

Pseudouridine-dependent ribosome biogenesis regulates translation of polyglutamine proteins during *Drosophila* oogenesis

Shane Breznak^{1,*}, Yingshi Peng^{6,*}, Limin Deng^{1,5}, Noor M. Kotb^{1,2}, Zachary Flamholz^{6,7}, Ian T. Rapisarda^{1,4}, Elliot T. Martin¹, Kara A. LaBarge¹, Dan Fabris^{1,5}, Elizabeth R. Gavis^{6,+}, Prashanth Rangan^{1,3,+*}

¹University at Albany, Department of Biological Sciences, RNA Institute; 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222

²*Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America*

³*Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA*

⁴Lake Erie College of Osteopathic Medicine, College of Medicine, 1858 W Grandview Blvd, Erie, PA 16509

⁵University of Connecticut, Department of Chemistry, 55N Eagleville Rd, Storrs, CT 06269

⁶Department of Molecular Biology, Princeton University, Princeton, NJ, USA

⁷Medical Scientist Training Program, Albert Einstein College of Medicine, Bronx, NY, USA.

*These authors contributed equally to this work

+Correspondence to: gavis@princeton.edu, prashanth.rangan@mssm.edu

Keywords: Germline, Meiosis, Pseudouridine, PolyQ, Poly Glutamine Diseases, PTMs, rRNA modifications, CAG repeat

Abstract

Stem cells in many systems, including *Drosophila* germline stem cells (GSCs), increase ribosome biogenesis and translation during terminal differentiation. Here, we show that pseudouridylation of ribosomal RNA (rRNA) mediated by the H/ACA box is required for ribosome biogenesis and oocyte specification. Reducing ribosome levels during differentiation decreased the translation of a subset of mRNAs that are enriched for CAG repeats and encode polyglutamine-containing proteins, including differentiation factors such as RNA-binding Fox protein 1. Moreover, ribosomes were enriched at CAG repeats within transcripts during oogenesis. Increasing TOR activity to elevate ribosome levels in H/ACA box-depleted germlines suppressed the GSC differentiation defects, whereas germlines treated with the TOR inhibitor rapamycin had reduced levels of polyglutamine-containing proteins. Thus, ribosome biogenesis and ribosome levels can control stem cell differentiation via selective translation of CAG repeat-containing transcripts.

45 **Introduction**

46 Understanding how stem cells self-renew and differentiate is crucial to understanding the
47 mechanisms of development and disease (Cinalli et al., 2008; Morrison et al., 1997; Tang, 2012).
48 Defects in ribosome biogenesis can impair stem cell differentiation and lead to diseases
49 collectively called ribosomopathies (Armistead and Triggs-Raine, 2014; Barlow et al., 2010;
50 Brooks et al., 2014; Calo et al., 2018; Higa-Nakamine et al., 2012; Mills and Green, 2017). Protein
51 synthesis often increases during stem cell differentiation (Sanchez et al., 2016; Teixeira and
52 Lehmann, 2019; Zhang et al., 2014), and inhibiting translation by modulating Target of Rapamycin
53 (TOR) activity blocks terminal differentiation of various stem cells (Martin et al., 2022; Neumüller
54 et al., 2008; Sanchez et al., 2016; Sun et al., 2010; Zhang et al., 2014). Nevertheless, how
55 ribosome levels and translation control differentiation remains incompletely understood. In the
56 ribosomopathy Diamond-Blackfan anemia (DBA), mutations in ribosomal proteins limit the pool
57 of available ribosomes, which alters the translation of a select subset of transcripts in
58 hematopoietic stem and progenitor cells, leading to impaired erythroid lineage commitment
59 (Khajuria et al., 2018; Xue and Barna, 2012).

60

61 RNAs are extensively modified by post-transcriptional modifications (PTMs), including
62 pseudouridylation (Granneman, 2004; Sloan et al., 2017; Tafforeau et al., 2013; Watkins and
63 Bohnsack, 2012). The ribosomal RNA (rRNA) pseudouridine synthase subunit DKC1 is mutated
64 in the ribosomopathy X-linked dyskeratosis congenita (X-DC), an inherited bone marrow failure
65 syndrome that is sometimes associated with impaired neurodevelopment (Knight et al., 1999).
66 DKC1 is a member of the snoRNA-guided H/ACA box, which deposits pseudouridine on rRNA at
67 functionally important sites of the ribosome (Charette and Gray, 2000; Czekay and Kothe, 2021;
68 Penzo and Montanaro, 2018). Mutations in DKC1 (Nop60B in *Drosophila*) can impair ribosomal
69 binding to tRNAs and to internal ribosomal entry sites (IRES) from yeast to humans (Jack et al.,
70 2011). Nevertheless, how H/ACA box dysfunction generates tissue-specific defects remains
71 unclear.

72

73 During *Drosophila* oogenesis, differentiation of germline stem cells (GSCs) to an oocyte is
74 sensitive to both ribosome biogenesis and translation (Blatt et al., 2020; Cinalli et al., 2008; Martin
75 et al., 2022; Sanchez et al., 2016; Zhang et al., 2014). Oogenesis occurs in ovarioles beginning
76 with the germline stem cells (GSCs) in the germaria (**Figure 1A**) (Lehmann, 2012; Xie and
77 Spradling, 2000). The GSCs undergo asymmetric cell division to self-renew and give rise to
78 daughter cells called cystoblasts (CBs) (Chen and McKearin, 2003b; Ohlstein and McKearin,
79 1997). The CB differentiates undergoing four incomplete mitotic divisions giving rise successively
80 to 2-, 4-, 8-, and finally 16-cell cysts (Spradling et al., 1997; Xie and Spradling, 1998, 1998). One
81 cell in the 16-cell cyst stage becomes the oocyte while the remaining 15 cells become the nurse
82 cells that support the growing oocyte (**Figure 1A**) (Huynh and St Johnston, 2004; Kugler and
83 Lasko, 2009; Lantz et al., 1994; Navarro et al., 2004). The GSCs and the CBs are marked by a
84 round cytoskeletal structure called the spectrosome while the cysts are marked by a branched
85 structure called the fusome (Chen and McKearin, 2003a; Ting, 2013). The 16-cell cyst becomes
86 encapsulated by somatic cells to create an egg chamber that then goes through progressive
87 development producing a mature egg (**Figure 1A**) (Huynh and St Johnston, 2004; Koch et al.,
88 1967; Navarro et al., 2004).

89
90 In the CB, expression of Bag of marbles (Bam) promotes the progression from CB to an 8-cell
91 cyst stage where expression of RNA-binding Fox protein 1 (Rbfox1) and Bruno 1 (Bru1) are
92 required to specify an oocyte (Carreira-Rosario et al., 2016; Sugimura and Lilly, 2006). In parallel,
93 several cells in the cysts initiate recombination mediated by the synaptonemal complex, which
94 includes proteins such as crossover suppressor on 3 of Gowen (c(3)G), but only the specified
95 oocyte commits to meiosis (Collins et al., 2014; Hughes et al., 2018; Page and Hawley, 2001).
96 Rbfox1 is not only critical for female fertility but also for neurological functions (Carreira-Rosario
97 et al., 2016; Gehman et al., 2012, 2011; Kucherenko and Shcherbata, 2018). Why some
98 transcripts encoding differentiation factors, such as Rbfox1, are sensitive to ribosome levels is
99 not known.

100
101 **Results**

102 **RNA modifications are dynamic and essential for oogenesis**

103 We aimed to identify dynamic RNA PTMs during oogenesis. Therefore, we enriched for five
104 stages of oogenesis (1. GSCs; 2. GSC Daughter/CBs; 3. early-cysts; 4. germaria and early-stage
105 egg chambers (young wild type (YWT)); 5. and late-stage egg chambers (WT)) which are critical
106 milestones of germline development (Flora et al., 2018; McKearin and Spradling, 1990; Ohlstein
107 and McKearin, 1997; Xie and Spradling, 1998). We performed tandem mass spectrometry on total
108 RNA extracted from each of the enriched stages (**S1A-S1A'''**) (Flora et al., 2018; McKearin and
109 Spradling, 1990; Ohlstein and McKearin, 1997; Xie and Spradling, 1998). For each enriched
110 developmental stage, we performed 5 biological replicates, each with 3 technical replicates. We
111 identified 18 groups of RNA PTMs represented by distinct mass:charge ratios, composed of 42
112 distinct RNA PTMs from a total of 172 known PTMs (**Figure 1B, Supplementary Table 1**).
113 Pseudouridine, which is the most frequent PTM in RNA (Durairaj and Limbach, 2008), was the
114 most abundant modification at all stages, followed by the monomethylations of the canonical RNA
115 bases (**Figure 1B, Supplementary Table 1**). Furthermore, we discovered a cohort of RNA PTMs,
116 including inosine and dihydrouridine, that were not previously described during oogenesis (**Figure**
117 **1B, Supplementary Table 1**). Most RNA PTMs, including pseudouridine, were dynamic during
118 GSC differentiation into an oocyte (**Figure 1B, Supplementary Table 1**).

119
120 To determine if the RNA modifications play a role in germline development, we performed an RNA
121 interference (RNAi) screen utilizing a germline-specific *nanos-GAL4* driver to deplete RNA
122 modifying enzymes in the germline, followed by immunostaining for Vasa, a germline marker, and
123 1B1, a marker of the cell membranes, spectrosomes and fusomes (Lasko and Ashburner, 1988;
124 Zaccai and Lipshitz, 1996). We screened 33 unique genes annotated and predicted to be involved
125 in RNA modification, and based on availability additional independent RNAi lines, for a total of 48
126 lines. Of the 33 distinct gene knockdowns, 2 resulted in loss of the germline, 14 in germaria
127 defects, and 3 in egg chamber defects (**Supplementary Table 2**).

128
129 **The pseudouridine-depositing H/ACA box is required for oocyte specification**
130 Among the genes whose knockdown that caused defects in germaria, we found all four encoding
131 components of the rRNA pseudouridine synthase, the H/ACA box: the catalytic subunit Nucleolar
132 protein at 60B (Nop60B) and complex members CG7637 (Nop10), CG4038 (Gar1) and NHP2

133 (**Figure 1C, Supplementary Table 2**) (Giordano et al., 1999; Ni et al., 1997). Germline depletion
134 of Nop60B in the background of an endogenous, GFP-tagged Nop60B reporter led to significantly
135 reduced GFP levels in the germline (**Figure S1B-S1D**) (Sarov et al., 2016), verifying knockdown
136 of *nop60B*. In addition, RT-qPCR analysis revealed significantly reduced levels of *Nop10* and
137 *Nop60B* mRNAs upon germline knockdown (**Figure S1E**). Depletion of the H/ACA box
138 components did not result in a germline viability defect, but rather to specific loss of GSCs and a
139 cyst differentiation defect. Specifically, transition from 8-cell cyst stage to an egg chamber was
140 blocked, as measured by the accumulation of 8-cell cysts (**Figure 1D-1J, S1F-S1P,**
141 **Supplementary Table 2**) (Morita et al., 2018; Sanchez et al., 2016), which led to an absence of
142 egg chambers and, in turn, sterility (**Figure S1Q**). Thus, the H/ACA box is required in the female
143 germline for proper cyst differentiation.

144
145 We further investigated the role of the H/ACA box in cyst differentiation by analyzing control and
146 H/ACA box germline-depleted ovaries carrying the differentiation reporter, BamGFP. We also
147 stained ovaries for Vasa, 1B1, and the cyst-differentiation factors, Rbfox1 or Bru1 (Carreira-
148 Rosario et al., 2016; Chen and McKearin, 2003b; Sugimura and Lilly, 2006). We found that cysts
149 lacking H/ACA box members express BamGFP but have significantly reduced levels of Rbfox1
150 and Bru1 (**Figure 2A-G, S2A-S2D**). Moreover, cysts lacking H/ACA box components did not
151 specify an oocyte, as cysts were devoid of localized Egalitarian (Egl), the oocyte determinant, and
152 exhibited reduced expression of the synaptonemal complex component C(3)G (**Figure S2E-S2L**)
153 (Anderson et al., 2005; Carpenter, 1994; Huynh and St Johnston, 2000; Mach and Lehmann,
154 1997; Page and Hawley, 2001), consistent with a differentiation block.

155
156 To determine the specific stage of oogenesis that requires H/ACA box activity, we first
157 characterized the expression of the endogenous, GFP-tagged Nop60B reporter (Sarov et al.,
158 2016). Nop60B-GFP levels increased from the cyst stages to early egg chambers (**Figure S3A-**
159 **S3B**). Utilizing a pseudouridine antibody, we observed a corresponding increase in pseudouridine
160 levels from the 8-cell cyst to the newest egg chamber and this increase depended on the H/ACA
161 box (**Figure S3C-S3G**). Given these observations, and that loss of H/ACA box components
162 resulted in an accumulation of 8-cell cysts (**Figure S1P**) (Morita et al., 2018), we hypothesized
163 that the H/ACA box is required in the cysts for the transition into an oocyte. To test this, we
164 depleted *Nop60B* and *Nop10* in the cysts utilizing a *bamGAL4* driver, which is active in the 2-8
165 cell cyst stages. We observed an accumulation of cysts with significantly reduced levels of Rbfox1
166 (**Figure S4A-S4H**) (Carreira-Rosario et al., 2016; Chen and McKearin, 2003b). Taken together,
167 these data suggest that the H/ACA box is required in the cyst stages for differentiation into an
168 oocyte.

169
170 **The H/ACA box promotes ribosome biogenesis and the translation of differentiation**
171 **factors during oogenesis**

172 The primary activity of the H/ACA box is to deposit pseudouridine on rRNA, thereby promoting
173 ribosome biogenesis in the nucleolus (Gilbert, 2011; Kiss et al., 2010; Ni et al., 1997; Omer et al.,
174 2000). Nop60B-GFP colocalized with Fibrillarin in the nucleolus as previously observed (Ochs et
175 al., 1985) (**Figure S5A-S5B**). In addition, loss of *Nop10* and *Nop60B* resulted in cysts with
176 hypertrophic nucleoli compared to wild-type cysts, suggesting a ribosome biogenesis defect

177 (Figure S5C-S5F) (Neumüller et al., 2008; Sanchez et al., 2016). To verify that the H/ACA box
178 deposits pseudouridine on rRNA during oogenesis, we co-immunopurified the 40S and 60S
179 ribosomal subunits from the germline, utilizing a germline-enriched HA-tagged ribosomal protein
180 RpS5b (Figure S5G-S5I) (Jang et al., 2021) (Chen and Dickman, 2017). Mass spectrometry
181 analysis showed that loss of the H/ACA box member Nop10 led to a significant decrease of
182 pseudouridine on rRNA relative to controls (Figure 3A, Supplemental Table 3). In addition, we
183 observed a decrease in both the 40S and 60S subunits and in polysomes of Nop60B-depleted
184 ovaries as compared to controls (Figure S5J) (Cheng et al., 2019), suggesting a ribosome
185 biogenesis defect upon loss of the H/ACA box. Thus, consistent with previous findings, the H/ACA
186 box deposits pseudouridine on rRNA to promote ribosome biogenesis in the germline.
187

188 To test if loss of the H/ACA box and consequent aberrant ribosome biogenesis affects mRNA
189 translation during oogenesis, we performed polysome-seq of ovaries depleted of Nop60B in the
190 germline and of gonads enriched for cysts stages (Flora et al., 2018; Martin et al., 2022; Ohlstein
191 and McKearin, 1997). As enriching for early cyst stages includes a heat shock step (see methods),
192 we also analyzed early-stage egg chambers to control for heat shock effects. We detected 465
193 mRNAs with a reduced polysome association in *Nop60B*-knockdown versus the controls,
194 whereas 638 mRNAs showed an increased polysome association (Figure 3B, S6A-S6C). These
195 data suggest that the H/ACA box regulates the synthesis of a cohort of proteins. GO term analysis
196 revealed that mRNAs with an elevated polysome association were enriched in the mitotic cell
197 cycle, whereas those with reduced polysome association included factors that promote meiosis
198 1, meiotic cell cycle and homologous chromosome segregation (Figure 3C, S6D), such as the
199 synaptonemal complex members C(3)G and Corona (conA), consistent with reduced C(3)G
200 protein levels upon depletion of the H/ACA box (Figure S2I-S2L).
201

202 The levels of *Rbfox1* and *Bru1* mRNAs were not significantly reduced in the germline upon
203 depletion of the H/ACA box, as indicated by fluorescent *in situ* hybridization (Figure 3D-3G,
204 Figure S6E-S6H). To determine if the H/ACA box is required for translation of *Rbfox1* and *Bru1*,
205 we overexpressed *Rbfox1* or *Bru1* under the control of UAS/GAL4 system. *Rbfox1* and *Bru1*
206 proteins were detected in the control germlaria, but not in the H/ACA box-depleted germlaria
207 (Figure 3H-3J, S6I-S6K) (Carreira-Rosario et al., 2016; Filardo and Ephrussi, 2003), suggesting
208 that their translation is impaired upon loss of the H/ACA box.
209

210 We considered that the H/ACA box is required for oogenesis due to its role in ribosome
211 biogenesis. This hypothesis predicts that compromised ribosome biogenesis will phenocopy loss
212 of H/ACA box components. We impaired ribosome biogenesis by depleting ribosomal protein
213 paralogs RpS10b and RpS19b in the germline, as the depletion of other ribosomal proteins that
214 do not have paralogs results in GSC differentiation defects or loss of cyst stages that would mask
215 the cyst differentiation block (Jang et al., 2021; Martin et al., 2021; McCarthy et al., 2022; Sanchez
216 et al., 2016). Depletion of RpS10b and RpS19b phenocopied loss of H/ACA box components,
217 leading to a block in cyst differentiation and decreased levels of *Rbfox1* and *Bru1* proteins without
218 a concomitant loss of their mRNAs (Figure S7A-S7K, S8A-S8H). The H/ACA box can also
219 pseudouridylate mRNAs and tRNAs (Czekay and Kothe, 2021). However, immunopurification of
220 pseudouridine did not enrich for the mRNAs with perturbed translation upon loss of the H/ACA

221 box (**Supplemental Table 4**), suggesting that these targets are not directly pseudouridylated. In
222 addition, whereas the loss of the H/ACA box blocks cyst differentiation, loss of tRNA
223 pseudouridylation enzymes results in a different phenotype – loss of cyst stages (**Figure S9A-S9J**). Thus, our data suggest that the H/ACA box and pseudouridinylation are important for
224 ribosome biogenesis during oogenesis.
225

226
227 **H/ACA box-dependent differentiation factors are PolyQ proteins**
228 To identify shared properties among the mRNAs with reduced polysome association upon loss of
229 the H/ACA box, we performed a motif analysis of the 5'UTRs, CDS and 3'UTRs of this subset of
230 mRNAs compared to a set of control mRNAs. We observed a motif of repeating CAG nucleotides
231 that was highly enriched in the CDS of downregulated transcripts compared to the control
232 unregulated mRNAs (**Figure 4A**). In addition, we found motifs that were enriched in the 3'UTRs or
233 5'UTRs of downregulated transcripts, albeit in a smaller subset of RNAs
234 (**Supplementary Table 5**). The CAG motifs in the downregulated transcripts were in frame, such
235 that the encoded proteins are highly enriched in glutamine (Q) over a region of 21 amino acids
236 (**Figure 4B**). Indeed, Rbfox1 and Bru1 both contain such repeating CAG motifs in the mRNA and
237 polyQ in the protein (**Figure S10A-S10D**) (Kucherenko and Shcherbata, 2018).
238

239 To determine if the H/ACA box is required to translate CAG repeat-containing mRNAs during
240 oogenesis, we expressed a CAG reporter encoding an HA-tagged, polyQ protein, that was
241 previously used to model polyglutamine toxicity from Huntington's disease (**Figure 4C**) (Fayazi et
242 al., 2006). We co-expressed the CAG reporter with GFP in the control, to ensure equal GAL4
243 dosage, and the CAG reporter in Nop10-depleted germlines. We found that loss of the H/ACA
244 box specifically reduced the levels of the polyQ protein (**Figure 4D-4F, S10E-S10F**). Furthermore,
245 depletion of RpS19b and Nop60B also resulted in a significant decrease in polyQ protein
246 accumulation, but loss of Nop60B did not significantly alter the levels of GFP (**Figure S10G-S10M**). Thus, the H/ACA box and ribosome biogenesis are required for translation of polyQ-containing
247 proteins.
248

249
250 **CAG repeat regions show increased density of ribosomes**
251 One proposed mechanism of polyQ expansion-induced defects is the disruption of translation by
252 ribosome stalling (Eshraghi et al., 2021). To determine if the H/ACA box affects elongating
253 ribosomes on, and hence translation of, mRNAs encoding polyQ proteins, we performed ribosome
254 footprinting (Ribo-Seq). Because we were unable to acquire sufficient material from H/ACA box-
255 depleted germlines, we utilized ovaries enriched for late-stage oocytes (late-ovaries), which have
256 reduced pseudouridine levels but can be obtained in sufficient quantity (**Figure 1B, Supplementary Table 1**). Three late-ovary Ribo-Seq libraries were generated, each with a corresponding RNA-Seq library. Correlation analysis showed consistent and reproducible
257 ribosome footprint distributions among the three Ribo-Seq libraries (Pearson $r > 0.9$ for all
258 comparisons; **Supplemental Table 6**). We hypothesized that stalled ribosomes might result in
259 local enrichment of ribosome footprints. We therefore sought to identify peaks in the Ribo-Seq
260 data across the transcriptome. Our peak detection and subsequent motif analysis identified 123
261 mRNAs containing at least one CAG-rich segment within 30 nucleotides of a ribosome footprint
262 peak in at least 2 of the 3 Ribo-Seq libraries that were not present in the RNA-seq libraries (**Figure**
263
264

265 **4G, Supplemental Table 6).** 46 of the 123 identified mRNAs encode at least one polyQ tract (\geq
266 4 consecutive CAG codons) near ribosome footprint peaks (**Figure 4H, Supplemental Table 6**).
267 This motif is highly reminiscent of the motif identified in the mRNAs with low polysome association
268 in H/ACA box depleted germlines (**Figure 4A**).
269

270 The motif identified by Ribo-Seq contains 5 CAGs in a row (**Figure 4A and 4G**). To determine if
271 the 5-CAG motif is overrepresented in the set of target mRNAs with low polysome association,
272 we performed a Find individual Motif Occurrence (FIMO) analysis. We found that 181 out of 465
273 (39%) targets contain a significant motif representative of the 5-CAG motif including *bru1* and
274 *C(3)G* (**Figure S2A-S2D, S2I-S2K, Supplemental Table 7**). We infer that CAG repeat sequences
275 have high ribosome density and are present in mRNAs whose translation is sensitive to reduced
276 ribosome biogenesis during oogenesis.
277

278 **Tor signaling partially restores differentiation and modulates polyQ translation**

279 The Target of Rapamycin (TOR) pathway is a critical positive regulator of ribosome biogenesis
280 (Wullschleger et al., 2006; Yerlikaya et al., 2016). To further determine if loss of the H/ACA box
281 blocks cyst differentiation due to reduced ribosome biogenesis, we increased ribosome
282 biogenesis by overexpressing the TORC1 co-factor, Raptor, in the H/ACA box-depleted germline
283 (Martin et al., 2006; Wang et al., 2012). We observed a partial yet significant alleviation of the cyst
284 differentiation defect, such that an egg chamber was formed (**Figure 4I-4J**). We next asked if
285 decreasing TOR activity and, in turn, ribosome biogenesis could diminish expression of the polyQ
286 reporter. Specifically, flies expressing the germline CAG reporter were treated with the inhibitor
287 of mTOR, Rapamycin, and displayed lower levels of germline polyQ when compared to controls
288 (**Figure S10N-S10P**). Thus, our data suggest that modulating ribosome levels via the Tor pathway
289 can effectively regulate translation of polyQ-containing proteins.
290

291 **Discussion**

292 We used the power of *Drosophila* genetics combination with mass spectrometry to determine the
293 developmental profile of RNA PTMs and identify a cohort of PTMs that are required for proper
294 oogenesis. Specifically, we found that pseudouridine abundance is dynamic and regulated by the
295 H/ACA box, a pseudouridine synthase, and is required for proper cyst differentiation and oocyte
296 specification. Using polysome-seq analysis, we found that CAG repeat mRNAs encoding polyQ-
297 containing proteins have reduced polysome association upon loss of the H/ACA box. These polyQ
298 proteins include germ cell differentiation and meiosis promoting factors such as *Rbfox1* and *Bru1*.
299 Moreover, we found that CAG repeat regions accumulate ribosomes, potentially acting as a
300 ribosome sink. Taken together, our data suggest under condition of low ribosome levels, the CAG
301 repeat containing regions can impede proper translation by sequestering ribosomes internally
302 causing translation of polyQ-containing proteins to be sensitive to ribosome levels (**Figure 4K**).
303 Taken together, we find that the H/ACA box promotes ribosome biogenesis during oogenesis and,
304 in turn, the translation of CAG repeat mRNAs required for differentiation (**Figure 4K**).
305

306 Ribosomopathies predispose individuals to neurological deficits, but the etiology of this defect is
307 unclear (Aspesi and Ellis, 2019; Cheng et al., 2019; Mills and Green, 2017). Neurons express and
308 require several polyQ-containing proteins, including *Rbfox1* (Gehman et al., 2012, 2011;

309 Kucherenko and Shcherbata, 2018). We find that the translation and levels of Rbfox1 are sensitive
310 to ribosome levels during oogenesis (McCarthy et al., 2022). By extension, neuronal deficits
311 observed in ribosomopathies could be due to inability to translate critical polyQ-containing
312 proteins in neurons.

313
314 While polyQ stretches facilitate phase transition, large CAG expansion and polyQ protein
315 aggregates are associated with diseases such as Huntington's disease (Adegbuyiro et al., 2017;
316 Sugars and Rubinsztein, 2003). A genome-wide association study revealed that the onset of
317 Huntington's disease is due to large expansions of CAG repeats and is accelerated by DNA repair
318 genes as well as E3 ubiquitin protein ligase (UBR5) (Lee et al., 2019). In embryonic stem cells,
319 UBR5 has been shown to physically interact with the H/ACA box to promote rRNA maturation
320 suggesting that these factors could collaborate to contribute to early onset of Huntington's
321 Disease (Saez et al., 2020). Furthermore, Huntington's Disease mouse models have shown CAG
322 expansions induce ribosome stalling by impeding ribosome translocation, thereby inhibiting
323 protein synthesis (Eshraghi et al., 2021). These data together with our findings that, during
324 development, the H/ACA box promotes translation of CAG repeat containing RNAs suggest that
325 translation dysregulation could be a key feature of CAG expansion diseases. While the early onset
326 is determined by CAG length, translation of CAG repeats into polyQ proteins can cause protein
327 aggregation and toxicity (Bates, 2003; Lee et al., 2019; Ross and Poirier, 2004). Our finding that
328 translation of such polyQ proteins is sensitive to ribosome levels reveal new potential therapeutic
329 targets. For instance, several TOR inhibitors have been generated to primarily treat cancers; the
330 mechanism we have identified provides a potential pathway to repurpose these drugs to reduce
331 polyQ protein aggregation in various repeat expansion disease states (Noda, 2017; Ravikumar et
332 al., 2004; Wyttenbach et al., 2008; Yee et al., 2021).

333
334 **Acknowledgements**
335 We are grateful to all members of the Rangan laboratory, Dr. Marlow, Dr. Siekhaus and Life
336 Science Editors for discussion and comments on the manuscript. We would like to thank Lehmann
337 lab for Egl antibody, Dr. Teleman for p-S6 antibody, Bloomington Drosophila Stock Center, Vienna
338 Drosophila Resource Center and FlyBase for fly stocks and reagents. Furthermore, we would like
339 to thank CFG Facility at the University at Albany (UAlbany) for performing RNA-seq analyses.
340 P.R. is funded by NIH/NIGMS (RO1GM11177 and RO1GM135628). E.R.G. is funded by
341 NIH/NIGMS (R35 GM126967) and D.F. is funded by NIH/NIGMS (R01 GM123050 and R01
342 GM121844) and NIH/NIDA (R01 DA04611).

343
344 **Materials and Methods**

345
346 **Fly lines**
347 Flies were grown at 25-29°C and dissected between 0-3 hrs and 1-3 days post-eclosion. Heat
348 shock experiments were performed on 1 day old flies.

349
350 The following RNAi stocks were used in this study: *nsun2 RNAi* (Bloomington #62495), *Trm7-34*
351 *RNAi* (Bloomington #62499), *CG32281 RNAi* (Bloomington #51764), *rswl* (Bloomington #44494),
352 *CG9386* (Bloomington #33364), *Nsun5* (Bloomington #32400), *CG11109* (Bloomington #56897),

353 *CG11447* (Bloomington #43207), *CG3021* (Bloomington #55144), *RluA-2* (VDRC #34152), *RluA-2* (VDRC #106382), *Wuho* (Bloomington #61281), *CG10903* (VDRC #57481), *RluA-1* (VDRC #41757), *RluA-1* (VDRC #41758), *RluA-1* (VDRC #109586), *Tailor* (Bloomington #36896), *Pus1* (Bloomington #53288), *NOP60B* (Bloomington #36595), *CG6745* (Bloomington #41825), *CG7637* (Bloomington #55194), *NHP2* (Bloomington #51784), *CG4038* (Bloomington #34013), *CG34140* (Bloomington #38951), *CG34140* (Bloomington #57311), *CG3645* (VDRC #107156), *CG1434* (VDRC #104876), *CG3434* (VDRC #45130), *tgt* (VDRC #41644), *AlkB* (Bloomington #43300), *Paics* (Bloomington #62241), *Ras* (Bloomington #31654), *Ras* (Bloomington #51717), *Ras* (Bloomington #31653), *pfas* (Bloomington #36686), *pfas* (Bloomington #80831), *bam RNAi*; *hs-bam* (Ohlstein, B. & McKearin, D), *RpS10b* (Bloomington #43976), *RpS19b* (VDRC #22073), *UAS-raptor-HA* (Bloomington #53726).

364

365 The following tissue-specific drivers were used in this study: *UAS-Dcr2;nosGAL4* (Bloomington #25751), *UAS-Dcr2;nosGAL4;bamGFP* (Lehmann Lab), *If/CyO;nosGAL4* (Lehmann Lab), *nosGAL4;MKRS/TM6* (Bloomington #4442), and *TjGAL4/CyO* (Lehmann Lab).

366

367 The following stocks were used in this study: *RpS5b-HA* and *UAS-Rbox1-RN* (Buszazak Lab) and *UAS-Tkv* (Bloomington#36536), *UAS-Rbox1-RN* (Buszazak Lab) *UAS-Bruno* (Ephrussi Lab) and *UAS-41Q.HA* (Bloomington #30540).

368

369 **Rapamycin treatment**

370 One day prior to treatment, 400 μ L of 100uM Rapamycin or 400 μ L of ethanol was added to the top of food and allowed to dry. Flies were crossed at 18°C and collected 1-2 days post-eclosion. Flies were placed on food and temperature shifted to 29°C. Every other day flies were placed onto fresh food with 400 μ L of 100uM Rapamycin or 400 μ L of ethanol for a total of 7 days. Flies were dissected as described below.

371

372 **Genotypes used to enrich specific stages of germline**

373 To enrich for germline Stem Cells: *nosGAL4>UAS-tkv* (Flora et al., 2018; Xie and Spradling, 2000, 1998). Cystoblasts: *nosGAL4>bam RNAi* (Chen and McKearin, 2003a, 2003b; McKearin and Spradling, 1990). Differentiating Cysts: *nosGAL4>bam RNAi; hs-bam* (McCarthy et al., 2022; Ohlstein and McKearin, 1997). Female flies were heat shocked at 37° C for 2 hours, incubated at room temperature for 4 hours and heat shocked again for 2 hours. This was subsequently repeated the next day and flies were dissected. Young Wild Type: Female flies were collected and dissected within 2 hours of eclosion. To dissect wild-type ovaries, 2-3 day old females (*UAS-dcr;nosGAL4*) were fatten overnight and dissected the next day.

374

375 **Dissection and Immunostaining**

376 Ovaries were dissected into 1X PBS and fixed for 10 minutes in 5% methanol-free formaldehyde (Flora et al., 2018). Samples were washed in 1 mL PBT (1X PBS, 0.5% Triton X-100, 0.3% BSA) 4 times for 10 minutes each. Primary antibodies were added in PBT and incubated at 4°C rotating overnight. Samples were washed 3 times for 10 minutes each in 1 mL PBT, and once in 1 mL PBT with 2% donkey serum (Sigma) for 10 minutes. Secondary antibodies were added in PBT with 4% donkey serum and incubated at 4°C rotating overnight. Samples were washed 4 times

397 for 10 minutes each in 1 mL of 1X PBST (0.2% Tween 20 in 1x PBS). Vectashield with DAPI
398 (Vector Laboratories) was added for 30 minutes before mounting. The following primary
399 antibodies were used: mouse anti-1B1 (1:20, DSHB), rabbit anti-Vasa (1:1000, Rangan Lab),
400 chicken anti-Vasa (1:1000), rabbit anti-GFP (1:2000, Abcam, ab6556), rabbit anti-Egl (1:1000,
401 Lehmann Lab), mouse anti-pseudouridine (1:1000, MBL Life Sciences), mouse anti-C3G (1:1000,
402 Hawley Lab), rat Anti-HA(1:500, Roche, 11 867 423 001), mouse anti-Fibrillarin (1:50, Fuchs Lab),
403 guinea pig anti-Rbfox1 (1:1000, Buszazak Lab) and rabbit anti-phosphorylated-S6 (1:200,
404 Teleman Lab).The following secondary antibodies were used: Alexa 488 (Molecular Probes), Cy3,
405 and Cy5 (Jackson Labs) were used at a dilution of 1:500.

406

407 **Fluorescence Imaging**

408 The tissues were visualized under 20X oil and 40X oil objective lenses and images were acquired
409 using a Zeiss LSM-710 confocal microscope. Confocal images were processed with ImageJ. The
410 images were quantified using ImageJ with the Measurement function.

411

412 **AU quantification of protein or in situ**

413 To quantify antibody staining intensities for Rbfox1, Bruno, GFP, and pseudouridine or in situ
414 probe fluorescence in germ cells, images for both control and experimental germaria were taken
415 using the same confocal settings. Z stacks were obtained for all images. Similar planes in control
416 and experimental germaria were chosen, the area of germ cells positive for the proteins or in situ
417 of interest was outlined and analyzed using the 'analyze' tool in Fiji (ImageJ). The mean intensity
418 and area of the specified region was obtained. An average of all the ratios (Mean/Area), for the
419 proteins or in situ of interest, per image was calculated for both, control and experimental.
420 Germline intensities were normalized to somatic intensities or if the protein or in situ of interest is
421 germline enriched and not expressed in the soma they were normalized to Vasa or background.
422 The highest mean intensity between control and experimental(s) was used to normalize to a value
423 of 1 A.U. on the graph.

424

425 To quantify polyQ-HA, images were first filtered with a median pixel of 1. The program set the
426 threshold values using max entropy threshold for the images and the outline of the germline was
427 traced using the germline marker Vasa. The percent pixel count per the germline area was found
428 and normalized to the highest mean intensity between control and experimental(s). For rapamycin
429 treatment, 15 control and 15 treated germaria were used. Three randomly selected slices of each
430 stack (total of 45 slices) were quantitated for both control and rapamycin treated germaria.

431

432 **Egg Laying Assay**

433 Egg laying assays were conducted in triplicate in vials containing standard fly food. Prior to the
434 assay, dry yeast was added to each vial along with 3 adult females (all 1 day post-eclosion) and
435 1 male . Flies were incubated at 29°C overnight. The flies were then placed in a new tube and the
436 total number of eggs counted.

437

438 **RNA Isolation**

439 Ovaries were dissected in 1X PBS and homogenized by motorized pestle in 100µL of TRIzol
440 (Invitrogen, 15596026). RNA was isolated by adding an additional 950 µL of TRIzol and 200uL of

441 chloroform with mixing. Samples were centrifuged at 13,000 rpm, 4°C for 15 minutes. The
442 aqueous phase was transferred to a new tube, nucleic acids were precipitated using 1 mL of
443 100% ethanol, 52 µL of 3M sodium acetate and precipitated for >1 hour at -20°C. Samples were
444 centrifuged at 13,000 rpm, 4°C for 20 minutes. Ethanol was decanted, pellets were washed
445 twice with 1 mL of 70% ethanol and dried at room temperature for 10 minutes. Pellets were
446 dissolved in 20 µL RNase free water and placed in a 42°C for 10 minutes. The concentration of
447 nucleic acid samples were measured on a spectrophotometer. The samples were treated with
448 DNase (TURBO DNA-free Kit, Life Technologies, AM1907) and incubated at 37°C for 30 min.
449 DNase was inactivated using the included DNase. Inactivation reagent and buffer according to
450 manufacturers instructions.

451

452 **RNA-seq and Polysome-seq library preparation**

453 RNA was isolated as previously described above. Total RNA samples were run on a 1% agarose
454 gel to assess sample integrity (McCarthy et al., 2018). To generate RNA-seq libraries, total RNA
455 was incubated with poly(A) selection bead. mRNA libraries were prepared using the NEXTflex
456 Rapid Directional RNAseq Kit (BioO Scientific Corp.). Fragmentation of the mRNA was achieved
457 by incubating 95°C for 13 minutes to produce ~300 bp fragments. Single-end mRNA sequencing
458 (75 base pair) was performed for each sample with an Illumina NextSeq500, carried out by the
459 Center for Functional Genomics (CFG). The sequenced reads were aligned to the *Drosophila*
460 *melanogaster* genome (UCSCdm6) using HISTAT2 with Refseq annotate transcripts as a guide.
461 featureCounts was used to generate raw counts and differential gene expression was assayed
462 by Deseq, using a false discovery rate of (FDR) of 0.05, and genes with 2-fold or greater were
463 considered significant. Gene ontology enrichment of differential genes was performed using
464 Panther.

465

466 Polysome profiling of ovaries was adapted from previous protocols (McCarthy et al., 2022).
467 Approximately 100 young wild type flies (*UAS-dcr;nosGAL4*) or about 275 experimental ovary
468 pairs Nop60B were dissected (within 2 hrs of eclosion) in 1X PBS. The ovaries were immediately
469 flash frozen on liquid nitrogen. Samples were homogenized by motorized pestle in lysis buffer
470 and 20% of lysate was used as input for mRNA isolation and library preparation (as described
471 above). Samples were loaded onto 10-45% CHX supplemented sucrose gradients in 9/16 x 3.5
472 PA tubes (Beckman Coulter, #331372) and spun at 35,000 x g in an SW41 rotor for 3 hours at
473 4°C. Gradients were fractionated with a Density Gradient Fractionation System (#621140007).
474 RNA was extracted using acid phenol-chloroform and precipitated overnight. Pelleted RNA was
475 resuspended in 20 µL water, treated with TURBO DNase and libraries were prepared as
476 described above.

477

478 **Polysome-Seq Analysis**

479 Analysis of polysome-seq was done using <https://ruggleslab.shinyapps.io/RIVET/> (Ernlund et al.,
480 2018). Polysome associated targets were further defined using the following parameters. Lowly
481 associated mRNAs were identified by <2 fold change and <0.05 p-Value while highly associated
482 mRNAs were identified by >2 fold change and <0.05 p-Value.

483

484 **Ribosome footprinting**

485 *Ribo-Seq library preparation*

486 Ribosome footprinting was performed as previously described (Dunn et al., 2013) with several
487 modifications. ~500 μ L of ovaries were hand-dissected in Schneider's Drosophila Medium
488 (ThermoFisher), washed twice in 1 mL of lysis buffer (0.5% Triton X-100, 150 mM NaCl, 5 mM
489 MgCl₂, 50 mM Tris-HCl pH 7.5), and flash frozen in 2 mL of lysis buffer supplemented by 1 mM
490 DTT, 50 μ M GMP-PNP, 2 μ g/mL emetine, and 20 U/mL Superase-In RNase Inhibitor (Ambion) in
491 liquid N₂. Ovaries were lysed using a Cellcrusher tissue pulverizer (Cellcrusher), allowed to thaw
492 on ice, and centrifuged first at 10,000 rpm for 10 min and then at 13,200 rpm for 10 min. 300 μ L
493 of supernatant was used for footprint library preparation, and another 300 μ L were used for
494 poly(A)-selected mRNA-Seq library preparation. Ribosome footprints were generated by
495 incubating the lysate with 3 U/ μ g of micrococcal nuclease (NEB) for 40 min at 25° C, then
496 quenching by addition of EGTA to a final concentration of 6.25 mM. Ribosomes were sedimented
497 through a 34% sucrose cushion for 2.5 hr at 33,000 rpm in a Beckman SW50 rotor, and the pellet
498 was re-suspended in 10 mM Tris pH 7.0. RNA was extracted using TRIzol LS (Invitrogen) and
499 size-selected (28-34 nt) on a 15% TBE-urea gel. RNA was then de-phosphorylated by incubating
500 with T4 polynucleotide kinase (NEB) for 1 hr at 37° C, size-selected, and ligated to the 3' adapter
501 by incubating with T4 RNA ligase 2 truncated mutant (NEB) and 1 μ g of pre-adenylated adapter
502 (5'rAppCTGTAGGCACCATCAAT/3ddc) for 2 hr at 25° C. The ligation products were size-
503 selected on a 10% TBE-urea gel. Reverse transcription was performed with Superscript III
504 (Invitrogen) using the Illumina Tru-Seq RT primer:

505

506 /5Phos/AGATCGGAAGAGCGTCGTAGGGAAAGAGTGTAGATCTCGGTGGTCGC
507 /iSp18/CACTCA/iSp18/TTCAAGACGTGTGCTCTCCGATCTATTGATGGTGCCTACAG

508

509 and the reaction was quenched by incubating with 0.1M NaOH for 20 min at 98° C. Following
510 rRNA depletion, cDNA libraries were circularized by two sequential CircLigase (Epicentre)
511 reactions and amplified by 9-12 PCR cycles.

512

513 *mRNA-Seq library preparation*

514 Total RNA was extracted from 300 μ L of lysate with TRIzol LS, precipitated with isopropanol,
515 washed in ice-cold 80% ethanol, and re-suspended in 10 mM Tris-HCl pH 7.0. mRNA-Seq
516 libraries were then prepared from poly(A)-selected mRNA according to manufacturer's
517 instructions using the Illumina TruSeq RNA Library Prep Kit.

518

519 *Processing of sequencing data*

520 All steps were performed on the Princeton Galaxy server (galaxy.princeton.edu). Multiplexed
521 libraries were de-multiplexed using the Barcode Splitter tool with up to 2 mismatches. Illumina
522 Tru-Seq adapters were clipped using the Trim Galore! tool. The trimmed reads were first mapped
523 against Drosophila rRNA sequences using Bowtie with default parameters, and the un-aligned
524 reads were then aligned to the Drosophila genome Release 6 (dm6) using Bowtie2 with default
525 parameters. The resulting BAM files were used for subsequent analyses.

526

527 *Peak detection*

528 The *Drosophila melanogaster* genome (dm6) was divided into 30-bp tiles and the number of reads
529 aligned to each tile was reported using the bamCoverage tool of the deepTools 2 programming
530 suite (Ramírez et al., 2016). Resulting bedgraph files were pre-processed to break up 30-bp tiles
531 into 30 1-bp tiles (Script1). Peak detection was then performed in R using the Bioconductor
532 software suite (Gentleman et al., 2004; Huber et al., 2015). Tiles were first aligned to the transcript
533 regions by gene using the TxDb.Dmelanogaster.UCSC.dm6.ensGene annotation, rtracklayer
534 (Lawrence et al., 2009), GenomicRanges (Lawrence et al., 2013), and BioPhysConnectoR
535 (Hoffgaard et al., 2010) R packages (Script2). Then the distribution of coverage in the tiles aligned
536 to each gene transcript region was fit to a normal distribution using the MASS R package
537 (Venables et al., 2002) (Script3 and Function1). Finally, the coverage distribution and tiles aligned
538 to each gene region were used to identify peak containing tiles (Script4 and Function2). Peak tiles
539 from different ribosome profiling libraries were then compared (Function3) and the names,
540 locations, and actual sequences of high confidence peaks were extracted (Script5, Script6, and
541 Function4) using the Bsgenome.Dmelanogaster.UCSU.dm6 annotation and the Biostrings (H.
542 Pagès, 2017) and GenomicRanges (Lawrence et al., 2013) R packages. Peaks present in at least
543 two of the three Ribo-Seq libraries but not in the control RNA-Seq libraries at the corresponding
544 positions were considered high confidence ribosome footprint peaks.
545

546 **Mass spectrometry**

547 Ovaries were dissected in 1X PBS and homogenized by motorized pestle in 100uL of TRIzol
548 (Invitrogen, 15596026). RNA was isolated by adding an additional 950 uL of TRIzol and 200uL of
549 Chloroform with mixing. Samples were centrifuged at 13,000 rpm, 4°C for 15 minutes. The
550 aqueous phase was transferred to a new tube. Nucleic acids were precipitated by adding and
551 equal volume of 5 M Ammonium Acetate (Sigma-Aldrich), 2.5 volumes 100% ethanol and
552 precipitated for >1 hour at -80°C. Samples were centrifuged at 13,000 rpm, 4°C for 20 minutes.
553 Ethanol was decanted, pellets were washed four times with 1 mL of cold 70% ethanol and dried
554 at room temperature for 10 minutes. Pellets were dissolved in 20 μ L RNase free water and placed
555 in a 42°C for 10 minutes.
556

557 RNA concentration was determined by using UV 260 nm. The RNA was then treated with
558 nuclease P1 and phosphodiesterase to obtain the desired ribonucleotide monophosphate
559 mixtures for mass spectrometric analysis, as previously described (McIntyre et al., 2018; Rose et
560 al., 2016, 2015).
561

562 Immediately before analysis, the obtained mononucleotide mixtures were diluted to 4 ng/ μ L in 10
563 mM ammonium acetate and 10% isopropanol. All samples were analyzed on a Thermo Scientific
564 LTQ-Orbitrap Velos instrument as previously described (Rose et al., 2016, 2015; McIntyre et al.,
565 2018). Analyses were accomplished by using direct infusion electrospray ionization (ESI) in
566 negative ion mode.
567

568 The relative abundance of each RNA PTM was expressed as Abundance versus Proxy (AvP),
569 which was calculated according to the following equation: $AvP_x = \frac{a_{ix}}{\sum_1^4 cr_i} \times 100$ in which the signal
570 intensity (a_{ix}) of each RNA PTM was normalized against the sum of the intensities displayed in
571 the same spectrum by the four canonical bases (cr_i).
572

572
573 The RNA PTM profiling table translates relative abundances in AvP units to a hot-cold color
574 gradient. The relative abundances displayed by the samples in the first column on the left were
575 used as the baseline for comparisons with the rest of the samples. A different color was assigned
576 only if the respective values were statistically different according to an unpaired student *t*-test with
577 a *P*-value < 0.05. Each data point was the result of three to five biological replicates, which were
578 each separately analyzed three times (technical replicates). Therefore, each value represents the
579 average and standard deviation of a total of 9 to 15 separate analyses.
580

581 Tandem mass spectrometry was carried out in negative mode to differentiate uridine and
582 pseudouridine (Rose et al., 2016, 2015; McIntyre et al., 2018). The contribution of each isomer to
583 the initial signal can be estimated from the relative intensities of their unique fragments. The
584 abbreviations and complete names of each PTM in this study are available from MODOMICS
585 (<http://genesilico.pl/modomics/>) database.
586

587 **Germline ribosome pulldowns**

588 Ribosomal pulldowns were performed as previously described with the following modifications
589 (Chen and Dickman, 2017). Approximately 50 young wild type ovaries (UAS-dcr;nosGAL4) and
590 ~100 Nop10⁵⁵¹⁹⁴ RNAi ovaries were dissected in PBS. After lysis in ribosomal lysis buffer, 120 uL
591 was collected for input and Trizol extraction with previously described for mass spectrometry. The
592 remaining lysate was divided into 180 uL aliquots. 6 ug of rabbit IgG (Jackson Immunoresearch)
593 or rat-HA antibodies for 3 hours with rotation at 4°C. At hour 2, 50 uL Dynabeads A (Thermofisher)
594 per replicate. The beads were prepped by performing four washes using a magnetic rack (500 uL
595 for 2 minutes each) with ribosomal lysis buffer. After the fourth wash the beads were resuspended
596 in 50 uL of ribosomal lysis buffer. To the samples either 25 uL of IgG or anti-HA was added and
597 left overnight with rotation at 4°C. The following day, the beads were washed with 200 uL of
598 ribosome lysis buffer for a total of four washes. After the final wash the beads were resuspended
599 in 15uL of ribosome lysis buffer. A Trizol extraction was performed as previously described for
600 mass spectrometry. After RNA extraction, a small portion of the RNA was run on a 1% agarose
601 gel to confirm the presence of rRNA.
602

603 After the overnight incubation, the beads were washed with 200 uL of ribosome lysis buffer for a
604 total of four washes. After the final wash the beads were resuspended in 15uL of ribosome lysis
605 buffer. To the sample 4X SDS buffer was added and then heated at 95°C for 5 minutes and stored
606 at -20°C until Western analysis.
607

608 **Western Blot**

609 Ovaries were dissected in 1X PBS (Flora et al., 2018). After dissection, PBS was aspirated and
610 30 uL of RIPA buffer with protease inhibitors was added, and the tissue was homogenized. The
611 homogenate was centrifuged at 13,000 rpm for 15 minutes at 4°C. The aqueous layer was
612 transferred into a new tube while avoiding the top lipid layer. 1 uL of the protein extract was used
613 to determine protein concentration via Invitrogen Qubit® Protein Assay Kit. 15-20 µg of protein
614 was denatured with 4X Laemmli Sample Buffer and β-mercaptoethanol at 95°C for 5 minutes. The
615 samples were loaded onto a Mini-PROTEAN TGX 4-20% gradient SDS-PAGE gels and run at

616 300V for 20 minutes. The proteins were then transferred to a 0.20 μ m nitrocellulose membrane
617 using Bio-Rad Trans-blot Turbo System. After transfer, the membrane was blocked in 5% milk in
618 PBST for 2 hours at RT. The following antibodies were used: rat-HA (1:4000), rabbit-Vasa
619 (1:6000) and rabbit-RpL26 (1:1000). Primary antibody was prepared in 5% milk in PBST was
620 added to the membrane and incubated at 4°C overnight. The membrane was then washed three
621 times in 0.5% milk PBST. Anti-rabbit HRP (1:10,000) or Anti-rabbit HRP (1:10,000) was prepared
622 in 5% milk in PBST, and was added to the membrane and incubated at room temperature for 1
623 hour. The membrane was then washed 3 times in PBST. The Bio-Rad chemiluminescence ECL
624 kit was used to image the membrane.

625

626 Note: To help normalize germline in the Western Blot probing for the PolyQ-HA reporter, first 15-
627 20 ug of lysate run and probed for Vasa. Controls were then diluted 1:5 to help equalize the
628 amount of germline loaded and compared to the H/ACA box member knockdown. Normalizations
629 were performed using the top Vasa band.

630

631 **Stellaris *in situ* hybridizations**

632 A modified *in situ* hybridization procedure for *Drosophila* ovaries was followed from (Sarkar et al.,
633 2021). Probes were designed and generated by LGC Biosearch Technologies using Stellaris®
634 RNA FISH Probe Designer, with specificity to target base pairs of target mRNAs. Ovaries (3 pairs
635 per sample) were dissected in RNase free PBS and fixed as described above. The fixed tissue
636 was washed with twice with 1 mL of PBS and then permabilized with 70% ethanol at 4°C for 2
637 hours. After permeabilization, 1 mL of wash buffer was added (40 mL RNase free water, 5 mL
638 deionized formamide and 5 ML 20X SSC) for a 5 minute wash. To the sample 50 μ L of a Stellaris
639 Hybridization buffer, 10% (vol.vol.) of formamide with 50-100 nm of oligos and properly diluted
640 antibodies were added and incubated at 30°C for a minimum of 16 hours in the dark. After the
641 overnight incubation, the sample was washed twice with 1 mL of wash buffer with properly diluted
642 secondary antibodies for 30 minutes. After the second wash Vectashield was added and samples
643 were imaged.

644

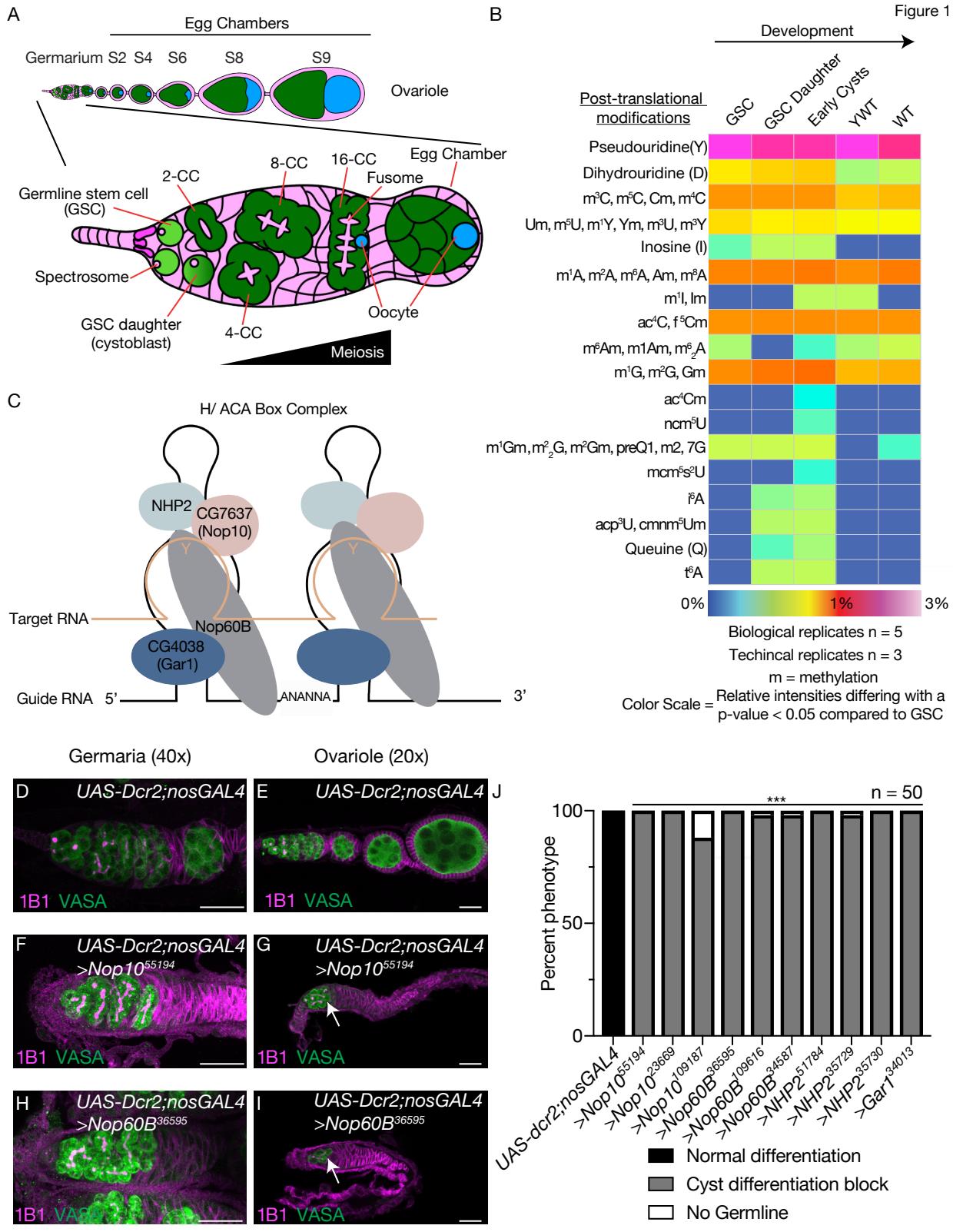
645 Stellaris probes were designed on (<https://www.biosearchtech.com/support/education/stellaris-rna-fish>) to all possible isoforms and Cy3 probe. Sequences found in excel file
646 stellarisinsitu probes.xlsx.
647

648

649 **Quantitative Real Time-PCR (qRT-PCR)**

650 Once RNA was purified and isolated, see RNA Isolation section, a reverse transcription (RT) was
651 performed using Superscript II according to the manufacturer's protocol with equivalent volumes
652 of RNA for each sample. cDNA was amplified using 5 μ L of SYBR green Master Mix, 0.3 μ L of
653 10 μ M of each reverse and forward primers in a 10 μ L reaction. For each sample 3 biological and
654 a minimum of 2 technical replicates were performed. Technical replicates were averaged, and
655 tubulin was utilized as a control. To calculate fold change relative to tubulin mRNA levels, the
656 average of the 2 $^{-\Delta Ct}$ for the biological replicates was calculated with error bars representing
657 Standard Error of the Mean. Statistics were performed using a paired t-test on ΔCt values.
658

659

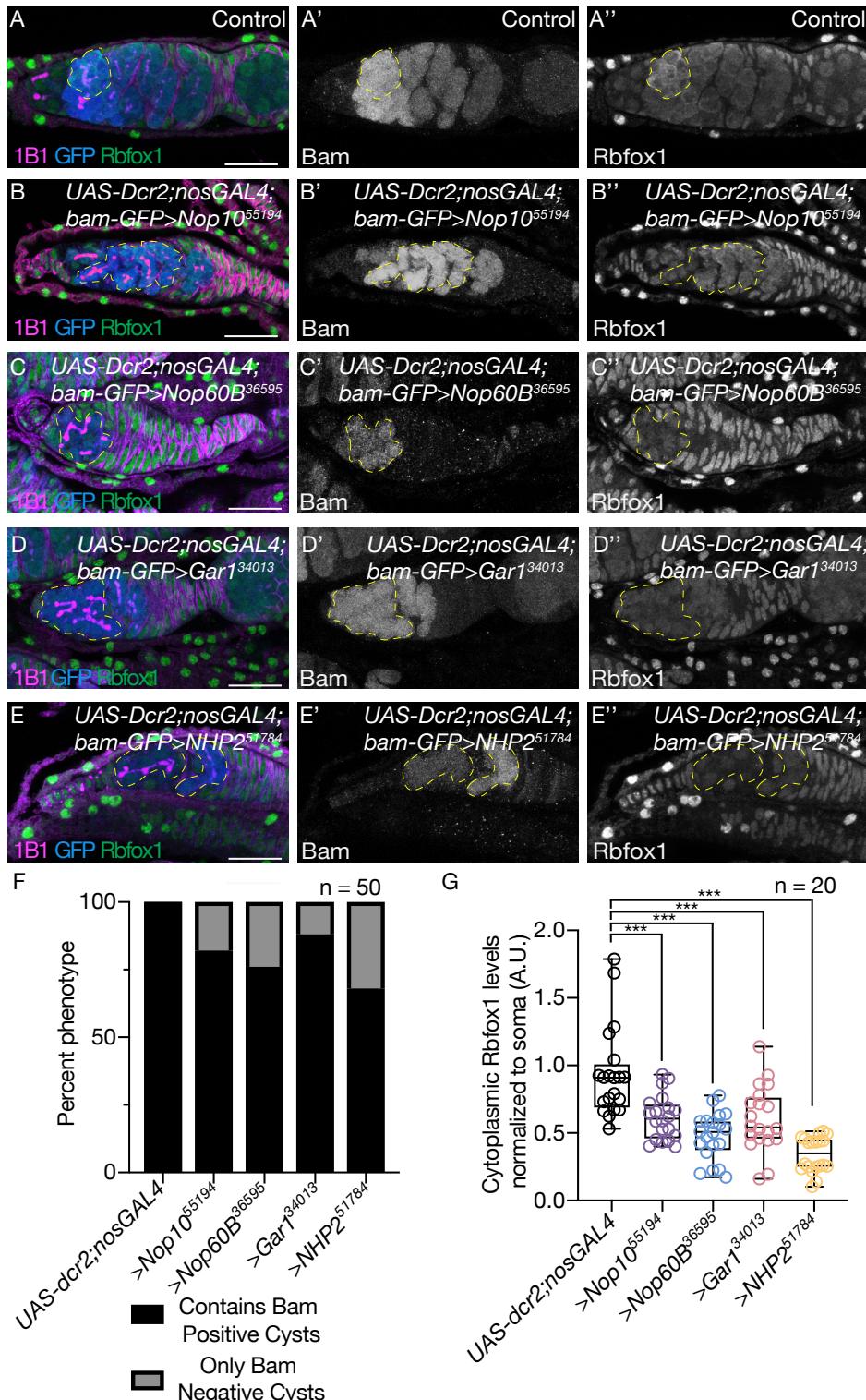

MEME Analyses

660 The 5'UTR, CDS, 3'UTR and amino acid sequence of 465 mRNAs that are lowly associated with
661 polysome than control and 320 mRNAs highly associated with polysome and analyzed by the
662 MEME algorithm (Bailey, n.d.). Discriminative mode analysis was conducted against 1573 non-
663 target gene sequences as background with default parameters. Motif logos, number of sites, and
664 E-values all reported as produced by output of the program.

665

666 **FIMO Analyses**

667 An amino acid motif of 5Qs was run against the amino acid sequences of all mRNAs that were
668 lowly associated with polysome. Motifs identified in targets were searched in the given strand with
669 a p-value < 1E-4.



670
671

Figure 1: Pseudouridine is a critical modification required for oogenesis

672 (A) Schematic of a Drosophila ovariole and germarium. The germarium is present at the anterior
673 tip of the ovariole and goes through successive stages of egg chamber development. The
674 germline stem cells (GSC) (green) reside at the anterior tip of the germarium and are surrounded
675 by somatic cells (magenta). The GSC divides to give rise to a GSC daughter or cystoblast (CB).
676 The CB on the differentiation factor and undergoes incomplete mitotic divisions to give rise to a
677 2-, 4-, 8-, and 16- cell cyst (differentiating cysts). During the cyst stages, the germline transition
678 from a mitotic fate to meiotic fate. The single cells are marked by spectrosomes (magenta) and
679 the cysts are marked by the branched structure called fusomes (magenta). The 16- cell cyst buds
680 off from the germarium and is encapsulated by the soma to generate an egg chamber. One of the
681 16- cells is designated as the oocyte (blue), going through successive egg chamber
682 developmental eventually forming a mature egg.
683 (B) Heat map of mass spectrometry analysis of RNA modifications obtained from total RNA
684 extracts from germaria enriched for GSCs, GSC daughters, cysts, YWT, and Wild Type (WT). A
685 heat map covers relative abundances up to 3%. The different colors express variations of relative
686 abundance compared to the GSC with a $p < 0.05$ statistical significance. For each developmental
687 stage 5 biological replicates were analyzed with 3 technical replicates of each biological
688 replicates.
689 (C) The H/ACA box is composed of four proteins CG4038 or Gar1 (dark blue), Nop60B (gray),
690 NHP2 (light blue) and CG7637 or Nop10 (salmon). The H/ACA box uses a small RNA guide that
691 corresponds to the target RNA where it complex deposits pseudouridine.
692 (D, E) Images of 40x *UAS-Dcr2;nosGAL4* (driver control) germarium (D) and 20x *UAS-*
693 *dcr2;nosGAL4* (driver control) ovarioles (E) stained with anti-1B1 (magenta) and anti-Vasa
694 (green).
695 (F, G) Images at 40x (F) and 20x (G) of germarium where *Nop10* is depleted in the germline and
696 stained with anti-1B1 (magenta) and anti-Vasa (green) resulting in a cyst progression defect.
697 White arrow marks cyst defect in germline depleted of H/ACA box members. Scale bar for all
698 images is 20 μ m.
699 (H, I) Images at 40x (H) and 20x (I) of germarium where *Nop60B* is depleted in the germline and
700 stained with anti-1B1 (magenta) and anti-Vasa (green) resulting in a cyst progression defect.
701 White arrow marks cyst defect in germline depleted of H/ACA box members. Scale bar for all
702 images is 20 μ m.
703 (J) Quantification of oogenesis defect phenotypes per genotype of H/ACA box germline depletion.
704 Statistical analysis performed with Fisher's exact test ($n = 50$ for all, *** $p < 0.0001$).
705

Figure 2

706

707

708

709

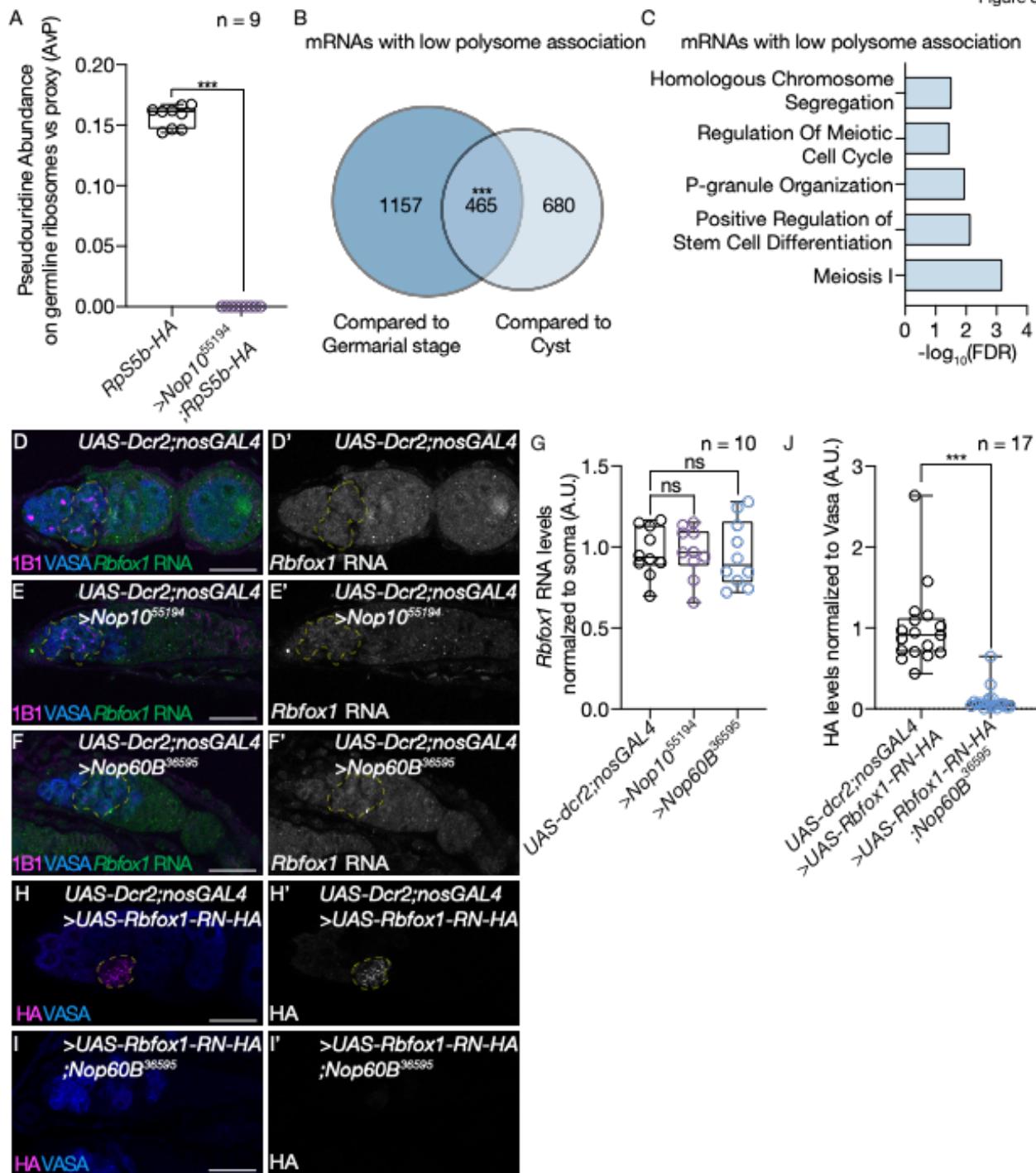

710

Figure 2: The H/ACA box is required for proper cyst differentiation and meiotic progression

(A-E'') *UAS-Dcr2;nosGAL4;bam-GFP* (driver control) germaria (A) and germline depletion of *Nop10* (B), *Nop60B* (C), *Gar1* (D), and *NHP2* (E) stained with anti-1B1 (magenta), anti-GFP (blue) and anti-Rbfox1 (green). GFP (A', B', C', D', E') and Rbfox1 (A'', B'', C'', D'', E'') are shown in gray

711 scale. Yellow dotted lines outline cysts that are positive for GFP but have lower Rbfox1 levels for
712 all images. Scale bar for all images is 20 μ m.
713 (F) Quantification of oogenesis defect phenotypes per genotype. Loss of the H/ACA box results
714 in Bam positive cysts. Statistical analysis performed with Fisher's exact test (n = 50 each, ***
715 p<0.0001).
716 (G) Quantification of cytoplasmic Rbfox1 levels normalized to soma in germline depleted of
717 *Nop10*, *Nop60B*, *Gar1* or *NHP2*. Loss of H/ACA box results in lower levels of Rbfox1 levels.
718 Statistics performed were Dunnett's multiple comparisons test post-hoc test after one-way
719 ANOVA (n = 20 each, *** p<0.0001).
720

Figure 3

721

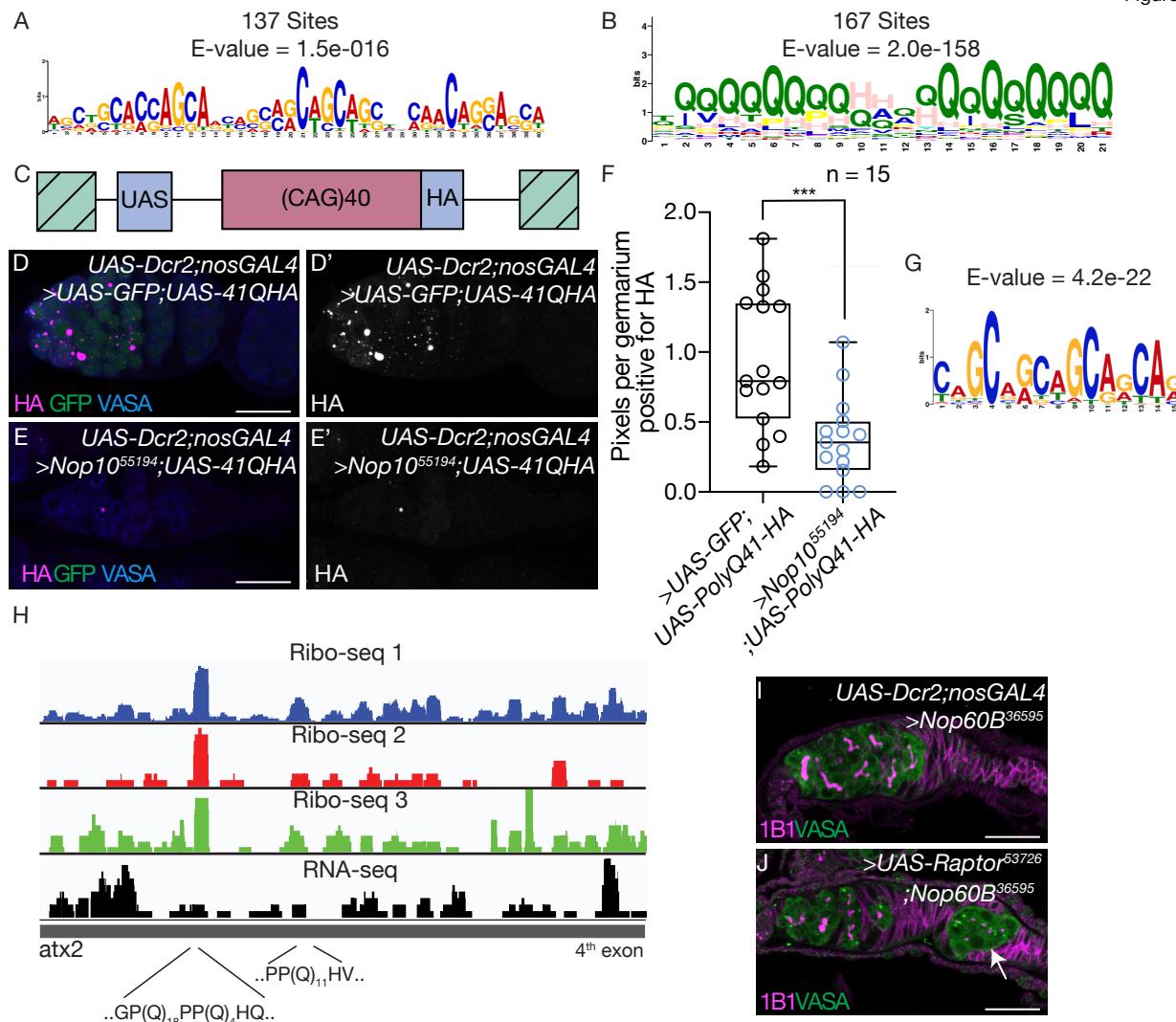
722

Figure 3: The H/ACA box is required for translation of meiotic mRNAs

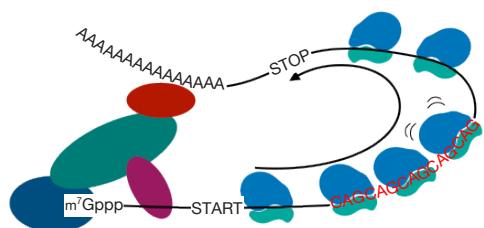
723

724

725


726

727

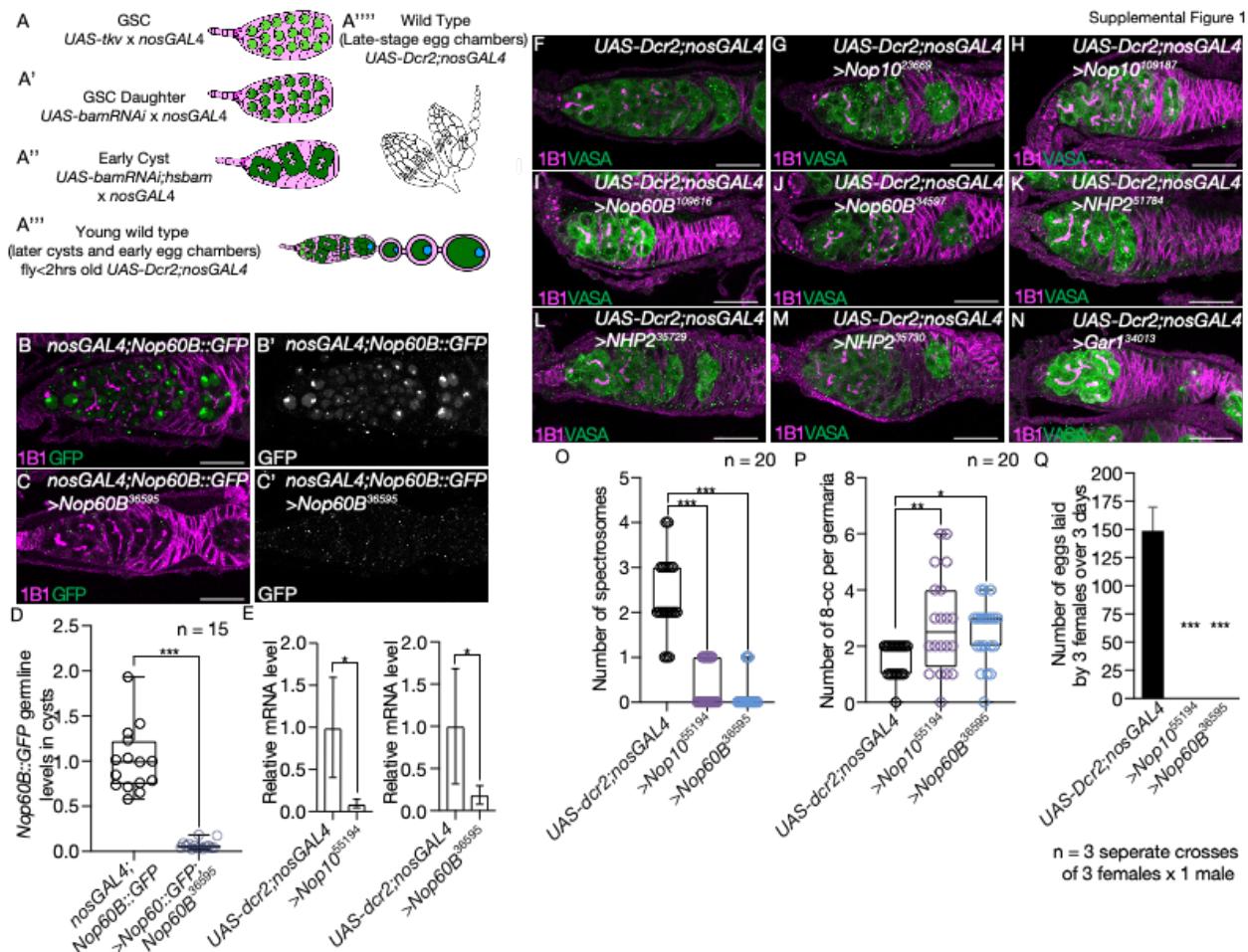

(A) Mass spectrometry analysis of rRNA isolated from germline ribosomal pulldowns showing reduced pseudouridine levels on rRNA. Statistics performed were t-test of pseudouridine levels comparing germaria enriched for cysts and *Nop10* depleted germaria. For each developmental stage at least 2 biological replicates were analyzed with 3 technical replicates of each biological replicates (** p<0.0001).

728 (B) Venn diagram illustrating overlap of Nop60B-polysome <-2 fold less association with the
729 ribosome upon loss of *Nop60B* ($n = 2$, $e < 2.87 \times 10^{-192}$, Hypergeometric Test). Controls were
730 cysts, enriched through heat shock, and young wild-type (YWT), which includes germarial stages
731 and a few egg chambers.
732 (C) Significant biological process GO terms of shared lowly associated mRNAs in
733 ovaries depleted of *Nop60B* compared to control sets, showing an enrichment for mRNAs
734 associated with meiosis 1.
735 (D) In situ hybridization to *Rbfox1* RNA (green) and staining with anti-1B1 (magenta) and anti-
736 Vasa (blue) in *UAS-Dcr2;nosGAL4* (driver control) germlaria and (E,F) germline-depleted of
737 *Nop10* and *Nop60B*. *Rbfox1* RNA is shown in gray scale (D', E', F'). Yellow dotted line outlines
738 *Rbfox1* RNA.
739 (G) Quantification of *Rbfox1* RNA levels in germline depleted of varying members of *Nop10* and
740 *Nop60B* normalized to soma showing no significant difference in *Rbfox1* levels. Statistics
741 performed were Dunnett's multiple comparisons test post-hoc test after one-way ANOVA ($n = 10$
742 for all, not significant, $P > 0.9999$ and $p = 0.9792$ respectively).
743 (H) Germlaria of *UAS-Dcr2;nosGAL4* (driver control) driving UAS-*Rbfox1*-RN-HA and (I) germline
744 depleted of *Nop60B* driving *Rbfox1*-RN-HA. Germlaria stained with anti-Vasa (blue) and anti-HA
745 (magenta). HA is shown in gray scale (H', I').
746 (J) Quantification of HA levels in control vs germline depleted of *Nop60B* normalized to vasa
747 showing reduced *Rbfox1*-RN-HA levels in the germline. Statistics performed were unpaired t-test
748 ($n = 17$ for all, *** $p < 0.0001$). Yellow dotted line outlines *Rbfox1*-RN-HA.
749


Figure 4

K Sufficient ribosome levels

Insufficient ribosome levels



750
751
752
753
754
755

Figure 4: The H/ACA box is required for translating polyQ proteins

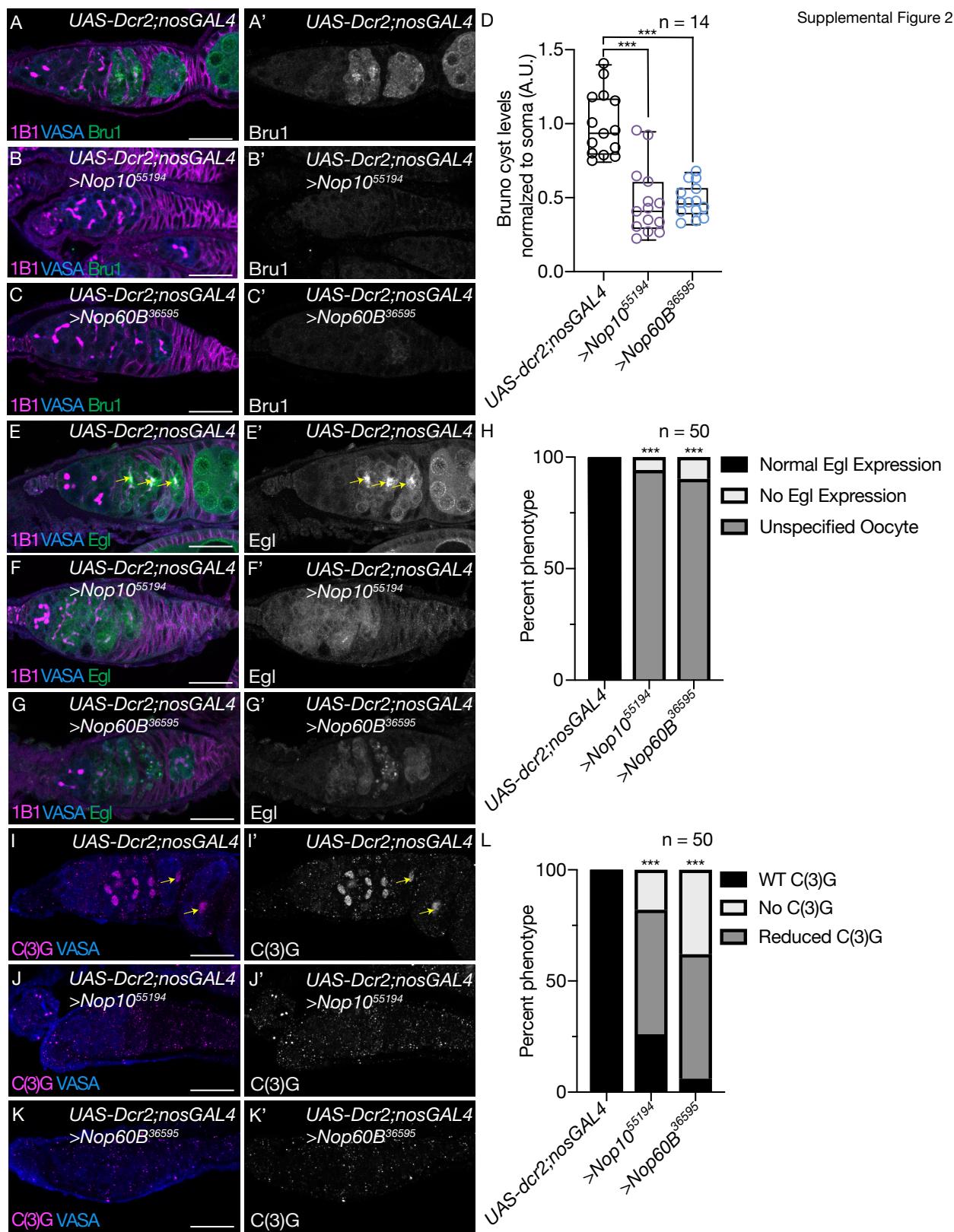
(A) Repeating CAG motif identified by MEME enriched in the CDS of 137 mRNAs that are lowly associated with polysomes in germaria depleted of *Nop60B*.
 (B) Repeating polyQ motif present in 167 sites identified by MEME enriched that are present in the mRNAs that are lowly associated with the ribosome in germaria depleted of *Nop60B*.

756 (C) Schematic of CAG reporter which codes for a 41Q protein with an HA tag and which can be
757 driven by the *UAS-GAL4* in a tissue specific manner.
758 (D) Confocal image of poly41Q-HA reporter driven in *UAS-Dcr2;nosGAL4* controls flies or
759 poly41Q-HA reporter driven in *Nop10* depleted germlaria (E) stained with anti-HA (magenta), anti-
760 GFP (green) and anti-Vasa (blue). UAS-GFP was also driven to ensure equal GAL4 dosage. HA
761 is shown in gray scale (D' and E'). Scale bar for all images is 20 μ m.
762 (F) Quantification of percent of pixels per area of HA in control vs germline depleted of *Nop10*
763 showing a reduction of HA signal in *Nop10* depleted germlaria. Statistics performed were unpaired
764 t-test (n = 15 for all, *** p=0.0007).
765 (G) Repeating CAG motif identified by MEME at peak regions in mRNAs detected by ribosome
766 footprinting.
767 (H) Ribosome footprint distribution on *atx2* mRNA, illustrating a peak in exon 4 found in common
768 among the 3 Ribo-Seq libraries (blue, red and green) but not in the RNA-Seq library (black). A
769 polyQ stretch is present at the ribosome peak.
770 (I, J) Germlaria depleted for *Nop60B* (I) or *Nop60B* (J) while simultaneously overexpressing
771 Raptor-HA using *UAS-Dcr2;nosGAL4*. Germlaria stained with anti-Vasa (green) and anti-1B1
772 (magenta). Arrow points at egg chamber. (>*Nop60B* RNAi, N = 91, 1.1% contained 1st egg
773 chamber while >*Nop60B* RNAi;UAS-Raptor, N = 151, 9.9% contained 1st egg chamber, Fisher's
774 exact test, p=0.0037).
775 (K) Representative model showing that a sufficient level of ribosomes is required for translation
776 of meiotic mRNAs containing a repeating CAG motif. Proper ribosome levels allow for translation
777 of these mRNAs to promote terminal differentiation. Ribosome insufficiency result in reduced
778 translation of meiotic mRNAs, due to ribosome stalling or slowing, that contain the repeating CAG
779 motif causing a failure of terminally differentiate.
780

781

782 **Supplemental 1: The H/ACA box is required in the germline for proper oogenesis**

783 (A-A'') Schematic of method to enrich for GSCs (A), GSC daughters (A'), cysts (early cysts; A''),
784 young wild type (later cysts and early egg chambers; A''), and late-stage egg chambers (A''').
785 (B,C) nosGAL4;Nop60B::GFP (driver control) germarium (B) and germarium with germline
786 knockdown of Nop60B in Nop60B::GFP (C) stained with anti-1B1 (magenta) and anti-GFP
787 (green). GFP is shown in gray scale (B' and C'). Scale bar for all images is 20 μ m.

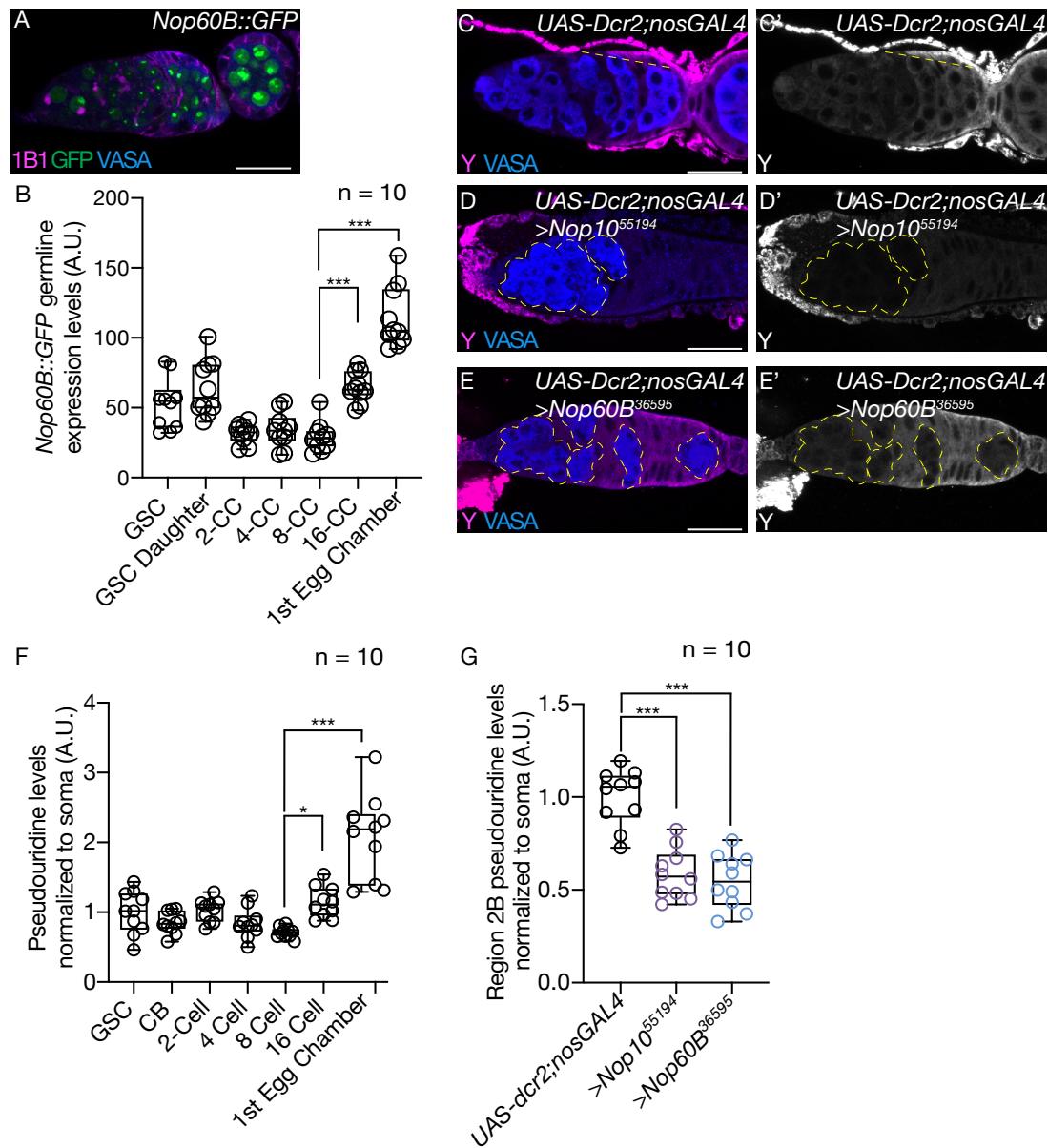

788 (D) Quantification using unpaired t-test of GFP in cysts of nosGAL4;Nop60B::GFP and germline
789 knockdown of Nop60B in Nop60B::GFP background (n = 15 each, *** p<0.0001). There were
790 lower levels of germline GFP in Nop60B knockdown germaria.

791 (E) qRT-PCR assaying the RNA levels of Nop10 or Nop60B in germline RNAi normalized to
792 control, UAS-Dcr;nosGAL4, and indicating successful knockdown of H/ACA box members (n = 3,
793 Nop10: * p = 0.0231, paired t-test) (n=3, Nop60: * p = 0.0142, paired t-test). Error bars
794 representing SEM.

795 (F-N) UAS-Dcr2;nosGAL4 (driver control) germaria (F) and germline depletion of varying
796 members of the H/ACA box stained with anti-1B1 (magenta) and anti-Vasa (green): Nop10 (G-H);
797 Nop60B (I-J); NHP2 (K-M); and Gar1 (N). Germline knockdown of H/ACA box members
798 results in a block in cyst development. Scale bar for all images is 20 μ m.

799 (O) Quantification of number of spectrosomes in UAS-Dcr2;nosGAL4 (driver control) germaria
800 and germline depleted of Nop10 or Nop60B showing a loss of GSCs. Statistics performed were

801 Dunnett's multiple comparisons test post-hoc test after one-way ANOVA (n = 20 each, ***
802 p<0.0001).
803 (P) Quantification of number of 8-cell cysts in *UAS-Dcr2;nosGAL4* (driver control) germline and
804 germline depleted of *Nop10* or *Nop60B* showing an increase in 8-cell cysts. Statistics performed
805 were Dunnett's multiple comparisons test post-hoc test after one-way ANOVA (n = 20 each,
806 *p=0.0341, **p=0.0030,).
807 (Q) Egg laying assay after germline RNAi knockdown of *Nop10* or *Nop60B* indicating a loss of
808 fertility compared to *UAS-dcr2;nosGAL4* (driver control) (n = 0-173, *** p<0.001) Dunnett's
809 multiple comparisons test post-hoc test after one-way ANOVA, p < 0.0001. Error bars are
810 standard deviation (SD).
811



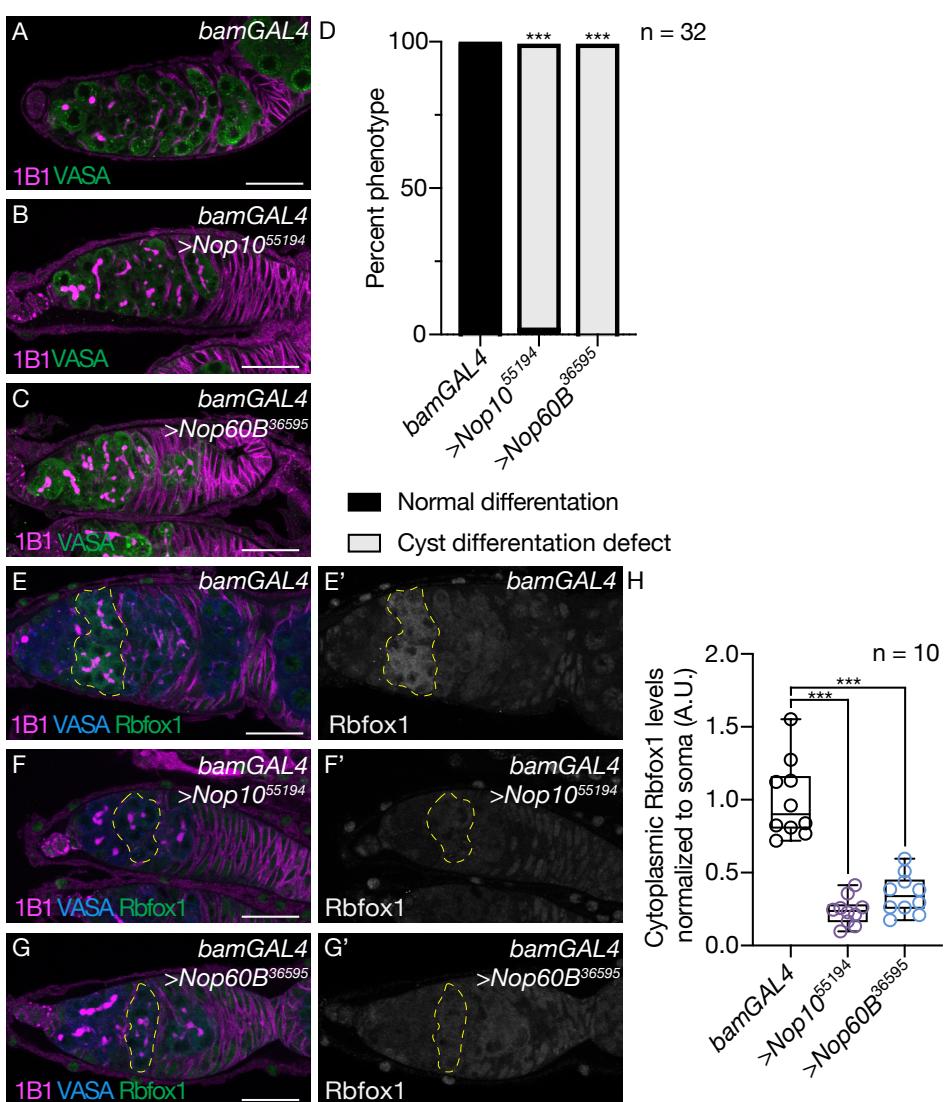
812
813

Supplemental 2: The H/ACA box is required for meiotic progression

814 (A-C) *UAS-Dcr2;nosGAL4* control germaria (A) and germline depleted for *Nop10* and *Nop60B* (B,
815 C) stained with anti-1B1 (magenta), anti-Vasa (blue) and anti-Bru1 (green). Bru1 is shown in gray
816 scale (A', B', C').
817 (B) Quantification of Bru1 levels in germline depleted of *Nop10* and *Nop60B* normalized to soma
818 showing a reduction in Bru1 levels in germaria depleted of the H/ACA box. Statistics performed
819 were Dunnett's multiple comparisons test post-hoc test after one-way ANOVA (n = 50 each, ***
820 p<0.0001).
821 (E) *UAS-Dcr2;nosGAL4* (driver control) germaria and (F, G) germline depleted of *Nop10* and
822 *Nop60B*, stained with anti-1B1 (magenta), anti-Vasa (blue) and anti-Egl (green). Egl is shown in
823 gray scale (E', F', G'). Arrow pointing at designated oocyte. Scale bar for all images is 20 μ m.
824 (H) Quantification of oogenesis defect phenotypes showing a loss of oocyte specification in
825 germaria depleted of the H/ACA box. Statistical analysis performed with Fisher's exact test (n =
826 50 each, *** p<0.0001).
827 (I-K) *UAS-Dcr2;nosGAL4* (driver control) germaria (I) and germline depleted of *Nop10* (J) or
828 *Nop60B* (K) stained with anti-c(3)G (magenta) and anti-Vasa (blue). c(3)G is shown in gray scale
829 (I', J', K'). Arrow points to designated oocyte. Scale bar for all images is 20 μ m.
830 (L) Quantification of oogenesis defect phenotypes showing a loss of c(3)G expression in germaria
831 depleted of the H/ACA box. Statistical analysis performed with Fisher's exact test (n = 50 each,
832 *** p<0.0001).
833

Supplemental Figure 3

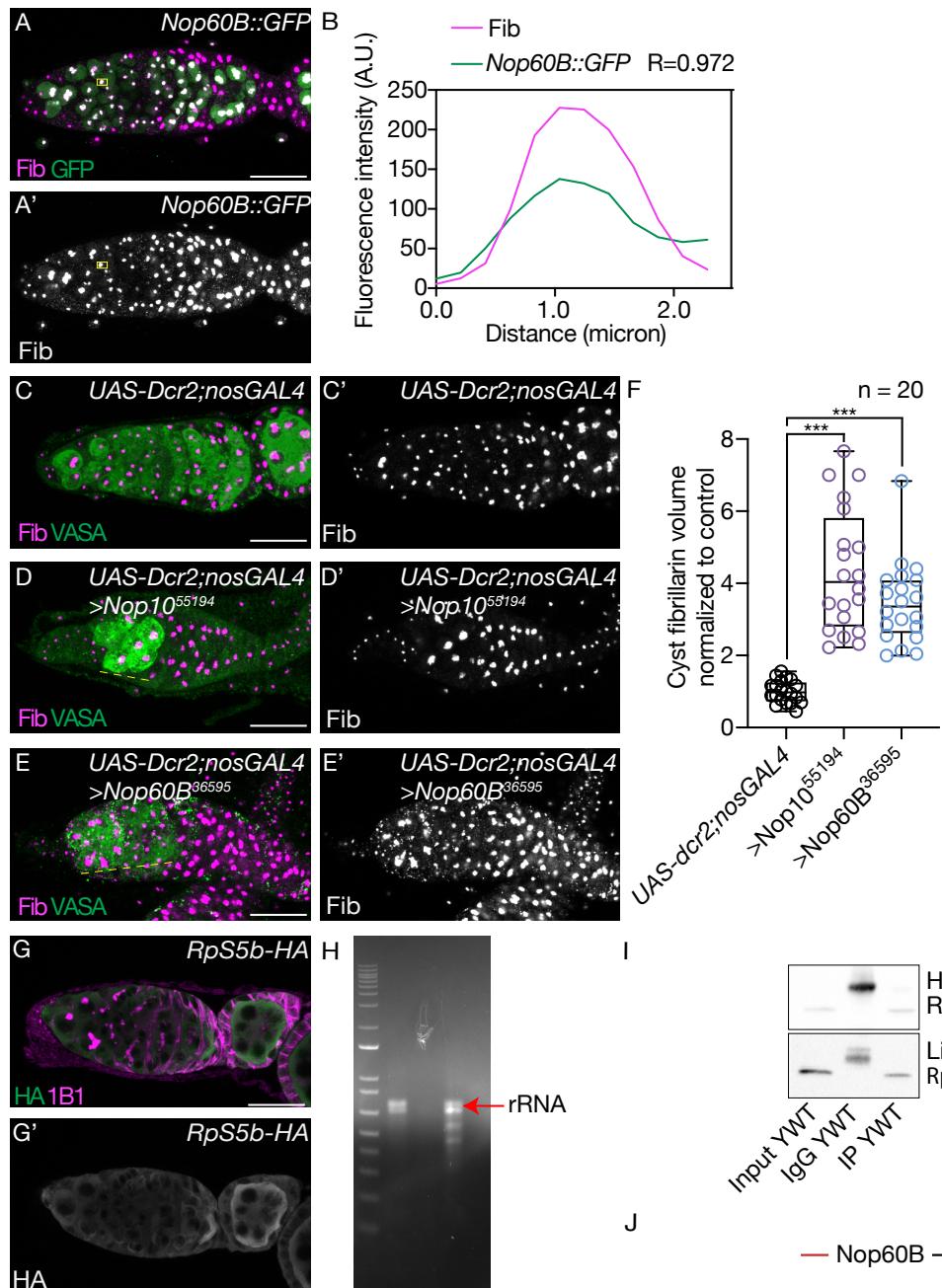
834


835 **Supplemental 3: *Nop60B* and pseudouridine increase during transition from cyst to egg**
836 **chamber**

837 (A) *Nop60B::GFP* gerarium stained with anti-1B1 (magenta), anti-Vasa (blue) and anti-GFP
838 (green). GFP is shown in gray scale (A'). Image is taken at 40x and scale bar for all images is 20
839 μm .

840 (B) Quantitation of GFP from GSC to 1st egg chamber in *Nop60B::GFP*. Statistics performed were
841 Tukey's multiple comparisons test post-hoc test after one-way ANOVA. Statistics shown
842 comparing 8-cell cyst to 16-cell cyst and to the egg chamber showing an increase in GFP levels
843 ($n = 10$, *** $p < 0.001$).

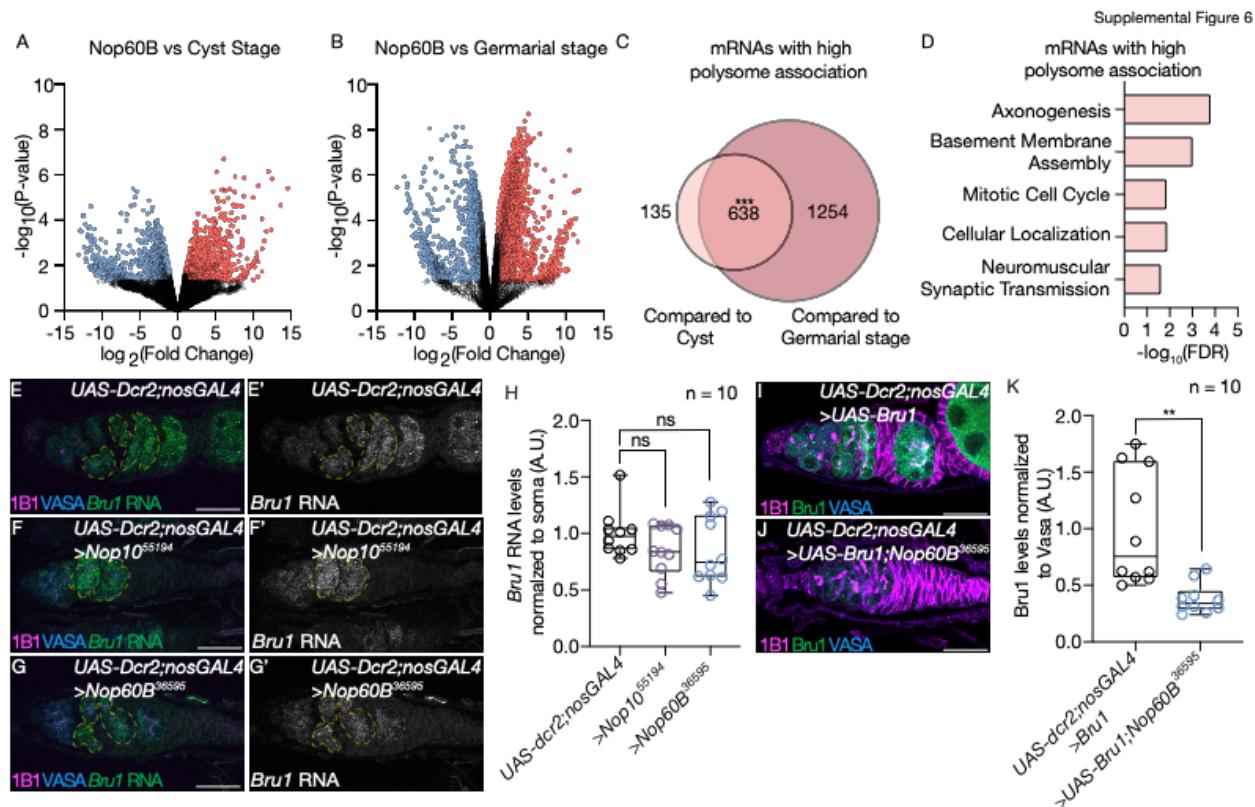
844 (C) *UAS-Dcr2;nosGAL4* (driver control) gerarium and (D, E) germline depletion of *Nop10* and
845 *Nop60B* stained with anti-pseudouridine (magenta) and anti-Vasa (blue). Pseudouridine is shown


846 in gray scale (C', D' and E'). Yellow dotted line in control represents area of increasing
847 pseudouridine levels while yellow outline in *Nop10* and *Nop60B* represents loss of pseudouridine.
848 Scale bar for all images is 20 μ m.
849 (F) Quantification of pseudouridine levels from GSC to 1st egg chamber in *UAS-Dcr2;nosGAL4*.
850 Statistics performed were Tukey's multiple comparisons test post-hoc test after one-way ANOVA.
851 Statistics shown comparing 8-cell cyst to 16-cell cyst and to the egg chamber showing an increase
852 in pseudouridine levels (n = 10, * P < 0.0313, *** p < 0.001).
853 (G) Statistics shown from the 2B-region of *UAS-Dcr2;nosGAL4* and *Nop10* or *Nop60* depleted
854 germaria. Loss of H/ACA box members led to a significant reduction in germline pseudouridine
855 levels when normalized to soma (n = 10, *** p < 0.001).
856

Supplemental Figure 4

857
858 **Supplemental 4: The H/ACA box is required in the cyst stages**
859 (A-C) *bamGAL4* (driver control) germaria (A) and germline depletion of the *Nop10* (B) or *Nop60B*
860 (C) stained with anti-1B1 (magenta) and anti-Vasa (green). Scale bar for all images is 20 μ m.

861 (D) Quantification of oogenesis defect phenotypes per genotype showing a cyst differentiation
862 defect. Statistical analysis performed with Fisher's exact test (n = 32 for all, *** p<0.0001).
863 (E) *bamGAL4* (driver control) germaria and (F and G) germline depletion of *Nop10* and *Nop60B*
864 stained with anti-1B1 (magenta), anti-Vasa (blue) and anti-Rbfox1 (green). Rbfox1 is shown in
865 gray scale (E', F' and G'). Scale bar for all images is 20 μ m for all images. Yellow dotted line
866 outlined cysts.
867 (H) Quantification of Rbfox1 levels showing a reduction in Rbfox1 levels in *Nop10* and *Nop60B*
868 depleted germaria. Statistical analysis performed with Fisher's exact test (n = 10 each, ***
869 p<0.0001).
870



Supplemental Figure 5

871
872
873

Supplemental 5: The H/ACA box deposits pseudouridine on rRNA and is required for proper ribosome biogenesis

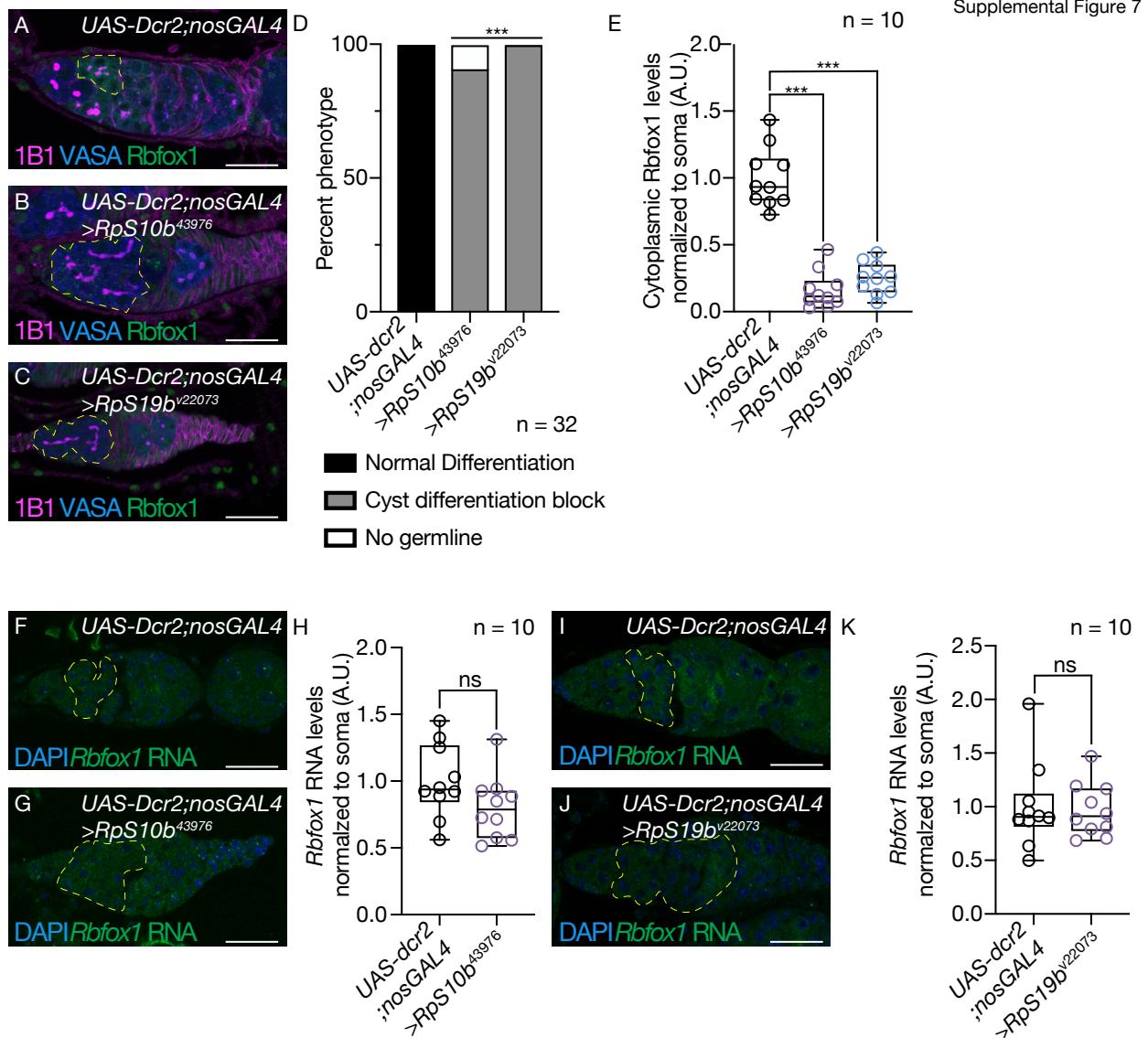
874 (A) *Nop60B::GFP* germanium stained with Fibrillarin (magenta) and GFP (green). Fibrillarin is
875 shown in gray scale (A'). Scale bar for all images is 20 μ m.
876 (B) Fluorescence intensity plot generated from a box of averaged pixels centered around the
877 punctate of Fibrillarin in the white box. R values denote Spearman correlation coefficients
878 between GFP and Fibrillarin from plot profiles generated using Fiji, taken from the nucleolus
879 denoted by the yellow box.
880 (C) *UAS-Dcr2;nosGAL4* (driver control) germania and (D and E) germline depletion of *Nop10* and
881 *Nop60B* stained with fibrillarin (magenta) and Vasa (green). Fibrillarin is shown in gray scale (C',
882 D' and E'). Scale bar for all images is 20 μ m.
883 (F) Quantification of nucleolar volume in the cysts stages per genotype showing an increased
884 nucleolar size with *Nop10* and *Nop60B* depletion when compared to control. Statistics performed
885 were Dunnett's multiple comparisons test post-hoc test after one-way ANOVA (n = 20 each, ***
886 p<0.0001).
887 (G) Germania of *RpS5b-HA* stained with anti-1B1 (magenta) and anti-HA (green). HA is shown in
888 gray scale (G').
889 (H) Agarose gel of control lysate showing enrichment of rRNA (red arrow) in the input and IP lane
890 but not in negative control (IgG).
891 (I) Western blot analysis of ribosomal pulldowns probing for HA and RPL26 in input, IgG and
892 pulldown samples. HA and RPL26 are present in both the input and pulldown lane but not the IgG
893 showing successful pulldown of large and small ribosomal proteins.
894 (J) Polysomes traces for YWT (*UAS-Dcr2;nosGAL4*) (black) and *Nop60B* (red) depleted germania.
895 *Nop60B* is required for proper ribosome biogenesis as traces show that loss of *Nop60B* results in
896 40S and 60S defects as well as loss of polysomes when compared to control.
897

898

899 **Supplemental 6: The H/ACA box is required for translation of meiotic mRNAs**

900 (A) Volcano plot of *Nop60B* depleted germaria vs cyst stages (heat shock) with \log_2 (fold change) 901 on x-axis and $-\log_{10}(P\text{-value})$ on the y-axis. Blue points represent mRNAs that have lower 902 association with the polysomes and red points represent mRNAs with high polysome association 903 ($n = 2$, targets identified as 2-fold cutoff).

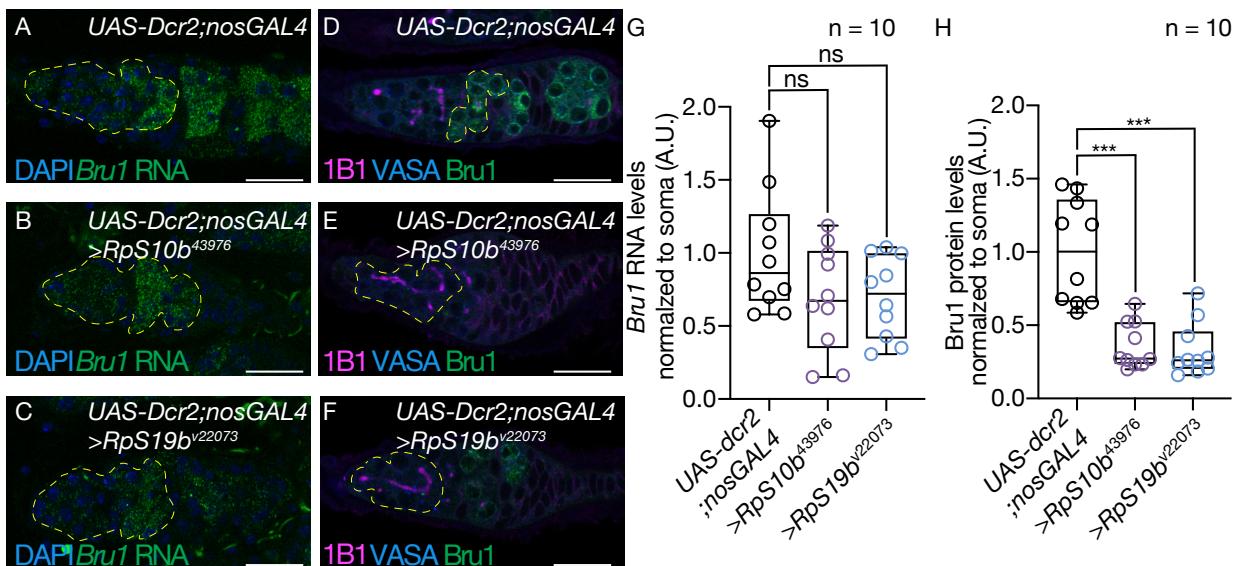
904 (B) Volcano plot of *Nop60B* depleted germaria vs germarial stages (YWT or *UAS-Dcr2;nosGAL4*) 905 with \log_2 (fold change) on x-axis and $-\log_{10}(P\text{-value})$ on the y-axis. Blue points represent mRNAs 906 that have lower association with the polysomes and red points represent mRNAs with high 907 polysome association ($n = 2$, targets identified as 2-fold cutoff).


908 (C) Venn diagram illustrating overlap of *Nop60B*-polysome >2 fold more association upon loss 909 of *Nop60B* (significance to low to compute in RStudio using Hypergeometric Test). Controls were 910 cysts, enriched through heat shock, and germarial stages (YWT or *UAS-Dcr2;nosGAL4*)

911 (D) Significant biological process GO terms of shared highly associated mRNAs in 912 ovaries depleted of *Nop60B* compared to control sets, showing an enrichment for mRNAs 913 associated with mitotic cell cycle.

914 (E-G) *In situ* hybridization to *Bru1* RNA (green) together with anti-1B1 (magenta) and anti-Vasa 915 (blue) staining in *UAS-Dcr2;nosGAL4* (driver control) germaria (E) and germline depleted of 916 *Nop10* (F) and *Nop60B* (G). *Bru1* RNA is shown in gray scale (E', F', G'). Scale bar for all images 917 is 20 μm . Yellow dotted line outlines *bru1* RNA.

918 (H) Quantification of *Bru1* RNA levels in germline depleted of varying members of *Nop10* and 919 *Nop60B* normalized to soma showing no significant change in *Bru1* RNA levels. Statistics 920 performed were Dunnett's multiple comparisons test post-hoc test after one-way ANOVA ($n = 10$ 921 each, not significant, $p=0.3606$ and $p=0.3752$ respectively).

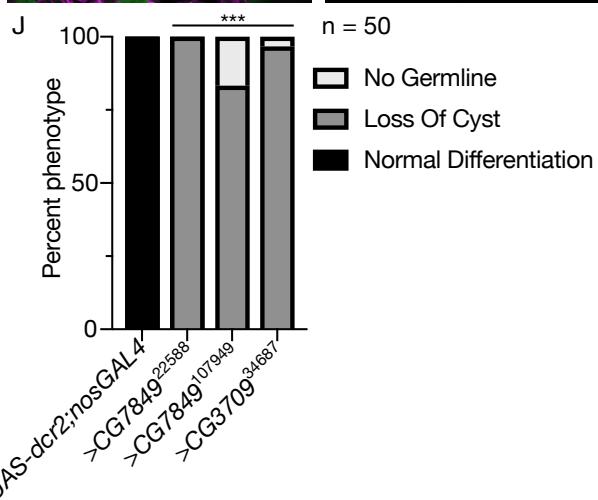
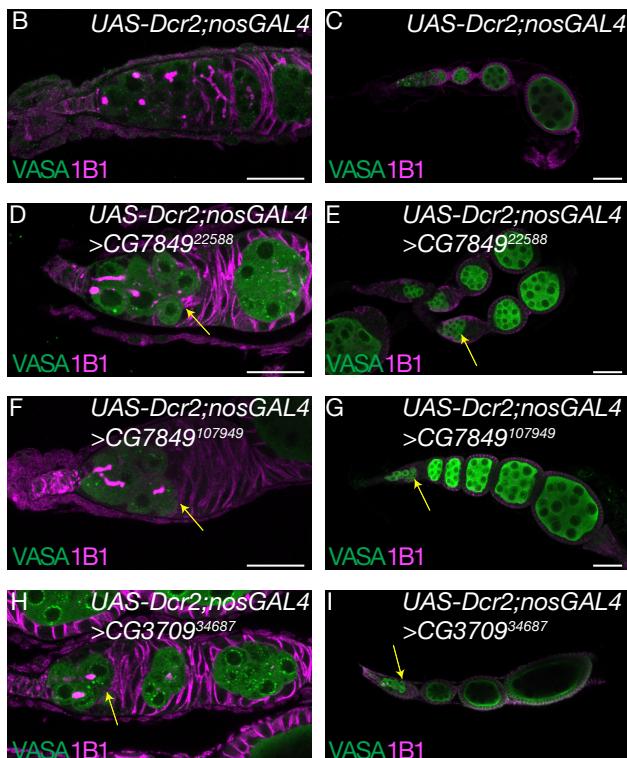

922 (I) Germaria of *UAS-Dcr2;nosGAL4* (driver control) overexpressing Bru1 and (J) germline
 923 depleted of *Nop60B* overexpressing Bru1. Scale bar for all images is 20 μ m.
 924 (K) Quantification of Bru1 levels in control vs germline depleted of *Nop60B* normalized to Vasa
 925 show a reduction in Bru1 levels. Statistics performed were unpaired t-test (n = 10 each, **
 926 p=.0015).
 927

928
 929 **Supplemental 7: Ribosomal paralogs are required for Rbfox1 translation**
 930 (A-C) *UAS-Dcr2;nosGAL4* (driver control) germaria (B) germline depletion of *RpS10b* (B) or
 931 *RpS19b* (C) stained with anti-1B1 (magenta), anti-Vasa (blue) and anti-Rbfox1 (green). Scale bar
 932 for all images is 20 μ m. Yellow dotted lines outline cysts.
 933 (D) Quantification of oogenesis defect phenotypes per genotype. Knockdown of ribosomal
 934 paralogs results in a cyst differentiation block. Statistical analysis performed with Fisher's exact
 935 test (n = 32 for all, *** p<0.0001).

936 (E) Quantification of cytoplasmic Rbfox1 levels normalized to soma in germline depletion of
937 *RpS10b* and *RpS19b* showing that loss of ribosomal proteins results in lower Rbfox1 levels.
938 Statistics performed were Dunnett's multiple comparisons test post-hoc test after one-way
939 ANOVA (n = 10 each, *** p<0.0001).
940 (F) In situ hybridization of *Rbfox1* RNA (green) and DAPI (blue) in *UAS-Dcr2;nosGAL4* (driver
941 control) germlaria and (G) germline depleted of *RpS10b*. Scale bar for all images is 20 μ m. Yellow
942 dotted line outlines *Rbfox1* RNA.
943 (H) Quantification of *Rbfox1* RNA levels in germline depleted of *RpS10b* normalized to soma
944 showing no significant differences in *Rbfox1* RNA levels. Statistics performed were unpaired t-
945 test (n = 10 each, not significant, p=0.1006).
946 (I) In situ hybridization of *Rbfox1* RNA (green) and DAPI staining (blue) in *UAS-Dcr2;nosGAL4*
947 (driver control) germlaria and (J) germline depleted of *RpS19b*. Scale bar for all images is 20 μ m.
948 Yellow dotted line outlines *Rbfox1* RNA.
949 (K) Quantification of *Rbfox1* RNA levels in germline depleted of *RpS19b* normalized to soma
950 showing no significant differences in *Rbfox1* RNA levels. Statistics performed were unpaired t-
951 test (n = 10 each, not significant, p=0.8258).
952

Supplemental Figure 8

953
954 **Supplemental 8: Ribosomal paralogs are required for Bru1 translation**
955 (A-C) In situ hybridization to *Bru1* RNA (green) and DAPI staining (blue) in *UAS-Dcr2;nosGAL4*
956 (driver control) germlaria (A) and germline depleted of *RpS10b* (B) and *RpS19b* (C). Scale bar for
957 all images is 20 μ m. Yellow dotted line outlines *bru1* RNA.
958 (D-F) *UAS-Dcr2;nosGAL4* (driver control) germlaria (D) and germline depletion of *RpS10b* (E) and
959 *RpS19b* (F) stained with anti-1B1 (magenta), anti-Vasa (blue) and anti-Bru1 (green). Scale bar
960 for all images is 20 μ m. Yellow dotted line outlines cysts.
961 (G) Quantification of *Bru1* RNA levels normalized to soma in germline depletion of *RpS10b* and
962 *RpS19b* showing no significant differences in *Bru1* RNA levels with loss of ribosomal paralogs.

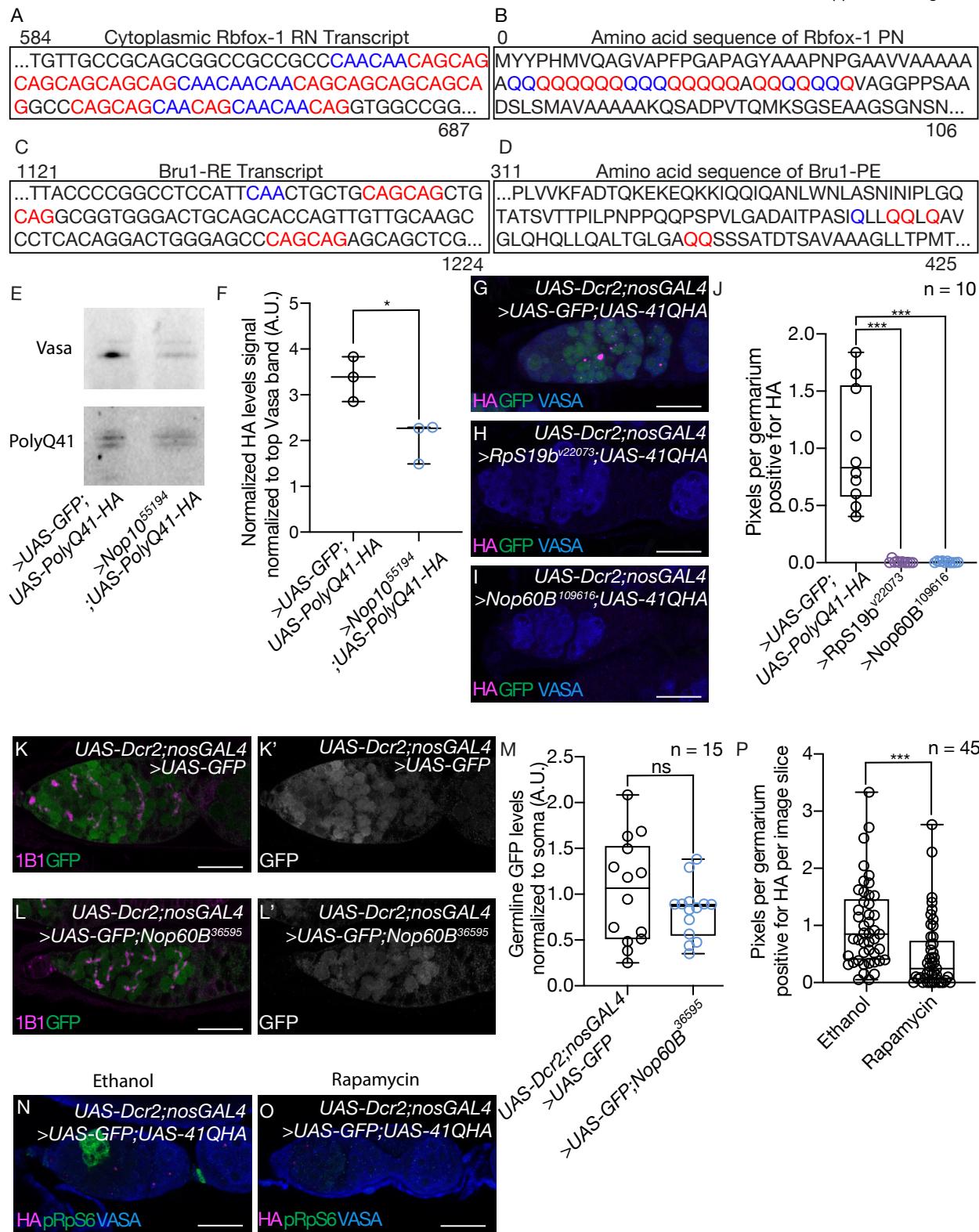


963 Statistics performed were Dunnett's multiple comparisons test post-hoc test after one-way
964 ANOVA (n = 10 each, not significant, p=0.1149 and 0.1325, respectively).
965 (H) Quantification of Bru1 protein levels normalized to soma in germline depletion of *RpS10b* and
966 *RpS19b* showing that loss of ribosomal proteins results in lower bru1 levels. Statistics performed
967 were Dunnett's multiple comparisons test post-hoc test after one-way ANOVA (n = 10 each, ***
968 p<0.0001).
969

Supplemental Figure 9

A	Flybase symbol	Pseudouridine Synthase	Location
	CG7849	TruB/TruB2	Unknown tRNA or mRNA
	CG3709	Pus10	tRNA Uracil 55

Germaria (40x)

Ovariole (20x)



970
971
972

Supplemental 9: tRNA pseudouridine synthases are required for differentiation but do not phenocopy loss of rRNA pseudouridine synthases

973 (A) Table of tRNA pseudouridine synthases and location of pseudouridine deposition found to
974 have a differentiation defect.
975 (B, C) Images of 40x *UAS-Dcr2;nosGAL4* (driver control) germarium (B) and 20x *UAS-*
976 *dcr2;nosGAL4* (driver control) ovarioles (C) stained with anti-1B1 (magenta) and anti-Vasa
977 (green).
978 (D, E) Images at 40x (D) and 20x (E) of germarium where CG7849 is depleted in the germline
979 and stained with anti-1B1 (magenta) and anti-Vasa (green).
980 (F, G) Images at 40x (F) and 20x (G) of germarium using a second RNAi line to deplete CG7849
981 in the germline and stained with anti-1B1 (magenta) and anti-Vasa (green).
982 (H, I) Images at 40x (H) and 20x (I) of germarium where CG3709 is depleted in the germline and
983 stained with anti-1B1 (magenta) and anti-Vasa (green). Yellow arrow points to region where cysts
984 are lost in all 20x images. Scale bar for all images is 20 μ m.
985 (J) Quantification of oogenesis defect phenotypes in tRNA pseudouridine synthase germline
986 knockdowns resulting in loss of cyst defect. Statistical analysis performed with Fisher's exact test
987 ($n = 50$ each, *** $p < 0.0001$).
988

Supplemental Figure 10

991 (A) mRNA sequence of cytoplasmic Rbfox1-RN with glutamine (Q) codons CAA in blue and CAG
992 in red. The transcript contains a large region of repeating CAA and CAG.
993 (B) Protein sequence of Rbfox1-PN. Blue letters represent a Q encoded by CAA while red letters
994 represent Q encoded by CAG. The transcript contains a large polyQ region.
995 (C) mRNA sequence of Bru1-RE with CAA in red and CAG in blue. The transcript contains a large
996 region of repeating CAA and CAG.
997 (D) Protein sequence of Bru1-PE with Q encoded by CAA in blue, while red letter represent Q
998 that corresponds to the codon CAG. The transcript contains a large polyQ region Q.
999 (E) Western blot analysis of poly41Q-HA reporter driven in control and *Nop10* depleted germlaria
1000 driven by *UAS-Dcr2;nosGAL4*. Western was probed with HA to detect polyQ protein. Vasa was
1001 probed for normalization of germline.
1002 (F) The level of HA (polyQ-HA) in ovary are significantly reduced upon germline knockdown of
1003 *Nop10*. Protein immunoblots for HA were performed using extracts from whole ovaries. The signal
1004 ratio between the HA and the upper Vasa band were used to quantitate and normalize the amount
1005 of germline. The ratio is expressed in arbitrary units (A.U.). The results of each independent
1006 experiment are plotted. Statistics performed were unpaired t-test (n = 3, * p=.0253).
1007 (G) Control confocal image of poly41Q-HA reporter driven in *UAS-Dcr2;nosGAL4* and germlaria
1008 depleted of *RpS19b* and *Nop60B* (H and I) stained with anti-HA (magenta), anti-GFP (green) and
1009 anti-Vasa (blue). Scale bar for all images is 20 μ m.
1010 (J) Quantification of percent of pixels per area of HA in control vs germline depleted of *RpS19b*
1011 and *Nop60B* showing a reduction in HA signal. Statistics performed were unpaired t-test (n = 10
1012 each, *** p=0.0001).
1013 (K, L) UAS-GFP driven by *UAS-Dcr2;nosGAL4* in control germlaria (K) and in germlaria depleted
1014 of *Nop60B* (L), stained with anti-1B1 (magenta) and anti-GFP (green). GFP is shown in gray scale
1015 (K' and L'). Scale bar for all images is 20 μ m.
1016 (M) Quantitation of GFP levels in the cysts stages normalized to somatic background per
1017 genotype. There is no significant difference in GFP levels between control germlaria and *Nop60B*
1018 depleted germlaria. The results of each independent experiment are plotted. Statistics performed
1019 were unpaired t-test (n = 15, not significant, p=0.2187).
1020 (N, O) Confocal image of poly41Q-HA reporter driven by *UAS-Dcr2;nosGAL4* in mock-treated (N)
1021 and rapamycin-treated (O) ovaries, stained with anti-HA (magenta), anti-pRpS6 (green) and anti-
1022 Vasa (blue). Scale bar for all images is 20 μ m.
1023 (P) Quantification of percent of pixels of HA per area in mock- and rapamycin-treated flies showing
1024 a reduction in HA signal with rapamycin treatment. Statistics performed were unpaired t-test (n =
1025 45 slices quantified for each, *** p<0.0005).
1026
1027 **Table 1:** (A) PTM code for the modifications identified. The 1st column represents the Modomics
1028 code, the 2nd column represents the PTM name and the 3rd column the shortened modification
1029 name. (B) Summary of RNA PTMs profiles obtained from GSCs, GSC daughters, cysts (early
1030 cysts), young wild type (later cysts and early egg chambers) and wild type (late-stage egg
1031 chambers). Each value represents the average and standard deviation of the respective relative
1032 abundances (AvP%, see Methods). A different shade of color was assigned only if the RNA PTMs
1033 relative abundance was statistically different from that of the GSCs input reference (1st column)
1034 with a p value not exceeding 0.05.

1035
1036 **Table 2:** (A) Excel spreadsheet of the RNA modification screen that contains the gene names,
1037 stock numbers, type of modification and phenotype. The raw number of germaria were counted.
1038 (B) The RNA modification screen represented as percent phenotypes.
1039
1040 **Table 3:** Summary of PTM profiles obtained. Each value represents the average and standard
1041 deviation of the respective relative abundances (AvP%, see Methods). A different shade of color
1042 was assigned only if the RNA PTMs relative abundance was statistically different from that of the
1043 cysts input reference (1st column) with a p value not exceeding 0.05.
1044
1045 **Table 4:** Spreadsheet of mRNA targets identified from pull-down utilizing pseudouridine antibody
1046 with a 2-fold cut off. (A) Genes that were lower than 2-fold enriched (B) genes that were higher
1047 than 2-fold enriched and (C) fold-enrichment values for all genes.
1048
1049 **Table 5:** (A) MEME discriminative mode motif enrichment output of the 5' UTR, CDS and 3' UTR
1050 of genes that are lowly associated with the ribosome in germaria depleted of Nop60B. E-value,
1051 sites and width are provided for each identified motif. (B) MEME discriminative mode motif
1052 enrichment output of the 5' UTR, CDS and 3' UTR of genes highly associated polysome in
1053 germaria depleted of Nop60B depletion. E-value, sites and width are provided for each identified
1054 motif.
1055
1056 **Table 6:** (A) Correlation plots comparing Ribo-Seq datasets showing high reproducibility between
1057 libraries. (B) Column A: mRNA targets identified by Ribo-Seq that contain the CAG motif. Column
1058 B: mRNAs containing a strict repeating CAG (no interruptions). Column C: locations of the CAG
1059 motif. Column D: length of the longest CAG repeat present in the mRNA or if there are other
1060 amino acid repeats present.
1061
1062 **Table 7:** (A) Find Individual Motif Occurrences (FIMO) output of QQQQQ motif search in genes
1063 that were lowly associated with the polysome in Nop60B depleted germaria. Representative of
1064 181 unique genes that significantly contain a motif resembling QQQQQ. (B) All transcripts from
1065 the Find Individual Motif Occurrences (FIMO) output of QQQQQ motif search in genes lowly
1066 associated with the polysome in Nop60B depleted germaria. Also provided are the p-value and
1067 matched motif sequences in each transcript.
1068
1069 **References**
1070 Adegbuyiro, A., Sedighi, F., Pilkington, A.W., Groover, S., Legleiter, J., 2017. Proteins
1071 containing expanded polyglutamine tracts and neurodegenerative disease. Biochemistry
1072 56, 1199–1217. <https://doi.org/10.1021/acs.biochem.6b00936>
1073 Anderson, L.K., Royer, S.M., Page, S.L., McKim, K.S., Lai, A., Lilly, M.A., Hawley, R.S., 2005.
1074 Juxtaposition of C(2)M and the transverse filament protein C(3)G within the central
1075 region of Drosophila synaptonemal complex. Proc. Natl. Acad. Sci. U. S. A. 102, 4482–
1076 4487. <https://doi.org/10.1073/pnas.0500172102>
1077 Armistead, J., Triggs-Raine, B., 2014. Diverse diseases from a ubiquitous process: The
1078 ribosomopathy paradox. FEBS Lett. 588, 1491–1500.
1079 <https://doi.org/10.1016/j.febslet.2014.03.024>

1080 Aspesi, A., Ellis, S.R., 2019. Rare ribosomopathies: insights into mechanisms of cancer. *Nat. Rev. Cancer* 19, 228–238. <https://doi.org/10.1038/s41568-019-0105-0>

1081 Bailey, T.L., n.d. FITTING A MIXTURE MODEL BY EXPECTATION MAXIMIZATION TO

1082 DISCOVER MOTIFS IN BIOPOLYMERS 33.

1083 Barlow, J.L., Drynan, L.F., Trim, N.L., Erber, W.N., Warren, A.J., McKenzie, A.N.J., 2010. New

1084 insights into 5q- syndrome as a ribosomopathy. *Cell Cycle* 9, 4286–4293.

1085 <https://doi.org/10.4161/cc.9.21.13742>

1086 Bates, G., 2003. Huntingtin aggregation and toxicity in Huntington's disease. *The Lancet* 361,

1087 1642–1644. [https://doi.org/10.1016/S0140-6736\(03\)13304-1](https://doi.org/10.1016/S0140-6736(03)13304-1)

1088 Blatt, P., Martin, E.T., Breznak, S.M., Rangan, P., 2020. Post-transcriptional gene regulation

1089 regulates germline stem cell to oocyte transition during *Drosophila* oogenesis. *Curr. Top. Dev. Biol.* 140, 3–34. <https://doi.org/10.1016/bs.ctdb.2019.10.003>

1090 Brooks, S.S., Wall, A.L., Golzio, C., Reid, D.W., Kondyles, A., Willer, J.R., Botti, C., Nicchitta,

1091 C.V., Katsanis, N., Davis, E.E., 2014. A Novel Ribosomopathy Caused by Dysfunction of

1092 RPL10 Disrupts Neurodevelopment and Causes X-Linked Microcephaly in Humans.

1093 *Genetics* 198, 723–733. <https://doi.org/10.1534/genetics.114.168211>

1094 Calo, E., Gu, B., Bowen, M.E., Aryan, F., Zalc, A., Liang, J., Flynn, R.A., Swigut, T., Chang,

1095 H.Y., Attardi, L.D., Wysocka, J., 2018. Tissue-selective effects of nucleolar stress and

1096 rDNA damage in developmental disorders. *Nature* 554, 112–117.

1097 <https://doi.org/10.1038/nature25449>

1098 Carpenter, A.T., 1994. Egalitarian and the choice of cell fates in *Drosophila melanogaster*

1099 oogenesis. *Ciba Found. Symp.* 182, 223–246; discussion 246–254.

1100 Carreira-Rosario, A., Bhargava, V., Hillebrand, J., Kollipara, R.K., Ramaswami, M., Buszczak,

1101 M., 2016a. Repression of Pumilio Protein Expression by Rbfox1 Promotes Germ Cell

1102 Differentiation. *Dev. Cell* 36, 562–571. <https://doi.org/10.1016/j.devcel.2016.02.010>

1103 Carreira-Rosario, A., Bhargava, V., Hillebrand, J., Kollipara, R.K., Ramaswami, M., Buszczak,

1104 M., 2016b. Repression of Pumilio Protein Expression by Rbfox1 Promotes Germ Cell

1105 Differentiation. *Dev. Cell* 36, 562–571. <https://doi.org/10.1016/j.devcel.2016.02.010>

1106 Charette, M., Gray, M.W., 2000. Pseudouridine in RNA: what, where, how, and why. *IUBMB Life*

1107 49, 341–351. <https://doi.org/10.1080/152165400410182>

1108 Chen, D., McKearin, D., 2003a. Dpp Signaling Silences bam Transcription Directly to Establish

1109 Asymmetric Divisions of Germline Stem Cells. *Curr. Biol.* 13, 1786–1791.

1110 <https://doi.org/10.1016/j.cub.2003.09.033>

1111 Chen, D., McKearin, D.M., 2003b. A discrete transcriptional silencer in the bam gene

1112 determines asymmetric division of the *Drosophila* germline stem cell. *Development* 130,

1113 1159–1170. <https://doi.org/10.1242/dev.00325>

1114 Chen, X., Dickman, D., 2017. Development of a tissue-specific ribosome profiling approach in

1115 *Drosophila* enables genome-wide evaluation of translational adaptations. *PLOS Genet.*

1116 13, e1007117. <https://doi.org/10.1371/journal.pgen.1007117>

1117 Cheng, Z., Mugler, C.F., Keskin, A., Hodapp, S., Chan, L.Y.-L., Weis, K., Mertins, P., Regev, A.,

1118 Jovanovic, M., Brar, G.A., 2019. Small and Large Ribosomal Subunit Deficiencies Lead

1119 to Distinct Gene Expression Signatures that Reflect Cellular Growth Rate. *Mol. Cell* 73,

1120 36–47.e10. <https://doi.org/10.1016/j.molcel.2018.10.032>

1121 Cinalli, R.M., Rangan, P., Lehmann, R., 2008. Germ Cells Are Forever. *Cell* 132, 559–562.

1122 <https://doi.org/10.1016/j.cell.2008.02.003>

1123 Collins, K.A., Unruh, J.R., Slaughter, B.D., Yu, Z., Lake, C.M., Nielsen, R.J., Box, K.S., Miller,

1124 D.E., Blumenstiel, J.P., Perera, A.G., Malanowski, K.E., Hawley, R.S., 2014. Corolla Is a

1125 Novel Protein That Contributes to the Architecture of the Synaptonemal Complex of

1126 *Drosophila*. *Genetics* 198, 219–228. <https://doi.org/10.1534/genetics.114.165290>

1127

1128

1129 Czekay, D.P., Kothe, U., 2021. H/ACA Small Ribonucleoproteins: Structural and Functional
1130 Comparison Between Archaea and Eukaryotes. *Front. Microbiol.* 12.
1131 <https://doi.org/10.3389/fmicb.2021.654370>

1132 Dunn, J.G., Foo, C.K., Belletier, N.G., Gavis, E.R., Weissman, J.S., 2013. Ribosome profiling
1133 reveals pervasive and regulated stop codon readthrough in *Drosophila melanogaster*.
1134 *eLife* 2, e01179. <https://doi.org/10.7554/eLife.01179>

1135 Durairaj, A., Limbach, P.A., 2008. Mass spectrometry of the fifth nucleoside: A review of the
1136 identification of pseudouridine in nucleic acids. *Anal. Chim. Acta* 623, 117–125.
1137 <https://doi.org/10.1016/j.aca.2008.06.027>

1138 Ernlund, A.W., Schneider, R.J., Ruggles, K.V., 2018. RIVET: comprehensive graphic user
1139 interface for analysis and exploration of genome-wide translomics data. *BMC
1140 Genomics* 19, 809. <https://doi.org/10.1186/s12864-018-5166-z>

1141 Eshraghi, M., Karunadharma, P.P., Blin, J., Shahani, N., Ricci, E.P., Michel, A., Urban, N.T.,
1142 Galli, N., Sharma, M., Ramírez-Jarquín, U.N., Florescu, K., Hernandez, J.,
1143 Subramaniam, S., 2021. Mutant Huntingtin stalls ribosomes and represses protein
1144 synthesis in a cellular model of Huntington disease. *Nat. Commun.* 12, 1461.
1145 <https://doi.org/10.1038/s41467-021-21637-y>

1146 Fayazi, Z., Ghosh, S., Marion, S., Bao, X., Sheri, M., Kazemi-Esfarjani, P., 2006. A *Drosophila*
1147 ortholog of the human MRJ modulates polyglutamine toxicity and aggregation.
1148 *Neurobiol. Dis.* 24, 226–244. <https://doi.org/10.1016/j.nbd.2006.06.015>

1149 Filardo, P., Ephrussi, A., 2003. Bruno regulates gurken during *Drosophila* oogenesis. *Mech.
1150 Dev.* 120, 289–297. [https://doi.org/10.1016/s0925-4773\(02\)00454-9](https://doi.org/10.1016/s0925-4773(02)00454-9)

1151 Flora, P., Wong-Deyrup, S.W., Martin, E.T., Palumbo, R.J., Nasrallah, M., Oligney, A., Blatt, P.,
1152 Patel, D., Fuchs, G., Rangan, P., 2018. Sequential Regulation of Maternal mRNAs
1153 through a Conserved cis-Acting Element in Their 3' UTRs. *Cell Rep.* 25, 3828-3843.e9.
1154 <https://doi.org/10.1016/j.celrep.2018.12.007>

1155 Gehman, L.T., Meera, P., Stoilov, P., Shiue, L., O'Brien, J.E., Meisler, M.H., Ares, M., Otis, T.S.,
1156 Black, D.L., 2012. The splicing regulator Rbfox2 is required for both cerebellar
1157 development and mature motor function. *Genes Dev.* 26, 445–460.
1158 <https://doi.org/10.1101/gad.182477.111>

1159 Gehman, L.T., Stoilov, P., Maguire, J., Damianov, A., Lin, C.-H., Shiue, L., Ares, M., Mody, I.,
1160 Black, D.L., 2011. The splicing regulator Rbfox1 (A2BP1) controls neuronal excitation in
1161 the mammalian brain. *Nat. Genet.* 43, 706–711. <https://doi.org/10.1038/ng.841>

1162 Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B.,
1163 Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry, R.,
1164 Leisch, F., Li, C., Maechler, M., Rossini, A.J., Sawitzki, G., Smith, C., Smyth, G.,
1165 Tierney, L., Yang, J.Y.H., Zhang, J., 2004. Bioconductor: open software development for
1166 computational biology and bioinformatics. *Genome Biol.* 5, R80.
1167 <https://doi.org/10.1186/gb-2004-5-10-r80>

1168 Gilbert, W.V., 2011. Functional specialization of ribosomes? *Trends Biochem. Sci.* 36, 127–132.
1169 <https://doi.org/10.1016/j.tibs.2010.12.002>

1170 Giordano, E., Peluso, I., Senger, S., Furia, M., 1999. minifly, A *Drosophila* Gene Required for
1171 Ribosome Biogenesis. *J. Cell Biol.* 144, 1123–1133.

1172 Granneman, S., 2004. Ribosome biogenesis: of knobs and RNA processing. *Exp. Cell Res.*
1173 296, 43–50. <https://doi.org/10.1016/j.yexcr.2004.03.016>

1174 H. Pagès, P.A., 2017. Biostrings. Bioconductor. <https://doi.org/10.18129/B9.BIOC.BIOSTRINGS>

1175 Higa-Nakamine, S., Suzuki, Takeo, Uechi, T., Chakraborty, A., Nakajima, Y., Nakamura, M.,
1176 Hirano, N., Suzuki, Tsutomu, Kenmochi, N., 2012. Loss of ribosomal RNA modification
1177 causes developmental defects in zebrafish. *Nucleic Acids Res.* 40, 391–398.
1178 <https://doi.org/10.1093/nar/gkr700>

1179 Hoffgaard, F., Weil, P., Hamacher, K., 2010. BioPhysConnectoR: Connecting Sequence
1180 Information and Biophysical Models. *BMC Bioinformatics* 11, 199.
1181 <https://doi.org/10.1186/1471-2105-11-199>

1182 Huber, W., Carey, V.J., Gentleman, R., Anders, S., Carlson, M., Carvalho, B.S., Bravo, H.C.,
1183 Davis, S., Gatto, L., Girke, T., Gottardo, R., Hahne, F., Hansen, K.D., Irizarry, R.A.,
1184 Lawrence, M., Love, M.I., MacDonald, J., Obenchain, V., Oleś, A.K., Pages, H., Reyes,
1185 A., Shannon, P., Smyth, G.K., Tenenbaum, D., Waldron, L., Morgan, M., 2015.
1186 Orchestrating high-throughput genomic analysis with Bioconductor. *Nat. Methods* 12,
1187 115–121. <https://doi.org/10.1038/nmeth.3252>

1188 Hughes, S.E., Miller, D.E., Miller, A.L., Hawley, R.S., 2018. Female Meiosis: Synapsis,
1189 Recombination, and Segregation in *Drosophila melanogaster*. *Genetics* 208, 875–908.
1190 <https://doi.org/10.1534/genetics.117.300081>

1191 Huynh, J.-R., St Johnston, D., 2004. The Origin of Asymmetry: Early Polarisation of the
1192 Drosophila Germline Cyst and Oocyte. *Curr. Biol.* 14, R438–R449.
1193 <https://doi.org/10.1016/j.cub.2004.05.040>

1194 Huynh, J.R., St Johnston, D., 2000. The role of BicD, Egl, Orb and the microtubules in the
1195 restriction of meiosis to the Drosophila oocyte. *Dev. Camb. Engl.* 127, 2785–2794.

1196 Jack, K., Bellodi, C., Landry, D.M., Niederer, R.O., Meskauskas, A., Musalgaonkar, S., Kopmar,
1197 N., Krasnykh, O., Dean, A.M., Thompson, S.R., Ruggero, D., Dinman, J.D., 2011. rRNA
1198 Pseudouridylation Defects Affect Ribosomal Ligand Binding and Translational Fidelity
1199 from Yeast to Human Cells. *Mol. Cell* 44, 660–666.
1200 <https://doi.org/10.1016/j.molcel.2011.09.017>

1201 Jang, S., Lee, J., Mathews, Iaski, Ruess, H., Williford, A.O., Rangan, P., Betrán, E., Buszczak,
1202 M., 2021. The Drosophila ribosome protein S5 paralog RpS5b promotes germ cell and
1203 follicle cell differentiation during oogenesis. *Development* 148, dev199511.
1204 <https://doi.org/10.1242/dev.199511>

1205 Khajuria, R.K., Munschauer, M., Ulirsch, J.C., Fiorini, C., Ludwig, L.S., McFarland, S.K.,
1206 Abdulhay, N.J., Specht, H., Keshishian, H., Mani, D.R., Jovanovic, M., Ellis, S.R., Fulco,
1207 C.P., Engreitz, J.M., Schütz, S., Lian, J., Gripp, K.W., Weinberg, O.K., Pinkus, G.S.,
1208 Gehrke, L., Regev, A., Lander, E.S., Gazda, H.T., Lee, W.Y., Panse, V.G., Carr, S.A.,
1209 Sankaran, V.G., 2018. Ribosome Levels Selectively Regulate Translation and Lineage
1210 Commitment in Human Hematopoiesis. *Cell* 173, 90-103.e19.
1211 <https://doi.org/10.1016/j.cell.2018.02.036>

1212 Kiss, T., Fayet-Lebaron, E., Jády, B.E., 2010. Box H/ACA Small Ribonucleoproteins. *Mol. Cell*
1213 37, 597–606. <https://doi.org/10.1016/j.molcel.2010.01.032>

1214 Knight, S.W., Heiss, N.S., Vulliamy, T.J., Greschner, S., Stavrides, G., Pai, G.S., Lestringant,
1215 G., Varma, N., Mason, P.J., Dokal, I., Poustka, A., 1999. X-Linked Dyskeratosis
1216 Congenita Is Predominantly Caused by Missense Mutations in the DKC1 Gene. *Am. J.*
1217 *Hum. Genet.* 65, 50–58. <https://doi.org/10.1086/302446>

1218 Koch, E.A., Smith, P.A., King, R.C., 1967. The division and differentiation of Drosophila
1219 cystocytes. *J. Morphol.* 121, 55–70. <https://doi.org/10.1002/jmor.1051210106>

1220 Kucherenko, M.M., Shcherbata, H.R., 2018. Stress-dependent miR-980 regulation of
1221 Rbfox1/A2bp1 promotes ribonucleoprotein granule formation and cell survival. *Nat.*
1222 *Commun.* 9, 312. <https://doi.org/10.1038/s41467-017-02757-w>

1223 Kugler, J.-M., Lasko, P., 2009. Localization, anchoring and translational control of *oskar*,
1224 *gurken*, *bicoid* and *nanos* mRNA during Drosophila oogenesis. *Fly (Austin)* 3, 15–28.
1225 <https://doi.org/10.4161/fly.3.1.7751>

1226 Lantz, V., Chang, J.S., Horabin, J.I., Bopp, D., Schedl, P., 1994. The Drosophila orb RNA-
1227 binding protein is required for the formation of the egg chamber and establishment of
1228 polarity. *Genes Dev.* 8, 598–613. <https://doi.org/10.1101/gad.8.5.598>

1229 Lasko, P.F., Ashburner, M., 1988. The product of the *Drosophila* gene *vasa* is very similar to
1230 eukaryotic initiation factor-4A. *Nature* 335, 611–617. <https://doi.org/10.1038/335611a0>

1231 Lawrence, M., Gentleman, R., Carey, V., 2009. rtracklayer: an R package for interfacing with
1232 genome browsers. *Bioinformatics* 25, 1841–1842.
1233 <https://doi.org/10.1093/bioinformatics/btp328>

1234 Lawrence, M., Huber, W., Pagès, H., Aboyoun, P., Carlson, M., Gentleman, R., Morgan, M.T.,
1235 Carey, V.J., 2013. Software for Computing and Annotating Genomic Ranges. *PLoS*
1236 *Comput. Biol.* 9, e1003118. <https://doi.org/10.1371/journal.pcbi.1003118>

1237 Lee, J.-M., Correia, K., Loupe, J., Kim, K.-H., Barker, D., Hong, E.P., Chao, M.J., Long, J.D.,
1238 Luente, D., Vonsattel, J.P.G., Pinto, R.M., Abu Elneel, K., Ramos, E.M., Mysore, J.S.,
1239 Gillis, T., Wheeler, V.C., MacDonald, M.E., Gusella, J.F., McAllister, B., Massey, T.,
1240 Medway, C., Stone, T.C., Hall, L., Jones, L., Holmans, P., Kwak, S., Ehrhardt, A.G.,
1241 Sampaio, C., Ciosi, M., Maxwell, A., Chatzi, A., Monckton, D.G., Orth, M.,
1242 Landwehrmeyer, G.B., Paulsen, J.S., Dorsey, E.R., Shoulson, I., Myers, R.H., 2019.
1243 CAG Repeat Not Polyglutamine Length Determines Timing of Huntington's Disease
1244 Onset. *Cell* 178, 887–900.e14. <https://doi.org/10.1016/j.cell.2019.06.036>

1245 Lehmann, R., 2012. Germline Stem Cells: Origin and Destiny. *Cell Stem Cell* 10, 729–739.
1246 <https://doi.org/10.1016/j.stem.2012.05.016>

1247 Mach, J.M., Lehmann, R., 1997. An Egalitarian-BicaudalD complex is essential for oocyte
1248 specification and axis determination in *Drosophila*. *Genes Dev.* 11, 423–435.
1249 <https://doi.org/10.1101/gad.11.4.423>

1250 Martin, D.E., Powers, T., Hall, M.N., 2006. Regulation of ribosome biogenesis: Where is TOR?
1251 *Cell Metab.* 4, 259–260. <https://doi.org/10.1016/j.cmet.2006.09.002>

1252 Martin, E.T., Blatt, P., Nguyen, E., Lahr, R., Selvam, S., Yoon, H.A.M., Pocchiari, T., Emtenani,
1253 S., Siekhaus, D.E., Berman, A., Fuchs, G., Rangan, P., 2022. A translation control
1254 module coordinates germline stem cell differentiation with ribosome biogenesis during
1255 *Drosophila* oogenesis. *Dev. Cell* 57, 883–900.e10.
1256 <https://doi.org/10.1016/j.devcel.2022.03.005>

1257 Martin, E.T., Blatt, P., Ngyuen, E., Lahr, R., Selvam, S., Yoon, H.A.M., Pocchiari, T., Emtenani,
1258 S., Siekhaus, D.E., Berman, A., Fuchs, G., Rangan, P., 2021. A translation control
1259 module coordinates germline stem cell differentiation with ribosome biogenesis during
1260 *Drosophila* oogenesis. <https://doi.org/10.1101/2021.04.04.438367>

1261 McCarthy, A., Deiulio, A., Martin, E.T., Upadhyay, M., Rangan, P., 2018. Tip60 complex
1262 promotes expression of a differentiation factor to regulate germline differentiation in
1263 female *Drosophila*. *Mol. Biol. Cell* 29, 2933–2945. <https://doi.org/10.1091/mbc.E18-06-0385>

1264 McCarthy, A., Sarkar, K., Martin, E.T., Upadhyay, M., Jang, S., Williams, N.D., Forni, P.E.,
1265 Buszczak, M., Rangan, P., 2022. Msl3 promotes germline stem cell differentiation in
1266 female *Drosophila*. *Development* 149, dev199625. <https://doi.org/10.1242/dev.199625>

1267 McIntyre, W., Netzband, R., Bonenfant, G., Biegel, J.M., Miller, C., Fuchs, G., Henderson, E.,
1268 Arra, M., Canki, M., Fabris, D., Pager, C.T., 2018. Positive-sense RNA viruses reveal the
1269 complexity and dynamics of the cellular and viral epitranscriptomes during infection.
1270 *Nucleic Acids Res.* 46, 5776–5791. <https://doi.org/10.1093/nar/gky029>

1271 McKearin, D.M., Spradling, A.C., 1990. bag-of-marbles: a *Drosophila* gene required to initiate
1272 both male and female gametogenesis. *Genes Dev.* 4, 2242–2251.
1273 <https://doi.org/10.1101/gad.4.12b.2242>

1274 Mills, E.W., Green, R., 2017. Ribosomopathies: There's strength in numbers. *Science* 358,
1275 eaan2755. <https://doi.org/10.1126/science.aan2755>

1276 Morita, S., Ota, R., Kobayashi, S., 2018. Downregulation of NHP2 promotes proper cyst
1277 formation in *Drosophila* ovary. *Dev. Growth Differ.* 60, 248–259.
1278 <https://doi.org/10.1111/dgd.12539>

1280 Morrison, S.J., Shah, N.M., Anderson, D.J., 1997. Regulatory Mechanisms in Stem Cell Biology.
1281 Cell 88, 287–298. [https://doi.org/10.1016/S0092-8674\(00\)81867-X](https://doi.org/10.1016/S0092-8674(00)81867-X)

1282 Navarro, C., Puthalakath, H., Adams, J.M., Strasser, A., Lehmann, R., 2004. Egalitarian binds
1283 dynein light chain to establish oocyte polarity and maintain oocyte fate. Nat. Cell Biol. 6,
1284 427–435. <https://doi.org/10.1038/ncb1122>

1285 Neumüller, R.A., Betschinger, J., Fischer, A., Bushati, N., Poernbacher, I., Mechtler, K., Cohen,
1286 S.M., Knoblich, J.A., 2008. Mei-P26 regulates microRNAs and cell growth in the
1287 Drosophila ovarian stem cell lineage. Nature 454, 241–245.
1288 <https://doi.org/10.1038/nature07014>

1289 Ni, J., Tien, A.L., Fournier, M.J., 1997. Small Nucleolar RNAs Direct Site-Specific Synthesis of
1290 Pseudouridine in Ribosomal RNA. Cell 89, 565–573. [https://doi.org/10.1016/S0092-8674\(00\)80238-X](https://doi.org/10.1016/S0092-8674(00)80238-X)

1291 Noda, T., 2017. Regulation of Autophagy through TORC1 and mTORC1. Biomolecules 7, 52.
1292 <https://doi.org/10.3390/biom7030052>

1293 Ochs, R.L., Lischwe, M.A., Spohn, W.H., Busch, H., 1985. Fibrillarin: a new protein of the
1294 nucleolus identified by autoimmune sera. Biol. Cell 54, 123–133.
1295 <https://doi.org/10.1111/j.1768-322X.1985.tb00387.x>

1296 Ohlstein, B., McKearin, D., 1997. Ectopic expression of the Drosophila Bam protein eliminates
1297 oogenic germline stem cells. Development 124, 3651–3662.
1298 <https://doi.org/10.1242/dev.124.18.3651>

1299 Omer, A.D., Lowe, T.M., Russell, A.G., Ebhardt, H., Eddy, S.R., Dennis, P.P., 2000. Homologs
1300 of Small Nucleolar RNAs in Archaea. Science 288, 517–522.
1301 <https://doi.org/10.1126/science.288.5465.517>

1302 Page, S.L., Hawley, R.S., 2001. c(3)G encodes a Drosophila synaptonemal complex protein.
1303 Genes Dev. 15, 3130–3143. <https://doi.org/10.1101/gad.935001>

1304 Penzo, M., Montanaro, L., 2018. Turning Uridines around: Role of rRNA Pseudouridylation in
1305 Ribosome Biogenesis and Ribosomal Function. Biomolecules 8, 38.
1306 <https://doi.org/10.3390/biom8020038>

1307 Ramírez, F., Ryan, D.P., Grüning, B., Bhardwaj, V., Kilpert, F., Richter, A.S., Heyne, S., Dündar,
1308 F., Manke, T., 2016. deepTools2: a next generation web server for deep-sequencing
1309 data analysis. Nucleic Acids Res. 44, W160–W165. <https://doi.org/10.1093/nar/gkw257>

1310 Ravikumar, B., Vacher, C., Berger, Z., Davies, J.E., Luo, S., Oroz, L.G., Scaravilli, F., Easton,
1311 D.F., Duden, R., O’Kane, C.J., Rubinsztein, D.C., 2004. Inhibition of mTOR induces
1312 autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of
1313 Huntington disease. Nat. Genet. 36, 585–595. <https://doi.org/10.1038/ng1362>

1314 Rose, R.E., Pazos, M.A., Curcio, M.J., Fabris, D., 2016. Global Epitranscriptomics Profiling of
1315 RNA Post-Transcriptional Modifications as an Effective Tool for Investigating the
1316 Epitranscriptomics of Stress Response *. Mol. Cell. Proteomics 15, 932–944.
1317 <https://doi.org/10.1074/mcp.M115.054718>

1318 Rose, R.E., Quinn, R., Sayre, J.L., Fabris, D., 2015. Profiling ribonucleotide modifications at full-
1319 transcriptome level: a step toward MS-based epitranscriptomics. RNA 21, 1361–1374.
1320 <https://doi.org/10.1261/rna.049429.114>

1321 Ross, C.A., Poirier, M.A., 2004. Protein aggregation and neurodegenerative disease. Nat. Med.
1322 10 Suppl, S10-17. <https://doi.org/10.1038/nm1066>

1323 Saez, I., Gerbracht, J.V., Koyuncu, S., Lee, H.J., Horn, M., Kroef, V., Denzel, M.S., Dieterich,
1324 C., Gehring, N.H., Vilchez, D., 2020. The E3 ubiquitin ligase UBR 5 interacts with the H/
1325 ACA ribonucleoprotein complex and regulates ribosomal RNA biogenesis in embryonic
1326 stem cells. FEBS Lett. 594, 175–188. <https://doi.org/10.1002/1873-3468.13559>

1327 Sanchez, C.G., Teixeira, F.K., Czech, B., Preall, J.B., Zamparini, A.L., Seifert, J.R.K., Malone,
1328 C.D., Hannon, G.J., Lehmann, R., 2016. Regulation of Ribosome Biogenesis and
1329

1330 Protein Synthesis Controls Germline Stem Cell Differentiation. *Cell Stem Cell* 18, 276–
1331 290. <https://doi.org/10.1016/j.stem.2015.11.004>

1332 Sarkar, K., Kotb, N.M., Lemus, A., Martin, E.T., McCarthy, A., Camacho, J., Iqbal, A., Valm,
1333 A.M., Sammons, M.A., Rangan, P., 2021. A feedback loop between heterochromatin
1334 and the nucleopore complex controls germ-cell to oocyte transition during *Drosophila*
1335 oogenesis (preprint). *Developmental Biology*. <https://doi.org/10.1101/2021.10.31.466575>

1336 Sarov, M., Barz, C., Jambor, H., Hein, M.Y., Schmied, C., Suchold, D., Stender, B., Janosch, S.,
1337 KJ, V.V., Krishnan, R., Krishnamoorthy, A., Ferreira, I.R., Ejsmont, R.K., Finkl, K.,
1338 Hasse, S., Kämpfer, P., Plewka, N., Vinis, E., Schloissnig, S., Knust, E., Hartenstein, V.,
1339 Mann, M., Ramaswami, M., VijayRaghavan, K., Tomancak, P., Schnorrer, F., 2016. A
1340 genome-wide resource for the analysis of protein localisation in *Drosophila*. *eLife* 5,
1341 e12068. <https://doi.org/10.7554/eLife.12068>

1342 Sloan, K.E., Warda, A.S., Sharma, S., Entian, K.-D., Lafontaine, D.L.J., Bohnsack, M.T., 2017.
1343 Tuning the ribosome: The influence of rRNA modification on eukaryotic ribosome
1344 biogenesis and function. *RNA Biol.* 14, 1138–1152.
1345 <https://doi.org/10.1080/15476286.2016.1259781>

1346 Spradling, A.C., Cuevas, M. de, Drummond-Barbosa, D., Keyes, L., Lilly, M., Pepling, M., Xie,
1347 T., 1997. The *Drosophila* Germarium: Stem Cells, Germ Line Cysts, and Oocytes. *Cold*
1348 *Spring Harb. Symp. Quant. Biol.* 62, 25–34.
1349 <https://doi.org/10.1101/SQB.1997.062.01.006>

1350 Sugars, K.L., Rubinsztein, D.C., 2003. Transcriptional abnormalities in Huntington disease.
1351 *Trends Genet.* 19, 233–238. [https://doi.org/10.1016/S0168-9525\(03\)00074-X](https://doi.org/10.1016/S0168-9525(03)00074-X)

1352 Sugimura, I., Lilly, M.A., 2006. Bruno Inhibits the Expression of Mitotic Cyclins during the
1353 Prophase I Meiotic Arrest of *Drosophila* Oocytes. *Dev. Cell* 10, 127–135.
1354 <https://doi.org/10.1016/j.devcel.2005.10.018>

1355 Sulima, S., Kampen, K., De Keersmaecker, K., 2019. Cancer Biogenesis in Ribosomopathies.
1356 *Cells* 8, 229. <https://doi.org/10.3390/cells8030229>

1357 Sun, P., Quan, Z., Zhang, B., Wu, T., Xi, R., 2010. TSC1/2 tumour suppressor complex
1358 maintains *Drosophila* germline stem cells by preventing differentiation. *Dev. Camb. Engl.*
1359 137, 2461–2469. <https://doi.org/10.1242/dev.051466>

1360 Tafforeau, L., Zorbas, C., Langhendries, J.-L., Mullineux, S.-T., Stamatopoulou, V., Mullier, R.,
1361 Wacheul, L., Lafontaine, D.L.J., 2013. The Complexity of Human Ribosome Biogenesis
1362 Revealed by Systematic Nucleolar Screening of Pre-rRNA Processing Factors. *Mol. Cell*
1363 51, 539–551. <https://doi.org/10.1016/j.molcel.2013.08.011>

1364 Tang, D.G., 2012. Understanding cancer stem cell heterogeneity and plasticity. *Cell Res.* 22,
1365 457–472. <https://doi.org/10.1038/cr.2012.13>

1366 Teixeira, F.K., Lehmann, R., 2019. Translational Control during Developmental Transitions.
1367 *Cold Spring Harb. Perspect. Biol.* 11, a032987.
1368 <https://doi.org/10.1101/cshperspect.a032987>

1369 Ting, X., 2013. Control of germline stem cell self-renewal and differentiation in the *Drosophila*
1370 ovary: concerted actions of niche signals and intrinsic factors. *WIREs Dev. Biol.* 2, 261–
1371 273. <https://doi.org/10.1002/wdev.60>

1372 Venables, W.N., Ripley, B.D., Venables, W.N., 2002. Modern applied statistics with S, 4th ed.
1373 ed, Statistics and computing. Springer, New York.

1374 Wang, T., Blumhagen, R., Lao, U., Kuo, Y., Edgar, B.A., 2012. LST8 Regulates Cell Growth via
1375 Target-of-Rapamycin Complex 2 (TORC2). *Mol. Cell. Biol.* 32, 2203–2213.
1376 <https://doi.org/10.1128/MCB.06474-11>

1377 Watkins, N.J., Bohnsack, M.T., 2012. The box C/D and H/ACA snoRNPs: key players in the
1378 modification, processing and the dynamic folding of ribosomal RNA: Box C/D and H/ACA
1379 snoRNPs. *Wiley Interdiscip. Rev. RNA* 3, 397–414. <https://doi.org/10.1002/wrna.117>

1380 Wullschleger, S., Loewith, R., Hall, M.N., 2006. TOR Signaling in Growth and Metabolism. *Cell*
1381 124, 471–484. <https://doi.org/10.1016/j.cell.2006.01.016>

1382 Wyttenbach, A., Hands, S., King, M.A., Lipkow, K., Tolkovsky, A.M., 2008. Amelioration of
1383 protein misfolding disease by rapamycin: translation or autophagy? *Autophagy* 4, 542–
1384 545. <https://doi.org/10.4161/auto.6059>

1385 Xie, T., Spradling, A.C., 2000. A Niche Maintaining Germ Line Stem Cells in the Drosophila
1386 Ovary. *Science*. <https://doi.org/10.1126/science.290.5490.328>

1387 Xie, T., Spradling, A.C., 1998. decapentaplegic Is Essential for the Maintenance and Division of
1388 Germline Stem Cells in the Drosophila Ovary. *Cell* 94, 251–260.
1389 [https://doi.org/10.1016/S0092-8674\(00\)81424-5](https://doi.org/10.1016/S0092-8674(00)81424-5)

1390 Xue, S., Barna, M., 2012. Specialized ribosomes: a new frontier in gene regulation and
1391 organismal biology. *Nat. Rev. Mol. Cell Biol.* 13, 355–369.
1392 <https://doi.org/10.1038/nrm3359>

1393 Yee, Z., Lim, S.H.Y., Ng, L.F., Gruber, J., 2021. Inhibition of mTOR decreases insoluble
1394 proteins burden by reducing translation in *C. elegans*. *Biogerontology* 22, 101–118.
1395 <https://doi.org/10.1007/s10522-020-09906-7>

1396 Yerlikaya, S., Meusburger, M., Kumari, R., Huber, A., Anrather, D., Costanzo, M., Boone, C.,
1397 Ammerer, G., Baranov, P.V., Loewith, R., 2016. TORC1 and TORC2 work together to
1398 regulate ribosomal protein S6 phosphorylation in *Saccharomyces cerevisiae*. *Mol. Biol.*
1399 *Cell* 27, 397–409. <https://doi.org/10.1091/mbc.e15-08-0594>

1400 Zaccai, M., Lipshitz, H.D., 1996. Differential distributions of two adducin-like protein isoforms in
1401 the Drosophila ovary and early embryo. *Zygote* 4, 159–166.
1402 <https://doi.org/10.1017/S096719940000304X>

1403 Zhang, Q., Shalaby, N.A., Buszczak, M., 2014a. Changes in rRNA transcription influence
1404 proliferation and cell fate within a stem cell lineage. *Science* 343, 298–301.
1405 <https://doi.org/10.1126/science.1246384>

1406 Zhang, Q., Shalaby, N.A., Buszczak, M., 2014b. Changes in rRNA transcription influence
1407 proliferation and cell fate within a stem cell lineage. *Science* 343, 298–301.
1408 <https://doi.org/10.1126/science.1246384>

1409