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Cell size regulation and proliferation fluctuations in single-cell derived
colonies

César Nieto!, César Vargas-Garcia 2, Juan Manuel Pedraza 3

Abstract— Exponentially growing cells regulate their size by
controlling their timing of division. Since two daughter cells
are born as a result of this cell splitting, cell size regulation has
a direct connection with cell proliferation dynamics. Recent
models found more clues about this connection by suggesting
that division occurs at a size-dependent rate. In this article,
we propose a framework that couples the stochastic transient
dynamics of both the cell size and the number of cells in the
initial expansion of a single-cell-derived colony. We describe
the population from the two most common perspectives. The
first is known as Single Lineage: where only one cell is followed
in each colony, and the second is Population Snapshots: where
all cells in different colonies are followed. At a low number
of cells, we propose a third perspective; Single Colony, where
one tracks only cells with a common ancestor. We observe
how the statistics of these three approaches are different at
low numbers and how the Single Colony perspective tends
to Population Snapshots at high numbers. Analyzing colony-
to-colony fluctuations in the number of cells, we report an
intriguing find: the extent of fluctuations first increases with
time and then decreases to approach zero at large numbers
of cells. In contrast, in classical size-independent proliferation
models, where cell division occurs based on a pure timing
mechanism, fluctuations in cell number increase monotonically
over time to approach a nonzero value. We systematically study
these differences and the convergence speed using different size
control strategies.

I. INTRODUCTION

Most cellular properties are subject to random variability
(noise) [1]-[3]. Although these fluctuations are tradition-
ally studied in single-cell variables, such as protein levels,
stochasticity also affects collective variables involving cell
populations such as gene drift [4], [5], host invasion by
pathogen cells [6], the survival of small groups to antimicro-
bial treatment [7], ecology of cell populations [8], size-based
interactions [9] and metabolite production [10].

One of the causes of randomness at the population level
is the variability in the timing of division [11]. Recent
debates have concluded that the rate of division depends on
cell size [12]-[23]. Some studies used this size-dependent
division rate to partially solve cell size statistics in the cell
population [24]-[27] but specifically how this size control
affects population dynamics depends on how the population
is described.
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(a) Single Lineage:Distribution over individual cells selected from a large number of colonies.
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(b) Population Snapshots:Distribution over all cells from a large number of colonies.
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(c) Single CoIony'Distribution over one colony estimated from a large number of colonies.
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Fig. 1. Different approaches to quantify cell size and population count
statistics across proliferating colonies. Depending on the perspective,
different cells (cyan) are selected to estimate the population statistics.

Two main paradigms are common at modeling population
statistics (Fig. 1): the first one is known as the Single lineage
approach, where the observer tracks only an individual cell
of each colony over a large number of colonies (Fig. 1a).
Some experiments [22] use the former approach, while others
such as cell cytometry [28] and microdroplets [29], use the
second perspective: population snapshots, which represents
the population considering all descendants in a large number
of colonies [30], [31] (Fig. 1b).

These perspectives consider that the population has a large
number of cells. At this limit, the cell number is taken as
a deterministic continuous variable. However, in the initial
phase of colony expansion, the number of individuals is low,
and its stochastic fluctuations are relatively high. We will
discuss how, in this case, it is necessary to propose a third
approach: Single Colony, where the statistical properties are
estimated not over the entire population but across the small
number of cells descending from a common ancestor (Fig.
1c).

This article shows methods to calculate the transient
dynamics of the cell size distribution for exponentially
growing and proliferating cells. We consider these cells to
be descendants of a common ancestor with a division rate
proportional to size. In Section II, we describe the dynamics
of the size distribution using the known Population Balance
Equation (PBE), proposing a modification of the finite dif-
ference method. We observe how the cell size distribution,
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despite showing similar moment dynamics, takes different
shapes depending on whether we consider random or perfect
symmetric partitioning.

In Section III, we model cell proliferation by taking the
number of cells as a discrete random variable. We present
how, considering cell size dynamics, the single colony per-
spective differs from the other approaches at the beginning
of cell proliferation. When the number of individuals is large
enough, single colony is equivalent to population snapshots.
Finally, in Section IV, we study the variability of the pop-
ulation between colonies. We compare the size-dependent
division model with other models of proliferation based on
timer-dependent control. The size dependence reduces the
fluctuation in numbers to zero as the population grows. On
the other hand, the time-dependent model predicts that these
fluctuations do not decrease but instead reach a constant
value. [32].

II. POPULATION BALANCE EQUATION

In this section, we will study a numerical solution to
the population balance equation (PBE) with some modifi-
cations to make it more computationally feasible. The main
advantage of this framework is that it estimates not only
the moments but also the entire size distribution quickly
and efficiently, starting from an arbitrary initial distribution.
Recent articles have partially overcome this problem: Some
of them found expressions for steady distribution that neglect
transient dynamics [26], [30]. Others study the transient
dynamics of the distribution moments with limited precision
[24]. Finally, further studies can obtain the distribution in
exceptional cases and the transient moment dynamics with
arbitrary accuracy, but limited to the case of a single lineage
[14], [33].

A. The PBE for growing cells

To introduce the theoretical approach, let us consider the
case of an exponentially growing cell without divisions. Let
the cell size s follow:

L s, (1)
with p being the elongation rate and ¢ the time from the
beginning of the experiment.

If division is not considered, the associated PBE describing
the probability density function (PDF) p(s,t) of the size at
any time is given by:

o, Ousp)
ot ds
The function p(s,t) can be associated with a probability
density function that meets the normalization condition:

=0. )

/00 p(s,t)ds = 1. 3)
0

Let the initial condition p(s,t = 0) = d(s — sp), that is,
the cell starts at an initial size s(t = 0) = s;. The PBE has
the following solution:

p(s,t) = 6(s — spe’). )

The numerical approach we propose to solve (2) consists
of defining an infinitesimal time step At that satisfies At <
1~ 1. Given this At and the growth rate 1, we can divide the
size interval into a variable width lattice that depends on the
point s as Fig. II-A shows.

ol [ ][]

BT | e

Fig. 2. Schematic of the lattice partitioning scheme to solve the
dynamics of the PBE equation in exponentially growing cells. The
size is divided into a lattice with values s;. The width of the interval
(8iy8i+1) = (si,s; + As;) is proportional to s; by the relationship
As; = s;pAt with At being an infinitesimal time step used in integration
as explained in (17).

After discretization of (1), the size s;4; with ¢ €

{0,1,---,I} can be defined from the size s; using:
Sir1 = si(1 4+ pAt) (5a)
Asi = Si+1 — S = ,U,SiAt. (Sb)

If division is not considered and using (5a), the expression
(2) can be written as:

p(sist + At) — p(si, t) JrMSiP(Sm t) — psi—1p(si—1,t)
At As;_q

=0,

(6)

which, after multiplying on both sides by AtAs;, it becomes:
(p(si,t + At) — p(si, t)) Asi

+M8z‘ﬂ(8i» t) — psi—1p(si—1,t) AtAs,
Asi_q

= 0. (0

After using the properties At = ﬁsl = ﬁflil and As; =
As;—1(1+ pAt) derived from (5b) and (5a), respectively, we
define the probability of finding cells of size in the interval
(Si7 Si+1).

P(si,t) = p(si, t)Asi, ®)

(7) can now be expressed as:

©))
which, after the condition pAt < 1 simplifies into:
P(Si,t-FAt) ZP(SZ‘_l,t). (10)

This expression, together with the initial condition
P(s;,t =0) = s, 5, With ¢; ; being the Kronecker delta, is
equivalent to (4).
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Fig. 3. Differences between the distribution dynamics depending on the perspective used for doing the size statistics. 7Top: (a) Mean size dynamics,
(b) size variability measured as C'V2(s), and (c) the size distribution observed for time equal to a multiple n of the doubling time 74. Bottom.: Stochastic
dynamics of the size distribution, including noise in partitioning (CVde = 0.04). (d) Mean size dynamics, (e) size variability measured as CV?2(s),
and (f) the size distribution observed for time equal to a multiple of the doubling time 74. The single lineage perspective is shown in blue, whereas the

population snapshots case is shown in brown. (Parameters: k = p = In(2), At = 0.0025, so = 2-6 1 = 8000, (s)|¢t=0 = 0.5, cv2(s)

%4 = 400)

TABLE I
VARIABLES USED THROUGHOUT THE ARTICLE.

Variable Interpretation

s Cell size.

o Growth rate

Tq= lnf) Doubling time.

Sp Cell size at the beginning of the process.

At Time increment between successive
algorithm iterations

Si Cell size in the interval 4 for the grid
in the numerical integrator

As; Width of the ¢-th interval

I Total number of s; intervals

n(s,t) number density function

N(s,t) =n(s,t)ds Individual cells in the interval (s, s + ds).

N(t) = [n(s,t)ds  Cell population at time ¢

p(s,t) = "]\(,S(’t)) Size PDF in the interval (s, s 4 ds)

z(t) Number of cells divided ! times at time ¢.

X = (zo, x1, Array describing the colony containing all x;.

P(f ) Probability that the colony be in the state X.

s = Sbelw Cell size after ! divisions at a time ¢.

B. The PBE for growing and dividing cells

Here, we will present how to modify the solution for PBE,
including division. First, consider exponential growth as (1)
and the division rate h(s) as proportional to the size as ks.
Under these assumptions, the associated PBE that describes

t=0 = 0.01,

the number density function n(s,t) follows:

dn(s,t) n d(pusn(s,t))

n P = —ksn(s,t) + 2vk(2s)n(2s,1),

(1D
where, as explained in [24], the parameter v defines the
perspective used to approach population statistics. ¥ = 1, for
instance, corresponds to the perspective of a single lineage,
while v = 2 is used to describe population snapshots.

In this case, the PBE describes the evolution of the
function n(s,t) instead of a PDF p(s,t). This is because
n(s,t) satisfies a different normalization condition:

o0
N(t) = / n(s,t)ds, (12)
0
with N (¢) usually interpreted as the total of cells in the
population that defines the PDF as [24]:
1
) = —— t). 13
Pl 1) = (o) (13)
The term to the right of (11) after performing similar
procedures to obtain (7) can be discretized as:

[—kn(si,t) + 2v(ksi )n(s;«, t)|AtAs;, (14)

where we define the subindex ¢* as s;« =~ 2s;. To estimate
+*, we can use the result (5a) to obtain

Sie = 28; = 8;(1 4 pAt)" (15)
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that can be used to solve 7* as:

=i L In(2) (16)

n(1 4 pAt)
with |z ] being the highest integer less than or equal to .

With formula N(s;) = n(s;)As;, the definition of s} in
(15), and noting that As; = A;”, the expression (11) can
be written as:

N(si, t+AL) = N(s;—1,t)—kAt(s;N(si,t)+vsy N (s, 1)),

a7
where the function N (s;, t) defines the number of individuals
expected in the size interval (s;, s;41) at a time ¢.

After considering an arbitrary starting distribution
N(s,t = 0), applying the time evolution given by (17), as
Fig. 3 shows, one can obtain the size distribution N (s;,t) at
any time later in the future.

The mean population N (¢) over time, the mean size (s),
and the variance var(s) are given by the following:

N{t) = /Omn(s,t)ds%ZN(si,t)
1 & 1

(s) = W/o sn(s7t)d5.mWZsiN(si7t)
var(s) = N1<t)/ooo(s<s>)2n(s,t)ds.

—(s))*N(s4,1)

2

E‘H

7
e

CV?(s) (18)
As we explained in previous studies [14], we normalize the
time by the doubling time such as 745 = 1, that is, u = In(2)
and the size by the mean added size before division & =1
so, we chose k = p = In(2). Thus, all sizes are measured
in units of u/k.
In Fig. 3, we present the moment dynamics of the size

distribution from an initial size s, := s(t = 0) following
a gamma distribution with parameters (s;) = 0.5 and
CV?%(sy) = 0.01. As previously found, the steady mean

size for population snapshots is lower than this value for the
single lineage (see Fig. 3a) [24], [34]. This effect is expected
since, from the snapshots perspective, the fastest proliferating
cells are smaller and more abundant. The size variability
CV?(s) reaches similar values for both perspectives with
higher fluctuations for the population snapshots perspective
(Fig. 3b). Unlike other articles [24], in this approach, we
also present the limit distribution (Fig. 3c). Although it has a
steady mean (s) and steady C'V2(s), the distribution presents
a limit cycle, as observed in previous studies [14], [25].
The complete time dynamics can be found in Supplemen-
tary videos 1 and 2 for the single lineage and population
snapshots, respectively.

C. Time evolution considering noise in splitting

Cells do not split perfectly in half, but with some random
fluctuations. As we suggested before [14], this noise in

the splitting position may break the limit cycle leading to
a stationary distribution. To observe how this stochasticity
affects the transient dynamics of the cell size distribution,
we propose the associated PBE equation, including partition
noise [26]:

dn(s,t)  d(usn(s,t))
i T @

(19)
—|—21/l<:/5’K(s’, s)n(s',t)ds’,

where K (s',s) is a kernel function. We assume that after
division, the size is not divided by one-half but multiplied
by a constant b following:

s — bs (20)

where (b) = 0.5. We can assume, for example, that b follows
a Beta distribution with a given CV. To solve (19) we
calculate the value of the beta distribution over the interval
(0.25,1) to obtain the following:

N(Sl,t+At) = N(Sifl,t) — kAt(SlN(S“t) (21)
2¢*
+VZB(j)3i+jN(5i+j»t))a
j=0

with B(0) = 0.25uA¢3(0.25) and B(2i*) = pAtS(1) with
B(z) the beta distribution value at point x.

The resulting moment dynamics using the algorithm (21)
is presented in Fig. 3d and 3e. Although we have relatively
high noise in the splitting position (20%), we can observe
that the dynamics does not change appreciably. However,
the size distribution reaches a stationary shape (Fig. 3f),
which looks completely different from the case of noise-
less splitting. Supplementary videos 3 and 4 present these
cell distribution dynamics for single lineage and population
snapshots, respectively.

D. Comparison with data sets

In previous sections, we explain how to obtain the size dis-
tribution for different perspectives of population description.
A direct comparison between these trends and the data is not
straightforward. In this article, we contrast the moments in
the system (18) with those derived from data (simulations)
by estimating the moment (s*) from C colonies, each with
Z. cells, with cell size s, .:

C
1
(9)sp.= 5 D (500)° (22a)
c=1
ECC: ZZZ; (52,0>a
(s*)ps = 1( - . ) (22b)

Zc:l ZC

with SL, referring to single lineage perspective, and PS
referring to Population Snapshots. These formulae were also
used to compare the solutions of numerical methods and
stochastic simulation algorithms [14], [35].

This section presented an algorithm for efficient compu-
tation of the size distribution dynamics for exponentially
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growing and dividing cells. This framework considers any
arbitrary starting distribution and includes noise in the split-
ting position. Calculating the entire size distribution over
time allows us to better understand the transient dynamics of
cell proliferation. However, this approach does not allow for
distinguishing between cells that descend from a common
ancestor, since PBE includes all cells in many colonies. We
propose a new framework to overcome this issue, as seen in
the next section.

III. SINGLE COLONY STATISTICS

To model a growing population of cells that divide exactly
in half, consider the state X(t) = (zg,@1--- 2, )
defined by the number of cells with [ divisions after a
time (t) as presented in Fig. 4. For example, the vector
X(t) = (0,2,4,0,---) defines the state of six cells since
>, x; = 6. Two of these cells have divided once (z; := 2),
while the other four cells have divided twice (x5 := 4). There
are no cells without divisions (z¢ := 0) and there are no cells
with more than two divisions (x; := 0,1 > 2).

X=(X05X15X25 s Xg "7

GD)
[ O
_— O
—CD
L—
Xo
I
X1 I 1
i |
X3 [ 1 i
|

Time

Fig. 4. Definition of a state X describing the population of cell. In
this diagram, we show how X changes in a proliferating population. Blue:
Number of cells without division xg. Purple: Cells with one division x7.
Red: Cells with two divisions xo. Yellow: Cells with three divisions x3.
Green: Cells with four divisions. At the end of the proliferation process,
the colony is described by the state X = (0,0,3,2,0,---) and the total
number of cells is >, x; = 5.

As explained in previous articles [14], [25], consider cells
descending from a single ancestor that had a cell size s; at
time ¢ = 0. If they are growing exponentially at rate p, the
size of a cell after perfectly symmetric divisions [ is:

spett

si(t) = ol

Now, consider the division event for cells of size s;. If
there are x; cells of this size, each of them dividing at rate

(23)

Size Dynamics
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Fig. 5. Moments dynamics of both the cell size distribution and

the population numbers for the different population perspectives. (a)
Dynamics of the mean size using (28) for a single colony perspective
(green) compared to the obtained using (17) for a single lineage (blue)
and population snapshots (brown). The variance of the size distribution (b)
is also compared in the three perspectives. The simulations used the formula
(22) and the bootstrapping methods to estimate the confidence intervals of
the simulation results. (c) Examples of population number trajectories for a
constant division rate (purple) and for a division rate proportional to the size
(green). The thick lines correspond to the mean population. (d) Dynamics
of the variability of the population number measured using CV2(NV). The
lines represent the numerical results (30) and the colored regions are 95%
confidence intervals of the results of stochastic simulations (31. (Parameters:
k= p=1n(2), (s)lt=0 = sp = 1, CV2(s)|t=0 = 0, (N)t=0 = 1,
CV2(N)|t=o0 = 0).

ks;, the event consisting of one of these x; cells divides,
indistinguishably, at rate x;(ks;). After division, the number
x; decreases by one and x4 increases by two since two new
cells are born. This division is described by the following
transition:
z kspett
(oo, g, ) LN (oo =L +2,-),
(24)
and other transitions to vectors different from (24) are
forbidden.
Defining the state X™ as a population state prior to
division of one of the cells that has divisions m, we have
the following.

—

X = (-
Xm = (-

7xm,$m+1"')

s+ L, g1 — 2, +4). (25)

The master equation describing the dynamics is given by:
dP(X) -
T = — Z xl(kS[) P(X)

xle)?
+ (@m + Dksp P(X™),  (26)

where s; follows (23).
As an example of (26), we can show the master equation
for the first three states:
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dP(1,0,0,---
% — —ksbe“tP(l,0,0,---)
dP(0,2,0,---) spett
i S et B VA Y A P(0.2.0. - -
dt 2 0,2,0,---)
+kspett P(1,0,0,---)
dP(0,1,2,---) spett spett
et Rt D A (¥ 2% P(0,1,2,--
dt ( 2 + (7 PR=P) )
put
+2k8b; P(0,2,0,---) 7)

Numerical methods based on the finite state projection
algorithm [36] were used to obtain a computation of P(X )
over time. This algorithm truncates the number of states, in
principle infinite, to a given number of finite numbers and
integrates the master equation (26). In Fig. 5, we show the
dynamics of cell size moments with projection over the first
seven generations. Given that the number of possible states
that truncate the number of divisions up to L increases as

L(L;l), it was not possible to increase the accuracy of the

algorithm for times greater than 574.

A. Size distribution moment dynamics

Once P(X) is estimated, the moments of the size dis-
tribution (s“)gc, where the subscript SC stands for single
colony, can be calculated as follows:

o . Exle)? xlsf‘ —
(s%)sc = é: (lee)? o > P(X)
var(s) = (s%) —(s) (28)

These moments can be compared with the empirical value
estimated to have C' colonies, each with Z, cells of size s, .:

1 C 1 Z.
<504>SC — 6 C:ZI (ZC ;(527(:)‘1) .

Fig. 5 shows how the dynamics of the moments of the
size distribution differ depending on which of the three
perspectives we choose. In addition to the moment dynamics
already observed using the PBE and equation (18), in Fig.
5a, we observe how the mean size (s) from the perspec-
tive of a single colony follows a dynamics similar to the
single lineage, and after four division times, it is equivalent
to population snapshots. Size variability, measured as the
variance of the size distribution (Fig. 5b), shows how, from
the perspective of a single colony using (28), this var(s)
remains null-valued during the first doubling time. This effect
occurs because the cells are perfectly split in half and both
daughter cells have the same size after the first division.

(29)

In this section, we theoretically observe a model to approach
the size distributions across single-colony descriptions. This
model is a generalization of previous approaches [25], where
the number of cells with a given number of divisions defines

the state of the system. The numerical solution of the asso-
ciated master equation allowed us to estimate the moment
dynamics of the size in the three perspectives of population
description. In the next section, we will study the stochastic
dynamics of the number of individuals in the colony. We
will also compare the results of this size-dependent division
with classical models, where the division occurs at a size-
independent rate.

IV. DYNAMICS OF THE VARIABILITY ON POPULATION
NUMBER

The variability of the population number can be estimated
from the moments of the population number N:

e

(N = > > wm| PX)
)? zze)?
2
var(N) = > [ D @ | PX)—(N)* (30
X xze)?

These moments can be compared with the estimates from
data sets with considerations similar to those used in (22):

c

(N = 5 AR G1)

In Fig. 5c, we show some trajectories of population
numbers for two systems. One of them (purple) consists
of cells that divide at a constant rate, which is a widely
known model in proliferation dynamics [37], [38]. As a main
result, Fig. 5d shows how the size-controlled division model
presents an asymptotic decay to zero in CV?(N). On the
other hand, in the model with a constant rate of division,
this variability increases to 1.

A. Population fluctuations in cell size-controled vs timer-
controled proliferation

To better understand the models of division timing, let
us compare two simple mechanisms of cell division. If the
division is size-controled, the splitting event is decided based
on the cell size. On the other hand, the division is timer-
controled if the cells consider the timer 7. This timer is
defined as the time spent since the most recent division.

The division rate is modeled by the function h(s,T) as
recently proposed [26], [39]. Therefore, the probability of
dividing during the interval (0, 7) is given by:

P(r)=1—exp ( /O " h(s(7), 7/)d7’> )

In the particular case where the size s is used as a reference

to divide, the division rate can be expressed as follows.
h(s, ) = k[s(T)]* = kspe™™, (33)

with 0 < o < o0, an exponent defining the strength of the
control [18], [26]. In this case, the distribution of division
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Fig. 6. Dynamics of population variability for different division strategies. (a) 7op: Example of size dynamics among a proliferating population.

Bottom: Associated stochastic trajectory of the population number N over time ¢. (b) Dynamics of population variability C'V2(N) for different division
strategies that use a power of size s* as a reference. (c) CV2(N) for division strategies that use a power of cell age 78 as a reference to decide when
to divide. (Parameters: p = In(2), (N)|t=0 = 1, CV2(N)[t =0 =0, (s)|t=0 = 1, CV?(s)|t=0 = 0, k, and y were selected as (1) = 74 = 1)

times depends on the size at the beginning of the cycle s,
[14]:

apT

—1)
In our simulations, we generate random times 7 from the
PDF (34). During the time interval (0, 7), cells grow expo-
nentially following (1) and split in half with partition noise
(CV?2(b) = 0.005). Fig. 6b shows how, as « increases,
CV?2(N) converges faster to zero. The special case v — 0
corresponds to the division at a constant rate.

Next, consider the division timer 7 as a reference for
division, that is, independent of size. In that case, a general
model considers the division rate as proportional to the power
of the cell age 77 with 0 < 8 < oot

k
p(7|sp) = spkexp |apr — sﬁ‘; (e 34)

h(s, ) =77, (35)

with v being a constant. From this rate, the interdivision
times 7 are distributed following a Weibull distribution [40]:

B8+1 )

f+1

As can be seen in Fig. 6¢, § = 0 is the constant rate
division, and increasing 3 the noise in N is more controlled
but approaches either a non-null constant or an oscillatory
behavior if the control strength (3) is high enough. This
finite limit shows a fundamental discrepancy with the size-
dependent division rate, which goes to zero.

p(r) =777 exp (—7 (36)

V. DISCUSSION

Current methods generally model population heterogeneity
from two scenarios. In the first, they solve the steady dis-
tribution where all moments do not change along time [26],
[35]. In the second, the time dynamics can be estimated, but
considering a large number of cells. In this way, fluctuations
in the cell population are negligible [30]. This article works
on the case where these assumptions do not hold: single-
cell derived colonies at low population numbers. This limit
is essential in applications such as studying how a pathogen
invades a host [6], genetic drift in small populations [5], or
the survival of small groups to antimicrobial treatment [41].

Here, we analyze the effects of the division strategy on
proliferation variability. Studying the transient dynamics of
this variability can help us in the discrimination between
a size-based division and a timer-based one. Understanding
these mechanisms can help to approach phenomenological
proliferation models [37] and associate them with molecular
mechanisms as in [21], [26]. Furthermore, simply being
aware of the differences in the resulting distributions de-
pending on the way the population is followed can prevent
error when analyzing population data.

In this work, we present a few details on the additional
mechanisms involved in cell division, focusing on the most
external variables, such as division rate and splitting noise.
However, there are other additional variables, such as the
occurrence of multiple events instead of just one to trigger
division [17], noise in the growth rate [14], or fluctuations
in the initial population [29]. We plan to consider these
variables in future publications.

VI. CONCLUSIONS

This article shows methods for computing the statistical
dynamics of both the size and population number in expo-
nentially elongating and proliferating cells. First, we present
a fast and efficient way to estimate the size distribution at any
time from any starting condition. We observe how different
the size distribution is depending on whether we track only
one cell after cell division or all the offspring. The distri-
bution considering the first perspective has a higher mean
and less variability relative to the second. We modified the
algorithm to include stochastic variability in the partitioning
position, revealing that the steady distribution has a different
shape, although the moment dynamics are essentially the
same as the case without stochasticity in partitioning.

This method is valid for a high number of individuals, and
therefore it cannot estimate the fluctuations within a colony
of a low number of cells. To overcome this, we propose a
formalism in which the population is described by an array
whose [-th component is the number of cells that have [
divisions. We offer a master equation associated with this
system, using numerical methods based on the finite-state
projection algorithm to obtain a solution. This article shows
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how, at low numbers, the size statistics over the colony can
differ from those calculated using the PBE.

Finally, we study fluctuations in the population number
for colonies of individuals coming from a single ancestor.
We observe how if the division is controlled on the basis of
the size, the fluctuations in population number go to zero as
time passes. Meanwhile, if the division happens with the cell
inter-division timer as a reference, these fluctuations tend to
be a nonnull constant.
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