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 2 

Abstract  1 

Background 2 

Plant genomes encode transcripts that require spatio-temporal regulation for proper 3 

cellular function, and a large fraction of the regulators can be found in intergenic regions. 4 

In animals, distal intergenic regions described as enhancer regions are actively 5 

transcribed as enhancer RNAs (eRNAs); the existence of eRNAs in plants has only been 6 

fairly recently documented. In this study, we evaluated with high sensitivity the synthesis 7 

of eRNAs that arise at genomic elements both distal and proximal to genes by combining 8 

PRO-seq with chromatin accessibility, histone modification, and methylation profiles in 9 

rice.  10 

Results 11 

We found that regions defined as transcribed intergenic regions are widespread in the 12 

rice genome, and many likely harbor transcribed regulatory elements. In addition to 13 

displaying evidence of selective constraint, the presence of these transcribed regulatory 14 

elements are correlated with an increase in nearby gene expression. We further identified 15 

molecular interactions between genic regions and intergenic transcribed regulatory 16 

elements using 3D chromosomal contact data, and found that these interactions were 17 

both associated with eQTLs as well as promoting transcription. We also compared the 18 

profile of accessible chromatin regions to our identified transcribed regulatory elements, 19 

and found less overlap than expected. Finally, we also observed that transcribed 20 

intergenic regions that overlapped partially or entirely with repetitive elements had a 21 
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 3 

propensity to be enriched for cytosine methylation, and were likely involved in TE 1 

silencing rather than promoting gene transcription. 2 

Conclusion 3 

The characterization of eRNAs in the rice genome reveals that many share features of 4 

enhancers and are associated with transcription regulation, which could make them 5 

compelling candidate enhancer elements. 6 

 7 

 8 

 9 

 10 
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 4 

Background 1 

The spatio-temporal regulation of gene expression is essential for coordinating 2 

development and adaptive responses to environmental change. Transcriptional 3 

regulatory DNA sequences encode information that leads to the recruitment of 4 

transcription factors (TFs) in a DNA sequence-dependent manner, allowing the control of 5 

the location and rates of chromatin decompaction, transcription initiation, and finally the 6 

release of RNA polymerase II (RNAPII) from pausing to productive elongation[1,2]. 7 

RNAPII can be recruited by regulatory elements both proximal and distal from the gene(s) 8 

they regulate. In animals, an important feature of many (if not all) active cis-regulatory 9 

elements (CREs), like enhancers, is the production of nascent transcripts by 10 

enhancers[3,4].  11 

 Enhancer RNAs (eRNAs) have been generally defined as bidirectional, largely 12 

unspliced and unpolyadenylated transcripts originating from putative enhancers, with 13 

lengths predicted to be less than 150 nucleotides (although some can be up to 2 kb long) 14 

[5,6]. In animals, eRNAs are predominantly localized in the nucleus and chromatin-bound 15 

fractions [7,8], and are considered a hallmark of active enhancers and a proxy in 16 

predicting the spatio-temporal activity of active CREs. Enhancer transcription is important 17 

during gene expression. For example, it may maintain chromatin accessibility to enable 18 

the binding of TFs and cofactors [9,10], it stimulates the catalytic activity of chromatin 19 

remodelers like histone acetyltransferases, it regulates the occupancy of TFs and 20 

coactivators [11,12], and it promotes the pause release of RNA polymerase II to 21 

productive elongation [13,14].  22 
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 5 

The instability of eRNAs, however, makes them difficult to detect with steady-state 1 

RNA-sequencing data, and their characterization depends on nascent RNA sequencing 2 

technologies that enable the measurement of transient RNA transcription at multiple 3 

stages and on a genome-wide scale. These methods include global run-on sequencing 4 

(GRO-seq) [15] and precision nuclear run-on sequencing (PRO-seq) [16]. These 5 

approaches have also successfully identified a diversity of RNA species, including long 6 

non-coding genes, upstream antisense RNAs, and eRNAs [17].  7 

In plants, our understanding of eRNAs is still limited. There have been reports of 8 

eRNA transcription in maize and cassava [18], and in rice (Oryza sativa) [19], but they 9 

appear to be rare in other genomes such as Arabidopsis [20]. In maize and cassava, the 10 

intergenic regulatory elements from PRO-seq data appear to be enriched for expression 11 

quantitative trait loci (eQTLs) identified in kernels compared to a set of random intergenic 12 

regions and showed low levels of conservation, a pattern suggesting that these 13 

sequences evolve rapidly [18]. In rice, intergenic regions enriched for eRNA signatures 14 

had a marked enrichment for open chromatin, a generally asymmetric enrichment for 15 

H3K27ac histone modification, and weak but significant positive correlation with nearby 16 

gene expression. Similarly to maize and cassava, these sequences had low interspecies 17 

conservation but evidence of greater than two-fold excess of nucleotide sites under weak 18 

negative selection within O. sativa populations [19]. Evidence of recent selection on these 19 

sequences suggests the recent emergence of eRNA-producing intergenic regions within 20 

O. sativa, consistent with transcribed regulatory elements often being species specific 21 

[19,21]. Understanding the relationship between eRNAs and the broader class of 22 

transcribed regulatory elements in plants is an important challenge and may in part be 23 
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 6 

aided by methods that associate specific genetic variants with agronomic traits. These 1 

often indicate that these variants are located in noncoding sequences and likely functional 2 

in gene regulation [22,23].  3 

In plants, enhancer regions described so far appear to display specific 4 

characteristics. These include the presence of transcription factor (TF) binding motifs, 5 

chromatin accessibility, specific histone modifications, low DNA methylation, and 6 

evidence of physical interactions with their target genes that may be transient or stable 7 

[24,25]. The benefits of considering several of these signatures in parallel has increased 8 

our ability to differentiate enhancers from other types of CREs (e.g. silencers, insulators, 9 

TATA-box, etc.), as well as other types of regions like promoters, transcription start sites 10 

(TSSs) and coding regions [19,24,26–31]. In addition, coupling these signatures with 11 

massively parallel reporter assays have greatly contributed to further functional 12 

characterization of CREs [26,32,33]. For example, a large proportion of the DNA in 13 

regions with active CREs appears more hypomethylated compared to other intergenic 14 

regions [28,34–37]. The presence of histone modifications also signal the presence of 15 

either active CREs (e.g. H3K27ac, H3K18ac) [38,39], CREs with paused polymerases 16 

(enriched with H3K27me3 and low levels of an active histone mark such as histone 17 

acetylation) [26,40,41], or repressed CREs (low chromatin accessibility and and 18 

H3K27me3 levels) [26,42,43].  19 

Despite the analysis of the various genomic and epigenomic features associated 20 

with plant enhancers, the presence of eRNAs are generally not considered. In this study, 21 

we used a combination of PRO-seq, complementary functional genomic datasets (DNA 22 

methylation profiles, histone modification profiles, transcriptomic profiles, chromatin 23 
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 7 

accessibility), and 3D genome architecture to explore eRNAs and their genomic contexts 1 

in the Asian rice genome (Oryza sativa). We found that some intergenic eRNAs can be 2 

related to transposable element (TE) silencing but many share features of enhancers that 3 

suggest they harbor transcribed regulatory elements and are associated with transcription 4 

regulation and cis-expression quantitative trait loci (e-QTLs). This work continues efforts 5 

to understand important types of noncoding elements and is driven by the need to improve 6 

crop species by modulating gene expression to enhance plant system resilience [44]. 7 

 8 

 9 

 10 

Results and Discussion 11 

Profile of nascent transcription in the rice genome 12 

The goal of the study was to investigate the association between intergenic 13 

transcription and putative regulatory sequences in the context of DNA sequence 14 

composition, chromosomal environment, and evolutionary constraint. To examine 15 

genome-wide nascent transcription, particularly intergenic transcription including eRNAs, 16 

we generated PRO-seq data from rice leaf tissues of the O. sativa japonica cultivar 17 

Azucena grown under optimal conditions. We combined the newly generated PRO-seq 18 

data with previously published PRO-seq data that was also generated from plants grown 19 

under the same condition [19]. These PRO-seq datasets were combined and consisted 20 

of 17,519,424 reads that were aligned to the Azucena reference genome [45].  21 

 Because of the bi-directional nature of eRNAs [46,47] and based on previous 22 

nascent transcription studies in animals [e.g. [48–52]], we used bi-directional transcription 23 
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 8 

activity as a first criterion for identifying candidate transcribed regulatory elements in the 1 

genome [7,53]. To do so, we used the machine learning algorithm dREG (discriminative 2 

Regulatory Element detection) that used mapped reads from our PRO-seq experiments 3 

(positive and negative strands) and used a support vector regression to recognize the 4 

characteristic pattern of divergent transcription at active transcribed regulatory elements 5 

(promoters, enhancers, and insulators) [50,54]. Genomic regions with significant 6 

bidirectional transcription (herein referred to as dREG peaks) showed an enrichment of 7 

PRO-seq reads in both DNA strands, and highly active regions were assigned a high 8 

dREG score (>1.0; Fig. 1a). In total we detected 69,898 dREG peaks across the genome, 9 

with dREG scores ranging from 0.33 and 1.56 (Fig. 1a; Additional file 1: Figure S1). The 10 

genome-wide median dREG score was 0.591 and the median size of a dREG peak was 11 

390 bps (Additional file 1: Figure S1).  12 

 The majority of dREG peaks (~91.9%) were found in intergenic regions (Fig. 1b). 13 

We divided the intergenic dREG peaks into two classes depending on their distance to 14 

genic sequences: (i) proximal dREG peaks (dREGproximal), which are intergenic dREG 15 

peaks that are <1 kb to predicted transcription start or end sites, and (ii) distal dREG 16 

peaks (dREGdistal), which are >1 kb away from predicted transcription start or end sites. 17 

Within the intergenic regions, we found approximately equal proportions of dREGproximal 18 

and dREGdistal peaks (Fig. 1b). dREGproximal peaks had significantly higher dREG scores 19 

than dREGdistal peaks (Mann Whitney U test, p-value <0.0001; Additional file 1: Figure 20 

S2). 21 

 Many cis-regulatory elements (CREs) that are presumed to be actively engaged 22 

have been shown to reside within accessible chromatin regions [26,55]. We examined 23 
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 9 

the accessibility of dREG peak regions by comparing dREG peaks with open chromatin 1 

regions identified using Assays for Transposase-Accessible Chromatin with sequencing 2 

(ATAC-seq), and considered a conservative set of peaks that were within 100 bps of each 3 

other as overlapping peaks. Of the 69,898 dREG peaks across the genome, we found an 4 

overlap of 5,674 (8.1%) dREG peaks with the 23,961 detected accessible chromatin 5 

regions (herein referred to as ATAC peaks) as identified by ATAC-seq (Fig. 1c). We then 6 

examined any differences in overlap with ATAC peaks for dREGproximal and dREGdistal 7 

peaks and found that dREGproximal peaks had twice as much overlap with ATAC peaks 8 

compared to dREGdistal peaks (Additional file 2: Table S1).  9 

 In addition to accessible chromatin regions, histone modifications can provide 10 

insight into the regulatory mechanisms of the CREs, whether or not they are contained 11 

within these accessible chromatin regions. To determine the chromatin features 12 

associated with dREG peaks, we used previously generated genome-wide maps of 13 

histone modifications and cytosine methylation [19] and compared their profile at ATAC 14 

peaks (Fig. 1d). We find that H3K27ac and H3K18ac histone marks were enriched around 15 

the dREG and ATAC peaks, (+/- 1.5kb). However, PRO-seq reads showed the expected 16 

enrichment of bi-directional transcription activity for dREG peaks but not for ATAC peaks. 17 

Moreover, the repressive H3K27me3 mark [56] was enriched within ATAC peaks but 18 

depleted within dREG peak regions (Fig. 1d). In addition, the levels of DNA methylation 19 

marks [37] were increased for both dREG and ATAC peak sequences, but the latter had 20 

higher density of DNA methylation than dREG peaks. We then compared epigenetic 21 

marks between dREGproximal and dREGdistal peaks and whether they overlapped ATAC 22 

peaks or not, and found no overall differences in chromatin features (Fig. S3). Taken 23 
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 10 

together, these results suggest there is a range of detected transcribed regulatory 1 

elements (represented by different dREG scores) in the rice genome and that overall they 2 

show relatively little overlap with accessible chromatin regions, as they display different 3 

signals in terms of their epigenetic architecture. Consistant with our previous work [19], 4 

the different combination of epigenetic marks and transcriptional signatures may play a 5 

more nunanced role in determining the chromatin state and functionality of a genomic 6 

region. 7 

 8 

dREG peaks enriched for DNA methylation overlap with repetitive elements 9 

DNA methylation is often found in inactive regulatory elements, where their target 10 

genes are repressed [57], which is why we did not expect to detect an enrichment of DNA 11 

methylation for actively transcribed candidate regulatory regions. For instance, when we 12 

compared epigenetic marks for transcriptionally active genes with annotated repetitive 13 

elements in the rice genome, the common repressive mark H3K27me3 and DNA 14 

methylation were enriched within repeat sequences or genes with low expression 15 

(Additional file 1: Figure S4). Methylation in plants is dependent on the RNA-directed DNA 16 

methylation (RdDM) pathway, wherein transcribed non-coding RNA molecules direct the 17 

addition of DNA methylation to specific DNA sequences that are largely associated with 18 

transcription repression [58,59]; thus the PRO-seq data in intergenic regions may, in part, 19 

be detecting silencing-related transcription. We therefore investigated whether cytosine 20 

methylation was mainly attributed to silencing of repetitive elements or was potentialy an 21 

inherent characteristic of plant TREs. We categorized dREG peaks into three repeat 22 

classes: (i) “without repeat” class, where the dREG peak region does not contain 23 
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annotated repeat sequences, (ii) “intermediate repeat” class, where the dREG peak 1 

region overlaps with at least 1 bp of a repeat sequence, and (iii) “repeat” class, where the 2 

entire dREG peak region overlaps a repeat region. For both dREGproximal and dREGdistal 3 

peaks, the majority of the peaks (>70%) were in the intermediate repeat class, which had 4 

significantly higher dREG scores than both repeat and without repeat class dREG peaks 5 

(Mann Whitney U test p-value < 0.001 and Fig. 2a).  6 

 DNA methylation in rice, as in other plants, occurs at three contexts: CpG, CHG, 7 

and CHH (where H indicates A, T, or C). We compared these cytosine contexts in 8 

dREGproximal and dREGdistal peaks, and found that the dREGdistal peaks had significantly 9 

higher levels of methylation across all three cytosine contexts (Mann Whitney U test p-10 

value < 0.001 and Fig. S5). Also, for both dREGproximal and dREGdistal peaks, regardless 11 

of repetitive content, CpG sites had the highest methylation level, while CHH sites had 12 

the lowest (Fig. 2b). Since a higher dREG score was associated with higher 13 

transcriptional activity (Fig. 1a), we plotted dREG peak score and methylation for both 14 

dREGproximal and dREGdistal peaks. We found that overall methylation levels were 15 

negatively correlated with dREG scores (p < 0.01), although CHH methylation, previously 16 

associated with TE silencing [36,60–62], had significantly positive correlation (p < 0.001) 17 

with dREG scores (Fig. S5).  18 

We then contrasted the methylation profiles of dREG peaks in the repeat and 19 

without repeat class, as the former is likely to represent epigenetic marks from 20 

chromosomal silencing. When we considered chromatin accessibility, we found that 21 

dREG peaks (proximal or distal) in the without repeat class were more accessible (Fig. 22 

2c). Taken together, these results suggest that PRO-seq signals detected by dREG that 23 
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overlap repetitive elements could be involved in silencing mechanisms (such as RDdM) 1 

rather than enhancer activity (candidate active CREs).  2 

 3 

Evidence of selection within dREG peaks 4 

One strategy known for finding candidate functional sequences in genomes is to 5 

look for evolutionary constraint across species [43,63–65]. While sequence conservation 6 

can identify conserved noncoding sequences (CNSs), other functional CREs, such as 7 

enhancers, have been shown to show sequence diversification and be more species 8 

specific [66,67], and therefore not readily detected by conservation-based methods. To 9 

infer functionality of our dREG peaks, we estimated the level of evolutionary constraint 10 

occurring within the dREG peak regions using two evolutionary-based approaches: 11 

phyloP [68] and fitCons [19,69]. Selection within dREG peaks were compared to selection 12 

in coding sequences and neutral regions of the genome (control) (Fig. 3).  13 

 The results showed an overall higher evolutionary constraint at dREGproximal peaks 14 

compared to dREGdistal peaks. While the peaks had lower levels of purifying selection 15 

compared to coding sequences (Mann Whitney U test p < 0.0001), both dREGproximal and 16 

dREGdistal peaks had higher phyloP values compared to random regions of the genome. 17 

The dREGproximal peaks had a significant negative correlation (p-value < 0.001) between 18 

dREG score and phyloP statistics, particularly in regions with dREG scores above 1.2  19 

(Additional file 1: Figure S6). A possible explaination for this could be that some of the 20 

regions with higher dREG scores are detecting methylation-related activity. For instance, 21 

we detect a positive correlation between dREGproximal scores and CHH methylation, which 22 
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suggests that not all dREG activity is related to transcription but may also be related to 1 

silencing activity (Additional file 1: Figure S5). 2 

 For fitCons, dREGproximal peaks had higher fitCons scores (r) than dREGdistal peaks 3 

(Mann Whitney U test p < 0.001). For both dREGproximal and dREGdistal peaks, we observed 4 

a significant positive correlation (p < 0.001) between dREG score and fitCons statistics. 5 

We noted that dREGdistal peaks had fitCons scores that were significantly lower than 6 

dREGproximal and random control region (Fig. 3b). Moreover, lower dREG scores had lower 7 

fitCons scores, and lower dREG scores have been attributed to regions evolving more 8 

neutrally and within active repetitive elements (Additional file 1: Figure S6) [19,69].  9 

 To investigate why dREGdistal peaks had lower fitCons scores, we looked to 10 

determine whether we could detect differences in evolutionary constraints at dREG peaks 11 

based on their repetitive element content. When we divided dREG peaks by repeat class 12 

we found that dREG peaks, regardless of the amount of repeat content, had significantly 13 

higher phyloP scores (Mann Whitney U test p < 0.05) than random regions of the genome 14 

(Additional file 1: Figure S7). For fitCons scores, compared to random genomic regions, 15 

dREGproximal peaks had significantly elevated r statistics for all repeat classes (Mann 16 

Whitney U test p < 0.001) but for dREGdistal peaks, there was no significant difference for 17 

the without repeat class, while the intermediate repeat and repeat classes had 18 

significantly lower fitCons scores (Mann Whitney U test p-value < 0.0001). A similar trend 19 

in dREG peaks was previously observed in rice [19] and human populations [70]; in these 20 

cases, there was an excess of sites under weak negative selection was observed, 21 

suggesting a recent selection since the most recent common ancestor. Taken together, 22 

these results suggest dREG peaks display some level of conservation that is stronger in 23 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.06.498888doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.06.498888
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

proximal peaks than distal peaks, although this distinction may be due to the increased 1 

occurrence of repetitive elements with the latter.  2 

 3 

Functionality of dREGproximal peaks and gene expression 4 
 5 

We explored whether candidate transcribed regulatory elements identified by the 6 

dREG algorithm could indeed be functional regulatory elements (active CREs). We first 7 

focused on dREGproximal peaks detected in the promoter region and examined whether 8 

their activity is associated with expression of nearby genes. The results showed that 9 

genes with a dREGproximal peak in its promoter region had significantly higher gene 10 

expression (Mann Whitney U test p < 0.001 and Fig. 4a). This higher level of gene 11 

expression was observed regardless of the repeat class associated with the peak.  12 

 Previous studies using PRO-seq data to define transcribed regulatory elements 13 

established a dREG score threshold of >0.8 for human enhancers and < 0.3 for non-14 

functional or random transcriptional activity [54]. In plants, the only dREG threshold that 15 

has been explicitely used to characterize these regulatory elements was a dREG score 16 

of > 1.0 in the rice genome [19]. Based on this, we examined the relationship between 17 

dREG score and functional genomic activity by comparing the relationship between gene 18 

expression levels and dREGproximal peak scores. Results showed that genes with a 19 

dREGproximal peak and high dREG score (>0.8) had significantly higher gene expression 20 

than genes with low (<0.8) dREG score (Mann Whitney U test p < 0.001 and Fig. 4b). 21 

This was consistent even in the presence of repeat elements. We also examined the 22 

chromatin profiles surrounding dREGproximal peaks and discovered that peaks with scores 23 

higher than 0.8 had similar chromatin marks (Additional file 1: Figure S8), although with 24 
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some unexpected increase in DNA methylation levels in all cytosine contexts. The 1 

methylation pattern in peaks with higher dREG scores appears different from those with 2 

lower scores. dREG peaks with higher scores display methylation in the center of the 3 

peak, in contrast to methylation being distributed throughput the lower dREG scored 4 

peaks. Methylation was therefore taken into consideration in our subsequent downstream 5 

analysis.  6 

 7 

Identifying distal transcribed regulatory elements through bidirectional 8 
transcription activity 9 
 10 

Distal transcribed regulatory elements associated with dREGdistal peaks may signal 11 

RNA-producing enhancers, producing unstable transcripts in both directions [71]. Indeed, 12 

in animals, genomic coordinates of distal transcribed regulatory elements have often 13 

overlapped with enhancers that actively produce eRNAs, although in plants there is no 14 

evidence that these are indeed associated with enhancer activity.  15 

To further characterize rice dREGdistal peaks and identify potential functional roles 16 

in the rice genome, we examined long-range chromosomal contact interaction between 17 

genes and candidate CREs using the Pore-C sequencing method [72]. Pore-C couples 18 

chromatin conformation capture with long-read nanopore sequencing to detect genome-19 

wide multi-way chromatin contacts. It has been shown to be highly effective at sequencing 20 

through repeat regions of the genome and is able to detect increased contact intensity 21 

with less sequencing reads than conventional Hi-C sequencing [72]. Using Pore-C 22 

sequencing on rice leaves, we generated 104 million concatamer reads that correspond 23 

to 290 million contacts across the rice genome (Additional file 2: Table S2).  24 
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Since Pore-C sequencing has not been applied in plants to profile chromatin 1 

activity, we first examined the functionality of the 3D genome architecture detected by this 2 

method. Using the Pore-C method, we detected 3,261 distinct topologically associated 3 

domains (TADs) which are localized chromosomal regions of high physical contact [73]. 4 

TADs had a median size of 80 kb and the TAD boundaries were enriched for transcription 5 

and active chromatin marks (Fig. 5a and Fig.S9). These results were consistent with 6 

previous Oryza Hi-C sequencing results [74] indicating that Pore-C sequencing was able 7 

to detect functional 3D contacts across the Oryza chromosome. 8 

To determine whether dREGdistal peaks could represent distal regulatory elements 9 

of one or multiple target genes, we used the Pore-C sequencing data to detect the 10 

formation of chromatin loops at 5 kbp resolution. Using the FitHiC2 algorithm [75], we 11 

detected 33,779 chromatin loops, where 42.7% (14,417) of those loops involved a gene 12 

(where the coding window had to contain more than 100 bp of coding sequences) and a 13 

noncoding region (Fig. 5b). These represent candidate gene-regulatory element loop 14 

interactions. We then visualized this loop interaction by conducting aggregate peak 15 

analysis (APA), which takes the contact map and measures its enrichment with respect 16 

to its local neighborhood (signal around detected chromatin loop formations) (Fig. 5c). 17 

When we compared the APA plots for all chromatin loops and candidate gene-regulatory 18 

element loops, the latter loops had strong enrichment of signals centered at the contact 19 

point. Specifically for the candidate gene-regulatory element loops, the central window 20 

(i.e. the contact point) had ~3.5 fold increased in contacts compared to the lower left 21 

windows (i.e. background contact levels) (Fig. 5c).  22 
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Next, we examined the potential functionality of candidate gene-regulatory 1 

element loops. As a first step, we processed a subset of candidate loops as probable 2 

gene-regulatory element interactions (see the “Methods” section for details). To do so, 3 

we (i) focused on chromatin loops that do not cross TAD boundaries, as transcription 4 

related chromatin loops co-localize within TAD domains in plants [76], (ii) removed loops 5 

where the noncoding anchor had peaks with CHH methylation, as these are more likely 6 

to represent transposable element silencing activity [37], and (iii) removed loops where 7 

the gene anchor overlapped multiple genes, as the resolution of our Pore-C data could 8 

not differentiate whether the noncoding region regulated one or multiple genes.  9 

Following these filtering steps, we analyzed gene-regulatory element loops where 10 

the noncoding anchor had only an ATAC peak, only a dREG peak, or had both an ATAC 11 

and dREG peak (Fig. 1c). These loops were then compared to loops where the noncoding 12 

anchor had no detected ATAC peak nor dREG peak and represented control gene-13 

noncoding sequence interactions (Additional file 1: Figure S10A). We found that for all 14 

post-filtered gene-noncoding sequence loops, and regardless of the annotation within the 15 

noncoding anchor, the majority of genes had contact with a single noncoding region 16 

(Additional file 1: Figure S10B). Furthermore, the average distance between the gene and 17 

the noncoding region was 65 kb to the dREG only peak, 45 kb to the ATAC only peak, 35 18 

kb to both dREG and ATAC peaks, and 50 kb to a noncoding anchor with no annotation 19 

(Additional file 1: Figure S10B). We also found that genes that contacted a dREG peak 20 

had significantly higher gene expression than those that contacted a noncoding anchor 21 

with no annotation (Mann Whitney U test p < 0.01 and Fig. 5d). In contrast, genes that 22 

contacted an ATAC peak did not show any significant difference in expression. Finally, 23 
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genes with both dREG and ATAC peaks had significantly elevated gene expression 1 

(Mann Whitney U test p-value < 0.001 and Fig. 5d). The median dREG scores for gene-2 

contacting dREG peaks were 0.54 (Additional file 1: Figure S11). Gene ontology 3 

enrichment analysis on genes found in gene-non coding loops did not highlight specific 4 

pathways or function. 5 

 6 

dREGdistal peaks are targets of transcriptional regulation  7 
  8 

As an orthogonal approach to investigate the gene regulatory functions of dREG 9 

peaks, we identified expression quantitative trait loi (eQTLs) across a panel of rice 10 

varieties and intersected those eQTLs with dREG peak regions. Using gene expression 11 

and SNP data from 216 rice varieties grown in well-watered field conditions [77] we 12 

detected 274,480 eQTLs after a 5% Bonferroni threshold. We intersected the dREGdistal 13 

peaks with the significant eQTLs and found an overlap with 13,036 eQTLs.  14 

 To test the significance of the observed overlap, we generated a bootstrap 15 

distribution by randomly sampling the potentially non-functional regions of the genome, 16 

which were matched for size and total number of dREGdistal peaks. Results showed that 17 

the observed number of overlap between eQTLs and dREGdistal peaks (Fig. 6) was higher 18 

than the maximum number of overlaps in the bootstrap distribution across random 19 

regions, indicating dREGdistal peaks are enriched for eQTLs. We also examined dREGdistal 20 

peaks that were limited to those forming loops with genes and potentially involved in 21 

transcription (identified and analyzed in Fig 5d). Overlap of those filtered dREGdistal peaks 22 

were also significantly enriched for eQTLs (Additional file 1: Figure S12). We repeated 23 

the process for distal ATAC peaks (ATACdistal) that are intergenic and more than >1 kb 24 
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away from predicted transcription start or end sites, and found a significant under 1 

representation for eQTLs (Additional file 1: Figure S13). Taken together, these results 2 

suggest that dREGdistal peaks could be good candidate TREs that could impact gene 3 

activity by promoting transcription.  4 

 5 

Summary: nascent transcription and the rice genome 6 

The rice genome encodes a large number of transcripts that require spatio-7 

temporal regulation and for which a large of cis-regulatory elements remain to be 8 

characterized. In this study, we took advantage of complementary functional genomics 9 

datasets to characterize with high sensitivity the synthesis of eRNAs that arise at both 10 

distal and proximal genomic elements. We considered a broad range of dREG scores 11 

(from 0.3 to >1.0) to explore a wider range of transcribed regulatory elements that could 12 

have distinct functional roles based on their functional genomic signatures. We find that 13 

dREG peaks (proximal and distal) that did not overlap with repetitive elements exhibited 14 

greater evolutionarily constraint and had a higher incidence of overlap with ATAC peaks. 15 

In addition, dREGproximal peaks with higher dREG scores correlated with increased 16 

transcription of nearby genes, and gene expression was higher for proximal peaks that 17 

did not overlap with repeat sequences (Figs. 2 and 4).  18 

 Studies in plant genomes, and particularly in maize, have relied mainly on 19 

accessible chromatin regions (e.g. ATAC peaks) as an indicator of the presence of active 20 

distal CREs [26,74]. In study by Lozano et al. [18] using dREG/PRO-seq data in maize, 21 

they found that 31% of their identified TREs co-located with a list of distal ATAC peaks 22 

characterized by Ricci et al. [26], as well as an overlap of 17% between their list of 23 
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intergenic regulatory elements and CREs found to form CRE-gene loops. Our results 1 

suggests a much lower co-localization between dREG and ATAC peaks, with an overlap 2 

of about 3.7%. This could be due in part to differences between species in their 3D 3 

chromatin architecture, as has been reported with the growing number of chromosomal 4 

contact experiments in plants [78]. Our results suggest that a proportion of dREGdistal 5 

peaks could be functional distal transcribed regulatory elements, as we detected a 6 

significant increase in gene expression in gene-noncoding loops that contain a dREG 7 

peak compared to gene-noncoding loops with no annotation or even with only an ATAC 8 

peak. However, since the loops with both an ATAC and a dREG peak is associated with 9 

the highest gene expression levels, we still have to determine which elements are 10 

functional, whether it requires the overlap between eRNA (i.e., bidirectional transcription) 11 

activity and chromatin accessibility, or whether the presence of eRNAs is sufficient.  12 

 One of the key observations in this study is the impact of the presence of repetitive 13 

elements overlapping the detected dREG peaks. For dREG peaks that partially or entirely 14 

overlapped with annotated repetitive elements, we detected a higher percentage of 15 

methylation across all three cytosine contexts. Interestingly, we observed an increase in 16 

CHH methylation, which occurs predominantly at TEs, and has been shown to be involved 17 

in the prevention of transposon jumping during development in Arabidopsis [79]; this 18 

methylation occurs through the plant-specific RdDM pathway that operates via non-19 

coding RNA [80]. The fact that DNA methylation can positively or negatively impact 20 

transcriptional activity, for example by modulating binding affinity of TFs, makes it a 21 

confounding factor when characterizing candidate TREs. In plants, we argue that 22 

methylation profiles should always be considered with PRO-seq datasets to characterize 23 
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the intergenic transcription signal. We also note that the dREG method uses a training 1 

set of mammalian transcribed regulatory elements, which may not be optimal for plant 2 

genomes. We cannot rule out that there may have been a level of RdDM transcription 3 

contamination in the set of transcribed regulatory elements, but this was taken into 4 

account when we filtered out dREG sites presenting methylation.  5 

Beyond the potential presence of TE silencing mechanism associated with dREG 6 

peaks, we noted that dREG scores were significantly higher for the intermediate repeat 7 

class, but this class may contain different types of elements, as an overlap of as little as 8 

1 bp with a repetitive element places a dREG peak in this category. An interesting 9 

perspective could be the presence of an overlap between dREG peaks and cis-regulatory 10 

elements derived from transposable elements, as a result of an evolutionary process 11 

called TE exaptation, or TE co-option [81–83]. In mammals, there are several reported 12 

instances of TEs providing CREs, including enhancers and repressive elements, and TEs 13 

have contributed an important fraction of TF binding sites across the genome (5–40% 14 

[84,85]). While in plants the contribution of TEs for CREs is less clear, future 15 

characterization of these overlapping regions could be an interesting avenue to identify 16 

potential cases of TE-derived CREs.  Overall, this suggests that considerations, such as 17 

methylation levels and the potential differences with chromatin accessibility, have to be 18 

taken into account when addressing transcribed regulatory elements in plants.  19 

 20 

Conclusions 21 

In conclusion, we have characterized eRNA producing regions in the rice genome. 22 

We find that some of these share features of enhancers and are associated with 23 
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transcription regulation, which makes them compelling candidate enhancer elements. 1 

While the production of eRNAs may be considered a key characteristic used for 2 

identifying enhancers in animal studies, there remains a debate as to whether every 3 

enhancer (in animal systems) produces eRNAs, even at low levels that are not detected 4 

by current methods [51]. In this study, we used the assumptions that eRNAs act principally 5 

in cis versus trans, due to the relative instability of eRNAs [8,67] and several studies have 6 

demonstrated eRNA-dependent transcriptional regulation  of  mRNAs  produced  from 7 

loci adjacent to the corresponding eRNA-producing regions [12,86,87]. Further 8 

characterization of eRNA producing regions in other plant genomes will help us better 9 

understand whether this assumption holds true for plants.  10 

 11 

 12 

Materials and Methods 13 

Plant material 14 

Seeds of O. sativa landrace Azucena (IRGC 328; tropical Japonica), provided by the 15 

International Rice Research Institute (Los Baños, Philippines), were used for the 16 

functional genomic datasets. Seeds were incubated for 5 d at 50° C and germinated in 17 

water in the dark for 48 h at 30° C. These were subsequently sown on hydroponic pots 18 

suspended in 1× Peters solution and 1.8 mM FeSO4 (pH = 5.1–5.8) (JR Peters). Plants 19 

were grown for 15 d in growth chambers (12-h days; 30 °C/20 °C day/night; 300–500 20 

μmol quanta m−2 s−1; relative humidity: 50–70%). Leaf tissue for library construction was 21 

collected from 17-d-old, young plants. 22 

 23 
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RNA-Seq 1 

Total RNA was extracted using RNeasy Plant Mini kits (Qiagen), according to the 2 

manufacturer’s instructions. RNA quality was determined by BioAnalyzer (Agilent). 3 

Contaminating DNA was removed from total RNA samples with Baseline-ZERO DNase 4 

(Epicentre), whereas ribosomal RNA was removed using a Ribo-Zero rRNA Depletion Kit 5 

(Epicentre). Strand-specific RNA-Seq libraries were synthesized using a Plant Leaf 6 

ScriptSeq Complete Kit (Epicentre). Libraries were sequenced for 2 × 100-bp reads on 7 

an Illumina HiSeq 2500. Two biological replicates were generated and a third replicate 8 

(SRA : SRX7082160; Bioproject : PRJNA586887) generated under the same conditions 9 

and used in a previous study [19] was used.  The sequencing reads were adapter-trimmed 10 

and quality-controlled using BBTools (https://jgi.doe.gov/data-and-tools/bbtools/) bbduk 11 

program version 37.66 with option: minlen = 25 qtrim = rl trimq = 10 ktrim = r k = 25 mink 12 

= 11 hdist = 1 tpe tbo. Trimmed reads were aligned to the Azucena reference genome 13 

[45] (Bioproject PRJNA424001) using hisat2 version 2.2.1 [88] and estimated the read 14 

counts for each gene using featureCounts [89]. To normalize the variation existing 15 

between different samples, we applied the trimmed mean of M value (TMM) method [90] 16 

from the edgeR version 3.18.0 package [91] on each samples’ gene expression values. 17 

For each gene the expression values were averaged across the three replicates.  18 

 19 

DNA methylation 20 

DNA was extracted using DNeasy Plant Mini kits (Qiagen) following the manufacturer’s 21 

protocol. Extracted DNA was sheared into 350-bp fragments using an S220 Focused-22 

ultrasonicator (Covaris). An Illumina TruSeq DNA Kit (Cat. No. FC-121-3001) was used 23 
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to construct the library and a Zymo Lightning Kit (Cat. No. D5030) was used to perform 1 

the bisulfite treatment. KAPA Uracil Polymerase (Cat. No. KK2623) was used to amplify 2 

the library with 12 cycles. One biological replicate was generated and a second replicate, 3 

generated under the same conditions and used in a previous study [19] was used (SRA : 4 

SRX7082155; Bioproject : PRJNA586887). Libraries were sequenced using Illumina 5 

protocols for 2×100-bp reads on an Illumina HiSeq 2500. Raw bisulfite sequencing (BS-6 

seq) reads quality controled using the program trim galore Ver. 0.6.6 7 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) with default 8 

parameters. We used bismark version 0.16.3 [92] for mapping the BS-seq reads and 9 

deduplicating reads. 10 

 11 

Chromatin accessibility 12 

Intact nuclei were isolated using the plant nuclei isolation protocol described by Zhang 13 

and Jiang [38]. Nuclei quality was assessed using DAPI staining. Chromatin was 14 

fragmented and tagged following the standard ATAC-seq protocol [93]. Libraries were 15 

purified using Qiagen MinElute columns before sequencing and were sequenced as 16 

paired-end 51-bp reads on an Illumina HiSeq 2500 instrument. Sequencing reads were 17 

adapter trimmed and QC controlled using the script bbduk.sh version 38.90 18 

(https://sourceforge.net/projects/bbmap/) with parameters: minlen=16 qtrim=rl trimq=20 19 

ktrim=r k=19 mink=10 hdist=1 tpe tbo. Trimmed sequencing reads were aligned to the 20 

Azucena reference genome using Bowtie 2 version 2.4.2 [94] under option very-sensitive 21 

and with the parameter -X 1000. The Azucena reference genome included the chloroplast 22 

sequence (genbank ID: GU592207.1) to allow chloroplast originating ATAC-seq reads, 23 
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and were subsequently removed using the script removeChrom.py from the Havard FAS 1 

informatics group (https://github.com/jsh58/harvard/blob/master/removeChrom.py). Peak 2 

calling were conducted using the program MACS2 version 2.2.7.1 [95] with the 3 

parameters: --nomodel -g 379627553 -f BED -q 0.05 --extsize 200 --shift -100 --keep-dup 4 

all -B. We used MACS2 to call peaks for each of the three replicate libraries and peaks 5 

that overlapped 50% in size between at least two replicates were chosen for downstream 6 

analysis. To determine ATAC peaks that overlapped dREG peaks we used bedtools 7 

closest function and peaks that were within 100 bp of each other were considered as 8 

overlapping peaks. 9 

 10 

ChIP-Seq 11 

Leaf tissue (2 g) was fixed in 1% formaldehyde (v/v) for 15 min, after which glycine was 12 

added to a final concentration of 125 mM (5 min incubation). Tissues were rinsed three 13 

times with de-ionized water before being flash frozen in liquid nitrogen. Chromatin 14 

extraction and chromatin shearing were performed using a Universal Plant ChIP-seq kit 15 

(Diagenode) following the manufacturer’s instructions. Protease inhibitor cocktail 16 

(MilliporeSigma) was added to extraction buffer. Samples were sonicated for 4 min on a 17 

30 s on/30 s off cycle using a Bioruptor Pico (Diagenode). Subsequent steps were 18 

performed as in the Universal Plant ChIP-seq kit protocol. Immunoprecipitation was done 19 

using anti-acetyl-histone H3 (Lys27) (H3K27ac; Cell Signaling Technology; Cat. No. 20 

4353S; lot 1), anti-trimethyl-histone H3 (Lys27) (H3K27me3; MilliporeSigma; Cat. No. 07-21 

449; lot 2919706), anti-trimethyl-histone H3 (Lys4) (H3K4me3; EMD Millipore; Cat. No. 22 

07-473; lot 2746331) and anti-acetyl-histone H3 (Lys18) (H3K18ac; Cell Signaling 23 

Technology; Cat. No. 9675S; lot 1). The quality and fragment size of immunoprecipitated 24 
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DNA and input samples were measured using agarose gel electrophoresis and 1 

TapeStation 2200 (Agilent). Libraries were synthesized using a MicroPlex Library 2 

Preparation Kit (v.2; Diagenode). Libraries were sequenced as 2 × 50-bp reads on an 3 

Illumina HiSeq 2500 instrument. Two biological replicates were generated and a third 4 

replicate, generated under the same conditions and used in a previous study [19] was 5 

used (SRA : SRX7082158 H3K4me3; SRX7082157 H3K18Ac; SRX7082156 H3K27Ac; 6 

SRX7082153 H3K27me3; Bioproject : PRJNA586887).  7 

Sequencing reads were adapter trimmed and QC controlled using the script bbduk.sh 8 

ver. 38.90 (https://sourceforge.net/projects/bbmap/) with parameters: minlen=16 qtrim=rl 9 

trimq=20 ktrim=r k=19 mink=10 hdist=1 tpe tbo. Trimmed reads were aligned to the 10 

Azucena reference genome [45] (Bioproject PRJNA424001) using Bowtie 2 version 2.4.2. 11 

[94] under option very-sensitive and with the parameter -X 1000. 12 

 13 

PRO-Seq 14 

Nuclei isolation was as described by Hetzel et al. [20], with some modifications. ~20 g of 15 

leaf tissue from 17-d-old plants was collected in 4 °C, placed in ice-cold grinding buffer 16 

and homogenized using a Qiagen TissueRuptor. Samples were filtered and pellets were 17 

washed twice, followed by homogenization, resuspension in storage buffer (10 mM Tris 18 

(pH 8.0), 5 mM MgCl2, 0.1 mM EDTA, 25% (v/v) glycerol and 5 mM DTT) and freezing in 19 

liquid nitrogen. Nuclei were stained with DAPI and loaded into a flow cytometer (Becton 20 

Dickinson FACSAria II). Around 15 million nuclei were sorted based on the size and 21 

strength of the DAPI signal, and subsequently collected in storage buffer. Nuclei were 22 

pelleted by centrifugation at 5,000g and 4 °C for 10 min, and resuspended in 100 μl 23 

storage buffer. 24 
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 PRO-Seq was performed as described by  Mahat et al. [16], generating strand-specific 1 

libraries with reads starting from the 3′ end of the RNA. Amplified libraries were assessed 2 

for quality on a TapeStation before sequencing with 1 × 50-bp reads on a HiSeq 2500. 3 

One biological replicate was generated and a second replicate, generated under the 4 

same conditions and used in a previous study [19] was used (SRA : SRX7082159; 5 

Bioproject : PRJNA586887).   6 

The raw reads were then used on the proseq2.0 (https://github.com/Danko-7 

Lab/proseq2.0) pipeline [50] that automatically pre-processes the reads, aligns to the 8 

reference genome, and generates output bigWig files for downstream PRO-seq peak 9 

calling analysis. To identify peaks of divergent transcription activity we used the bigwig 10 

file generated from the previous step as an input for the cloud computing version of the 11 

dREG algorithm (https://dreg.dnasequence.org/). 12 

 13 

PoreC data generation and computational processing.  14 

We generated PoreC libraries following the protocol of Choi et al. [96] and sequencing 15 

library was prepared using the Oxford Nanopore Technologies standard ligation 16 

sequencing kit SQK-LSK109. Sequencing was conducted on a GridION X5 and 17 

PromethION sequencer and the raw data were base-called by Oxford Nanopore 18 

Technologies basecaller Guppy version 4.4.0 (available on 19 

https://community.nanoporetech.com/) on high-accuracy mode. The Pore-C data 20 

analysis was conducted using the PoreC snakemake workflow developed by Oxford 21 

Nanopore Technologies (https://github.com/nanoporetech/Pore-C-Snakemake). Briefly, 22 

the pipeline first aligns the nanopore Pore-C chromosome contact sequence reads to the 23 
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Azucena genome using bwa-sw version 0.7.17-r1188 [97] with parameters -b 5 -q 2 -r 1 1 

-T 15 -z 10 The alignment BAM file was processed with Pore-C tools 2 

(https://github.com/nanoporetech/pore-c) to filter spurious alignments, detect ligation 3 

junctions, and assign fragments that originated from the same chromosomal contacts. 4 

The workflow also generates cool and hic files that can be used for downstream analysis. 5 

 6 

TAD and chromatin loop calling 7 
 8 
The PoreC contact matrix generated from the previous analysis was normalized using the 9 

KR algorthim [98] with the computational suite HiCExplorer version 3.4 [99]. Using the 10 

normalized contact matrix the algorithm topdom [100] was used to call TADs as the 11 

method was shown recently to be a highly effiecnt and accurate method for detecting 12 

TADs [101]. The topdom analysis was conducted using a 5 kbp resolution contact matrix. 13 

PoreC contact matrix was also used to statistically determine the significant chromatin 14 

contacts using the program FitHiC2 [75]. Using the genomic distance between windows 15 

and their contact probability, FitHiC2 applies a spline fit to model an empirical null 16 

distribution and detect chromatin contacts as outliers to this null distribution. FitHiC2 was 17 

run with default parameters using the 5kbp resolution contact matrix, while setting the 18 

lower bound on the intra-chromosomal distance range (parameter -L) as 10 kbp and 19 

upper bound (parameter -U) as 1 Mbp. Candidate chromosome loops were filtered by 20 

selecting for window pairs that had a Benjamini-Hochberg procedure based false 21 

discovery rate threshold q-value < 0.05. Window pairs that had significant evidence of 22 

contact were then classified as whether it was a coding or noncoding window by defining 23 
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a coding window as those that contained more than 100 bp (i.e. greater than 2% of the 1 

window) of coding sequences. 2 

 3 

Azucena reference genome repeat sequence and gene annotation 4 

Repetitive sequences in the Azucena genome were annotated using the EDTA program 5 

[102]. The Azucena reference genome lacked gene annotation. To annotate the gene we 6 

took the gene models from the Nipponbare reference genome, which arguably has the 7 

best gene models for rice, and lifted over the gene coordinates using the program liftoff 8 

[103].  9 

 10 

Evolutionary analysis 11 

To calculate phyloP scores we first generated whole genome alignments of wild rice (O. 12 

nivara, O. rufipogon, O. punctata, O. glaberrima, O. barthii, O. brachyantha, O. 13 

glumaepatula, O. meridionalis, and Leersia perrieri) [104]. The wild rice reference 14 

genomes were aligned to the repeat masked Azucena reference genome using LASTZ 15 

version 1.03.73 [105]. Alignment blocks were chained and filtered using the UCSC Kent 16 

utilities suite (http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64.v287) to obtain a 17 

single chain the highest score to represent a single orthologous region of the reference 18 

genome. A final multi-genome alignment was generated using the aligner MULTIZ [106]. 19 

Using the multi-genome alignment four-fold degenerate sites were extracted using the 20 

phast version 1.3 package [107]. The four-fold degenerate sites were then used to build 21 

a phylogenetic tree using raxml version 8.2.12 [108] with the GTR gamma model. The 22 

topology obtained from the phylogenetic analysis and the four-fold degenerate site data 23 
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was used to fit a phylogenetic neutral model with phylofit. Using the neutral model we 1 

estimated the per-base conservation score using the phylop program with mode 2 

CONACC and method LRT.  3 

The fitCons score were obtained from Joly-Lopez et al. [19]. But because the fitCons 4 

score were calculated using the Nipponbare reference genome we converted those 5 

scores to Azucena reference genome coordinates, by aligning the Azucena reference 6 

genome to Nipponbare reference genome and using the program liftOver from the Kent 7 

utilities suite. 8 

 9 

eQTL detection 10 

Population whole genome resequencing and gene expression data were obtained from 11 

Groen et al. [77]. For genes that had multiple transcript expression profile, we chose the 12 

longest transcript to represent the expression level of that gene. We conducted eQTL 13 

analysis using the program MatrixeQTL [109]. To account for population structure we 14 

used plink [110] to calculate structure using polymorphism data and chose the first 5 15 

principal components as covariates to the eQTL model. Resulting p-values for each SNP 16 

were filtered using Bonferroni correction and SNPs with adjusted p-value < 0.05 were 17 

considered significant eQTLs. 18 

 19 

Gene ontology and motif enrichment  20 

Gene ontology (GO) analysis of genes in gene-non coding loops was performed using 21 

BinGO [111] with the full list of GO terms (GO_Full) or using PANTHER [112] with the 22 

molecular functions, biological process and cellular component GO lists. Motif enrichment 23 
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was determined using Homer (v.4.10; http://homer.ucsd.edu/homer/) findMotifs with the 1 

options -mset plants -len 6,7,8 enabled, and permuted sets of input sequences were used 2 

as controls. 3 

 4 

Plotting functional genomic data  5 

Enrichment of functional genomic reads around peaks of interest were plotted using 6 

deeptools [113], specifically the program computeMatrix. APA plots were generated using 7 

the program coolpup.py [114]. 8 

 9 
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Supplemental Fig 2. dREG scores for dREGproximal and dREGdistal peaks. 1 

Supplemental Fig 3. Epigenetic marks for dREGproximal and dREGdistal peaks.  2 

Supplemental Fig 4. Epigenetic marks for coding and repetitive sequences in the rice 3 

genome.  4 

Supplemental Fig 5. DNA methylation levels for dREGproximal and dREGdistal peaks.  5 

Supplemental Fig 6. Scatter plot for dREG peak regions’ score and evolutionary 6 

conservation scores.  7 

Supplemental Fig 7. Evolutionary scores for dREGproximal and dREGdistal peaks.  8 

Supplemental Fig 8. Chromatin profiles of dREGProximal peaks that are binned by dREG 9 

scores. 10 

Supplemental Fig 9. Epigenetic marks surrounding TAD boundaries. 11 

Supplemental Fig 10. Distribution of loops detected by Pore-C for dREGdistal peaks.  12 

Supplemental Fig 11. Distribution of dREG scores for the dREG peaks contacting a 13 

gene.  14 

Supplemental Fig 12. Enrichment of eQTLs within dREGdistal peaks identified in Figure 15 

5D. 16 

Supplemental Fig 13. Enrichment of eQTLs within ATAC peaks. 17 

 18 

Additional file 2: Supplementary tables 19 
 20 
Supplemental Table 1. Total number and proportion of genic, distal, and proximal dREG 21 
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Supplemental Table 2. Pore-C summary statistics. 23 
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Figure Legend 1 

Figure 1. Chromosomal features associated with dREG peaks in the rice genome. 2 

(a) PRO-seq read counts for positive-sense (top) and negative-sense of dREG peaks. (b) 3 

Classification of dREG peaks according to the genomic regions it was located. Genic: 4 

within coding sequence regions; proximal: within 1 kbp of genic sequences; and distal: 5 

more than 1 kbp away from genic sequences. (c) Overlap between dREG and ATAC 6 

peaks. (d) Enrichment of functional genomic sequencing reads 1.5 kbp upstream and 7 

downstream of dREG (left) and ATAC (right) peak regions.  8 

 9 

Figure 2. Repetitive sequence characteristics within proximal (top row) and distal 10 

(bottom row) dREG peak regions. (a) Median dREG scores for dREG peaks classified 11 

into three repeat classes: (Left) Repeat: entire dREG peak region is a repetitive 12 

sequence; (Middle) Intermediate repeat: dREG peak regions that are not classified as 13 

“repeat” or “no repeat” class; (Right) No repeat: no repeat sequence was annotated in 14 

dREG peak region. The numbers in the box plot represent the count of dREG peaks in 15 

each category. (b) Percentage of methylated cytosine for the three different cytosine 16 

contexts CpG, CHG, and CHH sites (where H is A, T, or C nucleotide). (c) ATAC-seq 17 

read counts centered at dREG peak for the repeat classes No repeat and Repeat. 18 

 19 

Figure 3. Evolutionary scores. (a) phyloP and (b) fitcons for dREG peaks and 20 

comparison to coding sequence regions or random regions of the genome.  21 

 22 
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Figure 4. Functional characteristics of dREGProximal peaks that are detected at 5 1 

prime untranslated regions of genes. (a) Expression levels (shown as Reads per kilo 2 

base per million mapped reads, RPKM) for genes with and without dREGProximal peaks. 3 

Genes with dREGProximal peaks were divided by repeat class and their expression levels 4 

were compared to the genes without dREGProximal peaks. Numbers in boxplot represent 5 

sample size of genes. (b) Gene expression levels for genes with dREGProximal peaks 6 

divided by dREG score and repeat classification. Asterisk (*) indicate significant 7 

differences after all pairwise comparisons using the Mann-Whitney U test. Numbers in 8 

boxplot represent sample size of genes. 9 

 10 

Figure 5. Chromatin features and functionality of dREGDistal peaks. (a) PRO-seq read 11 

count enrichment surrounding TADs. Shown are 10 kbp upstream and downstream of 12 

TADs with the TAD scaled to 5 kbp. PRO-seq read counts were averaged in 100 bp 13 

windows. (b) Proportion of gene-gene, gene-noncoding, and noncoding-noncoding loops 14 

that were detected using Pore-C sequencing. (c) Aggregate Peak Analysis (APA) plots 15 

showing the aggregated Pore-C contacts around chromatin loops identified in all 16 

chromosomes (left) and only between a noncoding-gene loop (right). The plot is a pile-up 17 

of 25 kbp upstream and downstream of loop anchors (centered in each axis) of every 18 

identified loop. Color represents log2 fold enrichment of the observed aggregated matrix 19 

over a normalization matrix that was aggregated from randomly shifted controls regions 20 

across the chromosome. (d) Gene expression level for genes that are contacting a 21 

noncoding anchor with either an ATAC peak, dREG peak, or has no annotation. Asterisk 22 
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(**) indicates a p-value < 0.01 and *** indicates a p-value < 001 after an FDR-corrected 1 

Mann-Whitney U test. 2 

 3 

Figure 6. Enrichment of eQTLs within dREGdistal peaks. Histogram shows the 4 

bootstrap distribution of the total number of eQTLs overlapping a random region of the 5 

genome that are matched for size and total number of dREGdistal peaks. The red dotted 6 

line shows the total number of eQTLs overlapping the dREGdistal peaks.  7 

 8 

 9 
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