomes where a gene=0, centered around the loci containing the promoter of an available gene, and then
averaging over all genes. E: The same as D but with gene=1. F: The difference in the average centered STD in D and E. G: Similar to D but quantifying
the MPD instead of the STD. H: The same as G but for chromosomes where gene=1. I: The difference between the average centered MPD in G and H. J:
The mean distances between chromosomal loci containing genes to the centroid of the surrounding chromatin when the genes were either on (1) or off (0)
vs the amount of chromatin around the promoter included in the centroid calculation. There is also an illustration of this calculation in the far right corner
to aid interpretation. K: The difference between the mean distances to the local centroid when gene=0 and gene=1, showing the results in J on a gene by
gene basis. Box plots show quartiles and whiskers expand to 1.5x interquartile range, black diamonds are outliers.

Having considered genes individually based on activity (first order moments), we next sought to quantify higher-order mo-114

ments such as pairwise interactions in promoter-promoter distances based on transcriptional activity. We first quantified115
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the average distances between promoters when [both genes were off, (0,0)], [both were on, (1,1)], [one was off and one was116

on, (0,1)] and quantified them as a function of the genomic separation between them (Fig. 2A). We also quantified the117

average distances between chromosomal loci that did not contain the investigated genes as a reference control (Fig. 2A). We118

found that the distances between genes were consistently smaller with transcription for short genomic distances (< 1.5 Mb),119

as evidenced by the significant decrease in the (0,1) and (1,1) interactions compared to the (0,0) interaction. Importantly,120

when we compared (0,0) to the no gene control, we saw essentially no difference — suggesting transcriptional bursting (or a121

consequence of bursting) is correlated with the formation of promoter-promoter contacts.122

123

To probe the distance changes on a gene-pair by gene-pair basis, we first calculated the mean distance between inactive124

genes on the same chromosome (0,0) and then subtracted the mean distance between the genes when active [(1,1) or (0,1)] —125

similar to the analysis in Fig. 1K. This analysis is shown as a function of the genomic distance between genes in Fig. 2B. For126

genomically proximal genes, we observed that when both genes were active the mean distances between the promoters were127

indeed closer to each other. When we compared the (0,0)-(0,1) to (0,0)-(1,1), the later difference was approximately twice128

the former difference. Interestingly, we observed that as the genomic distance increased, the difference for both seemed to129

approach a negative value, suggesting that sufficiently separated genes are positioned to different locations with transcrip-130

tion. However, the spread within the box plots suggests much variability in whether genes are positioned toward the same131

or different location with transcription. Overall, these analyses provide strong evidence that the spatial separation between132

genes depends on individual transcriptional bursts.133

134

These analyses suggest a characteristic genomic length scale over which pairwise interactions might occur. However, since135

genomic distance and physical distance between chromosomal segments are obviously correlated (3, 43, 44), either might136

define the length scale and drive re-positioning with transcriptional bursting. To probe the general impact of MPD, we137

characterized the positioning of genes toward the same or different location with transcription based on the 3d distance138

between the genes. Note, this analysis is only possible with microscopy data sets such as this one (43). We performed the139

previous analysis as a function of the MPD between the genes (Fig. 2C) and found a strong decay with increasing MPD.140

The (0,0)-(0,1) resulted in a strong majority of values being negative for MPD above 1300 nm — indicating that the genes141

move away from each other with bursting above this spatial threshold. The (0,0)-(1,1) had a majority of negative values for142

MPD above 1300 nm but the proportion with positive values was higher.143

144

To disentangle the effects of the two variables, we quantified how deviations from the expected influenced re-positioning.145

Given the stronger trend with the MPD, we first quantified the difference as a function of the MPD minus the expected146

MPD. The expected MPD was calculated utilizing all chromosomal loci and was defined as the average MPD for each genomic147

distance (Methods). We found that for both scenarios a smaller than expected MPD resulted in genes moving toward each148

other with transcription and a larger than expected MPD led to the genes moving away from each other (Fig. 2D,E), though149

the later was less clear for the (0,0)-(1,1). These results suggest that the positioning of genes in physical space influences the150

outcome of pairwise interactions: genes which are close to each other (MPD < 1100 nm) move closer when bursting, and151

genes which are far from each other separate when bursting. Similarly, to investigate if the genomic distance plays a role,152

we performed the analysis but as a function of the genomic distance minus the expected genomic distance — the genomic153

distance given the MPD (Methods). We found that the analysis did not have a monotonic trend, and instead peaked at zero154

(Fig. 2F+G). If there were a simple relationship between genomic distance and re-positioning, one would expect a monotonic155

trend and therefore it seems unlikely that genomic distance drives this phenomenon. Additionally, we found that the zero156

peak was enriched for gene pairs with low MPDs — as we just demonstrated: low MPDs lead to genes moving toward each157

other (Fig. 2D+E). In summary, these results suggest that the MPD is predictive of whether genes move toward or away158

from each other with transcription.159

160

Physical distance – but not genomic distance – correlates with co-expression161

Our analysis of the DNA/RNA FISH dataset indicates that spatial gene positioning is correlated with transcriptional activity162

both in isolation (re-positioning of individual genes with transcription) and in pairwise interactions. One can conceptualize163

the conclusions of this analysis as understanding spatial position given the transcriptional state. In other words, knowledge of164

transcription state imparts knowledge of spatial position. We next turned to the inverse question of whether correlations exist165

between nascent RNA (nRNA, transcriptional state) based on spatial proximity. To do so, we quantified the φ correlation166

coefficient (Methods) between genes on individual chromosomes (Fig. 1A) and plotted it as a function of the genomic distance167

(Fig. 3A). Note, due to the binary nature of the data (0 or 1), the φ correlation coefficient is equivalent to the Pearson and168

Spearman. With approximately a two-fold increase at smaller genomic distances, the correlation showed a monotonic decay169

with increasing genomic distance — the .025 plateau persisted with even higher genomic distances (data not shown). The170

increase in co-expression above the asymptotic baseline persists to ≈ 2 Mb. To determine whether, ensemble-chromatin171

structure is what dictates co-expression, we further quantified the correlation as a function of the contact-frequency (Fig.172

3B) and the MPD between their chromosomal segments (Fig. 3C). Here we defined the contact frequency between two genes173
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Figure 2: The distances between genes vary with transcription on individual chromosomes: A: The mean distances between genes vs. the
genomic distance for when both genes were (0,0),(1,1), (0,1) and the mean distances between loci not containing the investigated genes. Box plots show
quartiles and whiskers expand to 1.5x interquartile range, black diamonds are outliers. B: The difference between the scenarios shown in A, showing the
difference in mean distance on a gene-pair by gene-pair basis, and a black line is shown to aid in visualization of zero. C: The same analysis as in B but vs
the MPD between the genes. [D,E,F,G]: The difference shown in B and C but vs either the MPD minus the expected MPD or the genomic distance minus
the expected genomic distance (See text). Box plots show quartiles and whiskers expand to 1.5x interquartile range, black diamonds are outliers. Black
lines and dots are means and error bars are s.e.m from bootstrapping

as the proportion of chromosomes with distances less than 200 nm between the genes’ chromosomal segments using the174

chromatin tracing data. We observed the predicted monotonic behavior with the average correlation reaching a minimum175

around .025.176

177

We then attempted to separate the effects of contact-frequency/MPD from genomic distance on the observed correlation,178

and proceeded to hold one variable constant and quantify the correlation as a function of the other. To do this we calculated179

the mean correlation given that the contact frequency/MPD and genomic distance between the genes were within a specified180

range (Fig. 3D,E). Note, we only included averages if more than 40 data-points could be used to calculate the mean. The181

two showed similar behavior and both had a narrow range for specific genomic distances — making it difficult to uncouple182

the variables of contact frequency and mean physical distance. For example, we only observed an MPD of 200 nm to 400183

nm for genomic distances much less than 1 Mb, therefore we could not determine how the correlation varies with increasing184

genomic distance for these values. Moreover, most columns and rows did not show significant p-values. In summary, while185

there is correlation at the nascent RNA level, the limited variability in ensemble-chromatin structure for specific genomic186

distances obscured the relative contributions of genomic distance, contact-frequency or MPD to co-expression.187

188

A primary advantage of the single-cell dataset (43) is the ability to leverage the large fluctuations of distances between loci189

across the population (N ≈ 7600 chromosomes) (Fig. 1C). We first quantified the correlation between nascent RNA for genes190

given that their physical distances were within a specific range, which showed a similar monotonic behavior (Fig. 4A). When191

calculating these correlation coefficients we only included gene-pairs for specific single-chromosome distance ranges when192

there was at least 100 chromosomes where the distance between the genes were within that range. We then quantified the193

mean correlation given that their single-chromosome distance and genomic distance were within specified ranges (Fig. 4B).194
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* p-value<.01 [two-sided for a hypothesis test whose null hypothesis is that two sets of data are uncorrelated]
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Figure 3: Limited variability prevents quantification: [A, B, C]: The Spearman correlation coefficient between genes as a function of genomic
distance, contact frequency, and median distance. Black lines and dots are means and error bars are s.e.m from bootstrapping, box plots show the quartiles
as above. D: Average correlation coefficients of genes given that their genomic distance and contact frequencies were within a specific range. E: Average
correlation coefficient of genes given that their genomic distance and median distance were within the specific range. An * illustrates whether the average
correlation coefficients along that dimension are correlated (p-value<.01).

Again, we only included averages if more than 40 data-points (gene-pairs) could be used to calculate the mean. Notably,195

we observed that co-expression of genes was correlated with the single-chromosome distance between those genes (columns,196

Fig. 4B). In contrast, we observed no correlation between co-expression and genomic distance (rows). There appeared to be197

a general decay for the columns with increasing single-chromosome distance, more closely resembling the curve in Fig. 4A,198

while the rows did not show the behavior. These observations are further solidified by calculations of statistical significance199

(Fig. 4B).200

201

In summary, these results indicate that co-expression – as quantified through correlations in nascent RNA – is driven by the202

physical distance between genes on individual chromosomes, uncoupled from genomic distance, which shows no statistical203

correlation with co-expression.204

205

Chromosome dynamics can obscure the true correlation between physical proximity and gene206

co-expression.207

The single-cell DNA/RNA FISH approach provides exceptional spatial resolution coupled with transcriptional activity, but208

a potential issue with fixed-cell methodologies is the lack of temporal information. For example, in terms of quantifying209

the distance dependence on co-expression, the lack of time resolved locus position data could distort the observed distance210

co-expression relationship. First, the motion of the genes within the on time (defined here as the time it takes for the nascent211

RNA to dissociate from the DNA) obscures the measurement of the distance at the beginning of a transcriptional co-burst.212

Second, the stochasticity of the on time would similarly lead to a decrease in the observed co-expression — that is, even if213

two genes burst at the exact same time, the nascent RNA from one gene will dissociate before the nascent RNA of the other214

gene, leading to the detection of one and not the other, again decreasing the correlation measured in fixed cells. Third, the215

error due to the localization precision of the experiment would also distort the distance co-expression curve due to the error216

in knowing the true distance. Overall, these three sources of noise have the potential to change both the amplitude and217

distance dependent decay of the co-expression correlation coefficient. Therefore, we utilized a theoretical approach to infer218

the instantaneous distance co-expression relationship analogous to that shown in Fig. 4A and to thereby understand the219

contribution of dynamic and temporal fluctuations in gene position and activity. The approach is based on coupling mea-220

surements of locus diffusion and activity generated from live-cell imaging of nascent RNA with the fixed cell measurements221

analyzed thus far. Here, we first discuss our theoretical approach and then our results.222

223

We sought to link the information from live-cell experiments with that of fixed-cell experiments by incorporating the motion224
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Figure 4: Single-chromosome distance dictates nRNA correlation: A: The correlation coefficients between genes as a function of single-chromosome
distance. B: Average correlation coefficients of genes given that their genomic distance and single-chromosomal distance were within a specific range. An
* illustrates whether the average correlation coefficients along that dimension are correlated (p-value<.01). C: The mean-squared-displacement of active
TFF1, the fitted line and 95% confidence interval shaded (Error bars are individual 95% confidence intervals). D: The average number chromosomes with
nRNA for gene i given the distance between gene j and i divided by the average with all distances. E: The optimal ω function for the model which results
in the black curve in F. F: The correlation-distance relationship for all pairs of genes from the simulation utilizing the ω function in E. The box plots here
are from simulation, red curve is shown for reference and is the experimental data from A. G: The same as F but on a different scale. H: The results of the
simulation without resolution error of the experiment. I: Simulation results without resolution error and with nRNAs having a deterministic on time. J:
Simulation results without resolution error, with deterministic on times, and no chromatin diffusion for all pairs of genes.

of chromatin into our model. Chromatin has been suggested to show confined diffusion (7, 8, 13, 34), but this phenomenon225

is generally quantified over relatively short timescales of < 10 minutes. Considering the on time of a human gene — as226

measured by the dwell time of nascent RNA — is approximately 10 to 15 minutes (49), we sought to monitor the diffusion227

of an active gene over a longer timescale. We utilized the live-cell transcriptional bursting data of TFF1 from Rodriguez228

et al. (42). This data consists of the spatial coordinates of multiple bursting TFF1 alleles through time in individual cells,229

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 8, 2022. ; https://doi.org/10.1101/2022.07.07.499202doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.07.499202
http://creativecommons.org/licenses/by-nd/4.0/


Bohrer & Larson 2022 8

allowing us to quantify the motion of one allele relative to the other (13). We quantified the mean squared displacement230

(MSD, Methods) over a timescale of 3,000 seconds and found that the MSD could be fit with a straight line (Fig. 4C) —231

suggesting Brownian motion of active genes over these timescales (5). We computed a diffusion coefficient of .25x10−3µm2/s,232

which is comparable to previous results (13).233

234

We chose to utilize the over-dampened Langevin equation to model the temporal dynamics of the distance between genes235

located on the same polymer. The model describes the time-dependent distance between loci using an arbitrary energy236

potential of interaction (see Methods) — without the effect of the potential the model exhibits Brownian motion with the237

determined diffusion coefficient. For each gene pair, we empirically determined a potential that “biases" the distance motion238

so the steady state distribution matches the empirically determined distance distribution (Methods). We did this using the239

equivalent Fokker-Planck equation which allowed us to directly convert the empirically defined distance distributions into240

the potential (Methods). The central advantage of this approach is that it accounts for the unique distance distributions241

between the various gene pairs on the same chromosome, the diversity of which can be clearly seen with the MPDs in Fig.242

1B. The diverse distance distributions result from a multitude of complex context-specific forces which are not considered in243

the classical polymer models (38, 48). Even with the inclusion of additional factors in polymer models (exp. loop extrusion),244

reproducing accurate distance distributions is difficult (20) — and would be even more difficult here due to lack of knowledge245

as to the underlying forces. Also, more simple first order approximations of the Langevin equation have been utilized to246

model the viscoelastic properties of chromatin (48), which has been shown to adequately determine the potential of the247

Rouse chain (1). Again, we emphasize that these gene-specific terms were determined empirically (Methods).248

249

The stochastic dwell time of nascent RNA is due to variability in the processes of elongation, termination and splicing. We250

incorporate this variability in our analysis by setting the nascent RNA decay probability per second (propensity) equal for251

all genes (Pd) with a characteristic on time equal to ≈13 min. This assumption is motivated by our recent work on high252

throughput imaging of hundreds of human genes labeled at their endogenous loci using MS2 stem loops (49).253

254

Next we introduce a phenomenological model intended to capture the empirical features of co-expression as observed in the255

fixed cell data sets. First, we quantified the average fraction of chromosomes with nascent RNA present for gene i as a256

function of the distance between each pair of genes (genes i and j), normalized by the average fraction of chromosomes with257

nascent RNA present for gene i over all distances. This metric is a proxy for the burst-frequency and was calculated for each258

gene for all possible gene pairs. The reasoning is that if this metric is higher at smaller distances, it would suggest that the259

bursting frequency is dependent upon the distance between genes, hence leading to the higher correlation values at smaller260

distances. Surprisingly, we found that on a distance binning scale of 200 nm, the metric did not vary, suggesting that the261

bursting-frequency does not generally change as function of distance between genes at this scale (Fig. 4D). Therefore, we262

set the probability of nascent RNA production per second equal to a constant for each gene (i), P toti , which we determined263

empirically for each gene (Methods). To account for co-expression, we modeled nascent RNA production as coming either264

from a co-burst or from an individual burst:265

P toti = Pij(rij(t)) + Pi(rij(t)), (1)
266

P totj = Pij(rij(t)) + Pj(rij(t)). (2)

Here Pij(rij) is the probability of a transcriptional co-burst per second given the distance between the two genes, Pi(rij)267

is the probability of an individual burst per second given the distance, and rij(t) was determined beforehand utilizing the268

above Langevin equation specific for that gene pair (Methods).269

270

The fact that genes have different expression levels, limits the values of Pij(rij(t)). Arranging the pair of genes so that271

P toti < P totj , the maximum value that Pij(rij(t)) can be is P toti — or else Pi(rij(t)) would have to be negative. With this,272

we can then rewrite the above as the following:273

Pij(rij(t)) = ω(rij(t))× P toti , (3)
274

Pi(rij(t)) = P toti − ω(rij(t))× P toti , (4)
275

Pj(rij(t)) = P totj − ω(rij(t))× P toti , (5)

where ω(rij(t)) is a function of distance between the genes and ranges between 0 and 1. ω(rij(t)) is the proportion of gene276

i′s transcriptional bursts that are co-bursts at each distance; if the expression levels of the two genes are approximately equal277

ω(rij) is equal to the proportion of bursts that are co-bursts at a given distance for both genes.278

279

Overall, with a single function (ω(rij(t))), we modeled all pairs of genes with the following stochastic reactions utilizing the280

Gillespie algorithm (22):281

0 Pij(rij(t))−−−−−−−→ nRNAi + nRNAj ,
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0 Pi(rij(t))−−−−−−→ nRNAi,

0 Pj(rij(t))−−−−−−→ nRNAj ,

nRNAi
Pd−−→ 0,

nRNAj
Pd−−→ 0.

More specifically, we simulated thousands of trajectories (15000 seconds each) for each pair of genes for a given ω(rij(t))282

akin to the number of chromosomes within the experimental data. If the amount of nascent RNA for a gene was greater283

than 0 at the end of the trajectory the gene was considered “on" (Gene=1) — making our simulation data binary like the284

experimental data. Lastly, we incorporated the error due to the resolution of the experiment (resolution =100 nm, Methods).285

In total, using this numerical simulation approach, we are able to generate curves like Fig. 4A, for a given coupling coefficient286

ω(rij(t)), from the underlying spatiotemporal fluctuations of single genes in living cells. Importantly, the diffusive properties287

of active genes and the dwell time of nascent RNA are derived empirically from experimental data. Of the parameters de-288

scribed above, the coupling coefficient is the least well-determined and lacks an underlying mechanistic motivation at present.289

290

Is it possible for a single function (ω(rij(t))) to adequately reproduce the experimental results (Fig. 4A)? To address this291

question we iterated over many possible monotonically decreasing (ω(rij(t))) functions. More specifically, we investigated292

all possible monotonically decreasing functions in .05 increments, with specific values for distances binned at a 200 nm293

resolution (Methods, Fig. 4E). For each ω(rij(t)) we quantified the correlation-distance curve for each gene pair and sought294

to find the one that was closest to Fig. 4A (Methods). The best performing ω(rij(t)) is shown in Fig. 4E which resulted in295

the correlation-distance dependence in Fig. 4F — demonstrating that a single general function can adequately describe this296

phenomenon at the level of the chromatin tracing experiment.297

298

With this dependence in hand, we are able to computationally remove processes that distort the correlation-distance rela-299

tionship in an effort to uncover the “true" observable degree of correlation for a given distance. The correlation-distance300

relationship in Fig. 4F is also shown in Fig. 4G with a new y-axis range to aid comparison. We started by simulating all pairs301

of genes as before but without the resolution error of the experiment with the determined ω(rij(t)) (Fig. 4H). Removing302

resolution error associated with light microscopy resulted in a slight increase in the correlation for the first distance bin,303

resulting in an 66% increase (Fig. 4H). For all other distances, the degree of correlation was basically unchanged. We then304

simulated the system without resolution error and with a deterministic on time for each nascent RNA — each nascent RNA305

lasted exactly 800 seconds. We observed a much greater increase across all distances with the first distance bin rising to306

250% of its initial value (Fig. 4I). Finally, we simulated the system removing resolution error, with deterministic on times,307

and without diffusion. Removing these three noise sources resulted in a large increase in correlation for lower distances and308

a slight decrease for larger distances (Fig. 4J). This latter decrease is due to the correlated bursts at small distances not309

being able to diffuse to larger distance. For the first distance bin, the removal of all sources of error in fixed cell experiments310

leads to a ≈5 fold increase. The correlation is surprisingly high (≈ 0.3) and extends over a spatial distance of ≈ 400 nm.311

Additionally, this analysis also suggests that if one was able to monitor the distance between genes with high resolution and312

at time resolution where one could determine the exact start of each transcriptional burst, one should be able to see this true313

relationship — a clear direction for future pursuit.314

Discussion315

By capitalizing upon the single-chromosomal nature of chromatin tracing and nascent RNA smFISH data (43), we discovered316

a variety of phenomena related to the coupling between transcription and higher order chromosome conformation. Specifically,317

fixed-cell analysis of chromatin conformation and activity coupled with live-cell analysis of transcription dynamics provides318

two features which are key to the analysis performed here: fluorescence microscopy reveals true physical distances and the319

variability across single cells. Leveraging these unique features, we find: (1) The chromatin around a gene is “constrained" with320

transcription; (2) during a transcriptional burst genes are positioned toward the centroid of their surrounding chromatin; (3)321

transcriptional bursts cause promoters to move toward or away from each other depending on the median physical distance322

between them; (4) the distance between genes in individual cells is predictive of co-expression; (5) the lack of temporal323

information and limited imaging resolution greatly reduces the true distance-correlation relationship, with the predicted324

correlation coefficient of ∼ .3 for distance below 400 nm. This last finding relies on theoretical assumptions regarding325

chromatin mobility and the precise molecular nature of gene co-expression and awaits future experimental validation.326

Genes reposition upon transcriptional activation327

Our finding that individual transcriptional bursts lead to the repositioning of genes and lower chromatin variability suggests328

the two phenomena could be linked. The traditional view of transcription influencing the dynamics of chromatin is that329

transcription leads to more "open" and dynamic chromatin (2). While the traditional view has some empirical support (23),330

the exact opposite has been observed (21, 36, 37). Accepting the variability of distance distributions as a proxy for the331
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motion of chromatin puts our observations in agreement with the latter. One possibility is once a gene is positioned toward332

the centroid of the surrounding chromatin, the confinement could be due to a new micro-environment. Another possibility333

— which we favor — is that the movement toward the centroid is a steric effect. Active genes recruit large megadalton com-334

plexes such as the pre-initiation complex and RNA polymerase II, which ‘pushes’ and confines the gene to a specific location335

due to the occluded volume effect. Our analysis thus suggests behavior consistent with the original factory model (genes336

reposition to a factory upon activation) and also the dynamic self-assembly model (genes assemble their own transcription337

factory). The order of events is key to distinguishing these alternatives, and these events are not resolved in the fixed-cell338

data sets analyzed here (10–12, 15, 25). Nevertheless, almost all of the ≈80 genes showed this behavior of repositioning339

and confinement, suggesting a general phenomenon — illustrating a fundamental aspect of transcription whose mechanistic340

details await additional study.341

342

On a higher level, promoter-promoter distances (26) are clearly variable with individual transcriptional bursts and are likely343

important for understanding enhancer-biology and other higher order functional assemblies. Considering the functional344

similarity between promoters and enhancers (29), we speculate that the rules of promoter-promoter interaction observed345

here may apply to enhancer-promoter interaction. In most cases the distance change of promoters with transcription is346

small when compared to the median physical distance (MPD), but for MPD< 400 nm a repositioning of 100 nm could be347

functionally relevant (Fig. 2C) (6, 9, 19, 24, 32) — putting the distances at the scale of enhancer-promoter communication348

(9). On the other hand, transcription factories have also been shown to be highly dynamic (12, 15, 25), raising the question349

of whether these dynamic promoter-promoter distances are linked to the dynamics of the factories (24). The unexpected350

finding that high MPD promoters tend to move away from each other with transcription suggests the possibility of specific351

locations for transcription, but this observation might also be used to explain specificity of enhancer-promoter interactions.352

Intriguingly, whether genes move toward or away from each is dependent upon ensemble chromatin organization, raising353

the possibility that genes are distributed according to chromatin organization and not genomic distance — given there is354

an underlying fitness advantage. Finally, it should be noted that for all these results described here there is a lack of355

temporal information, which obscures the cause and effect of these phenomena (just as we showed for the distance-correlation356

relationship). It therefore seems likely that these distance changes are likely more significant — a direction for future research.357

Genes in spatial proximity show high correlations in transcriptional activity: interpreting φ ∼.3358

The hypothesis that genes in close spatial proximity are transcriptionally correlated has long persisted in the field despite359

conflicting data. Notable studies have taken advantage of single-cell RNA-seq and Hi-C data to disentangle the influence of360

genomic distance and physical distance on correlation with unclear results (44, 45). For example, while genes from the same361

(ensemble) topologically associated domain are more co-expressed, intra-chromosomal genes separated by similar genomic362

distances show essentially no difference in correlation with enrichments in contact frequency (45). The study of Sun et al.363

even found that the genomic distance is slightly more strongly correlated with co-expression than contact frequency (44) —364

rightly explained away given the contact frequency was of a lower resolution with high error. Further, nascent RNA FISH365

found intra-chromosomal genes are not more correlated than when in trans (31). Yet, single-cell imaging experiments cou-366

pled with detailed chromosomal perturbations have revealed spatial interactions which dictate a ‘hierarchical’ organization367

in multiple genes in response to stimulus (16). Moreover, a recently proposed transcription factor activity ‘gradient’ model368

is a diffusion-based model which relies again on the spatial proximity of cis-acting regulatory elements, which might equally369

well be applied to promoter-promoter interactions (28). Overall, the hypothesis has persisted due to the intuitive mechanism370

even with the lack of definitive experimental demonstration.371

372

Our results verify the null hypothesis and explain the negative results of previous single-cell studies. We found an enrichment373

in correlation for nascent RNA given that the genes are separated by a genomic distance of less than 2.5 Mb (Fig. 3A).374

The fact that the average genomic distance between genes in the previous work was 3 Mb explains why enriched correlations375

were not seen at the nascent RNA level (31). With our finding that the variability in MPD (or contact frequency) for a376

given a genomic distance is too low to disentangle these variables (Fig. 3D+E), the defined enrichments in contact frequency377

for previous studies were likely quite minor in terms of producing a change in correlation (45). Utilizing the large amount378

of stochasticity in chromatin structure for individual chromosomes (18) definitively shows the physical distance drives co-379

expression. This result is illustrated with the extremes: we observed an enrichment in correlation for genomic distances up to380

10 Mb when the physical distance between genes was less than 200 nm on individual chromosomes, and very low correlations381

between genes separated by less than .5Mb given that the physical distance was above 1200 nm (Fig. 4B). In summary, our382

key finding is a correlation gradient with physical distance but not genomic distance.383

384

The lack of temporal data and the spatial resolution limits of the chromatin tracing methodology greatly obscures both the385

‘true’ transcriptional correlation between spatially proximal genes and also the length scale over which transcriptional correla-386

tion is measured. The reasons for this reduced correlation are obvious: both the position and the activity status of genes vary387

randomly. One can imagine for example genes which were far apart at activation and then diffused together and vice versa.388

Correcting for this behavior requires assumptions about chromatin mobility and also utilization of live-cell nascent RNA389
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data. We predict that if one were able to measure the distances between genes at the initiation of the transcriptional bursts,390

one should obtain a correlation of ∼.3 if the distance between the promoters of the genes is less than 400 nm. Intriguingly,391

this level of correlation has been reported between the mRNA levels of adjacent genes in yeast but was attributed to DNA392

supercoiling (40). Considering the shorter lifetimes of mRNA in yeast, this correlation may be comparable to the nascent393

RNA in humans. Furthermore, other live-cell studies have seen correlated bursts between spatially proximal genes (in trans394

and cis), but did not specifically investigate this as a function of the physical distance between the genes or account for the395

variable on times (19, 24, 32, 33) — finding enrichments in correlation similar to the uncorrected curve (Fig. 4A) (32). The396

enrichment in co-bursting for genes separated by < 400 nm suggests the working distance of the underlying mechanism is397

not direct contact. Exactly what mechanism leads to these general correlations is still unknown, however, these results are398

consistent with the idea of enhancers coordinating transcription with working distances of hundreds of nm (6, 19, 24, 32, 33).399

400

Finally, this analysis suggests co-expression is a general property of the system, that is, unrelated genes show correlated401

bursts with each other when in spatial proximity. This transcriptional correlation would then be an unavoidable emergent402

behavior due to the physicality of the system. Hence, the appearance of correlated bursts may not suggest a specific regulatory403

mechanism. Stated another way: we hypothesize that the physical distance between the vast majority of genes arises from404

the physical constraints of the nucleus and DNA and is not indicative of a biologically functional relationship requiring405

coordinated expression conferred by that proximity. Support for this hypothesis comes from the observation that disrupting406

genomic clusters of metabolic genes such as the GAL genes in yeast have no measurable impact on fitness (30). Of course,407

there are certainly instances where coordinated co-expression conferred by spatial proximity is important, for example in the408

segmentation clock genes her1 and her7 located on the same chromosome and separated by 12 kb (52). The corollary to409

our hypothesis is that one can look for deviations from the φ ∼ .3 to identify bona fide regulatory relationships. Thus, we410

establish a theoretical benchmark which can be used in future studies.411

Methods412

Expected MPD and Genomic Distance413

To determine the expected MPD for a given genomic distance we simply calculated the average MPD for each specific genomic414

distance. For example, to determine the expected MPD for a genomic distance of 50 kb, we quantified the average MPD415

between all loci separated by 50 kb.416

417

To determine the expected genomic distance for a given MPD, we used the same curve and found the genomic distance with418

the closest average MPD. For example, say the MPD between two loci is 500 nm, using the previously quantified curve, the419

expected genomic distance is the genomic distance whose average MPD is closest to 500 nm.420

Correlations Between Genes421

When quantifying the correlations between a pair of genes (aka. whether they were on or off, 1 or 0) we quantified the φ422

coefficient (used for binary data):423

φ = n11n00 − n10n01√
(n11 + n10)(n11 + n01)(n00 + n10)(n00 + n01)

,

where n11 is the number of observations where both genes are active and n10 is the number of observations where the first424

gene is on and the second is off, etc. Here we should state that φ is equivalent to the Pearson correlation coefficient and the425

Spearman correlation coefficient for this data, due to a gene’s transcription state being either 1 or 0 — that is, on (1) or off426

(0).427

Determining P toti428

To determine the bursting propensity for each gene we first conducted many different simulations with P toti values ranging429

from 0 to .05 with our set nRNA decay rate. For each propensity we simulated 2000 trajectories (15000 seconds each).430

Then, with the last timepoints of each trajectory, we classified the gene as being either “on" or “off", — if the gene’s nRNA431

was greater than zero the gene was classified as “on" (aka 1). We then simply created a lookup table with the average number432

of “on" states vs. the bursting propensity. To determine a genes specific propensity, we simply calculated the average number433

of “on" state with the experimental data and found the closest match within the lookup table.434

Incorporating Resolution Error435

The resolution of the experimental data was previously quantified in the work of Su et al. (43), and the resolution of each436

chromosomal segment was determined with approximatly 100 nm resolution. The 3d resolution error is not Gaussian due437

to the Pythagorean theorem and was determined by Churchman et al. (14). Therefore, for our case, the error must be438
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applied to all three dimensions independently — similar to in Su et al. To do this, with the ’true distance’ from the Langivin439

simulation we randomly decompose the distance into three dimensions — so that the distances along each dimension satisfy440

the Pythagorean theorem. We then added two random variables of Gaussian noise with standard deviations of 100 nm (one441

for each loci), generating a new displacement for each dimension with localization error. Lastly, we took the displacements442

along each dimension with the error and quantified the distance in 3d using the Pythagorean theorem.443

Quantifying Best ω(rij)444

To determine the ω that captures the behavior of the experimental data, we first generated a large number of unique445

monotonically decreasing functions. This was first done in .1 iterations and with a distance binning of 200 nm. For446

example, ω1(rij) = [.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] means genes that are within 200 nm of each other (first number447

in array) have the value .1, and the rest of the distances have the value 0. We would then iterate and produce the next ω,448

ω2(rij) = [.1, .1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], etc. We then simulated a large number of trajectories for all gene pairs449

according to the model in the main text with each function. We then quantified the error between each ω’s distance-correlation450

relationship and the experimental data with the following:451

Error(ωk) =
∑
i

∑
j

∑
r

|φω
k

ij (r)− φexpij (r)|,

where φωk

ij (r) is the correlation for the gene pair ij given that the observed distances were within the distance bin r (200 nm452

for each bin) and φexpij (r) is the correlation for the experimental data for that gene pair. Once we found the ω that resulted453

in the minimum error was found, we then varied the values for distance bins below 1000 nm by plus or minus .05. We then454

quantified the error again to result in the best fit function shown in the main text.455

Mean Squared Displacement (MSD)456

We quantified the motion of the TFF1 gene utilizing the multiple allele data from Rodriguez et al. (42). This live-cell data457

provided the 2d coordinates of active alleles over extended periods of time, allowing us to monitor the motion of chromatin458

over a timescale longer than the on time of a gene. To account for the movement of the cell over these long periods, we459

monitored the motion of one tagged allele relative to another. We then quantified the mean squared displacement (MSD) for460

a given time (∆t): MSD(∆t)=<[R(t)-R(t-∆t)]2>. Where R(t) is the position of an allele relative to another, and the arrows461

are the ensemble average and over all measured trajectories and times.462

Modeling distance diffusion463

To model the distance between two chromosomal loci we utilized the following Langevin equation:

drij
dt

= − 1
γij

∂Vij(rij)
∂rij

+
√

2D × g(t).

Here rij is the distance between genes i and j, Vij(rij) is the potential (specific to that gene pair, described below), γij is a464

constant specific for that gene pair, and the last term
√

2D × g(t) accounts for the Brownian motion with the determined465

diffusion coefficient — if the potential is a constant independent of distance, rij will exhibit Brownian motion. For each gene466

pair, we empirically determined a 1
γij

∂Vij(rij)
∂rij

that “biases" the distance’s motion so the steady state distribution matches the467

empirically determined distance distribution (corrected for the resolution of the experiment) — this accounts for the genes468

being on the same chromosome.469

470

The equivalent Fokker-Planck equation is:471

∂Pij(rij , t)
∂t

= 1
γij

∂

∂rij
[∂Vij(rij)

∂rij
Pij(rij , t)] +D × ∂2P (rij , t)

∂r2
ij

,

where the initial condition is dropped for simplicity and Pij(rij , t) is the probability distribution to have a distance rij at472

time t specific to that gene pair. We then set the left hand of the equation equal to zero, defining the steady state distance473

distribution (P sij(rij)). The equation then becomes:474

1
γij

∂Vij(rij)
∂rij

P sij(rij) +D ×
∂P sij(rij)
∂rij

= 0

with the solution:475

P sij(rij) = Cij × exp(−
Vij(rij)
γijD

),
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where Cij is a normalization constant.476

477

From the experimental data, we can empirically determine P sij(rij). To do this we took the naturally observed distance478

distribution and performed a deconvolution with the resolution distribution. This provided us with P sij(rij) minus the479

resolution error and we can therefore solve for the potential with:480

Vij(rij)
γij

= D[ln(Cij)− ln(P sij(rij))]

With this we can then simulate the Langevin equation with the Euler-Maruyama method, which results in the proper steady481

state distribution with the approximate diffusion coefficient.482
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