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ABSTRACT

Phasic variations in dopamine levels are interpreted as a teaching signal reinforcing rewarded
behaviors. However, behavior also depends on the online, neuromodulatory effect of phasic
dopamine signaling. Here, we unravel a new neurodynamical principle that reconciles these
roles. In a biophysical recurrent network-based decision architecture, we showed that
dopamine-mediated synaptic plasticity stabilized neural assemblies representing rewarded
locations as latent, local attractors. Dopamine-modulated synaptic excitability activated these
attractors online, and they became accessible as internal goals, even from remote animall
positions. We experimentally validated these predictions in mice, using optogenetics, by
demonstrating that online dopamine signaling specifically attracts animals toward rewarded
locations, without off-target motor effects. We therefore propose that online dopamine
signaling reveals potential goals by widening and deepening the basin of dopamine-built

attractors representing rewards.


https://doi.org/10.1101/2022.07.07.499108
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.07.499108; this version posted July 7, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

INTRODUCTION

Transient, phasic dopamine (DA) release contributes both to learning (updating the values
used to make future decisions based on experience) and to motivation (making ongoing
decisions and invigorating goal-oriented behaviors), but reconciling these two roles within a
unified theory of DA function has remained challenging (1-3). The popular reinforcement
learning (RL) theory interprets phasic DA signaling uniquely as a reward-related teaching signal
(1. 4), which functions by modulating long-term synaptic plasticity (5-7) to build neural
representations of the value of actions that have previously led to reward (8, 9). This role of DA
in value learning is well demonstrated by the robust conditioned place preference induced by

optogenetic stimulation of DA cells in the ventral tegmental area (VTA) (10, 11).

However, RL theory does not define, nor account for, a role for phasic DA signaling in
ongoing behavior (1, 4) despite renewed interest in the evidence linking this activity with
motivation (3, 12, 13). Phasic DA neuron activity indeed occurs during self-paced movement
initiation (14-17), and phasic optogenetic stimulation of DA neurons drives action initiation (11,
17 but see 16). Accounts of these immediate effects of DA suggest either a "directional” role
with DA signals specifying the decision to be taken (18) or an “activational” or energizing role,
with DA determining the level of motor resources to engage in performing an action (3, 13, 19).
The limited encoding capacity of DA cells (20) and the larger impact of DA antagonist
administration on action probability and vigor rather than on preferences, argues for an
activational role of DA signaling (19). However, within this activational framework, DA would
gate decision-making by lowering a universal decision threshold, increasing the probability and
reducing the latency of all actions. It nevertheless remains unclear within these decision-
threshold models how exactly DA induces movement energization. Furthermore, DA clearly
does not have the same impact on all actions, which goes against decision-threshold models.
DA signaling is mostly associated with, and necessary for, non-stereotyped, anticipatory, distal,
or effortful behaviors, i.e. when some physical or cognitive distance separate the animal from
areward (2, 21, 22). Such arole of DA, which cannot be considered as purely activational nor

as purely directional, is therefore still poorly explained by reinforcement learning theory.

Rather than deriving DA’s role from a phenomenological model of decision-making, we
used dynamical systems theory to assess the biophysical effects of learning and motivational
DA effects within a distributed decision architecture, which we called the MAGNet
(Motivational Attraction toward Goals through NETwork dynamics) model. DA modulation of
synaptic plasticity is believed to carve "Hebbian” assemblies (23) of strongly interconnected
neurons, representing a decision that was repeatedly rewarded. Such Hebbian assemblies can
be considered as attractors of network dynamics (24), i.e. particular states of sustained,
reverberating activity (25-28) toward which the network activity converges. In standard

models, convergence from a rest state toward the decision-related attractor either requires a
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cue stimulus (26), oris driven by noise (27). Here, we propose that the motivational role of phasic
DA signaling is fo reveal latent (i.e. not necessarily expressed) attractors previously built by DA-
modulated plasticity, and to promote fransitions from a resting state to engagement in
decision-related attractor dynamics. By testing the MAGNet model with experimental data in
a learned task, we demonstrate that, rather than increasing the probability of every action (3,
17), phasic DA activity specifically gates previously learned goals. We thus reinterpret the
motivational role of phasic DA signaling as a dynamic process that increases the accessibility

of aftractors representing potential goals.
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RESULTS

To characterize the role of phasic, fransient dopamine (DA) signaling from the ventral
tegmental area (VTA) in both reinforcement learning and motivation, we used an un-cued
optogenetic conditioning task. Indeed, cues previously paired with reward induce both the
release of DA and an increase in motor responses (29), confounding the interpretation of the
role of DA in subsequent behavior. Instead, we designed a task which requires mice to learn
aninternal memory of a rewarded location. We achieved selective manipulation of dopamine
neurons by expressing ChR2 in the VTA from dopamine transporter (DAT)-Cre mice (Figure 1a).
We then placed mice into a circular open-field where we paired three explicit locations with
500 ms, 20 Hz VTA photostimulation (Figure 1a), which drives bursting activity in dopamine
neurons (Supplementary Figure 1). As mice explored the open field, DA neurons were
stimulated when mice were detected on one of the locations. Two consecutive visits to the
same location were not paired with photostimulation, prompting mice to constantly alternate
between the rewarded locations (30, 31). Mice increased the number of photostimulations
earned with learning sessions (Figure 1b, two-way ANOVA with repeated measures, groups:
F1)=30.04, p=0, time: F=5.69, p=0, interaction: F;19=3.9, p=0.0002), which confirmed that
phasic bursting in VTA DA neurons constitutes a teaching signal for place-reward association
(32).

In reinforcement learning (RL) theories, phasic DA signals reward prediction errors and
teaches stimulus-action values by reinforcing weights linking sensory states to rewarded actions
(4), consistent with experimental evidence that DA enables long-term synaptic plasticity in
cortical/subcortical areas (6, 7). However, DA also modulates effective synaptic efficacy by
instantaneously potentiating N-methyl D-aspartate (NMDA) currents which are paramount in

setting network dynamics (5, 33), but overlooked in RL theories.

To dissect how these dual biophysical roles for DA in reinforcement (DA-plasticity) and
motivation (DA-excitability) interact (Figure 1c) to account for decision-making in our
optogenetic DA-conditioning task (Figure 1a-b), we developed the MAGNet model consisting
of a distributed decision architecture assessing how an artificial mouse (e-mouse) navigates
under DA regulation. Simulated phasic DA was delivered when the e-mouse crossed the
rewarded locations, but also randomly during navigation to account for spontaneous DA
occurring in mice (14, 17) (see Methods). Notably, the model accounts for DA consolidation of
spike-timing dependent plasticity (STDP) eligibility traces (light blue) into excitatory synaptic
changes (DA-plasticity; green arrows), instantaneous DA NMDA upregulation (DA-excitability;
red arrow), or a combination of the two (DA-plasticity-excitability; Figure 1d and Methods).
These excitatory synapse models were embedded within a biophysical prefrontal (PFC)
recurrent circuit model (Figure le, upper panel, blue) (34, 35) (see Methods), with mixed

reward-space neuronal selectivity (35-37). As place-reward association relies not only on the
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PFC, but also on a distributed architecture encompassing basal ganglia, thalamus,
hippocampus and amygdala (38, 39), we designed the MAGNet model as a distributed
decision architecture (see Methods). The PFC network was organized topologically, neurons
possessed preferred locations and received feed-forward inputs (black) encoding the mouse
position, putatively from hippocampal place cells (36). In turn, an internal goal was decoded
from PFC neurons activity and preferred positions using a soft-max selection rule representing
basal ganglia operation (Figure 1e, orange). Finally, the e-mouse converged toward its infernal

goal with speed ballistics accounting for commands set by motor structures (Figure 1e, brown).

When network spiking was dominated by a bump of activity (gray squares, Figure le,
lower panel, upper maps) arising from hippocampal inputs encoding e-mouse position (black
dot), the internal goal (orange dot) and e-mouse position were confounded. Thus, behavior
was not goal-directed and navigation was governed by default behavior toward and along
arena wadlls (with some inroads into the arena; see Methods, Figure 1f, first session left). By
contrast, when a larger activity bump was associated with a position distant from that of the
e-mouse (as artificially infroduced for illustration in Figure 1e lower map, green dot), the internall
goal rapidly shifted to that position and navigation was dominated by goal-directed

convergence (Figure 1e, green arrows).

As we observed with real mice (Figure 1b), e-mice learned three place-reward
associations when navigating in the arena (Figure 1f). Moreover, while increasing DA-
excitability alone was unable to frigger learning or affect behavioral performance, it
substantially enhanced the effect of DA-plasticity on performance (Figure 1g). Hence, multiple
synergistic combinations of increases in both DA-excitability and DA-plasticity could account
for our experimental data, suggesting, in turn, that RL-type explanations of decision-making

exclusively based on DA-plasticity may be incomplete.

In order to disentangle long-term (DA-plasticity) from online (DA-excitability) effects of
DA signal on decision-making, more constrained experiments are necessary. We thus assessed
the role of DA-plasticity and DA-excitability independently within a simpler version of the
MAGNet model, with a single rewarded location at the arena center (Figure 2a). With DA-
plasticity only (Figure 2b), simulated phasic DA delivered when the e-mouse crossed the
rewarded location (which occurred by chance in naive e-mice, see Methods) yielded long-
term synaptic plastic modifications (fop panels) that accumulated over trials (bottom). The
resulting strongly connected Hebbian assembly encoded the place-reward association (right
panel). By contrast, DA-excitability only transiently increased synaptic efficacy (<1s) in all the

network, as a consequence of NMDA potentiation on a short timescale (Figure 2c).

When navigating in the arena, the e-mouse converged more toward the rewarded

location if DA-plasticity and DA-excitability were considered simultaneously (Figure 2d, center,
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bold trajectories), rather than separately (Figure 2d, left and right). Moreover, convergence
occurred from more distant positions in the DA-plasticity+excitability condition, whereas it was
essentially local under either DA effect taken in isolation (Figure 2e). Indeed, in the DA-
plasticity+excitability condition, modeling instantaneous NMDA potentiation (i.e. DA-
excitability) had a larger, multiplicative effect on synapses already potentiated by DA-
plasticity, resulting in a massive co-activation of neurons from the Hebbian assembly (Figure 2f).
DA-plasticity+excitability thus set the internal goal (orange trajectory) on the learned reward

location, attracting the e-mouse (black trajectory).

These biophysically-infformed e-mouse simulations thus suggested a peculiar
dynamical mechanism by which instantaneous DA-excitability reveals long-term DA-plasticity
reinforcement and drives decision-making in mice. We developed a formal account of these
complex systemic interactions (see Methods). In the MAGNet theory, analytically derived from
the biophysical model, e-mice behavior could be reduced to one-dimensional dynamics and

a behavioral potential energy (BPE) could be determined as
behavior — - 1 2
EP (p' DA) - aww(p)IExc(DA) + EangAp (2)

with p the e-mouse position (Py,=0), I, the weight-normalized excitatory current, w the sum of
DA-reinforced synaptic weight, and «,,, @, and p constants (see Methods). This theoretical
expression reveals that convergence to the rewarded location was dictated both by (1) strong,
local atftractor dynamics, where the progressive increase in synaptic weights nearby the
Hebbian assembly works to destabilize and attract non-goal-directed neural activity (Figure
29, center, red spot), and (2) weaker, global attractor dynamics due to focalization of the
infernal goal at the Hebbian assembly (dashed box). Both of these terms required
instantaneous DA-excitability action on a previously DA-plasticity-reinforced Hebbian
assembly, as they were negligible when either DA-plasticity or DA-excitability was absent
(Figure 2g left, right). Altogether, under the DA-plasticity+excitability condition, phasic DA
signaling induced the transient unfolding of a large and deep BPE basin of aftraction (Figure
2h, left), subsequent focalization of the internal goal (Figure 2h center) and, ultimately, e-mouse

convergence to the rewarded location (Figure 2h right).

According to MAGNet model simulations and theory, DA-plasticity generates latent
attractors only allowing weak local convergence of internal goal and e-mouse positions (Figure
2i, left). DA-excitability reveals these latent attractors, by amplifying their depth and width,
resulting in strong global convergence (Figure 2i, center), which is impossible without previous
learning (Figure 2i, right). The model allowed us to make ballistic predictions to describe reward-
seeking behavior in the e-mouse. Specifically, under DA-plasticity+excitability, the cumulative
probability of convergence to the rewarded location grew faster compared to other

conditions (Figure 2j, first panel). This effect arose from both an energization of e-mice, with
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increased speed (second panel) and reorientation, as well as a decrease in the e-mouse’s
distance to the reward (third panel), due to reorientation of their approach angle toward the

reward location (last panel).

To test these predictions, we restricted VTA photostimulation in mice to directly evoke
DA-excitability, and used electrical stimulation instead to promote DA-plasticity processes
during learning. Mice were implanted with an electrode in the medial forebrain bundle (MFB),
as electrical stimulation of the MFB has long been considered as a potent substrate for brain
stimulation reward (40), and an opfic fiber in the VTA (four weeks after viral injection of ChR2,
as in Figure 1, Figure 3a). We used MFB stimulation to build the reward-place association in the
circular open-field context (Figure 3b), where the center location was paired with twenty 0.5
ms electrical pulses at 100 Hz, and mice were required to leave the location before being
stimulated again upon reentry (30, 31). This led to strong reinforcement of the central place
preference (F(9)=5.57. p = 0, Figure 3c, Supplementary Figure 2), so that current intensity was

adjusted to achieve a moderate visit rate.

Once the association was learned, we used VTA photostimulation (which mice had
never encountered before, controlling that the LED was not used as a cue with YFP-fransduced
mice) with similar parameters as we used previously for DA-plasticity (reinforcement) (Figure 1).
To test instead for the motivational effect of phasic VTA DA signaling, we provided brief
photostimulations when mice were either (see Figure 3b for the different contexts and Figure
3c forillustrative examples of trajectories) in the same open-field, but away from the reinforced
position (reward context, R), or in a different context (square open-field), where no location
had been associated with a MFB reward (no-reward context, no-R). This allowed for
experimentally dissecting the role of the two different DA effects identified in the MAGNet
model in the decision-making behavior of real mice. In this real-world test, the DA-plasticity
condition (i.e. with only baseline DA-levels during ongoing decisions) consisted of mice tested
in R context, but not receiving effective VTA photostimulations (YFP ON or Chr2 OFF + reward
context), which only expressed previous reinforcement and default behavior. Mice in the DA-
plasticity-excitability condition (i.e. with increased level of DA during ongoing decisions)
received VTA photostimulations while tested in the R context (Chr2 ON + reward context),
which resulted in increased phasic DA signaling during decision-making. Finally, DA-excitability
mice received online VTA photostimulations in a no-R context (Chr2 ON + no reward contexi)

in the albsence of previous plasticity in such a no-R context.

In ChR2-expressing mice tested in the R context, VTA photostimulation decreased the
delay to the reward location compared to control times (Figure 3d, R/ChR2 ON versus OFF
paired t-test: Tj19= -3.58, p=0.05, and Figure 3e, KS test on all trials from all mice: p=1.108). This
effect was neither observed in YFP-expressing animals (R/YFP ON versus OFF, paired t-test: Ti7=

-0.07, p=0.94, KS test on all frials from all mice: p=0.23). By contrast, VTA photostimulation did
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not reduce the delay to the center location in ChR2-transduced animals in the no-R context
(No-R/ChR2 ON versus OFF, paired t-test: Tig)= 0.32, p=0.76, KS test on all trials from all mice:
p=0.81). Hence, a decrease in the latency to visit the rewarded location was only observed in
the experimental equivalent of the DA-plasticity+excitability condition, as predicted by the

MAGNet model (Figure 2, first panel).

We next investigated whether this reduced delay following VTA photostimulation
reflected an increase in speed (Figure 3f), i.e. an energizing effect (3, 17) rather than an
increase in the overall pace (frequency) of behavior (41). VTA photostimulation in the reward
context resulted in an increase of animal speed (Figure 3g, R/ChR2 ON versus OFF paired t-test
on speed after stimulation: Tj10)=3.46, p=0.0064, see Methods), which was neither observed in YFP
controls (T;7=-0.44, p=0.67, Supplementary Figure 2), nor in ChR2 animals in the no-R context
(Tie=-0.17, p=0.87). Online manipulation of VTA DA signaling during decision-making behavior
thus affected the speed of action (rather than just its pace), but only in the context in which a
place-reward association had already been made, again consistent with the MAGNet model
prediction (Figure 2j second panel). Hence, VTA DA signaling only exerted an energization
effect in the reward context, which is incompatible with decision threshold models predicting
context-independent speed increases (3, 13). The MAGNet theory, based on attractor
dynamics, also predicts, contrary to RL or decision-threshold models, that the increase in speed
following DA stimulation would be directed towards the reinforced location. We thus assessed
whether online VTA DA signaling also affected mice directional behavior. First, the distance
between ChR2-transduced animals and the central location (Figure 3h) decreased upon VTA
DA photostimulation in the R context (Figure 3i, Tj10=-3.68, p=0.004) but not in YFP animals (T(7)=-
0.92, p=0.39, Supplementary Figure 2), nor in ChR2 animals in the no-R context (Tjg=-1.17,
p=0.27). Second, the accumulated sum of successive angles between the animal and the goal
(error angle, Figure 3j) decreased following stimulation in ChR2-expressing animals in the R
context (Figure 3k,I; paired t-test stimulation vs control: Tj10=-5.32, p = 3.10-4) indicating more
direct trajectories to the reward, rather than faster trajectories in any direction. This was neither
the case in YFP-expressing mice (T(7=-0.47, p=0.66, Supplementary Figure 2), nor in ChR2
animals in the no-R context (Tg=-0.89, p=0.40).

Hence, the increase in animal speed following optical stimulation of VTA DA neurons
was directed toward the central location, consistent with the MAGNet model's expectations
that phasic, online DA signaling would exert a goal-directed energizing effect. DA signaling
only aftracted the animals toward the center location in a context in which this location had
been previously associated with MFB stimulation reward, suggesting that instantaneous DA-
excitability (motivation) acts in a content-specific and context-dependent manner to retrieve

the goal learned under DA-plasticity (reinforcement).
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DISCUSSION

The biophysically-infformed MAGNet dynamical theory of DA actions interprets goal-directed
actions as a two-step process: neural assemblies representing a potential goal are learned
through DA-regulated synaptic plasticity, but not automatically expressed, i.e. they are latent
in terms of behavior (42-44). Then, phasic DA signaling has the ability to make these attractors
accessible from remote starting conditions, by widening and deepening their basins of
attraction. We validated the MAGNet theory experimentally using optogenetics, showing that
online phasic DA signaling orients the animal toward rewarded locations and energizes
specific, context-dependent actions previously entrained by phasic DA-induced plasticity. We
thus propose that phasic DA signaling biases how ongoing decisions are being made by

controlling the landscape of potential behaviors on a fast timescale.
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SUPPLEMENTARY DISCUSSION
Biophysical network modeling of behavior

Contrary to reinforcement learning models that focus on the phenomenology of behavior
rather than on biological implementation, the MAGNet model constitutes an attempt to root

a dynamical theory on biophysical and biochemical properties, relying on three key features.

First, we considered a recurrent network, because it links attractor dynamics to
elemental computations of decisions (1). Even if inspired by the cortical stage of decision-
making (2, 3), the MAGNet model does not exclude other parts of the mesocorticolimbic loop
from the decision process (4, 5). In particular, striatal dopamine is needed for approaching
rewards (6, 7), and our theoretical proposal that online dopamine affects the behavioral
potential energy is based on the convergence of the whole decision architecture toward an
attractor, encompassing the striatal stage. In decision-making models based on basal ganglia
circuits, navigation toward goals can be learned through reinforcement-learning of synapses
between space- (e.g. hippocampal) and action-coding (striatal) neurons (8). Other models
have proposed a link between action selection and action intensity (9), accounting for the role
of basal ganglia in energizing behaviors (10). DA regulation on both synaptic plasticity and
excitability could thus result in multiplicative effects of DA (11) on action selection and
energization in a striatal model combining these different features. Such a combined model
remains to be achieved. Nevertheless, if the online DA effect in striatal networks is to increase
the gain of action selection (12), then online DA may favor space-action sequences leading
to reinforced locations. However, navigation models of basal ganglia are not based on
attractors at the level of neural network dynamics. Instead, convergence toward a goal
corresponds fo the animal progressively following gradients of space-action values (8),
analogous to the local convergence along synaptic weight gradients in our model. Hence,
gathering these different striatal models together could hypothetically account for the
deepening of the goal’s basin of attraction, although this remains to be shown. However, it
seems more difficult for such neurodynamical systems to account for the widening of the goal’s
basin of attraction, which requires a distant signal focalizing the dynamics of the internal goal,
from any initial condition. Altogether, deciphering the respective effects of dopamine on
corticostriatal NMDAR and on the intrinsic excitability of medium spiny neurons compared to
NMDAR from recurrent connections would refine the link between MAGNet model’s
predictions and the neurobiology literature. Finally, DA is likely to also affect online the
amygdala, thalamus and hippocampus, as well as the connections between these structures
and the cortex and basal ganglia (4, 13), such full-scale modeling being out of scope. We thus
lumped some of the decision processes into simple (e.g. spatfial coding as a topographical
feed-forward excitatory input) or phenomenological descriptions (e.g., motor convergence as

linear and angular ballistics commands).
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The second important feature of the MAGNet model concerns plasticity pathways
implementing eligibility tfraces with synaptic tags. We followed the recent literature describing
two distinct eligibility tfraces for LTP and LTD (14), but this separation leaves holes in the
implementation by intracellular pathways. Indeed, early LTP and LTD are believed to depend
on CaMKIl and calcineurin, respectively, while in the present model a different couple of kinase
and a phosphatase is needed for LTP and LID. This may be implemented by
compartmentalization via synaptic scaffolds linking different forms of CaMKIl with different
phosphatases (15). Likewise, downstream decoding of early LTP/D may be achieved by ERK
and CREB (16, 17), although these steps may not be specific to glutamate receptor
upregulation. A more refined model would require to include other DA regulations (13, 18).
such as infrinsic and structural plasticity. In the MAGNet model, dopamine is key to transform
eligibility fraces into effective plasticity, but other neuromodulators such as noradrenaline (NE),
serotonin (5HT) and acetylcholine (ACh) seem to exert differential effects on the read-out of
LTP and LTD (14). Linking the behavioral events that triggered these neuromodulators, together
with the precise form of eligibility mechanism they implement, would enrich our comprehension

of reward (or other outcomes)-gated plasticity.

The third key feature is the online modulation exerted by DA. Here, we focused on
NMDA modulation, whereas DA can affect a vast diversity of receptors and ionic channels
depending on the structure and the subtype of DA receptors (13, 19). Similarly, we mainly
modeled D1R effects, but D2R may not be as antagonistic as previously believed: D1R and D2R
are actually synergistic when considering the cAMP-PKA pathway we considered (13). Even
the regulation of infrinsic excitability of medium spiny neurons is more complex than DI1R-
mediated increases in excitability and D2R-mediated decreases: D2R may exert destabilizing
influences (rather than inhibitory) that promote or oppose DIR effects depending on down or
up-states, respectively (13). These interactions hint at complementary roles in our dynamical

framework, that we discuss below.

Relations to other theories of dopamine function

Reinforcement learning theories do not assign any effect to dopamine during ongoing
behavior, once the value of actions has been learned through DA modulation of plasticity (20,
21). In alternative views to RL, dopamine has been suggested to exert either directional effects,
i.e. stimulus-driven dopamine release directs the behavior toward the cue (22, 23) or
activational effects, i.e. dopamine increases the probability and vigor of any motor behavior
(10, 24). Both views explain some of the vast literature on phasic dopamine. DA nuclei do not
have enough encoding capacity and DA projections are not selective enough (10, 24) to

precisely represent the goal toward which the animal should be directed. As such, in the
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directional account of dopamine, DA is proposed to add incentive motivation or salience to
the cue being currently processed, promoting approach through yet-unknown mechanisms.
The DA-associated cue is described in incentive-salience accounts as becoming “magnetic”
(22, 23), which is exactly what is expected in the MAGNet model for a state suddenly attracting
the decision network’s dynamics. However, actions that are not cue-driven but self-generated
rely on internal representations, in which case the role of DA in incentive-salience is less
specified. Our proposal is based on contextual decisions, in which animals rely on learned
internal representations to approach reward. It reinterprets incentive motivation as making
attractors (stable steady states) representing potential (sensory or internal) goals accessible to
neural dynamics. However, DA does not support a purely directional role in our theory. Indeed,
although DA promotes convergence toward distant rewarded goals in a given context, the
chosen goal is not itself specified by DA neurons. Rather, choice results both from the current
animal position and the BPE landscape built by previous reward history: animal will converge

toward the goal owning the basin of aftraction in which it lies at the time of phasic DA.

Activational accounts assign a general role to phasic dopamine in gating decisions
(increasing DA would render all decisions more probable) and energizing actions. Incentive
motivation models, in which decisions are sequentially evaluated, i.e. accepted or not based
on the intensity of phasic DA (25), would predict an undirected increase in the probability of
every action following VTA photostimulation, in opposition to our experimental data showing a
reduced angle to reward, and an absence of DA effects outside the reward context.
Furthermore, we show that speed profiles, not just latency or average speed, are affected by
phasic DA, which go beyond the scope of discrete-time models (25). Phasic DA has also been
suggested to move the threshold for decisions in drift-diffusion models (10, 24) predicting
context-independent increase in undirected actions, which is also inconsistent with our
observations on context-dependent directed energization of actions. Widening the basin of
attraction in the present model naturally increases both the likelihood, directness and speed
of actions in a reward context-dependent fashion. Finally, in time-processing accounts,
dopamine affects the sense of time: under high DA fime goes fast, while under low DA fime is
felt as slower (26). We interpret this as the speeding up of neuronal and behavioral dynamics
upon attractor unveiling. In the context of working memory, tonic levels of prefrontal DA have
been related to the gating and maintenance of persistent activity encoding a goal (19, 27). In
this account, D2R favors stimulus-driven transitions toward another goal by rendering attractors
more shallow, while working memory of the current goal is stabilized by DI1R-mediated
deepening of its basin of attraction. This view differs from ours, in which phasic DA activates
D1R to both widen and deepen the basin of attraction, setting a goal based on an internal
memory. DA roles in decision-making and working memory are not necessarily opposite, as DA

may achieve a “double duty” in cognitive motivation (28) by widening (to promote the
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decision) and deepening (to stabilize its working memory) basins of attraction. Here, the
experimental test considered the physical space of the open-field as the task space. However,
the conceptual consequences of the MAGNet model extend to non-physical spaces. Indeed,
dopamine is needed for approaching rewards when animals are far in terms of either physicall
or task space (6, 28). Hence, our MAGNet theory translates the “flexible approach” (6)
hypotheses intfo a neurodynamical process: online DA is needed to approach reward in non-
habitual situations, before the animal engages toward its goal, or when there is a motor cost
and that DA is needed to travel some distance (in either physical or task spaces) to retrieve

specifically DA-associated goals.

In the experimental literature, exogenous stimulation of phasic DA has provided
conflicting results, with contexi-independent (29) and context-dependent (30) movement
following SNc/dorsal striatum stimulation. Stimulation of VTA DA neurons exerts either context-
dependent effects (31), or fails to affect online behavior (32). It has notably been advocated
that phasic DA would only affect online behavior if animals are preparing to move (33). Our
theory reconciles these conflicting results: when the animal is head-fixed, already close to a
rewarded state (32), VIA DA is unneeded and its stimulation does not change behavior (i.e. as
when the e-mouse is already at its internal goal in the model). In contrast, for situations in which
animals must fravel in a physical or task space, DA increases the likelihood and speed of
convergence toward a goal (30, 31). For the same reason, our framework also explains why no
dopamine is needed for no-go conditioning (34), as such a case would correspond, in the
present model, to the goal state being the rest state. Furthermore, the dichotomy between
SNc and VTA may be based on the type of attractor these nuclei affect. VTA could build and
express high-level goals (deep and substantially separated wells in the energy landscape), and
SNc low-level, context-independent subgoals (i.e. a given motoric action) corresponding to
multiple nearby attractors, explaining context-independent locomotion upon SNc stimulation
(29).

Latent attractor as a new dynamical framework distinguishing learning from performance

It is difficult to assign biological meaning to parameters of the phenomenological models
discussed above (i.e. reinforcement learning and their generalizations). Biophysically-based
neurodynamical models can help bridge descriptfion levels in neuroscience, i.e. build on
cellular and network mechanisms to account for behavior (35). Neurodynamical theories
ascribe the property to self-sustain stable neural activity - also known as attractor states - to
recurrent networks underlying decisions, such as the prefrontal cortex (35). In the context of
decision-making, attractors in the neural state space would represent external and/or internal

information encoding potential decisions (36). Hence, decision-making in recurrent networks
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depends on fransitions between the spontaneous activity state (i.e. corresponding to no
decision), and decision attractors (37). Such transition may be achieved by a stimulus cue
acting as an input to the network, which destabilizes the spontaneous state and transforms it
info one of the decision states foward which dynamics will slowly evolve (1). Alternatively, the
spontaneous state and decision states may coexist as several stable attractors (multistability),
with fluctuations in neural activity (noise) driving the fransition toward decision states (37).
However, neither models based on noise nor on stimuli can explain self-generated, goal-
directed actions in which the decision is taken based on internal representations (38).

Our proposal solves this issue by proposing that DA reveals decision attractors (hereby
destabilizing the rest state) which would not express otherwise. Such revealing is allowed in the
MAGNet model by considering two distinct yet linked spaces, the cognitive space and the
behavioral space, which would coincide in most models. Here, a circular causality links mouse
navigation in the behavioral space and internal network representations in the cognitive
space, resulting from feed-forward inputs encoding the mouse position, downstream decoding
of neural activity into an internal goal, as well as weighted recurrent connectivity learned
through past dopaminergic reinforcement (DA-plasticity), and online motivational
dopaminergic modulation of effective synaptic efficacies (DA-excitability). Hence, we do not
consider the local convergence of neural activity toward an attractor solely in neural state
space, but rather the convergence in the merged neural and behavioral space (i.e. their
cartesian product). This allows DA to exert a distant, discontinuous role (the internal goal is
instantaneously set at a distant position) which widens the decision’s basin of aftraction, at
odds with local effects on attractor stability (deepening).

This new principle also provides a simple solution to the common critique addressed to
attractor models that real neural activity is never actually stationary, but transient. Indeed, in
standard, Hopfield-like models, decision-making comes to a standstill once the activity closes
in at the aftractor (a steady-state with only attracting dimensions). More refined models
consider saddles (39) or attractor ruins (36), i.e. partially stable attractors, with attracting, stable
directions co-existing with unstable directions), allowing dynamics to eventually escape and
converge to another attractor (36, 39). This requires specific mechanisms, either synaptic
inhibition designed to repel the neural dynamics from the attractor (39) or neuronal fatigue
ensuring the attractor to be only fransient once activated (40). Contrary to these models, the
decision attractor simply vanishes in the MAGNet model, once the excitability effect of phasic
DA decays due to recapture. Hence, both the entry into, as well as the exit from, the decision
attractor are controlled by an internal operation (i.e. a motivational state implemented by

phasic DA) in our theory. Such internal control also effectively decouples the neural dynamics
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from synaptic changes, which is key to account for goal-directed actions. Usually, reward-
dependent synaptic plasticity directly leads to a change in models’ neural dynamics, yielding
behavioral adaptation (i.e. change in the frequency of behavior). However, animals do not
always express learning as behavioral changes. Instead, some forms of learning are latent (38,
41,42). Forinstance, a sated animal may learn to navigate a labyrinth containing a food source
without increasing the visits o the food source, and, upon food deprivation, display a change
in its behavior (i.e. going fo the food source). The MAGNet model accounts for such latent
learning by dopamine-modulated synaptic plasticity only building latent attractors that do not
necessarily affect neural dynamics. We thus provide a neurodynamical account of how
motivation, implemented by phasic DA, is needed to express the memory of previous, latent,

reward learning.
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METHODS
Animals

Experiments were performed on DATCRE female (n=26) and male (n=21) mice, from 8 to 16
weeks old, weighing 25-35 grams. Mice were housed in cages in an animal facility where the
temperature (21+/- 1°C) and a 12h light/dark cycle were automatically monitored with food
and water available ad libitum. DATCRE mice (43) were kindly provided by Ludovic Tricoire and
genotyped by PCR as described previously (44). All experiments were performed in
accordance with the recommendations for animal experiments issued by the European
Commission directives 219/1990, 220/1990 and 2010/63, approved by Sorbonne University, and
Nn° 014378.01 supervised by the CEEA - 005.

Virus production

AAV vectors were produced as previously described (45) using the co-transfection method,
and purified by iodixanol gradient ultracentrifugation (46). AAV vector stocks were fitrated by
quantitative PCR (gqPCR) (47) using SYBR Green (Thermo Fischer Scientific).

Virus injections

Mice were anesthetized with a gas mixture of oxygen (1 L/min) and 1-3 % of isoflurane (Piramal
Healthcare, UK), then placed into a stereotaxic frame (Kopf Instruments, CA, USA). After the
administration of an analgesic (Buprecare 0,1 mL at 0,015 mg/L) and of a local anesthetic
(Lurocain, 0.1 mL at 0.67 mg/kg). a median incision revealed the skull which was drilled at the
level of the VTA. Mice were then injected unilaterally in the VTA (1 uL, coordinates from bregma:
AP -3.1 mm; ML 0.5 mm; DV -4.5 mm from the skull)] with an adeno-associated virus
(AAVS.Ef10.DIO.ChR2.YFP 6.89e13 vg/mL or AAVS.Ef1a.DIO.YFP 9.10e13 vg/mL). A double-
floxed inverse open reading frame (DIO) allowed to restrain the expression of ChR2 to VTA
dopaminergic neurons. After stitching and administration of a dermal antiseptic, mice were

then placed back in their home-cage and had 14 days to recover from surgery.

Fiber and electrode implantations

Two weeks after virus injection, mice were anesthetized as above. After the administration of
the analgesic and local anesthetic, skin was incised, the skull was drilled at the level of the VTA.

An optical fiber (200 um core, NA=0.39, Thor Labs) coupled to a ferule (1.25 mm) was implanted

22


https://doi.org/10.1101/2022.07.07.499108
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.07.499108; this version posted July 7, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

just above the VTA ipsilateral to the viral injection (coordinates from bregma: AP -3.1 mm, ML

0.5 mm, DV 4.4 mm), and fixed to the skull with dental cement (SuperBond, Sun Medical).

For dual implantation experiments, the skull was also driled at the level of the Median
Forebrain Bundle (MFB). A bipolar stimulating electrode was then implanted unilaterally
(ipsilateral to the optic fiber in the VTA) in the brain (stereotaxic coordinates from bregma

according to Paxinos atlas: AP -1.4 mm, ML £1.2 mm, DV -4.8 mm from the brain).

After stitching and administration of a dermal antiseptic, mice were then placed back in
their home-cage and had 14 days to recover from surgery. The behavioral task began 4 weeks

after virus injection to allow the transgene to be expressed in the target dopamine cells.

Ex vivo patch-clamp recordings of VTA DA neurons

To verify the functional expression of the excitatory opsin ChR2, 8-12 week-old male and female
DATICRE mice were injected with the ChR2-expressing virus as described above. 4 weeks after
infection, mice were deeply anesthetized with an infraperitoneal (IP) injection of a mix of
ketamine/xylazine. Coronal midbrain sections (250 um) were sliced using a Compresstome (VF-
200; Precisionary Instruments) after infracardial perfusion of cold (4°C) sucrose-based artificial
cerebrospinal fluid (SB-aCSF) containing (in mM): 125 NaCl, 2.5 KCI, 1.25 NaH2POs4, 5.9 MgCly,
26 NaHCOs, 25 Sucrose, 2.5 Glucose, 1 Kynurenate (pH 7.2, 325 mOsm). After 10-60 min at 35°C
for recovery, slices were transferred into oxygenated aCSF containing (in mM): 125 NaCl, 2.5
KCI, 1.25 NaH2PO4, 2 CaClz, 1 MgClz, 26 NaHCOs3, 15 Sucrose, 10 Glucose (pH 7.2, 325 mOsm)
atroom temperature for the rest of the day and individually transferred to arecording chamber
continuously perfused at 2 ml/min with oxygenated aCSF. Patch pipettes (4-8 MQ) were pulled
from thin wall borosilicate glass (G150TF-3, Warner Instruments) using a micropipette puller (P-
87, Sutter Instruments, Novato, CA) and filled with a potassium gluconate (KGlu)-based infra-
pipette solution containing (in mMM): 116 K-gluconate, 10-20 HEPES, 0.5 EGTA, 6 KCI, 2 NaCl, 4
ATP, 0.3 GTP and 2 mg/mL biocytin (pH adjusted to 7.2). Transfected VTA DA cells were
visualized using an upright microscope coupled with a Dodt contrast lens and illuminated with
a white light source (Scientifica). A 460 nm LED (Cooled) was used both for visualizing YFP-
positive cells (using a bandpass filter cube) and for optical stimulation through the microscope
(with same parameters used for behavioral experiments: ten 5-ms pulses at 20Hz). Whole-cell
recordings were performed using a patch-clamp amplifier (Axoclamp 200B, Molecular
Devices) connected to a Digidata (1550 LowNoise acquisition system, Molecular Devices).
Signals were low-pass filtered (Bessel, 2 kHz) and collected at 10 kHz using the data acquisition
software pClamp 10.5 (Molecular Devices). All the electrophysiological recordings were

extracted using Clampfit (Molecular Devices) and analyzed with R.
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Behavior acquisition and conditioning procedures

Experiments were performed using a video camera connected to a video-track system, out of
sight of the experimenter. A home-made software (Labview National instrument) tracked the
animal, recorded its trajectory (20 frames per s) for 10 min and sent TTL pulses to the electrical

stimulator or LED device when appropriate.

Conditioning procedure with VTA DA photostimulation: three explicit square locations,
marked on the floor, were placed in a circular open-field (67 cm diameter), forming an
equilateral triangle (side = 35 cm). Each fime a mouse was detected (by its centroid) in the
area of one of the rewarding locations (area radius = 3 cm), a 500-ms frain of ten 5-ms pulses
at 20 Hz was delivered to the LED device. An ulira-high-power LED (470 nm, Prizmatix) coupled
to a patch cord (500 um core, NA=0.5, Prizmatix) plugged onto the ferrule was used for opticall
stimulation (output intensity of 10 mW). Animals could not receive two consecutive stimulations

in the same location.

Conditioning procedure with MFB electrical stimulation: only one explicit location was
marked on the floor, at the center of the open-field. Each time a mouse centroid was detected
in the area (radius = 5 cm) of the location, a 200-ms frain of twenty 0.5-ms biphasic square
waves pulsed at 100 Hz was delivered to the electrical stimulator. Mice were required o leave
the location (i.e. fo be detected at least 10 cm from the central point) for the stimulation to be
made available again. The training consisted of a block of 5 daily sessions of 10 min at 80 YA,
followed by 5 daily sessions of 10 min in which ICSS intensity was adjusted (in a range of 20-200

WA) so that mice visited the central location between 20 and 50 times at the end of the fraining.

Test sessions with VTA DA photostimulation: after the end of the MFB electrical conditioning
procedure, the optical stimulation patch cord was plugged onto the ferrule during at least one
OFF day (maximum = 5) to habituate the animals, until the criterion (between 20 and 50
locations visits in 10 min) was reached again. On ON test days, photostimulation was delivered
by the experimenter when the animal was outside of the reinforced location (af least 10 cm
from the central point). When the experimenter clicked to stimulate, it had a 50% probability to
deliver an actual TTL pulse leading to photostimulation, otherwise this time point was recorded
as a control. In the square open-field test, occurring after the test session in the circular open-
field, the procedure was the same, except that it took place in square open-field (side = 70

cm) without any mark on the center.

Behavioral analyses and statistics
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Stimulation-reward duration was computed as the time between the start of the
photostimulation (or of the conftrol time) and the first detection of the animal in the central
location. Durations greater than 60s were excluded from the analysis for the sake of
representations, but did not affect the statistical significance of the tests. Cumulative
distributions of durations were computed by pooling stimulation-reward and control time-
reward from all animals in one condition (e.g. ChR2 or YFP), with a 3-s time bin. Average delays
to rewards were also computed for each animal. For all groups of mice, the trajectory was
smoothed using a triangular filter before computing the instantaneous speed, which
corresponds to the distance traveled by the animal between two video frames (every 50 ms)
as a function of time. Mean acceleration following stimulation was taken as the time derivative
of speed during the first second after stimulation. Angles to reward were computed as the
angles between each successive position of the animal relative to the initial angle (at
photostimulation or at control time). Angle error was taken as the mean of || Ye'® | where 6 are

the successive angles to reward.

All statistical analyses were computed using Matlab with custom programs. Results were
plotted as a mean +s.e.m. The total number (n) of observations in each group and the stafistics
used are indicated in figure legends. Classical comparisons between means were performed
using parametric tests (Student’s T-test, or ANOVA for comparing more than two groups) when
parameters followed a normal distribution (Shapiro test P>0.05), and non-parametric tests
(here, Wilcoxon or Mann-Whitney) when the distribution was skewed. Repeated-measure

ANOVAs were used for longitudinal measures. Multiple comparisons were Bonferroni corrected.

Immunochemistry

After euthanasia, brains were rapidly removed and fixed in 4% paraformaldehyde (PFA). After
a period of at least three days of fixation at 4°C, serial 60-um sections were cut with a vibratome
(Leica). Immunostaining experiments were performed as follows: VTA brain sections were
incubated for 1 hour at 4°C in a blocking solution of phosphate-buffered saline (PBS) containing
3% bovine serum albumin (BSA, Sigma; A4503) (vol/vol) and 0.2% Triton X-100 (vol/vol), and then
incubated overnight at 4 °C with a mouse anti-tyrosine hydroxylase antibody (anfi-TH, Sigma,
T1299) at 1:500 dilution, in PBS containing 1.5% BSA and 0.2% Triton X-100. The following day,
sections were rinsed with PBS, and then incubated for 3 hours at 22-25 °C with Cy3-conjugated
anfi-mouse and secondary antibodies (Jackson ImmunoResearch, 715-165-150) at 1:500 in a
solution of 1.5% BSA in PBS, respectively. After three rinses in PBS, slices were wet-mounted using
Prolong Gold Antifade Reagent (Invitrogen, P36930). Microscopy was carried out with a

fluorescent microscope, and images captured using a camera and analyzed with Imagel.
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Identification of the transfected neurons on DATCRE mice by immunohistofluorescence was
performed as described above, with the addition of 1:500 Chicken-anti-GFP primary IgG
(ab13970, Abcam) in the solution. A Goat-anti-chicken AlexaFluor 488 (1:500, Life Technologies)
was then used as secondary IgG. Neurons labeled for TH in the VTA allowed to confirm their

neurochemical phenotype, and those labeled for GFP to confirm the transfection success.

Model and Behavioral Potential Energy Theory overview

The details of the model can be found in the Supplementary Methods. In short, at its largest
scale, the e-mouse model was designed as a distributed decision architecture deciding how
an e-mouse navigates in a space. To fit experimental paradigms, we considered the physical
space (a circular arena), but the model could extend to any task space. The e-mouse
navigation was governed by linear speed and angular commands ensuring convergence
toward either a default objective (circling along arena walls) or goal-directed behavior foward
aninternal goal, set by arecurrent prefrontal neural circuit. The contribution of default behavior
to speed was high when the e-mouse headed toward, or was aligned with, the arena walls,
but vanished when the e-mouse was far from, or not aligned with, the arena walls. Angular
dynamics toward the default objective ensured that the e-mouse aligned with the wall when
approaching it. Far from walls, angular dynamics were essentially influenced by goals situated
in ifs visual foreground landscape. The internal goal was determined according to a
probabilistic soft-max process (modeling basal ganglia operations), which stochastically
selected the preferred position of neurons according fo probabilities based on their
instantaneous spiking rate. Neuronal preferred positions were organized on a square lattice

that covered the arenac.

The local recurrent prefrontal network consisted in a detailed biophysical model of PFC
neurons and connections (48). The model contained neurons that were either excitatory (E) or
inhibitory (1), with sparse connectivity, an E/I ratio of 4, and E/I current balance at the post-
synaptic neuron level. Leaky integrate-and-fire (LIF) neurons were endowed with recurrent and
feed-forward currents, and with adaptive action potential threshold in excitatory neurons.
Feed-forward currents consisted of AMPA currents while recurrent currents consisted of AMPA,
NMDA, GABA-A and GABA-B currents. We considered a uniform delay for synaptic conduction
and transmission. AMPA feed-forward currents consisted in two parts: 1) inputs from external
sources (putatively sub-cortical and/or cortical inputs), modeled as an exponentially-filtered
normal stochastic process with temporally homogeneous meaniusi] , and 2) hippocampal
place-field inputs encoding the e-mouse position, with PFC neurons receiving input currents

proportional to the activation of theirreceptive fields by a Gaussian input centered on e-mouse
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position. Recurrent NMDA currents were subject to dopamine modulation that affected their

maximal conductance, in all synapses of the network (*DA-excitability”).

Network excitatory synapses underwent a dopamine (DA)-modulated form of Hebbian
Spike Timing-Dependent Plasticity (STDP) (“DA-plasticity”), with pre- then post-synaptic spike
sequences leading to long-term potentiation (LTP), and post- then pre-synaptic spike
sequences to long-term depression (LTD). Spiking activity patterns did not translate into
immediate effective synaptic changes, but rather resulted in synaptic tags, called eligibility
traces (20), which were read out at the time of dopamine release (49). Eligibility tfraces (eLTP
and elTD, respectively) arose from synaptic calcium dynamics in the postsynaptic button (48,
50). Synaptic calcium took into account the sum of calcium contributions arising from pre- and
post-synaptic spiking, together with buffering and extrusion. Intracellular calcium activated
calcium-dependent kinases and phosphatases, which competed to form elLTP and elLTD
traces. Dopamine gated the transformation of eLTP and elLTD tfraces into actual changes in
excitatory synaptic weights . Dopamine level was the same at all synapses. Dopamine was
released when the e-mouse was detected inside rewarded areas, but also occurred
spontaneously according to a Poisson process, i.e. with homogenous release probability within
each time bin. The dopamine concenfration followed second-order dynamics modeling

release and recapture.
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Figure 1. Increase in behavioral performance does not disentangle reinforcing and

motivational roles of dopamine.

a. Left, ChR2-YFP-expressing virus was injected in ventral tegmental area (VTA) TH-
expressing dopamine (DA) neurons in DAT-Cre mice. Right, VTA photostimulation was
delivered when mice were detected within one of three explicit locations (A, B, C) in
the open field. Mice could not receive two consecutive photostimulations at the same
location (e.g. C), so they alternated between locations (e.g. A or B after C).

b. Top, trajectories (10 min) of one mouse expressing ChR2 in the VTA (purple) at the
beginning (left) and at the end (right) of the learning sessions. Bottom, number of
photostimulations against session number for Chr2-expressing (purple) and YFP-
expressing (black) animals.

c. DA reinforces synaptic weights used for decision-making, by increasing the probability
actions that previously led to reward (green panel). Short-term DA effects on synaptic
excitability may also increase the probability of upcoming actions (red panel), but the
specificity of such a motivational role remains unclear.

d. Modeling DA biophysics in the MAGNet model. At excitatory synapses, DA consolidates
calcium-induced early eligibility fraces (eLTD and eLTP) into long-term weight changes
affecting AMPA and NMDA currents (DA-plasticity; green arrows). DA also
instantaneously upregulates NMDA maximal conductances (DA-excitability; red arrow).

e. Top, the decision architecture of the MAGNet model comprises a biophysical prefrontal
(PFC) recurrent network with DA-modulated excitatory synapses, hippocampal position-
encoding inputs (black), basal ganglia internal goal soft-max-decoding (orange) and
motor convergence toward the internal goal (brown). Bottom, hippocampal inputs
impose an activity bump (dark gray in maps). Under default behavior (upper maps), the
e-mouse position (black dot) and internal goal (orange dot) are conjoined, such that
goal-directed behavior is inoperant and navigation oriented toward the wall. Under
goal-directed behavior (lower maps), the internal goal is decoded at a larger, distant,
activity peak (artificially created here, green dot) such that the e-mouse converges to
the goal (arrows).

f. e-mouse trajectories during the 1st and 10th session of simulated protocol where DA-
plasticity and DA-excitability operated online.

g. Average number of rewards (performance rate) as a function of DA-plasticity (maximal

Hebbian Assemblies weight) and DA-excitability (NMDA scaling factor).
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Figure 2. Dopamine builds and reveals latent network attractors encoding internal goals.

a. Schematics of the single rewarded location arena.

b. Under DA-plasticity alone, phasic DA delivered at the rewarded location yielded long-
term synaptic changes (top panels) that accumulated (bottom), eventually shaping a
Hebbian assembly encoding the place-reward association (right).

c. Under DA-excitability alone, DA transiently increased synaptic efficacy in the whole
network through NMDA potentiation.

d. Superimposed example e-mouse frajectories in the DA-plasticity, DA-excitability and
DA-plasticity+excitability conditions, from random positions and directions. Rewarded
trajectories are in bold. The color code for conditions is used in panels e-j.

e. Reward probability as a function of the initial distance of trajectories in d, for the three
conditions.

f.  Example model dynamics (neural spiking sorted according fo the distance to reward)
in the three conditions. Under DA-plasticity+excitability, DA generated a massive neural
co-activation at the Hebbian assembly, setting the internal goal at the rewarded
location and e-mouse convergence toward it (reward). The Hebbian assembly was
generally unexpressed under DA-plasticity, or absent under DA-excitability, forbidding
goal-directed behavior.

g. Theoretical behavioral potential energy (BPE) computed as a function of time and
distance to reward under the three conditions. The rewarded location becomes a
transient attractor of behavioral dynamics only under DA-plasticity. Faint blue strip at
the top reflects the propensity to follow walls during default behavior.

h. Theoretical BPE (illustrated in 2D), as well as internal goal and e-mouse position of
example simulations, under DA-plasticity-excitability, during the first second following
phasic DA.

i. Schematics of attractorial dynamics in the MAGNet model. Theoretical BPE were
computed at their maximal amplitude after phasic DA in the three conditions. Under
DA-plasticity-excitability, navigation toward the reward arises from convergence
toward the BPE minimum, which sets the internal goal.

j. Ballistic model predictions indicate an increased cumulative reward probability under
DA-plasticity-excitability only, due to an increase of speed to reward, as well as a

specific approach to it (decrease of distance and angle to the reward).
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Figure 3. Testing the prediction that VTA photostimulation-induced movements are goal-

specific and context-dependent.

a. Schematics of electrode implantation in the medial forebrain bundle (MFB) and
injection of the ChR2-YFP-expressing virus and fiber implantation in ventral tegmental
area (VTA).

b. Experimental test of the model predictions. A location is rewarded by MFB electrical
stimulation (left). Then (inside the brackets), VTIA photostimulation is provided in the
context where reinforcement occurred (plasticity + excitability) and compared to a
“plasticity only” conditions (MFB+Chr2 animals without VTA photostimulation), an
“excitability only” condition (VTA photostimulation in another context where no
location had been rewarded), and “null” condition (no photostimulation and no
reward context).

c: From left to right : example trajectories at the end of the MFB conditioning sessions,
and post-photostimulation bouts of frajectories in the different conditions described in
c. Differences between photostimulation-rewarded location delays for YFP (reward
context); ChR2-expressing (reward context) and ChR2-expressing (no reward context)
animals

d. Cumulative distribution of the photostimulation-rewarded location delays in YFP (ON
light in reward context); ChR2-expressing (ON and OFF light in reward context) and
ChR2-expressing (ON and OFF light, no reward context) animals.

e-l. Speed (d), distance to the rewarded location (f), and angle between the animal
and the rewarded location (i) around VTA photostimulation for ChR2-expressing
animals when ON light in reward context (purple), OFF light in reward context (light
blue) and ON light in no reward context (red). Average difference in speed (e).
distance to the rewarded location (g), and angle between the animal and the
rewarded location (j) between ON and OFF light conditions, in reward (“Chr2") and no
reward (“Chr2 No R”) contexts. (h) shows the computation of angle between the
animal and the rewarded location, based on the same frajectories as in a, realigned
to the same line relative to the rewarded location, showing straight tfrajectories for
animals when ON light in reward context (purple), and indirect trajectories when OFF

light in reward context (light blue) or ON light in no reward context (red).
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Supplementary Figure 1: Specificity of dopamine control by optogenetics

a. ChR2was expressed in VTA DAT+ (dopamine) neurons in slices from DAT-Cre mice used
for ex-vivo recording.

b. Zoominthe example neuronrecorded, expressing TH, YFP and filled with biocytin (blue).

c. Left, example of current induced by a one second-pulse and average currents from 12
cells, induced by the 10 5ms-pulses at 20Hz. Right, example of bursting driven by 10 5ms-
pulses at 20Hz
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Supplementary Figure 2: control experiments for Figure 3

a. ChR2 was expressed in VTA DAT+ (dopamine) neurons in animals used in Figure 3
experiments.

b. Number of location visits across sessions of MFB reward learning.

c. Post-photostimulation bouts of frajectories in the YFP, ON light, R context.
From left to right: speed, distance and angle to rewarded location around the time of
random VTA photostimulation in the periphery for YFP animals.

e. Same as d for Chr2 animals in the *no reward” condition.
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Supplementary methods related to the MAGNet model, simulations and BPE theory

e-mouse navigation
In the MAGNet model, e-mouse navigation was modeled, in a circular arena (radius 7,.¢n4), OS
a process where orientation and speed were governed by a convergence toward either a
default objective that consisted in approaching and aligning with the arena wall (answering
to a need for security), or a goal-directed objective, answering to a need for exploration, the
discovery and the retrieval of rewarded locations (i.e. circles with radius 7,ewqerq). While the
default behavior was set according to ballistic laws in the model, goals were driven by
population dynamics of the recurrent neural network (see below).

The mouse position was denoted P = {X,, Yp}, with X, and Y, its cartesian coordinates. The
position vector was

P=(Xp Yp) = dp(cos(8p) sin(6p) ) (1)

with d, = ||P|| the distance to the center of the arena 0 and 8, = (’13—?) the directional angle of

the position vector (T =(1, 0)). The mouse moved according to

7o9P_ (dﬁ are ) = Vp(cos(8y) sin(6y) ) (2)

dat dat dt
where V, was the linear speed and 6, = (17/?) the direction of movement, i.e. the directional

angle of the mouse speed vector, termed hereafter the speed angle.

e-mouse linear speed dynamics
The e-mouse linear speed obeyed
T, 22 =F,, +Fy, (3)
where the terms F,, =V, —V, and F,, = V; — V, modeled the contribution of default (subscript
D) and goal behaviors (subscript G) to linear speed.
On the one hand, F,, drove linear speed toward the default command speed V,,, which
was expressed as

Vb = VinaxL(dp, 0p)A(46)) (4)

1+4cos (6)

2
where V..., was the maximal linear speed, L(d, o) = exp (— 2%) and A(9) = >

respectively

denote exponential colinear (with characteristic distance ) and cosine angular tuning
functions for motor commands (1), d, the distance separating the e-mouse and the default
objective D, and 46, =6, — 6, the angular difference between the speed and default
objective angles.

At each time, D was defined as the nearest point from e-mouse’s position situated on a
circle concentric with the circular arena wall with ry = 70na — Tnouse » WIth Tgreng the arena radius
and 7,5 The e-mouse body’s half width, i.e. at the nearest possible distance from the wall,

when considering the physical dimension of the e-mouse body. The default objective angle
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was computed as 8, = (1 — L(dp, 0p))0p + L(dp, 0p)87. where 8, was the directional angle from
the animal position P to its projection onto the wall D, and 8, was the directional angle
tangential to the arena circular wall at point D and in the direction of e-mouse movement.

Overall, F,, modeled the propensity of e-mouse to be driven by the default command
speed V,, which was important when the e-mouse was 1) approaching the arena wall and
heading toward it (typically small d,, (yielding 8,~6,) and 8,~8,, resulting in substantial L(dp, op)
and A(46,) values) and 2) aligning parallel to the arena wall (typically dp,~0 (yielding
0,~6;) and 6,~6;, resulting in large L(dp, op) and A(46,) values). Conversely, the contribution
of the default behavior to the e-mouse overall speed vanished when the e-mouse was far from,
or not aligned with, the arena wall.

On the other hand, F,, drove the e-mouse linear speed foward the goal command speed
V. which was expressed as

Ve = Vinin + Unax — Vi) [(1 = L(dg, 06))A(40;) + L(dg, 05" A48, + )] (5)

where V,,;,, was the e-mouse’s minimal linear speed, d; the distance separating the e-mouse

and goal objective (hereafter denoted as the internal goal) ¢, 46, = 8, — 6, the angular

difference between the speed angle and 8, = (P:G),\?) the directional angle from the e-mouse
to the internal goal. Altogether, F,, modeled the propensity of the e-mouse to be driven by
the goal command speed, which was important when the e-mouse was 1) far from the internall
goal and heading foward it (large d; so (1 — L(dg, 5))~1 and 8,~6, such that A(46;) is large),
or 2) nearby the internal goal and moving away from it (small d; so L(dg, 0, *)~1 and 8,~6; +
7 such that A(46, + =) is large). The scaling of linear tuning functions, when moving toward or
away from the internal goal were determined by g; and a;**, with g; < 0. so that
navigation was faster when escaping away from a recently visited rewarded point. This
hypothesis was necessary to avoid otherwise inevitable (although unrealistic) e-mouse
repeated navigational loops at rewarded locations.

The internal goal ¢ was determined according to a probabilistic soff-max process with ¢
drawn, at each time-step, from the normalized exponential probability distribution

exp (Bsmf )
p(G=Prrgy) =51~ (¢)

Xy exp (Bsmfi)

where Prp ;) = (Xrr o Yrr ) was the preferred position and f; the estimated firing frequency
of neuron j, ﬁSM the inverse temperature of the process and k indexing neurons taking part to
the soft-max. The estimated firing frequency was obtained by filtering spiking with an
exponential kernel with fime constant 7. Preferred positions were organized on a square lattice
following the X and Y axes that covered the arena, with 70% of neurons within the arena and
30% outside on X and Y axes. Neurons' preferred positions covered a surface area more than
twice that of the arena, so that the internal goal could lay outside the arena. The soft-max was

thus computed with neurons whose preferred positions were closer than rip# ., so that G
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essentially laid within the arena. This ensured that goal-directed influence balanced the
centrifugal influence of the default behavior, such that a naive (i.e. before learning) e-mouse
spent ~60% of their time in the default behavior (i.e. running along walls). Convergence to the
intfernal goal could nevertheless tend to drive the e-mouse outside the arena sometimes. To
avoid this unrealistic behavior, the distance of the e-mouse to the arena center, dp, was reset

to r; when this happened.

e-mouse angular dynamics

The e-mouse angular direction 6, obeyed

de %4
Tevd—tv =(1- E)(FBD + Fg,) (7)

with the first term catching the slower rotation of animals when moving faster, and F,, and Fy,,
represented contributions of default and goal behaviors to e-mouse orientation changes.
Rotation speed toward the default objective was governed by
Fop, = L(dp, 0p)46), (8)
so that it was larger when 8, was far from 6, and when the e-mouse approached arena walls
(L(dp, op)~1), which insured a progressive rotation toward 8, (i.e. the e-mouse aligned with the
wall when approaching). Rotation was essentially independent of the default behavior far from
the wall, being instead mostly goal-directed, with rotation toward the internal goal obeying
Fy, = A(46,)46, (9)

where rotational speed scaled with the difference between e-mouse’s direction 8, and 8, the
angle facing the internal goal, but only when the e-mouse was essentially influenced by goals
situated in its visual foreground landscape (A(46;) vanished at large 46, values). This
hypothesis, which expressed a visual gating of internally-guided behaviors, reduced the noise

of goal-directed navigation but was not essential to the results.

Pause and redirection behaviors
The e-mouse had behavioral pauses (during which rotational or linear speed was null) that
occurred spontaneously with increasing probability when closer to the arena wall, as in real

mice. Pause times where thus drawn according to a Poisson process with a rate scaled with

the distance to the center of the arena: i/lpause, each pause lasting dpgys.- Redirections of

Tarena

the e-mouse occurred at the end of pauses, by drawing the new angular direction from a von
Mises distribution (2) with mean 8, and concentration K4, (i.e. with a circular standard
deviation of %). In order to avoid unrealistic redirections toward the exterior of the arena when
at its edges, directions were redrawn when ﬁ.i—f < 0 (cenftrifugal redirection) with probability

Prearaw = L(dp, 0p) (nearby 1 in the close vicinity of the arena wall).


https://doi.org/10.1101/2022.07.07.499108
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.07.499108; this version posted July 7, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Local recurrent neural network biophysical model
We built a biophysical model of a prefrontal local recurrent neural network, endowed with
detailed biological properties of its neurons and connections (3). The network model contained

N neurons that were either excitatory (E) or inhibitory (I) (neurons projecting only glutamate or

GABA, respectively (4)), with probabilities p;, and p, = 1 —p; respectively and Be— g (5).
p

I
Connectivity was sparse (i.e. with probability connection p. (6)), with no autapse (self-
connections). Synaptic weights w; ;, of existing connections were initiated with a value .,
before possible consecutive additional Hebbian assemblies were learnt or written by hand (see
below).

To cope with simulation times required for the massive explorations of the model, neurons
were modeled as leaky integrate-and-fire (LIF) neurons. The membrane potential of neuron j
obeyed

dVU)
C? = _(IL(]') + ISyn.Rec(j) + ISyn.FF(j)) (]O)
Viy >0 =V =V

repol

where was V..., the repolarization potential. The action potential (AP) threshold 9(]-) was
adaptive in excitatory neurons, with spike-induced instantaneous increase and exponential

convergence with time constant T4 toward its steady-state value 8,,:

db¢y _ Go=b()
d—t’_T’+A96(t—tm) (11)

where & represents the Dirac function and ¢.;, AP times in neuron j.

The leak current followed
Ly = 9. (Vi) = Vi) (12)
with g, the leak conductance and V, its equilibrium potential.
The recurrent synaptic current on postsynaptic neuron j, from either excitatory or inhibitory

presynaptic neurons (indexed by i), was
Lsynrec(j) = i (IAMPA(i,j) + Inupacijpteasaap + IGABAB(i.j)) (13)

The delay for synaptic conduction and fransmission, 4t,,,., was considered uniform across the

syns
network (7). Synaptic recurrent currents followed
Loy = GxWa ) Pxo (Vi) — %) (14)
Where gy was the maximal conductance, w; ;, was the synaptic weight, p,;, the opening
probability of channel-receptors and V, the reversal potential. The NMDA current followed
specific dynamics
Inmpaci,jy = GumoaWapfoa > Pampac Xnmpa (V) (Vi) — Vampa) (15)
accounting for the voltage-dependence of the magnesium block (8) which was modeled as
xympa(V) = (1 + [Mg?*]e 002V /3.57)71 (16)
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and fY¥MPA represented the dopamine-dependent gating of NMDA conductance (9-11)
through D1-receptors, affecting equally all synapses of the network (diffuse VTA dopamine

input), according to

1

A _ A A A
SN = PR i+ BRI i = 3R )~ o (17)

where fi"P4 and fpi*P4 set minimum and maximal gating and xpy"*4 and kp'*4 were the
half-activation and inverse slope of DA concentration sigmoidal effect.
AMPA and GABAA channel rise times were approximated as instantaneous (7) and bounded,

with first-order decay

Pa) - P20 4 Ap (1= pagey) 8(t — t) (18)

dt Tﬁecay
where t;) represented the pre-synaptic APs’ times. In order to account for the longer NMDA

(12) and GABAB (13) channel rise times, opening probabilities followed second-order

dynamics (7)

da,) W@ k
dt - Tg‘(ise + Aqx (1 - qx(L)) 6(t - t(l))
W) P
dt - = T;lemy + (e qx(i) (1 - px(L))

Recurrent excitatory and inhibitory currents were balanced on average in post-synaptic

(19)

neurons (14) according to driving forces and excitation/inhibition weight ratio, through

—({(V)=Vampa)PE-xXPE
Vmean—VGABAA)PHXPI

9caBa, = 9caBay (

2
- —(Vimean—V ampPA)PE-XPE (20)
9caBag = YcaBag (

Vmean—VGaBA B)P1—>xp1

(90+Vrest)

with (V) = ==

an approximation of the average membrane potential, and X the excitatory

or inhibitory identity of the postsynaptic neuron receiving the inhibitory current.
The feed-forward synaptic current I, rr(;y — pUtatively arising from sub-cortical and/or
cortical inputs — consisted of an AMPA current
Isynrrcy = Gampapy Pameare (Vi) = Vauea) (21)
where puyparr WAs the sum of two components,
Pamparr = Pexe + Prs (22)

The first one, pg,;, corresponded to network-wide AMPA inputs from external sources for
every network neuron, and built as the convolution by an exponential kernel kg, (fime constant
Taupa) Of @ random stochastic process drawn from the normal distribution, with mean and
standard deviation derived from the binomial distribution of the numlber of input spikes per time
step when considering ng,; external independent inputs projecting onto the network and a

spiking probability x,, for each input per given time step:

(23)

{ Mgye = AP amparr NExt XExt

Ogxt = APamparr \/nExt Xgxe (1 — Xgxe)
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The second component, prz, corresponded to the putatively hippocampal feedback
encoding the e-mouse position (Figure 1e), with neuron j receiving an input current
proportional to the activation kgz (j) of their preferred position. Activation function were

modeled as bivariate distributions centered on the preferred position (Xzr ¢y, Yzr (j))-

1 ((XP—XTF (j))2+(y,,_yTF (1‘))2
4
e

o%p ) (24)

k 1
FB(D) = VZmorr

which displayed similar, but flatter profiles, compared to bivariate distributions, to insure a more
homogeneous feed-back activation of neurons encoding the e-mouse position and, as a
consequence, smoother and more stable learning (see below). Activation function width was
determined by og,,. Finally, the feed-back opening probability was prg = kgg xpg, With xzp @

constant.

Synaptic plasticity

We built a constrained biochemical model of the pathways’ architecture implicated in the
dopaminergic reinforcement of synaptic plasticity. Network excitatory synapses underwent a
dopamine (DA)-modulated form of Hebbian Spike Timing-Dependent Plasticity (STDP), with
pre- then post-synaptic spike sequences leading to potentiation (and post- then pre-synaptic
spike sequences depression). Spiking activity patterns did not translate into immediate
effective synaptic changes, but rather resulted in synaptic tags, called eligibility traces (15),
which were read out at the time of dopamine release (16). Standard Hebbian synaptic STDP
rules devoid of reinforcement gating would strengthen any e-mouse navigation frajectory
associated with a chain of neuronal activation. By contrast, in the presence of DA-reinforced
plasticity, network synapses are only modified if they participated to rewarded trajectories.

At the molecular scale, the spike timing-dependence of synaptic plasticity (17, 18) was
considered to arise from synaptic calcium dynamics in the postsynaptic button (3, 19).
Specifically, calcium was computed as

Ca = Cay + Caype + Cayose (25)
which took into account calcium the sum of calcium contributions arising from pre- and

postsynaptic spiking. Presynaptic calcium dynamics followed

dCapre
dt

=ACay. Y; 6(t—tqy —tp) — % (26)

which modeled the calcium influx due to pre-synaptic spiking through Voltage-Dependent
Calcium Channels (VDCCs), with ACa,,, the calcium step per action potential (AP), t.y APs’
times, and t, the delay necessary for AMPA channels’ activation and excitatory postsynaptic
potential (EPSP) buildup driving VDCCs' opening), in addition to exirusion/buffering of this

calcium source, with time constant 7.,. Postsynaptic calcium dynamics followed

Capos
= Acapost Zj 6(t - t(j)) + ePrePostcapre Zj S(t - t(j)) - %ﬂt (27)

dCapost
dt
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which took info account extrusion/buffering (last term) in addition fo the calcium influx from
post-synaptic back-propagated spiking opening VDCCs (first term) and NMDA channels

(second term). The NMDA calcium influx was scaled by an intferaction coefficient fprepost and

depended on the product of the presynaptic calcium contribution and postsynaptic spiking,
to account for the associative opening of NMDA channels due to magnesium blockade.

Infracellular calcium activated calcium-dependent kinases and phosphatases (putatively,
CaMKll kinase and calcineurin) that competed to form molecular tfraces (18, 20, 21), i.e.
eligibility traces (16, 21, 22), and which were distinct for potentiation (eLTP) and depression
(eLTD) processes (18). These traces putatively competed for the phosphorylation of an ERK tag
(22-24), which would decay to a non-phosphorylated state if not consolidated by dopamine
intfo effective — reinforced — changes in synaptic weights. In the model, each eligibility frace

followed first-order dynamics, i.e.

L _K,(1—e)—Pe (28)

dc

where kinase and phosphatase activation followed

max catle
Ke - Ke nH nH
Cah,,(e e+Ca’’e
caMle (29)
p = pmax
e Te nH nH
Cah'pe e+Cae

with K'** and P"** the maximum rates, Ca, . and Ca, p, the half-activation calcium values
and nH, the Hill coefficient

Experimental studies indicate that the activation of D1 receptors by dopamine increases
CAMP levels and, consequently, protein kinase A (PKA) activity (11, 21, 23), resulting in the
transformation of eligibility traces into effective — reinforced — synaptic changes (16, 25), i.e.
modified glutamate receptor densities or phosphorylation levels, e.g. through CREB-induced
protein synthesis (23, 24). In the model, excitatory synaptic weights w evolved according to a
dopaminergic gating of a kinase/phosphatase cycle activated by e, and e,y eligibility

traces (18), with first-order (soft-bound) kinetics :

=2 = FSAPPR(Kyy Winax — W) — P,w) (30)

with w,,,, corresponded to the maximal synaptic weight, f51°f the dopamine-gated functional
fraction of the kinase/phosphatase cycle and h a variable accounting for homeostatic
synaptic regulation required only for online learning simulations (see below). Kinase and

phosphatase activations followed

K, = Kppor o™ _
ep k" Aw+e rpnHw 3])
P _ Pmax eLTDnHW (
W IW gy pHwte rpnHw

with K and B*** the maximum rates, e, and e, » the half-activation eligibility values and

nH,, the Hill coefficient.
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The dopaminergic gating of synaptic plasticity operated on all synapses (diffuse VTA

dopamine input) through D1-receptors (10, 11), and followed
STDP _ 1
DA - 1+e_(XDA_XgEDP)/k‘E)QDP (32)

where x5IPP and k3iPP were the half-activation and inverse slope of DA concentration

sigmoidal effect on plasticity.

Dopamine dynamics
The dopamine concentration, following spontaneous or reward events (at time t,,), obeyed

second-order dynamics

drpy Tpa
=——+A,,06(t—t
dt Tzlie DA ( DA)
dpDA _ _pDA t ApaTpa (33)
dt - decay

Tpa
_ Lmin
Xpy = Xpa T Dp,
decay

where T3¢ and 1,5 were rise and decay fime constants, xI4" the minimum DA
concentration, and a4, a parameter scaling the influence of r, , on pp, dynamics and adjusted
to get a maximal value xpi**. Spontaneous events were drawn according to a Poisson process
with a rate 4.4, with a refractory period d°® ,. Reward events occurred when the e-mouse

entered a rewarded location. In simulations with three rewarded locations, following

consecutive visits of the same location were not rewarded.

Numerical procedures and parameters

The MAGNet model was simulated and explored using custom developed MATLAB code,
whose differential equations were numerically integrated using the forward Euler method (4t =
1ms). Most simulations, achieved in offline conditions (Figure 2), were achieved with the

following set of standard parameter values: space and navigation: T, = 500 ms, Tg, = 50 ms,

m

Viax = 1% Vingn = 017, 0 = 0.0005m, 0 =01m, 05" =0.2m, Apguse = 0572, dpguse =055,

Kreqir = 083, d =055, Avg = 0.25, Tyreng = 0.5 M, g = 0.06 M, Toyse = 0.02m, Xpp = Yyp =
(—0.7308: 0.077: 0.7308); neural decoding into the internal goal :,BSM = 1.5, T = 100ms; neural
encoding of the e-mouse position: gz = 0.075 m, x5z = 0.075; network architecture: N = 500,

pe = 0.8, pc = 0.75, At,,, = 1ms, i, = 0.1, 0,, = 0, Wy, = 5; intrinsic properties, € =1 uF.cm™2,

syn

gp = 005mS.cm™2, V, = =70mV, 6,=-50mV, A6 =50mV, Tg =50ms, V,p, =—60mV;

recurrent currents: gaypa = 0.03mS.cm™2, gyypa = 0.24mS.cm™2, ggapa, = 0.03mS.cm™2, goapay =

0.0003 mS. Cm_z, VAMPA = VNMDA = O mV, VGABAA = _70 mV, VGABAB = _90 mV, [Mg2+] = 1.5 mM,

decay decay

Tavips = 2.5mS, Thifoa = 4.65ms, Tyyon = 75ms, Tgaga, = 10ms, Tpsg,. = 90ms, Tgyya, = 160 ms,

AMPA

Anmpa = 0275ms™,  Qgapag = 0.015ms™".  Apaypa = Aquupa = DPgapa, = Ddcasas = 0.1, feed-


https://doi.org/10.1101/2022.07.07.499108
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.07.499108; this version posted July 7, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

forward currents: ppy =0, gamparr = 02mS.cm™2, fp = 25Hz, ng, =30, Ap, . .. =01

calcium dynamics: Ca, = 0.1 uM, T¢, =50ms, ACay., = ACap,s = 0.5 uM, & =6.5,t, =

PrePost
20 ms ; synaptic weight plasticity: K;*** = 0.15ms™*, BJ*®* = 0.03ms™!, e, x = 0.25,e,p = 1, nH,, =
4; eligibility traces : K5 = Poits = Koifp = Poitp = 0.04ms™, Cay gerrp = 1.65uM, Cayp perrp =
0.495uM, Capyerrp = 1.25uM, Cayperrp = 0.375uM, nH, = 4; dopamine properties: xpy* = 0.1,
XP* = 1.1215, Th5¢ = 100 ms, 1o =500 ms, AR4i=1, A= 0.25, x35°P = 0.225, k§LPP = 0.005,

faMPA = 0.1, fAMPA =1, xBMPA = 0.125, kjYP4 = 0.005.

Initial conditions and simulation setups

The model was initialized with randomized membrane potentials (uniformly distributed in
[8,,0, —5]mV) and synaptic channel openings mimicking average channel openings
(Pampa~0.0025, Pypypa~0.2, Dgapa,~0.0025, papa,~0.15), as well as with e-mouse at initial random
positions at distance dp, = 0.757,, null linear speed and random initial direction 6,,.

Online learning simulations (Figure 1f) lasted 300 seconds and consisted of 10
concatenated simulations of 30 seconds termed sessions, with lbehavioral pauses when
rewarded, without redirection. Online learning dynamics easily yielded saturated synapfic
weights and neural activity, even with slower learning kinetic parameters (Km%* = 0.015ms™1,
Pmax = 0,003 ms~1). Such plasticity/activity runaway is a classical issue when assessing online
learning in random recurrent networks. It arises from the positive feedback linking excitatory
activity and plasticity between excitatory neurons and is likely stabilized by different
homeostatic processes providing counteracting negative feedbacks at the neuronal and
network scales. In the present decision architecture, this problem was largely amplified by the
additional positive feedbacks linking connectivity and neural activity, on the one hand, and e-
mice behavior, on the other hand. For instance, increased connectivity at rewarded locations
(Hebbian assemblies) increased reward rates, which in furn increased DA-reinforcement of
STDP at these Hebbian assemblies. In the context of the present study, we found that synaptic
homeostasis was essenfial in the online learning setup (Figure 1f). Therefore, synaptic
homeostasis was constrained by distinct homeostatic processes at excitatory synapses, which
were required in online simulations, but not offline simulations (Figure 1g and 2; see below).
Hence, in addition to a hard-bound w,,,, =5, excitatory-excitatory synapses underwent
synaptic scaling, which normalizes synaptic connections. We considered a form of synaptic
scaling that included both presynaptic and postsynaptic normalization, i.e.,

n
SiE w (o) ZiZs W i (to)
T wap® TiEw

which allowed a limit to catastrophic plasticity/activity runaway eventually occurring at
synapses linking neurons of Hebbian assemblies and the rest of the network. In addition, we

considered two forms of saturation constraining plasticity runaway. First, by assuming that no
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plasticity occurred at spiking post-synaptic frequencies superior to a critical frequency set as
fn = 1/D, i.e. putatively through presynaptic calcium saturation. This process helped avoiding
plasticity/activity runaway within each Hebbian assembly. Second, by assuming that the total
amount of post-synaptic potentiation admits a maximum within each neuron, putatively due
to upstream resources availability (e.g. pool of precursors limiting the synthesis of new
glutamatergic receptors). This process constrained the spatial extension of Hebbian assemblies.
Altogether, these saturations terms wrote

ng oo+
ZizlAw

wE—
AwWrnax

) (35),

with H the Heaviside function, Aw},, = ngu, the moaximal amount of possible potentiation

h=H(F <f)(1-

changes and Y%, Aw* hard-bound limited by Aw,... Although not crucial for offline learning
(Figure 1g and 2), these homeostatic processes were kept in that case, for the sake of simplicity.
In a similar vein, because gefting strong and compact Hebbian assemblies during online
learning proved difficult under certain modeling and parameter choices, we found easier to
set constant eligibility time constants (which otherwise non-linearly depended on the calcium
activation of their kinase/phosphatase cycles T, = 1/(K, + P.)), with T, rp = Torrp = 250ms. For
the sake of simplicity, this option was also kept for offline learning, although not essential in that
setup (Figure 1g and 2).

Offline simulations (Figure 1g) mean performance rate were computed over 10 simulations
in each of 18x18 conditions DA-excitability and DA-plasticity. Simulations lasted 60 seconds,
with a pause rate Apg,s. = 1/3s71. DA-excitability was parameterized with P4 in the
interval = [0,1]. DA-plasticity was mimicked by initiating the connectivity matrix before model
simulation, as if plasticity had previously built three Hebbian assemblies (i.e. there was no
plasticity during offline simulations). This inifialization consisted in adding three Hebbian
assemblies centered at rewarded locations. Each of these bivariate gaussian Hebbian
assemblies consisted of the synaptic matrix w, , built as the auto-association (i.e. external
product) of a vertical vector specifying gaussian distance of each neuron preferred position
to rewarded location k (with spatial standard deviation g,.,,4 = 0.125m), i.e.

wl = viv] (36)

with

_1 ((Xk—XTF <z>)2+("k“’TF (l>)2>
== ’ (37)

vl e Twd
and P, = (X, Y, ) is the position of reward location k. In Figure 1f, we only kept synapses oriented
toward each reward locations within Hebbian assemblies (i.e. w; ;; = 0 when w; ) > w; ;) to
assess a scheme where STDP would have yielded purely asymmetric connections, but similar
results could be obtained with symmetric connections (not shown). The Hebbian assemblies
were then normalized to have a maximal weight w,,,, in the interval [0,5], and added to a

constant mean u |

10


https://doi.org/10.1101/2022.07.07.499108
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.07.499108; this version posted July 7, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

w.
Weij) = Hw T Zzﬂmﬂwk (38).

ax (wy)

Offline learning simulations (Figure 2b) consisted of 100 successive learning trials lasting 1.5
seconds. To speed up simulations, e-mice were initialized with d, = 0.3 m, heading toward the
central rewarded location and with maximum linear speed. In Figure 2d-f and 2h, simulations
lasted 2.5 seconds, with the e-mouse initialized randomly in the arena, with maximum linear
speed and random initial direction 8,,.. In Figure 2f, the angular speed was slower by a factor
10 before phasic DA, so that the e-mouse displayed equivalent positions at that time.

Realizations of von Mises distributions were numerically computed using the code
developed by D. Muir (26).

Behavioral Potential Energy (BPE) theory

In order to better understand how e-mouse behavior arises from past dopaminergic
reinforcement (DA-plasticity) and online motivational dopaminergic modulation (DA-
excitability), we built a simplified theory capturing essential causal and dynamical traits
governing the full decision architecture model. To reduce dimensionality, we consider that,
thanks to revolution symmetry in the one rewarded location setup, spatial behavior is reducible
to one dimension, with rewarded location set at position p,,; = 0. Also, the theory is built as a
simplified representation of e-mouse navigation that neglects the detailed dynamics of linear
and angular speed ballistic commands considered in the model. In particular, the contribution
of the default behavior to linear speed, which is negligible at a certain distance from the arena
walls in the model, is not taken into account. Moreover, we focus on how e-mouse navigation
depends on the essential interactions linking p, the e-mouse position encoded by feed-forward
hippocampal inputs to the network resulting in a bump of neural activity (see e.g. Figure 1e,
lower panel, top maps), and g, the internal goal position decoded downstream by basal
ganglia through soft-max computation.

This theoretical framework illustrates how goal-directed mouse behavior can be
interpreted in the framework of attractorial dynamics within a landscape of behavioral
potential energy (BPE), which depends on both DA-plasticity and DA-excitability. Building the
theory unraveled two mechanisms driving e-mouse navigation. The first mechanism relates to
the local positional stability of the activity bump, in the vicinity of the Hebbian assembly (HA).
The second mechanism acts at a global scale of the arena and depends on the neural activity
at the HA. Thus, in the theory, we posit that e-mouse p and DA dependent goal-directed

navigation obeys a velocity law including the two mechanisms
% = ‘U(p, DA) = vlocal(p' DA) + Uglobal(p' DA) (39)

In the following, we first assess how each term can be described in a reduced and
tractable fashion from the model dynamics. We then show how BPE can be derived and

interpreted.
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The first, local, mechanism relates to the positional stability of the activity bump. In the
case when no HA is present (i.e., before reward-place learning; e.g., Figure 2b, trial #1, left
panel), both feed-forward inputs encoding the e-mouse position and recurrent connections
are symmetric with regard to position p, such that the activity bump displays a symmetric spatial
firing frequency around p. As a result, g, the decoded internal goal position, which statistically
reflects the position of the activity bump maximum, is also situated at p. Hence, the e-mouse is
on its goal, convergence is already achieved and there is no movement.

By contrast, let’s consider the case where a HA is present (due to previous place-reward
association; Figure 2b, trial #100, left panel), with the e-mouse in the vicinity of the HA. In such
a situation, within the activity bump, excitatory synapftic currents generated in excitatory
neurons closer to the HA, by excitatory neurons farther from the HA (centripetal currents), are
larger than centrifugal currents generated at reciprocal synapses. This is due to the fact that
cenftripetal currents occur at synapses with larger synaptic weights (i.e., higherin the HA weight
gradient), compared to centrifugal currents. The resulting firing frequency profile of the activity
bump is biased toward the HA, so that, on average, the decoded internal goal position, g, lies
closer to the HA, compared to p. As p converges toward g, it continuously moves in the
direction of the HA. In turn, as p is moving foward the HA, so too do the activity bump and its
soft-max readout, g. Altogether, the weight gradient yields an atftractorial convergence of the
activity bump, g and p toward the HA. This convergence will obviously be stronger near the
HA, where the synaptic gradient is steeper. Moreover, the large increase in NMDA currents
mediated by DA (DA-excitability) will strongly amplify the gradient of excitatory currents due
to DA-plasticity (i.e., the difference between centripetal and centrifugal currents) and the
subsequent attractorial convergence toward the HA, through a deepening of the HA attractor,
as unraveled by the theory (see below and Figure 2g-i). Accordingly, the local mechanism to

e-mouse velocity scales with the gradient of excitatory currents

Viocal (p' DA) = awdlE%(pp:DA) (40)
where «,, is a constant and I,.(p, DA) is the DA-dependent excitatory current received by
excitatory neurons at position p, which can be approximated as

Igxc(p, DA) = gAMPAW(p)pAMPA(Vbump - VAMPA) + gvmpa(DA) w(P)Xympa (Vbump)pNMDA (Vbump - VNMDA)
(41)

where guura ONd Gympa Ore maximal conductances with gyupa depending on DA-excitability,
w(p) the sum of incoming synaptic weights on the neuron with preferred position centered at
position p, xympaVoump) is the non-linear activation of NMDA channels af the mean bump
membrane potential Vi, and where p,yps and pyups gating variables at fiing frequency

frump CAN b€ obtained by steady state approximation from equations 18 and 19 :

decay
Pampa™~ 8P anpaTampaf ymp 49
A rise _decay ( )
Pympa™ B ympa®NmpAT yypaTNMDA bump
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Therefore,
IExc (p' DA) = W(p)IE;C(DA) (43)
with

—~ [ decay
IExc(DA) = (gAMpA ApAMpATAMPA(Vbump - VAMPA) +

— i decay
Inmpa (DA) Xnmpa (VM)AQNMDA AnmpaTNMDATNMDA (Vbump - VNMDA)) fbump (44)

is the DA-dependent current per weight unit af firing frequency f,,,,. Note that I;..(DA) is an

inward current, i.e., algebraically negative, which yields the sign of the local contribution to
velocity and Behavioral Potential Energy (equations 40 and 56, see below). Note also that
inhibitory currents can be neglected, as they display no spatial weight gradient in the model.
The local mechanism contribution thus writes

Vioeat (P DA) = @y o (9) e (DA) (45)
and depends on both DA-plasticity (i.e., on the weight gradient) and DA-excitability (i.e., DA-
modulated NMDA current in the activity bump).

The second mechanism acts at the global spatial scale and also emerges from the
interaction of DA-plasticity and DA-excitability: it arises from the DA-dependent increase of
NMDA currents within the HA itself. Generally, the internal goal g is detected at p because the
activity bump is the strongest spot of activity in the network. However, in the presence of DA,
the increase of NMDA currents is boosted by large HA weights, which friggers massive
associative co-activation of neuronal activity in the HA. Therefore, g almost instantaneously
switches to 0, the AH position (see Figure 2f center panel and Figure 2h center column). Note
that, due to noise in network dynamics within model simulations, activity can still be higher at p
than at g in a number cases, accounting for why g does not always converge to the HA (Figure
2h center column). When acting, this mechanism operates at the global scale of the whole
arena, independent of the position of the e-mouse (by contrast to the first mechanism, which
actslocally in the vicinity of the HA). Thus, it yields attractorial convergence of the activity bump
toward the HA through a widening of the HA attractor (as opposed to attractor deepening in
the local mechanism), as shown below (see Figure 2g-i).

So, the global velocity contribution writes

Vgiopar (P, DA) = ag(g(DA) —p) (46)
Here, for the sake of simplicity, we use a crude linear dependance of the distance of the e-
mouse o the internal goal. However, using more complex dependance reminding model
ballistics — or even zero order dependance — would yield qualitatively similar results. The
essential point here is that, as shall be seen below, BPE increases with distance in all these cases.
Moreover, based on simulations, we set g(p, DA = 0)~p when DA is absent. By contrast, when
DA is present, decoded internal goal position g, is statistically essentially detected at either one

of the two higher spots of activity in the network, i.e., the activity bump (p) and the HA (p.y).
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with probabilities related to their respective spiking frequency. Approximately, the internal goal
position g can thus be estimated to lie, on average, at the barycenter of both spots weighted
by their spiking activity

g(DA = 1)~fbumpp+fAHpAH (47),

foump*fAH

when DA is present. In that case, the global velocity therefore writes

Vglobal (p' DA = 1) =ay —fan__ (pAH - p) (48)

fbumptfan

Setting

p = (49)

 Foump*an
and leveraging on the fact that p,, = 0 leads to
vglobal(p' DA=1)=—- 9PP (50)
when DA = 1. Lumping both cases (DA = 0 and DA = 1) is possible by writing:
vglobal(pt DA) = — gPDAp (51)
Overall, the velocity law governing e-mouse p and DA dependent goal-directed navigation is
thus

d -
‘U(p, DA) = Viocal (p' DA) + Vgiobal (p' DA) = _awd_pw(p)IExc(DA) - angAp (52)

In the case where both DA plasticity and DA-excitability are present and the e-mouse is in the
vicinity of the HA, the local and global terms hypothesize distinct positions of g, i.e., at p or py.
respectively. However, in that case, p,,; and p are practically almost confounded in the context
of the noisy chaotic activity of the network. Moreover, and as a consequence, the global
effect is minute, compared to the local effect, which is overwhelming. We therefore kept this
crude formulation for the sake of simplicity, without developing a more complex description
taking info account which term has to be considered in which case (presence or not of DA-
plasticity and DA-excitability, distance to the HA).

The potential of any one dimensional dynamical system
d.

== f(x) (53)
can be computed as
Ep=—f f()dx (54),
based on the physical idea of the potential energy (27). We therefore define the Behavioral
Potential Energy (BPE) of the e-mouse at each point as
Egeh®ie” (p,DA) = — [ v(p,DA)dp (55),
which yields
Ebehavior (n DAY = a, w(p) [y (DA) + %a’ngApz + Cst (56),
where Cst is an infegration constant.

This expression captures how, at a previously rewarded location, reinforced HA weights

induce attractorial dynamics though both their profile, whose gradient locally destabilizes the
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activity bump, and their strength, which shifts the internal goal at the global scale. Moreover,
this expression accurately accounts for how shape, width and depth of the Hebbian-based
attractor depend on previous DA reinforcement (DA-plasticity), current DA motivation (DA-
excitability) and their interaction, and how it acts depending on e-mouse position. In doing so,
it offers a framework for interpreting coupled dynamics between collective network activity at
the activity bump and the HA, the e-mouse position, and the internal goal. Specifically, it
mechanistically accounts for weak convergence to the - latent — attractor at the previously
rewarded location under DA-plasticity alone (Figure 2f-i, left), deepening and widening of
attractorial convergence under DA-plasticity + DA-excitability (Figure 2f-i, center and Figure
2h) and the absence of attractorial convergence under DA-excitability (Figure 2f-i, right).

BPE was computed using a gaussian-shaped distribution of weights

ip

2
W(p) = Wnin + (Wmax - Wmin)e_i(a) (57)
centered at position 0 and with spatial standard deviation a,,. For purely illustrative purpose in
Figure 2, a phenomenological ferm was added to BPE to account for short-distance attraction

to arena walls due to the default behavior:
_1((ptrg 2 _1((p-rq 2
E;lefault(p) =—a, (8 2( o4 ) +e 2( o4 ) )(58)[

but this term is not part of the theory by itself. Regarding display specificities, in Figure 2i, one-

dimensional BPE was integrated in the range [ rena Tarenal. USING integration constants chosen
so that Ebehavior(—y .,DA) = Eberavior(y. . .,DA) =0 in each condition (DA-plasticity, DA-
excitability, DA-plasticity + DA-excitability). In Figure 2h, BPE (leftf column) was generated in two
dimensions from one-dimensional BPE (Figure 2i) by revolution symmetry, for the sake of
illustration, i.e., visual correspondence with model simulations (center and right columns). BPE
contour levels correspond to BPE = —[00.050.10.20.40.6 0.8 1]. Theory parameters were as
following: wy,i,, = 0.1, Wy, = Wiin, IN the DA-excitability conditions and wy,,,,, = 3 in DA-plasticity
and DA-plasticity + DA-excitability conditions. The firing frequency f,,m, = 16 Hz was derived
from simulations. The mean voltage at the peak of the activity bump was also taken from
simulations: Vyym, = [—32.5,—32.5,—25 JmV in all conditions (such depolarized values in the bump
arise from spiking-induced depolarization of the adaptive AP threshold). The Gaussian widths
were o, =0.075m and o, = 0.01m. In Figure 2, we used a,, =20C~'m? a, =1.25s""a, =
0.025m?s™1, but these parameters can be arbitrarily scaled without any qualitative change in
the BPE landscape. We made no specific hypothesis concerning the relative values of firing
frequency and considered the parsimonious case where  fymy = fau. i.€., p = 1/2 in Figure 2.
Again, this specific choice had no consequence on the BPE landscape. Other theory

parameters were as in model simulations.

References for supplementary methods

15


https://doi.org/10.1101/2022.07.07.499108
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.07.499108; this version posted July 7, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

1. E. Todorov, M. |. Jordan, Optimal feedback control as a theory of motor coordination.
Nat. Neurosci. 5, 1226-1235 (2002).

2. D. J. Best, N. I. Fisher, Efficient Simulation of the von Mises Distribution. J. R. Stat. Soc. Ser. C
Appl. Stat. 28, 152-157 (1979).

3. M.X.B.Sarazin, J. Victor, D. Medernach, J. Naudé, B. Delord, Online Learning and Memory
of Neural Trajectory Replays for Prefrontal Persistent and Dynamic Representations in the
Irregular Asynchronous State. Front. Neural Circuits. 0 (2021),
doi:10.3389/fncir.2021.648538.

4. H. Dale, Pharmacology and Nerve-endings (Walter Ernest Dixon Memorial Lecture):
(Section of Therapeutics and Pharmacology). Proc. R. Soc. Med. 28, 319-332 (1935).

5. C.Beaulieuy, Z. Kisvarday, P. Somogyi, M. Cynader, A. Cowey, Quantitative distribution of
gaba-immunopositive and -immunonegative neurons and synapses in the monkey striate
cortex (area 17). Cereb. Cortex. 2, 295-309 (1992).

6. A.M.Thomson, Synaptic Connections and Small Circuits Involving Excitatory and Inhibitory
Neurons in Layers 2-5 of Adult Rat and Cat Neocortex: Triple Infracellular Recordings and
Biocytin Labelling In Vitro. Cereb. Cortex. 12, 936-953 (2002).

7. N.Brunel, X. J. Wang, Effects of neuromodulation in a cortical network model of object
working memory dominated by recurrent inhibition. J. Comput. Neurosci. 11, 63-85 (2001).

8. C. E. Jahr, C. F. Stevens, Voltage dependence of NMDA-activated macroscopic
conductances predicted by single-channel kinetics. J. Neurosci. 10, 3178-3182 (1990).

9. G.Chen, P. Greengard, Z. Yan, Potentiation of NMDA receptor currents by dopamine D1
receptors in prefrontal cortex. Proc. Natl. Acad. Sci. 101, 2596-2600 (2004).

10. J. K. Seamans, C. R. Yang, The principal features and mechanisms of dopamine
modulation in the prefrontal cortex. Prog. Neurobiol. 74, 1-58 (2004).

11. N. X. Tritsch, B. L. Sabatini, Dopaminergic Modulation of Synaptic Transmission in Cortex
and Striatum. Neuron. 76, 33-50 (2012).

12.  H.Wang, G. G. Stradtman, X.-J. Wang, W.-J. Gao, A specialized NMDA receptor function
in layer 5 recurrent microcircuitry of the adult rat prefrontal cortex. Proc. Natl. Acad. Sci.
(2008), doi:10.1073/pNnas.0804318105.

13. A.Destexhe, Z. F. Mainen, T. J. Sejnowski, Kinetic models of synaptic fransmission. Methods
Neuronal Model. 2, 1-25 (1998).

14. M. Xue, B. V. Atallah, M. Scanziani, Equalizing excitation-inhibition ratios across visual
cortical neurons. Nature. 511, 596600 (2014).

15. R. S. Sutton, A. G. Barto, Reinforcement Learning: An Infroduction (1998;
http://ieeexplore.ieee.org/document/712192/), vol. 9.

16. E. M. Izhikevich, Solving the distal reward problem through linkage of STDP and dopamine
signaling. Cereb. Cortex. 17, 2443-2452 (2007).

17. G. Q. Bi, M. M. Poo, Synaptic modifications in cultured hippocampal neurons:

dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci.
Off. J. Soc. Neurosci. 18, 10464-10472 (1998).

16


https://doi.org/10.1101/2022.07.07.499108
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.07.499108; this version posted July 7, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

18. K. He, M. Huertas, S. Z. Hong, X. Tie, J. W. Hell, H. Shouval, A. Kirkwood, Distinct Eligibility
Traces for LTP and LTD in Cortical Synapses. Neuron. 88, 528-538 (2015).

19. M. Graupner, N. Brunel, Calcium-based plasticity model explains sensitivity of synaptic
changes to spike pattern, rate, and dendritic location. Proc. Natl. Acad. Sci., 201109359
(2012).

20. T. Shindou, M. Shindou, S. Watanabe, J. Wickens, A silent eligibility trace enables
dopamine-dependent synaptic plasticity for reinforcement learning in the mouse
striatum. Eur. J. Neurosci. 49, 726-736 (2019).

21. J.C.Magee, C. Grienberger, Synaptic Plasticity Forms and Functions. Annu. Rev. Neurosci.
43, 95-117 (2020).

22. N.Frémaux, W. Gerstner, Neuromodulated Spike-Timing-Dependent Plasticity, and Theory
of  Three-Factor Learning Rules. Front. Neural Circuits. 9 (2016),
doi:10.3389/fncir.2015.00085.

23. J.Zhang, S.-Y. Ko, Y. Lico, Y. Kwon, S. J. Jeon, A. Sohn, J. H. Cheong, D. H. Kim, J. H. Ryu,
Activation of the dopamine D1 receptor can extend long-term spatial memory
persistence via PKA signaling in mice. Neurobiol. Learn. Mem. 155, 568-577 (2018).

24. K. Okuda, K. Hgjgaard, L. Privitera, G. Bayraktar, T. Takeuchi, Initial memory consolidation
and the synaptfic tagging and capture hypothesis. Eur. J. Neurosci. (2020),
doi:10.1111/ejn.14902.

25. 1. Brzosko, W. Schultz, O. Paulsen, Retroactive modulation of spike timing-dependent
plasticity by dopamine. elife. 4, e09685 (2015).

26. D. Muir, vmrand(fMu, fKappa, varargin), version 1.3.0.0. MATLAB Cent. File Exch. (2017),
(available at https://www.mathworks.com/matlabcentral/fileexchange/37241-vmrand-
fmu-fkappa-varargin).

27. S. Strogatz, M. Friedman, A. J. Mallinckrodt, S. McKay, Nonlinear Dynamics and Chaos:

With Applications to Physics, Biology, Chemistry, and Engineering. Comput. Phys. 8, 532-
532 (1994).

17


https://doi.org/10.1101/2022.07.07.499108
http://creativecommons.org/licenses/by-nc-nd/4.0/

