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Abstract

Background Malignant Pleural Mesothelioma (MPM) is a rare understudied cancer associated
with exposure to asbestos. So far, MPM patients have benefited marginally from the genomics
medicine revolution due to the limited size or breadth of existing molecular studies. In the
context of the MESOMICS project, we have performed the most comprehensive molecular
characterization of MPM to date, with the underlying dataset made of the largest whole genome
sequencing series yet reported, together with transcriptome sequencing and methylation arrays
for 120 MPM patients. Results We first provide comprehensive quality controls for all samples,
of both raw and processed data. Due to the difficulty in collecting specimens from such rare
tumors, a part of the cohort does not include matched normal material. We provide a detailed
analysis of data processing of these tumor-only samples, showing that all somatic alteration calls
match very stringent criteria of precision and recall. Finally, integrating our data with previously
published multi-omic MPM datasets (n=374 in total), we provide an extensive molecular
phenotype map of MPM based on the multi-task theory. The generated map can be interactively
explored and interrogated on the ucsc TumorMap portal
(https://tumormap.ucsc.edu/?bookmark=746c4bcO0e8bc4eb5f280cdd81c7dcc783955faf2e2b4

93d0d205b7d1e92b98c4). Conclusions This new high quality MPM multi-omics dataset,
together with the state-of-art bioinformatics and interactive visualization tools we provide, will
support the development of precision medicine in MPM that is particularly challenging to

implement in rare cancers due to limited molecular studies.
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Context

Malignant Pleural Mesothelioma (MPM) is a deadly pleural cancer with currently limited
therapeutic opportunities that translate into poor outcomes for patients. The latest WHO
classification [1] recognises three different histopathological types, namely epithelioid (MME,
median overall survival of 14.4 months), biphasic (MMB, 9.5 months), and sarcomatoid (MMS,
5.3 months). Multi-omic sequencing data [2,3] have been key in the identification of driver
genes, developing and refining the characterisation of molecular profiles from initial discrete
clusters to a continuum [4-6], and uncovering rare genotypes such as near-haploid genomes.
Such advances have revealed the rich molecular heterogeneity in MPM, and have fueled the
implementation of drug trials for more tailored MPM treatments. Despite their important
findings, these multi-omic studies have profiled only a reduced representation of the MPM
genome (primarily exomes) and have mainly focused on describing simple mutational processes
(i.e. copy number alterations and point mutations). Therefore, there is still a need for
comprehensive multi-omic datasets including whole MPM genome sequences to allow the study
of complex mutational processes-e.g., whole-genome doubling (WGD), chromothripsis,
extrachromosomal DNA (ecDNA)-that have been described in other cancer types [7-9] but not
in MPM. Furthermore, understanding how genomic events impact tumor phenotypes remains
poorly studied in MPM. Finally, given that MPM is a rare disease, the integration of different
multi-omic studies is essential for reaching the statistical power needed to derive insightful

biological conclusions from complex multi-omic datasets.

Data Description

Here we describe the dataset generated by the MESOMICS project that collected more than one
hundred MPM tumors with extensive clinical, epidemiological, and morphological annotations,
and profiled their genome, transcriptome, and epigenome. Notably, MESOMICS prioritized the
sequencing of whole MPM genomes rather than exomes, resulting in the largest set of MPM
genome sequences available to date. This dataset has been deposited at the EMBL-EBI European
Genome-phenome Archive (EGA accession No. EGAS00001004812). Additionally, we provide a
comprehensive description of data quality control, and links to all bioinformatic pipelines used
in the project, including state-of-the-art methodology for mutational calling in tumor-only
specimens. Finally, in order to maximize the reuse potential of our MESOMICS data, we integrate
our cohort with the previous multi-omic studies from Bueno et al. [2] and Hmeljak et al. [3] to
generate the first multi-cohort molecular phenotypic map for MPM based on the multi-task
Pareto optimum theory [10]. This interactive map provides a user-friendly way to explore the

molecular data and to generate new hypotheses through custom statistical tests, based on the
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UCSC TumorMap portal [11]. The integrated and harmonized dataset resulting from these
studies is available on GitHub [12].

Primary tumor specimens were collected from surgically resected MPM. As described in
Mangiante et al. 2021 [13], among them 13 had two tumor specimens collected to study
intratumoral heterogeneity; we report quality controls for all samples including these 13
additional samples, but only the piece with the highest tumor content as estimated by
pathological review was selected for subsequent analyses, except for analyses that specifically
focused on intra-tumor heterogeneity. The samples used in this study belong to the French
MESOBANK. Our pathologist (FGS) classified all tumors following the latest WHO guidance and

DNA, and RNA extraction methods are described in the methods section of our recent study [13].

Quality control of omic data

Whole-Genome sequencing (WGS)

Whole-genome sequencing was performed by the Centre National de Recherche en Génomique
Humaine (CNRGH, Institut de Biologie Francois Jacob, CEA, Evry, France) on 130 fresh frozen
MPMs, plus 54 matched-normal tissue or blood samples (matched non-neoplastic tissue was not
available for the other specimens). The Illumina TruSeq DNA PCR-Free Library Preparation Kit
was used for library preparation and the HiSeqX5 platform from Illumina for the sequencing as
described in [13]. The raw WGS reads were scanned by the FastQC software (v.0.11.5; using our
nextflow pipeline https://github.com/IARCbioinfo/fastqc-nf) to determine the reads base
quality, adapter content and duplication levels. The software MultiQC (v0.9) was then used to
aggregate all the FastQC reports across samples.

The target read output for matched-normal tissue or blood (hereinafter called
“matched-normal”) and for tumor tissues without matched-normal sample (hereinafter called
“tumor-only”) was 900M reads (~30X genome coverage, Figure 1A). 1800M (~60X genome
coverage, Figure 1A) were expected for tumor tissues with matched-normal samples (two
sequencing lanes, hereinafter called “tumor-matched”). Overall, the median number of reads
obtained approached or exceeded the target read output, with median and standard deviation
by sample type equal to: matched-normal 889+50, matched-tumor 1786163, and tumor-only
853+51 million reads (Figure 1A).

All samples displayed the expected mean quality score (30Q > 85% of bases) across all
base positions of the read (Figure 1B). One exception is the MESO_050_N (a matched-normal
sample) that on average had a good sequence quality score (Figure 1B) but displayed a low
mean quality score for the first nucleotide of the read (24.08 Phred), which FastQC reported as a
warning in the mean quality score module (Figure 1B). In fact, the FastQC report for this sample

indicated that 25.17% of bases were not called at the first nucleotide of the read, suggesting that
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the base-calling process struggled in interpreting the DNA bases at this position and put an N
instead. However, the reverse pair-end file of this sample had the expected sequence quality
score over all the read positions (Figure 1B) and we decided then to include this sample in the
subsequent analyses. The adapter content was lower than 1% for all sequenced samples
(maximum 0.87% of total reads). The relative level of duplication found for every sequence per
sample was on average 10.3% (min: 0% and max: 18.2%), this low level of duplication indicates
that the prepared genomic libraries were diverse and likely covered a high proportion of the
human genome.

Paired-end read mapping was performed with our nextflow [14] pipeline alignment-nf
(v1.0, https://github.com/IARCbioinfo/alignment-nf). This pipeline includes the software
qualimap (v2.2.2b) and MultiQC to generate comprehensive QC statistics reports from the WGS
alignment files. The mean percentage of aligned reads was 98.93+0.81% (Figure 1C). The
matched-normal and tumor-only samples displayed a mean genome coverage higher than 30X
(Figure 1D). The matched-tumor displayed a mean genome coverage of 60X (Figure 1D).
Finally, 90% of the reference genome was covered by at least 22, 20, and 43 reads for

matched-normal, tumor-only, and matched-tumor samples, respectively (Figure 1D).

RNA Sequencing data

RNA sequencing was performed on 126 fresh frozen MPM in the Cologne Center for Genomics.
Libraries were prepared using the [llumina® TruSeq® RNA sample preparation Kit, the Illumina
TruSeq PE Cluster Kit v3, and an [llumina TruSeq SBS Kit v3-HS subsequent sequencing was
carried out in an Illumina HiSeq 2000 sequencer, as described in [13].

The resulting raw reads files were processed using our nextflow RNA-seq processing
pipeline (https://github.com/IARCbioinfo/RNAseq-nf v2.3), as described previously [13,15],
that performs reads trimming (Trim Galore v0.6.5), and mapping to reference genome GRCh38
(gencode version 33) with STAR (v2.7.3a) [16]. We also improve the alignments as described
previously by  performing assembly based realignment (nextflow  pipeline
https://github.com/IARCbioinfo/abra-nf, v3.0), using software ABRA2 [17] and base quality
score recalibration (nextflow pipeline https://github.com/IARCbioinfo/BQSR-nf, v1.1), using
GATK v4.1.7.0 [18]. Gene-level quantification was performed using software StringTie (v2.1.2)
(nextflow pipeline https://github.com/IARCbioinfo/RNAseq-transcript-nf, v2.2). Quality control
of the samples was performed using FastQC (v0.11.9,
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to determine the quality of the
raw reads, followed by RSeQC (v3.0.1) [19] that was used to determine the alignment quality

and distribution of reads over the reference genome (number of mapped reads, proportion of
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uniquely mapped reads). Finally, the software MultiQC (v0.9) [20] was used to aggregate all QC
results across samples.

A total of 126 samples were sequenced using 2x75bp or 2x100bp pair-end reads
(Figure 2A). On average, a total of 64+7.4 paired-end million reads were generated with a per
sequence mean quality score higher than 35 (Figure 2A). Given the high coverage and the lower
length expected for a human transcriptome, the percentage of duplicated reads was high,
reaching 69+5.5%, but the proportion of overrepresented sequences was low (<2%) indicating
that all RNA sequenced libraries were diverse. The report of STAR alignments showed that on
average 96.8+1.2% of the reads mapped to the reference genome with 91+2.3% mapping to
unique loci (Figure 2B). The 3.15+1.26% of unmapped reads correspond mainly to reads with a
short-alignment length (3.05£1.24%) that might result from the trimming process (trim of
adaptor or low-quality bases, Figure 2B). Finally, as expected most of the MESOMICS reads
mapped to mRNA structures including CDS and UTR regions (86.2+3.1%, Figure 2C).

DNA methylation data

DNA methylation analyses were performed in-house for 135 MPM samples from 122 patients,
and an additional two technical replicates and three adjacent normal tissues, with Infinium EPIC
DNA methylation beadchip platform (Illumina) which interrogates over 850,000 CpG sites, as
described in [13]. Resulting raw IDAT files were processed using our in-house workflow
(https://github.com/IARCbioinfo/Methylation_analysis_scripts, commit SHA bcfe876) in the R
statistical programing environment using R packages minfi (v1.34.0) and ENmix (v1.25.1), and
consisted of the following four steps: pre-processing quality control, functional normalization,
probe filtering, and finally beta and M-value computation.

During quality control checks on the raw data, one poor quality sample was identified
when comparing per sample log2 methylated and unmethylated chip-wise median signal
intensity (function getQC, minfi, Figure 3A) which was subsequently removed, and all samples
displayed an overall p-detection value < 0.01 (function detectionP, minfi). Functional
normalization, probe filtering, and beta and M-value computation were performed as described
in [13]. The resulting dataset consisted of beta and M-values for 139 samples across 781,245
probes, with the M-value table containing nine - values which were replaced by the
next-lowest M-value for statistical analysis. The effect of normalization and probe-removal on
DNA methylation profile is shown as beta density plots (pre-normalization in Figure 3B and
post-normalization and probe removal in Figure 3C). Principal components analysis (PCA) was
performed to detect batch effects, and to examine the effect of normalization, this was
performed on a reduced number of samples (n=122, one tumor per patient, excluding technical

replicates and normal tissues). Two datasets were used: (i) pre-normalized, unfiltered M-values
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(obtained from the GenomicRatioSet, function getM, minfi), and (ii) normalized and filtered
M-values. Dataset (i) contained 2,478 CpGs with at least one NA value which were omitted
before PCA, and 21,969 -« values were replaced with the next lowest M-value in the dataset,
leaving an M-value matrix of 863,381 probes.

R package ade4 (v1.7-15) was used to calculate the first 10 principal components
(function dudi.pca) across each dataset individually. We checked the association of the first 10
PCs with technical (chip, position on the chip, batch, sample well, sample provider,
macrodissection), clinical (sex, age class, and smoking status), morphological (histopathological
type, subtype, tumor percentage, necrosis and vessel level), and epidemiological variables
(asbestos exposure, exposure probability, exposure frequency, and exposure intensity) using PC
regression analysis, fitting separate linear models to each principal component with each of the
18 covariables of interest and adjusted the p-values for multiple testing (Figures 3D and 3E).
The first ten principal components in the normalized, filtered methylation data were
significantly associated with type (PCs 1, 2, and 5), and sentrix chip position (PC 5, PC 8). The
contribution of variance in the data from technical features before normalization was more
pronounced, with sentrix chip and plate also being significant (PC 7), indicating functional
normalization reduced technical batch effects on DNA methylation profile while retaining
biological effects such as histological type. Before normalization, sex was significantly associated
with PCs 2, 3, and 5, but not associated with any PCs in the normalized, filtered dataset. As
probes on the sex chromosomes were removed after normalization, it was expected that this

would reduce the effect of sex on variance in the dataset.

WGS variant calling in tumor-only samples
Copy number variants
Somatic Copy Number Alterations (SCNA) were called using our nextflow workflow purple-nf
(https://github.com/IARCbioinfo/purple-nf, v1.0) that implements the PURPLE [21,22]
software for matched and tumor-only WGS samples. To assess the quality of tumor-only
PURPLE calls, a total of 57 matched-pairs were used as an evaluation set. Briefly, we ran
PURPLE twice for each matched sample (Figure 4A): first using as input the matched-pairs, and
second using only the tumor WGS as input. Subsequently we performed a direct comparison of
the PURPLE tumor-only calls with their corresponding matched-pair calls for the following
features: tumor purity, ploidy, number of segments, percentage of diploid, amplified, and deleted
genome regions, as well as major and minor copy number states at the gene-level (Figure 4).
This benchmarking revealed a high concordance across all the evaluated metrics
between tumor-only and matched PURPLE calls. Indeed, the agreement for purity (Figure 4B, R
= 0.988), ploidy (Figure 4C, R=1), number of copy number segments per tumor (Figure 4D, R =
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0.981), and percentage of genome changed (diploid, amplified, and deleted) exceeded a 0.98
correlation (Figure 4 E-F). Moreover, a high concordance was also observed at the gene level
with major and minor copy number alleles reaching R > 0.94 (Figure 4 G-H). Finally, the only
detected issue of tumor-only calls was observed near telomeric and centromeric regions, where
artefactual focal peaks were detected (Supplementary Figure 1). These problematic regions
were manually curated and the copy number segments overlapping such regions were removed
from the tumor-only calls (see list of excluded segments in Table S1). In addition, because
PURPLE does not round copy number values to 0, but rather penalizes negative values in the
model fit, for all samples (both matched and tumor-only), following similar discussions with the
PURPLE developers on the handling of negative values
(https://github.com/hartwigmedical /hmftools/issues/102), we rounded slightly negative copy
number estimates (in ]-0.5,0[) to 0 and excluded largely negative copy number estimates (<-0.5)
from subsequent analyses, because they suggest high noise in the read depth and are thus
unreliable calls. Note that in total (including segments with largely negative values), we

excluded only 0.26% of the total segment length.

Point Mutations

Unlike copy number variants whereby the software (PURPLE) directly generated highly accurate
results in tumor-only mode without any post-processing, for point mutations direct outputs
from the software (Mutect2, [23]) and typical filters (i.e. removing variants matching germline
databases) did not remove at high accuracy the germline variants present in tumor-only WGS.
Therefore, we trained and evaluated the performance of a supervised machine learning model
based on a random forest (RF, [24]) for distinguishing germline from somatic variants in
tumor-only WGS (Figure 5A).

The matched samples were used as input for training and evaluating the performance of
the random forest (RF) model (Figure 5A). Point mutations were called using Mutect2 using
our nextflow pipeline Mutect2-nf (https://github.com/IARCbioinfo/mutect-nf, v2.2b). To build
the RF model, we chose a total of 20 features divided into three main classes, namely: associated
with external databases, genomic location/impact, and features obtained directly from the
Mutect2 variant caller (Figure 5B). For the first class of features, we used the gnomAD (r3.0
with 526M SNPs and 69M indels) [25] and COSMIC (v90, with 18.6M SNVs and 0.99M indels)
[26] databases as reference for germline and somatic variants, respectively. The GNOMAD
feature encodes the minor allelic frequency of each variant matching a variant present in the
gnomAD database, otherwise providing a value of 0. The matching of variants was performed
using bcftools (v1.10.2, annotate function) [27]. The COSMIC and COSMIC_GENE_CENSUS

features are Boolean variables encoding if the variant matched one present in the COSMIC
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database or if its genomic location overlaps with the boundaries of a COSMIC gene (n=723). The
second class of features included substitution patterns, functional impact, and genomic location
of variants. The substitution patterns (i.e. mutation C->A) were converted into six categorical
values (SNVS model feature), as somatic variants are often enriched in particular signatures
[28]. The BCSQ feature encodes the impact of variants into four categories (MODIFIER, LOW,
MODERATE, and HIGH) according to how the mutation affects coding genes. Variant impact was
calculated using the bcq [29] function of bcftools and the classification of impact was performed
with the Ensembl variant consequences table
(https://www.ensembl.org/info/genome/variation/prediction/predicted_data.html). The
CENTROMERE feature indicates if a variant is located in centromeric regions. Finally, fourteen
features were derived from the Mutect2 caller, which are associated with read depth and
orientation (DP, ADR, ADA, OR1, OR2, OA1, and 0OA2), sequencing errors and artifacts (MPOS,
STRANDQ, SEQQ, TLOD, GERMQ), frequency across samples (NS), and allele frequency (AF,
Figure 5B).

For training the RF model a total of 46 tumors with matched normal MPM
whole-genome sequences called with both the tumor-only and matched modes of Mutect2 were
used (Figure 5A). The matched somatic calls (ground-truth) were used to annotate the variants
of the tumor-only WGS into germline and somatic classes. The number of germline variants
called in tumor-only mode (n=694,273) greatly exceeded the number of somatic variants
(n=203,993) generating an imbalance between classes. Therefore, we subsampled the germline
class as a function of the somatic class to mitigate bias arising from class imbalance during
training (1:1 somatic:germline ratio, n=407,984). To determine optimal values for the RF
parameters we performed a grid search for tuning the mtry (4, 8, 12, 16), ntree (500, 1000,
1500), and nodesize (5, 25, 50, 100) parameters in a total of 48 RF-models. The training and
evaluation of models was performed using 75% and the remaining 25% of the dataset,
respectively. The grid search revealed that the optimum parameters were mtry=8, ntree=1000,
and nodesize=5, reaching a model accuracy of 0.9276 in the testing set. Additionally, the
minimum accuracy reached by any RF model was 0.9220, indicating that the parameter
optimization had a marginal impact on the RF models. A random forest model for SNVs (rfvs01)
was trained with the optimum parameters using a total of 326,388 (80%) variants (1:1 ratio).
Analysis of the feature importance revealed that the allele frequency (AF) is the most
discriminative feature included in the model (Figure 5B). For indels, a random forest model
(rfvi01) was built with the same optimal parameters using a total of 337,442 variants (1:1 ratio,
including 305,988 SNVs and 31,454 indels) and removing the SNVs feature. The performance of
the optimal RF-models for SNVs and indels reached an accuracy of 0.926 and 0.924, respectively
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(Figure 5C). To further control the false positive rate (overall FDR=6.4%) we used different
cut-offs (RF probability) to classify as somatic coding (>0.5) and non-coding (>0.75) variants.
Finally, the trained RF models (rfvs01 and rfvi01) were used to classify a total of 1,454,942
variants (SNVs=1,317,200 and indels=137,742) of which 217,436 variants (including SNVs and
indels) were classified as somatic. With these results we have developed a highly accurate and
robust methodology to call SNVs and indels in tumor-only WGS datasets for which a series of
matched tumor-normal samples are available. The source code and the random forest models
implemented are available in the Github repository at

https://github.com/IARCbioinfo/RF-mut-f.

Structural Variants

Large genomic rearrangements were detected using a consensus variant calling approach
including SvABA (v1.1.0)[30], Manta (v1.6.0)[31], and Delly (v0.8.3)[32] followed by
subsequent integration with SURVIVOR (v1.0.7)[33]. Our nextflow pipeline implementing the
consensus  variant calling approach for matched WGS is available at
https://github.com/IARCbioinfo/sv_somatic_cns. In brief, each structural variant caller was
run following the recommended practices (filters and excluding masked genomic regions).
Consensus between callers was built using SURVIVOR (merge command) by computing an
all-versus-all structural variants (SVs) comparison. Matching pass-filter somatic SV pairs were
considered when both breakpoints overlap at a maximum distance of 1kb. Somatic SVs called by
at least two callers as well as single-tool SVs supported by > 15 pair-end reads were included in
the consensus set.

Like for point mutations, we implemented custom random forest models to distinguish
at high accuracy somatic from germline SVs in tumor-only MESOMICS samples (Figure 5A). The
RF-models were composed of a total of 19 features based on external databases, a custom panel
of normal, genomic regions, and SV features obtained directly from each SV caller (Figure 5D).
The gnomAD database (v2.1, n=299,211) GRCh38 liftover (dbVar
https://ftp.ncbi.nlm.nih.gov/pub/dbVar/data/Homo_sapiens/by_study/vcf/nstd166.GRCh38.va
riant_call.vcf.gz) was used as reference for germline SVs. Features describing the frequency of
the SV in gnomAD (GNOMAD_AC) and the number of germline SVs around each breakpoint
(10kb window, GNOMAD_BC1 and GNOMAD_BC2) were included in the RF SV model. The
PCAWG consensus call set for SVs (v1.6, n=309,246) [34] was used as a reference of somatic SVs.
The PCAWG SVs are in hg19 genome coordinates, thus we performed a liftover to GRCh38 using
CrossMap (v0.3.9) [35]. PCAWG SVs at sample level (n=2,748) were merged into a
non-redundant cohort callset with SURVIVOR (merge subcommand) leading to a total of

283,980 non-redundant somatic SVs. Two features associated with the number of somatic SVs
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around each breakpoint (10kb window, PCAWG_BC1 and PCAWG_BC2) were included in the
model. To further enhance the germline filtering we generated a custom panel-of-normal (PON)
for each SV caller using our set of normal samples (n=46). A total of 56,572, 52,915, and 24,381
non-redundant PON SVs were collected for Manta, Delly and SvABA, respectively. Two features
associated with the number of PON SVs around each breakpoint (10kb window, PON_BC1 and
PON_BC2) were included in the model. For genomic regions, we annotated the SV breakpoints
with features associated to known cancer genes (COSMIC_GENE, cosmic v90), coding exons
(EXON, gencode v33), centromeres (CENTROMER), and conserved genomic regions (100-way
PhastCons) [36]. Finally, we included in the model features indicating the total copy number
state (CNV_TCN1 and CNV_TCN2 for both breakpoints), tumor cell fraction estimations
(CNV_CF1 and CNV_CF2 for both breakpoints), SV length (SVLEN), SV read depth (RFS), and SV
alternative allele frequency (RAF). Our hypothesis behind all the aforementioned features is that
the underlying genomic context of somatic SVs is different from those of germline SVs and that a
random forest model should be able to distinguish both SV classes using the proposed features.

The training (75%) and evaluation (25%) of the random forest model for each SV caller
was performed using a total of 12,454, 16,720, and 12,264 SVs at 1:1 somatic:germline
proportions for Delly, Manta, and SvABA, respectively. All three SV random forest models were
trained using the default random forest parameters (mtry=4, ntree=400 and nodesize=1). The
precision, recall, and accuracy achieved by each model were 0.905+0.009, 0.87+0.016, and
0.889+0.010, respectively (Figure 5E). The most important features of the models were the
number of PON SVs around both breakpoints, SV alternative allele frequency, SV read depth, and
SV length (Figure 5D). To control the FDR, SVs located in coding and non-coding genomic
regions were classified as somatic if their random-forest probability exceeded 0.5 and 0.75,
respectively. Additionally, somatic SVs matching SVs present in the MESOMICS PON or located in
centromeric regions were discarded. A consensus of SV sets for each tumor-only sample was
built using the same steps performed for the matched WGS. Finally, SVs having a frequency
higher than four across all the tumor-only samples were also classified as potentially germline
and removed from the final consensus set. We performed additional comparisons by SV type, SV
length, and number of SVs as a function of the purity of samples, WGS type(Tumor/Normal,
Tumor-only) and MPM subtype and did not observe any significant difference between SVs
called in the tumor-only or matched WGS MESOMICS series (Figure 5F and 5G).

The SV calls for the MESOMICS tumor-only samples include a total of n=8,229 SVs, which
combined with the SVs called in the matched series gave a total of n=12,914 (Figure 5H). With
these results we have developed a highly accurate and robust methodology to call SVs in

tumor-only WGS datasets for which a series of matched tumor-normal samples are available.
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The source code and the SV random forest models are available in the Github repository at

https://github.com/IARCbioinfo/ssvht.

Data Validation

Muti-omic sample matching

The software NGSCheckMate was used to check the match between sequencing modalities of a
given MESOMICS patient. NGSCheckMate was run using our nextflow implementation available
at https://github.com/IARCbioinfo/NGSCheckMate-nf (v1.1a). NGSCheckMate, using WGS and
RNA-seq, confirmed that the majority of MESOMICS samples were correctly paired (Figure 64,
black segments). However, NGSCheckMate discovered that the WGS of MESO_094_T and
MESO_096_T matched (Figure 6A, red segments). Further examination of these samples
confirmed that both WGS come from the same patient but were annotated differently during
sample collection. In addition, the RNA-seq replicate named MESO_054_TR1 matched with the
group of samples coming from patient MESO_051. After sequencing a second RNA-seq aliquot
from MESO_054_T, named MESO_054_TR2, and re-performing the NGSCheckMate analysis, we
confirmed a miss-annotation of these RNA-seq samples and proceeded to rename them as
MESO_051_TR1 and MESO_051_TR2, respectively. After the aforementioned corrections, all the
sequencing modalities at the sample and patient level were correctly paired for the complete

MESOMICS cohort.

Sex validation

We registered the sex (M for male or F for female) data for all the 124 patients of the MESOMICS
cohort. We validated the sex annotation based on the concordance of whole-genome,
transcriptome, and methylome data (Figure 6B-D). First, the concordance between sex reported
in the clinical data and WGS data was assessed by computing the total coverage on X and Y
chromosomes (Figure 6B). Interestingly, some tumors from male individuals displayed an
intermediate coverage on chromosome Y between other male and female cases, compatible with
the large copy losses identified in our study like for example the tumor from MESO_071. Second,
the concordance between sex reported in the clinical data and sex chromosome gene expression
patterns (transcriptome) was performed by comparing the sum of variance-stabilized read
counts (vst function from R package DESeq2, v.1.14.1) of each sample on the X and Y
chromosomes (Figure 6C). Third, the concordance between the sex reported in the clinical data
and the methylation data was assessed using a predictor based on the median total intensity on
sex-chromosomes, with a cut-off of -2 log2 estimated copy number (function getSex from minfi,
v.1.34.0, Figure 6D). The only sex discordance was observed in MESO_071 tumor sample due to

somatic copy number losses in the Y chromosome, but the whole genome sequencing from
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matched blood confirmed that this patient was male (Figure 6B). In summary, the sex data of the
MESOMICS cohort was validated using a multi-omic approach that confirmed the sex of all the

MESOMICS samples.
An integrative and interactive MPM phenotypic map

Task specialization analysis using Pareto

In order to integrate the MESOMICS multi-omic data and investigate the association between the
detected genomic events in this new large genomic cohort and the observed MPM phenotypes,
we firstly performed a multi-omic summary of MPM using MOFA [37] and secondly performed a
task specialization analysis to identify MPMs with natural selection for specific cancer tasks (see
[13]). We performed task specialization analyses using the well-established Pareto optimum
theory (ParetoTI method) [10]. The Pareto front model has been fitted to different sets of
samples using the ParetoTI R package (https://github.com/vitkl/ParetoTI, v0.1.13) on MOFA
latent factors (LFs), restricted to LF1, LF2, LF3, and LF4 due to their association with survival
and extreme phenotypes (see [13]). In brief, according to the theory a molecular map would
take a particular shape (polyhedra) if a trade-off exists between several cancer tasks performed
by the tumors. Using MOFA axes, we found a triangle (polyhedra with three vertices)
corresponding to k = 3 archetypes in the LF2-LF3 space. According to the Pareto optimum
theory, this pattern results from natural selection for cancer tasks, with specialized tumors close
to the vertices of the triangle (representing archetypes), and generalists in the center. We have
also replicated the same analyses (MOFA and ParetoTI) on the previously published multi-omic
studies from Bueno et al. [2] (n=181) and Hmeljak et al. [3] (n=73). R scripts to prepare matrices
for each omic layer, as well as scripts to run MOFA and the Pareto analysis for the three cohorts
are available in the Github repository dedicated for this data note paper at

https://github.com/IARCbioinfo/mesomics_data_note.

Biological interpretation of the MPM phenotypic map

We inferred each archetype’s phenotype by performing integrative gene set enrichment analysis
on the expression data and identified the following cancer tasks and tumor phenotypes: Cell
division, Tumor-immune-interaction, and Acinar phenotype (see [13]). Tumors specialized in
the Cell division task displayed upregulation of pathways within the “cell division” task as
reported by Hausser et al. [38] in multiple tumor types. This phenotype was enriched for
non-epithelioid tumors and presented higher levels of necrosis, higher grade, high expression of
hypoxia response pathways, and greater percentage of infiltrating neutrophils that are innate
immune response cells. Cell division specialization was supported by the high expression levels

of the proliferation marker MKI67, and increased genomic instability. Tumors specialized in the
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Tumor-immune-interaction task carried upregulated immune-related pathways, high expression
of immune checkpoint genes, and high immune infiltration with an enrichment for
adaptive-response cells: lymphocytes B, T-CD8+, and T-reg. The last extreme phenotype was
characterized by samples with Acinar morphology, presenting a very structured tissue
organization with epithelial cells tightly linked into tubular structures, and correlated with the
presence of monocytes and NK cells (innate immune response cells). This phenotype presented
the lowest epithelial-mesenchymal transition (EMT) score [39], with overexpression of
epithelial markers such as cell-adhesion molecules, corroborating the importance of tissue
organization in this phenotype, and also low levels of MKI67 expression, indicating slow growth.
Altogether these data provide a biological understanding for the molecular and phenotypic

heterogeneity characteristic of MPM tumors.

Reuse potential

The MESOMICS project represents the most comprehensive molecular characterization of MPM
to date, made possible by inclusion of the largest WGS dataset yet reported, and by the depth of
the analyses undertaken. Multi-omics integration and biological interpretation through the lense
of Pareto theory has allowed us to uncover three specialized MPM tumor profiles [13]. In order
to replicate these findings while minimizing batch effects associated with bioinformatics data
processing, we have accessed and reprocessed the raw data from previously published MPM
multi-omics studies [2,3] using the same analytical procedures. A by-product of this laborious
work is the creation of the largest (n=374 samples in total) existing harmonized dataset of MPM
multi-omics data.

In order to maximize the reuse potential of this dataset, we have also harmonized the
available clinical, epidemiological and morphological data from these three cohorts. In addition
to providing the raw data, the full list of genomic variants and the entire matrices of expression
and methylation levels, we provide a curated and harmonized list of molecular features (e.g.
immune cell composition, measures of genomic instability, presence of whole genome
duplication, copy number in recurrently altered regions, driver genes mutational status,
expression level of some relevant genes etc.) across all samples (Supplementary Table S2).

This MPM phenotypic map has been shared on the TumorMap web portal [11], offering
an interactive visualization of this data in the tumor phenotypes space (Cell division,
Tumor-immune-interaction, and Acinar phenotype), including all the harmonized clinical,
morphological, epidemiological, and molecular data attributes mentioned above. The
TumorMap interface provides an interactive way to explore and navigate through the map,
where each sample is represented by a dot localized according to its position in the phenotype

space (Figure 7). The attributes can be used to change colors and filter samples, perform
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statistical tests, and new attributes can be derived from pre-existing ones using set operations.
This flexible and user-friendly interface will enable new hypotheses to be tested without
computational expertise, and expands the reuse potential of the dataset. The TumorMap is
available at
https://tumormap.ucsc.edu/?bookmark=746c4bc0e8bc4eb5f280cdd81c7dcc783955faf2e2b49
3d0d205b7d1e92b98c4.

Conclusion

We demonstrated that we provide a high-quality multi-omic dataset of malignant pleural
mesothelioma, including the largest whole-genome sequencing dataset of malignant pleural
mesothelioma to date, consisting of both raw and processed data, and important molecular
phenotypes. By homogenizing the clinical, epidemiological, morphological and molecular data of
our new series with the two previously published MPM multi-omics data series, we have created
an unprecedented dataset for this rare cancer in terms of both size and detail. We provide all the
resources to reproduce our analyses, as well as a user-friendly interactive visualization tool,

which will contribute to advancing biological knowledge of this deadly disease.
Availability of Supporting Data and Materials

The data used in this manuscript are available in the European Genome-phenome Archive
(EGA), which is hosted at the EBI and the Centre for Genomic Regulation (CRG), under the
accession number EGAS00001004812. R scripts are available in the github repository
https://github.com/IARCbioinfo/MESOMICS_data. The interactive molecular phenotypic map is
available at
https://tumormap.ucsc.edu/?bookmark=746c4bc0e8bc4eb5f280cdd81c7dcc783955faf2e2b49
3d0d205b7d1e92b98c4.
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Figure legends

Figure 1. Quality control of Whole-Genome Sequencing (WGS) data. A) Number of reads per
WGS type. B) Mean sequence quality score as a function of the position in the read in base pairs.
Green lines correspond to files that passed the most stringent QC filters of software FastQC;
orange lines correspond to files that passed a less stringent filter; and red to files that did not
pass the filters. C) Percentage of aligned reads to the reference human genome. D) Cumulative

genome fraction computed directly from the BAM files.

Figure 2. Quality control of RNA Sequencing (RNA-seq) data. A) Distribution of sequence quality
scores in Phred scale for 2x75bp and 2x100bp read pairs. B) STAR alignment scores. C)

Distribution of reads mapped to different genomic regions.

Figure 3. Quality control of EPIC array sequencing data. A) Signal intensity plot. Log?2
methylated and unmethylated median signal intensity plot of 140 samples. One sample
(coloured red) fell below the cut-off of 10.5 and was subsequently removed from analysis. B)
Pre-normalisation beta density plot. Beta density plot of 140 samples across 865,859 probes,
coloured by tumour/normal type, prior to functional normalisation. C) Post-normalisation and
filtering beta density plot. Beta density plot of 139 samples across 781,245 probes, coloured by
tumour/normal type, following functional normalisation and removal of cross-reactive,
sex-chromosome, SNP, and failed (p-detection > 0.01) probes. D) Association of technical and
clinical variables with pre-normalisation principal components. Association of technical and
clinical variables with principal components one to ten, for 122 samples. Principal components
calculated from M-values of 863,381 pre-normalised probes. E) Association of technical and
clinical variables with post-normalisation principal components. Principal components
calculated from M-values of 781,245 probes following functional normalization and probe

removal.

Figure 4. Performance of somatic copy number variant calling from tumor-only samples. A)
Schematic of the benchmarking procedure. Comparison of Tumor/Normal and Tumor-only
calling for B) Purity, C) Ploidy, D) Number of copy number segments, E) Diploid proportion, F)

Percentage of deleted genome, G) Major allele copy number and H) Minor allele copy number.

Figure 5. Performance of somatic point mutation and structural variant calling from tumor-only
samples. A) Schematic of the benchmarking procedure. B) Random forest model features and
their ranking for predicting somatic SNV and Indels. C) Performance metrics (precision, recall,

accuracy) for classifying somatic point mutations with the best performing RF models. D) SVs
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Random Forest model features and their ranking for predicting somatic SVs. E) Performance
metrics for classifying somatic SVs. F) Number of SVs as function of WGS type. Mean comparison
between WGS types was performed using a t-test with no significant (ns) result found. G)
Number of SVs as function of tumor purity. A linear model (number_sv
~Purity*WGS_type*SubType) was built to predict the number of SVs, no significant coefficients

(p-value < 0.05) were found. H) Venn diagram of the final consensus MESOMIC SVs set.

Figure 6. Applications of data validation using multi-omics data A) Network of matching WGS
and RNA-seq samples, as computed by software NGSCheckmate. Edge transparency corresponds
to the Pearson Correlation r between SNP panel allelic fractions; node color and surrounding
color correspond respectively to the techniques (WGS or RNA-seq) and to the tissue type
(Normal, Matched samples or T-only samples). B-D Sex reclassification and multi-omic
validation of reported clinical sex. B) Total exome reads coverage on the X and Y chromosomes
for each sample. C) Total expression level of each sample on the X and Y chromosomes (in
variance-stabilized read counts). D) Median methylation array total intensity on the X and Y
chromosomes. In panel (B), point colors correspond to the WGS groups: normal samples in light
green, tumor samples with matched normals (Match) in dark green, and tumor samples without
matched normal (T-only) in red. In each panel, filled polygons correspond to the sexes given by
the clinical annotations (blue for male, red for female). In panel D) point colors correspond to
the sexes predicted by the DNA methylation QC. Samples with discordant reported clinical sex

and molecular patterns on sex chromosomes are indicated.

Figure 7. MPM molecular phenotypic map. Screen capture from the TumorMap portal, using the
hexagonal grid view, each point representing a MPM sample in the triangular phenotypic space:
cell division (left vertice), tumor-immune-interaction (top vertice), and acinar phenotype (right
vertice). Point colors correspond to the histological types and can be interactively changed by

the users on the web portal.
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Supplemental files

Supplementary Figure S1. MPM CNV cohort profile aCNViewer plot [40] from Tumor-matched
called as Tumor-Only (top), Tumor-only (middle), and Tumor-only after filtering (bottom). The
circled regions correspond to artifactual peaks when calling CNVs with the Tumor-only mode of
PURPLE. The aforementioned genomic regions were identified, filtered and are provided in

Supplementary Table S1.

Supplementary Table S1. List of excluded genomic regions identified as artifactual when

calling CNVs using PURPLE Tumor-only mode.

Supplementary Table S2. Harmonized and curated molecular, clinical, epidemiological and
morphological data from our MESOMICS cohort, and the two previously published MPM
multi-omics data [2,3]. This table can be explored interactively on the UCSC TumorMap web

portal.
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