

1 **A deep learning and graph-based approach to characterise the immunological
2 landscape and spatial architecture of colon cancer tissue**

3 Mario Parreno-Centeno¹, Guidantonio Malagoli Tagliazucchi¹, Eloise Withnell¹, Shi Pan¹, Maria
4 Secrier^{1,*}

5 ¹UCL Genetics Institute, Department of Genetics, Evolution and Environment, University
6 College London, London, UK

7 *To whom correspondence should be addressed (m.secrier@ucl.ac.uk)

8
9 **Running title:** Integrated AI/graph-based analysis of colon cancer immunity

10
11 **Keywords:** colon adenocarcinoma, H&E slides, deep learning, cell-cell interaction graphs,
12 tumour immunity, spatial transcriptomics, prognostic classifier

13
14 **Financial support:**

15 MPC was supported by an Academy of Medical Science Springboard award (SBF004\1042).
16 GMT was supported by a Wellcome Seed Award in Science (215296/Z/19/Z). EW acknowledges
17 the receipt of a studentship award from the Health Data Research UK-The Alan Turing Institute
18 Wellcome PhD Programme in Health Data Science (Grant Ref: 218529/Z/19/Z). MS and SP were
19 supported by a UKRI Future Leaders Fellowship (MR/T042184/1). Work in MS's lab was
20 supported by a BBSRC equipment grant (BB/R01356X/1) and a Wellcome Institutional Strategic
21 Support Fund (204841/Z/16/Z). For the purpose of Open Access, the author has applied a CC BY
22 public copyright licence to any Author Accepted Manuscript version arising from this submission.

23 **Corresponding author:**

24 Maria Secrier
25 UCL Genetics Institute, London WC1E 6BT, UK
26 m.secrier@ucl.ac.uk

27 **Conflict of interest:**

28 The authors declare no potential conflicts of interest.

29

30 **Word count:** 4,360

31 **Number of figures:** 6

32 **Number of tables:** 0

33 **ABSTRACT**

34 Tumour immunity is key for the prognosis and treatment of colon adenocarcinoma, but its
35 characterisation remains cumbersome and expensive, requiring sequencing or other complex
36 assays. Detecting tumour-infiltrating lymphocytes in haematoxylin and eosin (H&E) slides of
37 cancer tissue would provide a cost-effective alternative to support clinicians in treatment
38 decisions, but inter- and intra-observer variability can arise even amongst experienced
39 pathologists. Furthermore, the compounded effect of other cells in the tumour microenvironment
40 is challenging to quantify but could yield useful additional biomarkers. We combined RNA
41 sequencing, digital pathology and deep learning through the InceptionV3 architecture to develop
42 a fully automated computer vision model that detects prognostic tumour immunity levels in H&E
43 slides of colon adenocarcinoma with an area under the curve (AUC) of 82%. Amongst tumour
44 infiltrating T cell subsets, we demonstrate that CD8+ effector memory T cell patterns are most
45 recognisable algorithmically with an average AUC of 83%. We subsequently applied nuclear
46 segmentation and classification via HoVer-Net to derive complex cell-cell interaction graphs,
47 which we queried efficiently through a bespoke Neo4J graph database. This uncovered stromal
48 barriers and lymphocyte triplets that could act as structural hallmarks of low immunity tumours
49 with poor prognosis. Our integrated deep learning and graph-based workflow provides evidence
50 for the feasibility of automated detection of complex immune cytotoxicity patterns within H&E-
51 stained colon cancer slides, which could inform new cellular biomarkers and support treatment
52 management of this disease in the future.

53

54 INTRODUCTION

55 Tumour immunity is a critical determinant of clinical outcome in colon adenocarcinoma^{1,2}, yet its
56 characterisation is challenging due to cellular heterogeneity and the elaborate techniques required
57 to study it comprehensively³. Earlier efforts introduced the prognostic value of the CD8+ to CD4+
58 T cell infiltration ratio within the tumour^{4,5}. Galon et al⁶ built on this to develop an ‘Immunoscore’
59 that predicts the risk of recurrence and chemotherapy response in colorectal cancer^{7,8}. This score
60 was derived based on immunohistochemistry (IHC), a fairly elaborate procedure to label antigens
61 expressed by specific cells, which requires well defined markers and is not incorporated routinely
62 in the clinical workflow. Instead, H&E staining of nucleus, cytoplasm and extracellular matrix
63 offers a cheaper, streamlined alternative in oncology. Experienced pathologists can identify
64 tumour infiltrating lymphocytes and other cells in H&E-stained tissue, but inter-and intra-
65 observer variability can arise when assessing a sample⁹. Therefore, automating the detection of
66 such cells could prove beneficial^{10,11}. Indeed, deep learning algorithms have recently been
67 employed for this purpose in multiple cancers¹²⁻¹⁴, with links to patient outcome demonstrated in
68 colorectal cancer^{2,15}.

69 However, these models often focus on individual cell types and do not consider the broader spatial
70 organisation of the tissue, which can impact tumour growth and dissemination¹⁶. For instance, the
71 stroma can promote tumour progression by limiting access of therapeutic agents or immune cells
72 to tumours through fibrosis¹⁷. Such factors are currently challenging to assess systematically
73 because of costs and a lack of standardised methodology. Several studies have shown that spatial
74 organisation features such as the stromal content/ratios, TIL morphology and even immune
75 hot/cold phenotypes can be extracted from H&E patches and linked to prognosis^{12,18-23}.
76 AbdulJabbar et al²⁴ and Bilal et al²⁵ have also integrated deep learning methods on digital
77 histology and omics data more extensively, gaining insights into how cellular organisation
78 impacts cancer evolution and clinical outcomes. However, these studies often require expert
79 annotation and still lack insight into more complex interactions between different cell types.

80

81 As an alternative to expert annotation, developments of computational tools for immune
82 deconvolution from RNA sequencing have revolutionised our ability to capture an extensive array
83 of cell types and states in bulk tissue²⁶⁻²⁸. Cancer transcriptomics datasets are widely available
84 and have been successfully integrated with H&E images via deep learning in recent studies,
85 demonstrating that patterns of angiogenesis, hypoxia and even T and B cell immunity are
86 detectable in the tissue²⁹. Integrating such approaches to characterise tumour immunity as a whole
87 within the colon cancer tissue would be highly informative for prognosis and treatment, but has
88 not yet been achieved.

89 This study tests the extent to which tumour immunity and its spatial organisation can be quantified
90 within colon adenocarcinoma tissue based on transcriptomic signatures alone. We propose a fully
91 automated image-processing pipeline to predict the immune activity in a tumour from H&E
92 images based on matched bulk RNA-seq data. We also introduce a novel framework for surveying
93 detailed cellular interaction landscapes within digital pathology slides by combining nuclear
94 segmentation, classification and graph assembly, with efficient queries handled via a bespoke
95 Neo4J graph database. Finally, we apply this framework to interrogate the complex tissue
96 organisation in colon adenocarcinoma and identify cellular structures linked with immune
97 response, which we then validate using spatial transcriptomics.

98 **RESULTS**

99 **Transcriptome-derived tumour immunity informs prognosis, molecular characteristics and**
100 **treatment efficacy in colon adenocarcinoma**

101 To explore the immune landscape and tissue organisation of colon adenocarcinoma, we employed
102 RNA sequencing (RNA-seq) and matched digital pathology data collected from tumour samples
103 of 456 patients available from TCGA. We calculated a tumour immunity score per sample as the

104 average abundance of tumour infiltrating cells from the microenvironment using
105 ConsensusTME²⁸ (Supplementary Figure 1a). This score accounted for the compounded effects
106 of expression signals coming from all detectable non-tumour cells, reflecting a spectrum of low
107 to high immunity (Supplementary Figure 1b). The score correlated well with the mean
108 CD8+/CD4+ T cell subtype scores estimated from transcriptomic data using an alternative
109 immune deconvolution method, xCell ($R = 0.46$, $p < 2e-16$).

110 After quantifying the overall tumour immunity in each sample, we assessed the prognostic value
111 of the respective immune scores. To maximise the clinical relevance of this analysis, we sought
112 to identify a tumour immunity score threshold that would reflect the strongest relation with patient
113 outcome. We found that a cut-off point of 0·39 highlighted two immunity groups (High Immunity,
114 HI, and Low Immunity, LI) with highly distinct overall survival ($p=0·002$, Figure 1b-c) and
115 disease-free intervals ($p=0·005$, Supplementary Figure 1c). As expected, the patients with high
116 levels of tumour immunity showed significantly better outcomes. When checking against the
117 pathology annotations of the slides, the differences between the HI and LI groups appeared to be
118 driven by the presence of lymphocytes and neutrophils, which were elevated in the HI group
119 (Figure 1d). Furthermore, the HI tumours also had elevated markers of intratumoural natural killer
120 (NK) cell activity, including expression of NK cell receptors and corresponding tumour cell
121 ligands, as well as secreted cytokines (Supplementary Figure 1d), which have been associated
122 with immunotherapy response³⁰.

123 Colon cancer has been systematically characterised from a genomic point of view, with mutation,
124 expression and methylation features shown to associate with disease progression and therapy
125 responses^{31,32}. To link these findings with our classification, we further characterised the 456
126 samples in the HI/LI groups using molecular and tumour architecture phenotypes already
127 described for colon adenocarcinomas³¹ (Figure 1e). Genomically, we found that low immunity
128 tumours tended to fall within the chromosomally unstable group of gastrointestinal cancers (CIN).
129 Indeed, tumours with higher levels of CIN/aneuploidy have been previously linked with immune

130 evasion and poorer outcomes to immunotherapies³³. In contrast, high immunity tumours were
131 associated with the gastrointestinal hypermutated indel (HM-indel) subtype and presented
132 frequent microsatellite instability (MSI), in line with numerous studies linking hypermutation
133 with increased neoantigen presentation and activation of the host antitumor immune response^{34,35}.

134 The consensus expression-based classification defined by Guinney et al³² revealed that the high
135 immunity tumours tended to be more mesenchymal (CMS4), a subtype characterised by increased
136 stromal infiltration and angiogenesis. In contrast, lower immunity was linked with epithelial,
137 metabolically deregulated phenotypes (CMS2/3), and lacked the characteristic pattern of CpG
138 island hypermethylation (non-CIMP). Anatomically, low immunity was more frequently
139 characteristic of tumours arising in the descending colon and on the left side, and prevailed in
140 late-stage cancers, where immune recognition is more likely impaired. Tumours with higher
141 immunity tended to present fewer hyperplastic polyps.

142 Finally, the two defined immunity groups in colon adenocarcinomas were predicted to display
143 significantly different susceptibility to multiple anti-cancer compounds (Figure 1f). The largest
144 differences were observed for chemotherapy drugs such as topotecan, mitoxantrone and
145 gemcitabine. Higher immune activity was linked with lower IC50 values, suggesting greater
146 efficacy in this setting and confirming previous links between immunity and enhanced
147 chemotherapeutic responses⁸.

148 **A prognostic classifier of tumour immunity in colon cancer from H&E-stained images**

149 Having demonstrated the clinical relevance of our immune classification of colon
150 adenocarcinomas, we then developed a digital pathology classifier of this phenotype. We trained
151 a deep learning model based on the InceptionV3 architecture to classify high and low tumour
152 immunity (as inferred from matched RNA-seq data) in H&E-stained images of cancer tissue
153 collected from colon adenocarcinoma patients (Figure 2a). We achieved a median accuracy of

154 82% AUC probability based on tile average and percentage count in the testing dataset (Fig 2b-
155 c). This approach also allowed us to obtain a spatially-resolved overview of tumour immunity
156 levels within entire tissue slides through tile-level estimates (Fig 2d). Indeed, tissue slides from
157 highly immunogenic tumours were predominantly composed of tiles with strong HI signals,
158 whereas low immunity tumours presented more diverse predictions of LI and intermediate levels
159 of immunity across tiles (Fig 2e).

160 While the HI group of tumours is expected to have enhanced immune reactivity, the cytotoxic
161 effect is triggered by populations of CD8+ and CD4+ immune cells that are transformed from a
162 naïve to an effector state upon antigen recognition³⁶. These CD8+/CD4+ subsets emerge at
163 different points of cancer development and could create distinct patterns within the tumour tissue.
164 The ability of deep learning algorithms to distinguish these immune subsets in H&E slides has
165 not been tested in this system. To understand whether patterns of active rather than uneducated
166 immunity might be preferentially captured, we trained deep learning models to identify distinct
167 subgroups of CD4+ and CD8+ T cells as characterised in Aran et al²⁷, i.e., CD4/CD8+ naïve T
168 cells, central memory cells and effector memory cells in the TCGA COAD cohort. Our models
169 could detect expression signals of CD4+ central memory T cells and CD8+ effector memory T
170 cells with high accuracies of 82% and 83% AUC, respectively (Figure 3). The rest of the cells
171 were identified with lower accuracy, between 64% and 70% AUC. Overall, this suggests that the
172 cells most relevant to triggering an effective immune response are also the ones that leave the
173 most recognisable traces within the colon cancer tissue and could be specifically tracked in a
174 clinical setting to support immunotherapy treatment decisions.

175 **Cellular organisation of the immune response in colon adenocarcinoma**

176 Next, we sought to gain further insight into the cellular organisation of colon adenocarcinoma
177 tissue in a high versus low immunity setting using the H&E slide information. Using HoVer-
178 Net³⁷, we conducted nuclear segmentation and classification within the H&E tiles of the TCGA

179 COAD dataset. This approach allowed us to label individual cells within the tissue as ‘tumour’,
180 ‘lymphocytic’ or ‘stromal’ (Figure 4a). Based on cell proximity, we could then infer interactions
181 between different cells and summarise them for every tissue patch in the form of graphs (Figure
182 4a). However, this analysis resulted in thousands to hundreds of thousands of interactions per
183 sample, yielding complex graphs that are difficult to store, integrate and query. To resolve this,
184 we developed a Neo4J graph database comprising 2,786,464 nodes and 3,628,377 edges, that
185 would allow us to explore and interrogate such complex structures effectively. The basic
186 relationship model in the database is depicted in Figure 4b. This database allows us to perform
187 complex queries to identify biologically relevant structures, such as a stromal barrier separating
188 lymphocytes from tumour cells (Figure 4c), or a lymphocytic attack on cancer cells (Figure 4d).
189 These graph interactions can also be dynamically explored and expanded within the database
190 (Supplementary Video 1).

191 We compared the cell population frequencies and interactions between the HI and LI groups.
192 Lymphocytes and stromal cells were similarly abundant in the two groups, but appeared more
193 frequently isolated in a high immunity context (Figure 5a-b). These could correspond to exhausted
194 or naïve T cells being recruited to the site, which would be less likely to form interactions. As
195 expected, the HI group also harboured more frequent direct interactions between lymphocytes and
196 tumour cells, suggesting immune recognition typical of ‘immune hot’ phenotypes³⁸ (Figure 5c,e).
197 The number of tumour-stroma interactions was also increased (Figure 5d), but to a lower extent
198 (Figure 5e). On the other hand, dense lymphocyte clusters in the form of triplets, as well as stromal
199 barriers were increased in the low immunity tumours (Figure 5f-g). The lymphocyte triplet
200 presence might suggest inactive clusters that are not recognising malignant cells. Concurrently,
201 the stromal barriers may aid immune evasion, as has been previously described in pancreatic
202 cancer³⁹. These cellular structures reflect different cellular organisation and immune activity in
203 an HI vs LI setting and could support treatment strategies in the clinic.

204 **Validation of deep learning predictions using spatial transcriptomics**

205 Finally, to validate our model predictions using an orthogonal approach, we employed spatial
206 transcriptomics data available for one colorectal tissue slide from the Visium platform (Figure
207 6a). We applied our AI model on the H&E stained image to obtain predictions of the overall
208 immunity within the tumour at patch level (Figure 6b). In parallel, we analysed the spatial gene
209 expression profiles across multiple spots within the image and derived an immunity map outlining
210 the distribution of immune ‘hot’ and ‘cold’ islands across the tissue (Figure 6c-d).

211 By visually comparing the AI model predictions with the spatial profile, we can see there is a
212 good agreement between the two methods (Figure 6b-d). In particular, it is striking that the central
213 area of high immunity (island 1) appears as a diagonal stripe both in the spatial transcriptomics
214 as well as in our model’s predictions, with smaller islands of increased immunity present to the
215 left and right of this region (islands 2-4, Figure 6b-c). The immune ‘hot’ areas presented marked
216 CMS4 features, while the colder areas more frequently contained CMS1/2/3 types of cells
217 (Supplementary Figure 2a-d), as previously shown in the bulk data.

218 When reconstructing cell-cell interactions within the spatially profiled slide, we confirmed an
219 increase in epithelial-lymphocyte interactions in the immune ‘hot’ compared to the immune ‘cold’
220 areas (20% versus 5%). Furthermore, interactions between stromal cells and lymphocytes
221 appeared confined to the immune hot regions (41%), with no stromal cells detected in the immune
222 cold areas. The CD8+ and CD4+ T cell spatial structure was very similar in the immune cold
223 regions, with larger interaction modules observed in the immune hot regions (Figure 6e). The
224 immune hot regions were denser, with CD8+ and CD4+ T cell graphs having a density metric of
225 0.095 and 0.073 respectively, and immune cold regions with a density metric of 0.046 and 0.0451.
226 Immune hot CD8+ and CD4+ graphs also presented increased connectivity (12 connected
227 components each versus 30 and 31 connected components in immune cold regions, respectively).

228 As expected, the high immunity areas also presented increased CD8/CD4+ T cell and stromal cell
229 abundance, while containing fewer NK cells (Figure 6f, Supplementary Figure 2e-f).

230 All these point towards the co-existence of immune hot and cold areas within tumours that display
231 distinct spatial interactions and confirm many of the features we were able to capture through our
232 deep learning and graph models. While this analysis is limited by the availability of a single slide,
233 it serves as a proof of concept that H&E-based deep learning models could be validated using
234 spatial transcriptomics.

235 **DISCUSSION**

236 In this work, we have employed state-of-the-art methodology to establish an RNA-seq-derived
237 immune signature in colon adenocarcinoma that is prognostic and links with differential efficacy
238 of various chemotherapeutics. We have shown that this signature is detectable in H&E-stained
239 colon cancer tissue. Furthermore, we have introduced novel methods to explore the ample space
240 of cellular interactions underlying distinct tumour immunity phenotypes, unveiling specific
241 rewiring that could inform diagnosis and treatment.

242 The encouraging performance of 82% for our tumour immunity classifier in H&E images suggests
243 that integrating such images and transcriptomics data could support faster pathology annotation
244 and triage in a setting where this staining procedure is routine. Our model's performance was
245 similar to that of other methods assessing immunity-linked phenotypes like MSI, mutability or
246 methylation status in colorectal cancer²⁵, and outperformed immune
247 classification/immunotherapy response models in breast cancers⁴⁰ and melanoma⁴¹ with AUCs of
248 76-78%. It is worth noting that multiple studies have applied deep learning for lymphocyte feature
249 extraction in colorectal cancer and linked this with outcome^{42,43}. However, these fall short of
250 providing a direct H&E-based classifier. While our model does not outperform MSI classifiers
251 developed in this cancer^{44,45}, it captures a different and more versatile phenotype of tumour

252 immunity. It also helps us explore the limits of prognostic classification based on expression-
253 derived signatures, for which datasets are much more widely available.

254 We also showed that not all T cells associated with the antitumour immune response are equally
255 detectable in the cancer tissue when trained on expression markers. This could be due to
256 morphological confounders or to the expression signatures not being specific enough for some
257 cell types. Nevertheless, the cells effectively responsible for cytotoxicity (effector CD8+ and
258 central memory CD4+ T cells) presented the best classification performance, suggesting that both
259 short-term and longer-term immune stimulation may be captured.

260 Our investigation of the cellular organisation of the tissue has highlighted niche structures such
261 as dense lymphocyte clusters/triplets, or stromal barriers which may account for the lack of
262 immune recognition and worse prognosis in the low immunity group, as reported by other studies
263 too^{18,46}. This showcases the importance of spatial analysis of the tumour microenvironment to
264 understand cancer progression. A limitation is that the cell types identified are rather generic.
265 Improved methods are needed in the future to distinguish diverse cell populations, e.g. cancer-
266 associated fibroblasts, T and B cell subsets, and gain a finer-grained resolution of the landscape
267 of cell-cell relations established. Moreover, the structures studied here should be further
268 investigated experimentally to clarify the mechanism by which they contribute to immune
269 evasion. Finally, our spatial transcriptomics validation illustrates one key factor that needs to be
270 built into such models in the future: the spatial heterogeneity of immune hot/cold phenotypes.
271 Future studies should focus on integrating deep learning on H&E slides, spatial transcriptomics
272 models and graph reconstruction methods to obtain a spatially-informed predictor of tumour
273 immunity and response to therapies.

274 This study proposes a prognostic classifier for tumour immunity in colon adenocarcinoma with
275 distinct tumour and microenvironment architecture features. While we have based our classifier
276 on expression rather than protein-level/IHC data, our immune signature is nevertheless highly

277 prognostic and many of its features are recapitulated in spatial transcriptomics data. It thus could
278 be valuable in the clinic as additional support for treatment decisions. Most importantly, we
279 propose a novel integrative approach to digital pathology analysis in cancer, combining H&E-
280 stained slides and matched RNA-seq data through deep learning, and making use of the
281 capabilities of the Neo4J graph database methodology to efficiently quantify and explore tissue
282 landscapes and cellular interactions. This framework enables a faster, more extensive and more
283 interpretable exploration of key immunity features than with traditional approaches, and could be
284 easily adapted to answer a variety of biological questions in cancer as well as healthy tissue
285 settings.

286 MATERIALS AND METHODS

287 Molecular data sources and immune stratification

288 RNA-seq data from 456 colon adenocarcinoma (COAD) tumours, along with clinical and
289 pathology information, were retrieved from The Cancer Genome Atlas (TCGA) using the
290 *TCGAbiolinks* R package. No samples were excluded based on demographics criteria. We
291 estimated the relative abundance of various lymphoid and myeloid cell subsets, endothelial cells
292 and fibroblasts (Supplementary Table 1) based on the expression of cell type-specific markers
293 using ConsensusTME²⁸. The ‘immunity score’ was defined as the average abundance across all
294 cell types within a sample, as in the original study (Supplementary Figure 1a). This score was
295 used to stratify the cohort into two groups representing low and high immunity. For this, we used
296 the threshold that maximises the difference in overall survival between the high/low immunity
297 groups, i.e. testing different thresholds by sequentially increasing their value using the *survminer*
298 R package.

299 xCell²⁷ expression-based estimates of CD8+ and CD4+ naïve, central and effector memory T cell
300 populations were obtained for all TCGA COAD cancers from <https://xcell.ucsf.edu/> . The cohort
301 was split by the mean infiltration estimate of each CD8/CD4+ T cell population.

302 Signatures of intratumoural NK cell activity were assessed based on the expression of NK cell
303 receptors, tumour ligands and cytokines as detailed in Huntington et al³⁰. An expression score
304 summarising these activities was defined per sample using single sample Gene Set Enrichment
305 Analysis via the *GSVA* R package.

306 We derived the molecular phenotypes of colorectal cancer from Liu et al³¹ and Guinney et al³²,
307 and retrieved the predicted drug sensitivity IC50 values for TCGA samples from Li et al⁴⁷.

308 **Image pre-processing**

309 A total of 874 images of H&E-stained tissue collected from 456 COAD patients were obtained
310 from the TCGA Genomic Data Commons Data Portal (GDC Data Portal) (RRID:SCR_014514,
311 <https://portal.gdc.cancer.gov/>). Because of the high resolution and large scale of these images, a
312 common pre-processing method before applying deep learning approaches for the classification
313 of whole slide images (WSIs) is to crop them into small sections called tiles⁶⁴. We extract all
314 possible non-overlapping tiles following a grid structure and we filter those including more than
315 50 percent of background. We set the size of the tile to 512px by 512px, yielding a total of more
316 than 2 million of them, which were then used to train and test our model (described below).

317 To avoid inconsistencies in the preparation of histology slides arising from dye concentration,
318 duration of staining and temperature differences⁴⁸, we employed StainTools
319 (<https://pypi.org/project/staintools/>) to normalize each H&E patch used in this study. The stain
320 matrix estimation was set to be calculated via the Vahadane method.

321

322 **H&E-based classifier of tumour immunity**

323 To classify immunity levels in H&E images, we used a model consisting of two parts: a
324 convolutional neural network (CNN) feature extractor followed by a non-linear classifier (Figure
325 2a). We based the feature extractor backbone in the InceptionV3 architecture⁴³. First, we resized
326 the 512x512px tiles with three colour channels to 299x299px, as this is the required input size of
327 the model. Furthermore, we scaled the input pixel values that were initially in the range of (0;255)
328 to a range of (-1;1).

329 We removed the top layer of the InceptionV3 original architecture, and used the bottleneck layer's
330 feature representation. This converts each input image of size 299x299x3 into an 8x8x2,048 block
331 of features. Here, we average over the 8x8 spatial locations, using a Global Average Pooling 2D
332 layer to convert the block of features to a single 2,048-element vector per image. We feed this
333 vector image to a fully connected classifier to convert these features into a single prediction per
334 image. It consists of two dense layers of 1,024 and 512 units, respectively, with a RELU activation
335 function. We applied a dropout regularisation to the output of the first dense layer. Low immunity
336 samples are predicted as class 0 and high immunity as class 1.

337 We initialised the parameters of the InceptionV3 layers with weights trained in the ImageNet
338 dataset⁴⁹. To avoid destroying the pre-loaded weights, we trained the full model end-to-end with
339 a small learning rate (1e-5). In this way, we fine-tuned the higher-order feature representations in
340 the base model to make them more relevant for this task. During the training, we introduced
341 sample diversity by applying random transformations to the input images, such as rotation,
342 shearing, zooming, horizontal and vertical flipping. To avoid overfitting, we applied L2
343 regularisation to the kernel of the 2D convolutional layers of the InceptionV3 model during the
344 optimisation. We added this penalty to the loss function as the sum of the squared weights.

345 We used 70% of the samples for training and 30% for testing, undersampled to the lower class.
346 We repeated each experiment five times with different chosen random samples for training and

347 testing. To present the results, we show the Receiver Operating Characteristic (ROC) curve and
348 the Area Under the Curve (AUC) for each experiment and the total average for all the cross-
349 validation splits.

350 **Graph-based reconstruction of cell-cell interactions**

351 We used the HoVer-Net computational pathology pipeline trained on the CoNSeP dataset³⁷ to
352 segment and classify nuclei within H&E-stained tiles into four categories depending on cell type:
353 tumour cells, lymphocytes, stroma and miscellaneous cells. The miscellaneous category groups
354 artefacts or ambiguous cell types e.g. necrotic, mitotic cells and others that cannot be categorised.
355 This category was discarded from further analysis.

356 The identified nuclei and their positioning within the tissue were used to reconstruct and analyse
357 the spatial interactions between cells. Each nucleus/cell was represented by a node in a graph. We
358 determined interactions between cells based on spatial proximity, with any two cells situated <35
359 μm apart assumed to be interacting⁵⁰. We assigned an edge between adjacent cells, depicting the
360 interaction. We then employed the Neo4J Graph Database framework (<https://neo4j.com/>) to store
361 and efficiently query the graphs derived from the WSIs of 110 patients belonging to either the
362 high or low tumour immunity class.

363 We compared the cell type abundance and the frequency of different interactions between the
364 high and low immunity groups. A *stromal barrier* was defined as an instance where lymphocytes
365 can reach a tumour cell by crossing a stromal cell in each sample. *Lymphocyte triplets* were
366 defined as three lymphocyte cells sequentially connected. We normalised the number of stromal
367 barriers by the sample's total number of stromal-stromal relations. Similarly, we normalised
368 lymphocyte triplets by the sample's total number of lymphocyte-lymphocyte relations.

369

370 Spatial transcriptomics data analysis

371 The human colorectal cancer patient sample was downloaded from 10x genomics
372 (<https://support.10xgenomics.com/spatial-gene-expression/datasets>). The output from the Space
373 Ranger Visium pipeline was used for analysis. The *SCTransform* R package was used to normalise
374 the data using a regularised negative binomial regression method. The *Seurat* R package was used
375 to calculate and visualize the gene module scores across the slide. Immunity was scored for each
376 spot using the ConsensusTME methodology. Independently, cell type and state proportions for
377 each spot were estimated using the DestVI package. DestVI requires scRNA from the same tissue
378 for deconvolution. 18,409 cells from 2 colorectal patients were downloaded from Lee et al⁵¹. The
379 major cell types consisted of B cells, T cells, Epithelial cells, Mast cells, Myeloids and Stromal
380 cells, consistent with the HoVer-Net cellular deconvolution categories. To further break down the
381 cellular categories, we also used the minor class labels for CD19+CD20+ B, CMS1, CMS2,
382 CMS3, CMS4, IgG+ Plasma, Lymphatic ECs, Myofibroblasts, NK cells, Proliferative ECs,
383 Smooth muscle cells, Stromal 1, Stromal 2, T follicular helper cells, T helper 17 cells, Tip-like
384 ECs, cDC cells as labels. Scanpy⁵² (Single-Cell Analysis in Python) and Squidpy⁵³ (Spatial
385 Single Cell Analysis in Python) packages were used for graph analysis. This included graph
386 visualisation and graph metric algorithms. Immune hotspots were calculated from the immune
387 score signature using PySAL (Python Spatial Analysis Library) and separate immune cold and
388 immune hot graphs were calculated from these immune hotspot regions.

389 Statistics

390 Cell organization and disease characteristics were compared between groups using the Wilcoxon
391 rank-sum test. The association between immunity groups and patient outcomes was evaluated
392 using Cox proportional hazards models.

393

394 **Data availability**

395 The results published here are based in part upon publicly available data generated by the TCGA
396 Research Network (<https://www.cancer.gov/tcga>). All these data comply with ethical regulations,
397 with approval and informed consent for collection and sharing already obtained by the TCGA
398 consortium.

399 The spatial transcriptomics data employed in the study was freely available for reuse from 10x
400 Genomics through the Visium platform (<https://support.10xgenomics.com/spatial-gene-expression/datasets>).

402 Ethical approval and written informed consent were not required for this study.

403 **Code availability**

404 The code developed for the purpose of this study can be found at the following repository:
405 <https://github.com/secrierlab/TumourHistologyDL>

406 **AUTHOR CONTRIBUTIONS**

407 MS designed the study and supervised the analyses. MPC built the deep learning classifiers,
408 performed the nuclear segmentation and classification, built the Neo4J graph database and
409 analysed the interactions in HI and LI tumours. GMT and MPC developed the immunity
410 signatures. GMT and MS performed associations with molecular subtypes of colorectal cancer,
411 and further interaction analyses. EW performed the spatial transcriptomics analysis. SP performed
412 the Visium slide TIFF image conversion and pre-processing. All authors wrote and approved the
413 manuscript.

414

415

416 **REFERENCES**

417 1. Lavotshkin, S. *et al.* Immunoprofiling for prognostic assessment of colon cancer: a novel
418 complement to ultrastaging. *J Gastrointest Surg* **19**, 999-1006 (2015).

419 2. Galon, J. *et al.* Type, density, and location of immune cells within human colorectal
420 tumors predict clinical outcome. *Science* **313**, 1960-4 (2006).

421 3. Jamal-Hanjani, M., Thanopoulou, E., Peggs, K.S., Quezada, S.A. & Swanton, C. Tumour
422 heterogeneity and immune-modulation. *Curr Opin Pharmacol* **13**, 497-503 (2013).

423 4. Hernberg, M., Muhonen, T., Turunen, J.P., Hahka-Kemppinen, M. & Pyrhönen, S. The
424 CD4+/CD8+ ratio as a prognostic factor in patients with metastatic melanoma receiving
425 chemoimmunotherapy. *J Clin Oncol* **14**, 1690-6 (1996).

426 5. Diederichsen, A.C., Hjelmborg, J., Christensen, P.B., Zeuthen, J. & Fenger, C. Prognostic
427 value of the CD4+/CD8+ ratio of tumour infiltrating lymphocytes in colorectal cancer and
428 HLA-DR expression on tumour cells. *Cancer Immunol Immunother* **52**, 423-8 (2003).

429 6. Galon, J. *et al.* Towards the introduction of the 'Immunoscore' in the classification of
430 malignant tumours. *J Pathol* **232**, 199-209 (2014).

431 7. Angell, H.K., Bruni, D., Barrett, J.C., Herbst, R. & Galon, J. The Immunoscore: Colon
432 Cancer and Beyond. *Clin Cancer Res* **26**, 332-339 (2020).

433 8. Mlecnik, B. *et al.* Multicenter International Society for Immunotherapy of Cancer Study
434 of the Consensus Immunoscore for the Prediction of Survival and Response to
435 Chemotherapy in Stage III Colon Cancer. *J Clin Oncol* **38**, 3638-3651 (2020).

436 9. Buisseret, L. *et al.* Reliability of tumor-infiltrating lymphocyte and tertiary lymphoid
437 structure assessment in human breast cancer. *Mod Pathol* **30**, 1204-1212 (2017).

438 10. Väyrynen, J.P. *et al.* An improved image analysis method for cell counting lends
439 credibility to the prognostic significance of T cells in colorectal cancer. *Virchows Arch*
440 **460**, 455-65 (2012).

441 11. Diem, K. *et al.* Image analysis for accurately counting CD4+ and CD8+ T cells in human
442 tissue. *J Virol Methods* **222**, 117-21 (2015).

443 12. Lu, Z. *et al.* Deep-Learning-Based Characterization of Tumor-Infiltrating Lymphocytes
444 in Breast Cancers From Histopathology Images and Multiomics Data. *JCO Clin Cancer
445 Inform* **4**, 480-490 (2020).

446 13. Saltz, J. *et al.* Spatial Organization and Molecular Correlation of Tumor-Infiltrating
447 Lymphocytes Using Deep Learning on Pathology Images. *Cell Rep* **23**, 181-193.e7
448 (2018).

449 14. Amgad, M. *et al.* Report on computational assessment of Tumor Infiltrating Lymphocytes
450 from the International Immuno-Oncology Biomarker Working Group. *NPJ Breast Cancer*
451 **6**, 16 (2020).

452 15. Idos, G.E. *et al.* The Prognostic Implications of Tumor Infiltrating Lymphocytes in
453 Colorectal Cancer: A Systematic Review and Meta-Analysis. *Sci Rep* **10**, 3360 (2020).

454 16. Baghban, R. *et al.* Tumor microenvironment complexity and therapeutic implications at a
455 glance. *Cell Commun Signal* **18**, 59 (2020).

456 17. Boulter, L., Bullock, E., Mabruk, Z. & Brunton, V.G. The fibrotic and immune
457 microenvironments as targetable drivers of metastasis. *Br J Cancer* **124**, 27-36 (2021).

458 18. Kather, J.N. *et al.* Predicting survival from colorectal cancer histology slides using deep
459 learning: A retrospective multicenter study. *PLoS Med* **16**, e1002730 (2019).

460 19. Kather, J.N. *et al.* Topography of cancer-associated immune cells in human solid tumors.
461 *Elife* **7**(2018).

462 20. Qi, L. *et al.* Identification of prognostic spatial organization features in colorectal cancer
463 microenvironment using deep learning on histopathology images. *Medicine in Omics* **2**,
464 100008 (2021).

465 21. Yuan, Y. Modelling the spatial heterogeneity and molecular correlates of lymphocytic
466 infiltration in triple-negative breast cancer. *J R Soc Interface* **12**(2015).

467 22. Heindl, A. *et al.* Relevance of Spatial Heterogeneity of Immune Infiltration for Predicting
468 Risk of Recurrence After Endocrine Therapy of ER+ Breast Cancer. *J Natl Cancer Inst*
469 **110**(2018).

470 23. Ding, R. *et al.* Image analysis reveals molecularly distinct patterns of TILs in NSCLC
471 associated with treatment outcome. *NPJ Precis Oncol* **6**, 33 (2022).

472 24. AbdulJabbar, K. *et al.* Geospatial immune variability illuminates differential evolution of
473 lung adenocarcinoma. *Nat Med* **26**, 1054-1062 (2020).

474 25. Bilal, M. *et al.* Development and validation of a weakly supervised deep learning
475 framework to predict the status of molecular pathways and key mutations in colorectal
476 cancer from routine histology images: a retrospective study. *Lancet Digit Health* **3**, e763-
477 e772 (2021).

478 26. Newman, A.M. *et al.* Robust enumeration of cell subsets from tissue expression profiles.
479 *Nat Methods* **12**, 453-7 (2015).

480 27. Aran, D., Hu, Z. & Butte, A.J. xCell: digitally portraying the tissue cellular heterogeneity
481 landscape. *Genome Biol* **18**, 220 (2017).

482 28. Jiménez-Sánchez, A., Cast, O. & Miller, M.L. Comprehensive Benchmarking and
483 Integration of Tumor Microenvironment Cell Estimation Methods. *Cancer Res* **79**, 6238-
484 6246 (2019).

485 29. Schmauch, B. *et al.* A deep learning model to predict RNA-Seq expression of tumours
486 from whole slide images. *Nat Commun* **11**, 3877 (2020).

487 30. Huntington, N.D., Cursons, J. & Rautela, J. The cancer-natural killer cell immunity cycle.
488 *Nat Rev Cancer* **20**, 437-454 (2020).

489 31. Liu, Y. *et al.* Comparative Molecular Analysis of Gastrointestinal Adenocarcinomas.
490 *Cancer Cell* **33**, 721-735.e8 (2018).

491 32. Guinney, J. *et al.* The consensus molecular subtypes of colorectal cancer. *Nat Med* **21**,
492 1350-6 (2015).

493 33. Davoli, T., Uno, H., Wooten, E.C. & Elledge, S.J. Tumor aneuploidy correlates with
494 markers of immune evasion and with reduced response to immunotherapy. *Science*
495 **355**(2017).

496 34. Mardis, E.R. Neoantigens and genome instability: impact on immunogenomic phenotypes
497 and immunotherapy response. *Genome Med* **11**, 71 (2019).

498 35. Boland, C.R. & Goel, A. Microsatellite instability in colorectal cancer. *Gastroenterology*
499 **138**, 2073-2087.e3 (2010).

500 36. Laidlaw, B.J., Craft, J.E. & Kaech, S.M. The multifaceted role of CD4(+) T cells in
501 CD8(+) T cell memory. *Nat Rev Immunol* **16**, 102-11 (2016).

502 37. Graham, S. *et al.* Hover-Net: Simultaneous segmentation and classification of nuclei in
503 multi-tissue histology images. *Med Image Anal* **58**, 101563 (2019).

504 38. Galon, J. & Bruni, D. Approaches to treat immune hot, altered and cold tumours with
505 combination immunotherapies. *Nat Rev Drug Discov* **18**, 197-218 (2019).

506 39. Halbrook, C.J., Pasca di Magliano, M. & Lyssiotis, C.A. Tumor cross-talk networks
507 promote growth and support immune evasion in pancreatic cancer. *Am J Physiol*
508 *Gastrointest Liver Physiol* **315**, G27-G35 (2018).

509 40. Chen, Z. *et al.* A Machine Learning Model to Predict the Triple Negative Breast Cancer
510 Immune Subtype. *Front Immunol* **12**, 749459 (2021).

511 41. Hu, J. *et al.* Using deep learning to predict anti-PD-1 response in melanoma and lung
512 cancer patients from histopathology images. *Transl Oncol* **14**, 100921 (2021).

513 42. Väyrynen, J.P. *et al.* Prognostic Significance of Immune Cell Populations Identified by
514 Machine Learning in Colorectal Cancer Using Routine Hematoxylin and Eosin-Stained
515 Sections. *Clin Cancer Res* **26**, 4326-4338 (2020).

516 43. Reichling, C. *et al.* Artificial intelligence-guided tissue analysis combined with immune
517 infiltrate assessment predicts stage III colon cancer outcomes in PETACC08 study. *Gut*
518 **69**, 681-690 (2020).

519 44. Echle, A. *et al.* Clinical-Grade Detection of Microsatellite Instability in Colorectal Tumors
520 by Deep Learning. *Gastroenterology* **159**, 1406-1416.e11 (2020).

521 45. Kather, J.N. *et al.* Deep learning can predict microsatellite instability directly from
522 histology in gastrointestinal cancer. *Nat Med* **25**, 1054-1056 (2019).

523 46. Park, J.H., Richards, C.H., McMillan, D.C., Horgan, P.G. & Roxburgh, C.S.D. The
524 relationship between tumour stroma percentage, the tumour microenvironment and
525 survival in patients with primary operable colorectal cancer. *Ann Oncol* **25**, 644-651
526 (2014).

527 47. Li, Y. *et al.* Predicting tumor response to drugs based on gene-expression biomarkers of
528 sensitivity learned from cancer cell lines. *BMC Genomics* **22**, 272 (2021).

529 48. Macenko, M. *et al.* A method for normalizing histology slides for quantitative analysis. in
530 *2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro* 1107-
531 1110 (2009).

532 49. Deng, J. *et al.* ImageNet: A large-scale hierarchical image database. in *2009 IEEE*
533 *Conference on Computer Vision and Pattern Recognition* 248-255 (2009).

534 50. Failmezger, H. *et al.* Topological Tumor Graphs: A Graph-Based Spatial Model to Infer
535 Stromal Recruitment for Immunosuppression in Melanoma Histology. *Cancer Res* **80**,
536 1199-1209 (2020).

537 51. Lee, H.O. *et al.* Lineage-dependent gene expression programs influence the immune
538 landscape of colorectal cancer. *Nat Genet* **52**, 594-603 (2020).

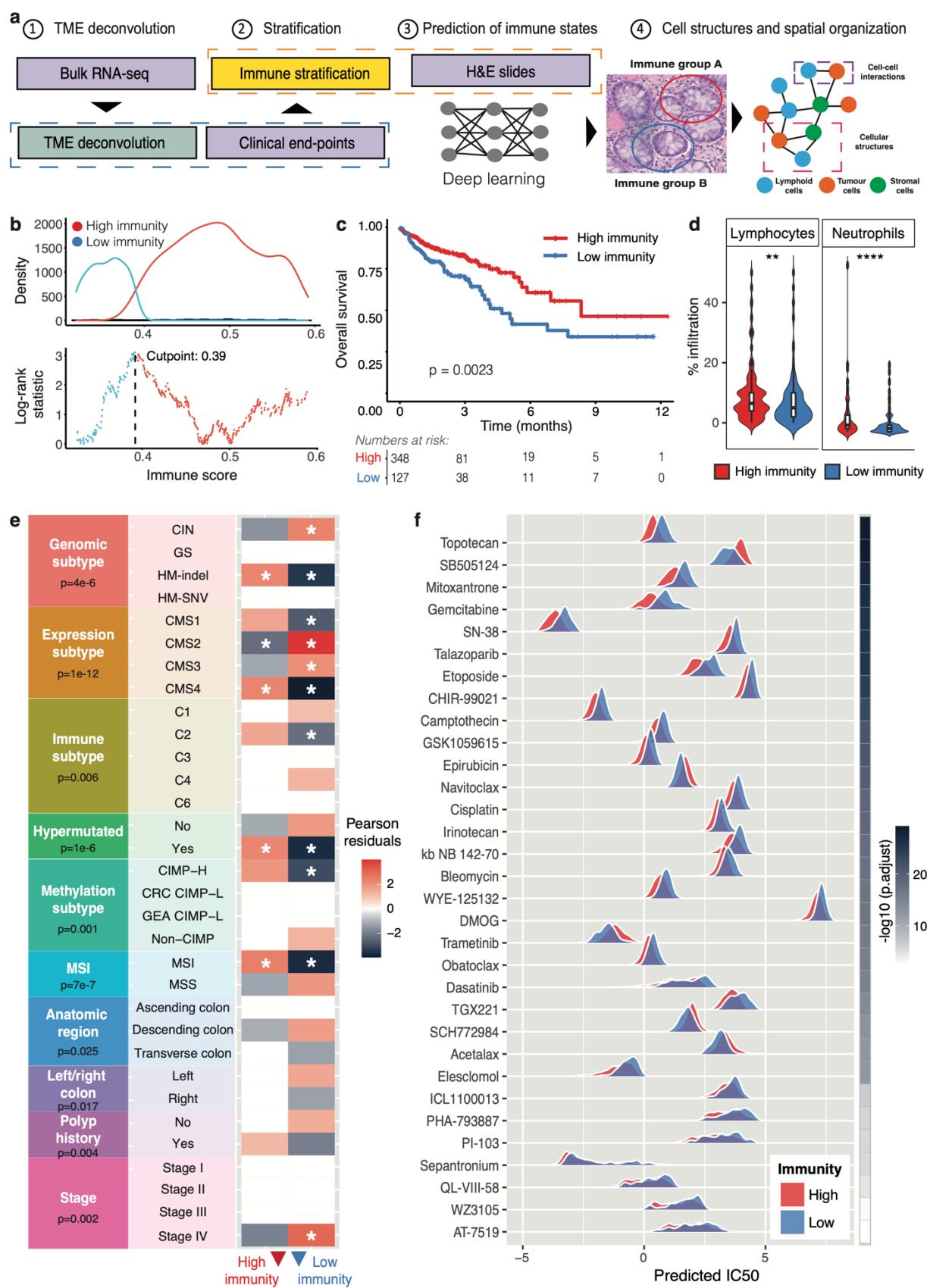
539 52. Wolf, F.A., Angerer, P. & Theis, F.J. SCANPY: large-scale single-cell gene expression
540 data analysis. *Genome Biol* **19**, 15 (2018).

541 53. Palla, G. *et al.* Squidpy: a scalable framework for spatial omics analysis. *Nat Methods* **19**,
542 171-178 (2022).

543

544

545 **FIGURES**

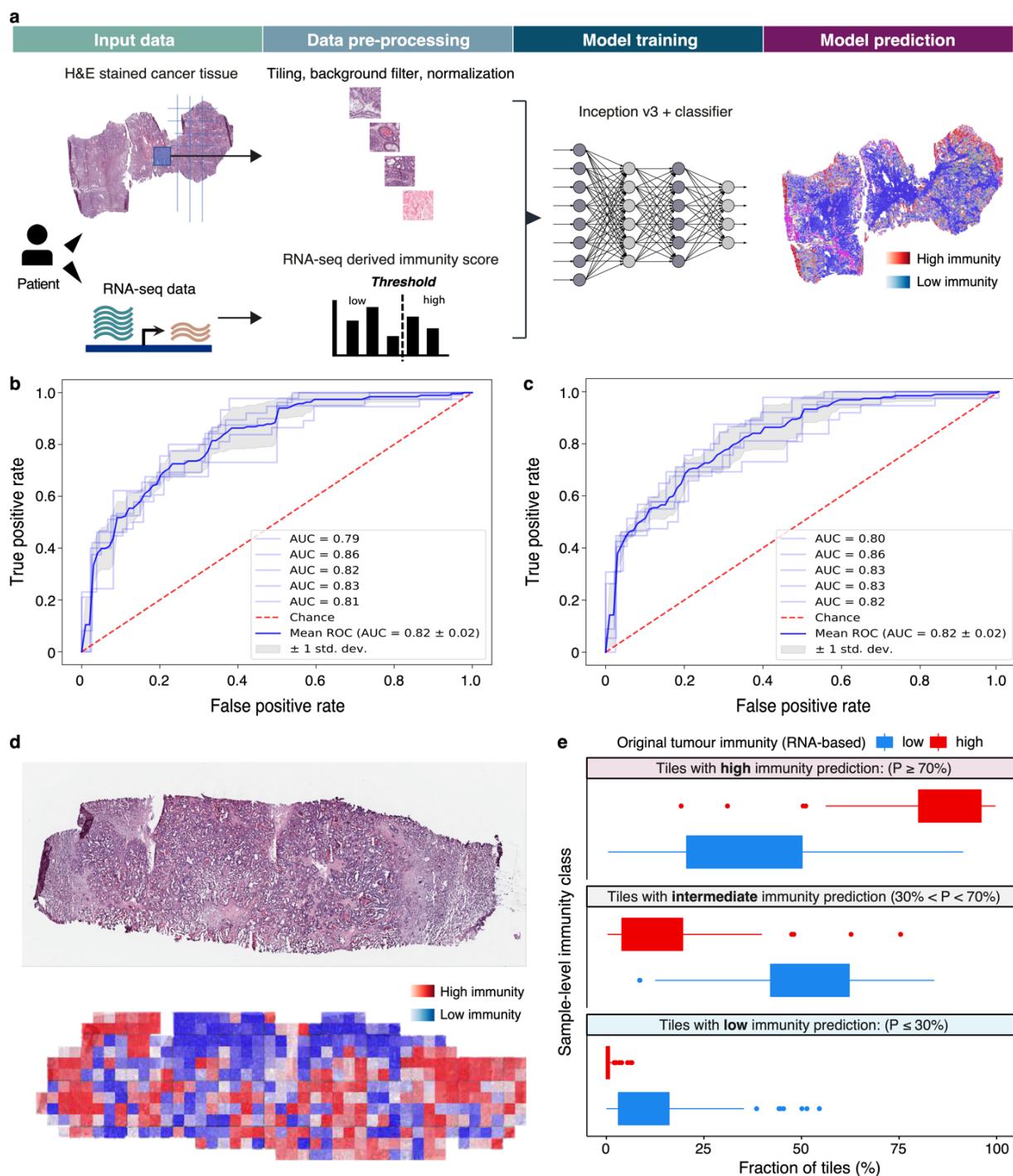


546

547 **Figure 1. Study workflow and immunity-based stratification of colon adenocarcinoma. (a)**

548 Workflow of the study. A prognostic classifier of colon adenocarcinoma was defined based on

549 RNA-seq inferred immune activity in the tumours. An H&E based deep learning classifier was
550 then on these labels, and differences in cellular compositions and interactions between the two
551 groups were subsequently described. **(b)** Optimisation of tumour immunity threshold to maximise
552 survival differences. The dotted line highlights the optimal cut-point of 0.39. **(c)** The high and low
553 immunity groups defined using the cut-off in (b) show significantly different overall survival in
554 the TCGA-COAD cohort. **(d)** The high immunity group presents higher fractions of lymphocytes
555 and neutrophils, as scored by pathologists. **(e)** Differences in colon adenocarcinoma molecular
556 subgroup and clinical characteristics between high and low immunity tumours, inferred from
557 conditional independence tests. Only significantly associated characteristics are shown. The stars
558 mark Pearson residuals greater than 2 or less than -2, indicating the strongest correlations. **(f)**
559 Predicted drug sensitivity of TCGA-COAD tumours to a variety of anti-cancer compounds,
560 compared between high and low immunity groups. Only compounds showing significant
561 differences in drug sensitivity are shown (ranked by the magnitude of the difference).
562
563

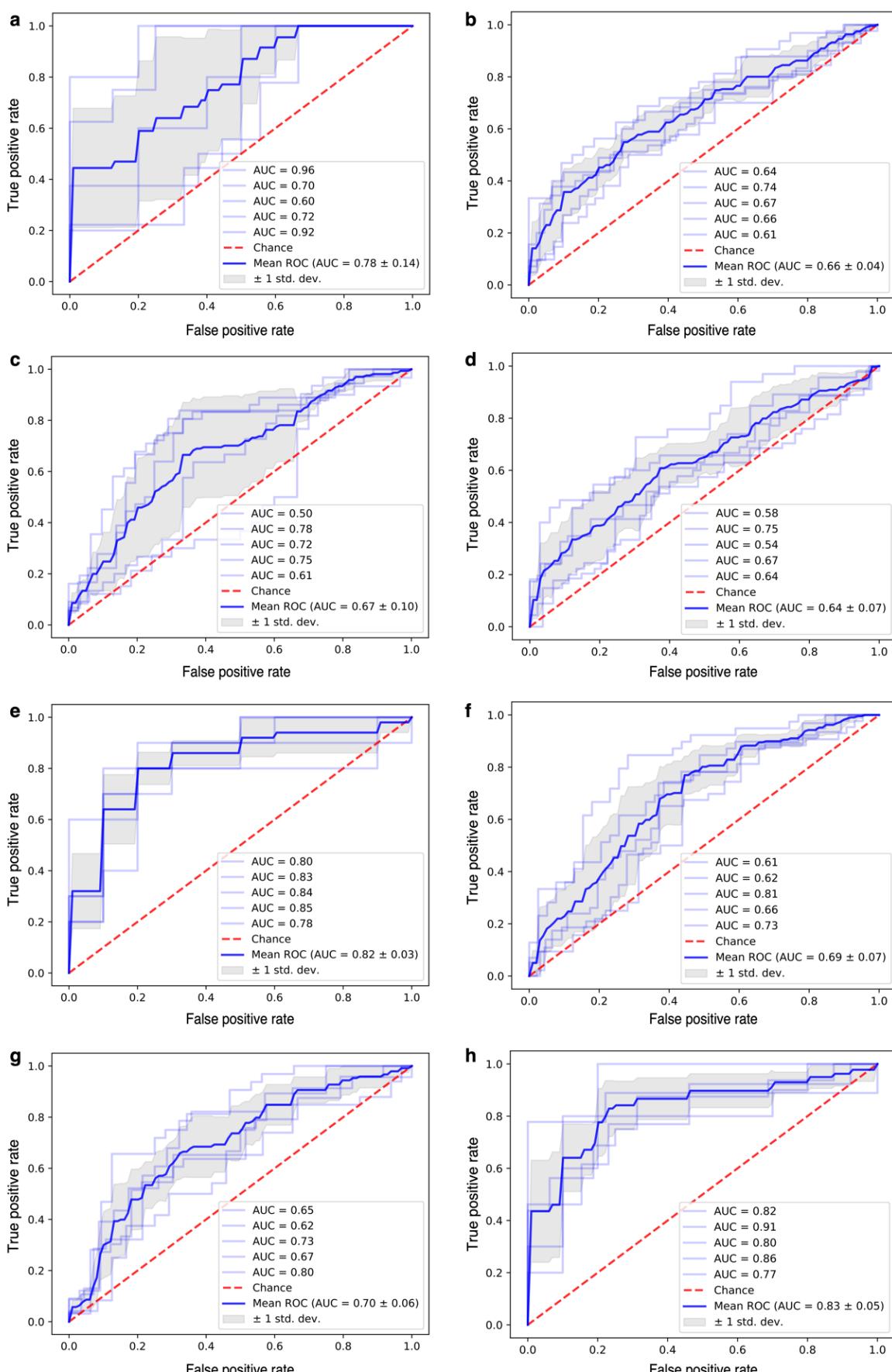


564

565 **Figure 2. Deep learning classifier of tumour immunity.** (a) Pipeline for the identification of
 566 RNA-seq based immune phenotypes in digital images of H&E stained cancer tissue. (b-c) A mean
 567 accuracy (AUC) of 82% is obtained when predicting the immune phenotype of colon cancer H&E
 568 slides with 5-fold cross validation by averaging the probability per tile (b) and counting the
 569 percentage of tiles (c), respectively. (d) Example of an H&E stained slide (top) and the
 570 corresponding immunity predictions of the model within the same slide (bottom). The colour
 571 gradient from blue to red reflects increasing probability of high immune content in each patch. (e)

572 Immunity class deep learning predictions in each tile, compared between samples with high and
573 low overall immunity (as inferred from RNA-seq data). Tile-level predictions have been classed
574 as high, intermediate or low immunity based on the probability of belonging to the HI/LI group
575 as indicated.

576



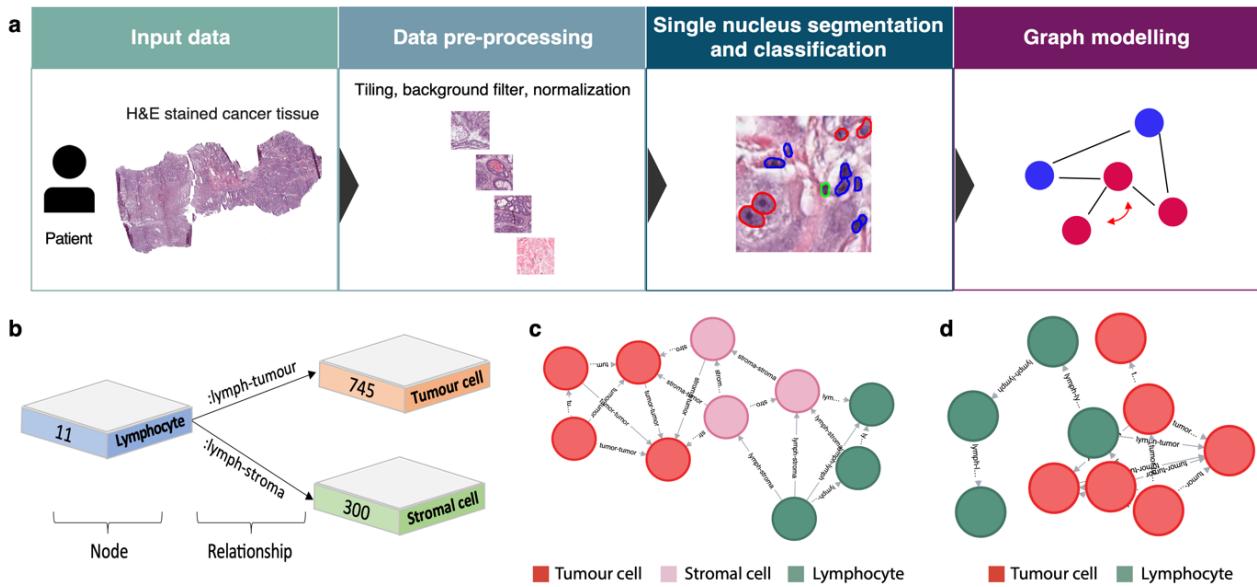
577

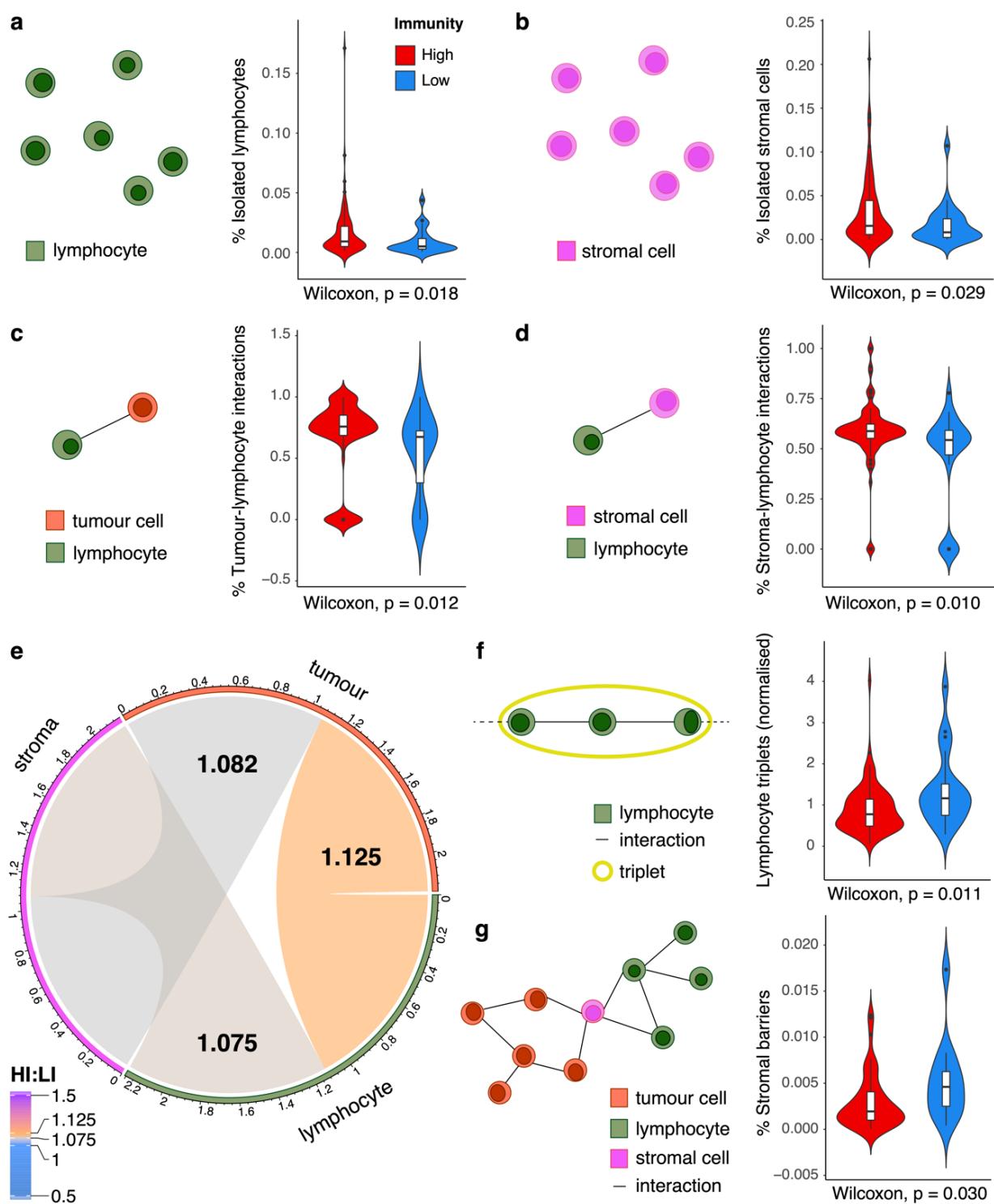
578 **Figure 3. Prediction of the subgroups of CD4+ and CD8+ T cells in H&E images.** Mean
579 accuracies (AUC) are shown for predictions of each of the following T cell categories: (a) generic

580 CD4+ T cells - 78%; (b) generic CD8+ T cells - 66%; (c) CD4+ naïve T cells - 67%; (d) CD8+
581 naïve T cells – 64%; (e) CD4+ central memory T cells - 82%; (f) CD8+ central memory T cells -
582 69%; (g) CD4+ effector memory T cells - 70%; (h) CD8+ effector memory T cells - 83%.

583

584





598

599 **Figure 5. Cellular organization differences in high versus low immunity tumours.** High (red)
600 and low (blue) immunity groups are compared in terms of: (a) the fraction of isolated
601 lymphocytes; (b) the fraction of isolated stromal cells; (c) the fraction of direct tumour-
602 lymphocyte interactions; (d) the fraction of direct stroma-lymphocyte interactions. (e) The fold
603 change in interactions established between pairs of cell types in high versus low immunity
604 tumours. The ratio of median numbers in either group is depicted. (f) Fraction of lymphocyte

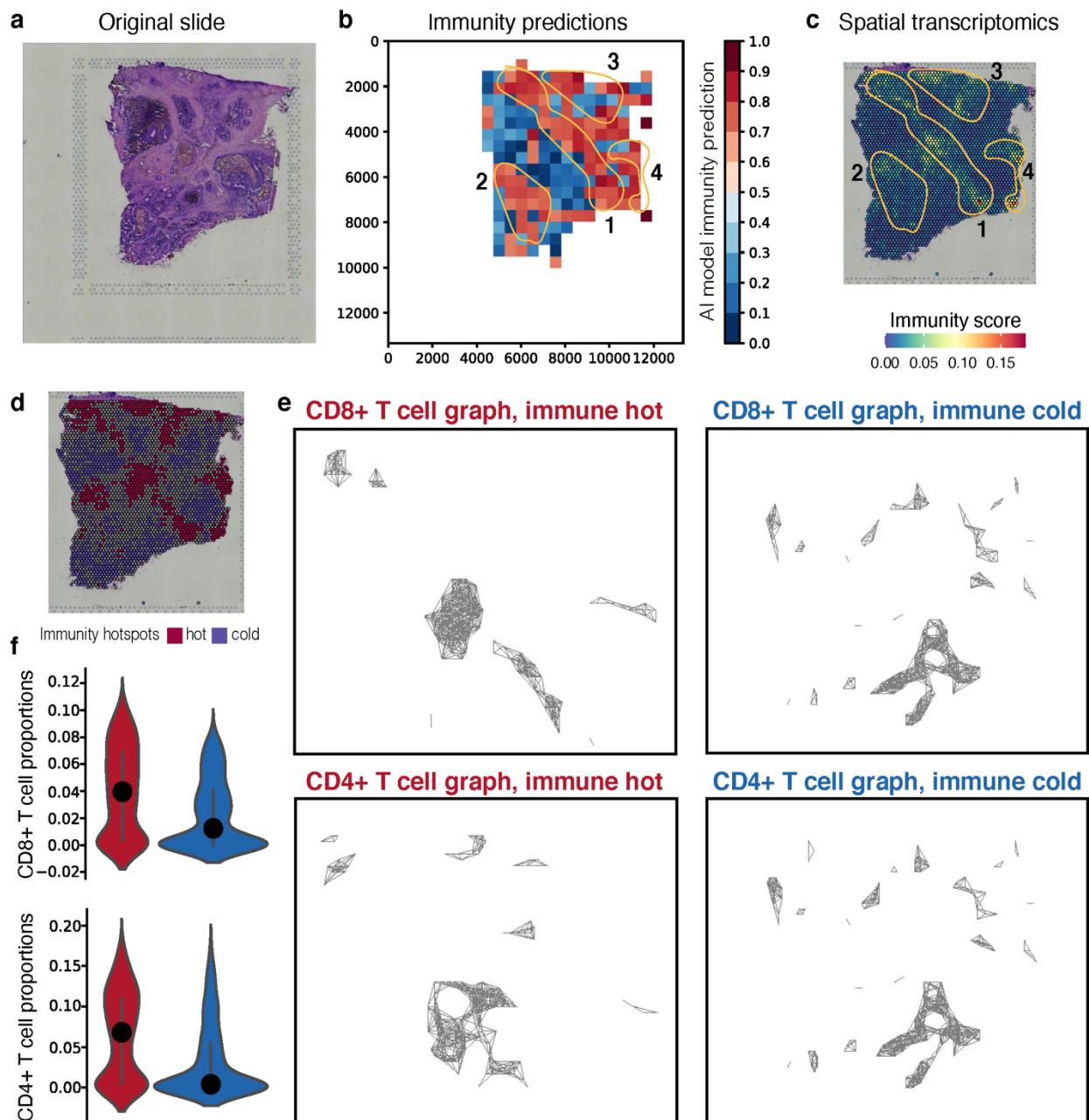
605 triples compared between high and low immunity samples containing at least one such structure.

606 (g) Fraction of stromal barriers compared between high and low immunity samples containing at

607 least one such structure. Schematic depictions of cellular structures are displayed alongside each

608 comparison.

609



610

611 **Figure 6. Validation of AI model predictions using spatial transcriptomics data.** (a) Original
612 colorectal tissue slide employed for spatial transcriptomics from Visium. (b) The immunity
613 prediction of the deep learning model on H&E staining-derived patches. Red indicates areas of
614 high immunity, blue indicates low immunity. Four high immunity islands are indicated with an
615 orange outline and numbered 1-4. (c) Immunity score across spatial transcriptomics spots. Red
616 and yellow areas indicate high immunity, and the same islands 1-4 as in (c) are indicated on the
617 slide. (d) Immune hot (red) and cold (blue) hotspots defined from spatial transcriptomics. The
618 grey spots have intermediate levels and cannot be classed in either group. (e) CD8+ (top) and

619 CD4+ (bottom) T cell interaction graphs within hot (left) and cold (right) immunity areas. (f)
620 CD8+ (top) and CD4+ (bottom) T cell proportions compared between immune hot (red) and cold
621 (blue) graphs.

622