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Abstract

Current influenza virus vaccines have to be closely matched to circulating strains to provide good
protection and antigenic drift and emerging pandemic influenza virus strains present a difficult challenge
for them. Universal influenza virus vaccines, including chimeric hemagglutinin (cHA)-based constructs
that target the conserved stalk domain of hemagglutinin, are in clinical development. Due to the
conservation of the stalk domain, antibodies directed to it show broad binding profiles, usually within
group 1 and group 2 influenza A or influenza B virus phylogenies. However, determining the binding
breadth of these antibodies with commonly used immunological methods can be challenging. Here, we
analyzed serum samples from a phase | clinical trial (CVIA057, NCT03300050) using an influenza virus
protein microarray (IVPM). The IVPM technology allowed us to assess immune responses not only to a
large number of group 1 hemagglutinins but also group 2 and influenza B hemagglutinins. In CVIAQ57,
different vaccine modalities including a live attenuated influenza virus vaccine and inactivated influenza
virus vaccines with or without adjuvant, all in the context of cHA constructs, were tested. We found that
vaccination with adjuvanted, inactivated vaccines induced a very broad antibody response covering
group 1 hemagglutinins, with limited induction of antibodies to group 2 hemagglutinins. Our data show
that cHA constructs do indeed induce very broad immune responses and that the IVPM technology is a
useful tool to measure this breadth that broadly protective or universal influenza virus vaccines aim to
induce.

Importance

The development of a universal influenza virus vaccine that protects against seasonal drifted, zoonotic
or emerging pandemic influenza viruses would be an extremely useful public health tool. Here we test a
technology designed to measure the breadth of antibody responses induced by this new class of
vaccines.
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Introduction

Seasonal influenza virus vaccines provide narrow protection to circulating strains that are closely
matched to the vaccine strains (1-6). Vaccine strains are chosen based on surveillance and prediction (7).
When mismatches accrue between vaccine strains and circulating strains — due to unexpected antigenic
drift or egg-adaptation of vaccine viruses — the vaccine effectiveness is drastically reduced (1-6). In
addition, current seasonal influenza virus vaccines provide negligible protection against emerging
pandemic strains. In order to broaden protection from seasonal influenza viruses and to enhance our
pandemic preparedness, universal influenza virus vaccines are in development (8, 9). A prominent target
for these vaccines is the conserved stalk domain of the hemagglutinin. Antibodies that target this
domain can provide broad protection, usually within group 1 HAs (H1, H2, H5, H6, H8, H9, H11, H12,
H13, H16, H17, H18) or within group 2 HAs (H3, H4, H7, H10, H14, H15) and occasionally even across
groups (10-14).

A chimeric hemagglutinin (cHA) — based candidate universal influenza virus vaccine (15-17) containing a
group 1 stalk was recently evaluated in a phase | clinical trial (CVIA 057, clinicaltrials.gov #
NCT03300050) (18, 19). In this trial, sequential immunization with cH8/1N1 and cH5/1N1 vaccines was
tested. Five groups were evaluated (Figure 1A). Group 1 and 2 received an intranasal prime with a
cH8/1N1 live attenuated influenza virus vaccine (based on the Leningrad master donor strain (20))
followed by an inactivated cH5/1N1 vaccine with (group 1) and without (group 2) ASO3 as adjuvant (21).
Group 3 received an adjuvanted inactivated cH8/1N1 vaccine followed by cH5/1IN1 adjuvanted
inactivated vaccine. Groups 4 and 5 were placebo groups and were analyzed pooled together. When
evaluated via enzyme-linked immunosorbent assays (ELISA), antibody induction to the group 1 stalk and
H2, H9 and H18 group 1 HAs but not to H3 HA (group 2) was observed (18, 19). Here, we reanalyzed
these samples using an influenza virus protein microarray (IVPM), a technology (21, 22) which allowed
us to assess binding to a large panel of different hemagglutinins to have a global look at the binding
profile of the antibodies induced by this cHA-based group 1 influenza vaccine candidate.

Results

Experimental design

We analyzed sera from individuals vaccinated with cH8/1N1 LAIV followed by cH5/1N1 IV with adjuvant
(LAIV8-1IV5/AS03, n=19), cH8/1N1 LAIV followed by cH5/1N1 IIV without adjuvant (LAIVS-IIV5, n=14),
cH8/1N1 IIV with ASO3 followed by cH5/1N1 with AS03 (1IV8/AS03-1IV5/AS03, n=15) as well as from the
pooled placebo groups (Placebo, n=13) (Figure 1A). Time points analyzed were day 1 (pre-vaccination),
day 29 (28 days post prime), day 85 (pre-boost) and day 113 (28 days post boost). Samples were
analyzed using the IVPM platform in a quantitative manner with area under the curve (AUC)
measurements of dilution series as readout. The IVPM was designed to contain 21 group 1 HAs covering
all subtypes in this group, 13 group 2 HAs covering all subtypes in this group, one influenza B HA, and a
cH6/1 HA to measure anti-stalk antibody responses directly (Table 1).

cHA vaccination induces broad group 1 HA IgG responses with high fold-induction across subtypes

First, we analyzed the fold-induction from day 1 to day 28. As previously observed with classical ELISAs
(18, 19), vaccination with LAIV (LAIV8-1IV5/AS03 and LAIV8-1IV5 groups) did not induce apparent IgG
responses to any group 1 HAs, most likely due to the lack of ‘take’ of the live attenuated vaccine (18,
19)) (Figure 1B). Vaccination with cH8/1N1 inactivated vaccine plus ASO3 (lIV8/AS03-1IV5/AS03 group)
however induced strong antibody responses to group 1 HAs. The induction appeared to be strongest
against non-H1 HAs with slightly lower induction against H1 HAs. This can be explained by higher pre-
existing baseline immunity to H1 as compared to other group 1 HAs (see discussion below)
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93 (Supplemental Figure 1). Interestingly, there was also a weak induction of selected group 2 HAs
94 including H4, H10 and H15.
95  The booster vaccination induced antibodies in all three vaccination groups, with strong induction of
96 group 1 HA reactivity after vaccination with cH5/1N1 with adjuvant (LAIV8-1IV5/AS03, 1IV8/ASO3-
97 IIV5/AS03) and weaker induction when cH5/1N1 was given without adjuvant (LAIV8-1IV5) (Figure 1C).
98 Similar as after vaccination with cH8/1N1 inactivated vaccine with AS03, the induction was strongest
99 against non-H1 group 1 HAs and slightly lower against H1 HAs.
100
101 Aggregate analysis of antibody induction to group 1 and group 2 HAs
102 Following this analysis of fold-induction against single HAs, we also performed an aggregate analysis to
103 assess the induction of antibodies to group 1, group 2 and the stalk domain (Figure 2). For the analysis
104  of the group 1 stalk response H8 and H5 subtypes were removed since they were also included in the
105 vaccine. After the prime, an induction of antibodies to group 1 HAs was only detected in the group that
106 received the cH8/1N1 inactivated vaccine with ASO3 (IIV8/AS03-11V5/AS03) as already described above.
107  The geometric mean induction for this group post-prime was 10-fold. Titers dropped slightly to day 85
108 and then increased again to a level of 7.5-fold above baseline post-boost. The group that initially
109 received LAIV and was boosted with inactivated cH5/1N1 ASO3 adjuvanted vaccine (LAIV8-1IV5/AS03)
110 reached a 6-fold induction post boost while the non-adjuvanted group (LAIV8-IIV5) reached half that (3-
111  fold). When the stalk-only response was analyzed on the IVPM using a cH6/1 HA the fold-induction
112 basically mirrored the induction seen against group 1 HAs (Figure 2B). This aggregate analysis also
113 revealed a slight (2-fold) induction of antibodies to group 2, especially after the prime in the 1IV8/AS03-
114  1IV5/AS03 group and after the boost in the LAIV8-1IV5/AS03 group. No induction was found for the
115 placebo control groups.
116
117  Antigenic landscape analysis of the 1IV8/AS03-1IV5/AS03 group in comparison to individuals who
118  received seasonal influenza virus vaccine
119 Currently, based on the data from CVIA 057, the adjuvanted, inactivated vaccine strategy will move
120 forward into further clinical development. Here, we wanted to take a closer look at the absolute titers
121 induced in individuals vaccinated with the experimental vaccine as compared to the titers observed in
122 individuals who had received the seasonal influenza virus vaccine (QlV), which is currently the standard
123 of care. To do this, we performed an antigenic landscape analysis using multidimensional scaling (22-24).
124 In this analysis, the amino acid sequence difference between antigens is plotted as distance on the x-
125 and y-axis while titers are plotted on the z-axis. Pre-vaccination titers are shown in Figure 3 as gray
126 planes, post vaccination group 1 titers are shown as blue planes and post-vaccination titers are shown as
127 red planes. No induction of antibodies to group 1 or group 2 HAs was observed in the placebo group
128 (Figure 3A). When analyzing responses to QIV, we found a specific but rather low response to both H1
129 and H3 HAs (which are both included in the vaccine) but induction of antibodies to other group 1 or
130 group 2 HAs was modest to nonexistent (Figure 3B). For the 1IV8/AS03-11V5/AS03 groups we analyzed
131  day 29 versus day 1 (Figure 3C) and day 113 versus day 1 (Figure 3D). In absolute titers, the increase was
132 strongest against members of the H1 clade (H1, H2, H5 and H6) as well as the HI9 clade (H8, H9 and H12)
133  and the bat HAs (H17 and H18) at both time points. The rise in absolute titers against the H11 clade
134  (H11, H13 and H16) was lower. As expected, the post-vaccination titers to group 2 HAs did not change
135 much compared to the pre-vaccination titers.
136
137 Discussion
138 Universal influenza virus vaccines aim at induction of broadly reactive antibodies that cross HA subtypes
139 (7, 9). Here we use an IVPM, an ideal tool to assess the breadth of antibody responses, to analyze sera
140  from a phase | clinical trial with a group 1 cHA-based universal influenza virus vaccine candidate. This
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141  vaccine was tested in different formulations and was expected to induce broad antibody responses to
142  group 1 HAs (18, 19). It was also expected that little reactivity would be induced to group 2 HAs. This is
143  exactly what we observed in our analysis. Vaccination with inactivated cHA-based vaccines induced
144  strong antibody responses across group 1 HAs, especially when the vaccines were adjuvanted. The
145 response to non-adjuvanted inactivated cHA vaccine was more moderate but detectable. Live
146 attenuated cHA-based vaccines however, did not induce detectable IgG responses in serum. The results
147 reported here are in agreement with the primary analysis of the clinical trial which was conducted using
148 an ELISA methodology (18, 19). However, the more detailed analysis with many HAs on the IVPM
149 allowed us to make additional observations.

150 Reactivity to the HAs that lend their head domains to the cH8/1 and cH5/1 constructs, labeled H8 and
151 VnO05 H5 in the figure, did not stand out compared to other group 1 HAs. This suggests a stalk-focused
152 rather than a head focused response and is consistent with the absence of a strong head targeting
153 hemagglutination inhibition response against the cH8/1N1 and cH5/1N1 viruses as reported previously
154 (18, 19).

155 In addition, when fold induction was analyzed, the strongest responses were mounted against non-H1
156 HAs. This is in contrast to the analysis of absolute titers, where the response to H1 HAs was strongest.
157  This finding can be explained by the much higher baseline titers to H1 HAs. Humans are constantly
158 exposed to H1 viruses via vaccination and infection with seasonal influenza viruses and mount strong
159  anti-head as well as some anti-stalk responses to these HAs. This pre-existing baseline immunity, mostly
160  against the head domain, explains the low fold-induction post cHA vaccination.

161 Furthermore, we found that absolute titers after cHA vaccinations are not uniform across group 1 HAs.
162  Absolute titers against members of the H1 clade were highest followed by the H9 and bat HA (25, 26)
163  clades. However, absolute titers were lower against the H11 clade. Again, this can be explained by lower
164 baseline titers against members of this clade in general. This is important information and suggests that
165 polyclonal anti-stalk antibodies, while in general being very cross-reactive within a group, may also lose
166 reactivity dependent on phylogenetic distance.

167 Finally, induction of antibodies against group 2 HAs was also observed. This could be partially due to the
168 induction of pan-HA anti-stalk antibodies which are more rare than group specific antibodies but have
169  been reported (10, 27). However, trimer-interface (Tl) antibodies (28-30) that bind to an epitope
170 conserved between head domains across all HA subtypes have been reported to be induced by cHA
171 vaccination as well and may contribute to the cross-group reactivity (19). Both anti-stalk and TI
172 antibodies have been shown to be protective in animal models (14, 28-30) while only anti-stalk
173 antibodies have been established as independent correlate of protection against HIN1 infection so far
174 (31).

175 In summary, using the IVPM, an innovative new tool for assessment of the breadth of antibody
176 responses, we show that vaccination with cHA-based vaccines induces very broad cross-subtype
177 antibody responses. The vaccine candidate described here is focused on group 1 HAs but constructs for
178  group 2 (32-35) as well as influenza B virus HA (36, 37) are in development. The ultimate goal is it to
179  combine these components in a truly universal trivalent influenza virus vaccine that protects against all
180 seasonal, zoonotic and future pandemic influenza viruses.

181

182 Methods

183

184  Vaccination and clinical trial

185 Sera were collected from participants of two different IRB approved studies. Samples for Group 1, 2, 3, 4
186 and 5 were obtained as part of a phase | clinical trial (CVIA 057, clinicaltrials.gov # NCT03300050). This
187 clinical vaccine trial included an LAIV and an IIV vaccine platform. The LAIV expressed the cH8/1 HA,
188  which incorporates an H8 head domain from H8N4 virus A/mallard/Sweden/24/02 and an H1 stalk
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189 domain from the H1N1 virus A/California/04/09 (Cal09), along with the N1 NA of Cal09 in an HIN1
190 A/Leningrad/134/17/57 backbone, as previously described (38). Meridian Life Sciences in Memphis,
191  Tennessee produced the LAIV in embryonated chicken eggs and formulated it in sterile saline. Two IV
192 vaccines were used in the clinical trial, including one carrying the cH8/1 HA described above, and one
193 with a cH5/1 HA which incorporates an H5 head domain from the H5N1 virus A/Vietnam/1203/04, and
194 the stalk domain from Cal09. Both IV vaccines were rescued with Cal09 N1 in the HIN1 A/Puerto
195 Rico/8/34 backbone and were manufactured by GlaxoSmithKline in Dresden, Germany in embryonated
196 chicken eggs as described previously (18, 19).

197 A 10’° 50% egg infectious dose of cH8/1 LAIV or sterile saline was administered intranasally to
198  vaccinees, who were instructed to clear their noses and lay on their backs and tilt their heads backward.
199 The vaccine or placebo was administered dropwise by needle-less syringe, and vaccinees were
200 instructed to refrain from sneezing during the administration to ensure that the vaccine solution was
201 not expelled. The vaccinations were performed in a containment unit and recipients were required to
202 stay for the next 5 days, or until confirmed to be virus-negative on 3 consecutive days by quantitative
203 RT-PCR. The IIV vaccines or a phosphate-buffered saline (PBS) placebo were administered
204 intramuscularly with an antigen content of 15 pg, in a volume of 0.5 ml in PBS or AS0O3A.

205  The trial included three vaccination regimens and two placebo groups, each receiving vaccinations or
206 placebos on day 1 and day 85. Group 1 was the recipient of the cH8/1 LAIV followed by the ASO3A-
207 adjuvanted cH5/1 IIV. Group 2 also received the cH8/1 LAIV, then a nonadjuvanted cH5/1 IIV. Group 3
208  was administered ASO3A-adjuvanted cH8/1 IIV and ASO3A-adjuvanted cH5/1 IIV. Group 4 constituted
209 the inpatient control group and received saline intranasally in place of the LAIV, then PBS
210  intramuscularly in place of the IIV. Finally, group 5 was the outpatient control group and received two
211  doses of intramuscularly administered PBS. For analysis purposes, the inpatient and outpatient control
212 groups were combined into one placebo group.

213 Samples from QlIV-vaccinated subjects were sourced from an IRB approved observational study which
214  was reviewed and approved by the Mount Sinai Hospital Institutional Review Board (IRB-16-01199).
215  These serum samples were collected prior to seasonal influenza vaccination as well as after 4-6 weeks
216  after vaccination. All participants received the 2018-2019 influenza season vaccine formulations of the
217 Flucelvax (Segirus) or Fluzone (Sanofi Pasteur) vaccines.

218

219  IVPM and analysis

220 IVPMs were produced by printing arrays of recombinant influenza virus HAs onto epoxysilane-coated
221 glass slides (Schott, Mainz, Germany). Each array included 13 HAs diluted in 0.1% milk PBS spotted in
222 triplicate at a volume of 30 nl per spot and a concentration of 100 pug/ml, and each slide contained 24
223 arrays. After printing, IVPMs were vacuum-packed and stored at -80°C until use. Before use, IVPM slides
224  were allowed to thaw at room temperature, then were removed from their vacuum packaging and
225 incubated at 95-98% relative humidity for two hours to bind the recombinant proteins to the slide
226 surface and inactivate the remaining expoysilane surface of the slides. Afterward, the slides were
227 allowed to dry, and inserted into 96-well gaskets (Arrayit, Sunnyvale, California) and blocked in 3% milk
228 in PBS containing 0.1% Tween 20 (PBS-T) for 90 minutes. The blocking solution was then removed and
229 sera were added at a starting dilution of 1:100 in 1% milk PBS-T at a volume of 100 pl per array, and
230 diluted 1:10 twice across the IVPM slide for 1 hour. After 1 hour, sera were removed and the slides were
231 washed with 220 ul PBS-T three times before being incubated with cy5-labeled secondary antibody
232 diluted 1:1500 in 1% milk PBS-T for one hour. The secondary antibody solution was then removed and
233 slides were washed again with PBST three times, removed from gaskets, rinsed with deionized water
234  and dried with an air compressor. Arrays were then read with a Vidia microarray scanner (Indeuvr,
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235 Boulder, Colorado), at an exposure time of 1000 ms. AUC was calculated from median fluorescence
236  taking total peak area under 0.04 fluorescence units.

237

238  Recombinant Proteins

239 Recombinant HAs were expressed using the baculovirus expression system and consisted of soluble HAs
240  that include trimerization domains and hexahistidine tags. The baculovirus was grown in a Sf9 insect cell
241 line (ATCC CRL-1711), and was used to infect BTI-TN-5B1-4 cells for protein production. Secreted
242 recombinant HA was purified with Ni**nitrilotriacetic acid resin columns as described in detail elsewhere
243 (39, 40).

244

245 Multidimensional Scaling

246 In order to visualize serum reactivity across different HAs, three-dimensional antibody landscapes were
247  generated (22-24). The horizontal planes in these graphs were generated by assigning x-y coordinates to
248 HAs derived from a multidimensional scaling analysis of their amino acid sequence differences. The
249 distance between HAs was defined as the number of amino acid differences between HAs in a multiple-
250 sequence alignment. The sum of squared errors between the Euclidean distance in the two-dimensional
251 plane and the HA sequence distance were minimized by the SMACOF algorithm. In each experimental
252 group, HAs were assigned a z coordinate equal to their geometric mean AUC values using multilevel B-
253  splines for different time points.

254

255  Statistical analysis and viral sequence analysis

256  Graphpad Prism 7.0 was used to calculate geometric means, and to perform Mann-Whitney tests and
257  AUC analyses.
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Tables

Table 1: Recombinant HAs

HA ‘ Virus from which the recombinant HA was derived
Group 1 HAs

Mich15 H1 A/Michigan/45/15 (HIN1)

Cal09 H1 A/California/04/09 (HIN1)

NC99 H1 A/New Caledonia/20/99 (H1N1)

Tex91 H1 A/Texas/36/91 (HIN1)

USSR77 H1 A/USSR/1977 (HIN1)

Denv57 H1 A/Denver/1/57 (HIN1)

PR34 H1 A/Puerto Rico/8/34 (H1N1)

H2 A/Japan/305/57 (H2N2)

Pintail H5 A/Northern Pintail/WA/40964/2014 (H5N2)
Indo04 H5 A/Indonesia/05/2005 (H5N1)

Shz16 H5 A/Shenzen/1/16 (H5N1)

Vn04 H5 A/Vietnam/1203/04 (H5N1)

H6 A/Taiwan/2/13 (H6N1)

H11 A/shoveler/Netherlands/18/99 (H11N7)

H13 A/black headed gull/Sweden/1/99 (H13N6)

H16 A/black headed gull/Sweden/5/99 (H16N3)

H8 A/mallard/Sweden/24/02 (H8N4)

H12 A/mallard/Interior Alaska/7MP0167/07 (H12N5)
H9 A/guinea fowl/Hong Kong/WF10/1999 (H9N2)
H17 A/yellow shouldered bat/Guatemala/06/10 (H17N10)
H18 A/bat/Peru/33/10 (H18N11)

Group 2 HAs

Singl16 H3 A/Singapore/INFIMH-16-0019/2016 (H3N2)
Switz13 H3 A/Switzerland/9715293/2013 (H3N2)

Perth09 H3 A/Perth/16/2009 (H3N2)

Wisc05 H3 A/Wisconsin/67/2005 (H3N2)

Wyo03 H3 A/Wyoming/3/2003 (H3N2)

Panama99 H3 A/Panama/2007/1999 (H3N2)

Phil82 H3 A/Philippines/2/82 (H3N2)

H3V A/Indiana/10/11 (H3N2)

H4 A/duck/Czech/56 (H4NG6)

H14 A/mallard/Gurjev/263/82 (H14N5)

H7 A/Hong Kong/2014/2017 (H7N9)

H10 A/mallard/Interior Alaska/10BM01929/10 (H10N7)
H15 A/shearwater/West Australia/2576/79 (H15N9)
Influenza B HA

B/Wisc HA | B/Wisconsin/1/2010 (B-HA)
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431 Figure legends

432

433 Figure 1. Geometric means of serum IgG induction against influenza virus HAs by experimental group
434  (A) Experimental overview. (B) Fold induction from day 1 to day 29. (C) Fold induction from day 1 to day
435 113.

436

437  Figure 2. Geometric means of serum IgG induction against HA groups Heterologous group 1 HAs (A)
438  were defined as non H1, H8, and H5 HAs belonging to group 1. (B) Induction against cH6/1. (C) induction
439 against group 2 HAs. Geometric means with 95% confidence intervals shown. Significant differences
440  from placebo group were determined by Mann-Whitney tests. * P <0.05.

441

442 Figure 3 IgG antigenic landscapes of vaccinees pre- and post-vaccination Influenza virus protein
443 microarray (IVPM) AUC values and amino acid sequences were used to generate antigenic landscapes
444 using multidimensional scaling. The x and y axes represent amino acid differences between HAs used as
445 the substrate and the z axis represents AUC from geometric mean titers, showing IgG binding to HAs.
446  The gray plane underneath the red and blue planes represents the pre-vaccination reactivity, and the
447 blue plane and red plane represent the post-vaccination group 1 reactivity and group 2 reactivity,
448 respectively. The different strains/subtypes are indicated by colored spheres labeled with the HA name.
449 (A) Placebo group, (B) QIV group, (C) IIV8/AS03-11V5/AS03 group, days 1-29, (D) 1IV8/AS03-1IV5/AS03
450  group, days 1-113.

451

452  Supplemental Figure 1 IgG titers of vaccinees against influenza virus A protein panel Influenza virus
453 protein microarray (IVPM) AUC values and geometric means to HAs shown for experimental groups at
454  each time point. (A-D) LAIV8-1IV5/AS03, (E-H) LAIV8-IIV5, (I-L) 1IV8/AS03-1IV5/AS03, (M-P) placebo
455 group.
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