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ABSTRACT 33 

Tumour immunity is key for the prognosis and treatment of colon adenocarcinoma, but its 34 

characterisation remains cumbersome and expensive, requiring sequencing or other complex 35 

assays. Detecting tumour-infiltrating lymphocytes in haematoxylin and eosin (H&E) slides of 36 

cancer tissue would provide a cost-effective alternative to support clinicians in treatment 37 

decisions, but inter- and intra-observer variability can arise even amongst experienced 38 

pathologists. Furthermore, the compounded effect of other cells in the tumour microenvironment 39 

is challenging to quantify but could yield useful additional biomarkers. We combined RNA 40 

sequencing, digital pathology and deep learning through the InceptionV3 architecture to develop 41 

a fully automated computer vision model that detects prognostic tumour immunity levels in H&E 42 

slides of colon adenocarcinoma with an area under the curve (AUC) of 82%. Amongst tumour 43 

infiltrating T cell subsets, we demonstrate that CD8+ effector memory T cell patterns are most 44 

recognisable algorithmically with an average AUC of 83%. We subsequently applied nuclear 45 

segmentation and classification via HoVer-Net to derive complex cell-cell interaction graphs, 46 

which we queried efficiently through a bespoke Neo4J graph database. This uncovered stromal 47 

barriers and lymphocyte triplets that could act as structural hallmarks of low immunity tumours 48 

with poor prognosis. Our integrated deep learning and graph-based workflow provides evidence 49 

for the feasibility of automated detection of complex immune cytotoxicity patterns within H&E-50 

stained colon cancer slides, which could inform new cellular biomarkers and support treatment 51 

management of this disease in the future. 52 

53 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.06.498984doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.06.498984
http://creativecommons.org/licenses/by-nc/4.0/


 3 

INTRODUCTION 54 

Tumour immunity is a critical determinant of clinical outcome in colon adenocarcinoma1,2, yet its 55 

characterisation is challenging due to cellular heterogeneity and the elaborate techniques required 56 

to study it comprehensively3. Earlier efforts introduced the prognostic value of the CD8+ to CD4+ 57 

T cell infiltration ratio within the tumour4,5. Galon et al6 built on this to develop an ‘Immunoscore’ 58 

that predicts the risk of recurrence and chemotherapy response in colorectal cancer7,8. This score 59 

was derived based on immunohistochemistry (IHC), a fairly elaborate procedure to label antigens 60 

expressed by specific cells,  which requires well defined markers and is not incorporated routinely 61 

in the clinical workflow. Instead, H&E staining of nucleus, cytoplasm and extracellular matrix 62 

offers a cheaper, streamlined alternative in oncology. Experienced pathologists can identify 63 

tumour infiltrating lymphocytes and other cells in H&E-stained tissue, but inter-and intra-64 

observer variability can arise when assessing a sample9. Therefore, automating the detection of 65 

such cells could prove beneficial10,11. Indeed, deep learning algorithms have recently been 66 

employed for this purpose in multiple cancers12-14, with links to patient outcome demonstrated in 67 

colorectal cancer2,15. 68 

However, these models often focus on individual cell types and do not consider the broader spatial 69 

organisation of the tissue, which can impact tumour growth and dissemination16. For instance, the 70 

stroma can promote tumour progression by limiting access of therapeutic agents or immune cells 71 

to tumours through fibrosis17. Such factors are currently challenging to assess systematically 72 

because of costs and a lack of standardised methodology. Several studies have shown that spatial 73 

organisation features such as the stromal content/ratios, TIL morphology and even immune 74 

hot/cold phenotypes can be extracted from H&E patches and linked to prognosis12,18-23. 75 

AbdulJabbar et al24 and Bilal et al25 have also integrated deep learning methods on digital 76 

histology and omics data more extensively, gaining insights into how cellular organisation 77 

impacts cancer evolution and clinical outcomes. However, these studies often require expert 78 

annotation and still lack insight into more complex interactions between different cell types.  79 
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 80 

As an alternative to expert annotation, developments of computational tools for immune 81 

deconvolution from RNA sequencing have revolutionised our ability to capture an extensive array 82 

of cell types and states in bulk tissue26-28. Cancer transcriptomics datasets are widely available 83 

and have been successfully integrated with H&E images via deep learning in recent studies, 84 

demonstrating that patterns of angiogenesis, hypoxia and even T and B cell immunity are 85 

detectable in the tissue29. Integrating such approaches to characterise tumour immunity as a whole 86 

within the colon cancer tissue would be highly informative for prognosis and treatment, but has 87 

not yet been achieved. 88 

This study tests the extent to which tumour immunity and its spatial organisation can be quantified 89 

within colon adenocarcinoma tissue based on transcriptomic signatures alone. We propose a fully 90 

automated image-processing pipeline to predict the immune activity in a tumour from H&E 91 

images based on matched bulk RNA-seq data. We also introduce a novel framework for surveying 92 

detailed cellular interaction landscapes within digital pathology slides by combining nuclear 93 

segmentation, classification and graph assembly, with efficient queries handled via a bespoke 94 

Neo4J graph database. Finally, we apply this framework to interrogate the complex tissue 95 

organisation in colon adenocarcinoma and identify cellular structures linked with immune 96 

response, which we then validate using spatial transcriptomics. 97 

RESULTS 98 

Transcriptome-derived tumour immunity informs prognosis, molecular characteristics and 99 

treatment efficacy in colon adenocarcinoma 100 

To explore the immune landscape and tissue organisation of colon adenocarcinoma, we employed 101 

RNA sequencing (RNA-seq) and matched digital pathology data collected from tumour samples 102 

of 456 patients available from TCGA. We calculated a tumour immunity score per sample as the 103 
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average abundance of tumour infiltrating cells from the microenvironment using 104 

ConsensusTME28 (Supplementary Figure 1a). This score accounted for the compounded effects 105 

of expression signals coming from all detectable non-tumour cells, reflecting a spectrum of low 106 

to high immunity (Supplementary Figure 1b). The score correlated well with the mean 107 

CD8+/CD4+ T cell subtype scores estimated from transcriptomic data using an alternative 108 

immune deconvolution method, xCell (R = 0.46, p<2e-16).   109 

After quantifying the overall tumour immunity in each sample, we assessed the prognostic value 110 

of the respective immune scores. To maximise the clinical relevance of this analysis, we sought 111 

to identify a tumour immunity score threshold that would reflect the strongest relation with patient 112 

outcome. We found that a cut-off point of 0·39 highlighted two immunity groups (High Immunity, 113 

HI, and Low Immunity, LI) with highly distinct overall survival (p=0·002, Figure 1b-c) and 114 

disease-free intervals (p=0·005, Supplementary Figure 1c). As expected, the patients with high 115 

levels of tumour immunity showed significantly better outcomes. When checking against the 116 

pathology annotations of the slides, the differences between the HI and LI groups appeared to be 117 

driven by the presence of lymphocytes and neutrophils, which were elevated in the HI group 118 

(Figure 1d). Furthermore, the HI tumours also had elevated markers of intratumoural natural killer 119 

(NK) cell activity, including expression of NK cell receptors and corresponding tumour cell 120 

ligands, as well as secreted cytokines (Supplementary Figure 1d), which have been associated 121 

with immunotherapy response30.  122 

Colon cancer has been systematically characterised from a genomic point of view, with mutation, 123 

expression and methylation features shown to associate with disease progression and therapy 124 

responses31,32. To link these findings with our classification, we further characterised the 456 125 

samples in the HI/LI groups using molecular and tumour architecture phenotypes already 126 

described for colon adenocarcinomas31 (Figure 1e). Genomically, we found that low immunity 127 

tumours tended to fall within the chromosomally unstable group of gastrointestinal cancers (CIN). 128 

Indeed, tumours with higher levels of CIN/aneuploidy have been previously linked with immune 129 
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evasion and poorer outcomes to immunotherapies33. In contrast, high immunity tumours were 130 

associated with the gastrointestinal hypermutated indel (HM-indel) subtype and presented 131 

frequent microsatellite instability (MSI), in line with numerous studies linking hypermutation 132 

with increased neoantigen presentation and activation of the host antitumor immune response34,35.  133 

The consensus expression-based classification defined by Guinney et al32 revealed that the high 134 

immunity tumours tended to be more mesenchymal (CMS4), a subtype characterised by increased 135 

stromal infiltration and angiogenesis. In contrast, lower immunity was linked with epithelial, 136 

metabolically deregulated phenotypes (CMS2/3), and lacked the characteristic pattern of CpG 137 

island hypermethylation (non-CIMP). Anatomically, low immunity was more frequently 138 

characteristic of tumours arising in the descending colon and on the left side, and prevailed in 139 

late-stage cancers, where immune recognition is more likely impaired. Tumours with higher 140 

immunity tended to present fewer hyperplastic polyps.   141 

Finally, the two defined immunity groups in colon adenocarcinomas were predicted to display 142 

significantly different susceptibility to multiple anti-cancer compounds (Figure 1f). The largest 143 

differences were observed for chemotherapy drugs such as topotecan, mitoxantrone and 144 

gemcitabine. Higher immune activity was linked with lower IC50 values, suggesting greater 145 

efficacy in this setting and confirming previous links between immunity and enhanced 146 

chemotherapeutic responses8. 147 

A prognostic classifier of tumour immunity in colon cancer from H&E-stained images 148 

Having demonstrated the clinical relevance of our immune classification of colon 149 

adenocarcinomas, we then developed a digital pathology classifier of this phenotype. We trained 150 

a deep learning model based on the InceptionV3 architecture to classify high and low tumour 151 

immunity (as inferred from matched RNA-seq data) in H&E-stained images of cancer tissue 152 

collected from colon adenocarcinoma patients (Figure 2a). We achieved a median accuracy of 153 
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82% AUC probability based on tile average and percentage count in the testing dataset (Fig 2b-154 

c). This approach also allowed us to obtain a spatially-resolved overview of tumour immunity 155 

levels within entire tissue slides through tile-level estimates (Fig 2d). Indeed, tissue slides from 156 

highly immunogenic tumours were predominantly composed of tiles with strong HI signals, 157 

whereas low immunity tumours presented more diverse predictions of LI and intermediate levels 158 

of immunity across tiles (Fig 2e).  159 

While the HI group of tumours is expected to have enhanced immune reactivity, the cytotoxic 160 

effect is triggered by populations of CD8+ and CD4+ immune cells that are transformed from a 161 

naïve to an effector state upon antigen recognition36. These CD8+/CD4+ subsets emerge at 162 

different points of cancer development and could create distinct patterns within the tumour tissue. 163 

The ability of deep learning algorithms to distinguish these immune subsets in H&E slides has 164 

not been tested in this system. To understand whether patterns of active rather than uneducated 165 

immunity might be preferentially captured, we trained deep learning models to identify distinct 166 

subgroups of CD4+ and CD8+ T cells as characterised in Aran et al27, i.e., CD4/CD8+ naïve T 167 

cells, central memory cells and effector memory cells in the TCGA COAD cohort. Our models 168 

could detect expression signals of CD4+ central memory T cells and CD8+ effector memory T 169 

cells with high accuracies of 82% and 83% AUC, respectively (Figure 3). The rest of the cells 170 

were identified with lower accuracy, between 64% and 70% AUC. Overall, this suggests that the 171 

cells most relevant to triggering an effective immune response are also the ones that leave the 172 

most recognisable traces within the colon cancer tissue and could be specifically tracked in a 173 

clinical setting to support immunotherapy treatment decisions. 174 

Cellular organisation of the immune response in colon adenocarcinoma 175 

Next, we sought to gain further insight into the cellular organisation of colon adenocarcinoma 176 

tissue in a high versus low immunity setting using the H&E slide information. Using HoVer-177 

Net37, we conducted nuclear segmentation and classification within the H&E tiles of the TCGA 178 
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COAD dataset. This approach allowed us to label individual cells within the tissue as ‘tumour’, 179 

‘lymphocytic’ or ‘stromal’ (Figure 4a). Based on cell proximity, we could then infer interactions 180 

between different cells and summarise them for every tissue patch in the form of graphs (Figure 181 

4a). However, this analysis resulted in thousands to hundreds of thousands of interactions per 182 

sample, yielding complex graphs that are difficult to store, integrate and query. To resolve this, 183 

we developed a Neo4J graph database comprising 2,786,464 nodes and 3,628,377 edges, that 184 

would allow us to explore and interrogate such complex structures effectively. The basic 185 

relationship model in the database is depicted in Figure 4b. This database allows us to perform 186 

complex queries to identify biologically relevant structures, such as a stromal barrier separating 187 

lymphocytes from tumour cells (Figure 4c), or a lymphocytic attack on cancer cells (Figure 4d). 188 

These graph interactions can also be dynamically explored and expanded within the database 189 

(Supplementary Video 1). 190 

We compared the cell population frequencies and interactions between the HI and LI groups. 191 

Lymphocytes and stromal cells were similarly abundant in the two groups, but appeared more 192 

frequently isolated in a high immunity context (Figure 5a-b). These could correspond to exhausted 193 

or naïve T cells being recruited to the site, which would be less likely to form interactions. As 194 

expected, the HI group also harboured more frequent direct interactions between lymphocytes and 195 

tumour cells, suggesting immune recognition typical of ‘immune hot’ phenotypes38 (Figure 5c,e). 196 

The number of tumour-stroma interactions was also increased (Figure 5d), but to a lower extent 197 

(Figure 5e). On the other hand, dense lymphocyte clusters in the form of triplets, as well as stromal 198 

barriers were increased in the low immunity tumours (Figure 5f-g). The lymphocyte triplet 199 

presence might suggest inactive clusters that are not recognising malignant cells. Concurrently, 200 

the stromal barriers may aid immune evasion, as has been previously described in pancreatic 201 

cancer39. These cellular structures reflect different cellular organisation and immune activity in 202 

an HI vs LI setting and could support treatment strategies in the clinic.    203 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.06.498984doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.06.498984
http://creativecommons.org/licenses/by-nc/4.0/


 9 

Validation of deep learning predictions using spatial transcriptomics 204 

Finally, to validate our model predictions using an orthogonal approach, we employed spatial 205 

transcriptomics data available for one colorectal tissue slide from the Visium platform (Figure 206 

6a). We applied our AI model on the H&E stained image to obtain predictions of the overall 207 

immunity within the tumour at patch level (Figure 6b). In parallel, we analysed the spatial gene 208 

expression profiles across multiple spots within the image and derived an immunity map outlining 209 

the distribution of immune ‘hot’ and ‘cold’ islands across the tissue (Figure 6c-d).  210 

By visually comparing the AI model predictions with the spatial profile, we can see there is a 211 

good agreement between the two methods (Figure 6b-d). In particular, it is striking that the central 212 

area of high immunity (island 1) appears as a diagonal stripe both in the spatial transcriptomics 213 

as well as in our model’s predictions, with smaller islands of increased immunity present to the 214 

left and right of this region (islands 2-4, Figure 6b-c). The immune ‘hot’ areas presented marked 215 

CMS4 features, while the colder areas more frequently contained CMS1/2/3 types of cells 216 

(Supplementary Figure 2a-d), as previously shown in the bulk data. 217 

When reconstructing cell-cell interactions within the spatially profiled slide, we confirmed an 218 

increase in epithelial-lymphocyte interactions in the immune ‘hot’ compared to the immune ‘cold’ 219 

areas (20% versus 5%). Furthermore, interactions between stromal cells and lymphocytes 220 

appeared confined to the immune hot regions (41%), with no stromal cells detected in the immune 221 

cold areas. The CD8+ and CD4+ T cell spatial structure was very similar in the immune cold 222 

regions, with larger interaction modules observed in the immune hot regions (Figure 6e). The 223 

immune hot regions were denser, with CD8+ and CD4+ T cell graphs having a density metric of 224 

0.095 and 0.073 respectively, and immune cold regions with a density metric of 0.046 and 0.0451. 225 

Immune hot CD8+ and CD4+ graphs also presented increased connectivity (12 connected 226 

components each versus 30 and 31 connected components in immune cold regions, respectively). 227 
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As expected, the high immunity areas also presented increased CD8/CD4+ T cell and stromal cell 228 

abundance, while containing fewer NK cells (Figure 6f, Supplementary Figure 2e-f). 229 

All these point towards the co-existence of immune hot and cold areas within tumours that display 230 

distinct spatial interactions and confirm many of the features we were able to capture through our 231 

deep learning and graph models. While this analysis is limited by the availability of a single slide, 232 

it serves as a proof of concept that H&E-based deep learning models could be validated using 233 

spatial transcriptomics. 234 

DISCUSSION 235 

In this work, we have employed state-of-the-art methodology to establish an RNA-seq-derived 236 

immune signature in colon adenocarcinoma that is prognostic and links with differential efficacy 237 

of various chemotherapeutics. We have shown that this signature is detectable in H&E-stained 238 

colon cancer tissue. Furthermore, we have introduced novel methods to explore the ample space 239 

of cellular interactions underlying distinct tumour immunity phenotypes, unveiling specific 240 

rewiring that could inform diagnosis and treatment. 241 

The encouraging performance of 82% for our tumour immunity classifier in H&E images suggests 242 

that integrating such images and transcriptomics data could support faster pathology annotation 243 

and triage in a setting where this staining procedure is routine. Our model’s performance was 244 

similar to that of other methods assessing immunity-linked phenotypes like MSI, mutability or 245 

methylation status in colorectal cancer25, and outperformed immune 246 

classification/immunotherapy response models in breast cancers40 and melanoma41 with AUCs of 247 

76-78%. It is worth noting that multiple studies have applied deep learning for lymphocyte feature 248 

extraction in colorectal cancer and linked this with outcome42,43. However, these fall short of 249 

providing a direct H&E-based classifier. While our model does not outperform MSI classifiers 250 

developed in this cancer44,45, it captures a different and more versatile phenotype of tumour 251 
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immunity. It also helps us explore the limits of prognostic classification based on expression-252 

derived signatures, for which datasets are much more widely available. 253 

We also showed that not all T cells associated with the antitumour immune response are equally 254 

detectable in the cancer tissue when trained on expression markers. This could be due to 255 

morphological confounders or to the expression signatures not being specific enough for some 256 

cell types. Nevertheless, the cells effectively responsible for cytotoxicity (effector CD8+ and 257 

central memory CD4+ T cells) presented the best classification performance, suggesting that both 258 

short-term and longer-term immune stimulation may be captured.  259 

Our investigation of the cellular organisation of the tissue has highlighted niche structures such 260 

as dense lymphocyte clusters/triplets, or stromal barriers which may account for the lack of 261 

immune recognition and worse prognosis in the low immunity group, as reported by other studies 262 

too18,46. This showcases the importance of spatial analysis of the tumour microenvironment to 263 

understand cancer progression. A limitation is that the cell types identified are rather generic. 264 

Improved methods are needed in the future to distinguish diverse cell populations, e.g. cancer-265 

associated fibroblasts, T and B cell subsets, and gain a finer-grained resolution of the landscape 266 

of cell-cell relations established. Moreover, the structures studied here should be further 267 

investigated experimentally to clarify the mechanism by which they contribute to immune 268 

evasion. Finally, our spatial transcriptomics validation illustrates one key factor that needs to be 269 

built into such models in the future: the spatial heterogeneity of immune hot/cold phenotypes. 270 

Future studies should focus on integrating deep learning on H&E slides, spatial transcriptomics 271 

models and graph reconstruction methods to obtain a spatially-informed predictor of tumour 272 

immunity and response to therapies. 273 

This study proposes a prognostic classifier for tumour immunity in colon adenocarcinoma with 274 

distinct tumour and microenvironment architecture features. While we have based our classifier 275 

on expression rather than protein-level/IHC data, our immune signature is nevertheless highly 276 
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prognostic and many of its features are recapitulated in spatial transcriptomics data. It thus could 277 

be valuable in the clinic as additional support for treatment decisions. Most importantly, we 278 

propose a novel integrative approach to digital pathology analysis in cancer, combining H&E-279 

stained slides and matched RNA-seq data through deep learning, and making use of the 280 

capabilities of the Neo4J graph database methodology to efficiently quantify and explore tissue 281 

landscapes and cellular interactions. This framework enables a faster, more extensive and more 282 

interpretable exploration of key immunity features than with traditional approaches, and could be 283 

easily adapted to answer a variety of biological questions in cancer as well as healthy tissue 284 

settings. 285 

MATERIALS AND METHODS 286 

Molecular data sources and immune stratification 287 

RNA-seq data from 456 colon adenocarcinoma (COAD) tumours, along with clinical and 288 

pathology information, were retrieved from The Cancer Genome Atlas (TCGA) using the 289 

TCGAbiolinks R package. No samples were excluded based on demographics criteria. We 290 

estimated the relative abundance of various lymphoid and myeloid cell subsets, endothelial cells 291 

and fibroblasts (Supplementary Table 1) based on the expression of cell type-specific markers 292 

using ConsensusTME28. The ‘immunity score’ was defined as the average abundance across all 293 

cell types within a sample, as in the original study (Supplementary Figure 1a). This score was 294 

used to stratify the cohort into two groups representing low and high immunity. For this, we used 295 

the threshold that maximises the difference in overall survival between the high/low immunity 296 

groups, i.e. testing different thresholds by sequentially increasing their value using the survminer 297 

R package.  298 
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xCell27 expression-based estimates of CD8+ and CD4+ naïve, central and effector memory T cell 299 

populations were obtained for all TCGA COAD cancers from https://xcell.ucsf.edu/ . The cohort 300 

was split by the mean infiltration estimate of each CD8/CD4+ T cell population. 301 

Signatures of intratumoural NK cell activity were assessed based on the expression of NK cell 302 

receptors, tumour ligands and cytokines as detailed in Huntington et al30. An expression score 303 

summarising these activities was defined per sample using single sample Gene Set Enrichment 304 

Analysis via the GSVA R package. 305 

We derived the molecular phenotypes of colorectal cancer from Liu et al31 and Guinney et al32, 306 

and retrieved the predicted drug sensitivity IC50 values for TCGA samples from Li et al47. 307 

Image pre-processing 308 

A total of 874 images of H&E-stained tissue collected from 456 COAD patients were obtained 309 

from the TCGA Genomic Data Commons Data Portal (GDC Data Portal) (RRID:SCR_014514, 310 

https://portal.gdc.cancer.gov/). Because of the high resolution and large scale of these images, a 311 

common pre-processing method before applying deep learning approaches for the classification 312 

of whole slide images (WSIs) is to crop them into small sections called tiles64. We extract all 313 

possible non-overlapping tiles following a grid structure and we filter those including more than 314 

50 percent of background. We set the size of the tile to 512px by 512px, yielding a total of more 315 

than 2 million of them, which were then used to train and test our model (described below).  316 

To avoid inconsistencies in the preparation of histology slides arising from dye concentration, 317 

duration of staining and temperature differences48, we employed StainTools 318 

(https://pypi.org/project/staintools/) to normalize each H&E patch used in this study. The stain 319 

matrix estimation was set to be calculated via the Vahadane method.  320 

 321 
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H&E-based classifier of tumour immunity 322 

To classify immunity levels in H&E images, we used a model consisting of two parts: a 323 

convolutional neural network (CNN) feature extractor followed by a non-linear classifier (Figure 324 

2a). We based the feature extractor backbone in the InceptionV3 architecture43. First, we resized 325 

the 512x512px tiles with three colour channels to 299x299px, as this is the required input size of 326 

the model. Furthermore, we scaled the input pixel values that were initially in the range of (0;255) 327 

to a range of (-1;1). 328 

We removed the top layer of the InceptionV3 original architecture, and used the bottleneck layer’s 329 

feature representation. This converts each input image of size 299x299x3 into an 8x8x2,048 block 330 

of features. Here, we average over the 8x8 spatial locations, using a Global Average Pooling 2D 331 

layer to convert the block of features to a single 2,048-element vector per image. We feed this 332 

vector image to a fully connected classifier to convert these features into a single prediction per 333 

image. It consists of two dense layers of 1,024 and 512 units, respectively, with a RELU activation 334 

function. We applied a dropout regularisation to the output of the first dense layer. Low immunity 335 

samples are predicted as class 0 and high immunity as class 1. 336 

We initialised the parameters of the InceptionV3 layers with weights trained in the ImageNet 337 

dataset49. To avoid destroying the pre-loaded weights, we trained the full model end-to-end with 338 

a small learning rate (1e-5). In this way, we fine-tuned the higher-order feature representations in 339 

the base model to make them more relevant for this task. During the training, we introduced 340 

sample diversity by applying random transformations to the input images, such as rotation, 341 

shearing, zooming, horizontal and vertical flipping. To avoid overfitting, we applied L2 342 

regularisation to the kernel of the 2D convolutional layers of the InceptionV3 model during the 343 

optimisation. We added this penalty to the loss function as the sum of the squared weights. 344 

We used 70% of the samples for training and 30% for testing, undersampled to the lower class. 345 

We repeated each experiment five times with different chosen random samples for training and 346 
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testing. To present the results, we show the Receiver Operating Characteristic (ROC) curve and 347 

the Area Under the Curve (AUC) for each experiment and the total average for all the cross-348 

validation splits. 349 

Graph-based reconstruction of cell-cell interactions 350 

We used the HoVer-Net computational pathology pipeline trained on the CoNSeP dataset37 to 351 

segment and classify nuclei within H&E-stained tiles into four categories depending on cell type: 352 

tumour cells, lymphocytes, stroma and miscellaneous cells. The miscellaneous category groups 353 

artefacts or ambiguous cell types e.g. necrotic, mitotic cells and others that cannot be categorised. 354 

This category was discarded from further analysis. 355 

The identified nuclei and their positioning within the tissue were used to reconstruct and analyse 356 

the spatial interactions between cells. Each nucleus/cell was represented by a node in a graph. We 357 

determined interactions between cells based on spatial proximity, with any two cells situated <35 358 

μm apart assumed to be interacting50. We assigned an edge between adjacent cells, depicting the 359 

interaction. We then employed the Neo4J Graph Database framework (https://neo4j.com/) to store 360 

and efficiently query the graphs derived from the WSIs of 110 patients belonging to either the 361 

high or low tumour immunity class. 362 

We compared the cell type abundance and the frequency of different interactions between the 363 

high and low immunity groups. A stromal barrier was defined as an instance where lymphocytes 364 

can reach a tumour cell by crossing a stromal cell in each sample. Lymphocyte triplets were 365 

defined as three lymphocyte cells sequentially connected. We normalised the number of stromal 366 

barriers by the sample's total number of stromal-stromal relations. Similarly, we normalised 367 

lymphocyte triplets by the sample's total number of lymphocyte-lymphocyte relations. 368 

 369 
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Spatial transcriptomics data analysis 370 

The human colorectal cancer patient sample was downloaded from 10x genomics 371 

(https://support.10xgenomics.com/spatial-gene-expression/datasets). The output from the Space 372 

Ranger Visium pipeline was used for analysis. The SCTransform R package was used to normalise 373 

the data using a regularised negative binomial regression method. The Seurat R package was used 374 

to calculate and visualize the gene module scores across the slide. Immunity was scored for each 375 

spot using the ConsensusTME methodology. Independently, cell type and state proportions for 376 

each spot were estimated using the DestVI package. DestVI requires scRNA from the same tissue 377 

for deconvolution. 18,409 cells from 2 colorectal patients were downloaded from Lee et al51. The 378 

major cell types consisted of B cells, T cells, Epithelial cells, Mast cells, Myeloids and Stromal 379 

cells, consistent with the HoVer-Net cellular deconvolution categories. To further break down the 380 

cellullar categories, we also used the minor class labels for CD19+CD20+ B, CMS1, CMS2, 381 

CMS3, CMS4, IgG+ Plasma, Lymphatic ECs, Myofibroblasts, NK cells, Proliferative ECs, 382 

Smooth muscle cells, Stromal 1, Stromal 2, T follicular helper cells, T helper 17 cells, Tip-like 383 

ECs, cDC cells as labels.  Scanpy52 (Single-Cell Analysis in Python) and Squidpy53 (Spatial 384 

Single Cell Analysis in Python) packages were used for graph analysis. This included graph 385 

visualisation and graph metric algorithms. Immune hotspots were calculated from the immune 386 

score signature using PySAL (Python Spatial Analysis Library) and separate immune cold and 387 

immune hot graphs were calculated from these immune hotspot regions. 388 

Statistics 389 

Cell organization and disease characteristics were compared between groups using the Wilcoxon 390 

rank-sum test. The association between immunity groups and patient outcomes was evaluated 391 

using Cox proportional hazards models.  392 

 393 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.06.498984doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.06.498984
http://creativecommons.org/licenses/by-nc/4.0/


 17 

Data availability 394 

The results published here are based in part upon publicly available data generated by the TCGA 395 

Research Network (https://www.cancer.gov/tcga). All these data comply with ethical regulations, 396 

with approval and informed consent for collection and sharing already obtained by the TCGA 397 

consortium.  398 

The spatial transcriptomics data employed in the study was freely available for reuse from 10x 399 

Genomics through the Visium platform (https://support.10xgenomics.com/spatial-gene-400 

expression/datasets). 401 

Ethical approval and written informed consent were not required for this study.  402 

Code availability 403 

The code developed for the purpose of this study can be found at the following repository: 404 

https://github.com/secrierlab/TumourHistologyDL  405 
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FIGURES 545 

 546 

Figure 1. Study workflow and immunity-based stratification of colon adenocarcinoma. (a) 547 

Workflow of the study. A prognostic classifier of colon adenocarcinoma was defined based on 548 
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RNA-seq inferred immune activity in the tumours. An H&E based deep learning classifier was 549 

then on these labels, and differences in cellular compositions and interactions between the two 550 

groups were subsequently described. (b) Optimisation of tumour immunity threshold to maximise 551 

survival differences. The dotted line highlights the optimal cut-point of 0.39. (c) The high and low 552 

immunity groups defined using the cut-off in (b) show significantly different overall survival in 553 

the TCGA-COAD cohort. (d) The high immunity group presents higher fractions of lymphocytes 554 

and neutrophils, as scored by pathologists. (e) Differences in colon adenocarcinoma molecular 555 

subgroup and clinical characteristics between high and low immunity tumours, inferred from 556 

conditional independence tests. Only significantly associated characteristics are shown. The stars 557 

mark Pearson residuals greater than 2 or less than -2, indicating the strongest correlations. (f) 558 

Predicted drug sensitivity of TCGA-COAD tumours to a variety of anti-cancer compounds, 559 

compared between high and low immunity groups. Only compounds showing significant 560 

differences in drug sensitivity are shown (ranked by the magnitude of the difference). 561 

 562 
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 564 

Figure 2. Deep learning classifier of tumour immunity. (a) Pipeline for the identification of 565 

RNA-seq based immune phenotypes in digital images of H&E stained cancer tissue. (b-c) A mean 566 

accuracy (AUC) of 82% is obtained when predicting the immune phenotype of colon cancer H&E 567 

slides with 5-fold cross validation by averaging the probability per tile (b) and counting the 568 

percentage of tiles (c), respectively. (d) Example of an H&E stained slide (top) and the 569 

corresponding immunity predictions of the model within the same slide (bottom). The colour 570 

gradient from blue to red reflects increasing probability of high immune content in each patch. (e) 571 
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Immunity class deep learning predictions in each tile, compared between samples with high and 572 

low overall immunity (as inferred from RNA-seq data). Tile-level predictions have been classed 573 

as high, intermediate or low immunity based on the probability of belonging to the HI/LI group 574 

as indicated. 575 

 576 
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 577 

Figure 3. Prediction of the subgroups of CD4+ and CD8+ T cells in H&E images. Mean 578 

accuracies (AUC) are shown for predictions of each of the following T cell categories: (a) generic 579 
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CD4+ T cells - 78%; (b) generic CD8+ T cells - 66%; (c) CD4+ naïve T cells - 67%; (d) CD8+ 580 

naïve T cells – 64%; (e) CD4+ central memory T cells - 82%; (f) CD8+ central memory T cells - 581 

69%; (g) CD4+ effector memory T cells - 70%; (h) CD8+ effector memory T cells - 83%. 582 

 583 
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 585 

Figure 4. Graph analysis of the cellular organisation of the immune response in colon 586 

adenocarcinoma. (a) Pipeline of the graph analysis approach. After preprocessing the WSIs, cells 587 

are segmented and classified using HoVer-Net, following further graph modelling and storage. 588 

(b) The inferred cell-cell interactions within the tissue are stored in a Neo4j graph database for 589 

further analysis. The database structure is shown, with representative relationships between cell 590 

types illustrated. (c) Example of a stromal barrier graph structure, separating tumour cells from 591 

lymphocytes. (d) Example of a graph structure illustrating lymphocyte infiltration of the tumour.   592 

 593 

 594 

 595 
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 598 

Figure 5. Cellular organization differences in high versus low immunity tumours. High (red) 599 

and low (blue) immunity groups are compared in terms of: (a) the fraction of isolated 600 

lymphocytes; (b) the fraction of isolated stromal cells; (c) the fraction of direct tumour-601 

lymphocyte interactions; (d) the fraction of direct stroma-lymphocyte interactions. (e) The fold 602 

change in interactions established between pairs of cell types in high versus low immunity 603 

tumours. The ratio of median numbers in either group is depicted. (f) Fraction of lymphocyte 604 
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triples compared between high and low immunity samples containing at least one such structure. 605 

(g) Fraction of stromal barriers compared between high and low immunity samples containing at 606 

least one such structure. Schematic depictions of cellular structures are displayed alongside each 607 

comparison.  608 

  609 
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 610 

Figure 6. Validation of AI model predictions using spatial transcriptomics data. (a) Original 611 

colorectal tissue slide employed for spatial transcriptomics from Visium. (b) The immunity 612 

prediction of the deep learning model on H&E staining-derived patches. Red indicates areas of 613 

high immunity, blue indicates low immunity. Four high immunity islands are indicated with an 614 

orange outline and numbered 1-4. (c) Immunity score across spatial transcriptomics spots. Red 615 

and yellow areas indicate high immunity, and the same islands 1-4 as in (c) are indicated on the 616 

slide. (d) Immune hot (red) and cold (blue) hotspots defined from spatial transcriptomics. The 617 

grey spots have intermediate levels and cannot be classed in either group. (e) CD8+ (top) and 618 
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CD4+ (bottom) T cell interaction graphs within hot (left) and cold (right) immunity areas.  (f) 619 

CD8+ (top) and CD4+ (bottom) T cell proportions compared between immune hot (red) and cold 620 

(blue) graphs.  621 

 622 
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