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ABSTRACT 

Phasic variations in dopamine levels are interpreted as a teaching signal reinforcing rewarded 

behaviors. However, behavior also depends on the online, neuromodulatory effect of phasic 

dopamine signaling. Here, we unravel a new neurodynamical principle that reconciles these 

roles. In a biophysical recurrent network-based decision architecture, we showed that 

dopamine-mediated synaptic plasticity stabilized neural assemblies representing rewarded 

locations as latent, local attractors. Dopamine-modulated synaptic excitability activated these 

attractors online, and they became accessible as internal goals, even from remote animal 

positions. We experimentally validated these predictions in mice, using optogenetics, by 

demonstrating that online dopamine signaling specifically attracts animals toward rewarded 

locations, without off-target motor effects. We therefore propose that online dopamine 

signaling reveals potential goals by widening and deepening the basin of dopamine-built 

attractors representing rewards. 
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INTRODUCTION 

Transient, phasic dopamine (DA) release contributes both to learning (updating the values 

used to make future decisions based on experience) and to motivation (making ongoing 

decisions and invigorating goal-oriented behaviors), but reconciling these two roles within a 

unified theory of DA function has remained challenging (1–3). The popular reinforcement 

learning (RL) theory interprets phasic DA signaling uniquely as a reward-related teaching signal 

(1, 4), which functions by modulating long-term synaptic plasticity (5–7) to build neural 

representations of the value of actions that have previously led to reward (8, 9). This role of DA 

in value learning is well demonstrated by the robust conditioned place preference induced by 

optogenetic stimulation of DA cells in the ventral tegmental area (VTA) (10, 11).  

However, RL theory does not define, nor account for, a role for phasic DA signaling in 

ongoing behavior (1, 4) despite renewed interest in the evidence linking this activity with 

motivation (3, 12, 13). Phasic DA neuron activity indeed occurs during self-paced movement 

initiation (14–17), and phasic optogenetic stimulation of DA neurons drives action initiation (11, 

17 but see 16). Accounts of these immediate effects of DA suggest either a “directional” role 

with DA signals specifying the decision to be taken (18) or an “activational” or energizing role, 

with DA determining the level of motor resources to engage in performing an action (3, 13, 19). 

The limited encoding capacity of DA cells (20) and the larger impact of DA antagonist 

administration on action probability and vigor rather than on preferences, argues for an 

activational role of DA signaling (19). However, within this activational framework, DA would 

gate decision-making by lowering a universal decision threshold, increasing the probability and 

reducing the latency of all actions. It nevertheless remains unclear within these decision-

threshold models how exactly DA induces movement energization. Furthermore, DA clearly 

does not have the same impact on all actions, which goes against decision-threshold models. 

DA signaling is mostly associated with, and necessary for, non-stereotyped, anticipatory, distal, 

or effortful behaviors, i.e. when some physical or cognitive distance separate the animal from 

a reward (2, 21, 22). Such a role of DA, which cannot be considered as purely activational nor 

as purely directional, is therefore still poorly explained by reinforcement learning theory. 

Rather than deriving DA’s role from a phenomenological model of decision-making, we 

used dynamical systems theory to assess the biophysical effects of learning and motivational 

DA effects within a distributed decision architecture, which we called the MAGNet 

(Motivational Attraction toward Goals through NETwork dynamics) model. DA modulation of 

synaptic plasticity is believed to carve “Hebbian” assemblies (23) of strongly interconnected 

neurons, representing a decision that was repeatedly rewarded. Such Hebbian assemblies can 

be considered as attractors of network dynamics (24), i.e. particular states of sustained, 

reverberating activity (25–28) toward which the network activity converges. In standard 

models, convergence from a rest state toward the decision-related attractor either requires a 
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cue stimulus (26), or is driven by noise (27). Here, we propose that the motivational role of phasic 

DA signaling is to reveal latent (i.e. not necessarily expressed) attractors previously built by DA-

modulated plasticity, and to promote transitions from a resting state to engagement in 

decision-related attractor dynamics. By testing the MAGNet model with experimental data in 

a learned task, we demonstrate that, rather than increasing the probability of every action (3, 

17), phasic DA activity specifically gates previously learned goals. We thus reinterpret the 

motivational role of phasic DA signaling as a dynamic process that increases the accessibility 

of attractors representing potential goals. 
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RESULTS 

To characterize the role of phasic, transient dopamine (DA) signaling from the ventral 

tegmental area (VTA) in both reinforcement learning and motivation, we used an un-cued 

optogenetic conditioning task. Indeed, cues previously paired with reward induce both the 

release of DA and an increase in motor responses (29), confounding the interpretation of the 

role of DA in subsequent behavior. Instead, we designed a task which requires mice to learn 

an internal memory of a rewarded location. We achieved selective manipulation of dopamine 

neurons by expressing ChR2 in the VTA from dopamine transporter (DAT)-Cre mice (Figure 1a). 

We then placed mice into a circular open-field where we paired three explicit locations with 

500 ms, 20 Hz VTA photostimulation (Figure 1a), which drives bursting activity in dopamine 

neurons (Supplementary Figure 1). As mice explored the open field, DA neurons were 

stimulated when mice were detected on one of the locations. Two consecutive visits to the 

same location were not paired with photostimulation, prompting mice to constantly alternate 

between the rewarded locations (30, 31). Mice increased the number of photostimulations 

earned with learning sessions (Figure 1b, two-way ANOVA with repeated measures, groups: 

F(1)=30.04, p=0, time: F(9)=5.69, p=0, interaction: F(1,9)=3.9, p=0.0002), which confirmed that 

phasic bursting in VTA DA neurons constitutes a teaching signal for place–reward association 

(32).  

In reinforcement learning (RL) theories, phasic DA signals reward prediction errors and 

teaches stimulus-action values by reinforcing weights linking sensory states to rewarded actions 

(4), consistent with experimental evidence that DA enables long-term synaptic plasticity in 

cortical/subcortical areas (6, 7). However, DA also modulates effective synaptic efficacy by 

instantaneously potentiating N-methyl D-aspartate (NMDA) currents which are paramount in 

setting network dynamics (5, 33), but overlooked in RL theories. 

To dissect how these dual biophysical roles for DA in reinforcement (DA-plasticity) and 

motivation (DA-excitability) interact (Figure 1c) to account for decision-making in our 

optogenetic DA-conditioning task (Figure 1a-b), we developed the MAGNet model consisting 

of a distributed decision architecture assessing how an artificial mouse (e-mouse) navigates 

under DA regulation. Simulated phasic DA was delivered when the e-mouse crossed the 

rewarded locations, but also randomly during navigation to account for spontaneous DA 

occurring in mice (14, 17) (see Methods). Notably, the model accounts for DA consolidation of 

spike-timing dependent plasticity (STDP) eligibility traces (light blue) into excitatory synaptic 

changes (DA-plasticity; green arrows), instantaneous DA NMDA upregulation (DA-excitability; 

red arrow), or a combination of the two (DA-plasticity-excitability; Figure 1d and Methods). 

These excitatory synapse models were embedded within a biophysical prefrontal (PFC) 

recurrent circuit model (Figure 1e, upper panel, blue) (34, 35) (see Methods), with mixed 

reward-space neuronal selectivity (35–37). As place-reward association relies not only on the 
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PFC, but also on a distributed architecture encompassing basal ganglia, thalamus, 

hippocampus and amygdala (38, 39), we designed the MAGNet model as a distributed 

decision architecture (see Methods). The PFC network was organized topologically, neurons 

possessed preferred locations and received feed-forward inputs (black) encoding the mouse 

position, putatively from hippocampal place cells (36). In turn, an internal goal was decoded 

from PFC neurons activity and preferred positions using a soft-max selection rule representing 

basal ganglia operation (Figure 1e, orange). Finally, the e-mouse converged toward its internal 

goal with speed ballistics accounting for commands set by motor structures (Figure 1e, brown).  

When network spiking was dominated by a bump of activity (gray squares, Figure 1e, 

lower panel, upper maps) arising from hippocampal inputs encoding e-mouse position (black 

dot), the internal goal (orange dot) and e-mouse position were confounded. Thus, behavior 

was not goal-directed and navigation was governed by default behavior toward and along 

arena walls (with some inroads into the arena; see Methods, Figure 1f, first session left). By 

contrast, when a larger activity bump was associated with a position distant from that of the 

e-mouse (as artificially introduced for illustration in Figure 1e lower map, green dot), the internal 

goal rapidly shifted to that position and navigation was dominated by goal-directed 

convergence (Figure 1e, green arrows).  

As we observed with real mice (Figure 1b), e-mice learned three place–reward 

associations when navigating in the arena (Figure 1f). Moreover, while increasing DA-

excitability alone was unable to trigger learning or affect behavioral performance, it 

substantially enhanced the effect of DA-plasticity on performance (Figure 1g). Hence, multiple 

synergistic combinations of increases in both DA-excitability and DA-plasticity could account 

for our experimental data, suggesting, in turn, that RL-type explanations of decision-making 

exclusively based on DA-plasticity may be incomplete.  

In order to disentangle long-term (DA-plasticity) from online (DA-excitability) effects of 

DA signal on decision-making, more constrained experiments are necessary. We thus assessed 

the role of DA-plasticity and DA-excitability independently within a simpler version of the 

MAGNet model, with a single rewarded location at the arena center (Figure 2a). With DA-

plasticity only (Figure 2b), simulated phasic DA delivered when the e-mouse crossed the 

rewarded location (which occurred by chance in naïve e-mice, see Methods) yielded long-

term synaptic plastic modifications (top panels) that accumulated over trials (bottom). The 

resulting strongly connected Hebbian assembly encoded the place–reward association (right 

panel). By contrast, DA-excitability only transiently increased synaptic efficacy (<1s) in all the 

network, as a consequence of NMDA potentiation on a short timescale (Figure 2c). 

When navigating in the arena, the e-mouse converged more toward the rewarded 

location if DA-plasticity and DA-excitability were considered simultaneously (Figure 2d, center, 
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bold trajectories), rather than separately (Figure 2d, left and right). Moreover, convergence 

occurred from more distant positions in the DA-plasticity+excitability condition, whereas it was 

essentially local under either DA effect taken in isolation (Figure 2e). Indeed, in the DA-

plasticity+excitability condition, modeling instantaneous NMDA potentiation (i.e. DA-

excitability) had a larger, multiplicative effect on synapses already potentiated by DA-

plasticity, resulting in a massive co-activation of neurons from the Hebbian assembly (Figure 2f). 

DA-plasticity+excitability thus set the internal goal (orange trajectory) on the learned reward 

location, attracting the e-mouse (black trajectory). 

 These biophysically-informed e-mouse simulations thus suggested a peculiar 

dynamical mechanism by which instantaneous DA-excitability reveals long-term DA-plasticity 

reinforcement and drives decision-making in mice. We developed a formal account of these 

complex systemic interactions (see Methods). In the MAGNet theory, analytically derived from 

the biophysical model, e-mice behavior could be reduced to one-dimensional dynamics and 

a behavioral potential energy (BPE) could be determined as 

!!"#$%&'()(#, %&) = )**(#)++,-, (%&) + 12).0%&#
/	(2) 

with # the e-mouse position (201=0), ++,-,  the weight-normalized excitatory current, * the sum of 

DA-reinforced synaptic weight, and !*, !. and "	constants (see Methods). This theoretical 

expression reveals that convergence to the rewarded location was dictated both by (1) strong, 

local attractor dynamics, where the progressive increase in synaptic weights nearby the 

Hebbian assembly works to destabilize and attract non-goal-directed neural activity (Figure 

2g, center, red spot), and (2) weaker, global attractor dynamics due to focalization of the 

internal goal at the Hebbian assembly (dashed box). Both of these terms required 

instantaneous DA-excitability action on a previously DA-plasticity-reinforced Hebbian 

assembly, as they were negligible when either DA-plasticity or DA-excitability was absent 

(Figure 2g left, right). Altogether, under the DA-plasticity+excitability condition, phasic DA 

signaling induced the transient unfolding of a large and deep BPE basin of attraction (Figure 

2h, left), subsequent focalization of the internal goal (Figure 2h center) and, ultimately, e-mouse 

convergence to the rewarded location (Figure 2h right).  

According to MAGNet model simulations and theory, DA-plasticity generates latent 

attractors only allowing weak local convergence of internal goal and e-mouse positions (Figure 

2i, left). DA-excitability reveals these latent attractors, by amplifying their depth and width, 

resulting in strong global convergence (Figure 2i, center), which is impossible without previous 

learning (Figure 2i, right). The model allowed us to make ballistic predictions to describe reward-

seeking behavior in the e-mouse. Specifically, under DA-plasticity+excitability, the cumulative 

probability of convergence to the rewarded location grew faster compared to other 

conditions (Figure 2j, first panel). This effect arose from both an energization of e-mice, with 
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increased speed (second panel) and reorientation, as well as a decrease in the e-mouse’s 

distance to the reward (third panel), due to reorientation of their approach angle toward the 

reward location (last panel). 

To test these predictions, we restricted VTA photostimulation in mice to directly evoke 

DA-excitability, and used electrical stimulation instead to promote DA-plasticity processes 

during learning. Mice were implanted with an electrode in the medial forebrain bundle (MFB), 

as electrical stimulation of the MFB has long been considered as a potent substrate for brain 

stimulation reward (40), and an optic fiber in the VTA (four weeks after viral injection of ChR2, 

as in Figure 1, Figure 3a). We used MFB stimulation to build the reward-place association in the 

circular open-field context (Figure 3b), where the center location was paired with twenty 0.5 

ms electrical pulses at 100 Hz, and mice were required to leave the location before being 

stimulated again upon reentry (30, 31). This led to strong reinforcement of the central place 

preference (F(9)=5.57, p = 0, Figure 3c, Supplementary Figure 2), so that current intensity was 

adjusted to achieve a moderate visit rate. 

Once the association was learned, we used VTA photostimulation (which mice had 

never encountered before, controlling that the LED was not used as a cue with YFP-transduced 

mice) with similar parameters as we used previously for DA-plasticity (reinforcement) (Figure 1). 

To test instead for the motivational effect of phasic VTA DA signaling, we provided brief 

photostimulations when mice were either (see Figure 3b for the different contexts and Figure 

3c for illustrative examples of trajectories) in the same open-field, but away from the reinforced 

position (reward context, R), or in a different context (square open-field), where no location 

had been associated with a MFB reward (no-reward context, no-R). This allowed for 

experimentally dissecting the role of the two different DA effects identified in the MAGNet 

model in the decision-making behavior of real mice. In this real-world test, the DA-plasticity 

condition (i.e. with only baseline DA-levels during ongoing decisions) consisted of mice tested 

in R context, but not receiving effective VTA photostimulations (YFP ON or Chr2 OFF + reward 

context), which only expressed previous reinforcement and default behavior. Mice in the DA-

plasticity-excitability condition (i.e. with increased level of DA during ongoing decisions) 

received VTA photostimulations while tested in the R context (Chr2 ON + reward context), 

which resulted in increased phasic DA signaling during decision-making. Finally, DA-excitability 

mice received online VTA photostimulations in a no-R context (Chr2 ON + no reward context) 

in the absence of previous plasticity in such a no-R context. 

  In ChR2-expressing mice tested in the R context, VTA photostimulation decreased the 

delay to the reward location compared to control times (Figure 3d, R/ChR2 ON versus OFF 

paired t-test: T(10)= -3.58, p=0.05, and Figure 3e, KS test on all trials from all mice: p=1.10-8). This 

effect was neither observed in YFP-expressing animals (R/YFP ON versus OFF, paired t-test: T(7)= 

-0.07, p=0.94, KS test on all trials from all mice: p=0.23). By contrast, VTA photostimulation did 
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not reduce the delay to the center location in ChR2-transduced animals in the no-R context 

(No-R/ChR2 ON versus OFF, paired t-test: T(8)= 0.32, p=0.76, KS test on all trials from all mice: 

p=0.81). Hence, a decrease in the latency to visit the rewarded location was only observed in 

the experimental equivalent of the DA-plasticity+excitability condition, as predicted by the 

MAGNet model (Figure 2j, first panel).  

We next investigated whether this reduced delay following VTA photostimulation 

reflected an increase in speed (Figure 3f), i.e. an energizing effect (3, 17) rather than an 

increase in the overall pace (frequency) of behavior (41). VTA photostimulation in the reward 

context resulted in an increase of animal speed (Figure 3g, R/ChR2 ON versus OFF paired t-test 

on speed after stimulation: T(10)=3.46, p=0.006, see Methods), which was neither observed in YFP 

controls (T(7)=-0.44, p=0.67, Supplementary Figure 2), nor in ChR2 animals in the no-R context 

(T(8)=-0.17, p=0.87). Online manipulation of VTA DA signaling during decision-making behavior 

thus affected the speed of action (rather than just its pace), but only in the context in which a 

place–reward association had already been made, again consistent with the MAGNet model 

prediction (Figure 2j second panel). Hence, VTA DA signaling only exerted an energization 

effect in the reward context, which is incompatible with decision threshold models predicting 

context-independent speed increases (3, 13). The MAGNet theory, based on attractor 

dynamics, also predicts, contrary to RL or decision-threshold models, that the increase in speed 

following DA stimulation would be directed towards the reinforced location. We thus assessed 

whether online VTA DA signaling also affected mice directional behavior. First, the distance 

between ChR2-transduced animals and the central location (Figure 3h) decreased upon VTA 

DA photostimulation in the R context (Figure 3i, T(10)=-3.68, p=0.004) but not in YFP animals (T(7)=-

0.92, p=0.39, Supplementary Figure 2), nor in ChR2 animals in the no-R context (T(8)=-1.17, 

p=0.27). Second, the accumulated sum of successive angles between the animal and the goal 

(error angle, Figure 3j) decreased following stimulation in ChR2-expressing animals in the R 

context (Figure 3k,l; paired t-test stimulation vs control: T(10)=-5.32, p = 3.10-4) indicating more 

direct trajectories to the reward, rather than faster trajectories in any direction. This was neither 

the case in YFP-expressing mice (T(7)=-0.47, p=0.66, Supplementary Figure 2), nor in ChR2 

animals in the no-R context (T(8)=-0.89, p=0.40). 

Hence, the increase in animal speed following optical stimulation of VTA DA neurons 

was directed toward the central location, consistent with the MAGNet model's expectations 

that phasic, online DA signaling would exert a goal-directed energizing effect. DA signaling 

only attracted the animals toward the center location in a context in which this location had 

been previously associated with MFB stimulation reward, suggesting that instantaneous DA-

excitability (motivation) acts in a content-specific and context-dependent manner to retrieve 

the goal learned under DA-plasticity (reinforcement).   
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DISCUSSION 

The biophysically-informed MAGNet dynamical theory of DA actions interprets goal-directed 

actions as a two-step process: neural assemblies representing a potential goal are learned 

through DA-regulated synaptic plasticity, but not automatically expressed, i.e. they are latent 

in terms of behavior (42–44). Then, phasic DA signaling has the ability to make these attractors 

accessible from remote starting conditions, by widening and deepening their basins of 

attraction. We validated the MAGNet theory experimentally using optogenetics, showing that 

online phasic DA signaling orients the animal toward rewarded locations and energizes 

specific, context-dependent actions previously entrained by phasic DA-induced plasticity. We 

thus propose that phasic DA signaling biases how ongoing decisions are being made by 

controlling the landscape of potential behaviors on a fast timescale. 
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SUPPLEMENTARY DISCUSSION 

Biophysical network modeling of behavior 

Contrary to reinforcement learning models that focus on the phenomenology of behavior 

rather than on biological implementation, the MAGNet model constitutes an attempt to root 

a dynamical theory on biophysical and biochemical properties, relying on three key features. 

 First, we considered a recurrent network, because it links attractor dynamics to 

elemental computations of decisions (1). Even if inspired by the cortical stage of decision-

making (2, 3), the MAGNet model does not exclude other parts of the mesocorticolimbic loop 

from the decision process (4, 5). In particular, striatal dopamine is needed for approaching 

rewards (6, 7), and our theoretical proposal that online dopamine affects the behavioral 

potential energy is based on the convergence of the whole decision architecture toward an 

attractor, encompassing the striatal stage. In decision-making models based on basal ganglia 

circuits, navigation toward goals can be learned through reinforcement-learning of synapses 

between space- (e.g. hippocampal) and action-coding (striatal) neurons (8). Other models 

have proposed a link between action selection and action intensity (9), accounting for the role 

of basal ganglia in energizing behaviors (10). DA regulation on both synaptic plasticity and 

excitability could thus result in multiplicative effects of DA (11) on action selection and 

energization in a striatal model combining these different features. Such a combined model 

remains to be achieved. Nevertheless, if the online DA effect in striatal networks is to increase 

the gain of action selection (12), then online DA may favor space-action sequences leading 

to reinforced locations. However, navigation models of basal ganglia are not based on 

attractors at the level of neural network dynamics. Instead, convergence toward a goal 

corresponds to the animal progressively following gradients of space-action values (8), 

analogous to the local convergence along synaptic weight gradients in our model. Hence, 

gathering these different striatal models together could hypothetically account for the 

deepening of the goal’s basin of attraction, although this remains to be shown. However, it 

seems more difficult for such neurodynamical systems to account for the widening of the goal’s 

basin of attraction, which requires a distant signal focalizing the dynamics of the internal goal, 

from any initial condition. Altogether, deciphering the respective effects of dopamine on 

corticostriatal NMDAR and on the intrinsic excitability of medium spiny neurons compared to 

NMDAR from recurrent connections would refine the link between MAGNet model’s 

predictions and the neurobiology literature. Finally, DA is likely to also affect online the 

amygdala, thalamus and hippocampus, as well as the connections between these structures 

and the cortex and basal ganglia (4, 13), such full-scale modeling being out of scope. We thus 

lumped some of the decision processes into simple (e.g. spatial coding as a topographical 

feed-forward excitatory input) or phenomenological descriptions (e.g., motor convergence as 

linear and angular ballistics commands). 
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The second important feature of the MAGNet model concerns plasticity pathways 

implementing eligibility traces with synaptic tags. We followed the recent literature describing 

two distinct eligibility traces for LTP and LTD (14), but this separation leaves holes in the 

implementation by intracellular pathways. Indeed, early LTP and LTD are believed to depend 

on CaMKII and calcineurin, respectively, while in the present model a different couple of kinase 

and a phosphatase is needed for LTP and LTD. This may be implemented by 

compartmentalization via synaptic scaffolds linking different forms of CaMKII with different 

phosphatases (15). Likewise, downstream decoding of early LTP/D may be achieved by ERK 

and CREB (16, 17), although these steps may not be specific to glutamate receptor 

upregulation. A more refined model would require to include other DA regulations (13, 18), 

such as intrinsic and structural plasticity. In the MAGNet model, dopamine is key to transform 

eligibility traces into effective plasticity, but other neuromodulators such as noradrenaline (NE), 

serotonin (5HT) and acetylcholine (ACh) seem to exert differential effects on the read-out of 

LTP and LTD (14). Linking the behavioral events that triggered these neuromodulators, together 

with the precise form of eligibility mechanism they implement, would enrich our comprehension 

of reward (or other outcomes)-gated plasticity.  

The third key feature is the online modulation exerted by DA. Here, we focused on 

NMDA modulation, whereas DA can affect a vast diversity of receptors and ionic channels 

depending on the structure and the subtype of DA receptors (13, 19). Similarly, we mainly 

modeled D1R effects, but D2R may not be as antagonistic as previously believed: D1R and D2R 

are actually synergistic when considering the cAMP-PKA pathway we considered (13). Even 

the regulation of intrinsic excitability of medium spiny neurons is more complex than D1R-

mediated increases in excitability and D2R-mediated decreases: D2R may exert destabilizing 

influences (rather than inhibitory) that promote or oppose D1R effects depending on down or 

up-states, respectively (13). These interactions hint at complementary roles in our dynamical 

framework, that we discuss below. 

 

Relations to other theories of dopamine function 

Reinforcement learning theories do not assign any effect to dopamine during ongoing 

behavior, once the value of actions has been learned through DA modulation of plasticity (20, 

21). In alternative views to RL, dopamine has been suggested to exert either directional effects, 

i.e. stimulus-driven dopamine release directs the behavior toward the cue (22, 23) or 

activational effects, i.e. dopamine increases the probability and vigor of any motor behavior 

(10, 24). Both views explain some of the vast literature on phasic dopamine. DA nuclei do not 

have enough encoding capacity and DA projections are not selective enough (10, 24) to 

precisely represent the goal toward which the animal should be directed. As such, in the 
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directional account of dopamine, DA is proposed to add incentive motivation or salience to 

the cue being currently processed, promoting approach through yet-unknown mechanisms. 

The DA-associated cue is described in incentive-salience accounts as becoming “magnetic” 

(22, 23), which is exactly what is expected in the MAGNet model for a state suddenly attracting 

the decision network’s dynamics. However, actions that are not cue-driven but self-generated 

rely on internal representations, in which case the role of DA in incentive-salience is less 

specified. Our proposal is based on contextual decisions, in which animals rely on learned 

internal representations to approach reward. It reinterprets incentive motivation as making 

attractors (stable steady states) representing potential (sensory or internal) goals accessible to 

neural dynamics. However, DA does not support a purely directional role in our theory. Indeed, 

although DA promotes convergence toward distant rewarded goals in a given context, the 

chosen goal is not itself specified by DA neurons. Rather, choice results both from the current 

animal position and the BPE landscape built by previous reward history: animal will converge 

toward the goal owning the basin of attraction in which it lies at the time of phasic DA. 

Activational accounts assign a general role to phasic dopamine in gating decisions 

(increasing DA would render all decisions more probable) and energizing actions. Incentive 

motivation models, in which decisions are sequentially evaluated, i.e. accepted or not based 

on the intensity of phasic DA (25), would predict an undirected increase in the probability of 

every action following VTA photostimulation, in opposition to our experimental data showing a 

reduced angle to reward, and an absence of DA effects outside the reward context. 

Furthermore, we show that speed profiles, not just latency or average speed, are affected by 

phasic DA, which go beyond the scope of discrete-time models (25). Phasic DA has also been 

suggested to move the threshold for decisions in drift-diffusion models (10, 24) predicting 

context-independent increase in undirected actions, which is also inconsistent with our 

observations on context-dependent directed energization of actions. Widening the basin of 

attraction in the present model naturally increases both the likelihood, directness and speed 

of actions in a reward context-dependent fashion. Finally, in time-processing accounts, 

dopamine affects the sense of time: under high DA time goes fast, while under low DA time is 

felt as slower (26). We interpret this as the speeding up of neuronal and behavioral dynamics 

upon attractor unveiling. In the context of working memory, tonic levels of prefrontal DA have 

been related to the gating and maintenance of persistent activity encoding a goal (19, 27). In 

this account, D2R favors stimulus-driven transitions toward another goal by rendering attractors 

more shallow, while working memory of the current goal is stabilized by D1R-mediated 

deepening of its basin of attraction. This view differs from ours, in which phasic DA activates 

D1R to both widen and deepen the basin of attraction, setting a goal based on an internal 

memory. DA roles in decision-making and working memory are not necessarily opposite, as DA 

may achieve a “double duty” in cognitive motivation (28) by widening (to promote the 
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decision) and deepening (to stabilize its working memory) basins of attraction. Here, the 

experimental test considered the physical space of the open-field as the task space. However, 

the conceptual consequences of the MAGNet model extend to non-physical spaces. Indeed, 

dopamine is needed for approaching rewards when animals are far in terms of either physical 

or task space (6, 28). Hence, our MAGNet theory translates the “flexible approach” (6) 

hypotheses into a neurodynamical process: online DA is needed to approach reward in non-

habitual situations, before the animal engages toward its goal, or when there is a motor cost 

and that DA is needed to travel some distance (in either physical or task spaces) to retrieve 

specifically DA-associated goals. 

In the experimental literature, exogenous stimulation of phasic DA has provided 

conflicting results, with context-independent (29) and context-dependent (30) movement 

following SNc/dorsal striatum stimulation. Stimulation of VTA DA neurons exerts either context-

dependent effects (31), or fails to affect online behavior (32). It has notably been advocated 

that phasic DA would only affect online behavior if animals are preparing to move (33). Our 

theory reconciles these conflicting results: when the animal is head-fixed, already close to a 

rewarded state (32), VTA DA is unneeded and its stimulation does not change behavior (i.e. as 

when the e-mouse is already at its internal goal in the model). In contrast, for situations in which 

animals must travel in a physical or task space, DA increases the likelihood and speed of 

convergence toward a goal (30, 31). For the same reason, our framework also explains why no 

dopamine is needed for no-go conditioning (34), as such a case would correspond, in the 

present model, to the goal state being the rest state. Furthermore, the dichotomy between 

SNc and VTA may be based on the type of attractor these nuclei affect. VTA could build and 

express high-level goals (deep and substantially separated wells in the energy landscape), and 

SNc low-level, context-independent subgoals (i.e. a given motoric action) corresponding to 

multiple nearby attractors, explaining context-independent locomotion upon SNc stimulation 

(29). 

  

Latent attractor as a new dynamical framework distinguishing learning from performance 

It is difficult to assign biological meaning to parameters of the phenomenological models 

discussed above (i.e. reinforcement learning and their generalizations). Biophysically-based 

neurodynamical models can help bridge description levels in neuroscience, i.e. build on 

cellular and network mechanisms to account for behavior (35). Neurodynamical theories 

ascribe the property to self-sustain stable neural activity - also known as attractor states - to 

recurrent networks underlying decisions, such as the prefrontal cortex (35). In the context of 

decision-making, attractors in the neural state space would represent external and/or internal 

information encoding potential decisions (36). Hence, decision-making in recurrent networks 
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depends on transitions between the spontaneous activity state (i.e.  corresponding to no 

decision), and decision attractors (37). Such transition may be achieved by a stimulus cue 

acting as an input to the network, which destabilizes the spontaneous state and transforms it 

into one of the decision states toward which dynamics will slowly evolve (1). Alternatively, the 

spontaneous state and decision states may coexist as several stable attractors (multistability), 

with fluctuations in neural activity (noise) driving the transition toward decision states (37). 

However, neither models based on noise nor on stimuli can explain self-generated, goal-

directed actions in which the decision is taken based on internal representations (38). 

Our proposal solves this issue by proposing that DA reveals decision attractors (hereby 

destabilizing the rest state) which would not express otherwise. Such revealing is allowed in the 

MAGNet model by considering two distinct yet linked spaces, the cognitive space and the 

behavioral space, which would coincide in most models. Here, a circular causality links mouse 

navigation in the behavioral space and internal network representations in the cognitive 

space, resulting from feed-forward inputs encoding the mouse position, downstream decoding 

of neural activity into an internal goal, as well as weighted recurrent connectivity learned 

through past dopaminergic reinforcement (DA-plasticity), and online motivational 

dopaminergic modulation of effective synaptic efficacies (DA-excitability). Hence, we do not 

consider the local convergence of neural activity toward an attractor solely in neural state 

space, but rather the convergence in the merged neural and behavioral space (i.e. their 

cartesian product). This allows DA to exert a distant, discontinuous role (the internal goal is 

instantaneously set at a distant position) which widens the decision’s basin of attraction, at 

odds with local effects on attractor stability (deepening).  

This new principle also provides a simple solution to the common critique addressed to 

attractor models that real neural activity is never actually stationary, but transient. Indeed, in 

standard, Hopfield-like models, decision-making comes to a standstill once the activity closes 

in at the attractor (a steady-state with only attracting dimensions). More refined models 

consider saddles (39) or attractor ruins (36), i.e. partially stable attractors, with attracting, stable 

directions co-existing with unstable directions), allowing dynamics to eventually escape and 

converge to another attractor (36, 39). This requires specific mechanisms, either synaptic 

inhibition designed to repel the neural dynamics from the attractor (39) or neuronal fatigue 

ensuring the attractor to be only transient once activated (40). Contrary to these models, the 

decision attractor simply vanishes in the MAGNet model, once the excitability effect of phasic 

DA decays due to recapture. Hence, both the entry into, as well as the exit from, the decision 

attractor are controlled by an internal operation (i.e. a motivational state implemented by 

phasic DA) in our theory. Such internal control also effectively decouples the neural dynamics 
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from synaptic changes, which is key to account for goal-directed actions. Usually, reward-

dependent synaptic plasticity directly leads to a change in models’ neural dynamics, yielding 

behavioral adaptation (i.e. change in the frequency of behavior). However, animals do not 

always express learning as behavioral changes. Instead, some forms of learning are latent (38, 

41, 42). For instance, a sated animal may learn to navigate a labyrinth containing a food source 

without increasing the visits to the food source, and, upon food deprivation, display a change 

in its behavior (i.e. going to the food source). The MAGNet model accounts for such latent 

learning by dopamine-modulated synaptic plasticity only building latent attractors that do not 

necessarily affect neural dynamics. We thus provide a neurodynamical account of how 

motivation, implemented by phasic DA, is needed to express the memory of previous, latent, 

reward learning.  
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METHODS 

Animals 

Experiments were performed on DATiCRE female (n=26) and male (n=21) mice, from 8 to 16 

weeks old, weighing 25-35 grams. Mice were housed in cages in an animal facility where the 

temperature (21+/- 1°C) and a 12h light/dark cycle were automatically monitored with food 

and water available ad libitum. DATiCRE mice (43) were kindly provided by Ludovic Tricoire and 

genotyped by PCR as described previously (44). All experiments were performed in 

accordance with the recommendations for animal experiments issued by the European 

Commission directives 219/1990, 220/1990 and 2010/63, approved by Sorbonne University, and 

n° 014378.01 supervised by the CEEA - 005. 

 

Virus production 

AAV vectors were produced as previously described (45) using the co-transfection method, 

and purified by iodixanol gradient ultracentrifugation (46). AAV vector stocks were titrated by 

quantitative PCR (qPCR) (47) using SYBR Green (Thermo Fischer Scientific). 

 

Virus injections  

Mice were anesthetized with a gas mixture of oxygen (1 L/min) and 1-3 % of isoflurane (Piramal 

Healthcare, UK), then placed into a stereotaxic frame (Kopf Instruments, CA, USA). After the 

administration of an analgesic (Buprecare 0,1 mL at 0,015 mg/L) and of a local anesthetic 

(Lurocain, 0.1 mL at 0.67 mg/kg), a median incision revealed the skull which was drilled at the 

level of the VTA. Mice were then injected unilaterally in the VTA (1 µL, coordinates from bregma: 

AP -3.1 mm; ML ±0.5 mm; DV -4.5 mm from the skull) with an adeno-associated virus 

(AAV5.Ef1a.DIO.ChR2.YFP 6.89e13 vg/mL or AAV5.Ef1a.DIO.YFP 9.10e13 vg/mL). A double-

floxed inverse open reading frame (DIO) allowed to restrain the expression of ChR2 to VTA 

dopaminergic neurons. After stitching and administration of a dermal antiseptic, mice were 

then placed back in their home-cage and had 14 days to recover from surgery. 

 

Fiber and electrode implantations 

Two weeks after virus injection, mice were anesthetized as above. After the administration of 

the analgesic and local anesthetic, skin was incised, the skull was drilled at the level of the VTA. 

An optical fiber (200 µm core, NA=0.39, Thor Labs) coupled to a ferule (1.25 mm) was implanted 
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just above the VTA ipsilateral to the viral injection (coordinates from bregma: AP -3.1 mm, ML 

±0.5 mm, DV 4.4 mm), and fixed to the skull with dental cement (SuperBond, Sun Medical).  

For dual implantation experiments, the skull was also drilled at the level of the Median 

Forebrain Bundle (MFB). A bipolar stimulating electrode was then implanted unilaterally 

(ipsilateral to the optic fiber in the VTA) in the brain (stereotaxic coordinates from bregma 

according to Paxinos atlas: AP -1.4 mm, ML ±1.2 mm, DV -4.8 mm from the brain). 

After stitching and administration of a dermal antiseptic, mice were then placed back in 

their home-cage and had 14 days to recover from surgery. The behavioral task began 4 weeks 

after virus injection to allow the transgene to be expressed in the target dopamine cells.  

 

Ex vivo patch-clamp recordings of VTA DA neurons 

To verify the functional expression of the excitatory opsin ChR2, 8-12 week-old male and female 

DATiCRE mice were injected with the ChR2-expressing virus as described above. 4 weeks after 

infection, mice were deeply anesthetized with an intraperitoneal (IP) injection of a mix of 

ketamine/xylazine. Coronal midbrain sections (250 µm) were sliced using a Compresstome (VF-

200; Precisionary Instruments) after intracardial perfusion of cold (4°C) sucrose-based artificial 

cerebrospinal fluid (SB-aCSF) containing (in mM): 125 NaCl, 2.5 KCl, 1.25 NaH2PO4, 5.9 MgCl2, 

26 NaHCO3, 25 Sucrose, 2.5 Glucose, 1 Kynurenate (pH 7.2, 325 mOsm). After 10-60 min at 35°C 

for recovery, slices were transferred into oxygenated aCSF containing (in mM): 125 NaCl, 2.5 

KCl, 1.25 NaH2PO4, 2 CaCl2, 1 MgCl2, 26 NaHCO3, 15 Sucrose, 10 Glucose (pH 7.2, 325 mOsm) 

at room temperature for the rest of the day and individually transferred to a recording chamber 

continuously perfused at 2 ml/min with oxygenated aCSF. Patch pipettes (4–8 MΩ) were pulled 

from thin wall borosilicate glass (G150TF-3, Warner Instruments) using a micropipette puller (P-

87, Sutter Instruments, Novato, CA) and filled with a potassium gluconate (KGlu)-based intra-

pipette solution containing (in mM): 116 K-gluconate, 10-20 HEPES, 0.5 EGTA, 6 KCl, 2 NaCl, 4 

ATP, 0.3 GTP and 2 mg/mL biocytin (pH adjusted to 7.2). Transfected VTA DA cells were 

visualized using an upright microscope coupled with a Dodt contrast lens and illuminated with 

a white light source (Scientifica). A 460 nm LED (Cooled) was used both for visualizing YFP-

positive cells (using a bandpass filter cube) and for optical stimulation through the microscope 

(with same parameters used for behavioral experiments: ten 5-ms pulses at 20Hz). Whole-cell 

recordings were performed using a patch-clamp amplifier (Axoclamp 200B, Molecular 

Devices) connected to a Digidata (1550 LowNoise acquisition system, Molecular Devices). 

Signals were low-pass filtered (Bessel, 2 kHz) and collected at 10 kHz using the data acquisition 

software pClamp 10.5 (Molecular Devices). All the electrophysiological recordings were 

extracted using Clampfit (Molecular Devices) and analyzed with R. 
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Behavior acquisition and conditioning procedures 

Experiments were performed using a video camera connected to a video-track system, out of 

sight of the experimenter. A home-made software (Labview National instrument) tracked the 

animal, recorded its trajectory (20 frames per s) for 10 min and sent TTL pulses to the electrical 

stimulator or LED device when appropriate. 

Conditioning procedure with VTA DA photostimulation: three explicit square locations, 

marked on the floor, were placed in a circular open-field (67 cm diameter), forming an 

equilateral triangle (side = 35 cm). Each time a mouse was detected (by its centroid) in the 

area of one of the rewarding locations (area radius = 3 cm), a 500-ms train of ten 5-ms pulses 

at 20 Hz was delivered to the LED device. An ultra-high-power LED (470 nm, Prizmatix) coupled 

to a patch cord (500 µm core, NA=0.5, Prizmatix) plugged onto the ferrule was used for optical 

stimulation (output intensity of 10 mW). Animals could not receive two consecutive stimulations 

in the same location.  

Conditioning procedure with MFB electrical stimulation: only one explicit location was 

marked on the floor, at the center of the open-field. Each time a mouse centroid was detected 

in the area (radius = 5 cm) of the location, a 200-ms train of twenty 0.5-ms biphasic square 

waves pulsed at 100 Hz was delivered to the electrical stimulator. Mice were required to leave 

the location (i.e. to be detected at least 10 cm from the central point) for the stimulation to be 

made available again. The training consisted of a block of 5 daily sessions of 10 min at 80 µA, 

followed by 5 daily sessions of 10 min in which ICSS intensity was adjusted (in a range of 20-200 

µA) so that mice visited the central location between 20 and 50 times at the end of the training. 

Test sessions with VTA DA photostimulation: after the end of the MFB electrical conditioning 

procedure, the optical stimulation patch cord was plugged onto the ferrule during at least one 

OFF day (maximum = 5) to habituate the animals, until the criterion (between 20 and 50 

locations visits in 10 min) was reached again. On ON test days, photostimulation was delivered 

by the experimenter when the animal was outside of the reinforced location (at least 10 cm 

from the central point). When the experimenter clicked to stimulate, it had a 50% probability to 

deliver an actual TTL pulse leading to photostimulation, otherwise this time point was recorded 

as a control. In the square open-field test, occurring after the test session in the circular open-

field, the procedure was the same, except that it took place in square open-field (side = 70 

cm) without any mark on the center. 

 

Behavioral analyses and statistics 
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Stimulation-reward duration was computed as the time between the start of the 

photostimulation (or of the control time) and the first detection of the animal in the central 

location. Durations greater than 60s were excluded from the analysis for the sake of 

representations, but did not affect the statistical significance of the tests. Cumulative 

distributions of durations were computed by pooling stimulation-reward and control time-

reward from all animals in one condition (e.g. ChR2 or YFP), with a 3-s time bin. Average delays 

to rewards were also computed for each animal. For all groups of mice, the trajectory was 

smoothed using a triangular filter before computing the instantaneous speed, which 

corresponds to the distance traveled by the animal between two video frames (every 50 ms) 

as a function of time. Mean acceleration following stimulation was taken as the time derivative 

of speed during the first second after stimulation. Angles to reward were computed as the 

angles between each successive position of the animal relative to the initial angle (at 

photostimulation or at control time). Angle error was taken as the mean of ∥ $%!" ∥ where 3	are 

the successive angles to reward. 

All statistical analyses were computed using Matlab with custom programs. Results were 

plotted as a mean ± s.e.m. The total number (n) of observations in each group and the statistics 

used are indicated in figure legends. Classical comparisons between means were performed 

using parametric tests (Student’s T-test, or ANOVA for comparing more than two groups) when 

parameters followed a normal distribution (Shapiro test P>0.05), and non-parametric tests 

(here, Wilcoxon or Mann-Whitney) when the distribution was skewed. Repeated-measure 

ANOVAs were used for longitudinal measures. Multiple comparisons were Bonferroni corrected. 

 

Immunochemistry 

After euthanasia, brains were rapidly removed and fixed in 4% paraformaldehyde (PFA). After 

a period of at least three days of fixation at 4°C, serial 60-µm sections were cut with a vibratome 

(Leica). Immunostaining experiments were performed as follows: VTA brain sections were 

incubated for 1 hour at 4°C in a blocking solution of phosphate-buffered saline (PBS) containing 

3% bovine serum albumin (BSA, Sigma; A4503) (vol/vol) and 0.2% Triton X-100 (vol/vol), and then 

incubated overnight at 4 °C with a mouse anti-tyrosine hydroxylase antibody (anti-TH, Sigma, 

T1299) at 1:500 dilution, in PBS containing 1.5% BSA and 0.2% Triton X-100. The following day, 

sections were rinsed with PBS, and then incubated for 3 hours at 22-25 °C with Cy3-conjugated 

anti-mouse and secondary antibodies (Jackson ImmunoResearch, 715-165-150) at 1:500 in a 

solution of 1.5% BSA in PBS, respectively. After three rinses in PBS, slices were wet-mounted using 

Prolong Gold Antifade Reagent (Invitrogen, P36930). Microscopy was carried out with a 

fluorescent microscope, and images captured using a camera and analyzed with ImageJ. 
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Identification of the transfected neurons on DATiCRE mice by immunohistofluorescence was 

performed as described above, with the addition of 1:500 Chicken-anti-GFP primary IgG 

(ab13970, Abcam) in the solution. A Goat-anti-chicken AlexaFluor 488 (1:500, Life Technologies) 

was then used as secondary IgG. Neurons labeled for TH in the VTA allowed to confirm their 

neurochemical phenotype, and those labeled for GFP to confirm the transfection success. 

 

Model and Behavioral Potential Energy Theory overview 

The details of the model can be found in the Supplementary Methods. In short, at its largest 

scale, the e-mouse model was designed as a distributed decision architecture deciding how 

an e-mouse navigates in a space. To fit experimental paradigms, we considered the physical 

space (a circular arena), but the model could extend to any task space. The e-mouse 

navigation was governed by linear speed and angular commands ensuring convergence 

toward either a default objective (circling along arena walls) or goal-directed behavior toward 

an internal goal, set by a recurrent prefrontal neural circuit. The contribution of default behavior 

to speed was high when the e-mouse headed toward, or was aligned with, the arena walls, 

but vanished when the e-mouse was far from, or not aligned with, the arena walls. Angular 

dynamics toward the default objective ensured that the e-mouse aligned with the wall when 

approaching it. Far from walls, angular dynamics were essentially influenced by goals situated 

in its visual foreground landscape. The internal goal was determined according to a 

probabilistic soft-max process (modeling basal ganglia operations), which stochastically 

selected the preferred position of neurons according to probabilities based on their 

instantaneous spiking rate. Neuronal preferred positions were organized on a square lattice 

that covered the arena. 

The local recurrent prefrontal network consisted in a detailed biophysical model of PFC 

neurons and connections (48). The model contained  neurons that were either excitatory (E) or 

inhibitory (I), with sparse connectivity, an E/I ratio of 4, and E/I current balance at the post-

synaptic neuron level. Leaky integrate-and-fire (LIF) neurons were endowed with recurrent and 

feed-forward currents, and with adaptive action potential threshold in excitatory neurons. 

Feed-forward currents consisted of AMPA currents while recurrent currents consisted of AMPA, 

NMDA, GABA-A and GABA-B currents. We considered a uniform delay for synaptic conduction 

and transmission. AMPA feed-forward currents consisted in two parts: 1) inputs from external 

sources (putatively sub-cortical and/or cortical inputs), modeled as an exponentially-filtered 

normal stochastic process with temporally homogeneous mean[MS1] , and 2) hippocampal 

place-field inputs encoding the e-mouse position, with PFC neurons receiving input currents 

proportional to the activation of their receptive fields by a Gaussian input centered on e-mouse 
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position. Recurrent NMDA currents were subject to dopamine modulation that affected their 

maximal conductance, in all synapses of the network (“DA-excitability”). 

Network excitatory synapses underwent a dopamine (DA)-modulated form of Hebbian 

Spike Timing-Dependent Plasticity (STDP) (“DA-plasticity”), with pre- then post-synaptic spike 

sequences leading to long-term potentiation (LTP), and post- then pre-synaptic spike 

sequences to long-term depression (LTD). Spiking activity patterns did not translate into 

immediate effective synaptic changes, but rather resulted in synaptic tags, called eligibility 

traces (20), which were read out at the time of dopamine release (49). Eligibility traces (eLTP 

and eLTD, respectively) arose from synaptic calcium dynamics in the postsynaptic button (48, 

50). Synaptic calcium took into account the sum of calcium contributions arising from pre- and 

post-synaptic spiking, together with buffering and extrusion. Intracellular calcium activated 

calcium-dependent kinases and phosphatases, which competed to form eLTP and eLTD 

traces. Dopamine gated the transformation of eLTP and eLTD traces into actual changes in 

excitatory synaptic weights . Dopamine level was the same at all synapses. Dopamine was 

released when the e-mouse was detected inside rewarded areas, but also occurred 

spontaneously according to a Poisson process, i.e. with homogenous release probability within 

each time bin. The dopamine concentration followed second-order dynamics modeling 

release and recapture. 
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Figure 1. Increase in behavioral performance does not disentangle reinforcing and 

motivational roles of dopamine. 

a. Left, ChR2-YFP-expressing virus was injected in ventral tegmental area (VTA) TH-

expressing dopamine (DA) neurons in DAT-Cre mice. Right, VTA photostimulation was 

delivered when mice were detected within one of three explicit locations (A, B, C) in 

the open field. Mice could not receive two consecutive photostimulations at the same 

location (e.g. C), so they alternated between locations (e.g. A or B after C).  

b. Top, trajectories (10 min) of one mouse expressing ChR2 in the VTA (purple) at the 

beginning (left) and at the end (right) of the learning sessions. Bottom, number of 

photostimulations against session number for Chr2-expressing (purple) and YFP-

expressing (black) animals. 

c. DA reinforces synaptic weights used for decision-making, by increasing the probability 

actions that previously led to reward (green panel). Short-term DA effects on synaptic 

excitability may also increase the probability of upcoming actions (red panel), but the 

specificity of such a motivational role remains unclear.  

d. Modeling DA biophysics in the MAGNet model. At excitatory synapses, DA consolidates 

calcium-induced early eligibility traces (eLTD and eLTP) into long-term weight changes 

affecting AMPA and NMDA currents (DA-plasticity; green arrows). DA also 

instantaneously upregulates NMDA maximal conductances (DA-excitability; red arrow). 

e. Top, the decision architecture of the MAGNet model comprises a biophysical prefrontal 

(PFC) recurrent network with DA-modulated excitatory synapses, hippocampal position-

encoding inputs (black), basal ganglia internal goal soft-max-decoding (orange) and 

motor convergence toward the internal goal (brown). Bottom, hippocampal inputs 

impose an activity bump (dark gray in maps). Under default behavior (upper maps), the 

e-mouse position (black dot) and internal goal (orange dot) are conjoined, such that 

goal-directed behavior is inoperant and navigation oriented toward the wall. Under 

goal-directed behavior (lower maps), the internal goal is decoded at a larger, distant, 

activity peak (artificially created here, green dot) such that the e-mouse converges to 

the goal (arrows). 

f. e-mouse trajectories during the 1st and 10th session of simulated protocol where DA-

plasticity and DA-excitability operated online.  

g. Average number of rewards (performance rate) as a function of DA-plasticity (maximal 

Hebbian Assemblies weight) and DA-excitability (NMDA scaling factor). 
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Figure 2. Dopamine builds and reveals latent network attractors encoding internal goals. 

a. Schematics of the single rewarded location arena. 

b. Under DA-plasticity alone, phasic DA delivered at the rewarded location yielded long-

term synaptic changes (top panels) that accumulated (bottom), eventually shaping a 

Hebbian assembly encoding the place–reward association (right). 

c. Under DA-excitability alone, DA transiently increased synaptic efficacy in the whole 

network through NMDA potentiation. 

d. Superimposed example e-mouse trajectories in the DA-plasticity, DA-excitability and 

DA-plasticity+excitability conditions, from random positions and directions. Rewarded 

trajectories are in bold. The color code for conditions is used in panels e-j.  

e. Reward probability as a function of the initial distance of trajectories in d, for the three 

conditions. 

f. Example model dynamics (neural spiking sorted according to the distance to reward) 

in the three conditions. Under DA-plasticity+excitability, DA generated a massive neural 

co-activation at the Hebbian assembly, setting the internal goal at the rewarded 

location and e-mouse convergence toward it (reward). The Hebbian assembly was 

generally unexpressed under DA-plasticity, or absent under DA-excitability, forbidding 

goal-directed behavior.  

g. Theoretical behavioral potential energy (BPE) computed as a function of time and 

distance to reward under the three conditions. The rewarded location becomes a 

transient attractor of behavioral dynamics only under DA-plasticity. Faint blue strip at 

the top reflects the propensity to follow walls during default behavior. 

h. Theoretical BPE (illustrated in 2D), as well as internal goal and e-mouse position of 

example simulations, under DA-plasticity-excitability, during the first second following 

phasic DA. 

i. Schematics of attractorial dynamics in the MAGNet model. Theoretical BPE were 

computed at their maximal amplitude after phasic DA in the three conditions. Under 

DA-plasticity-excitability, navigation toward the reward arises from convergence 

toward the BPE minimum, which sets the internal goal. 

j. Ballistic model predictions indicate an increased cumulative reward probability under 

DA-plasticity-excitability only, due to an increase of speed to reward, as well as a 

specific approach to it (decrease of distance and angle to the reward). 
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Figure 3. Testing the prediction that VTA photostimulation-induced movements are goal-

specific and context-dependent. 

a. Schematics of electrode implantation in the medial forebrain bundle (MFB) and 

injection of the ChR2-YFP-expressing virus and fiber implantation in ventral tegmental 

area (VTA).  

b. Experimental test of the model predictions. A location is rewarded by MFB electrical 

stimulation (left). Then (inside the brackets), VTA photostimulation is provided in the 

context where reinforcement occurred (plasticity + excitability) and compared to a 

“plasticity only” conditions (MFB+Chr2 animals without VTA photostimulation), an 

“excitability only” condition (VTA photostimulation in another context where no 

location had been rewarded), and “null” condition (no photostimulation and no 

reward context).  

c: From left to right : example trajectories at the end of the MFB conditioning sessions, 

and post-photostimulation bouts of trajectories in the different conditions described in 

c. Differences between photostimulation-rewarded location delays for YFP (reward 

context); ChR2-expressing (reward context) and ChR2-expressing (no reward context) 

animals 

d. Cumulative distribution of the photostimulation-rewarded location delays in YFP (ON 

light in reward context); ChR2-expressing (ON and OFF light in reward context) and 

ChR2-expressing (ON and OFF light, no reward context) animals. 

e-l. Speed (d), distance to the rewarded location (f), and angle between the animal 

and the rewarded location (i) around VTA photostimulation for ChR2-expressing 

animals when ON light in reward context (purple), OFF light in reward context (light 

blue) and ON light in no reward context (red). Average difference in speed (e), 

distance to the rewarded location (g), and angle between the animal and the 

rewarded location (j) between ON and OFF light conditions, in reward (“Chr2”) and no 

reward (“Chr2 No R”) contexts. (h) shows the computation of angle between the 

animal and the rewarded location, based on the same trajectories as in a, realigned 

to the same line relative to the rewarded location, showing straight trajectories for 

animals when ON light in reward context (purple), and indirect trajectories when OFF 

light in reward context (light blue) or ON light in no reward context (red). 
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Supplementary Figure 1: Specificity of dopamine control by optogenetics 

a. ChR2 was expressed in VTA DAT+ (dopamine) neurons in slices from DAT-Cre mice used 

for ex-vivo recording.  

b. Zoom in the example neuron recorded, expressing TH, YFP and filled with biocytin (blue). 

c. Left, example of current induced by a one second-pulse and average currents from 12 

cells, induced by the 10 5ms-pulses at 20Hz. Right, example of bursting driven by 10 5ms-

pulses at 20Hz 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.07.499108doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.07.499108
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

80

# sessions 101

R
ew

ar
ds

I adj.a b c

d

e

0

15

Sp
ee

d 
(c

m
.s

-1
)

Time (s)0-0.5 2 Time (s)0-0.5 2

Time (s)0-0.5 2 Time (s)0-0.5 2 Time (s)0-0.5 2
0

15

Sp
ee

d 
(c

m
.s

-1
)

Time (s)0-0.5 2

D
is

ta
nc

e 
to

 re
w

ar
d 

(c
m

)

An
gm

et
o 

re
w

ar
d 

(°
)

D
is

ta
nc

e 
to

 re
w

ar
d 

(c
m

)

An
gm

et
o 

re
w

ar
d 

(°
)

0

35

0

120

0

35

0

120

YFP ON (n=8) 
YFP OFF (n=8) 

YFP ON (n=8) 
YFP OFF (n=8) 

YFP ON (n=8) 
YFP OFF (n=8) 

No rew. OFF (n=8) 
No rew. ON (n=8) 

No rew. OFF (n=8) 
No rew. ON (n=8) 

No rew. OFF (n=8) 
No rew. ON (n=8) 

MFB
Reinforcement

n=11

YFP ON
reward (R) context

Lorem ipsum����ȝP

VTA

IPN PO

GFP
TH

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.07.499108doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.07.499108
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure 2: control experiments for Figure 3  

a. ChR2 was expressed in VTA DAT+ (dopamine) neurons in animals used in Figure 3 

experiments. 

b. Number of location visits across sessions of MFB reward learning.  

c. Post-photostimulation bouts of trajectories in the YFP, ON light, R context. 

d. From left to right: speed, distance and angle to rewarded location around the time of 

random VTA photostimulation in the periphery for YFP animals. 

e. Same as d for Chr2 animals in the “no reward” condition. 
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 1 

Supplementary methods related to the MAGNet model, simulations and BPE theory 

 

e-mouse navigation 

In the MAGNet model, e-mouse navigation was modeled, in a circular arena (radius !!"#$!), as 

a process where orientation and speed were governed by a convergence toward either a 

default objective that consisted in approaching and aligning with the arena wall (answering 

to a need for security), or a goal-directed objective, answering to a need for exploration, the 

discovery and the retrieval of rewarded locations (i.e. circles with radius !"#%!"&). While the 

default behavior was set according to ballistic laws in the model, goals were driven by 

population dynamics of the recurrent neural network (see below). 

The mouse position was denoted " = {%', ''}, with %' and '' its cartesian coordinates. The 

position vector was 

")⃗ = (%'	''	) = -'(./0(1')	023(1')	) (1) 

with -' = ‖")⃗‖ the distance to the center of the arena 4 and #' = (")⃗ , 5⃗)
6  the directional angle of 

the position vector (5⃗ =(1, 0)). The mouse moved according to 

9)⃗ =
&'(⃗
&*
= :

&+!
&*
	&,!
&*
	; = 9'(./0(1-)	023(1-)	) (2) 

where 9' was the linear speed and #- = <9)⃗ , 5⃗=
6  the direction of movement, i.e. the directional 

angle of the mouse speed vector, termed hereafter the speed angle. 

 

e-mouse linear speed dynamics 

The e-mouse linear speed obeyed 

$- &-!&* = >-" + >-# (3) 

where the terms >-" = 9. − 9' and >-# = 9/ − 9' modeled the contribution of default (subscript 

D) and goal behaviors (subscript G) to linear speed. 

On the one hand, >-" drove linear speed toward the default command speed 9., which 

was expressed as 

9. = 90!1A(-., B.)C(D1.)  (4) 

where 90!1 was the maximal linear speed, A(-, B) = EFG	(−
&$

23$
) and C(1) = 45678	(")	

2
 respectively 

denote exponential colinear (with characteristic distance %) and cosine angular tuning 

functions for motor commands (1), -. the distance separating the e-mouse and the default 

objective I, and &#; = 1< − 1; the angular difference between the speed and default 

objective angles. 

At each time, I was defined as the nearest point from e-mouse’s position situated on a 

circle concentric with the circular arena wall with !& = !!"#$! − !07=8#	,	with !!"#$! the arena radius 

and !07=8# the e-mouse body’s half width, i.e. at the nearest possible distance from the wall, 

when considering the physical dimension of the e-mouse body. The default objective angle 
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 2 

was computed as #. = <1 − A(-., B.)=1' + A(-., B.)1>, where #' was the directional angle from 

the animal position " to its projection onto the wall I, and #> was the directional angle 

tangential to the arena circular wall at point I and in the direction of e-mouse movement. 

Overall, >-" modeled the propensity of e-mouse to be driven by the default command 

speed 9., which was important when the e-mouse was 1) approaching the arena wall and 

heading toward it (typically small -. (yielding #.~1') and #-~1', resulting in substantial A(-., B.) 

and C(D1.) values) and 2) aligning parallel to the arena wall (typically -.~0 (yielding  

#.~1>) and #-~1>, resulting in large A(-., B.) and C(D1.) values). Conversely, the contribution 

of the default behavior to the e-mouse overall speed vanished when the e-mouse was far from, 

or not aligned with, the arena wall. 

On the other hand, >-#, drove the e-mouse linear speed toward the goal command speed 

9/, which was expressed as 

9/ = 90?$ + (90!1 − 90?$)[<1 − A(-/ , B/)=C(D1/) + A(-/ , B/
!%!@

)C(D1/ + L)] (5) 

where 90?$ was the e-mouse’s minimal linear speed, -/ the distance separating the e-mouse 

and goal objective (hereafter denoted as the internal goal) N, &#A = 1< − 1A the angular 

difference between the speed angle and #/ = ("N)))))⃗ , 5⃗)
6  the directional angle from the e-mouse 

to the internal goal. Altogether, >-# modeled the propensity of the e-mouse to be driven by 

the goal command speed, which was important when the e-mouse was 1) far from the internal 

goal and heading toward it (large -/ so <1 − A(-/ , B/)=~1 and #-~1/ such that C(D1/) is large), 

or 2) nearby the internal goal and moving away from it (small -/ so A(-/ , B/
!%!@

)~1 and #-~1/ +
L such that C(D1/ + L) is large). The scaling of linear tuning functions, when moving toward or 

away from the internal goal were determined by %/ and %/!%!@, with %/ < B/
!%!@ so that 

navigation was faster when escaping away from a recently visited rewarded point. This 

hypothesis was necessary to avoid otherwise inevitable (although unrealistic) e-mouse 

repeated navigational loops at rewarded locations.  

The internal goal N was determined according to a probabilistic soft-max process with N 

drawn, at each time-step, from the normalized exponential probability distribution 

G<N = ">B	(D)= =
#1E	(F%&G')

∑ #1E	(F%&G()(

 (6) 

where ">B	(D) = <%>B	(D)	'>B	(D)	= was the preferred position and PD the estimated firing frequency 

of neuron Q, 'IJ the inverse temperature of the process and R indexing neurons taking part to 

the soft-max. The estimated firing frequency was obtained by filtering spiking with an 

exponential kernel with time constant $B. Preferred positions were organized on a square lattice 

following the X and Y axes that covered the arena, with 70% of neurons within the arena and 

30% outside on % and ' axes. Neurons’ preferred positions covered a surface area more than 

twice that of the arena, so that the internal goal could lay outside the arena. The soft-max was 

thus computed with neurons whose  preferred positions were closer than !87G*K0!10!1 , so that N 
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essentially laid within the arena. This ensured that goal-directed influence balanced the 

centrifugal influence of the default behavior, such that a naïve (i.e. before learning) e-mouse 

spent ~60% of their time in the default behavior (i.e. running along walls). Convergence to the 

internal goal could nevertheless tend to drive the e-mouse outside the arena sometimes. To 

avoid this unrealistic behavior, the distance of the e-mouse to the arena center, -', was reset 

to !& when this happened. 

 

e-mouse angular dynamics 

The e-mouse angular direction #- obeyed 

$#)
LM)
LN
= (1 −

<

<*+,
)(>M- + >M.) (7) 

with the first term catching the slower rotation of animals when moving faster, and >O" and >O# 

represented contributions of default and goal behaviors to e-mouse orientation changes. 

Rotation speed toward the default objective was governed by 

>O" = A(-., B.)D1. (8) 

so that it was larger when #- was far from #. and when the e-mouse approached arena walls 

(A(-., B.)~1), which insured a progressive rotation toward #> (i.e. the e-mouse aligned with the 

wall when approaching). Rotation was essentially independent of the default behavior far from 

the wall, being instead mostly goal-directed, with rotation toward the internal goal obeying 

>O# = C(D1/)D1/ (9) 

where rotational speed scaled with the difference between e-mouse’s direction #- and #/ the 

angle facing the internal goal, but only when the e-mouse was essentially influenced by goals 

situated in its visual foreground landscape (C(D1/) vanished at large &#A values). This 

hypothesis, which expressed a visual gating of internally-guided behaviors, reduced the noise 

of goal-directed navigation but was not essential to the results. 

 

Pause and redirection behaviors 

The e-mouse had behavioral pauses (during which rotational or linear speed was null) that 

occurred spontaneously with increasing probability when closer to the arena wall, as in real 

mice. Pause times where thus drawn according to a Poisson process with a rate scaled with 

the distance to the center of the arena:  
L/

P+012+
SQRSTU, each pause lasting -'!=8#. Redirections of 

the e-mouse occurred at the end of pauses, by drawing the new angular direction from a von 

Mises distribution (2) with mean #- and concentration ("#&?" (i.e. with a circular standard 

deviation of $
V
). In order to avoid unrealistic redirections toward the exterior of the arena when 

at its edges, directions were redrawn when "4)))))⃗ . &'
(⃗

&*
< 0 (centrifugal redirection) with probability 

G"#&"!% = A(-., B.) (nearby 1 in the close vicinity of the arena wall). 
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Local recurrent neural network biophysical model 

We built a biophysical model of a prefrontal local recurrent neural network, endowed with 

detailed biological properties of its neurons and connections (3). The network model contained 

U neurons that were either excitatory (E) or inhibitory (I) (neurons projecting only glutamate or 

GABA, respectively (4)), with probabilities GW and GX = 1 − GW respectively and 
Y3
Y4
= 4 (5). 

Connectivity was sparse (i.e. with probability connection GZ (6)), with no autapse (self-

connections). Synaptic weights W(?,D) of existing connections were initiated with a value )%, 

before possible consecutive additional Hebbian assemblies were learnt or written by hand (see 

below). 

To cope with simulation times required for the massive explorations of the model, neurons 

were modeled as leaky integrate-and-fire (LIF) neurons. The membrane potential of neuron Q 

obeyed 

*X
L<(5)
LN

= −(Y\(]) + Y^_`.bUc(]) + Y^_`.dd(]))	
9(]) > 1(]) → 9(]) = 9PUYef

 (10) 

where was 9"#8* the repolarization potential. The action potential (AP) threshold #(]) was 

adaptive in excitatory neurons, with spike-induced instantaneous increase and exponential 

convergence with time constant $# toward its steady-state value #g: 
&O(')
&*

=
O8KO(')
h9

+ D1	\<] − ](D)= (11) 

where  +  represents the Dirac function and ](D) AP times in neuron Q. 

The leak current followed 

Yi(D) = ^i<9(D) − 9i= (12) 

with ^i the leak conductance and 9i its equilibrium potential. 

The recurrent synaptic current on postsynaptic neuron Q, from either excitatory or inhibitory 

presynaptic neurons (indexed by 2), was 

YI@$.j#6(D) = ∑ <YkJ'k(?,D) + YlJ.k(?,D)+Y/kmk:(?,D) + Y/kmk;(?,D)=?  (13) 

The delay for synaptic conduction and transmission, &]T_`, was considered uniform across the 

network (7). Synaptic recurrent currents followed 

Y1(?,D) =	^+`̀`̀ W(?,D)	G1(?)<9(D) − 91= (14) 

Where ^+`̀`̀  was the maximal conductance, W(?,D) was the synaptic weight, G1(?) the opening 

probability of channel-receptors and 91 the reversal potential. The NMDA current followed 

specific dynamics 

YlJ.k(?,D) = ^lJ.k`̀ `̀ `̀ `̀ W(?,D)P.k
lJ.k

GlJ.k(?)FlJ.k<9(D)=<9(D) − 9lJ.k= (15) 

accounting for the voltage-dependence of the magnesium block (8) which was modeled as 

FlJ.k(9) = (1 + [a^
25
]E
Kg.gn2	-

/3.57)
K4 (16) 
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and P.klJ.k represented the dopamine-dependent gating of NMDA conductance (9–11) 

through D1-receptors, affecting equally all synapses of the network (diffuse VTA dopamine 

input), according to 

P.k
lJ.k

= P.k
lJ.k

0?$ + (P.k
lJ.k

0?$ − P.k
lJ.k

0!1)	
4

45#<(=":<=":
>&":)/(":

>&":	
 (17) 

where P.klJ.k0?$	and P.klJ.k0!1 set minimum and maximal gating and F.klJ.k and R.klJ.k were the 

half-activation and inverse slope of DA concentration sigmoidal effect.  

AMPA and GABAA channel rise times were approximated as instantaneous (7) and bounded, 

with first-order decay 
&E=(A)
&*

= −
E=(A)
h=
BCDEF + ∆G1	<1 − G1(?)=	\<] − ](?)=	(18) 

where ](?) represented the pre-synaptic APs’ times. In order to account for the longer NMDA 

(12) and GABAB (13) channel  rise times, opening probabilities followed second-order 

dynamics (7) 

,
Lo,(G)
LN

= −

o,(G)
p,0GH1

+ Dgq	-1 − gq(r).	\/] − ](r)
s 0

LY,(G)
LN

= −

Y,(G)

p,
I1J+K + hq	gq(r)	-1 − Gq(r).

		 (19) 

Recurrent excitatory and inhibitory currents were balanced on average in post-synaptic 

neurons (14) according to driving forces and excitation/inhibition weight ratio, through 

i

^/kmk:`̀ `̀ `̀ `̀ ` 	= ^/kmk:
Kt〈-〉K-:&!:uEL→NEL
v-OCEPK-#:;::wEQ→NEQ

^/kmk;`̀ `̀ `̀ `̀ ` = ^/kmk;
K(-OCEPK-:&!:)EL→NEL
v-OCEPK-#:;:;wEQ→NEQ

		 (20) 

with 〈9〉 = (M0+<01HS)
2

 an approximation of the average membrane potential, and % the excitatory 

or inhibitory identity of the postsynaptic neuron receiving the inhibitory current. 

The feed-forward synaptic current YI@$.BB(D) – putatively arising from sub-cortical and/or 

cortical inputs – consisted of an AMPA current 

YI@$.BB(D) = ^kJ'kTT`̀ `̀ `̀ `̀ `̀ `	GkJ'k.BB 	<9(D) − 9kJ'k= (21) 

where GkJ'k.BB was the sum of two components, 

GkJ'k.BB = GW1* + GBm (22) 

The first one, GW1*, corresponded to network-wide AMPA inputs from external sources for 

every network neuron, and built as the convolution by an exponential kernel RW1* (time constant 

$kJ'k) of a random stochastic process drawn from the normal distribution, with mean and 

standard deviation derived from the binomial distribution of the number of input spikes per time 

step when considering  3W1* external independent inputs projecting onto the network and a 

spiking probability FW1* for each input per given time step: 

j

kW1* = DGkJ'k.BB 	3W1*	FW1*

%W1* = 	DGkJ'k.BB 	l3W1*	FW1*(1 − FW1*)
		 (23) 
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 6 

The second component, GBm, corresponded to the putatively hippocampal feedback 

encoding the e-mouse position (Figure 1e), with neuron Q receiving an input current 

proportional to the activation RBm	(Q) of their preferred position. Activation function were 

modeled as bivariate distributions centered on the preferred position (%jB	(D), 'jB	(D)). 

RBm	(D) =
4

√2{	3UT
E

K	V
W
	|
XN!<NUT	(')Y

$
ZX[!<[UT	(')Y

$

\UT
$ }

 (24) 

which displayed similar, but flatter profiles, compared to bivariate distributions, to insure a more 

homogeneous feed-back activation of neurons encoding the e-mouse position and, as a 

consequence, smoother and more stable learning (see below). Activation function width was 

determined by %>B. Finally, the feed-back opening probability was GBm = RBm	FBm, with FBm a 

constant. 

 

Synaptic plasticity 

We built a constrained biochemical model of the pathways’ architecture implicated in the 

dopaminergic reinforcement of synaptic plasticity. Network excitatory synapses underwent a 

dopamine (DA)-modulated form of Hebbian Spike Timing-Dependent Plasticity (STDP), with 

pre- then post-synaptic spike sequences leading to potentiation (and post- then pre-synaptic 

spike sequences depression). Spiking activity patterns did not translate into immediate 

effective synaptic changes, but rather resulted in synaptic tags, called eligibility traces (15), 

which were read out at the time of dopamine release (16). Standard Hebbian synaptic STDP 

rules devoid of reinforcement gating would strengthen any e-mouse navigation trajectory 

associated with a chain of neuronal activation. By contrast, in the presence of DA-reinforced 

plasticity, network synapses are only modified if they participated to rewarded trajectories. 

At the molecular scale, the spike timing-dependence of synaptic plasticity (17, 18) was 

considered to arise from synaptic calcium dynamics in the postsynaptic button (3, 19). 

Specifically, calcium was computed as 

Xm = Xmg + XmE"# + XmE78* (25) 

which took into account calcium the sum of calcium contributions arising from pre- and 

postsynaptic spiking. Presynaptic calcium dynamics followed 
&Z!]^C
&*

= ∆XmE"# ∑ \<] − ](?) − ].=? −
Z!]^C
h_E

 (26) 

which modeled the calcium influx due to pre-synaptic spiking through Voltage-Dependent 

Calcium Channels (VDCCs), with ∆XmE"# the calcium step per action potential (AP), ](?) APs’ 

times, and ]. the delay necessary for AMPA channels’ activation and excitatory postsynaptic 

potential (EPSP) buildup driving VDCCs' opening), in addition to extrusion/buffering of this 

calcium source, with time constant $Z!. Postsynaptic calcium dynamics followed 
&Z!]`ab

&*
= DXmE78* ∑ \<] − ](D)=D + n'"#'78*XmE"# ∑ \<] − ](D)=D −

Z!]`ab
h_E

 (27) 
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 7 

which took into account extrusion/buffering (last term) in addition to the calcium influx from 

post-synaptic back-propagated spiking opening VDCCs (first term) and NMDA channels 

(second term). The NMDA calcium influx was scaled by an interaction coefficient 3'"#'78* and 

depended on the product of the presynaptic calcium contribution and postsynaptic spiking, 

to account for the associative opening of NMDA channels due to magnesium blockade. 

Intracellular calcium activated calcium-dependent kinases and phosphatases (putatively, 

CaMKII kinase and calcineurin) that competed to form molecular traces (18, 20, 21), i.e. 

eligibility traces (16, 21, 22), and which were distinct for potentiation (eLTP) and depression 

(eLTD) processes (18). These traces putatively competed for the phosphorylation of an ERK tag 

(22–24), which would decay to a non-phosphorylated state if not consolidated by dopamine 

into effective – reinforced – changes in synaptic weights. In the model, each eligibility trace 

followed first-order dynamics, i.e. 
&#
&*
= o#(1 − E) − "#E (28) 

where  kinase and phosphatase activation followed 

4
oU = oU

~Rq �R2c1

�Rℎ,f12c1+�R2c1

"U = "U
~Rq �R2c1

�Rℎ,/12c1+�R2c1

		  (29) 

with o#0!1 and "#0!1 the maximum rates, XmÄ,Å# and XmÄ,'# the half-activation calcium values 

and 3p# the Hill coefficient 

Experimental studies indicate that the activation of  D1 receptors by dopamine increases 

cAMP levels and, consequently, protein kinase A (PKA) activity (11, 21, 23), resulting in the 

transformation of eligibility traces into effective – reinforced – synaptic changes (16, 25), i.e. 

modified glutamate receptor densities or phosphorylation levels, e.g. through CREB-induced 

protein synthesis (23, 24). In the model, excitatory synaptic weights W evolved according to a 

dopaminergic gating of a kinase/phosphatase cycle activated by Ei>' and Ei>. eligibility 

traces (18), with first-order (soft-bound) kinetics : 
&%
&*
= P.k

I>.'
ℎ(o%(W0!1 −W) − "%W) (30) 

with W0!1 corresponded to the maximal synaptic weight, P.kI>.' the dopamine-gated functional 

fraction of the kinase/phosphatase cycle and ℎ a variable accounting for homeostatic 

synaptic regulation required only for online learning simulations (see below). Kinase and 

phosphatase activations followed  

i

o% = o%
0!1 #gU!Phi

#j,kPhi5#gU!Phi

"% = "%
0!1 #gU"Phi

#j,!Phi5#gU"Phi

		  (31) 

with o%0!1 and "%0!1 the maximum rates, EÄ,Å and EÄ,' the half-activation eligibility values and 

3p% the Hill coefficient. 
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The dopaminergic gating of synaptic plasticity operated on all synapses (diffuse VTA 

dopamine input) through D1-receptors (10, 11), and followed 

P.k
I>.'

=
4

45#<(=":<=":
%U"!)/(":

%U"!	
 (32) 

where F.kI>.' and R.kI>.' were the half-activation and inverse slope of DA concentration 

sigmoidal effect on plasticity. 

 

Dopamine dynamics 

The dopamine concentration, following spontaneous or reward events (at time ].k), obeyed 

second-order dynamics 

⎩
⎪
⎨
⎪
⎧
-!;Ç

-]

= −

!;Ç

r;Ç
PrTU + ∆;Ç\(] − ];Ç)

-G;Ç

-]

=

−G;Ç +	h;Ç!;Ç

r;Ç
LUcR_

F;Ç = F;Ç
~r`

+ G;Ç

		 (33)	

where $.k"?8# and $.k&#6!@ were rise and decay time constants, F.k0?$ the minimum DA 

concentration, and ;.k a parameter scaling the influence of !.k on G.k dynamics and adjusted 

to get a maximal value F.k0!1. Spontaneous events were drawn according to a Poisson process 

with a rate <"%&8E , with a refractory period -"%&
8E . Reward events occurred when the e-mouse 

entered a rewarded location. In simulations with three rewarded locations, following 

consecutive visits of the same location were not rewarded. 

 

Numerical procedures and parameters 

The MAGNet model was simulated and explored using custom developed MATLAB code, 

whose differential equations were numerically integrated using the forward Euler method (&] =
1k0). Most simulations, achieved in offline conditions (Figure 2), were achieved with the 

following set of standard parameter values: space and navigation: $- = 500	k0, $#) = 50	k0, 

90!1 = 1
0
8
, 90?$ = 0.1

0
8
, %. = 0.0005	k, %/ = 0.1	k, %/!%!@ = 0.2	k, <E!=8# = 0	0

K4,	 -E!=8# = 0.5	0, 

("#&?" = 0.83, -"%&
8E

= 0.5	0,	 <"%&8E
= 0.25,	 !!"#$! = 0.5	k, !"%& = 0.06	k,	 !07=8# = 0.02	k,	 %>B = '>B =

(−0.7308: 0.077: 0.7308); neural decoding into the internal goal :	'IJ = 1.5,		$B = 100k0;	neural 

encoding of the e-mouse position:	%jB = 0.075	k, FBm = 0.075; network architecture: U = 500, 

GW = 0.8, GZ = 0.75, &]T_` = 1k0, )% = 0.1, %% = 0, W0!1 = 5; intrinsic properties, X = 1	x>. .k
K2, 

^i = 	0.05	ky. .k
K2, 9i =	−70	k9, #g = −50	k9, &# = 50	k9, $# = 50	k0, 9"#E7É = −60	k9; 

recurrent currents: ^kJ'k = 0.03	ky. .k
K2, ^lJ.k = 0.24	ky. .k

K2, ^/kmk: = 0.03	ky. .k
K2, ^/kmk; =

0.0003	ky. .k
K2, 9kJ'k = 9lJ.k = 0	k9, 9/kmk: = −70	k9, 9/kmk; = −90	k9, [a^25] = 1.5	ka, 

$kJ'k&#6!@
= 2.5	k0, $lJ.k"?8#

= 4.65	k0, $lJ.k&#6!@
= 75	k0, $/kmk:&#6!@

= 10	k0,	$/kmk;"?8#
= 90	k0, $/kmk;&#6!@

= 160	k0, 

;lJ.k = 0.275	k0
K4, ;/kmk; = 0.015	k0

K4. ∆GkJ'k = ∆glJ.k = ∆G/kmk: = ∆g/kmk; = 0.1; feed-
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forward currents:	 GW1* = 0, ^kJ'k.BB = 0.2	ky. .k
K2, PW1* = 25	p{, 3W1* = 30, &GÇÑQÇ.dd = 0.1; 

calcium dynamics: Xmg = 0.1	xa, $Z! = 50	k0, DXmE"# = DXmE78* = 0.5	xa, 3'"#'78* = 6.5, ]. =

20	k0	; synaptic weight plasticity: o%0!1 = 0.15	k0
K4, "%0!1 = 0.03	k0

K4,	EÄ,Å = 0.25,	EÄ,' = 1,	3p% =

4;	 eligibility traces : o#i>'0!1
= "#i>'

0!1
= o#i>.

0!1
= "#i>.

0!1
= 0.04	k0

K4, XmÄ,Å#i>' = 1.65xa, XmÄ,'#i>' =

0.495xa, XmÄ,Å#i>. = 1.25	xa, XmÄ,'#i>. = 0.375	xa, 3p# = 4; dopamine properties: F.k0?$ = 0.1, 

F.k
0!1

= 1.1215, $.k"?8# = 100	k0, $.k&#6!@ = 500	k0, ∆.k"%&= 1, ∆.k
8E
= 0.25, F.kI>.' = 0.225, R.kI>.' = 0.005, 

P.k
lJ.k

0?$ = 0.1, P.klJ.k0!1 = 1, F.klJ.k = 0.125, R.klJ.k = 0.005. 

 

Initial conditions and simulation setups 

The model was initialized with randomized membrane potentials (uniformly distributed in 

[#g, 1g − 5]k9) and synaptic channel openings mimicking average channel openings 

(GkJ'k~0.0025, GlJ.k~0.2, G/kmk:~0.0025, G/kmk;~0.15), as well as with e-mouse at initial random 

positions at distance -' = 0.75!&, null linear speed and random initial direction #-. 

Online learning simulations (Figure 1f) lasted 300 seconds and consisted of 10 

concatenated simulations of 30 seconds termed sessions, with behavioral pauses when 

rewarded, without redirection. Online learning dynamics easily yielded saturated synaptic 

weights and neural activity, even with slower learning kinetic parameters (o%0!1 = 0.015	k0
K4, 

"%
0!1

= 0.003	k0
K4). Such plasticity/activity runaway is a classical issue when assessing online 

learning in random recurrent networks. It arises from the positive feedback linking excitatory 

activity and plasticity between excitatory neurons and is likely stabilized by different 

homeostatic processes providing counteracting negative feedbacks at the neuronal and 

network scales. In the present decision architecture, this problem was largely amplified by the 

additional positive feedbacks linking connectivity and neural activity, on the one hand, and e-

mice behavior, on the other hand. For instance, increased connectivity at rewarded locations 

(Hebbian assemblies) increased reward rates, which in turn increased DA-reinforcement of 

STDP at these Hebbian assemblies. In the context of the present study, we found that synaptic 

homeostasis was essential in the online learning setup (Figure 1f). Therefore, synaptic 

homeostasis was constrained by distinct homeostatic processes at excitatory synapses, which 

were required in online simulations, but not offline simulations (Figure 1g and 2; see below). 

Hence, in addition to a hard-bound W0!1 = 5,  excitatory-excitatory synapses underwent 

synaptic scaling, which normalizes synaptic connections. We considered a form of synaptic 

scaling that included both presynaptic and postsynaptic normalization, i.e., 

W	(?,D)(] + ∆]) = W	(?,D)(])
∑ %	(A,')(*8)
PL
AlV

∑ %	(A,')(*)
PL
AlV

∑ %	(A,')(*8)
PL
'lV

∑ %	(A,')(*)
PL
'lV

	(34) 

which allowed a limit to catastrophic plasticity/activity runaway eventually occurring at 

synapses linking neurons of Hebbian assemblies and the rest of the network. In addition, we 

considered two forms of saturation constraining plasticity runaway. First, by assuming that no 
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plasticity occurred at spiking post-synaptic frequencies superior to a critical frequency set as 

PÄ = 1/I, i.e. putatively through presynaptic calcium saturation. This process helped avoiding 

plasticity/activity runaway within each Hebbian assembly. Second, by assuming that the total 

amount of post-synaptic potentiation admits a maximum within each neuron, putatively due 

to upstream resources availability (e.g. pool of precursors limiting the synthesis of new 

glutamatergic receptors). This process constrained the spatial extension of Hebbian assemblies. 

Altogether, these saturations terms wrote   

ℎ = p(P < PÄ) |1 −
∑ ∆%Z 	PL
AlV

∆%OE=
Z } (35), 

with	 p the Heaviside function, ∆W0!15
= 	3Wx% the maximal amount of possible potentiation 

changes and ∑$L?Ü4 ∆W
5  hard-bound limited by ∆W0!15 . Although not crucial for offline learning 

(Figure 1g and 2), these homeostatic processes were kept in that case, for the sake of simplicity. 

In a similar vein, because getting strong and compact Hebbian assemblies during online 

learning proved difficult under certain modeling and parameter choices, we found easier to 

set constant eligibility time constants (which otherwise non-linearly depended on the calcium 

activation of their kinase/phosphatase cycles $# = 1/(o# + "#)), with $#i>' = r#i>. = 250k0. For 

the sake of simplicity, this option was also kept for offline learning, although not essential in that 

setup (Figure 1g and 2). 

Offline simulations (Figure 1g) mean performance rate were computed over 10 simulations 

in each of 18x18 conditions DA-excitability and DA-plasticity. Simulations lasted 60 seconds, 

with a pause rate <'!=8# = 1/3	0
K4. DA-excitability was parameterized with P.klJ.k0!1 in the 

interval = [0,1]. DA-plasticity was mimicked by initiating the connectivity matrix before model 

simulation, as if plasticity had previously built three Hebbian assemblies (i.e. there was no 

plasticity during offline simulations). This initialization consisted in adding three Hebbian 

assemblies centered at rewarded locations. Each of these bivariate gaussian Hebbian 

assemblies consisted of the synaptic matrix Wá , built as the auto-association (i.e. external 

product) of a vertical vector  specifying gaussian distance of each neuron preferred position 

to rewarded location R (with spatial standard deviation %"%& = 0.125	k), i.e. 

Wá
(?,D)

= ~á
?
~á
D (36) 

with 

~á
É
=

4
√2{	3^iB

E

K	V
$
	|
XN(<NUT	(m)Y

$
ZX[(<[UT	(m)Y

$

\^iB
$ }

 (37) 

and "á = (%á	'á	) is the position of reward location R. In Figure 1f, we only kept synapses oriented 

toward each reward locations within Hebbian assemblies (i.e. W(?,D) = 0 when W(D,?) > W(?,D)) to 

assess a scheme where STDP would have yielded purely asymmetric connections, but similar 

results could be obtained with symmetric connections (not shown). The Hebbian assemblies 

were then normalized to have a maximal weight W0!1 in the interval [0,5], and added to a 

constant mean )% 
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W(?,D) = x% +∑
%OE=

0!1	(%( )	
Wá

à
áÜ4  (38). 

Offline learning simulations (Figure 2b) consisted of 100 successive learning trials lasting 1.5 

seconds. To speed up simulations, e-mice were initialized with -' = 0.3	k, heading toward the 

central rewarded location and with maximum linear speed. In Figure 2d-f and 2h, simulations 

lasted 2.5 seconds, with the e-mouse initialized randomly in the arena, with maximum linear 

speed and random initial direction #-. In Figure 2f, the angular speed was slower by a factor 

10 before phasic DA, so that the e-mouse displayed equivalent positions at that time.      
Realizations of von Mises distributions were numerically computed using the code 

developed by D. Muir (26). 

 

Behavioral Potential Energy (BPE) theory 

In order to better understand how e-mouse behavior arises from past dopaminergic 

reinforcement (DA-plasticity) and online motivational dopaminergic modulation (DA-

excitability), we built a simplified theory capturing essential causal and dynamical traits 

governing the full decision architecture model. To reduce dimensionality, we consider that, 

thanks to revolution symmetry in the one rewarded location setup, spatial behavior is reducible 

to one dimension, with rewarded location set at position Gkâ = 0. Also, the theory is built as a 

simplified representation of e-mouse navigation that neglects the detailed dynamics of linear 

and angular speed ballistic commands considered in the model. In particular, the contribution 

of the default behavior to linear speed, which is negligible at a certain distance from the arena 

walls in the model, is not taken into account. Moreover, we focus on how e-mouse navigation 

depends on the essential interactions linking G, the e-mouse position encoded by feed-forward 

hippocampal inputs to the network resulting in a bump of neural activity (see e.g. Figure 1e, 

lower panel, top maps), and ^, the internal goal position decoded downstream by basal 

ganglia through soft-max computation. 

This theoretical framework illustrates how goal-directed mouse behavior can be 

interpreted in the framework of attractorial dynamics within a landscape of behavioral 

potential energy (BPE), which depends on both DA-plasticity and DA-excitability. Building the 

theory unraveled two mechanisms driving e-mouse navigation. The first mechanism relates to 

the local positional stability of the activity bump, in the vicinity of the Hebbian assembly (HA). 

The second mechanism acts at a global scale of the arena and depends on the neural activity 

at the HA. Thus, in the theory, we posit that e-mouse G and DA dependent goal-directed 

navigation obeys a velocity law including the two mechanisms  
&E
&*
= ~(G, IC) = ~É76!É(G, IC) + ~äÉ7ã!É(G, IC) (39). 

In the following, we first assess how each term can be described in a reduced and 

tractable fashion from the model dynamics. We then show how BPE can be derived and 

interpreted. 
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The first, local, mechanism relates to the positional stability of the activity bump. In the 

case when no HA is present (i.e., before reward-place learning; e.g., Figure 2b, trial #1, left 

panel), both feed-forward inputs encoding the e-mouse position and recurrent connections 

are symmetric with regard to position G, such that the activity bump displays a symmetric spatial 

firing frequency around G. As a result, ^, the decoded internal goal position, which statistically 

reflects the position of the activity bump maximum, is also situated at G. Hence, the e-mouse is 

on its goal, convergence is already achieved and there is no movement. 

By contrast, let’s consider the case where a HA is present (due to previous place-reward 

association; Figure 2b, trial #100, left panel), with the e-mouse in the vicinity of the HA. In such 

a situation, within the activity bump, excitatory synaptic currents generated in excitatory 

neurons closer to the HA, by excitatory neurons farther from the HA (centripetal currents), are 

larger than centrifugal currents generated at reciprocal synapses. This is due to the fact that 

centripetal currents occur at synapses with larger synaptic weights (i.e., higher in the HA weight 

gradient), compared to centrifugal currents. The resulting firing frequency profile of the activity 

bump is biased toward the HA, so that, on average, the decoded internal goal position, ^, lies 

closer to the HA, compared to G. As G converges toward ^, it continuously moves in the 

direction of the HA. In turn, as G is moving toward the HA, so too do the activity bump and its 

soft-max readout, ^. Altogether, the weight gradient yields an attractorial convergence of the 

activity bump, ^ and G toward the HA. This convergence will obviously be stronger near the 

HA, where the synaptic gradient is steeper. Moreover, the large increase in NMDA currents 

mediated by DA (DA-excitability) will strongly amplify the gradient of excitatory currents due 

to DA-plasticity (i.e., the difference between centripetal and centrifugal currents) and the 

subsequent attractorial convergence toward the HA, through a deepening of the HA attractor, 

as unraveled by the theory (see below and Figure 2g-i). Accordingly, the local mechanism to 

e-mouse velocity scales with the gradient of excitatory currents 

~É76!É(G, IC) = h%
)XL=D(E,.k)

&E
 (40) 

where ;% is a constant and YW16(G, IC) is the DA-dependent excitatory current received by 

excitatory neurons at position G, which can be approximated as 

YW16(G, IC) = ^kJ'k`̀ `̀ `̀ `̀ W(G)GkJ'k<9ã=0E − 9kJ'k= + ^lJ.k`̀ `̀ `̀ `̀ (IC)	W(G)FlJ.k(9ã=0E)GlJ.k<9ã=0E − 9lJ.k=	

(41) 

where ^kJ'k`̀ `̀ `̀ `̀ 	and ^lJ.k`̀ `̀ `̀ `̀ 	 are maximal conductances with ^lJ.k`̀ `̀ `̀ `̀ 		 depending on DA-excitability, 

W(G) the sum of incoming synaptic weights on the neuron with preferred position centered at 

position G, FlJ.k(9ã=0E) is the non-linear activation of NMDA channels at the mean bump 

membrane potential 9ã=0E and where GkJ'k and GlJ.k gating variables at firing frequency 

Pã=0E can be obtained by steady state approximation from equations 18 and 19 : 

=
GÇÑQÇ~∆GÇÑQÇrÇÑQÇ

LUcR_
PåS~Y

GçÑ;Ç~∆gçÑ;ÇhçÑ;ÇrçÑ;Ç
PrTU

rçÑ;Ç
LUcR_

PåS~Y

	  (42). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.07.499108doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.07.499108
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

Therefore, 

YW16(G, IC) = W(G)YW16� (IC) (43) 

with 

Yéqc>(IC) = -^ÇÑQÇ???????	∆GÇÑQÇrÇÑQÇLUcR_/9åS~Y − 9ÇÑQÇ0 +

^çÑ;Ç???????(IC)	FçÑ;Ç(9Ñ)∆gçÑ;ÇhçÑ;ÇrçÑ;ÇPrTU
rçÑ;Ç
LUcR_ /9åS~Y − 9çÑ;Ç0. PåS~Y (44) 

is the DA-dependent current per weight unit at firing frequency Pã=0E. Note that Yéqc>(IC) is an 

inward current, i.e., algebraically negative, which yields the sign of the local contribution to 

velocity and Behavioral Potential Energy (equations 40 and 56, see below). Note also that 

inhibitory currents can be neglected, as they display no spatial weight gradient in the model. 

The local mechanism contribution thus writes 

~É76!É(G, IC) = h%
)%
&E
(G)YW16� (IC) (45) 

and depends on both DA-plasticity (i.e., on the weight gradient) and DA-excitability (i.e., DA-

modulated NMDA current in the activity bump). 

The second mechanism acts at the global spatial scale and also emerges from the 

interaction of DA-plasticity and DA-excitability: it arises from the DA-dependent increase of 

NMDA currents within the HA itself. Generally, the internal goal ^ is detected at G because the 

activity bump is the strongest spot of activity in the network. However, in the presence of DA, 

the increase of NMDA currents is boosted by large HA weights, which triggers massive 

associative co-activation of neuronal activity in the HA. Therefore, ^ almost instantaneously 

switches to 0, the AH position (see Figure 2f center panel and Figure 2h center column). Note 

that, due to noise in network dynamics within model simulations, activity can still be higher at G 

than at ̂  in a number cases, accounting for why ^ does not always converge to the HA (Figure 

2h center column). When acting, this mechanism operates at the global scale of the whole 

arena, independent of the position of the e-mouse (by contrast to the first mechanism, which 

acts locally in the vicinity of the HA). Thus, it yields attractorial convergence of the activity bump 

toward the HA through a widening of the HA attractor (as opposed to attractor deepening in 

the local mechanism), as shown below (see Figure 2g-i). 

So, the global velocity contribution writes 

~äÉ7ã!É(G, IC) = hä(^(IC) − G) (46) 

Here, for the sake of simplicity, we use a crude linear dependance of the distance of the e-

mouse to the internal goal. However, using more complex dependance reminding model 

ballistics – or even zero order dependance – would yield qualitatively similar results. The 

essential point here is that, as shall be seen below, BPE increases with distance in all these cases. 

Moreover, based on simulations, we set ^(G, IC = 0)~G when DA is absent. By contrast, when 

DA is present, decoded internal goal position ^, is statistically essentially detected at either one 

of the two higher spots of activity in the network, i.e., the activity bump (G) and the HA (Gkâ), 
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with probabilities related to their respective spiking frequency. Approximately, the internal goal 

position ^ can thus be estimated to lie, on average, at the barycenter of both spots weighted 

by their spiking activity 

^(IC = 1)~
GnoO]E5G:hE:h

GnoO]5G:h
 (47), 

when DA is present. In that case, the global velocity therefore writes 

~äÉ7ã!É(G, IC = 1) = hä
G:h

GnoO]5G:h
(Gkâ − G) (48) 

Setting 

@ ≡ èpc
èqr*s+èpc

 (49) 

and leveraging on the fact that Gkâ = 0 leads to 

~äÉ7ã!É(G, IC = 1) = −häÄG (50) 

when IC = 1. Lumping both cases (IC = 0 and IC = 1) is possible by writing: 

~äÉ7ã!É(G, IC) = −häÄICG (51) 

Overall, the velocity law governing e-mouse G and DA dependent goal-directed navigation is 

thus 

~(G, IC) = ~É76!É(G, IC) + ~äÉ7ã!É(G, IC) = −h%
)
&E
W(G)YW16� (IC) − häÄICG (52) 

In the case where both DA plasticity and DA-excitability are present and the e-mouse is in the 

vicinity of the HA, the local and global terms hypothesize distinct positions of ^, i.e., at G or Gkâ, 

respectively. However, in that case, Gkâ and G are practically almost confounded in the context 

of the noisy chaotic activity of the network. Moreover, and as a consequence, the global 

effect is minute, compared to the local effect, which is overwhelming. We therefore kept this 

crude formulation for the sake of simplicity, without developing a more complex description 

taking into account which term has to be considered in which case (presence or not of DA-

plasticity and DA-excitability, distance to the HA). 

The potential of any one dimensional dynamical system  
&1
&*
= P(F) (53) 

can be computed as 

Å' = −∫ P(F)-F	(54), 

based on the physical idea of the potential energy (27). We therefore define the Behavioral 

Potential Energy (BPE) of the e-mouse at each point as  

Å'
ã#Ä!ê?7"

(G, IC) 	= −∫ ~(G, IC)-G (55), 

which yields  

Å'
ã#Ä!ê?7"

(G, IC) = h%W(G)YW16� (IC) +
4
2
häÄICG

2
+ X0] (56), 

where X0] is an integration constant. 

This expression captures how, at a previously rewarded location, reinforced HA weights 

induce attractorial dynamics though both their profile, whose gradient locally destabilizes the 
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activity bump, and their strength, which shifts the internal goal at the global scale. Moreover, 

this expression accurately accounts for how shape, width and depth of the Hebbian-based 

attractor depend on previous DA reinforcement (DA-plasticity), current DA motivation (DA-

excitability) and their interaction, and how it acts depending on e-mouse position. In doing so, 

it offers a framework for interpreting coupled dynamics between collective network activity at 

the activity bump and the HA, the e-mouse position, and the internal goal. Specifically, it 

mechanistically accounts for weak convergence to the – latent – attractor at the previously 

rewarded location under DA-plasticity alone (Figure 2f-i, left), deepening and widening of 

attractorial convergence under DA-plasticity + DA-excitability (Figure 2f-i, center and Figure 

2h) and the absence of attractorial convergence under DA-excitability (Figure 2f-i, right). 

BPE was computed using a gaussian-shaped distribution of weights 

W(G) = W0?$ + (W0!1 −W0?$)E
K	V
$
v ]

\i
w
$
	(57) 

centered at position 0 and with spatial standard deviation %%. For purely illustrative purpose in 

Figure 2, a phenomenological term was added to BPE to account for short-distance attraction 

to arena walls due to the default behavior: 

Å'
&#G!=É*

(G) = −h& ÉE
K	V
$
ë(]Z^B

\B
í
$

	
+ E

K	V
$
ë(]<^B

\B
í
$

	
Ñ (58), 

but this term is not part of the theory by itself. Regarding display specificities, in Figure 2i, one-

dimensional BPE was integrated in the range [!K!"#$!, !!"#$!], using integration constants chosen 

so that Å'ã#Ä!ê?7"(−!!"#$!	, IC) = Å'
ã#Ä!ê?7"

(!!"#$!	, IC) = 0 in each condition (DA-plasticity, DA-

excitability, DA-plasticity + DA-excitability). In Figure 2h, BPE (left column) was generated in two 

dimensions from one-dimensional BPE (Figure 2i) by revolution symmetry, for the sake of 

illustration, i.e., visual correspondence with model simulations (center and right columns). BPE 

contour levels correspond to Ö"Å = −[0	0.05	0.1	0.2	0.4	0.6	0.8	1]. Theory parameters were as 

following: W0?$ = 0.1, W0!1 = W0?$ in the DA-excitability conditions and W0!1 = 3 in DA-plasticity 

and DA-plasticity + DA-excitability conditions. The firing frequency Pã=0E = 16	p{ was derived 

from simulations. The mean voltage at the peak of the activity bump was also taken from 

simulations: 9ã=0E = [−32.5, −32.5, −25	]k9 in all conditions (such depolarized values in the bump 

arise from spiking-induced depolarization of the adaptive AP threshold). The Gaussian widths 

were %% = 0.075k and %& = 0.01k. In Figure 2, we used ;% = 20X
K4
k
2, ;ä = 1.250

K4
, h& =

0.025k
2
0
K4, but these parameters can be arbitrarily scaled without any qualitative change in 

the BPE landscape. We made no specific hypothesis concerning the relative values of firing 

frequency and considered the parsimonious case where  Pã=0E = Pkâ, i.e., @ = 1/2 in Figure 2. 

Again, this specific choice had no consequence on the BPE landscape. Other theory 

parameters were as in model simulations. 
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