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ABSTRACT

Tumour immunity is key for the prognosis and treatment of colon adenocarcinoma, but its
characterisation remains cumbersome and expensive, requiring sequencing or other complex
assays. Detecting tumour-infiltrating lymphocytes in haematoxylin and eosin (H&E) slides of
cancer tissue would provide a cost-effective alternative to support clinicians in treatment
decisions, but inter- and intra-observer variability can arise even amongst experienced
pathologists. Furthermore, the compounded effect of other cells in the tumour microenvironment
is challenging to quantify but could yield useful additional biomarkers. We combined RNA
sequencing, digital pathology and deep learning through the InceptionV3 architecture to develop
a fully automated computer vision model that detects prognostic tumour immunity levels in H&E
slides of colon adenocarcinoma with an area under the curve (AUC) of 82%. Amongst tumour
infiltrating T cell subsets, we demonstrate that CD8+ effector memory T cell patterns are most
recognisable algorithmically with an average AUC of 83%. We subsequently applied nuclear
segmentation and classification via HoVer-Net to derive complex cell-cell interaction graphs,
which we queried efficiently through a bespoke Neo4lJ graph database. This uncovered stromal
barriers and lymphocyte triplets that could act as structural hallmarks of low immunity tumours
with poor prognosis. Our integrated deep learning and graph-based workflow provides evidence
for the feasibility of automated detection of complex immune cytotoxicity patterns within H&E-
stained colon cancer slides, which could inform new cellular biomarkers and support treatment

management of this disease in the future.
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INTRODUCTION

Tumour immunity is a critical determinant of clinical outcome in colon adenocarcinoma'-?, yet its
characterisation is challenging due to cellular heterogeneity and the elaborate techniques required
to study it comprehensively?. Earlier efforts introduced the prognostic value of the CD8+ to CD4+
T cell infiltration ratio within the tumour*?. Galon et al® built on this to develop an ‘Immunoscore’
that predicts the risk of recurrence and chemotherapy response in colorectal cancer’®. This score
was derived based on immunohistochemistry (IHC), a fairly elaborate procedure to label antigens
expressed by specific cells, which requires well defined markers and is not incorporated routinely
in the clinical workflow. Instead, H&E staining of nucleus, cytoplasm and extracellular matrix
offers a cheaper, streamlined alternative in oncology. Experienced pathologists can identify
tumour infiltrating lymphocytes and other cells in H&E-stained tissue, but inter-and intra-
observer variability can arise when assessing a sample’. Therefore, automating the detection of
such cells could prove beneficial'®!!. Indeed, deep learning algorithms have recently been

12-14

employed for this purpose in multiple cancers'< "%, with links to patient outcome demonstrated in

colorectal cancer®!>.

However, these models often focus on individual cell types and do not consider the broader spatial
organisation of the tissue, which can impact tumour growth and dissemination'¢. For instance, the
stroma can promote tumour progression by limiting access of therapeutic agents or immune cells
to tumours through fibrosis!’. Such factors are currently challenging to assess systematically
because of costs and a lack of standardised methodology. Several studies have shown that spatial
organisation features such as the stromal content/ratios, TIL morphology and even immune
hot/cold phenotypes can be extracted from H&E patches and linked to prognosis!®!13-23,
AbdulJabbar et al** and Bilal et al?® have also integrated deep learning methods on digital
histology and omics data more extensively, gaining insights into how cellular organisation

impacts cancer evolution and clinical outcomes. However, these studies often require expert

annotation and still lack insight into more complex interactions between different cell types.
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80

81 As an alternative to expert annotation, developments of computational tools for immune
82  deconvolution from RNA sequencing have revolutionised our ability to capture an extensive array
83  of cell types and states in bulk tissue?®?%, Cancer transcriptomics datasets are widely available
84  and have been successfully integrated with H&E images via deep learning in recent studies,
85  demonstrating that patterns of angiogenesis, hypoxia and even T and B cell immunity are
86  detectable in the tissue®. Integrating such approaches to characterise tumour immunity as a whole
87  within the colon cancer tissue would be highly informative for prognosis and treatment, but has

88  not yet been achieved.

89  This study tests the extent to which tumour immunity and its spatial organisation can be quantified
90  within colon adenocarcinoma tissue based on transcriptomic signatures alone. We propose a fully
91  automated image-processing pipeline to predict the immune activity in a tumour from H&E
92  images based on matched bulk RNA-seq data. We also introduce a novel framework for surveying
93  detailed cellular interaction landscapes within digital pathology slides by combining nuclear
94  segmentation, classification and graph assembly, with efficient queries handled via a bespoke
95  Neo4J graph database. Finally, we apply this framework to interrogate the complex tissue
96  organisation in colon adenocarcinoma and identify cellular structures linked with immune

97  response, which we then validate using spatial transcriptomics.

98 RESULTS

99  Transcriptome-derived tumour immunity informs prognosis, molecular characteristics and

100  treatment efficacy in colon adenocarcinoma

101  To explore the immune landscape and tissue organisation of colon adenocarcinoma, we employed
102 RNA sequencing (RNA-seq) and matched digital pathology data collected from tumour samples

103 of 456 patients available from TCGA. We calculated a tumour immunity score per sample as the
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104  average abundance of tumour infiltrating cells from the microenvironment using
105  ConsensusTME?® (Supplementary Figure 1a). This score accounted for the compounded effects
106  of expression signals coming from all detectable non-tumour cells, reflecting a spectrum of low
107  to high immunity (Supplementary Figure 1b). The score correlated well with the mean
108  CD8+/CD4+ T cell subtype scores estimated from transcriptomic data using an alternative

109  immune deconvolution method, xCell (R = 0.46, p<2e-16).

110 After quantifying the overall tumour immunity in each sample, we assessed the prognostic value
111 of the respective immune scores. To maximise the clinical relevance of this analysis, we sought
112 toidentify a tumour immunity score threshold that would reflect the strongest relation with patient
113 outcome. We found that a cut-off point of 0-39 highlighted two immunity groups (High Immunity,
114  HI, and Low Immunity, LI) with highly distinct overall survival (p=0-002, Figure 1b-c) and
115  disease-free intervals (p=0-005, Supplementary Figure 1c). As expected, the patients with high
116  levels of tumour immunity showed significantly better outcomes. When checking against the
117  pathology annotations of the slides, the differences between the HI and LI groups appeared to be
118  driven by the presence of lymphocytes and neutrophils, which were elevated in the HI group
119  (Figure 1d). Furthermore, the HI tumours also had elevated markers of intratumoural natural killer
120 (NK) cell activity, including expression of NK cell receptors and corresponding tumour cell
121 ligands, as well as secreted cytokines (Supplementary Figure 1d), which have been associated

122 with immunotherapy response*’.

123 Colon cancer has been systematically characterised from a genomic point of view, with mutation,
124 expression and methylation features shown to associate with disease progression and therapy
125  responses®'32. To link these findings with our classification, we further characterised the 456
126  samples in the HI/LI groups using molecular and tumour architecture phenotypes already
127  described for colon adenocarcinomas®! (Figure 1¢). Genomically, we found that low immunity
128  tumours tended to fall within the chromosomally unstable group of gastrointestinal cancers (CIN).

129  Indeed, tumours with higher levels of CIN/aneuploidy have been previously linked with immune

5
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130  evasion and poorer outcomes to immunotherapies®®. In contrast, high immunity tumours were
131  associated with the gastrointestinal hypermutated indel (HM-indel) subtype and presented
132 frequent microsatellite instability (MSI), in line with numerous studies linking hypermutation

133 with increased neoantigen presentation and activation of the host antitumor immune response#>,

134 The consensus expression-based classification defined by Guinney et al*? revealed that the high
135  immunity tumours tended to be more mesenchymal (CMS4), a subtype characterised by increased
136  stromal infiltration and angiogenesis. In contrast, lower immunity was linked with epithelial,
137  metabolically deregulated phenotypes (CMS2/3), and lacked the characteristic pattern of CpG
138 island hypermethylation (non-CIMP). Anatomically, low immunity was more frequently
139  characteristic of tumours arising in the descending colon and on the left side, and prevailed in
140  late-stage cancers, where immune recognition is more likely impaired. Tumours with higher

141  immunity tended to present fewer hyperplastic polyps.

142 Finally, the two defined immunity groups in colon adenocarcinomas were predicted to display
143 significantly different susceptibility to multiple anti-cancer compounds (Figure 1f). The largest
144  differences were observed for chemotherapy drugs such as topotecan, mitoxantrone and
145  gemcitabine. Higher immune activity was linked with lower IC50 values, suggesting greater
146  efficacy in this setting and confirming previous links between immunity and enhanced

147  chemotherapeutic responses®.

148 A prognostic classifier of tumour immunity in colon cancer from H&E-stained images

149  Having demonstrated the clinical relevance of our immune classification of colon
150  adenocarcinomas, we then developed a digital pathology classifier of this phenotype. We trained
151  a deep learning model based on the InceptionV3 architecture to classify high and low tumour
152  immunity (as inferred from matched RNA-seq data) in H&E-stained images of cancer tissue

153  collected from colon adenocarcinoma patients (Figure 2a). We achieved a median accuracy of
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154  82% AUC probability based on tile average and percentage count in the testing dataset (Fig 2b-
155  c¢). This approach also allowed us to obtain a spatially-resolved overview of tumour immunity
156  levels within entire tissue slides through tile-level estimates (Fig 2d). Indeed, tissue slides from
157  highly immunogenic tumours were predominantly composed of tiles with strong HI signals,
158  whereas low immunity tumours presented more diverse predictions of LI and intermediate levels

159  of immunity across tiles (Fig 2e).

160  While the HI group of tumours is expected to have enhanced immune reactivity, the cytotoxic
161  effect is triggered by populations of CD8+ and CD4+ immune cells that are transformed from a
162  naive to an effector state upon antigen recognition®®. These CD8+/CD4+ subsets emerge at
163  different points of cancer development and could create distinct patterns within the tumour tissue.
164  The ability of deep learning algorithms to distinguish these immune subsets in H&E slides has
165  not been tested in this system. To understand whether patterns of active rather than uneducated
166  immunity might be preferentially captured, we trained deep learning models to identify distinct
167  subgroups of CD4+ and CD8+ T cells as characterised in Aran et al*’, i.e., CD4/CD8+ naive T
168  cells, central memory cells and effector memory cells in the TCGA COAD cohort. Our models
169  could detect expression signals of CD4+ central memory T cells and CD8+ effector memory T
170  cells with high accuracies of 82% and 83% AUC, respectively (Figure 3). The rest of the cells
171  were identified with lower accuracy, between 64% and 70% AUC. Overall, this suggests that the
172 cells most relevant to triggering an effective immune response are also the ones that leave the
173 most recognisable traces within the colon cancer tissue and could be specifically tracked in a

174  clinical setting to support immunotherapy treatment decisions.

175  Cellular organisation of the immune response in colon adenocarcinoma

176 ~ Next, we sought to gain further insight into the cellular organisation of colon adenocarcinoma
177  tissue in a high versus low immunity setting using the H&E slide information. Using HoVer-

178  Net¥’, we conducted nuclear segmentation and classification within the H&E tiles of the TCGA
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179  COAD dataset. This approach allowed us to label individual cells within the tissue as ‘tumour’,
180  ‘lymphocytic’ or ‘stromal’ (Figure 4a). Based on cell proximity, we could then infer interactions
181  between different cells and summarise them for every tissue patch in the form of graphs (Figure
182  4a). However, this analysis resulted in thousands to hundreds of thousands of interactions per
183  sample, yielding complex graphs that are difficult to store, integrate and query. To resolve this,
184  we developed a Neo4lJ graph database comprising 2,786,464 nodes and 3,628,377 edges, that
185 would allow us to explore and interrogate such complex structures effectively. The basic
186  relationship model in the database is depicted in Figure 4b. This database allows us to perform
187  complex queries to identify biologically relevant structures, such as a stromal barrier separating
188  lymphocytes from tumour cells (Figure 4c), or a lymphocytic attack on cancer cells (Figure 4d).
189  These graph interactions can also be dynamically explored and expanded within the database

190  (Supplementary Video 1).

191  We compared the cell population frequencies and interactions between the HI and LI groups.
192  Lymphocytes and stromal cells were similarly abundant in the two groups, but appeared more
193 frequently isolated in a high immunity context (Figure 5a-b). These could correspond to exhausted
194  or naive T cells being recruited to the site, which would be less likely to form interactions. As
195  expected, the HI group also harboured more frequent direct interactions between lymphocytes and
196  tumour cells, suggesting immune recognition typical of ‘immune hot’ phenotypes*® (Figure 5¢,e).
197  The number of tumour-stroma interactions was also increased (Figure 5d), but to a lower extent
198  (Figure 5e). On the other hand, dense lymphocyte clusters in the form of triplets, as well as stromal
199  barriers were increased in the low immunity tumours (Figure 5f-g). The lymphocyte triplet
200  presence might suggest inactive clusters that are not recognising malignant cells. Concurrently,
201  the stromal barriers may aid immune evasion, as has been previously described in pancreatic
202  cancer®. These cellular structures reflect different cellular organisation and immune activity in

203 an HI vs LI setting and could support treatment strategies in the clinic.
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204  Validation of deep learning predictions using spatial transcriptomics

205  Finally, to validate our model predictions using an orthogonal approach, we employed spatial
206  transcriptomics data available for one colorectal tissue slide from the Visium platform (Figure
207  6a). We applied our Al model on the H&E stained image to obtain predictions of the overall
208  immunity within the tumour at patch level (Figure 6b). In parallel, we analysed the spatial gene
209  expression profiles across multiple spots within the image and derived an immunity map outlining

210  the distribution of immune ‘hot’ and ‘cold’ islands across the tissue (Figure 6¢-d).

211 By visually comparing the Al model predictions with the spatial profile, we can see there is a
212 good agreement between the two methods (Figure 6b-d). In particular, it is striking that the central
213 area of high immunity (island 1) appears as a diagonal stripe both in the spatial transcriptomics
214  as well as in our model’s predictions, with smaller islands of increased immunity present to the
215  left and right of this region (islands 2-4, Figure 6b-c). The immune ‘hot’ areas presented marked
216 CMS4 features, while the colder areas more frequently contained CMS1/2/3 types of cells

217  (Supplementary Figure 2a-d), as previously shown in the bulk data.

218  When reconstructing cell-cell interactions within the spatially profiled slide, we confirmed an
219  increase in epithelial-lymphocyte interactions in the immune ‘hot’ compared to the immune ‘cold’
220 areas (20% versus 5%). Furthermore, interactions between stromal cells and lymphocytes
221  appeared confined to the immune hot regions (41%), with no stromal cells detected in the immune
222 cold areas. The CD8+ and CD4+ T cell spatial structure was very similar in the immune cold
223 regions, with larger interaction modules observed in the immune hot regions (Figure 6e). The
224  immune hot regions were denser, with CD8+ and CD4+ T cell graphs having a density metric of
225  0.095 and 0.073 respectively, and immune cold regions with a density metric of 0.046 and 0.0451.
226  Immune hot CD8+ and CD4+ graphs also presented increased connectivity (12 connected

227  components each versus 30 and 31 connected components in immune cold regions, respectively).
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228  Asexpected, the high immunity areas also presented increased CD8/CD4+ T cell and stromal cell

229  abundance, while containing fewer NK cells (Figure 6f, Supplementary Figure 2e-f).

230  All these point towards the co-existence of immune hot and cold areas within tumours that display
231  distinct spatial interactions and confirm many of the features we were able to capture through our
232 deep learning and graph models. While this analysis is limited by the availability of a single slide,
233 it serves as a proof of concept that H&E-based deep learning models could be validated using

234 spatial transcriptomics.

235  DISCUSSION

236  In this work, we have employed state-of-the-art methodology to establish an RNA-seq-derived
237  immune signature in colon adenocarcinoma that is prognostic and links with differential efficacy
238  of various chemotherapeutics. We have shown that this signature is detectable in H&E-stained
239  colon cancer tissue. Furthermore, we have introduced novel methods to explore the ample space
240  of cellular interactions underlying distinct tumour immunity phenotypes, unveiling specific

241  rewiring that could inform diagnosis and treatment.

242  The encouraging performance of 82% for our tumour immunity classifier in H&E images suggests
243  that integrating such images and transcriptomics data could support faster pathology annotation
244  and triage in a setting where this staining procedure is routine. Our model’s performance was
245  similar to that of other methods assessing immunity-linked phenotypes like MSI, mutability or
246  methylation status in colorectal cancer?, and outperformed immune
247  classification/immunotherapy response models in breast cancers*’ and melanoma*! with AUCs of
248  76-78%. It is worth noting that multiple studies have applied deep learning for lymphocyte feature
249  extraction in colorectal cancer and linked this with outcome*>**. However, these fall short of
250  providing a direct H&E-based classifier. While our model does not outperform MSI classifiers

44,45

251  developed in this cancer**®, it captures a different and more versatile phenotype of tumour
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252  immunity. It also helps us explore the limits of prognostic classification based on expression-

253 derived signatures, for which datasets are much more widely available.

254  We also showed that not all T cells associated with the antitumour immune response are equally
255  detectable in the cancer tissue when trained on expression markers. This could be due to
256  morphological confounders or to the expression signatures not being specific enough for some
257  cell types. Nevertheless, the cells effectively responsible for cytotoxicity (effector CD8+ and
258  central memory CD4+ T cells) presented the best classification performance, suggesting that both

259  short-term and longer-term immune stimulation may be captured.

260  Our investigation of the cellular organisation of the tissue has highlighted niche structures such
261  as dense lymphocyte clusters/triplets, or stromal barriers which may account for the lack of
262  immune recognition and worse prognosis in the low immunity group, as reported by other studies
263 too!'®4, This showcases the importance of spatial analysis of the tumour microenvironment to
264  understand cancer progression. A limitation is that the cell types identified are rather generic.
265  Improved methods are needed in the future to distinguish diverse cell populations, e.g. cancer-
266  associated fibroblasts, T and B cell subsets, and gain a finer-grained resolution of the landscape
267  of cell-cell relations established. Moreover, the structures studied here should be further
268  investigated experimentally to clarify the mechanism by which they contribute to immune
269  evasion. Finally, our spatial transcriptomics validation illustrates one key factor that needs to be
270  built into such models in the future: the spatial heterogeneity of immune hot/cold phenotypes.
271  Future studies should focus on integrating deep learning on H&E slides, spatial transcriptomics
272  models and graph reconstruction methods to obtain a spatially-informed predictor of tumour

273 immunity and response to therapies.

274  This study proposes a prognostic classifier for tumour immunity in colon adenocarcinoma with
275  distinct tumour and microenvironment architecture features. While we have based our classifier

276  on expression rather than protein-level/IHC data, our immune signature is nevertheless highly

11
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277  prognostic and many of its features are recapitulated in spatial transcriptomics data. It thus could
278  be valuable in the clinic as additional support for treatment decisions. Most importantly, we
279  propose a novel integrative approach to digital pathology analysis in cancer, combining H&E-
280  stained slides and matched RNA-seq data through deep learning, and making use of the
281  capabilities of the Neo4J graph database methodology to efficiently quantify and explore tissue
282  landscapes and cellular interactions. This framework enables a faster, more extensive and more
283  interpretable exploration of key immunity features than with traditional approaches, and could be
284  easily adapted to answer a variety of biological questions in cancer as well as healthy tissue

285  settings.

286 MATERIALS AND METHODS

287  Molecular data sources and immune stratification

288 RNA-seq data from 456 colon adenocarcinoma (COAD) tumours, along with clinical and
289  pathology information, were retrieved from The Cancer Genome Atlas (TCGA) using the
290 TCGAbiolinks R package. No samples were excluded based on demographics criteria. We
291  estimated the relative abundance of various lymphoid and myeloid cell subsets, endothelial cells
292  and fibroblasts (Supplementary Table 1) based on the expression of cell type-specific markers
293 using ConsensusTME?®, The ‘immunity score’ was defined as the average abundance across all
294  cell types within a sample, as in the original study (Supplementary Figure 1a). This score was
295  used to stratify the cohort into two groups representing low and high immunity. For this, we used
296  the threshold that maximises the difference in overall survival between the high/low immunity
297  groups, i.e. testing different thresholds by sequentially increasing their value using the survminer

298 R package.

12
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299  xCell?’ expression-based estimates of CD8+ and CD4+ naive, central and effector memory T cell

300  populations were obtained for all TCGA COAD cancers from https://xcell.ucsf.edu/ . The cohort

301  was split by the mean infiltration estimate of each CD8/CD4+ T cell population.

302  Signatures of intratumoural NK cell activity were assessed based on the expression of NK cell
303  receptors, tumour ligands and cytokines as detailed in Huntington et al*°. An expression score
304  summarising these activities was defined per sample using single sample Gene Set Enrichment

305  Analysis via the GSVA R package.

306 We derived the molecular phenotypes of colorectal cancer from Liu et al’! and Guinney et al®?,

307 and retrieved the predicted drug sensitivity IC50 values for TCGA samples from Li et al*’.

308 Image pre-processing

309 A total of 874 images of H&E-stained tissue collected from 456 COAD patients were obtained
310  from the TCGA Genomic Data Commons Data Portal (GDC Data Portal) (RRID:SCR 014514,

311  https://portal.gdc.cancer.gov/). Because of the high resolution and large scale of these images, a

312 common pre-processing method before applying deep learning approaches for the classification
313 of whole slide images (WSIs) is to crop them into small sections called tiles®*. We extract all
314  possible non-overlapping tiles following a grid structure and we filter those including more than
315 50 percent of background. We set the size of the tile to 512px by 512px, yielding a total of more

316  than 2 million of them, which were then used to train and test our model (described below).

317  To avoid inconsistencies in the preparation of histology slides arising from dye concentration,
318 duration of staining and temperature differences®®, we employed StainTools

319  (https:/pypi.org/project/staintools/) to normalize each H&E patch used in this study. The stain

320  matrix estimation was set to be calculated via the Vahadane method.

321
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322 H&E-based classifier of tumour immunity

323 To classify immunity levels in H&E images, we used a model consisting of two parts: a
324  convolutional neural network (CNN) feature extractor followed by a non-linear classifier (Figure
325  2a). We based the feature extractor backbone in the InceptionV3 architecture®. First, we resized
326  the 512x512px tiles with three colour channels to 299x299px, as this is the required input size of
327  the model. Furthermore, we scaled the input pixel values that were initially in the range of (0;255)

328  toarange of (-1;1).

329  Weremoved the top layer of the InceptionV 3 original architecture, and used the bottleneck layer’s
330  feature representation. This converts each input image of size 299x299x3 into an 8x8x2,048 block
331  of features. Here, we average over the 8x8 spatial locations, using a Global Average Pooling 2D
332 layer to convert the block of features to a single 2,048-element vector per image. We feed this
333 vector image to a fully connected classifier to convert these features into a single prediction per
334  image. It consists of two dense layers of 1,024 and 512 units, respectively, with a RELU activation
335  function. We applied a dropout regularisation to the output of the first dense layer. Low immunity

336  samples are predicted as class 0 and high immunity as class 1.

337  We initialised the parameters of the InceptionV3 layers with weights trained in the ImageNet
338  dataset*. To avoid destroying the pre-loaded weights, we trained the full model end-to-end with
339  asmall learning rate (1e-5). In this way, we fine-tuned the higher-order feature representations in
340  the base model to make them more relevant for this task. During the training, we introduced
341 sample diversity by applying random transformations to the input images, such as rotation,
342  shearing, zooming, horizontal and vertical flipping. To avoid overfitting, we applied L2
343  regularisation to the kernel of the 2D convolutional layers of the InceptionV3 model during the

344  optimisation. We added this penalty to the loss function as the sum of the squared weights.

345  We used 70% of the samples for training and 30% for testing, undersampled to the lower class.

346  We repeated each experiment five times with different chosen random samples for training and
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347  testing. To present the results, we show the Receiver Operating Characteristic (ROC) curve and
348  the Area Under the Curve (AUC) for each experiment and the total average for all the cross-

349  validation splits.

350  Graph-based reconstruction of cell-cell interactions

351  We used the HoVer-Net computational pathology pipeline trained on the CoNSeP dataset®” to
352  segment and classify nuclei within H&E-stained tiles into four categories depending on cell type:
353 tumour cells, lymphocytes, stroma and miscellaneous cells. The miscellaneous category groups
354  artefacts or ambiguous cell types e.g. necrotic, mitotic cells and others that cannot be categorised.

355  This category was discarded from further analysis.

356  The identified nuclei and their positioning within the tissue were used to reconstruct and analyse
357 the spatial interactions between cells. Each nucleus/cell was represented by a node in a graph. We
358  determined interactions between cells based on spatial proximity, with any two cells situated <35
359  um apart assumed to be interacting®®. We assigned an edge between adjacent cells, depicting the

360 interaction. We then employed the Neo4J Graph Database framework (https://neo4j.com/) to store

361  and efficiently query the graphs derived from the WSIs of 110 patients belonging to either the

362  high or low tumour immunity class.

363  We compared the cell type abundance and the frequency of different interactions between the
364  high and low immunity groups. A stromal barrier was defined as an instance where lymphocytes
365 can reach a tumour cell by crossing a stromal cell in each sample. Lymphocyte triplets were
366  defined as three lymphocyte cells sequentially connected. We normalised the number of stromal
367  barriers by the sample's total number of stromal-stromal relations. Similarly, we normalised

368  lymphocyte triplets by the sample's total number of lymphocyte-lymphocyte relations.

369

15


https://doi.org/10.1101/2022.07.06.498984
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.06.498984; this version posted July 7, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

370  Spatial transcriptomics data analysis

371 The human colorectal cancer patient sample was downloaded from 10x genomics

372 (https://support.10xgenomics.com/spatial-gene-expression/datasets). The output from the Space

373  Ranger Visium pipeline was used for analysis. The SCTransform R package was used to normalise
374  the data using a regularised negative binomial regression method. The Seurat R package was used
375  to calculate and visualize the gene module scores across the slide. Immunity was scored for each
376  spot using the ConsensusTME methodology. Independently, cell type and state proportions for
377  each spot were estimated using the DestVI package. DestVI requires scRNA from the same tissue
378  for deconvolution. 18,409 cells from 2 colorectal patients were downloaded from Lee et al!. The
379  major cell types consisted of B cells, T cells, Epithelial cells, Mast cells, Myeloids and Stromal
380  cells, consistent with the HoVer-Net cellular deconvolution categories. To further break down the
381  cellullar categories, we also used the minor class labels for CD19+CD20+ B, CMSI1, CMS2,
382 CMS3, CMS4, IgG+ Plasma, Lymphatic ECs, Myofibroblasts, NK cells, Proliferative ECs,
383  Smooth muscle cells, Stromal 1, Stromal 2, T follicular helper cells, T helper 17 cells, Tip-like
384  ECs, cDC cells as labels. Scanpy? (Single-Cell Analysis in Python) and Squidpy>® (Spatial
385  Single Cell Analysis in Python) packages were used for graph analysis. This included graph
386  visualisation and graph metric algorithms. Immune hotspots were calculated from the immune
387  score signature using PySAL (Python Spatial Analysis Library) and separate immune cold and

388  immune hot graphs were calculated from these immune hotspot regions.

389  Statistics

390  Cell organization and disease characteristics were compared between groups using the Wilcoxon
391  rank-sum test. The association between immunity groups and patient outcomes was evaluated

392 using Cox proportional hazards models.

393
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394  Data availability

395  The results published here are based in part upon publicly available data generated by the TCGA

396  Research Network (https://www.cancer.gov/tcga). All these data comply with ethical regulations,

397  with approval and informed consent for collection and sharing already obtained by the TCGA

398  consortium.

399  The spatial transcriptomics data employed in the study was freely available for reuse from 10x

400  Genomics through the Visium platform (https:/support.10xgenomics.com/spatial-gene-

401  expression/datasets).

402  Ethical approval and written informed consent were not required for this study.

403  Code availability

404  The code developed for the purpose of this study can be found at the following repository:

405  https://github.com/secrierlab/TumourHistologyDL
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547  Figure 1. Study workflow and immunity-based stratification of colon adenocarcinoma. (a)

548  Workflow of the study. A prognostic classifier of colon adenocarcinoma was defined based on
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549  RNA-seq inferred immune activity in the tumours. An H&E based deep learning classifier was
550  then on these labels, and differences in cellular compositions and interactions between the two
551  groups were subsequently described. (b) Optimisation of tumour immunity threshold to maximise
552 survival differences. The dotted line highlights the optimal cut-point of 0.39. (¢) The high and low
553  immunity groups defined using the cut-off in (b) show significantly different overall survival in
554  the TCGA-COAD cohort. (d) The high immunity group presents higher fractions of lymphocytes
555  and neutrophils, as scored by pathologists. (e) Differences in colon adenocarcinoma molecular
556  subgroup and clinical characteristics between high and low immunity tumours, inferred from
557  conditional independence tests. Only significantly associated characteristics are shown. The stars
558  mark Pearson residuals greater than 2 or less than -2, indicating the strongest correlations. (f)
559  Predicted drug sensitivity of TCGA-COAD tumours to a variety of anti-cancer compounds,
560 compared between high and low immunity groups. Only compounds showing significant
561  differences in drug sensitivity are shown (ranked by the magnitude of the difference).
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Figure 2. Deep learning classifier of tumour immunity. (a) Pipeline for the identification of
RNA-seq based immune phenotypes in digital images of H&E stained cancer tissue. (b-c) A mean
accuracy (AUC) of 82% is obtained when predicting the immune phenotype of colon cancer H&E
slides with 5-fold cross validation by averaging the probability per tile (b) and counting the
percentage of tiles (c), respectively. (d) Example of an H&E stained slide (top) and the
corresponding immunity predictions of the model within the same slide (bottom). The colour

gradient from blue to red reflects increasing probability of high immune content in each patch. (e)
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572  Immunity class deep learning predictions in each tile, compared between samples with high and
573  low overall immunity (as inferred from RNA-seq data). Tile-level predictions have been classed
574  as high, intermediate or low immunity based on the probability of belonging to the HI/LI group
575  as indicated.

576
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578  Figure 3. Prediction of the subgroups of CD4+ and CD8+ T cells in H&E images. Mean

579  accuracies (AUC) are shown for predictions of each of the following T cell categories: (a) generic
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580 CDA4+ T cells - 78%; (b) generic CD8+ T cells - 66%; (c) CD4+ naive T cells - 67%; (d) CD8+
581 naive T cells — 64%; (e) CD4+ central memory T cells - 82%; (f) CD8+ central memory T cells -
582 69%; (g) CD4+ effector memory T cells - 70%; (h) CD8+ effector memory T cells - 83%.

583
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Figure 4. Graph analysis of the cellular organisation of the immune response in colon
adenocarcinoma. (a) Pipeline of the graph analysis approach. After preprocessing the WSIs, cells
are segmented and classified using HoVer-Net, following further graph modelling and storage.
(b) The inferred cell-cell interactions within the tissue are stored in a Neo4j graph database for
further analysis. The database structure is shown, with representative relationships between cell
types illustrated. (c) Example of a stromal barrier graph structure, separating tumour cells from

lymphocytes. (d) Example of a graph structure illustrating lymphocyte infiltration of the tumour.
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Figure 5. Cellular organization differences in high versus low immunity tumours. High (red)
and low (blue) immunity groups are compared in terms of: (a) the fraction of isolated
lymphocytes; (b) the fraction of isolated stromal cells; (c) the fraction of direct tumour-
lymphocyte interactions; (d) the fraction of direct stroma-lymphocyte interactions. (e¢) The fold
change in interactions established between pairs of cell types in high versus low immunity

tumours. The ratio of median numbers in either group is depicted. (f) Fraction of lymphocyte
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605  triples compared between high and low immunity samples containing at least one such structure.
606  (g) Fraction of stromal barriers compared between high and low immunity samples containing at
607  least one such structure. Schematic depictions of cellular structures are displayed alongside each

608  comparison.

609
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Figure 6. Validation of AI model predictions using spatial transcriptomics data. (a) Original

colorectal tissue slide employed for spatial transcriptomics from Visium. (b) The immunity

prediction of the deep learning model on H&E staining-derived patches. Red indicates areas of

high immunity, blue indicates low immunity. Four high immunity islands are indicated with an

orange outline and numbered 1-4. (¢) Immunity score across spatial transcriptomics spots. Red

and yellow areas indicate high immunity, and the same islands 1-4 as in (c) are indicated on the

slide. (d) Immune hot (red) and cold (blue) hotspots defined from spatial transcriptomics. The

grey spots have intermediate levels and cannot be classed in either group. (e) CD8+ (top) and
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619  CDA4+ (bottom) T cell interaction graphs within hot (left) and cold (right) immunity areas. (f)
620  CDB&+ (top) and CD4+ (bottom) T cell proportions compared between immune hot (red) and cold
621  (blue) graphs.
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