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Abstract

Background

Plant genomes encode transcripts that require spatio-temporal regulation for proper
cellular function, and a large fraction of the regulators can be found in intergenic regions.
In animals, distal intergenic regions described as enhancer regions are actively
transcribed as enhancer RNAs (eRNAs); the existence of eRNAs in plants has only been
fairly recently documented. In this study, we evaluated with high sensitivity the synthesis
of eRNAs that arise at genomic elements both distal and proximal to genes by combining
PRO-seq with chromatin accessibility, histone modification, and methylation profiles in

rice.

Results

We found that regions defined as transcribed intergenic regions are widespread in the
rice genome, and many likely harbor transcribed regulatory elements. In addition to
displaying evidence of selective constraint, the presence of these transcribed regulatory
elements are correlated with an increase in nearby gene expression. We further identified
molecular interactions between genic regions and intergenic transcribed regulatory
elements using 3D chromosomal contact data, and found that these interactions were
both associated with eQTLs as well as promoting transcription. We also compared the
profile of accessible chromatin regions to our identified transcribed regulatory elements,
and found less overlap than expected. Finally, we also observed that transcribed

intergenic regions that overlapped partially or entirely with repetitive elements had a
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propensity to be enriched for cytosine methylation, and were likely involved in TE

silencing rather than promoting gene transcription.

Conclusion

The characterization of eRNAs in the rice genome reveals that many share features of
enhancers and are associated with transcription regulation, which could make them

compelling candidate enhancer elements.

Keywords

Gene regulation, cis-regulatory elements, functional genomics, enhancers, transcribed
enhancers, PRO-seq, Oryza sativa, methylation, ATAC-seq, Pore-C, chromatin

architecture, cis-eQTL
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Background

The spatio-temporal regulation of gene expression is essential for coordinating
development and adaptive responses to environmental change. Transcriptional
regulatory DNA sequences encode information that leads to the recruitment of
transcription factors (TFs) in a DNA sequence-dependent manner, allowing the control of
the location and rates of chromatin decompaction, transcription initiation, and finally the
release of RNA polymerase Il (RNAPII) from pausing to productive elongation[1,2].
RNAPII can be recruited by regulatory elements both proximal and distal from the gene(s)
they regulate. In animals, an important feature of many (if not all) active cis-regulatory
elements (CREs), like enhancers, is the production of nascent transcripts by
enhancers|[3,4].

Enhancer RNAs (eRNAs) have been generally defined as bidirectional, largely
unspliced and unpolyadenylated transcripts originating from putative enhancers, with
lengths predicted to be less than 150 nucleotides (although some can be up to 2 kb long)
[5,6]. In animals, eRNAs are predominantly localized in the nucleus and chromatin-bound
fractions [7,8], and are considered a hallmark of active enhancers and a proxy in
predicting the spatio-temporal activity of active CREs. Enhancer transcription is important
during gene expression. For example, it may maintain chromatin accessibility to enable
the binding of TFs and cofactors [9,10], it stimulates the catalytic activity of chromatin
remodelers like histone acetyltransferases, it regulates the occupancy of TFs and
coactivators [11,12], and it promotes the pause release of RNA polymerase Il to

productive elongation [13,14].
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The instability of eRNAs, however, makes them difficult to detect with steady-state
RNA-sequencing data, and their characterization depends on nascent RNA sequencing
technologies that enable the measurement of transient RNA transcription at multiple
stages and on a genome-wide scale. These methods include global run-on sequencing
(GRO-seq) [15] and precision nuclear run-on sequencing (PRO-seq) [16]. These
approaches have also successfully identified a diversity of RNA species, including long
non-coding genes, upstream antisense RNAs, and eRNAs [17].

In plants, our understanding of eRNAs is still limited. There have been reports of
eRNA transcription in maize and cassava [18], and in rice (Oryza sativa) [19], but they
appear to be rare in other genomes such as Arabidopsis [20]. In maize and cassava, the
intergenic regulatory elements from PRO-seq data appear to be enriched for expression
quantitative trait loci (eQTLs) identified in kernels compared to a set of random intergenic
regions and showed low levels of conservation, a pattern suggesting that these
sequences evolve rapidly [18]. In rice, intergenic regions enriched for eRNA signatures
had a marked enrichment for open chromatin, a generally asymmetric enrichment for
H3K27ac histone modification, and weak but significant positive correlation with nearby
gene expression. Similarly to maize and cassava, these sequences had low interspecies
conservation but evidence of greater than two-fold excess of nucleotide sites under weak
negative selection within O. sativa populations [19]. Evidence of recent selection on these
sequences suggests the recent emergence of eRNA-producing intergenic regions within
O. sativa, consistent with transcribed regulatory elements often being species specific
[19,21]. Understanding the relationship between eRNAs and the broader class of

transcribed regulatory elements in plants is an important challenge and may in part be
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aided by methods that associate specific genetic variants with agronomic traits. These
often indicate that these variants are located in noncoding sequences and likely functional
in gene regulation [22,23].

In plants, enhancer regions described so far appear to display specific
characteristics. These include the presence of transcription factor (TF) binding motifs,
chromatin accessibility, specific histone modifications, low DNA methylation, and
evidence of physical interactions with their target genes that may be transient or stable
[24,25]. The benefits of considering several of these signatures in parallel has increased
our ability to differentiate enhancers from other types of CREs (e.g. silencers, insulators,
TATA-box, etc.), as well as other types of regions like promoters, transcription start sites
(TSSs) and coding regions [19,24,26-31]. In addition, coupling these signatures with
massively parallel reporter assays have greatly contributed to further functional
characterization of CREs [26,32,33]. For example, a large proportion of the DNA in
regions with active CREs appears more hypomethylated compared to other intergenic
regions [28,34-37]. The presence of histone modifications also signal the presence of
either active CREs (e.g. H3K27ac, H3K18ac) [38,39], CREs with paused polymerases
(enriched with H3K27me3 and low levels of an active histone mark such as histone
acetylation) [26,40,41], or repressed CREs (low chromatin accessibility and and
H3K27me3 levels) [26,42,43].

Despite the analysis of the various genomic and epigenomic features associated
with plant enhancers, the presence of eRNAs are generally not considered. In this study,
we used a combination of PRO-seq, complementary functional genomic datasets (DNA

methylation profiles, histone modification profiles, transcriptomic profiles, chromatin
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accessibility), and 3D genome architecture to explore eRNAs and their genomic contexts
in the Asian rice genome (Oryza sativa). We found that some intergenic eRNAs can be
related to transposable element (TE) silencing but many share features of enhancers that
suggest they harbor transcribed regulatory elements and are associated with transcription
regulation and cis-expression quantitative trait loci (e-QTLs). This work continues efforts
to understand important types of noncoding elements and is driven by the need to improve

crop species by modulating gene expression to enhance plant system resilience [44].

Results and Discussion

Profile of nascent transcription in the rice genome

The goal of the study was to investigate the association between intergenic
transcription and putative regulatory sequences in the context of DNA sequence
composition, chromosomal environment, and evolutionary constraint. To examine
genome-wide nascent transcription, particularly intergenic transcription including eRNAs,
we generated PRO-seq data from rice leaf tissues of the O. sativa japonica cultivar
Azucena grown under optimal conditions. We combined the newly generated PRO-seq
data with previously published PRO-seq data that was also generated from plants grown
under the same condition [19]. These PRO-seq datasets were combined and consisted
of 17,519,424 reads that were aligned to the Azucena reference genome [45].

Because of the bi-directional nature of eRNAs [46,47] and based on previous

nascent transcription studies in animals [e.g. [48—-52]], we used bi-directional transcription
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activity as a first criterion for identifying candidate transcribed regulatory elements in the
genome [7,53]. To do so, we used the machine learning algorithm dREG (discriminative
Regulatory Element detection) that used mapped reads from our PRO-seq experiments
(positive and negative strands) and used a support vector regression to recognize the
characteristic pattern of divergent transcription at active transcribed regulatory elements
(promoters, enhancers, and insulators) [50,54]. Genomic regions with significant
bidirectional transcription (herein referred to as dREG peaks) showed an enrichment of
PRO-seq reads in both DNA strands, and highly active regions were assigned a high
dREG score (>1.0; Fig. 1a). In total we detected 69,898 dREG peaks across the genome,
with dREG scores ranging from 0.33 and 1.56 (Fig. 1a; Additional file 1: Figure S1). The
genome-wide median dREG score was 0.591 and the median size of a dREG peak was
390 bps (Additional file 1: Figure S1).

The maijority of dREG peaks (~91.9%) were found in intergenic regions (Fig. 1b).
We divided the intergenic dREG peaks into two classes depending on their distance to
genic sequences: (i) proximal dREG peaks (dREGproximal), Which are intergenic dREG
peaks that are <1 kb to predicted transcription start or end sites, and (ii) distal dREG
peaks (dREGyistal), Which are >1 kb away from predicted transcription start or end sites.
Within the intergenic regions, we found approximately equal proportions of dREGyproximal
and dREGauista peaks (Fig. 1b). dREGprximal peaks had significantly higher dREG scores
than dREGadista peaks (Mann Whitney U test, p-value <0.0001; Additional file 1: Figure
S2).

Many cis-regulatory elements (CREs) that are presumed to be actively engaged

have been shown to reside within accessible chromatin regions [26,55]. We examined
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the accessibility of dREG peak regions by comparing dREG peaks with open chromatin
regions identified using Assays for Transposase-Accessible Chromatin with sequencing
(ATAC-seq), and considered a conservative set of peaks that were within 100 bps of each
other as overlapping peaks. Of the 69,898 dREG peaks across the genome, we found an
overlap of 5,674 (8.1%) dREG peaks with the 23,961 detected accessible chromatin
regions (herein referred to as ATAC peaks) as identified by ATAC-seq (Fig. 1c). We then
examined any differences in overlap with ATAC peaks for dREGgproximai and dREGygistal
peaks and found that dREGproximai peaks had twice as much overlap with ATAC peaks
compared to dREGaistal peaks (Additional file 2: Table S1).

In addition to accessible chromatin regions, histone modifications can provide
insight into the regulatory mechanisms of the CREs, whether or not they are contained
within these accessible chromatin regions. To determine the chromatin features
associated with dREG peaks, we used previously generated genome-wide maps of
histone modifications and cytosine methylation [19] and compared their profile at ATAC
peaks (Fig. 1d). We find that H3K27ac and H3K18ac histone marks were enriched around
the dREG and ATAC peaks, (+/- 1.5kb). However, PRO-seq reads showed the expected
enrichment of bi-directional transcription activity for dREG peaks but not for ATAC peaks.
Moreover, the repressive H3K27me3 mark [56] was enriched within ATAC peaks but
depleted within dREG peak regions (Fig. 1d). In addition, the levels of DNA methylation
marks [37] were increased for both dREG and ATAC peak sequences, but the latter had
higher density of DNA methylation than dREG peaks. We then compared epigenetic
marks between dREGprximal and dREGugista peaks and whether they overlapped ATAC

peaks or not, and found no overall differences in chromatin features (Fig. S3). Taken
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together, these results suggest there is a range of detected transcribed regulatory
elements (represented by different dREG scores) in the rice genome and that overall they
show relatively little overlap with accessible chromatin regions, as they display different
signals in terms of their epigenetic architecture. Consistant with our previous work [19],
the different combination of epigenetic marks and transcriptional signatures may play a
more nunanced role in determining the chromatin state and functionality of a genomic

region.

dREG peaks enriched for DNA methylation overlap with repetitive elements

DNA methylation is often found in inactive regulatory elements, where their target
genes are repressed [57], which is why we did not expect to detect an enrichment of DNA
methylation for actively transcribed candidate regulatory regions. For instance, when we
compared epigenetic marks for transcriptionally active genes with annotated repetitive
elements in the rice genome, the common repressive mark H3K27me3 and DNA
methylation were enriched within repeat sequences or genes with low expression
(Additional file 1: Figure S4). Methylation in plants is dependent on the RNA-directed DNA
methylation (RADM) pathway, wherein transcribed non-coding RNA molecules direct the
addition of DNA methylation to specific DNA sequences that are largely associated with
transcription repression [58,59]; thus the PRO-seq data in intergenic regions may, in part,
be detecting silencing-related transcription. We therefore investigated whether cytosine
methylation was mainly attributed to silencing of repetitive elements or was potentialy an
inherent characteristic of plant TREs. We categorized dREG peaks into three repeat

classes: (i) “without repeat’ class, where the dREG peak region does not contain

10
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annotated repeat sequences, (ii) “intermediate repeat” class, where the dREG peak
region overlaps with at least 1 bp of a repeat sequence, and (iii) “repeat” class, where the
entire dREG peak region overlaps a repeat region. For both dREGproximal and dREGgistal
peaks, the majority of the peaks (>70%) were in the intermediate repeat class, which had
significantly higher dREG scores than both repeat and without repeat class dREG peaks
(Mann Whitney U test p-value < 0.001 and Fig. 2a).

DNA methylation in rice, as in other plants, occurs at three contexts: CpG, CHG,
and CHH (where H indicates A, T, or C). We compared these cytosine contexts in
dREGgproximal and dREGuistal peaks, and found that the dREGuistai peaks had significantly
higher levels of methylation across all three cytosine contexts (Mann Whitney U test p-
value < 0.001 and Fig. S5). Also, for both dREGproximai and dREGgistal peaks, regardless
of repetitive content, CpG sites had the highest methylation level, while CHH sites had
the lowest (Fig. 2b). Since a higher dREG score was associated with higher
transcriptional activity (Fig. 1a), we plotted dREG peak score and methylation for both
dREGproxima and dREGuista peaks. We found that overall methylation levels were
negatively correlated with dREG scores (p < 0.01), although CHH methylation, previously
associated with TE silencing [36,60-62], had significantly positive correlation (p < 0.001)
with dREG scores (Fig. S5).

We then contrasted the methylation profiles of dREG peaks in the repeat and
without repeat class, as the former is likely to represent epigenetic marks from
chromosomal silencing. When we considered chromatin accessibility, we found that
dREG peaks (proximal or distal) in the without repeat class were more accessible (Fig.

2c). Taken together, these results suggest that PRO-seq signals detected by dREG that

11
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overlap repetitive elements could be involved in silencing mechanisms (such as RDdM)

rather than enhancer activity (candidate active CREs).

Evidence of selection within dREG peaks

One strategy known for finding candidate functional sequences in genomes is to
look for evolutionary constraint across species [43,63—65]. While sequence conservation
can identify conserved noncoding sequences (CNSs), other functional CREs, such as
enhancers, have been shown to show sequence diversification and be more species
specific [66,67], and therefore not readily detected by conservation-based methods. To
infer functionality of our dREG peaks, we estimated the level of evolutionary constraint
occurring within the dREG peak regions using two evolutionary-based approaches:
phyloP [68] and fitCons [19,69]. Selection within dREG peaks were compared to selection
in coding sequences and neutral regions of the genome (control) (Fig. 3).

The results showed an overall higher evolutionary constraint at dAREGproximal peaks
compared to dREGuista peaks. While the peaks had lower levels of purifying selection
compared to coding sequences (Mann Whitney U test p < 0.0001), both dREGgroximal and
dREGauistal peaks had higher phyloP values compared to random regions of the genome.
The dREGgroximal peaks had a significant negative correlation (p-value < 0.001) between
dREG score and phyloP statistics, particularly in regions with dREG scores above 1.2
(Additional file 1: Figure S6). A possible explaination for this could be that some of the
regions with higher dREG scores are detecting methylation-related activity. For instance,

we detect a positive correlation between dREGproximal SCcOres and CHH methylation, which

12
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suggests that not all dREG activity is related to transcription but may also be related to
silencing activity (Additional file 1: Figure S5).

For fitCons, dREGgroximal peaks had higher fitCons scores (p) than dREGgistal peaks
(Mann Whitney U test p <0.001). For both dREGproximai and dREGgistal peaks, we observed
a significant positive correlation (p < 0.001) between dREG score and fitCons statistics.
We noted that dREGuistal peaks had fitCons scores that were significantly lower than
dREGproximal and random control region (Fig. 3b). Moreover, lower dREG scores had lower
fitCons scores, and lower dREG scores have been attributed to regions evolving more
neutrally and within active repetitive elements (Additional file 1: Figure S6) [19,69].

To investigate why dREGudistar peaks had lower fitCons scores, we looked to
determine whether we could detect differences in evolutionary constraints at AREG peaks
based on their repetitive element content. When we divided dREG peaks by repeat class
we found that dREG peaks, regardless of the amount of repeat content, had significantly
higher phyloP scores (Mann Whitney U test p < 0.05) than random regions of the genome
(Additional file 1: Figure S7). For fitCons scores, compared to random genomic regions,
dREGprximal peaks had significantly elevated p statistics for all repeat classes (Mann
Whitney U test p < 0.001) but for dREGuistal peaks, there was no significant difference for
the without repeat class, while the intermediate repeat and repeat classes had
significantly lower fitCons scores (Mann Whitney U test p-value < 0.0001). A similar trend
in dREG peaks was previously observed in rice [19] and human populations [70]; in these
cases, there was an excess of sites under weak negative selection was observed,
suggesting a recent selection since the most recent common ancestor. Taken together,

these results suggest dREG peaks display some level of conservation that is stronger in

13
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proximal peaks than distal peaks, although this distinction may be due to the increased

occurrence of repetitive elements with the latter.

Functionality of dREGyroximal peaks and gene expression

We explored whether candidate transcribed regulatory elements identified by the
dREG algorithm could indeed be functional regulatory elements (active CREs). We first
focused on dREGgrximal peaks detected in the promoter region and examined whether
their activity is associated with expression of nearby genes. The results showed that
genes with a dREGprximai peak in its promoter region had significantly higher gene
expression (Mann Whitney U test p < 0.001 and Fig. 4a). This higher level of gene
expression was observed regardless of the repeat class associated with the peak.

Previous studies using PRO-seq data to define transcribed regulatory elements
established a dREG score threshold of >0.8 for human enhancers and < 0.3 for non-
functional or random transcriptional activity [54]. In plants, the only dREG threshold that
has been explicitely used to characterize these regulatory elements was a dREG score
of > 1.0 in the rice genome [19]. Based on this, we examined the relationship between
dREG score and functional genomic activity by comparing the relationship between gene
expression levels and dREGprximai peak scores. Results showed that genes with a
dREGproximal peak and high dREG score (>0.8) had significantly higher gene expression
than genes with low (<0.8) dREG score (Mann Whitney U test p < 0.001 and Fig. 4b).
This was consistent even in the presence of repeat elements. We also examined the
chromatin profiles surrounding dREGgroximal peaks and discovered that peaks with scores

higher than 0.8 had similar chromatin marks (Additional file 1: Figure S8), although with
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some unexpected increase in DNA methylation levels in all cytosine contexts. The
methylation pattern in peaks with higher dREG scores appears different from those with
lower scores. dREG peaks with higher scores display methylation in the center of the
peak, in contrast to methylation being distributed throughput the lower dREG scored
peaks. Methylation was therefore taken into consideration in our subsequent downstream

analysis.

Identifying distal transcribed regulatory elements through bidirectional
transcription activity

Distal transcribed regulatory elements associated with dREGyistal peaks may signal
RNA-producing enhancers, producing unstable transcripts in both directions [71]. Indeed,
in animals, genomic coordinates of distal transcribed regulatory elements have often
overlapped with enhancers that actively produce eRNAs, although in plants there is no
evidence that these are indeed associated with enhancer activity.

To further characterize rice dREGuistal peaks and identify potential functional roles
in the rice genome, we examined long-range chromosomal contact interaction between
genes and candidate CREs using the Pore-C sequencing method [72]. Pore-C couples
chromatin conformation capture with long-read nanopore sequencing to detect genome-
wide multi-way chromatin contacts. It has been shown to be highly effective at sequencing
through repeat regions of the genome and is able to detect increased contact intensity
with less sequencing reads than conventional Hi-C sequencing [72]. Using Pore-C
sequencing on rice leaves, we generated 104 million concatamer reads that correspond

to 290 million contacts across the rice genome (Additional file 2: Table S2).
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Since Pore-C sequencing has not been applied in plants to profile chromatin
activity, we first examined the functionality of the 3D genome architecture detected by this
method. Using the Pore-C method, we detected 3,261 distinct topologically associated
domains (TADs) which are localized chromosomal regions of high physical contact [73].
TADs had a median size of 80 kb and the TAD boundaries were enriched for transcription
and active chromatin marks (Fig. 5a and Fig.S9). These results were consistent with
previous Oryza Hi-C sequencing results [74] indicating that Pore-C sequencing was able
to detect functional 3D contacts across the Oryza chromosome.

To determine whether dREGagista peaks could represent distal regulatory elements
of one or multiple target genes, we used the Pore-C sequencing data to detect the
formation of chromatin loops at 5 kbp resolution. Using the FitHiC2 algorithm [75], we
detected 33,779 chromatin loops, where 42.7% (14,417) of those loops involved a gene
(where the coding window had to contain more than 100 bp of coding sequences) and a
noncoding region (Fig. 5b). These represent candidate gene-regulatory element loop
interactions. We then visualized this loop interaction by conducting aggregate peak
analysis (APA), which takes the contact map and measures its enrichment with respect
to its local neighborhood (signal around detected chromatin loop formations) (Fig. 5c).
When we compared the APA plots for all chromatin loops and candidate gene-regulatory
element loops, the latter loops had strong enrichment of signals centered at the contact
point. Specifically for the candidate gene-regulatory element loops, the central window
(i.e. the contact point) had ~3.5 fold increased in contacts compared to the lower left

windows (i.e. background contact levels) (Fig. 5c).
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Next, we examined the potential functionality of candidate gene-regulatory
element loops. As a first step, we processed a subset of candidate loops as probable
gene-regulatory element interactions (see the “Methods” section for details). To do so,
we (i) focused on chromatin loops that do not cross TAD boundaries, as transcription
related chromatin loops co-localize within TAD domains in plants [76], (i) removed loops
where the noncoding anchor had peaks with CHH methylation, as these are more likely
to represent transposable element silencing activity [37], and (iii) removed loops where
the gene anchor overlapped multiple genes, as the resolution of our Pore-C data could
not differentiate whether the noncoding region regulated one or multiple genes.

Following these filtering steps, we analyzed gene-regulatory element loops where
the noncoding anchor had only an ATAC peak, only a dREG peak, or had both an ATAC
and dREG peak (Fig. 1c). These loops were then compared to loops where the noncoding
anchor had no detected ATAC peak nor dREG peak and represented control gene-
noncoding sequence interactions (Additional file 1: Figure S10A). We found that for all
post-filtered gene-noncoding sequence loops, and regardless of the annotation within the
noncoding anchor, the majority of genes had contact with a single noncoding region
(Additional file 1: Figure S10B). Furthermore, the average distance between the gene and
the noncoding region was 65 kb to the dREG only peak, 45 kb to the ATAC only peak, 35
kb to both dREG and ATAC peaks, and 50 kb to a noncoding anchor with no annotation
(Additional file 1: Figure S10B). We also found that genes that contacted a dREG peak
had significantly higher gene expression than those that contacted a noncoding anchor
with no annotation (Mann Whitney U test p < 0.01 and Fig. 5d). In contrast, genes that

contacted an ATAC peak did not show any significant difference in expression. Finally,
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genes with both dREG and ATAC peaks had significantly elevated gene expression
(Mann Whitney U test p-value < 0.001 and Fig. 5d). The median dREG scores for gene-
contacting dREG peaks were 0.54 (Additional file 1: Figure S11). Gene ontology
enrichment analysis on genes found in gene-non coding loops did not highlight specific

pathways or function.

dREGuista peaks are targets of transcriptional regulation

As an orthogonal approach to investigate the gene regulatory functions of dREG
peaks, we identified expression quantitative trait loi (eQTLs) across a panel of rice
varieties and intersected those eQTLs with dREG peak regions. Using gene expression
and SNP data from 216 rice varieties grown in well-watered field conditions [77] we
detected 274,480 eQTLs after a 5% Bonferroni threshold. We intersected the dREGugistal
peaks with the significant eQTLs and found an overlap with 13,036 eQTLs.

To test the significance of the observed overlap, we generated a bootstrap
distribution by randomly sampling the potentially non-functional regions of the genome,
which were matched for size and total number of dREGuistal peaks. Results showed that
the observed number of overlap between eQTLs and dREGagista peaks (Fig. 6) was higher
than the maximum number of overlaps in the bootstrap distribution across random
regions, indicating dREGuistal peaks are enriched for eQTLs. We also examined dREGygistal
peaks that were limited to those forming loops with genes and potentially involved in
transcription (identified and analyzed in Fig 5d). Overlap of those filtered dREGgistal peaks
were also significantly enriched for eQTLs (Additional file 1: Figure S12). We repeated

the process for distal ATAC peaks (ATACuistal) that are intergenic and more than >1 kb
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away from predicted transcription start or end sites, and found a significant under
representation for eQTLs (Additional file 1: Figure S13). Taken together, these results
suggest that dREGuistar peaks could be good candidate TREs that could impact gene

activity by promoting transcription.

Summary: nascent transcription and the rice genome

The rice genome encodes a large number of transcripts that require spatio-
temporal regulation and for which a large of cis-regulatory elements remain to be
characterized. In this study, we took advantage of complementary functional genomics
datasets to characterize with high sensitivity the synthesis of eRNAs that arise at both
distal and proximal genomic elements. We considered a broad range of dREG scores
(from 0.3 to >1.0) to explore a wider range of transcribed regulatory elements that could
have distinct functional roles based on their functional genomic signatures. We find that
dREG peaks (proximal and distal) that did not overlap with repetitive elements exhibited
greater evolutionarily constraint and had a higher incidence of overlap with ATAC peaks.
In addition, dREGyroximai peaks with higher dREG scores correlated with increased
transcription of nearby genes, and gene expression was higher for proximal peaks that
did not overlap with repeat sequences (Figs. 2 and 4).

Studies in plant genomes, and particularly in maize, have relied mainly on
accessible chromatin regions (e.g. ATAC peaks) as an indicator of the presence of active
distal CREs [26,74]. In study by Lozano et al. [18] using dREG/PRO-seq data in maize,
they found that 31% of their identified TREs co-located with a list of distal ATAC peaks

characterized by Ricci et al. [26], as well as an overlap of 17% between their list of

19


https://doi.org/10.1101/2022.07.06.498888
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

11

12

13

14

15

16

17

18

19

20

21

22

23

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.06.498888; this version posted July 7, 2022. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

intergenic regulatory elements and CREs found to form CRE-gene loops. Our results
suggests a much lower co-localization between dREG and ATAC peaks, with an overlap
of about 3.7%. This could be due in part to differences between species in their 3D
chromatin architecture, as has been reported with the growing number of chromosomal
contact experiments in plants [78]. Our results suggest that a proportion of dREGaistal
peaks could be functional distal transcribed regulatory elements, as we detected a
significant increase in gene expression in gene-noncoding loops that contain a dREG
peak compared to gene-noncoding loops with no annotation or even with only an ATAC
peak. However, since the loops with both an ATAC and a dREG peak is associated with
the highest gene expression levels, we still have to determine which elements are
functional, whether it requires the overlap between eRNA (i.e., bidirectional transcription)
activity and chromatin accessibility, or whether the presence of eRNAs is sufficient.

One of the key observations in this study is the impact of the presence of repetitive
elements overlapping the detected dREG peaks. For dREG peaks that partially or entirely
overlapped with annotated repetitive elements, we detected a higher percentage of
methylation across all three cytosine contexts. Interestingly, we observed an increase in
CHH methylation, which occurs predominantly at TEs, and has been shown to be involved
in the prevention of transposon jumping during development in Arabidopsis [79]; this
methylation occurs through the plant-specific RdADM pathway that operates via non-
coding RNA [80]. The fact that DNA methylation can positively or negatively impact
transcriptional activity, for example by modulating binding affinity of TFs, makes it a
confounding factor when characterizing candidate TREs. In plants, we argue that

methylation profiles should always be considered with PRO-seq datasets to characterize
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the intergenic transcription signal. We also note that the dREG method uses a training
set of mammalian transcribed regulatory elements, which may not be optimal for plant
genomes. We cannot rule out that there may have been a level of RdDM transcription
contamination in the set of transcribed regulatory elements, but this was taken into
account when we filtered out dREG sites presenting methylation.

Beyond the potential presence of TE silencing mechanism associated with dREG
peaks, we noted that dREG scores were significantly higher for the intermediate repeat
class, but this class may contain different types of elements, as an overlap of as little as
1 bp with a repetitive element places a dREG peak in this category. An interesting
perspective could be the presence of an overlap between dREG peaks and cis-regulatory
elements derived from transposable elements, as a result of an evolutionary process
called TE exaptation, or TE co-option [81-83]. In mammals, there are several reported
instances of TEs providing CREs, including enhancers and repressive elements, and TEs
have contributed an important fraction of TF binding sites across the genome (5-40%
[84,85]). While in plants the contribution of TEs for CREs is less clear, future
characterization of these overlapping regions could be an interesting avenue to identify
potential cases of TE-derived CREs. Overall, this suggests that considerations, such as
methylation levels and the potential differences with chromatin accessibility, have to be

taken into account when addressing transcribed regulatory elements in plants.

Conclusions

In conclusion, we have characterized eRNA producing regions in the rice genome.

We find that some of these share features of enhancers and are associated with
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transcription regulation, which makes them compelling candidate enhancer elements.
While the production of eRNAs may be considered a key characteristic used for
identifying enhancers in animal studies, there remains a debate as to whether every
enhancer (in animal systems) produces eRNAs, even at low levels that are not detected
by current methods [51]. In this study, we used the assumptions that eRNAs act principally
in cis versus trans, due to the relative instability of eRNAs [8,67] and several studies have
demonstrated eRNA-dependent transcriptional regulation of mRNAs produced from
loci adjacent to the corresponding eRNA-producing regions [12,86,87]. Further
characterization of eRNA producing regions in other plant genomes will help us better

understand whether this assumption holds true for plants.

Materials and Methods

Plant material

Seeds of O. sativa landrace Azucena (IRGC 328; tropical Japonica), provided by the
International Rice Research Institute (Los Bafios, Philippines), were used for the
functional genomic datasets. Seeds were incubated for 5 d at 50° C and germinated in
water in the dark for 48 h at 30° C. These were subsequently sown on hydroponic pots
suspended in 1x Peters solution and 1.8 mM FeSO4 (pH = 5.1-5.8) (JR Peters). Plants
were grown for 15 d in growth chambers (12-h days; 30 °C/20 °C day/night; 300-500
pMmol quanta m-2 s—1; relative humidity: 50—70%). Leaf tissue for library construction was

collected from 17-d-old, young plants.
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RNA-Seq

Total RNA was extracted using RNeasy Plant Mini kits (Qiagen), according to the
manufacturer’s instructions. RNA quality was determined by BioAnalyzer (Agilent).
Contaminating DNA was removed from total RNA samples with Baseline-ZERO DNase
(Epicentre), whereas ribosomal RNA was removed using a Ribo-Zero rRNA Depletion Kit
(Epicentre). Strand-specific RNA-Seq libraries were synthesized using a Plant Leaf
ScriptSeq Complete Kit (Epicentre). Libraries were sequenced for 2 x 100-bp reads on
an lllumina HiSeq 2500. Two biological replicates were generated and a third replicate
(SRA : SRX7082160; Bioproject : PRUINA586887) generated under the same conditions
and used in a previous study [19] was used. The sequencing reads were adapter-trimmed
and quality-controlled using BBTools (https://jgi.doe.gov/data-and-tools/bbtools/) bbduk
program version 37.66 with option: minlen = 25 gtrim = rl trimq = 10 ktrim =r k = 25 mink
= 11 hdist = 1 tpe tbo. Trimmed reads were aligned to the Azucena reference genome
[45] (Bioproject PRJNA424001) using hisat2 version 2.2.1 [88] and estimated the read
counts for each gene using featureCounts [89]. To normalize the variation existing
between different samples, we applied the trimmed mean of M value (TMM) method [90]
from the edgeR version 3.18.0 package [91] on each samples’ gene expression values.

For each gene the expression values were averaged across the three replicates.

DNA methylation

DNA was extracted using DNeasy Plant Mini kits (Qiagen) following the manufacturer’'s
protocol. Extracted DNA was sheared into 350-bp fragments using an S220 Focused-

ultrasonicator (Covaris). An lllumina TruSeq DNA Kit (Cat. No. FC-121-3001) was used
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to construct the library and a Zymo Lightning Kit (Cat. No. D5030) was used to perform
the bisulfite treatment. KAPA Uracil Polymerase (Cat. No. KK2623) was used to amplify
the library with 12 cycles. One biological replicate was generated and a second replicate,
generated under the same conditions and used in a previous study [19] was used (SRA :
SRX7082155; Bioproject : PRJNA586887). Libraries were sequenced using lllumina
protocols for 2x100-bp reads on an lllumina HiSeq 2500. Raw bisulfite sequencing (BS-
seq) reads quality controled wusing the program trim galore Ver. 0.6.6
(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) with default
parameters. We used bismark version 0.16.3 [92] for mapping the BS-seq reads and

deduplicating reads.

Chromatin accessibility

Intact nuclei were isolated using the plant nuclei isolation protocol described by Zhang
and Jiang [38]. Nuclei quality was assessed using DAPI staining. Chromatin was
fragmented and tagged following the standard ATAC-seq protocol [93]. Libraries were
purified using Qiagen MinElute columns before sequencing and were sequenced as
paired-end 51-bp reads on an lllumina HiSeq 2500 instrument._Sequencing reads were
adapter trimmed and QC controlled using the script bbduk.sh version 38.90

(https://sourceforge.net/projects/bbmap/) with parameters: minlen=16 gtrim=rl trimg=20

ktrim=r k=19 mink=10 hdist=1 tpe tbo. Trimmed sequencing reads were aligned to the
Azucena reference genome using Bowtie 2 version 2.4.2 [94] under option very-sensitive
and with the parameter -X 1000. The Azucena reference genome included the chloroplast

sequence (genbank ID: GU592207.1) to allow chloroplast originating ATAC-seq reads,
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and were subsequently removed using the script removeChrom.py from the Havard FAS

informatics group (https://github.com/jsh58/harvard/blob/master/removeChrom.py). Peak

calling were conducted using the program MACS2 version 2.2.7.1 [95] with the
parameters: --nomodel -g 379627553 -f BED -q 0.05 --extsize 200 --shift -100 --keep-dup
all -B. We used MACS?2 to call peaks for each of the three replicate libraries and peaks
that overlapped 50% in size between at least two replicates were chosen for downstream
analysis. To determine ATAC peaks that overlapped dREG peaks we used bedtools
closest function and peaks that were within 100 bp of each other were considered as

overlapping peaks.

ChIP-Seq

Leaf tissue (2 g) was fixed in 1% formaldehyde (v/v) for 15 min, after which glycine was
added to a final concentration of 125 mM (5 min incubation). Tissues were rinsed three
times with de-ionized water before being flash frozen in liquid nitrogen. Chromatin
extraction and chromatin shearing were performed using a Universal Plant ChIP-seq kit
(Diagenode) following the manufacturer's instructions. Protease inhibitor cocktail
(MilliporeSigma) was added to extraction buffer. Samples were sonicated for 4 min on a
30 s on/30 s off cycle using a Bioruptor Pico (Diagenode). Subsequent steps were
performed as in the Universal Plant ChlP-seq kit protocol. Immunoprecipitation was done
using anti-acetyl-histone H3 (Lys27) (H3K27ac; Cell Signaling Technology; Cat. No.
4353S; lot 1), anti-trimethyl-histone H3 (Lys27) (H3K27me3; MilliporeSigma; Cat. No. 07-
449; lot 2919706), anti-trimethyl-histone H3 (Lys4) (H3K4me3; EMD Millipore; Cat. No.
07-473; lot 2746331) and anti-acetyl-histone H3 (Lys18) (H3K18ac; Cell Signaling

Technology; Cat. No. 9675S; lot 1). The quality and fragment size of immunoprecipitated
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DNA and input samples were measured using agarose gel electrophoresis and
TapeStation 2200 (Agilent). Libraries were synthesized using a MicroPlex Library
Preparation Kit (v.2; Diagenode). Libraries were sequenced as 2 x 50-bp reads on an
lllumina HiSeq 2500 instrument. Two biological replicates were generated and a third
replicate, generated under the same conditions and used in a previous study [19] was
used (SRA : SRX7082158 H3K4me3; SRX7082157 H3K18Ac; SRX7082156 H3K27Ac;
SRX7082153 H3K27me3; Bioproject : PRINA586887).

Sequencing reads were adapter trimmed and QC controlled using the script bbduk.sh

ver. 38.90 (https://sourceforge.net/projects/bbmap/) with parameters: minlen=16 qtrim=rl

trimq=20 ktrim=r k=19 mink=10 hdist=1 tpe tbo. Trimmed reads were aligned to the
Azucena reference genome [45] (Bioproject PRINA424001) using Bowtie 2 version 2.4.2.

[94] under option very-sensitive and with the parameter -X 1000.

PRO-Seq

Nuclei isolation was as described by Hetzel et al. [20], with some modifications. ~20 g of
leaf tissue from 17-d-old plants was collected in 4 °C, placed in ice-cold grinding buffer
and homogenized using a Qiagen TissueRuptor. Samples were filtered and pellets were
washed twice, followed by homogenization, resuspension in storage buffer (10 mM Tris
(pH 8.0), 5 mM MgCl2, 0.1 mM EDTA, 25% (v/v) glycerol and 5 mM DTT) and freezing in
liquid nitrogen. Nuclei were stained with DAPI and loaded into a flow cytometer (Becton
Dickinson FACSAria Il). Around 15 million nuclei were sorted based on the size and
strength of the DAPI signal, and subsequently collected in storage buffer. Nuclei were
pelleted by centrifugation at 5,000g and 4 °C for 10 min, and resuspended in 100 pl

storage buffer.
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PRO-Seq was performed as described by Mahat et al. [16], generating strand-specific
libraries with reads starting from the 3’ end of the RNA. Amplified libraries were assessed
for quality on a TapeStation before sequencing with 1 x 50-bp reads on a HiSeq 2500.
One biological replicate was generated and a second replicate, generated under the
same conditions and used in a previous study [19] was used (SRA : SRX7082159;
Bioproject : PRINA586887).

The raw reads were then used on the proseq2.0 (https://github.com/Danko-

Lab/proseq2.0) pipeline [50] that automatically pre-processes the reads, aligns to the

reference genome, and generates output bigWig files for downstream PRO-seq peak
calling analysis. To identify peaks of divergent transcription activity we used the bigwig
file generated from the previous step as an input for the cloud computing version of the

dREG algorithm (https://dreg.dnasequence.org/).

PoreC data generation and computational processing.

We generated PoreC libraries following the protocol of Choi et al. [96] and sequencing
library was prepared using the Oxford Nanopore Technologies standard ligation
sequencing kit SQK-LSK109. Sequencing was conducted on a GridlON X5 and
PromethlION sequencer and the raw data were base-called by Oxford Nanopore
Technologies basecaller Guppy version 44.0 (available on
https://community.nanoporetech.com/) on high-accuracy mode. The Pore-C data
analysis was conducted using the PoreC snakemake workflow developed by Oxford

Nanopore Technologies (https://github.com/nanoporetech/Pore-C-Snakemake). Briefly,

the pipeline first aligns the nanopore Pore-C chromosome contact sequence reads to the
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Azucena genome using bwa-sw version 0.7.17-r1188 [97] with parameters -b 5-q 2 -r 1
-T 15 -z 10 The alignment BAM file was processed with Pore-C tools
(https://github.com/nanoporetech/pore-c) to filter spurious alignments, detect ligation
junctions, and assign fragments that originated from the same chromosomal contacts.

The workflow also generates cool and hic files that can be used for downstream analysis.

TAD and chromatin loop calling

The PoreC contact matrix generated from the previous analysis was normalized using the
KR algorthim [98] with the computational suite HiCExplorer version 3.4 [99]. Using the
normalized contact matrix the algorithm topdom [100] was used to call TADs as the
method was shown recently to be a highly effiecnt and accurate method for detecting
TADs [101]. The topdom analysis was conducted using a 5 kbp resolution contact matrix.
PoreC contact matrix was also used to statistically determine the significant chromatin
contacts using the program FitHiC2 [75]. Using the genomic distance between windows
and their contact probability, FitHiC2 applies a spline fit to model an empirical null
distribution and detect chromatin contacts as outliers to this null distribution. FitHiC2 was
run with default parameters using the 5kbp resolution contact matrix, while setting the
lower bound on the intra-chromosomal distance range (parameter -L) as 10 kbp and
upper bound (parameter -U) as 1 Mbp. Candidate chromosome loops were filtered by
selecting for window pairs that had a Benjamini-Hochberg procedure based false
discovery rate threshold g-value < 0.05. Window pairs that had significant evidence of

contact were then classified as whether it was a coding or noncoding window by defining
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a coding window as those that contained more than 100 bp (i.e. greater than 2% of the

window) of coding sequences.

Azucena reference genome repeat sequence and gene annotation

Repetitive sequences in the Azucena genome were annotated using the EDTA program
[102]. The Azucena reference genome lacked gene annotation. To annotate the gene we
took the gene models from the Nipponbare reference genome, which arguably has the
best gene models for rice, and lifted over the gene coordinates using the program liftoff

[103].

Evolutionary analysis

To calculate phyloP scores we first generated whole genome alignments of wild rice (O.
nivara, O. rufipogon, O. punctata, O. glaberrima, O. barthii, O. brachyantha, O.
glumaepatula, O. meridionalis, and Leersia perrieri) [104]. The wild rice reference
genomes were aligned to the repeat masked Azucena reference genome using LASTZ
version 1.03.73 [105]. Alignment blocks were chained and filtered using the UCSC Kent
utilities suite (http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64.v287) to obtain a
single chain the highest score to represent a single orthologous region of the reference
genome. A final multi-genome alignment was generated using the aligner MULTIZ [106].
Using the multi-genome alignment four-fold degenerate sites were extracted using the
phast version 1.3 package [107]. The four-fold degenerate sites were then used to build
a phylogenetic tree using raxml version 8.2.12 [108] with the GTR gamma model. The

topology obtained from the phylogenetic analysis and the four-fold degenerate site data

29


https://doi.org/10.1101/2022.07.06.498888
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

11

12

13

14

15

16

17

18

19

20

21

22

23

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.06.498888; this version posted July 7, 2022. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

was used to fit a phylogenetic neutral model with phylofit. Using the neutral model we
estimated the per-base conservation score using the phylop program with mode
CONACC and method LRT.

The fitCons score were obtained from Joly-Lopez et al. [19]. But because the fitCons
score were calculated using the Nipponbare reference genome we converted those
scores to Azucena reference genome coordinates, by aligning the Azucena reference
genome to Nipponbare reference genome and using the program liftOver from the Kent

utilities suite.

eQTL detection

Population whole genome resequencing and gene expression data were obtained from
Groen et al. [77]. For genes that had multiple transcript expression profile, we chose the
longest transcript to represent the expression level of that gene. We conducted eQTL
analysis using the program MatrixeQTL [109]. To account for population structure we
used plink [110] to calculate structure using polymorphism data and chose the first 5
principal components as covariates to the eQTL model. Resulting p-values for each SNP
were filtered using Bonferroni correction and SNPs with adjusted p-value < 0.05 were

considered significant eQTLs.

Gene ontology and motif enrichment

Gene ontology (GO) analysis of genes in gene-non coding loops was performed using
BinGO [111] with the full list of GO terms (GO_Full) or using PANTHER [112] with the

molecular functions, biological process and cellular component GO lists. Motif enrichment
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was determined using Homer (v.4.10; http://homer.ucsd.edu/homer/) findMotifs with the

options -mset plants -len 6,7,8 enabled, and permuted sets of input sequences were used

as controls.

Plotting functional genomic data

Enrichment of functional genomic reads around peaks of interest were plotted using
deeptools [113], specifically the program computeMatrix. APA plots were generated using

the program coolpup.py [114].
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Supplemental Fig 1. Distribution of genome-wide dREG scores.
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Supplemental Fig 2. dREG scores for dREGproximal and dREGgistal peaks.
Supplemental Fig 3. Epigenetic marks for dREGproximal and dREGistai peaks.
Supplemental Fig 4. Epigenetic marks for coding and repetitive sequences in the rice
genome.

Supplemental Fig 5. DNA methylation levels for dREGproximal and dREGgistal peaks.
Supplemental Fig 6. Scatter plot for dREG peak regions’ score and evolutionary
conservation scores.

Supplemental Fig 7. Evolutionary scores for dREGyproximal and dREGgistal peaks.
Supplemental Fig 8. Chromatin profiles of dREGproximal peaks that are binned by dREG
scores.

Supplemental Fig 9. Epigenetic marks surrounding TAD boundaries.

Supplemental Fig 10. Distribution of loops detected by Pore-C for dREGuistai peaks.
Supplemental Fig 11. Distribution of dREG scores for the dREG peaks contacting a
gene.

Supplemental Fig 12. Enrichment of eQTLs within dREGaistal peaks identified in Figure
5D.

Supplemental Fig 13. Enrichment of eQTLs within ATAC peaks.

Additional file 2: Supplementary tables

Supplemental Table 1. Total number and proportion of genic, distal, and proximal dREG
peaks that overlapped a ATAC peak region.

Supplemental Table 2. Pore-C summary statistics.
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Figure Legend

Figure 1. Chromosomal features associated with dREG peaks in the rice genome.
(a) PRO-seq read counts for positive-sense (top) and negative-sense of dREG peaks. (b)
Classification of dREG peaks according to the genomic regions it was located. Genic:
within coding sequence regions; proximal: within 1 kbp of genic sequences; and distal:
more than 1 kbp away from genic sequences. (¢) Overlap between dREG and ATAC
peaks. (d) Enrichment of functional genomic sequencing reads 1.5 kbp upstream and

downstream of dREG (left) and ATAC (right) peak regions.

Figure 2. Repetitive sequence characteristics within proximal (top row) and distal
(bottom row) dREG peak regions. (a) Median dREG scores for dREG peaks classified
into three repeat classes: (Left) Repeat: entire dREG peak region is a repetitive
sequence; (Middle) Intermediate repeat: dREG peak regions that are not classified as
‘repeat” or “no repeat” class; (Right) No repeat: no repeat sequence was annotated in
dREG peak region. The numbers in the box plot represent the count of dREG peaks in
each category. (b) Percentage of methylated cytosine for the three different cytosine
contexts CpG, CHG, and CHH sites (where H is A, T, or C nucleotide). (c) ATAC-seq

read counts centered at dREG peak for the repeat classes No repeat and Repeat.

Figure 3. Evolutionary scores. (a) phyloP and (b) fitcons for dREG peaks and

comparison to coding sequence regions or random regions of the genome.
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Figure 4. Functional characteristics of dREGproximai peaks that are detected at 5
prime untranslated regions of genes. (a) Expression levels (shown as Reads per kilo
base per million mapped reads, RPKM) for genes with and without dREGproximal peaks.
Genes with dREGproximal peaks were divided by repeat class and their expression levels
were compared to the genes without dREGproximal peaks. Numbers in boxplot represent
sample size of genes. (b) Gene expression levels for genes with dREGproximal peaks
divided by dREG score and repeat classification. Asterisk (*) indicate significant
differences after all pairwise comparisons using the Mann-Whitney U test. Numbers in

boxplot represent sample size of genes.

Figure 5. Chromatin features and functionality of dREGpistal peaks. (a) PRO-seq read
count enrichment surrounding TADs. Shown are 10 kbp upstream and downstream of
TADs with the TAD scaled to 5 kbp. PRO-seq read counts were averaged in 100 bp
windows. (b) Proportion of gene-gene, gene-noncoding, and noncoding-noncoding loops
that were detected using Pore-C sequencing. (c) Aggregate Peak Analysis (APA) plots
showing the aggregated Pore-C contacts around chromatin loops identified in all
chromosomes (left) and only between a noncoding-gene loop (right). The plot is a pile-up
of 25 kbp upstream and downstream of loop anchors (centered in each axis) of every
identified loop. Color represents log2 fold enrichment of the observed aggregated matrix
over a normalization matrix that was aggregated from randomly shifted controls regions
across the chromosome. (d) Gene expression level for genes that are contacting a

noncoding anchor with either an ATAC peak, dREG peak, or has no annotation. Asterisk
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(**) indicates a p-value < 0.01 and *** indicates a p-value < 001 after an FDR-corrected

Mann-Whitney U test.

Figure 6. Enrichment of eQTLs within dREGuista peaks. Histogram shows the
bootstrap distribution of the total number of eQTLs overlapping a random region of the
genome that are matched for size and total number of dREGuistai peaks. The red dotted

line shows the total number of eQTLs overlapping the dREGuistai peaks.

46


https://doi.org/10.1101/2022.07.06.498888
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.06.498888; this @ sion posted July 7, 2022. The copyright holder for this preprint (which
was not certifi%cH)Eéeg 6%\?8w) is the author/funder, who has ggang#d bioRxiv a license to display tHP{E@ in perpetuity. It is made ATAC

available under aCC-BY-NC-ND 4.0 International license.

—<04 =——=04-06 =—=0.6-08 —u08-1.0 =——>1.0 c 1 50,
£ 0.130; '
J € 1.25-
0.12 S E 0125
(0]
1.00-
2 0.120]
0.10 - = 0.75-
3 0.1154
c 3 0.50-
ég 0.08 -
é ;§ 1.05- 1.6
™ 1.00-
@ 0.06 - ® £ 1.5
.y Ea oo 1.44
n NE .
e ¥ O 0.90 |
= > = 1.3
3 -0.04 T © 0.851
= 1.2
© S 0.80]
o : .
g -0.06 1.1
@ = 13-
Ea-oos— S 1.4
o g < 1.2
N~ O
-0.10 1 = 13l 1
nQ
-0.12 e} 1.01
© 1.24 0.9.
-0.14 164
' ' 5 1.8
1.5 dREG 1.5Kb -t
peak GE) S 16 1.4
ta
B 55
= 14/ 1.2
T o
S 12
= 1.05
S 1.121
o g 1.00
©a 1.107 0.954
¥ ©
S0 ] 0.90
© 108
L o
= 0.85-
T 1.061
©
c C
o
1‘5 0.09-
; 8 0.07 { 0.081
% (%)
= 0.07 1
O 3 0067
T l
T o 0.06
©
c c -0.06-
£ 2 006
e -0.081
L5 -0.074
oo -0.101
O o
© £ -0.081
ATAC Q3 R
T 3 .0.09]
16,814 - '
y 261
151
S ~ i 241
s M
§5
o
§ i>-’ 124 20-
114
18
101 ’ ’ ! ’ ’
-1.5 dREG 1.5Kb -1.5 ATAC 1.5Kb

peak peak


https://doi.org/10.1101/2022.07.06.498888
http://creativecommons.org/licenses/by-nc-nd/4.0/

>

dREG;,.,;, SCore

dREG,,, score

o
o

1.54

-
o

o
o

1.51

—_
o

**

*k%k _kk*%k

|

1933

23576

7468

Repeat Intermediate Without

repeat

repeat
* %%
*kk _*k*%k*%k
i
0882 24305 4052

Repéat Intermediate Wit.hout

repeat

repeat

GO

Methylation levels (%)

Methylation levels (%)

CHG

@)
.
T

50+

40

30+

20+

301

20+

I d REGProximal I

CHG

1.5Kb

CHH

60

401

201

50

40

304

20+

101

d REGDistaI

1.5Kb

ATAC counts per million

>

ATAC counts per million

S

0.124

0.111

0.104

0.091

0.08+

2

0.20

0.18+

0.16

0.14

-1.5

d R EG Proximal

1.5Kb

0.11

0.10+

0.09

0.08

Jeaday

1eadal 1NOYUAA

Jeaday

0.45-

0.40+

0.35-

0.301

0.25+

1eadal 1NOYUAA

d R E G Distal

1.5Kb


https://doi.org/10.1101/2022.07.06.498888
http://creativecommons.org/licenses/by-nc-nd/4.0/

* % %
* %%
i _kkk
H i
1 !
133,842
0.4
)
p -
o
(&)
n
o
o
=
S
0-21 32,821
30,604
22,395
0.0- !
CDS  dREGpgma JREGpy,  Control

fitCons score

%%k %
% % %
%k %k
0.9
! i
105,692 i !
0.6 !
H
0.3
32,628
| | L |
L I 1| I |
0.04 29,521 26,581
CDS  dREGpgm JREGp,  Control



https://doi.org/10.1101/2022.07.06.498888
http://creativecommons.org/licenses/by-nc-nd/4.0/

Al VL bt M)y Ml T vibif) v i Al i idi gt iy TiAg i wiited Il

A available under aCC-BY-NC-ND 4.0 Ir

15 * %%
* %%
*%x %
10 A i :
= [ i
X
o
o
5 -
2478
6222 305
13613
0 - I 1 1 T
T T T T
dREGmewmal dREGProximal dREGProximal WithOUt
without repeat  intermediate repeat dREGp/oximal
repeat
15 A * o
* %%
* % * %
* %% o
Y
10 A g
= 5
< s
=
- g
° 210 S‘
660 448
175 985 a
©
(0]
[ I 2
O -
<04 04-0.6 0.6-0.8 0.8-1.0 >1.0
15 A *x%k%
*x k%
*%k %
*x k% 5
—%kkk * % % T
10 A —xxk 3 %
[00]
< - s
o Q5
o g
5 g 2
1378 909 8
1700
224 2011 -
0 - T T 1 I I
T T T T T
<04 0.4-0.6 0.6-0.8 0.8-1.0 >1.0
151 * % %
*%k%*
*%k %
* %%
o
10 uy)
s o
X nd
o £
o 3
5 | K
38 28 3
(0]
15 140 84 Job)
=
0 - I T 1 I |
T T T T T
<04 0.4-0.6 0.6-0.8 0.8-1.0 >1.0

dREGg,oima SCOre


https://doi.org/10.1101/2022.07.06.498888
http://creativecommons.org/licenses/by-nc-nd/4.0/

>

0.0524 B 0.4 4
©
) J
0.051 1 ca 0.3
c o0
2 0.050- 5 L2 o2-
E 2T
o 0.049- 901+
8_ o
o 0.0484 00 10,198
< Gene — Gene Gene — Noncoding —
8 Noncoding Noncoding
(&] .
o 0048 ( ; All loops 4 Candidate regulatory loops
Q U
n 4.05 3 3¥58 3
O -0.049 2 2
o
o
-0.050 [} 1 L 1
-0.051 4
-0.052 4
-10 I TAD I 10Kb -25 Distance from peak 25Kb -25 Distance from peak 25Kb
D
*%*
* k%
[ J
—~ 8 7
c
Re)
(2}
[0}
o
g 44
x
()
[0}
o
o 04
=
(@)
ke
-4

ATAC dREG dREG & ACR None


https://doi.org/10.1101/2022.07.06.498888
http://creativecommons.org/licenses/by-nc-nd/4.0/

Observed number of
m— Cis-€QTLs overlapping |
8004 dREG,,,, peaks

200 4

100

8000 10000 12000
Number of cis-eQTLs across random shuffled regions


https://doi.org/10.1101/2022.07.06.498888
http://creativecommons.org/licenses/by-nc-nd/4.0/

