

1 Antigenic landscape analysis of individuals vaccinated with a universal influenza 2 virus vaccine candidate reveals induction of cross-subtype immunity

3

4 Philip Meade^{1,2}, Shirin Strohmeier², Maria Carolina Bermúdez-González^{2,7}, Adolfo García -Sastre^{2,3,4,5,6},
5 Peter Palese^{2,3}, Viviana Simon^{2,3,4,5,7}, Florian Krammer^{1,5,7*}

6 ¹*Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029,
7 USA.*

8 ²*Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.*

9 ³*Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New
10 York, NY, United States.*

11 ⁴*Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY,
12 United States.*

13 ⁵*Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai,
14 New York, NY, United States.*

15 ⁶*The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.*

16 ⁷*Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount
17 Sinai, New York, NY, USA*

18

19 *To whom correspondence should be addressed: florian.krammer@mssm.edu

20 **Abstract**

21 Current influenza virus vaccines have to be closely matched to circulating strains to provide good
22 protection and antigenic drift and emerging pandemic influenza virus strains present a difficult challenge
23 for them. Universal influenza virus vaccines, including chimeric hemagglutinin (cHA)-based constructs
24 that target the conserved stalk domain of hemagglutinin, are in clinical development. Due to the
25 conservation of the stalk domain, antibodies directed to it show broad binding profiles, usually within
26 group 1 and group 2 influenza A or influenza B virus phylogenies. However, determining the binding
27 breadth of these antibodies with commonly used immunological methods can be challenging. Here, we
28 analyzed serum samples from a phase I clinical trial (CVIA057, NCT03300050) using an influenza virus
29 protein microarray (IVPM). The IVPM technology allowed us to assess immune responses not only to a
30 large number of group 1 hemagglutinins but also group 2 and influenza B hemagglutinins. In CVIA057,
31 different vaccine modalities including a live attenuated influenza virus vaccine and inactivated influenza
32 virus vaccines with or without adjuvant, all in the context of cHA constructs, were tested. We found that
33 vaccination with adjuvanted, inactivated vaccines induced a very broad antibody response covering
34 group 1 hemagglutinins, with limited induction of antibodies to group 2 hemagglutinins. Our data show
35 that cHA constructs do indeed induce very broad immune responses and that the IVPM technology is a
36 useful tool to measure this breadth that broadly protective or universal influenza virus vaccines aim to
37 induce.

38

39 **Importance**

40 The development of a universal influenza virus vaccine that protects against seasonal drifted, zoonotic
41 or emerging pandemic influenza viruses would be an extremely useful public health tool. Here we test a
42 technology designed to measure the breadth of antibody responses induced by this new class of
43 vaccines.

44

45

46 **Introduction**

47 Seasonal influenza virus vaccines provide narrow protection to circulating strains that are closely
48 matched to the vaccine strains (1-6). Vaccine strains are chosen based on surveillance and prediction (7).
49 When mismatches accrue between vaccine strains and circulating strains – due to unexpected antigenic
50 drift or egg-adaptation of vaccine viruses – the vaccine effectiveness is drastically reduced (1-6). In
51 addition, current seasonal influenza virus vaccines provide negligible protection against emerging
52 pandemic strains. In order to broaden protection from seasonal influenza viruses and to enhance our
53 pandemic preparedness, universal influenza virus vaccines are in development (8, 9). A prominent target
54 for these vaccines is the conserved stalk domain of the hemagglutinin. Antibodies that target this
55 domain can provide broad protection, usually within group 1 HAs (H1, H2, H5, H6, H8, H9, H11, H12,
56 H13, H16, H17, H18) or within group 2 HAs (H3, H4, H7, H10, H14, H15) and occasionally even across
57 groups (10-14).

58 A chimeric hemagglutinin (cHA) – based candidate universal influenza virus vaccine (15-17) containing a
59 group 1 stalk was recently evaluated in a phase I clinical trial (CVIA 057, clinicaltrials.gov #
60 NCT03300050) (18, 19). In this trial, sequential immunization with cH8/1N1 and cH5/1N1 vaccines was
61 tested. Five groups were evaluated (**Figure 1A**). Group 1 and 2 received an intranasal prime with a
62 cH8/1N1 live attenuated influenza virus vaccine (based on the Leningrad master donor strain (20))
63 followed by an inactivated cH5/1N1 vaccine with (group 1) and without (group 2) AS03 as adjuvant (21).
64 Group 3 received an adjuvanted inactivated cH8/1N1 vaccine followed by cH5/1N1 adjuvanted
65 inactivated vaccine. Groups 4 and 5 were placebo groups and were analyzed pooled together. When
66 evaluated via enzyme-linked immunosorbent assays (ELISA), antibody induction to the group 1 stalk and
67 H2, H9 and H18 group 1 HAs but not to H3 HA (group 2) was observed (18, 19). Here, we reanalyzed
68 these samples using an influenza virus protein microarray (IVPM), a technology (21, 22) which allowed
69 us to assess binding to a large panel of different hemagglutinins to have a global look at the binding
70 profile of the antibodies induced by this cHA-based group 1 influenza vaccine candidate.

71

72 **Results**

73

74 **Experimental design**

75 We analyzed sera from individuals vaccinated with cH8/1N1 LAIV followed by cH5/1N1 IIV with adjuvant
76 (LAIV8-IIV5/AS03, n=19), cH8/1N1 LAIV followed by cH5/1N1 IIV without adjuvant (LAIV8-IIV5, n=14),
77 cH8/1N1 IIV with AS03 followed by cH5/1N1 with AS03 (IIV8/AS03-IIV5/AS03, n=15) as well as from the
78 pooled placebo groups (Placebo, n=13) (**Figure 1A**). Time points analyzed were day 1 (pre-vaccination),
79 day 29 (28 days post prime), day 85 (pre-boost) and day 113 (28 days post boost). Samples were
80 analyzed using the IVPM platform in a quantitative manner with area under the curve (AUC)
81 measurements of dilution series as readout. The IVPM was designed to contain 21 group 1 HAs covering
82 all subtypes in this group, 13 group 2 HAs covering all subtypes in this group, one influenza B HA, and a
83 cH6/1 HA to measure anti-stalk antibody responses directly (**Table 1**).

84

85 **cHA vaccination induces broad group 1 HA IgG responses with high fold-induction across subtypes**

86 First, we analyzed the fold-induction from day 1 to day 28. As previously observed with classical ELISAs
87 (18, 19), vaccination with LAIV (LAIV8-IIV5/AS03 and LAIV8-IIV5 groups) did not induce apparent IgG
88 responses to any group 1 HAs, most likely due to the lack of ‘take’ of the live attenuated vaccine (18,
89 19) (**Figure 1B**). Vaccination with cH8/1N1 inactivated vaccine plus AS03 (IIV8/AS03-IIV5/AS03 group)
90 however induced strong antibody responses to group 1 HAs. The induction appeared to be strongest
91 against non-H1 HAs with slightly lower induction against H1 HAs. This can be explained by higher pre-
92 existing baseline immunity to H1 as compared to other group 1 HAs (see discussion below)

93 (Supplemental Figure 1). Interestingly, there was also a weak induction of selected group 2 HAs
94 including H4, H10 and H15.

95 The booster vaccination induced antibodies in all three vaccination groups, with strong induction of
96 group 1 HA reactivity after vaccination with cH5/1N1 with adjuvant (LAIV8-IIV5/AS03, IIV8/AS03-
97 IIV5/AS03) and weaker induction when cH5/1N1 was given without adjuvant (LAIV8-IIV5) (Figure 1C).
98 Similar as after vaccination with cH8/1N1 inactivated vaccine with AS03, the induction was strongest
99 against non-H1 group 1 HAs and slightly lower against H1 HAs.
100

101 **Aggregate analysis of antibody induction to group 1 and group 2 HAs**

102 Following this analysis of fold-induction against single HAs, we also performed an aggregate analysis to
103 assess the induction of antibodies to group 1, group 2 and the stalk domain (Figure 2). For the analysis
104 of the group 1 stalk response H8 and H5 subtypes were removed since they were also included in the
105 vaccine. After the prime, an induction of antibodies to group 1 HAs was only detected in the group that
106 received the cH8/1N1 inactivated vaccine with AS03 (IIV8/AS03-IIV5/AS03) as already described above.
107 The geometric mean induction for this group post-prime was 10-fold. Titers dropped slightly to day 85
108 and then increased again to a level of 7.5-fold above baseline post-boost. The group that initially
109 received LAIV and was boosted with inactivated cH5/1N1 AS03 adjuvanted vaccine (LAIV8-IIV5/AS03)
110 reached a 6-fold induction post boost while the non-adjuvanted group (LAIV8-IIV5) reached half that (3-
111 fold). When the stalk-only response was analyzed on the IVPM using a cH6/1 HA the fold-induction
112 basically mirrored the induction seen against group 1 HAs (Figure 2B). This aggregate analysis also
113 revealed a slight (2-fold) induction of antibodies to group 2, especially after the prime in the IIV8/AS03-
114 IIV5/AS03 group and after the boost in the LAIV8-IIV5/AS03 group. No induction was found for the
115 placebo control groups.
116

117 **Antigenic landscape analysis of the IIV8/AS03-IIV5/AS03 group in comparison to individuals who 118 received seasonal influenza virus vaccine**

119 Currently, based on the data from CVIA 057, the adjuvanted, inactivated vaccine strategy will move
120 forward into further clinical development. Here, we wanted to take a closer look at the absolute titers
121 induced in individuals vaccinated with the experimental vaccine as compared to the titers observed in
122 individuals who had received the seasonal influenza virus vaccine (QIV), which is currently the standard
123 of care. To do this, we performed an antigenic landscape analysis using multidimensional scaling (22-24).
124 In this analysis, the amino acid sequence difference between antigens is plotted as distance on the x-
125 and y-axis while titers are plotted on the z-axis. Pre-vaccination titers are shown in Figure 3 as gray
126 planes, post vaccination group 1 titers are shown as blue planes and post-vaccination titers are shown as
127 red planes. No induction of antibodies to group 1 or group 2 HAs was observed in the placebo group
128 (Figure 3A). When analyzing responses to QIV, we found a specific but rather low response to both H1
129 and H3 HAs (which are both included in the vaccine) but induction of antibodies to other group 1 or
130 group 2 HAs was modest to nonexistent (Figure 3B). For the IIV8/AS03-IIV5/AS03 groups we analyzed
131 day 29 versus day 1 (Figure 3C) and day 113 versus day 1 (Figure 3D). In absolute titers, the increase was
132 strongest against members of the H1 clade (H1, H2, H5 and H6) as well as the H9 clade (H8, H9 and H12)
133 and the bat HAs (H17 and H18) at both time points. The rise in absolute titers against the H11 clade
134 (H11, H13 and H16) was lower. As expected, the post-vaccination titers to group 2 HAs did not change
135 much compared to the pre-vaccination titers.
136

137 **Discussion**

138 Universal influenza virus vaccines aim at induction of broadly reactive antibodies that cross HA subtypes
139 (7, 9). Here we use an IVPM, an ideal tool to assess the breadth of antibody responses, to analyze sera
140 from a phase I clinical trial with a group 1 cHA-based universal influenza virus vaccine candidate. This

141 vaccine was tested in different formulations and was expected to induce broad antibody responses to
142 group 1 HAs (18, 19). It was also expected that little reactivity would be induced to group 2 HAs. This is
143 exactly what we observed in our analysis. Vaccination with inactivated cHA-based vaccines induced
144 strong antibody responses across group 1 HAs, especially when the vaccines were adjuvanted. The
145 response to non-adjuvanted inactivated cHA vaccine was more moderate but detectable. Live
146 attenuated cHA-based vaccines however, did not induce detectable IgG responses in serum. The results
147 reported here are in agreement with the primary analysis of the clinical trial which was conducted using
148 an ELISA methodology (18, 19). However, the more detailed analysis with many HAs on the IVPM
149 allowed us to make additional observations.

150 Reactivity to the HAs that lend their head domains to the cH8/1 and cH5/1 constructs, labeled H8 and
151 Vn05 H5 in the figure, did not stand out compared to other group 1 HAs. This suggests a stalk-focused
152 rather than a head focused response and is consistent with the absence of a strong head targeting
153 hemagglutination inhibition response against the cH8/1N1 and cH5/1N1 viruses as reported previously
154 (18, 19).

155 In addition, when fold induction was analyzed, the strongest responses were mounted against non-H1
156 HAs. This is in contrast to the analysis of absolute titers, where the response to H1 HAs was strongest.
157 This finding can be explained by the much higher baseline titers to H1 HAs. Humans are constantly
158 exposed to H1 viruses via vaccination and infection with seasonal influenza viruses and mount strong
159 anti-head as well as some anti-stalk responses to these HAs. This pre-existing baseline immunity, mostly
160 against the head domain, explains the low fold-induction post cHA vaccination.

161 Furthermore, we found that absolute titers after cHA vaccinations are not uniform across group 1 HAs.
162 Absolute titers against members of the H1 clade were highest followed by the H9 and bat HA (25, 26)
163 clades. However, absolute titers were lower against the H11 clade. Again, this can be explained by lower
164 baseline titers against members of this clade in general. This is important information and suggests that
165 polyclonal anti-stalk antibodies, while in general being very cross-reactive within a group, may also lose
166 reactivity dependent on phylogenetic distance.

167 Finally, induction of antibodies against group 2 HAs was also observed. This could be partially due to the
168 induction of pan-HA anti-stalk antibodies which are more rare than group specific antibodies but have
169 been reported (10, 27). However, trimer-interface (TI) antibodies (28-30) that bind to an epitope
170 conserved between head domains across all HA subtypes have been reported to be induced by cHA
171 vaccination as well and may contribute to the cross-group reactivity (19). Both anti-stalk and TI
172 antibodies have been shown to be protective in animal models (14, 28-30) while only anti-stalk
173 antibodies have been established as independent correlate of protection against H1N1 infection so far
174 (31).

175 In summary, using the IVPM, an innovative new tool for assessment of the breadth of antibody
176 responses, we show that vaccination with cHA-based vaccines induces very broad cross-subtype
177 antibody responses. The vaccine candidate described here is focused on group 1 HAs but constructs for
178 group 2 (32-35) as well as influenza B virus HA (36, 37) are in development. The ultimate goal is it to
179 combine these components in a truly universal trivalent influenza virus vaccine that protects against all
180 seasonal, zoonotic and future pandemic influenza viruses.

181

182 **Methods**

183

184 **Vaccination and clinical trial**

185 Sera were collected from participants of two different IRB approved studies. Samples for Group 1, 2, 3, 4
186 and 5 were obtained as part of a phase I clinical trial (CVIA 057, clinicaltrials.gov # NCT03300050). This
187 clinical vaccine trial included an LAIV and an IIV vaccine platform. The LAIV expressed the cH8/1 HA,
188 which incorporates an H8 head domain from H8N4 virus A/mallard/Sweden/24/02 and an H1 stalk

189 domain from the H1N1 virus A/California/04/09 (Cal09), along with the N1 NA of Cal09 in an H1N1
190 A/Leningrad/134/17/57 backbone, as previously described (38). Meridian Life Sciences in Memphis,
191 Tennessee produced the LAIV in embryonated chicken eggs and formulated it in sterile saline. Two IIV
192 vaccines were used in the clinical trial, including one carrying the ch8/1 HA described above, and one
193 with a ch5/1 HA which incorporates an H5 head domain from the H5N1 virus A/Vietnam/1203/04, and
194 the stalk domain from Cal09. Both IIV vaccines were rescued with Cal09 N1 in the H1N1 A/Puerto
195 Rico/8/34 backbone and were manufactured by GlaxoSmithKline in Dresden, Germany in embryonated
196 chicken eggs as described previously (18, 19).

197 A $10^{7.5}$ 50% egg infectious dose of ch8/1 LAIV or sterile saline was administered intranasally to
198 vaccinees, who were instructed to clear their noses and lay on their backs and tilt their heads backward.
199 The vaccine or placebo was administered dropwise by needle-less syringe, and vaccinees were
200 instructed to refrain from sneezing during the administration to ensure that the vaccine solution was
201 not expelled. The vaccinations were performed in a containment unit and recipients were required to
202 stay for the next 5 days, or until confirmed to be virus-negative on 3 consecutive days by quantitative
203 RT-PCR. The IIV vaccines or a phosphate-buffered saline (PBS) placebo were administered
204 intramuscularly with an antigen content of 15 μ g, in a volume of 0.5 ml in PBS or AS03A.

205 The trial included three vaccination regimens and two placebo groups, each receiving vaccinations or
206 placebos on day 1 and day 85. Group 1 was the recipient of the ch8/1 LAIV followed by the AS03A-
207 adjuvanted ch5/1 IIV. Group 2 also received the ch8/1 LAIV, then a nonadjuvanted ch5/1 IIV. Group 3
208 was administered AS03A-adjuvanted ch8/1 IIV and AS03A-adjuvanted ch5/1 IIV. Group 4 constituted
209 the inpatient control group and received saline intranasally in place of the LAIV, then PBS
210 intramuscularly in place of the IIV. Finally, group 5 was the outpatient control group and received two
211 doses of intramuscularly administered PBS. For analysis purposes, the inpatient and outpatient control
212 groups were combined into one placebo group.

213 Samples from QIV-vaccinated subjects were sourced from an IRB approved observational study which
214 was reviewed and approved by the Mount Sinai Hospital Institutional Review Board (IRB-16-01199).
215 These serum samples were collected prior to seasonal influenza vaccination as well as after 4-6 weeks
216 after vaccination. All participants received the 2018-2019 influenza season vaccine formulations of the
217 Flucelvax (Seqirus) or FluZone (Sanofi Pasteur) vaccines.

218

219 **IVPM and analysis**

220 IVPMs were produced by printing arrays of recombinant influenza virus HAs onto epoxysilane-coated
221 glass slides (Schott, Mainz, Germany). Each array included 13 HAs diluted in 0.1% milk PBS spotted in
222 triplicate at a volume of 30 nl per spot and a concentration of 100 μ g/ml, and each slide contained 24
223 arrays. After printing, IVPMs were vacuum-packed and stored at -80°C until use. Before use, IVPM slides
224 were allowed to thaw at room temperature, then were removed from their vacuum packaging and
225 incubated at 95-98% relative humidity for two hours to bind the recombinant proteins to the slide
226 surface and inactivate the remaining epoxysilane surface of the slides. Afterward, the slides were
227 allowed to dry, and inserted into 96-well gaskets (Arrayit, Sunnyvale, California) and blocked in 3% milk
228 in PBS containing 0.1% Tween 20 (PBS-T) for 90 minutes. The blocking solution was then removed and
229 sera were added at a starting dilution of 1:100 in 1% milk PBS-T at a volume of 100 μ l per array, and
230 diluted 1:10 twice across the IVPM slide for 1 hour. After 1 hour, sera were removed and the slides were
231 washed with 220 μ l PBS-T three times before being incubated with cy5-labeled secondary antibody
232 diluted 1:1500 in 1% milk PBS-T for one hour. The secondary antibody solution was then removed and
233 slides were washed again with PBST three times, removed from gaskets, rinsed with deionized water
234 and dried with an air compressor. Arrays were then read with a Vidia microarray scanner (Indevr,

235 Boulder, Colorado), at an exposure time of 1000 ms. AUC was calculated from median fluorescence
236 taking total peak area under 0.04 fluorescence units.

237

238 **Recombinant Proteins**

239 Recombinant HAs were expressed using the baculovirus expression system and consisted of soluble HAs
240 that include trimerization domains and hexahistidine tags. The baculovirus was grown in a Sf9 insect cell
241 line (ATCC CRL-1711), and was used to infect BTI-TN-5B1-4 cells for protein production. Secreted
242 recombinant HA was purified with Ni²⁺nitrilotriacetic acid resin columns as described in detail elsewhere
243 (39, 40).

244

245 **Multidimensional Scaling**

246 In order to visualize serum reactivity across different HAs, three-dimensional antibody landscapes were
247 generated (22-24). The horizontal planes in these graphs were generated by assigning x-y coordinates to
248 HAs derived from a multidimensional scaling analysis of their amino acid sequence differences. The
249 distance between HAs was defined as the number of amino acid differences between HAs in a multiple-
250 sequence alignment. The sum of squared errors between the Euclidean distance in the two-dimensional
251 plane and the HA sequence distance were minimized by the SMACOF algorithm. In each experimental
252 group, HAs were assigned a z coordinate equal to their geometric mean AUC values using multilevel B-
253 splines for different time points.

254

255 **Statistical analysis and viral sequence analysis**

256 Graphpad Prism 7.0 was used to calculate geometric means, and to perform Mann-Whitney tests and
257 AUC analyses.

258

259 **Acknowledgements**

260 We thank the study participants for their support of influenza vaccine research efforts. We thank the
261 research team at the Department of Microbiology at the Icahn School of Medicine at Mount Sinai for
262 supporting the development of this vaccine concept since 2011. We also thank the teams at PATH (with
263 special acknowledgement to J.C. Victor, R. Wahid and K. Mahmood), Cincinnati Children's Hospital
264 Medical Center, Duke University, the University of Chicago, GSK, NEOMED-LABS and the EMMES
265 Corporation for their work on this project. Dr. Kimihito Ito of Hokkaido University assisted with
266 generation of our three-dimensional antibody landscape images. The clinical study described was
267 funded in part by the Bill and Melinda Gates Foundation (grant OPP1084518). Basic research leading to
268 this trial was supported by the National Institute of Allergy and Infectious Diseases (NIAID) (grants P01
269 AI097092, U19 AI109946, R01 AI128821; contracts HHSN26620070010C, HHSN272201400008C,
270 75N93021C00014). The analysis presented here was funded through the Collaborative Influenza Vaccine
271 Innovation Centers contract (75N93019C00051).

272

273 **Conflict of interest statement**

274 The Icahn School of Medicine at Mount Sinai has filed patent applications regarding universal influenza
275 virus vaccines naming AGC, PP and FK as inventors. AGC, PP and FK have also received royalties and
276 research support for their laboratories from GSK in the past and are currently receiving research support
277 from Dynavax for development of influenza virus vaccines. The A.G.-S. laboratory has also received
278 research support from Pfizer, Senhwa Biosciences, Kenall Manufacturing, Avimex, Johnson & Johnson,
279 7Hills Pharma, Pharmamar, ImmunityBio, Accurius, Nanocomposix, Hexamer, N-fold LLC, Model
280 Medicines, Atea Pharma, Applied Biological Laboratories and Merck, outside of the reported work. A.G.-
281 S. has consulting agreements for the following companies involving cash and/or stock: Vivaldi
282 Biosciences, Contrafect, 7Hills Pharma, Avimex, Vaxalto, Pagoda, Accurius, Esperovax, Farmak, Applied

283 Biological Laboratories, Pharmamar, Paratus, CureLab Oncology, CureLab Veterinary, Synairgen and
284 Pfizer, outside of the reported work. A.G.-S. has been an invited speaker in meeting events organized by
285 Seqirus, Janssen and Astrazeneca.

286

287 References

- 288 1. Chambers BS, Parkhouse K, Ross TM, Alby K, Hensley SE. 2015. Identification of Hemagglutinin
289 Residues Responsible for H3N2 Antigenic Drift during the 2014-2015 Influenza Season. *Cell Rep*
290 12:1-6.
- 291 2. de Jong JC, Beyer WE, Palache AM, Rimmelzwaan GF, Osterhaus AD. 2000. Mismatch between
292 the 1997/1998 influenza vaccine and the major epidemic A(H3N2) virus strain as the cause of an
293 inadequate vaccine-induced antibody response to this strain in the elderly. *J Med Virol* 61:94-9.
- 294 3. Heikkinen T, Ikonen N, Ziegler T. 2014. Impact of influenza B lineage-level mismatch between
295 trivalent seasonal influenza vaccines and circulating viruses, 1999-2012. *Clin Infect Dis* 59:1519-
296 24.
- 297 4. Skowronski DM, Janjua NZ, De Serres G, Sabaiduc S, Eshaghi A, Dickinson JA, Fonseca K, Winter
298 AL, Gubay JB, Krajden M, Petric M, Charest H, Bastien N, Kwindt TL, Mahmud SM, Van Caeseele
299 P, Li Y. 2014. Low 2012-13 influenza vaccine effectiveness associated with mutation in the egg-
300 adapted H3N2 vaccine strain not antigenic drift in circulating viruses. *PLoS One* 9:e92153.
- 301 5. Skowronski DM, Sabaiduc S, Leir S, Rose C, Zou M, Murti M, Dickinson JA, Olsha R, Gubay JB,
302 Croxen MA, Charest H, Bastien N, Li Y, Jassem A, Krajden M, De Serres G. 2019. Paradoxical
303 clade- and age-specific vaccine effectiveness during the 2018/19 influenza A(H3N2) epidemic in
304 Canada: potential imprint-regulated effect of vaccine (I-REV). *Euro Surveill* 24.
- 305 6. Xie H, Wan XF, Ye Z, Plant EP, Zhao Y, Xu Y, Li X, Finch C, Zhao N, Kawano T, Zoueva O, Chiang
306 MJ, Jing X, Lin Z, Zhang A, Zhu Y. 2015. H3N2 Mismatch of 2014-15 Northern Hemisphere
307 Influenza Vaccines and Head-to-head Comparison between Human and Ferret Antisera derived
308 Antigenic Maps. *Sci Rep* 5:15279.
- 309 7. Gerdil C. 2003. The annual production cycle for influenza vaccine. *Vaccine* 21:1776-9.
- 310 8. Nachbagauer R, Krammer F. 2017. Universal influenza virus vaccines and therapeutic antibodies.
311 *Clin Microbiol Infect* 23:222-228.
- 312 9. Berlanda Scorza F, Tsvetnitsky V, Donnelly JJ. 2016. Universal influenza vaccines: Shifting to
313 better vaccines. *Vaccine* 34:2926-2933.
- 314 10. Dreyfus C, Laursen NS, Kwaks T, Zuidgeest D, Khayat R, Ekiert DC, Lee JH, Metlagel Z, Bujny MV,
315 Jongeneelen M, van der Vlugt R, Lamrani M, Korse HJ, Geelen E, Sahin Ö, Sieuwerts M,
316 Brakenhoff JP, Vogels R, Li OT, Poon LL, Peiris M, Koudstaal W, Ward AB, Wilson IA, Goudsmit J,
317 Friesen RH. 2012. Highly conserved protective epitopes on influenza B viruses. *Science*
318 337:1343-8.
- 319 11. Friesen RH, Lee PS, Stoop EJ, Hoffman RM, Ekiert DC, Bhabha G, Yu W, Juraszek J, Koudstaal W,
320 Jongeneelen M, Korse HJ, Ophorst C, Brinkman-van der Linden EC, Throsby M, Kwakkenbos MJ,
321 Bakker AQ, Beaumont T, Spits H, Kwaks T, Vogels R, Ward AB, Goudsmit J, Wilson IA. 2014. A
322 common solution to group 2 influenza virus neutralization. *Proc Natl Acad Sci U S A* 111:445-50.
- 323 12. Ekiert DC, Bhabha G, Elsliger MA, Friesen RH, Jongeneelen M, Throsby M, Goudsmit J, Wilson IA.
324 2009. Antibody recognition of a highly conserved influenza virus epitope. *Science* 324:246-51.
- 325 13. Corti D, Voss J, Gamblin SJ, Codoni G, Macagno A, Jarrossay D, Vachieri SG, Pinna D, Minola A,
326 Vanzetta F, Silacci C, Fernandez-Rodriguez BM, Agatic G, Bianchi S, Giacchett-Sasselli I, Calder L,
327 Sallusto F, Collins P, Haire LF, Temperton N, Langedijk JP, Skehel JJ, Lanzavecchia A. 2011. A
328 neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A
329 hemagglutinins. *Science* 333:850-6.

330 14. Wu NC, Wilson IA. 2018. Structural insights into the design of novel anti-influenza therapies. *Nat Struct Mol Biol* 25:115-121.

331 15. Hai R, Krammer F, Tan GS, Pica N, Eggink D, Maamary J, Margine I, Albrecht RA, Palese P. 2012. Influenza viruses expressing chimeric hemagglutinins: globular head and stalk domains derived from different subtypes. *J Virol* 86:5774-81.

332 16. Krammer F, Pica N, Hai R, Margine I, Palese P. 2013. Chimeric hemagglutinin influenza virus vaccine constructs elicit broadly protective stalk-specific antibodies. *J Virol* 87:6542-50.

333 17. Chen CJ, Ermler ME, Tan GS, Krammer F, Palese P, Hai R. 2016. Influenza A Viruses Expressing Intra- or Intergroup Chimeric Hemagglutinins. *J Virol* 90:3789-93.

334 18. Bernstein DI, Guptill J, Naficy A, Nachbagauer R, Berlanda-Scorza F, Feser J, Wilson PC, Solórzano A, Van der Wielen M, Walter EB, Albrecht RA, Buschle KN, Chen YQ, Claeys C, Dickey M, Dugan HL, Ermler ME, Freeman D, Gao M, Gast C, Guthmiller JJ, Hai R, Henry C, Lan LY, McNeal M, Palm AE, Shaw DG, Stamper CT, Sun W, Sutton V, Tepora ME, Wahid R, Wenzel H, Wohlbold TJ, Innis BL, García-Sastre A, Palese P, Krammer F. 2020. Immunogenicity of chimeric haemagglutinin-based, universal influenza virus vaccine candidates: interim results of a randomised, placebo-controlled, phase 1 clinical trial. *Lancet Infect Dis* 20:80-91.

335 19. Nachbagauer R, Feser J, Naficy A, Bernstein DI, Guptill J, Walter EB, Berlanda-Scorza F, Stadlbauer D, Wilson PC, Aydillo T, Behzadi MA, Bhavsar D, Bliss C, Capuano C, Carreño JM, Chromikova V, Claeys C, Coughlan L, Freyn AW, Gast C, Javier A, Jiang K, Mariottini C, McMahon M, McNeal M, Solórzano A, Strohmeier S, Sun W, Van der Wielen M, Innis BL, García-Sastre A, Palese P, Krammer F. 2021. A chimeric hemagglutinin-based universal influenza virus vaccine approach induces broad and long-lasting immunity in a randomized, placebo-controlled phase I trial. *Nat Med* 27:106-114.

336 20. Isakova-Sivak I, Chen LM, Matsuoka Y, Voeten JT, Kiseleva I, Heldens JG, den Bosch H, Klimov A, Rudenko L, Cox NJ, Donis RO. 2011. Genetic bases of the temperature-sensitive phenotype of a master donor virus used in live attenuated influenza vaccines: A/Leningrad/134/17/57 (H2N2). *Virology* 412:297-305.

337 21. Meade P, Latorre-Margalef N, Stallknecht DE, Krammer F. 2017. Development of an influenza virus protein microarray to measure the humoral response to influenza virus infection in mallards. *Emerg Microbes Infect* 6:e110.

338 22. Meade P, Kuan G, Strohmeier S, Maier HE, Amanat F, Balmaseda A, Ito K, Kirkpatrick E, Javier A, Gresh L, Nachbagauer R, Gordon A, Krammer F. 2020. Influenza Virus Infection Induces a Narrow Antibody Response in Children but a Broad Recall Response in Adults. *mBio* 11.

339 23. Nachbagauer R, Choi A, Hirsh A, Margine I, Iida S, Barrera A, Ferres M, Albrecht RA, García-Sastre A, Bouvier NM, Ito K, Medina RA, Palese P, Krammer F. 2017. Defining the antibody cross-reactome directed against the influenza virus surface glycoproteins. *Nat Immunol* 18:464-473.

340 24. Ito K, Igarashi M, Miyazaki Y, Murakami T, Iida S, Kida H, Takada A. 2011. Gnarled-trunk evolutionary model of influenza A virus hemagglutinin. *PLoS One* 6:e25953.

341 25. Tong S, Li Y, Rivailler P, Conrardy C, Castillo DA, Chen LM, Recuenco S, Ellison JA, Davis CT, York IA, Turmelle AS, Moran D, Rogers S, Shi M, Tao Y, Weil MR, Tang K, Rowe LA, Sammons S, Xu X, Frace M, Lindblade KA, Cox NJ, Anderson LJ, Rupprecht CE, Donis RO. 2012. A distinct lineage of influenza A virus from bats. *Proc Natl Acad Sci U S A* 109:4269-74.

342 26. Tong S, Zhu X, Li Y, Shi M, Zhang J, Bourgeois M, Yang H, Chen X, Recuenco S, Gomez J, Chen LM, Johnson A, Tao Y, Dreyfus C, Yu W, McBride R, Carney PJ, Gilbert AT, Chang J, Guo Z, Davis CT, Paulson JC, Stevens J, Rupprecht CE, Holmes EC, Wilson IA, Donis RO. 2013. New world bats harbor diverse influenza A viruses. *PLoS Pathog* 9:e1003657.

343 27. Corti D, Voss J, Gamblin SJ, Codoni G, Macagno A, Jarrossay D, Vachieri SG, Pinna D, Minola A, Vanzetta F, Silacci C, Fernandez-Rodriguez BM, Agatic G, Bianchi S, Giacchett-Sasselli I, Calder L,

378 Sallusto F, Collins P, Haire LF, Temperton N, Langedijk JP, Skehel JJ, Lanzavecchia A. 2011. A
379 neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A
380 hemagglutinins. *Science* 333:850-6.

381 28. Lee J, Boutz DR, Chromikova V, Joyce MG, Vollmers C, Leung K, Horton AP, DeKosky BJ, Lee CH,
382 Lavinder JJ, Murrin EM, Chrysostomou C, Hoi KH, Tsybovsky Y, Thomas PV, Druz A, Zhang B,
383 Zhang Y, Wang L, Kong WP, Park D, Popova LI, Dekker CL, Davis MM, Carter CE, Ross TM,
384 Ellington AD, Wilson PC, Marcotte EM, Mascola JR, Ippolito GC, Krammer F, Quake SR, Kwong
385 PD, Georgiou G. 2016. Molecular-level analysis of the serum antibody repertoire in young adults
386 before and after seasonal influenza vaccination. *Nat Med* 22:1456-1464.

387 29. Bangaru S, Lang S, Schotsaert M, Vanderven HA, Zhu X, Kose N, Bombardi R, Finn JA, Kent SJ,
388 Gilchuk P, Gilchuk I, Turner HL, García-Sastre A, Li S, Ward AB, Wilson IA, Crowe JE. 2019. A Site
389 of Vulnerability on the Influenza Virus Hemagglutinin Head Domain Trimer Interface. *Cell*
390 177:1136-1152.e18.

391 30. Watanabe A, McCarthy KR, Kuraoka M, Schmidt AG, Adachi Y, Onodera T, Tonouchi K,
392 Caradonna TM, Bajic G, Song S, McGee CE, Sempowski GD, Feng F, Urick P, Kepler TB, Takahashi
393 Y, Harrison SC, Kelsoe G. 2019. Antibodies to a Conserved Influenza Head Interface Epitope
394 Protect by an IgG Subtype-Dependent Mechanism. *Cell* 177:1124-1135.e16.

395 31. Ng S, Nachbagauer R, Balmaseda A, Stadlbauer D, Ojeda S, Patel M, Rajabhathor A, Lopez R,
396 Guglia AF, Sanchez N, Amanat F, Gresh L, Kuan G, Krammer F, Gordon A. 2019. Novel correlates
397 of protection against pandemic H1N1 influenza A virus infection. *Nat Med* 25:962-967.

398 32. Margine I, Krammer F, Hai R, Heaton NS, Tan GS, Andrews SA, Runstadler JA, Wilson PC,
399 Albrecht RA, García-Sastre A, Palese P. 2013. Hemagglutinin stalk-based universal vaccine
400 constructs protect against group 2 influenza A viruses. *J Virol* 87:10435-46.

401 33. Asthagiri Arunkumar G, McMahon M, Pavot V, Aramouni M, Ioannou A, Lambe T, Gilbert S,
402 Krammer F. 2019. Vaccination with viral vectors expressing NP, M1 and chimeric hemagglutinin
403 induces broad protection against influenza virus challenge in mice. *Vaccine* 37:5567-5577.

404 34. McMahon M, Asthagiri Arunkumar G, Liu WC, Stadlbauer D, Albrecht RA, Pavot V, Aramouni M,
405 Lambe T, Gilbert SC, Krammer F. 2019. Vaccination With Viral Vectors Expressing Chimeric
406 Hemagglutinin, NP and M1 Antigens Protects Ferrets Against Influenza Virus Challenge. *Front
407 Immunol* 10:2005.

408 35. Krammer F, Margine I, Hai R, Flood A, Hirsh A, Tsvetnitsky V, Chen D, Palese P. 2014. H3 stalk-
409 based chimeric hemagglutinin influenza virus constructs protect mice from H7N9 challenge. *J
410 Virol* 88:2340-3.

411 36. Ermler ME, Kirkpatrick E, Sun W, Hai R, Amanat F, Chromikova V, Palese P, Krammer F. 2017.
412 Chimeric Hemagglutinin Constructs Induce Broad Protection against Influenza B Virus Challenge
413 in the Mouse Model. *J Virol* 91.

414 37. Sun W, Kirkpatrick E, Ermler M, Nachbagauer R, Broecker F, Krammer F, Palese P. 2019.
415 Development of Influenza B Universal Vaccine Candidates Using the "Mosaic" Hemagglutinin
416 Approach. *J Virol* 93.

417 38. Nachbagauer R, Liu W-C, Choi A, Wohlbold TJ, Atlas T, Rajendran M, Solórzano A, Berlanda-
418 Scorsa F, García-Sastre A, Palese P, Albrecht RA, Krammer F. 2017. A universal influenza virus
419 vaccine candidate confers protection against pandemic H1N1 infection in preclinical ferret
420 studies. *npj Vaccines* 2:26.

421 39. Krammer F, Margine I, Tan GS, Pica N, Krause JC, Palese P. 2012. A carboxy-terminal
422 trimerization domain stabilizes conformational epitopes on the stalk domain of soluble
423 recombinant hemagglutinin substrates. *PLoS One* 7:e43603.

424 40. Margine I, Palese P, Krammer F. 2013. Expression of functional recombinant hemagglutinin and
425 neuraminidase proteins from the novel H7N9 influenza virus using the baculovirus expression
426 system. *J Vis Exp*:e51112.

427 **Tables**

428

429 **Table 1: Recombinant HAs**

HA	Virus from which the recombinant HA was derived
Group 1 HAs	
Mich15 H1	A/Michigan/45/15 (H1N1)
Cal09 H1	A/California/04/09 (H1N1)
NC99 H1	A/New Caledonia/20/99 (H1N1)
Tex91 H1	A/Texas/36/91 (H1N1)
USSR77 H1	A/USSR/1977 (H1N1)
Denv57 H1	A/Denver/1/57 (H1N1)
PR34 H1	A/Puerto Rico/8/34 (H1N1)
H2	A/Japan/305/57 (H2N2)
Pintail H5	A/Northern Pintail/WA/40964/2014 (H5N2)
Indo04 H5	A/Indonesia/05/2005 (H5N1)
Shz16 H5	A/Shenzen/1/16 (H5N1)
Vn04 H5	A/Vietnam/1203/04 (H5N1)
H6	A/Taiwan/2/13 (H6N1)
H11	A/shoveler/Netherlands/18/99 (H11N7)
H13	A/black headed gull/Sweden/1/99 (H13N6)
H16	A/black headed gull/Sweden/5/99 (H16N3)
H8	A/mallard/Sweden/24/02 (H8N4)
H12	A/mallard/Interior Alaska/7MP0167/07 (H12N5)
H9	A/guinea fowl/Hong Kong/WF10/1999 (H9N2)
H17	A/yellow shouldered bat/Guatemala/06/10 (H17N10)
H18	A/bat/Peru/33/10 (H18N11)
Group 2 HAs	
Sing16 H3	A/Singapore/INFIMH-16-0019/2016 (H3N2)
Switz13 H3	A/Switzerland/9715293/2013 (H3N2)
Perth09 H3	A/Perth/16/2009 (H3N2)
Wisc05 H3	A/Wisconsin/67/2005 (H3N2)
Wyo03 H3	A/Wyoming/3/2003 (H3N2)
Panama99 H3	A/Panama/2007/1999 (H3N2)
Phil82 H3	A/Philippines/2/82 (H3N2)
H3V	A/Indiana/10/11 (H3N2)
H4	A/duck/Czech/56 (H4N6)
H14	A/mallard/Gurjev/263/82 (H14N5)
H7	A/Hong Kong/2014/2017 (H7N9)
H10	A/mallard/Interior Alaska/10BM01929/10 (H10N7)
H15	A/shearwater/West Australia/2576/79 (H15N9)
Influenza B HA	
B/Wisc HA	B/Wisconsin/1/2010 (B-HA)

430

431 **Figure legends**

432

433 **Figure 1. Geometric means of serum IgG induction against influenza virus HAs by experimental group**

434 **(A)** Experimental overview. **(B)** Fold induction from day 1 to day 29. **(C)** Fold induction from day 1 to day
435 113.

436

437 **Figure 2. Geometric means of serum IgG induction against HA groups** Heterologous group 1 HAs **(A)**
438 were defined as non H1, H8, and H5 HAs belonging to group 1. **(B)** Induction against cH6/1. **(C)** induction
439 against group 2 HAs. Geometric means with 95% confidence intervals shown. Significant differences
440 from placebo group were determined by Mann-Whitney tests. * $P < 0.05$.

441

442 **Figure 3 IgG antigenic landscapes of vaccinees pre- and post-vaccination** Influenza virus protein
443 microarray (IVPM) AUC values and amino acid sequences were used to generate antigenic landscapes
444 using multidimensional scaling. The x and y axes represent amino acid differences between HAs used as
445 the substrate and the z axis represents AUC from geometric mean titers, showing IgG binding to HAs.
446 The gray plane underneath the red and blue planes represents the pre-vaccination reactivity, and the
447 blue plane and red plane represent the post-vaccination group 1 reactivity and group 2 reactivity,
448 respectively. The different strains/subtypes are indicated by colored spheres labeled with the HA name.
449 **(A)** Placebo group, **(B)** QIV group, **(C)** IIV8/AS03-IIV5/AS03 group, days 1-29, **(D)** IIV8/AS03-IIV5/AS03
450 group, days 1-113.

451

452 **Supplemental Figure 1 IgG titers of vaccinees against influenza virus A protein panel** Influenza virus
453 protein microarray (IVPM) AUC values and geometric means to HAs shown for experimental groups at
454 each time point. **(A-D)** LAIV8-IIV5/AS03, **(E-H)** LAIV8-IIV5, **(I-L)** IIV8/AS03-IIV5/AS03, **(M-P)** placebo
455 group.

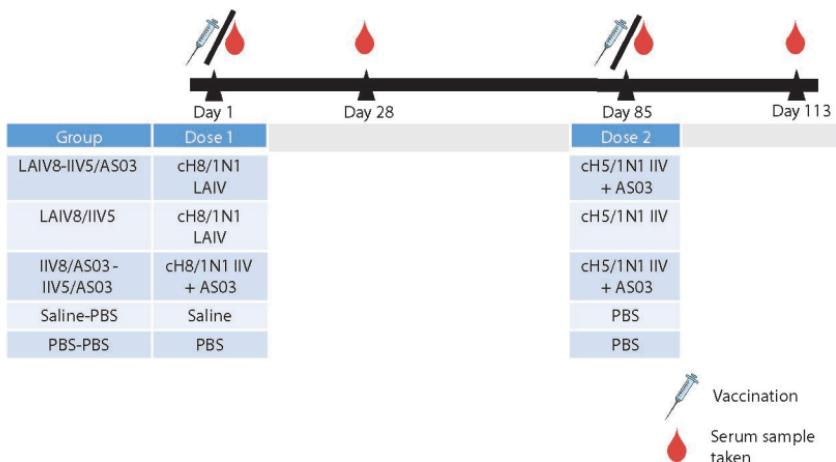
456

457

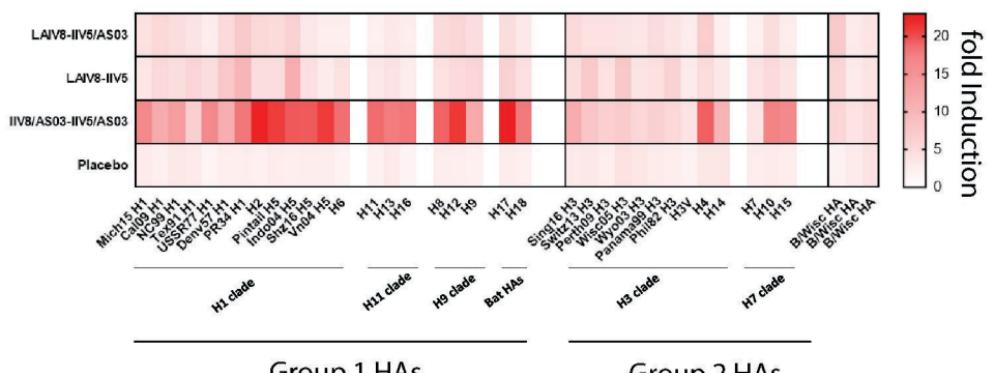
458

459

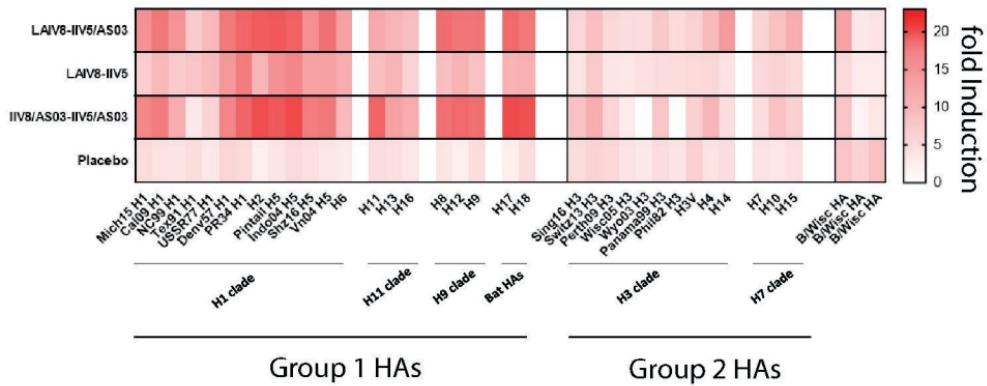
460


461

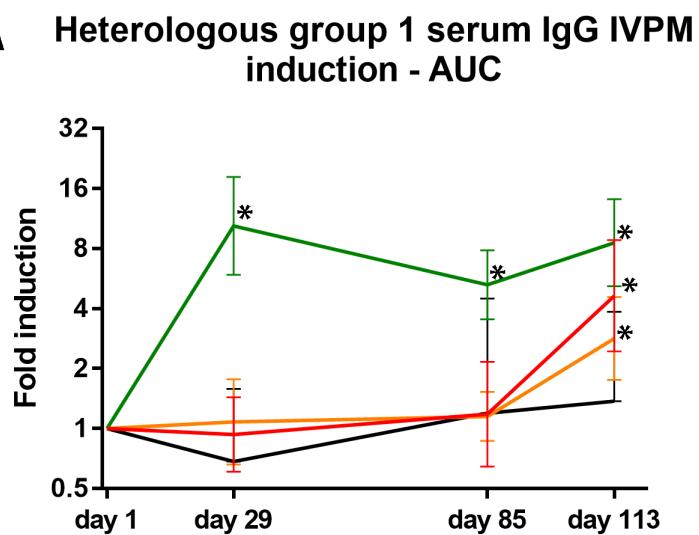
462


463

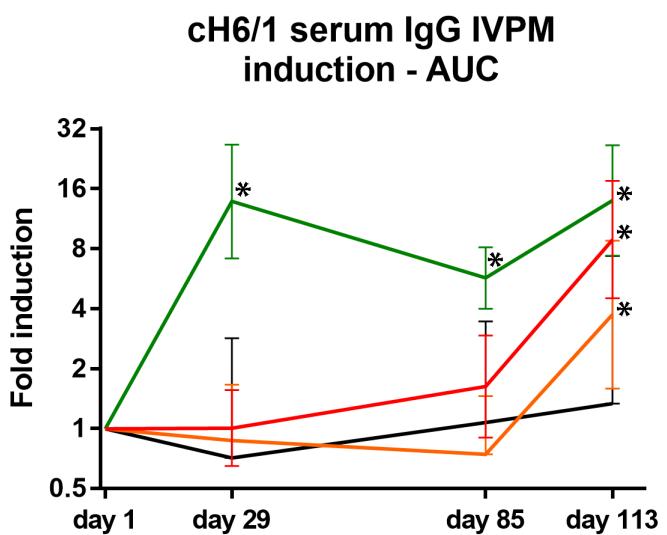
464


465

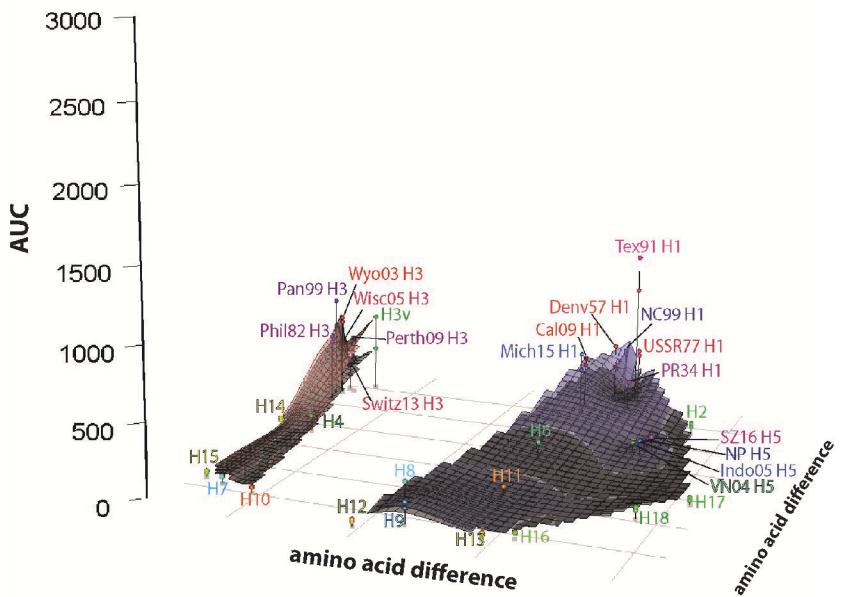
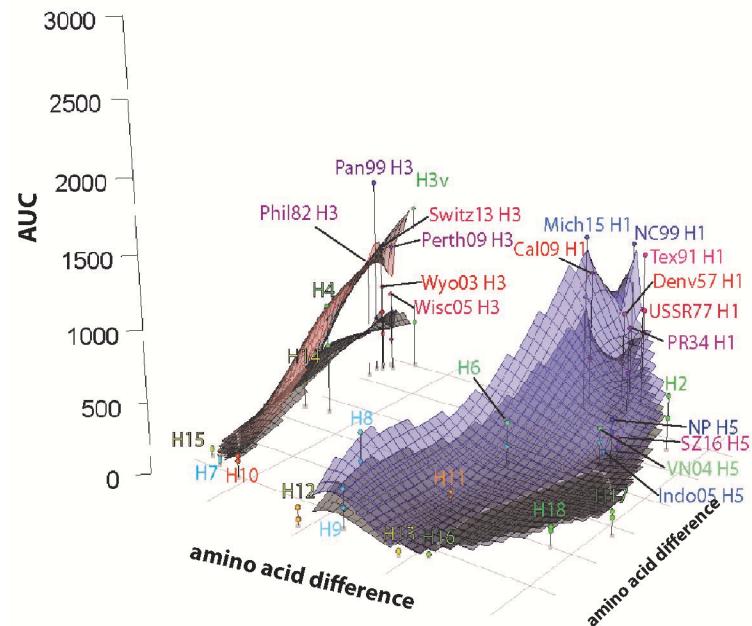
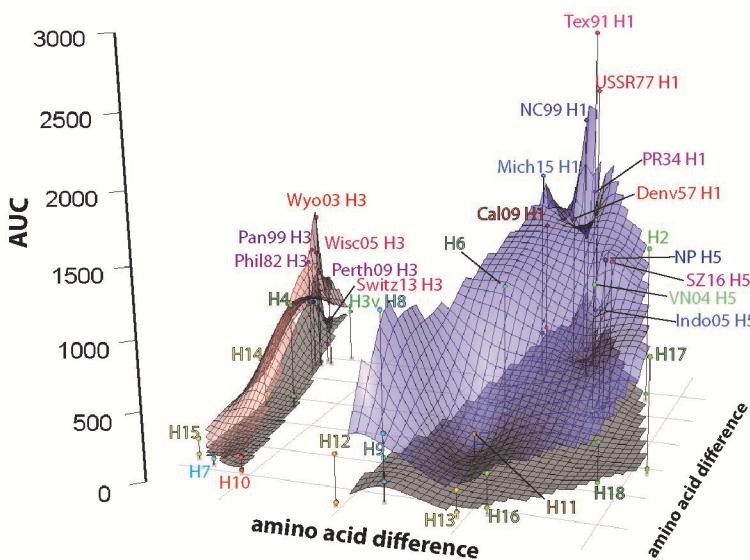
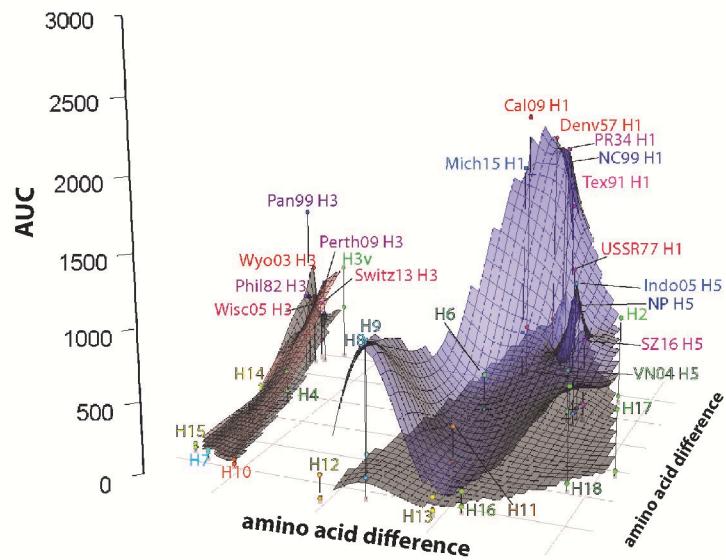
A**B**


Serum IgG responses – IVPM AUC fold Induction: day 1 – day 29

C


Serum IgG responses – IVPM AUC fold Induction: day 1 – day 113

A

B

C

A**B****C****D**