

1 The FANCC-FANCE-FANCF complex is evolutionarily conserved and regulates
2 meiotic recombination

3

4

5 Dipesh Kumar Singh¹, Rigel Salinas Gamboa¹, Avinash Kumar Singh², Birgit
6 Walkemeir¹, Jelle Van Leene^{3,3bis}, Geert De Jaeger^{3,3bis}, Imran Siddiqi², Raphael
7 Guerois⁴, Wayne Crismani^{5,6} and Raphael Mercier^{1*}

8 ¹Department of Chromosome Biology, Max Planck Institute for Plant Breeding
9 Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany

10 ²CSIR-Centre for Cellular & Molecular Biology, Uppal Road, Hyderabad, 500007, India

11 ³ Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-
12 9052, Belgium

13 ^{3bis} Center for Plant Systems Biology, VIB, Ghent, B-9052, Belgium

14 ⁴ Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique,
15 CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, 91190, France

16 ⁵ The DNA Repair and Recombination Laboratory, St Vincent's Institute of Medical
17 Research, Melbourne, 3065, Australia,

18 ⁶ The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne,
19 Parkville, Victoria, Australia

20 *Corresponding author: Raphael Mercier (mercier@mpipz.mpg.de)

21

22

23 **Abstract**

24 At meiosis, programmed meiotic DNA double-strand breaks are repaired *via*
25 homologous recombination, resulting in crossovers (COs). From a large excess of
26 DNA double-strand breaks that are formed, only a small proportion gets converted into
27 COs because of active mechanisms that restrict CO formation. The Fanconi anemia
28 (FA) complex proteins AtFANCM, MHF1, and MHF2 were previously identified in a
29 genetic screen as anti-CO factors that function during meiosis in *Arabidopsis thaliana*.
30 Here, pursuing the same screen, we identify FANCC as a new anti-CO gene. FANCC
31 was previously only identified in mammals because of low primary sequence
32 conservation. We show that FANCC, and its physical interaction with FANCE-FANCF,
33 is conserved from vertebrates to plants. Further, we show that FANCC, together with
34 its subcomplex partners FANCE and FANCF, regulates meiotic recombination.
35 Mutations of any of these three genes partially rescues CO-defective mutants, which
36 is particularly marked in female meiosis. Functional loss of FANCC, FANCE, or FANCF
37 results in synthetic meiotic catastrophe with the pro-CO factor MUS81. This work
38 reveals that FANCC is conserved outside mammals and has an anti-CO role during
39 meiosis together with FANCE and FANCF.

40

41 **Introduction**

42 Large-scale exchange of genetic material between homologous chromosomes in the
43 form of meiotic crossovers (COs) generates new allelic combinations in the sexual
44 progeny of eukaryotes. COs are also required for the correct segregation of
45 chromosomes at the first meiotic division in most species. This is likely why a
46 mechanism exists to ensure an “obligate” crossover per chromosome pair, per meiosis.
47 Meiotic recombination is initiated by the formation of a large number of programmed
48 DNA double-stranded breaks (DSBs), a minority of which are repaired as COs. Two

49 pathways contribute to CO formation, defining two classes of COs. Class I COs depend
50 on a group of proteins called ZMMs, an acronym derived from seven proteins initially
51 described in *Saccharomyces cerevisiae* (Zip1-Zip4, Msh4-5, Mer3) (Pyatnitskaya,
52 Borde, and De Muyt 2019; Borner, Kleckner, and Hunter 2004), and account for most
53 of the COs. Class II COs, which account for a minority of COs in most eukaryotes
54 including mammals and plants, involve notably the MUS81 nuclease (Youds and
55 Boulton 2011; de los Santos et al. 2003).

56 In *Arabidopsis thaliana*, a mutation in any member of the ZMMs causes a drastic
57 decrease in CO number, and notably the loss of the obligate crossover, with only a few
58 residual COs formed by the class II pathway, leading to chromosome mis-segregation
59 and quasi-sterility. A forward genetic screen for restoration of fertility of *zmm* mutants
60 identified a series of genes that actively limit CO formation in *Arabidopsis*. These
61 factors specifically limit class II COs and act through three mechanisms. The first anti-
62 CO pathway involves proteins from the Fanconi anaemia (FA) pathway, FANCM
63 (Crismani et al. 2012), MHF1, and MHF2 (Girard et al. 2014). These three proteins
64 have been shown to physically interact in humans, along with FAAP24, which has not
65 been identified in *Arabidopsis* (Singh et al. 2010; Tao et al. 2012). The second anti-CO
66 mechanism involves RECQL, RMI1, and TOP3a (Seguela-Arnaud et al. 2017), and the
67 third, the proteins FIGL1 and FLIP (Girard et al. 2015; Fernandes, Duhamel, et al.
68 2018; Kumar et al. 2019). These three mechanisms contribute in parallel to limiting
69 class II COs (Fernandes, Seguela-Arnaud, et al. 2018).

70

71 The FA pathway is comprised of at least 23 protein subunits in human cells and
72 some, but not all, of them are widely conserved in eukaryotes, including plants. It is
73 traditionally known for its role in inter-strand crosslink repair in somatic cells in humans,
74 with emerging roles in replication fork protection (Kolinjivadi, Crismani, and Ngeow

75 2020). The FA pathway is heavily studied because its proper function is required to
76 prevent serious human disease: FA functions as a tumor suppressor and mutation of
77 FA pathway factors causes the rare condition Fanconi anemia. FA core complex
78 proteins have been classified into three groups on the basis of their molecular roles: (i)
79 The core complex encompasses the largest group of proteins and is installed at DNA
80 damage sites or stalled replication forks, with FANCM acting as an anchor. MHF1-
81 MHF2, a heterodimeric protein complex, promotes FANCM recruitment at the site of
82 DNA damage (Yan et al. 2010; Singh et al. 2010). (ii) The FA-ID2 complex is recruited
83 and monoubiquitinated by the core complex at the DNA damage site (Smogorzewska
84 et al. 2007), while it antagonizes the recruitment of FA proteins to chromatin in the
85 absence of DNA damage (Lopez-Martinez et al. 2019). (iii) FA/HR complex proteins
86 are downstream partners that are considered to function independently of the above
87 two groups (Kottemann and Smogorzewska 2013; Deakyne and Mazin 2011).

88

89 Structural studies (Shakeel et al. 2019; Swuec et al. 2017; Huang et al. 2014)
90 have demonstrated that seven subunits of the core complex (FANCA, FANCB,
91 FANCC, FANCE, FANCF, FANCG, FANCL), and two FA-associated proteins (FAAP20
92 and FAAP100) form three different subcomplexes: (i) FANCB-FANCL-FAAP100
93 (BL100), (ii) FANCC-FANCE-FANCF (CEF), and (iii) FANCA-FANCG-FAAP20
94 (AG20)(Huang et al. 2014; Rajendra et al. 2014). The ring finger domain of FANCL
95 acts as an E3 ubiquitin ligase and its two associated proteins FANCB and FAAP100
96 are organized as a catalytic module (Huang et al. 2014; Shakeel et al. 2019). It has
97 been proposed that FANCA and FANCG form a chromatin-targeting module, while
98 FANCC, FANCE, and FANCF organize to establish a substrate-recognition module
99 (Shakeel et al. 2019). FANCF acts as a bridge between FANCC and FANCE (Leveille
100 et al. 2004; Shakeel et al. 2019). FANCM interacts with the core complex through

101 FANCF (Deans and West 2009; Huang et al. 2014), demonstrating that the substrate-
102 recognition module is an important component of the FA core complex.
103 In this study, extending a previously described forward genetic *zmm* suppressor screen
104 (Crismani et al. 2012; Girard et al. 2014; Fernandes, Duhamel, et al. 2018; Seguela-
105 Arnaud et al. 2017; Girard et al. 2015), augmented by complementary approaches, we
106 demonstrate that the CEF complex is evolutionarily conserved from mammals and
107 show that it is a novel meiotic anti-CO factor.

108 **Results**

109 **Identification of a novel *zmm* suppressor**

110 CO-deficient *zmm* mutants display a > 90% reduced seed set in *Arabidopsis*, which
111 correlates with shorter fruit, due to random segregation of chromosomes in meiosis.
112 Therefore, inactivating anti-CO genes in a *zmm* mutant leads to an increase in CO
113 number, resulting in improved chromosome segregation, restored fertility and longer
114 fruits. Here, we extended a forward genetic screen for *zmm* mutants exhibiting increase
115 in fruit length following EMS mutagenesis. The screen was previously performed on
116 five *zmm* mutants (*hei10*, *zip4*, *shoc1*, *msh5* and *msh4*), in a total of ~7,000 lines and
117 identified 59 mutants with restored fertility, among which 58 are mutated in one of the
118 previously identified anti-CO genes (Table 1, Table S1). (Girard et al. 2014; Girard et
119 al. 2015; Crismani et al. 2012; Fernandes, Duhamel, et al. 2018; Seguela-Arnaud et
120 al. 2017). In this study, we focused on the last *zmm* suppressor mutation that increased
121 the fertility of a *msh4* mutant (cshl_GT14269, Ler genetic background). Genetic
122 mapping delimited the causal mutation to a 0.47MB region on chromosome 3
123 (21452882-21919909 in the Ler assembly)(Zapata et al. 2016), and whole genome
124 sequencing identified a candidate mutation in the fourth exon donor splicing site of the
125 At3g60310 gene (G>A 3_21918909 in the Ler assembly, corresponding to

126 3_22288z888 in Col TAIR10). We show below that At3g60310 encodes the
127 Arabidopsis FANCC ortholog. Three independent T-DNA alleles (*fancc-2* N542341,
128 *fancc-3* N1007952 and *fancc-4* N626745, Col background) were able to enhance the
129 fertility of *msh4*, from 4.5 to >24 seeds per fruit (Figure 1 and Supplementary Figure
130 S1, S2), confirming the identification of the causal mutation in At3g60310.

131 **FANCC is conserved in plants**

132 Standard sequence similarity analysis failed to find any homology of the protein
133 encoded by At3g60310 outside of plants, or with proteins of known function (Stanley
134 et al. 2016). Using the HHpred remote homology detection server (Zimmermann et al.
135 2018). (Soding 2005), it was possible to identify a potential match with human FANCC
136 (XP_011516668) despite both proteins sharing only 16% primary sequence identity
137 (HHpred probability of 94%). To test the hypothesis that At3g60310 is an ortholog of
138 FANCC, we analyzed the physical contacts between human FANCC and the human
139 FANC complex, the cryo-EM structure of which was recently determined at 3.1 Å
140 (Wang et al. 2021). Figure 2A illustrates that human FANCC (pale green subunit) is in
141 direct physical contact with three subunits of human FA core complex, FANCE (light
142 pink), FANCF (light blue) together with the ubiquitin E3 ligase FANCL (yellow). Given
143 that FANCC, FANCE, and FANCF are known to constitute a stable sub-complex in
144 humans, we tested the possibility that At3g60310 was a dedicated partner of *A.*
145 *thaliana* FANCE (Girard et al. 2014) (Q9SU89_ARATH) and FANCF
146 (F4K7F0_ARATH) using the Alphafold2 prediction method (Jumper et al. 2021).
147 Alphafold2 was recently shown to perform well when predicting structures of proteins
148 and whether two proteins interact with each other (Evans et al. 2021). Using the
149 AlphaFold2 method trained on multimers (Mirdita, Ovchinnikov, and Steinegger 2021),
150 we obtained a model of the complex with the three *A. thaliana* subunits with reliability

151 scores above the confidence threshold of 50 and 0.5 for pLDDT and ptmscore,
152 respectively (pLDDT of 72.6 and ptmscore of 0.67) (Supp. Figure S3). Interestingly,
153 At3g60310 was predicted to form a complex with AtFANCE and AtFANCF with a
154 similar arrangement to that observed for the corresponding orthologs in the human
155 FANC complex (Figure 2B). As a support for the reliability of the model, the surface
156 patches of At3g60310 involved in the interaction with both subunits were among the
157 most conserved regions (Figure 2C, Supp Figure S4,S5). The N-terminal domain of
158 FANCE is found well anchored in the central region of At3g60310/FANCC with low
159 predicted error for the accuracy of the interface modelling (Supp Figure S3). In
160 contrast, the C-terminal domain does not exhibit a strong co-evolutionary signal in the
161 region where it binds to At3g60310/FANCC. The five models generated for FANCE do
162 not converge on a single conformation for the C-terminal domain, although due to the
163 tethering of the N-terminal domain, this domain tends to cluster in the same region as
164 the surface where the FANCL E3 Ub ligase binds to FANCC. One hypothesis could be
165 that upon binding of the E3 ligase FANCL, the C-terminal domain of FANCE is
166 displaced from the position shown in Figure 2B to allow FANCL binding, which is
167 potentially coupled with the recruitment of FANCD2 substrate by the FANCE C-
168 terminal domain (Polito et al. 2014).

169 Next, we performed an unbiased search for interacting partners of At3g60310 using
170 pull-down protein purification coupled with mass spectrometry. We used
171 overexpressed GSrhino-tagged At3g60310 as a bait in Arabidopsis suspension cell
172 culture (Van Leene et al. 2019). After filtering copurified proteins for false positives, we
173 recovered peptides from At3g60310 itself and a series of additional proteins in three
174 replicate experiments (Table 2). Strikingly, all four co-purified identified proteins were
175 Arabidopsis homologs of members of the FA complex, FANCE, FANCL, FANCM, and

176 MHF2 (Table 2). Further, a yeast two-hybrid assay confirmed direct interactions of
177 At3g60310 with FANCE and MHF2. FANCE, FANCF and MHF2 also interacted with
178 each other in yeast two-hybrid (Figure S6). Altogether, this demonstrates that
179 At3g60310 encodes the FANCC protein in *Arabidopsis*, which we term AtFANCC.

180 **FANCC is conserved in distant eukaryotic lineages**

181 Using PSI-BLAST searches, AtFANCC orthologs could be detected in most plants
182 (Figures S4 and S5). In-depth analyses using either PSI-BLAST or HHpred failed to
183 detect any homolog in more distantly related green algae such as *Chlamydomonas*,
184 although a FANCE homolog can be detected in *Chlamydomonas reinhardtii*. In
185 metazoans, a previous bioinformatics analysis performed on model species for all the
186 genes of the FANC core complex, noted that several species were missing a FANCC
187 homolog although having a FANCE ortholog (Stanley et al. 2016). We revisited this
188 study using the most recent sequence databases and PSI-BLAST searches starting
189 from human FANCC. Interestingly, five iterations of PSI-BLAST were required to
190 retrieve the first plant ortholog (in the monocot *Spirodela intermedia*), which enabled
191 the retrieval of all the same plant orthologs identified from AtFANCC. After 15
192 iterations, the search nearly converged with about 2,100 FANCC homologs,
193 highlighting the existence of FANCCs in early branching metazoans such as
194 *Nematostella vectensis* (XP_032241565) and *Ciona intestinalis* (XP_002129616) that
195 were not found previously. In insects, orthologs could also be detected in Hymenoptera
196 (ants and bees) but neither in Diptera (*Drosophila*) nor in Lepidoptera (*Bombyx*).
197 Consistently, repeating the PSI-BLAST search with human FANCE or FANCF as
198 queries, a similar distribution of homologs was found in insects. Homologs of FANCE
199 and FANCC could be detected in specific fungal lineages such as *Rhizopus*
200 *azygosporus* (corresponding to hypothetical proteins RCH90546.1 and RCH79564.1,

201 respectively). A reciprocal HHpred analysis comparing these genes against the human
202 database confirmed they were remote homologs of FANCE and FANCC (HHpred
203 probability score of 100% and sequence identities of 21% and 15%, respectively),
204 suggesting that certain fungal lineages did not lose these FANC complex subunits.

205 ***Atfancc, Atfance, and Atfancf mutations increase fertility and bivalent formation***
206 ***of crossover-deficient zmm mutants.***

207 As the mammalian FANCC was shown to form a structural and functional module with
208 FANCE and FANCF ((Shakeel et al. 2019; Swuec et al. 2017; Wang et al. 2021), we
209 explored their potential meiotic roles in parallel. A FANCE homolog was previously
210 described in Arabidopsis (Girard et al. 2014), and the AT5G44010 gene was annotated
211 as *AtFANCf* in Araport11 because of sequence similarity with the mammalian *FANCF*
212 (Cheng et al. 2017). Single mutants in each of these genes did not show growth or
213 developmental defects but had a slight decrease in fertility (Figure 1, Figure S2).
214 Meiotic chromosome spreads in *Atfance* and *Atfancf* single mutants revealed the
215 presence of univalents at low frequencies, showing that some chromosome pairs lack
216 COs (Figure S7, Figure 3). Combination of *fancc*, *fance* and *fancf* mutations did not
217 reveal any developmental defects or enhanced sterility and meiotic defects (Figures
218 1,3). This suggests that, consistent with the pull-down and Y2H data, FANCC, FANCE,
219 and FANCF act together at meiosis, playing a role in ensuring the obligate CO.

220 Mutation of *FANCC*, or *FANCE*, or *FANCF* significantly restored the fertility of
221 the *zmm* mutants *msh4* and *msh5*, increasing the seed set more than fourfold (Sidak
222 test, $p < 10^{-6}$) (Figure 1, Figure S2). In the Ler background, chromosome spreads of male
223 meiosis showed an increase of bivalent frequency in *fancc-1 msh4* compared to *msh4*
224 ($p < 0.001$) (Figure 3). In comparable experiments in the Col background, *fancc*, *fance*,
225 or *fancf* individual mutations barely increased bivalents in *msh4* ($p = 0.12$, 0.12 and

226 0.0002, respectively) (Figure 3). Combining *Col fance*, *fance*, and *fancf* mutations in
227 *msh4* further restored bivalent formation to reach an average of 2.8 bivalents/cell
228 compared to 1.4 in *msh4* ($p<0.0001$) and led to a slightly higher fertility increase
229 compared to *fancc msh4* ($p=0.04$). Altogether, this suggests that FANCC, FANCE, and
230 FANCF limit CO formation in a partially redundant manner. Note that this restoration
231 of bivalent formation is lesser than that obtained through mutation of *FANCM* (5
232 bivalents; (Crismani et al. 2012)), MHF1 or MHF2 (3.6; Figure 3G, (Girard et al. 2014)),
233 suggesting that the FANCC-FANCE-FANCF module has a supporting role in limiting a
234 portion of the COs prevented by FANCM-MHF1-MHF2. The *fancc* mutation did not
235 further restore bivalent formation in *mhf1 msh4* (*t*-test $p=0.56$), suggesting that FANCC
236 acts in the same anti-CO pathway as MHF1 (Figure 3G).

237

238 **FANCC, FANCE, and FANCF regulate meiotic crossover formation**

239

240 Intriguingly, in the above experiments, we found that *fancc*, *fance*, and *fancf* increased
241 the fertility of *zmm* mutants (*msh4* and *msh5*), but that the increase of bivalent number
242 in male meiotic cells was less robust than the seed set suggested. As fertility in the
243 self-pollinating plant *Arabidopsis* depends on both male and female meiosis, this may
244 suggest that the role of FANCC, FANCE, and FANCF in limiting COs is more critical in
245 female meiosis than in male meiosis. To check this, we used a test line for
246 recombination (FTL420), which contains two transgenes conferring expression of GFP
247 and RFP in the seed coat and defining a 5-Mb interval of the sub-telomeric region on
248 chromosome 3 (Ziolkowski et al. 2015; Melamed-Bessudo et al. 2005). Crossover
249 frequency was measured for males and females separately, through reciprocal crosses
250 with wild-type plants, and in selfing (figure 4, table S 2). In females, recombination was
251 significantly increased (Fisher test, $p<0.0001$) in *fancc* and *fancc fance fancf* compared

252 to wild type, confirming the anti-CO function of *FANCC*. In males, crossover frequency
253 was not increased, but slightly reduced ($p=0.17$ for *fancc* and 0.015 for *fancc fance*
254 *fancf*). In selfing, which combines male and female meiosis products, recombination
255 was modestly increased in *fancc* compared to wild type ($p=0.003$). A similar
256 recombination picture was observed in *fance*, *fancf*, and the triple mutant *fancc fance*
257 *fancf*, suggesting that the three proteins act together in limiting meiotic crossovers.

258 ***Atfancc, Atfance, and Atfancf exhibit chromosome fragmentation in the *mus81****
259 ***background.***

260
261 Because of the roles of FANCM, MHF1, and MHF2 in preventing class II COs,
262 combining mutation in these genes with mutation of *MUS81* that catalyses class II COs,
263 leads to chromosome fragmentation at meiosis, resulting in sterility. In addition, the
264 *fancm mus81* double mutant shows a strong developmental defect, demonstrating the
265 role of these two genes in somatic DNA repair (Girard et al. 2014; Crismani et al. 2012)
266 When we combined *fancc*, *fance*, or *fancf* with the *mus81* mutation, we did not observe
267 developmental defects. However, in double mutants with *mus81* and either *fanc-c*, *-e*,
268 or *-f* we observed a strong reduction in fertility, measured by seed per fruit, compared
269 to the respective single mutants (Figure 5A, S8). Meiotic chromosome spreads
270 revealed the presence of chromosome fragments at anaphase I and subsequent
271 stages in ~40% of the cells of the double mutants (Figures 5 B–J, S9 A–D and F–J).
272 This demonstrates that FANCC, FANCE, and FANCF are important for efficient DSB
273 repair in a *mus81* background and suggests that they regulate class II CO formation
274 but with a less critical role than FANCM and MHF1/2. The removal of all four genes –
275 *mus81 fancc fance fancf* – did not drastically enhance fertility defects or chromosome
276 fragmentation compared to the double *mus81 fanc* combinations. These results

277 support the hypothesis that all three genes, *FANCC*, *FANCE*, and *FANCF*, are required
278 at meiosis to repair a subset of intermediates that can also be repaired by MUS81.

279

280 **Discussion**

281 *FANCC*-*FANCE*-*FANCF* constitute a stable sub-complex within the FA core complex.
282 Based on sequence conservation, *FANCE* and *FANCF* homologs have been identified
283 in evolutionarily distant eukaryotes such as plants (Girard et al. 2014; Cheng et al.
284 2017). However, despite multiple studies that systematically catalogued FA pathway
285 protein conservation across diverse taxa, homologs of *FANCC* have not been identified
286 beyond vertebrates (Zhang et al. 2009; Girard et al. 2014), suggesting that *FANCC*
287 may not be conserved over large evolutionary scales. Here, combining genetics, *in*
288 *vivo* pull-downs, direct protein-protein interaction studies, and structural modeling, we
289 unambiguously identified the *FANCC* protein in *Arabidopsis*. In addition, interaction
290 and modeling studies strongly suggest that *FANCC*, *FANCE*, and *FANCF* form a sub-
291 complex in *Arabidopsis* as they do in vertebrates. Homologs of *FANCC* can also be
292 readily identified in most other plants. As the plant and animal branches diverged very
293 early in the eukaryotic tree of life (Burki et al. 2020), this suggests that the FA complex
294 and notably the *FANCC*-E-F subcomplex was already present in the common ancestor
295 of all living eukaryotes. The algorithm we used to detect divergent homologs
296 succeeded in detecting the link between plant and vertebrate *FANCC* but failed to
297 detect homologs in fungal lineages, except for a few species. As fungi are more closely
298 related to animals than plants, this suggests that most of the fungal lineages have lost
299 *FANCC*, or that the *FANCC* sequence has diverged beyond what we can recognize
300 with current tools. Similarly, *FANCC* was detected in diverse animal lineages including

301 some insects, but not in *Drosophila*, which can be attributed either to gene loss or to
302 extreme divergence.

303 We initially identified *FANCC* because its mutation can partially restore the fertility of
304 CO-defective *zmm* mutants, in a similar manner to previously identified anti-CO factors
305 and notably the FA complex components *FANCM*, *MHF1*, and *MHF2* (Crismani et al.
306 2012; Girard et al. 2014). We also found that mutation in either of the two other subunits
307 of the FA CEF subcomplex, *fance* and *fancf*, improves the fertility of *zmm* mutants.
308 Mutations in the three genes individually restored fertility of *zmm* to similar levels, but
309 to a much lower level than previously obtained with *mhf1*, *mhf2* or *fancm*. Further,
310 restoration of *zmm* fertility upon cumulative mutations in *fancc*, *fance*, and *fancf*
311 remained limited. This suggests that *FANCC*, *FANCE* and *FANCF* together regulate
312 meiotic recombination, but with a less critical role than *FANCM*, *MHF1*, and *MHF2*. We
313 observed an increased number of bivalents at male meiosis when mutating *fancc*,
314 *fance*, and *fancf* in *zmm* mutants, consistent with an anti-CO function. However, the
315 increase in bivalents in males was limited compared to the observed increase in
316 fertility, suggesting that male and female meiosis could be differently affected. We also
317 observed a slight decrease in fertility and a low frequency of univalents in male
318 meiocytes in single *fancc*, *fance*, or *fancf* mutants, suggesting a pro-CO function.
319 Technical limitations prevented us from measuring the frequency of
320 bivalents/univalents in female meiosis. However, when assessing recombination by a
321 genetic assay in *fancc* and *fancc fance fancf*, we observed a large increase in
322 recombination in females and a small decrease in males. Altogether, we propose that
323 *FANCC-E-F* regulates meiotic recombination, with a predominant anti-CO function in
324 females, explaining the capacity of their mutation to restore the fertility of *zmm* mutants.

325 Similar to FANCM and MHF1/MH2, we propose that FANCC-E-F prevents the
326 formation of class II COs that are catalyzed by MUS81. Indeed, combining any of *fancc*,
327 *fance* or *fancf* with the *mus81* mutation led to chromosome fragmentation at meiosis
328 and reduced fertility (Figure 5). Combining the three mutations (*fancc fance fancf*)
329 together had only a slightly increased effect compared to single mutants in the capacity
330 to increase fertility and bivalents of *zmm* mutants (Figure 1 and 3) or for synthetic
331 meiotic catastrophe and reduced fertility when combined with *mus81* (Figure 5).
332 Further, the recombination assay did not detect differences between the single *fancc*
333 and the triple *fancc fance fancf* (Figure 4), suggesting that FANCC-FANCE-FANCF act
334 together in regulating recombination. In all experiments, the observed effects – even
335 when combining the three *fancc fance fancf* mutations – are weaker than observed
336 with MHF1/2 or FANCM (Crismani et al. 2012; Girard et al. 2014). Further, the *fancc-*
337 *2* has no additive effect with *mhf1* (figure 3). Altogether, this shows that FANCC-
338 FANCE-FANCF acts in the same anti-CO pathway as FANCM-MHF1/2, as also
339 supported by the fact that they form a stable complex *in vivo* (Table1). We propose
340 that FANCC-FANCE-FANCF supports FANCM activity, which unwinds recombination
341 intermediates and directs them to non-crossover repair. We favor the hypothesis that
342 the meiotic crossover-limiting role of Arabidopsis FANCC-E-F is distinct from the well-
343 described somatic role of human FANC-C-E-F where it facilitates FANCD2-FANCI
344 mono-ubiquitination in inter-strand crosslink repair. This hypothesis is supported by the
345 following lines of evidence: 1) There is no detectable crossover-limiting role of either
346 of the Arabidopsis orthologues of the catalytic component of the human FA core
347 complex – the E3 RING ligase, FANCL – and its substrate FANCD2-FANCI (Girard et
348 al. 2014; Kurzbauer et al. 2018); 2) Human FANCM has well-described functions
349 distinct from the FA core complex (Walden and Deans 2014; Deans and West 2009;
350 Ito and Nishino 2021) that are associated with remodeling branched DNA structures.

351 The FANCC-E-F complex may act to stabilize or support the activity of FANCM in
352 performing its function of branched molecule dissolution during meiotic DSB repair.

353 **Materials and methods**

354 Genetic material: The following *Arabidopsis* lines were used in this study: *fancc-2*
355 (*N542341*), *fancc-3*(*N1007952*), *fancc-4* (*N626745*), *fance* (*N553587*) (Girard et al.
356 2014) *fancf* (*N457070*) *msh4* (*N636296*(Higgins et al. 2008), *msh5-2*
357 (*N526553*)(Higgins et al. 2008), *mus81-2* (*N607515*) (Berchowitz et al. 2007), and
358 *mhf1-3*(*N576310*) (Girard et al. 2014). All the T-DNA mutants were obtained from the
359 NASC.

360 **Genetic analysis**

361 The *msh4* suppressor *Atfancc* was sequenced using Illumina technology at The
362 Genome Analysis Centre, Norwich, UK, and mutations were identified using ler 1
363 assembly as reported for the MutDetect pipeline (Girard et al. 2014; Schneeberger et
364 al. 2011). The identified causal mutation in *fancc-1* was a G to A substitution at position
365 chr3: 21918909 (Ler-0 TAIR10 assembly) equivalent to position chr3: 22288888 in the
366 Columbia (TAIR10) genome. The primers used for genotyping are listed in Table S3.
367 Siliques were fixed in 70% ethanol for at least two days and scanned for seed counting
368 manually on images. Fertility was assessed by counting seeds per fruit on a minimum
369 of five plants and ten fruits from each plant.

370

371 **Sequence analyses**

372

373 Sequences of *A. thaliana* At3g60310/AtFANCC, FANCE (Q9SU89_ARATH) and
374 FANCF (F4K7F0_ARATH) were used as input for the HHpred remote homology
375 detection server against different eukaryotic profile databases (Zimmermann et al.
376 2018)(Soding 2005) and as queries of PSI-BLAST searches (Altschul et al. 1997)
377 against the nr database. Full-length sequences of FANCC orthologs were retrieved
378 and re-aligned with mafft (Katoh and Standley 2013) and the multiple sequence

379 alignment was represented using JalView (Waterhouse et al. 2009). The phylogenetic
380 tree of the FANCC orthologs in plants was generated using the FANCC MSA as a
381 query of the PhyML 3.0 server (Dereeper et al. 2008) with standard estimated options,
382 an approximate likelihood-ratio test to estimate the bootstrap values (SH-like), and the
383 Jones-Taylor-Thornton substitution model with four substitution rate categories. The
384 calculated tree was represented using the iTOL server (Letunic and Bork 2021).

385

386 Structural modeling

387 Sequences of *A. thaliana* At3g60310/AtFANCC, FANCE (Q9SU89_ARATH) and
388 FANCF (F4K7F0_ARATH, the) query sequences of each subunits were used as input
389 for the MMseqs2 homology search program (Steinegger and Soding 2017) to generate
390 a multiple sequence alignment (MSA) against the UniRef30 clustered database for
391 each of the FANC complex subunits (Mirdita et al. 2017). The calculated full-length
392 sequences of the orthologs were retrieved and re-aligned with mafft (Katoh and
393 Standley 2013). MSAs of FANCC, FANCE and FANCF were then concatenated,
394 matching the sequences of the same species resulting in paired alignments, which
395 were combined with the unpaired sequences for those species that could have not
396 have been matched. The resulting paired plus unpaired concatenated MSA was used
397 as input to generate five structural models of the FANCC-FANCE-FANCF complex
398 using a local version of the ColabFold interface (Mirdita, Ovchinnikov, and Steinegger
399 2021) running three iterations of the AlphaFold2 algorithm (Jumper et al. 2021) trained
400 on the multimer dataset (Evans et al. 2021) on a local HPC equipped with NVIDIA
401 Ampere A100 80Go GPU cards. The five models converged toward similar
402 conformations and obtained high confidence and quality scores with pLDDTs in the
403 range [79.1, 85] and [72.6, 80.2] and pTMscore in the range [0.64, 0.662]. The model
404 with highest pTMscore was relaxed using rosetta relax protocols to remove steric

405 clashes constrained by the starting structure using the -
406 relax:constrain_relax_to_start_coords option (Leman et al. 2020), and the model with
407 the lowest rosetta global energy was used for structural analysis. Conservation
408 analysis mapped at the structure of the model were performed using the ConSurf
409 server (Ashkenazy et al. 2016).

410

411 Cytological techniques

412 Meiotic chromosome spreads on anthers were performed as previously described
413 (Ross, Fransz, and Jones 1996). Chromosomes were stained with DAPI (1 µg/ml)
414 Images were acquired and processed using a ZEISS microscope (AXIO-Imager.Z2)
415 under a 100× oil immersion objective with ZEN software and figures were prepared
416 using Adobe Photoshop.

417

418 Yeast two-hybrid and pull down

419 Clones were generated using the Gateway cloning system (Thermo Fisher Scientific);
420 the desired inserts were cloned into pDONR221 as pENTR clones and then into
421 different destination vectors using the LR clonase recombination method (Thermo
422 Fisher Scientific). We generated full-length ORF pENTR clones for AtFANCC,
423 AtFANCE, and AtMHF2 from an inflorescence cDNA library of Arabidopsis. One
424 additional ORF pENTR of AtFANCC was cloned without a stop codon for in-frame C-
425 terminal fusion and both ORF pENTR clones of AtFANCC were used for GSrhino-
426 tagged pulldown. In yeast two-hybrid assays, we used two destination vectors,
427 pGADT7-GW as bait and pGBKT7-GW as prey. The ORF pENTR clones of AtFANCC,
428 AtFANCE, and AtMHF2 were cloned into both destination vectors by LR reaction. The
429 ORF of AtFANCF was cloned into the pGBKT7 and PACT2 AD convectional vector
430 using the NCO1, Sal1, and NCO1, XHO1 restriction enzymes, respectively. All pENTR

431 clones and final clones were verified thoroughly by Sanger sequencing to ensure
432 mutation-free cloning and in-frame fusion. Plasmids of bait and prey clones were
433 transformed into the haploid yeast strains AH109 and Y187, and then yeast two-hybrid
434 assays were performed in a Gal4-based system from Clontech in a diploid strain by
435 mating as previously described (Rossignol et al. 2007; Seguela-Arnaud et al. 2017).

436

437 Arabidopsis cell suspension cultures expressing N-terminal GSrhino-tagged FANCC
438 and for C-terminal GSrhino-tagged FANCC were used for pull-down as previously
439 described (Van Leene et al. 2019; Cromer et al. 2019). Co-purified proteins were
440 identified using standard protocols utilizing on bead-digested sample evaluated on a
441 Q Exactive mass spectrometer (Thermo Fisher Scientific) (Van Leene et al. 2015).

442 After identification, the protein list was filtered for false-positives using a list of non-
443 specific proteins, which was assembled as previously reported (Van Leene et al. 2015).

444 Semi-quantitative analysis using the average normalized spectral abundance factors
445 (NSAF) of the discovered proteins in the FANCC pull-downs was used to identify true
446 interactors that may have been filtered out due to their classification in the list of
447 nonspecific proteins. Chosen proteins were identified with at least two peptides in at
448 least two experiments and showed high (at least 10-fold) and significant [$\log_{10}(P$ value
449 (t test)) enrichment relative to estimated average NSAF values from a large dataset of
450 pull-downs with nonrelated bait proteins.

451

452

453 FTL analysis

454 To measure recombination, we used fluorescent transgenic lines (FTL) (420)
455 generated in a Col background. The used lines harbor seed coat expressing GFP (Chr
456 3:256,516-GFP) and dsRed (Chr 3:5,361,637-dsRed2) fluorescent protein markers in
457 cis (Ziolkowski et al. 2015; Melamed-Bessudo et al. 2005). We quantified the

458 fluorescence of the seeds using the Fiji image analysis software (Schindelin et al.
459 2012), which identifies seeds and quantifies fluorescence intensity for each seed in all
460 pictures. The output was analyzed using a pipeline that was created to normalize the
461 data, plot the frequency of objects with each fluorescent color, plot the fluorescence
462 intensity, and quantify the number of seeds with only one fluorescent color, allowing
463 selection of the number of recombinant seeds. For F2, recombination was measured
464 using the formula below, as reported in (Ziolkowski et al. 2015).

465

466
$$cM = 100 * (1 - [1 - \frac{2(N_G + N_R)}{N_T}]^{1/2})$$

467

468 For male and female backcrosses, recombination was measured as

469
$$cM = 100 * \frac{(N_G + N_R)}{N_T}$$

470

471 Where N_G is the number of green-only fluorescent seeds, N_R is the number of red-only
472 fluorescent seeds and N_T is the total number of seeds counted.

473

474 We generated a segregating population (F2) from which we selected plants
475 heterozygous for the markers in cis with the desired mutants and wild-type control. For
476 each genotype, we used at least three biological replicates (independent plants) with
477 at least three technical replicates, each of them containing a minimum of 400 seeds.
478 To measure CO frequency independently in males and females, reciprocal crosses
479 were made with wild-type Columbia (0). Differences between genotypes were tested
480 by Chi2 on the proportion of recombined seeds (N_G+N_R) among total seeds.

481

482

483 Funding

484 This work was supported by core funding from the Max Planck Society (to R.M.), a
485 Depart of Biotechnology Centre of Excellence grant (to I.S.), and the CEFIPRA project
486 SMOKI (to R.M. and IS).

487

488 Acknowledgements

489 We thank Virginie Portemer for her help in *fancc-1* mapping. We thank Piotr A.
490 Ziolkowski for kindly providing the 420 FTL line. We thank the VIB proteomics core
491 facility for performing the Q Exactive analysis of the pull down samples and Neysan
492 Donnelly for proofreading the manuscript.

493

494 Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman.
495 1997. 'Gapped BLAST and PSI-BLAST: a new generation of protein database search
496 programs', *Nucleic Acids Res*, 25: 3389-402.

497 Ashkenazy, H., S. Abadi, E. Martz, O. Chay, I. Mayrose, T. Pupko, and N. Ben-Tal. 2016.
498 'ConSurf 2016: an improved methodology to estimate and visualize evolutionary
499 conservation in macromolecules', *Nucleic Acids Res*, 44: W344-50.

500 Berchowitz, L. E., K. E. Francis, A. L. Bey, and G. P. Copenhaver. 2007. 'The role of
501 AtMUS81 in interference-insensitive crossovers in *A. thaliana*', *PLoS Genet*, 3: e132.
502 Borner, G. V., N. Kleckner, and N. Hunter. 2004. 'Crossover/noncrossover differentiation,
503 synaptonemal complex formation, and regulatory surveillance at the
504 leptotene/zygotene transition of meiosis', *Cell*, 117: 29-45.

505 Cheng, C. Y., V. Krishnakumar, A. P. Chan, F. Thibaud-Nissen, S. Schobel, and C. D. Town.
506 2017. 'Araport11: a complete reannotation of the *Arabidopsis thaliana* reference
507 genome', *Plant J*, 89: 789-804.

508 Crismani, W., C. Girard, N. Froger, M. Pradillo, J. L. Santos, L. Chelysheva, G. P.
509 Copenhaver, C. Horlow, and R. Mercier. 2012. 'FANCM limits meiotic crossovers',
510 *Science*, 336: 1588-90.

511 Cromer, L., S. Jolivet, D. K. Singh, F. Berthier, N. De Winne, G. De Jaeger, S. Komaki, M. A.
512 Prusicki, A. Schnittger, R. Guerois, and R. Mercier. 2019. 'Patronus is the elusive
513 plant securin, preventing chromosome separation by antagonizing separase', *Proc
514 Natl Acad Sci U S A*, 116: 16018-27.

515 de los Santos, T., N. Hunter, C. Lee, B. Larkin, J. Loidl, and N. M. Hollingsworth. 2003. 'The
516 Mus81/Mms4 endonuclease acts independently of double-Holliday junction resolution
517 to promote a distinct subset of crossovers during meiosis in budding yeast', *Genetics*,
518 164: 81-94.

519 Deakyne, J. S., and A. V. Mazin. 2011. 'Fanconi anemia: at the crossroads of DNA repair',
520 *Biochemistry (Mosc)*, 76: 36-48.

521 Deans, A. J., and S. C. West. 2009. 'FANCM connects the genome instability disorders
522 Bloom's Syndrome and Fanconi Anemia', *Mol Cell*, 36: 943-53.

523 ———. 2011. 'DNA interstrand crosslink repair and cancer', *Nat Rev Cancer*, 11: 467-80.

524 Dereeper, A., V. Guignon, G. Blanc, S. Audic, S. Buffet, F. Chevenet, J. F. Dufayard, S.
525 Guindon, V. Lefort, M. Lescot, J. M. Claverie, and O. Gascuel. 2008. 'Phylogeny.fr:
526 robust phylogenetic analysis for the non-specialist', *Nucleic Acids Res*, 36: W465-9.

527 Dorn, A., L. Feller, D. Castri, S. Rohrig, J. Enderle, N. J. Herrmann, A. Block-Schmidt, O.
528 Trapp, L. Kohler, and H. Puchta. 2019. 'An *Arabidopsis* FANCJ helicase homologue
529 is required for DNA crosslink repair and rDNA repeat stability', *PLoS Genet*, 15:
530 e1008174.

531 Evans, Richard, Michael O'Neill, Alexander Pritzel, Natasha Antropova, Andrew Senior, Tim
532 Green, Augustin Žídek, Russ Bates, Sam Blackwell, Jason Yim, Olaf Ronneberger,
533 Sebastian Bodenstein, Michal Zielinski, Alex Bridgland, Anna Potapenko, Andrew
534 Cowie, Kathryn Tunyasuvunakool, Rishabh Jain, Ellen Clancy, Pushmeet Kohli, John
535 Jumper, and Demis Hassabis. 2021. "Protein complex prediction with AlphaFold-
536 Multimer." In.: Cold Spring Harbor Laboratory.

537 Fernandes, J. B., M. Duhamel, M. Seguela-Arnaud, N. Froger, C. Girard, S. Choinard, V.
538 Solier, N. De Winne, G. De Jaeger, K. Gevaert, P. Andrey, M. Grelon, R. Guerois, R.
539 Kumar, and R. Mercier. 2018. 'FIGL1 and its novel partner FLIP form a conserved
540 complex that regulates homologous recombination', *PLoS Genet*, 14: e1007317.

541 Fernandes, J. B., M. Seguela-Arnaud, C. Larcheveque, A. H. Lloyd, and R. Mercier. 2018.
542 'Unleashing meiotic crossovers in hybrid plants', *Proc Natl Acad Sci U S A*, 115:
543 2431-36.
544 Fiesco-Roa, M. O., N. Giri, L. J. McReynolds, A. F. Best, and B. P. Alter. 2019. 'Genotype-
545 phenotype associations in Fanconi anemia: A literature review', *Blood Rev*, 37:
546 100589.
547 Girard, C., L. Chelysheva, S. Choinard, N. Froger, N. Macaisne, A. Lemhemdi, J. Mazel, W.
548 Crismani, and R. Mercier. 2015. 'AAA-ATPase FIDGETIN-LIKE 1 and Helicase
549 FANCM Antagonize Meiotic Crossovers by Distinct Mechanisms', *PLoS Genet*, 11:
550 e1005369.
551 Girard, C., W. Crismani, N. Froger, J. Mazel, A. Lemhemdi, C. Horlow, and R. Mercier. 2014.
552 'FANCM-associated proteins MHF1 and MHF2, but not the other Fanconi anemia
553 factors, limit meiotic crossovers', *Nucleic Acids Res*, 42: 9087-95.
554 Higgins, J. D., J. Vignard, R. Mercier, A. G. Pugh, F. C. Franklin, and G. H. Jones. 2008.
555 'AtMSH5 partners AtMSH4 in the class I meiotic crossover pathway in *Arabidopsis*
556 *thaliana*, but is not required for synapsis', *Plant J*, 55: 28-39.
557 Howlett, N. G., T. Taniguchi, S. Olson, B. Cox, Q. Waisfisz, C. De Die-Smulders, N. Persky,
558 M. Grompe, H. Joenje, G. Pals, H. Ikeda, E. A. Fox, and A. D. D'Andrea. 2002.
559 'Biallelic inactivation of BRCA2 in Fanconi anemia', *Science*, 297: 606-9.
560 Huang, Y., J. W. Leung, M. Lowery, N. Matsushita, Y. Wang, X. Shen, D. Huong, M. Takata,
561 J. Chen, and L. Li. 2014. 'Modularized functions of the Fanconi anemia core complex',
562 *Cell Rep*, 7: 1849-57.
563 Ito, S., and T. Nishino. 2021. 'Structural analysis of the chicken FANCM-MHF
564 complex and its stability', *Acta Crystallogr F Struct Biol Commun*, 77: 1-7.
565 Jumper, J., R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K.
566 Tunyasuvunakool, R. Bates, A. Zidek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A.
567 Kohl, A. J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T.
568 Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska,

569 T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu,
570 P. Kohli, and D. Hassabis. 2021. 'Highly accurate protein structure prediction with
571 AlphaFold', *Nature*, 596: 583-89.

572 Katoh, K., and D. M. Standley. 2013. 'MAFFT multiple sequence alignment software version
573 7: improvements in performance and usability', *Mol Biol Evol*, 30: 772-80.

574 Kolinjivadi, A. M., W. Crismani, and J. Ngeow. 2020. 'Emerging functions of Fanconi anemia
575 genes in replication fork protection pathways', *Hum Mol Genet*, 29: R158-R64.

576 Kottemann, M. C., and A. Smogorzewska. 2013. 'Fanconi anaemia and the repair of Watson
577 and Crick DNA crosslinks', *Nature*, 493: 356-63.

578 Kumar, R., M. Duhamel, E. Coutant, E. Ben-Nahia, and R. Mercier. 2019. 'Antagonism
579 between BRCA2 and FIGL1 regulates homologous recombination', *Nucleic Acids
580 Res*, 47: 5170-80.

581 Kurzbauer, M. T., M. Pradillo, C. Kerzendorfer, J. Sims, R. Ladurner, C. Oliver, M. P. Janisiw,
582 M. Mosiolek, D. Schweizer, G. P. Copenhaver, and P. Schlogelhofer. 2018.
583 'Arabidopsis thaliana FANCD2 Promotes Meiotic Crossover Formation', *Plant Cell*,
584 30: 415-28.

585 Leman, J. K., B. D. Weitzner, S. M. Lewis, J. Adolf-Bryfogle, N. Alam, R. F. Alford, M.
586 Aprahamian, D. Baker, K. A. Barlow, P. Barth, B. Basanta, B. J. Bender, K. Blacklock,
587 J. Bonet, S. E. Boyken, P. Bradley, C. Bystroff, P. Conway, S. Cooper, B. E. Correia,
588 B. Coventry, R. Das, R. M. De Jong, F. DiMaio, L. Dsilva, R. Dunbrack, A. S. Ford, B.
589 Frenz, D. Y. Fu, C. Geniesse, L. Goldschmidt, R. Gowthaman, J. J. Gray, D. Gront, S.
590 Guffy, S. Horowitz, P. S. Huang, T. Huber, T. M. Jacobs, J. R. Jeliazkov, D. K.
591 Johnson, K. Kappel, J. Karanicolas, H. Khakzad, K. R. Khar, S. D. Khare, F. Khatib,
592 A. Khramushin, I. C. King, R. Kleffner, B. Koepnick, T. Kortemme, G. Kuenze, B.
593 Kuhlman, D. Kuroda, J. W. Labonte, J. K. Lai, G. Lapidoth, A. Leaver-Fay, S. Lindert,
594 T. Linsky, N. London, J. H. Lubin, S. Lyskov, J. Maguire, L. Malmstrom, E. Marcos, O.
595 Marcu, N. A. Marze, J. Meiler, R. Moretti, V. K. Mulligan, S. Nerli, C. Norn, S.
596 O'Conchuir, N. Ollikainen, S. Ovchinnikov, M. S. Pacella, X. Pan, H. Park, R. E.

597 Pavlovicz, M. Pethe, B. G. Pierce, K. B. Pilla, B. Raveh, P. D. Renfrew, S. S. R.

598 Burman, A. Rubenstein, M. F. Sauer, A. Scheck, W. Schief, O. Schueler-Furman, Y.

599 Sedan, A. M. Sevy, N. G. Sgourakis, L. Shi, J. B. Siegel, D. A. Silva, S. Smith, Y.

600 Song, A. Stein, M. Szegedy, F. D. Teets, S. B. Thyme, R. Y. Wang, A. Watkins, L.

601 Zimmerman, and R. Bonneau. 2020. 'Macromolecular modeling and design in

602 Rosetta: recent methods and frameworks', *Nat Methods*, 17: 665-80.

603 Letunic, I., and P. Bork. 2021. 'Interactive Tree Of Life (iTOL) v5: an online tool for

604 phylogenetic tree display and annotation', *Nucleic Acids Res*, 49: W293-W96.

605 Leveille, F., E. Blom, A. L. Medhurst, P. Bier, H. Laghmani el, M. Johnson, M. A. Rooimans,

606 A. Sobeck, Q. Waisfisz, F. Arwert, K. J. Patel, M. E. Hoatlin, H. Joenje, and J. P. de

607 Winter. 2004. 'The Fanconi anemia gene product FANCF is a flexible adaptor protein',

608 *J Biol Chem*, 279: 39421-30.

609 Lopez-Martinez, D., M. Kupculak, D. Yang, Y. Yoshikawa, C. C. Liang, R. Wu, S. P. Gygi,

610 and M. A. Cohn. 2019. 'Phosphorylation of FANCD2 Inhibits the FANCD2/FANCI

611 Complex and Suppresses the Fanconi Anemia Pathway in the Absence of DNA

612 Damage', *Cell Rep*, 27: 2990-3005 e5.

613 Lossaint, G., M. Larroque, C. Ribeyre, N. Bec, C. Larroque, C. Decaillet, K. Gari, and A.

614 Constantinou. 2013. 'FANCD2 binds MCM proteins and controls replisome function

615 upon activation of s phase checkpoint signaling', *Mol Cell*, 51: 678-90.

616 Melamed-Bessudo, C., E. Yehuda, A. R. Stuitje, and A. A. Levy. 2005. 'A new seed-based

617 assay for meiotic recombination in *Arabidopsis thaliana*', *Plant J*, 43: 458-66.

618 Mirdita, M., L. von den Driesch, C. Galiez, M. J. Martin, J. Soding, and M. Steinegger. 2017.

619 'Uniclust databases of clustered and deeply annotated protein sequences and

620 alignments', *Nucleic Acids Res*, 45: D170-D76.

621 Mirdita, Milot, Sergey Ovchinnikov, and Martin Steinegger. 2021. 'ColabFold - Making protein

622 folding accessible to all', *bioRxiv*: 2021.08.15.456425.

623 Niraj, J., A. Farkkila, and A. D. D'Andrea. 2019. 'The Fanconi Anemia Pathway in Cancer',

624 *Annu Rev Cancer Biol*, 3: 457-78.

625 Polito, D., S. Cukras, X. Wang, P. Spence, L. Moreau, A. D. D'Andrea, and Y. Kee. 2014.
626 'The carboxyl terminus of FANCE recruits FANCD2 to the Fanconi Anemia (FA) E3
627 ligase complex to promote the FA DNA repair pathway', *J Biol Chem*, 289: 7003-10.
628 Pyatnitskaya, A., V. Borde, and A. De Muyt. 2019. 'Crossing and zipping: molecular duties of
629 the ZMM proteins in meiosis', *Chromosoma*, 128: 181-98.
630 Rajendra, E., V. H. Oestergaard, F. Langevin, M. Wang, G. L. Dornan, K. J. Patel, and L. A.
631 Passmore. 2014. 'The genetic and biochemical basis of FANCD2 monoubiquitination',
632 *Mol Cell*, 54: 858-69.
633 Rosenberg, P. S., M. H. Greene, and B. P. Alter. 2003. 'Cancer incidence in persons with
634 Fanconi anemia', *Blood*, 101: 822-6.
635 Ross, K. J., P. Fransz, and G. H. Jones. 1996. 'A light microscopic atlas of meiosis in
636 *Arabidopsis thaliana*', *Chromosome Res*, 4: 507-16.
637 Rossignol, P., S. Collier, M. Bush, P. Shaw, and J. H. Doonan. 2007. 'Arabidopsis POT1A
638 interacts with TERT-V(I8), an N-terminal splicing variant of telomerase', *J Cell Sci*,
639 120: 3678-87.
640 Sawyer, S. L., L. Tian, M. Kahkonen, J. Schwartzentruber, M. Kircher, Genomics University
641 of Washington Centre for Mendelian, Forge Canada Consortium, J. Majewski, D. A.
642 Dyment, A. M. Innes, K. M. Boycott, L. A. Moreau, J. S. Moilanen, and R. A.
643 Greenberg. 2015. 'Biallelic mutations in BRCA1 cause a new Fanconi anemia
644 subtype', *Cancer Discov*, 5: 135-42.
645 Schindelin, J., I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch,
646 C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K.
647 Eliceiri, P. Tomancak, and A. Cardona. 2012. 'Fiji: an open-source platform for
648 biological-image analysis', *Nat Methods*, 9: 676-82.
649 Schneeberger, K., S. Ossowski, F. Ott, J. D. Klein, X. Wang, C. Lanz, L. M. Smith, J. Cao, J.
650 Fitz, N. Warthmann, S. R. Henz, D. H. Huson, and D. Weigel. 2011. 'Reference-
651 guided assembly of four diverse *Arabidopsis thaliana* genomes', *Proc Natl Acad Sci U
652 S A*, 108: 10249-54.

653 Seguela-Arnaud, M., S. Choinard, C. Larcheveque, C. Girard, N. Froger, W. Crismani, and
654 R. Mercier. 2017. 'RMI1 and TOP3alpha limit meiotic CO formation through their C-
655 terminal domains', *Nucleic Acids Res*, 45: 1860-71.

656 Shakeel, S., E. Rajendra, P. Alcon, F. O'Reilly, D. S. Chorev, S. Maslen, G. Degliesposti, C.
657 J. Russo, S. He, C. H. Hill, J. M. Skehel, S. H. W. Scheres, K. J. Patel, J. Rappaport,
658 C. V. Robinson, and L. A. Passmore. 2019. 'Structure of the Fanconi anaemia
659 monoubiquitin ligase complex', *Nature*, 575: 234-37.

660 Shimamura, A., and B. P. Alter. 2010. 'Pathophysiology and management of inherited bone
661 marrow failure syndromes', *Blood Rev*, 24: 101-22.

662 Singh, T. R., D. Saro, A. M. Ali, X. F. Zheng, C. H. Du, M. W. Killen, A. Sachpatzidis, K.
663 Wahengbam, A. J. Pierce, Y. Xiong, P. Sung, and A. R. Meetei. 2010. 'MHF1-MHF2,
664 a histone-fold-containing protein complex, participates in the Fanconi anemia
665 pathway via FANCM', *Mol Cell*, 37: 879-86.

666 Smogorzewska, A., S. Matsuoka, P. Vinciguerra, E. R. McDonald, 3rd, K. E. Hurov, J. Luo,
667 B. A. Ballif, S. P. Gygi, K. Hofmann, A. D. D'Andrea, and S. J. Elledge. 2007.
668 'Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required
669 for DNA repair', *Cell*, 129: 289-301.

670 Soding, J. 2005. 'Protein homology detection by HMM-HMM comparison', *Bioinformatics*, 21:
671 951-60.

672 Stanley, E. C., P. A. Azzinaro, D. A. Vierra, N. G. Howlett, and S. Q. Irvine. 2016. 'The
673 Simple Chordate *Ciona intestinalis* Has a Reduced Complement of Genes Associated
674 with Fanconi Anemia', *Evol Bioinform Online*, 12: 133-48.

675 Steinegger, M., and J. Soding. 2017. 'MMseqs2 enables sensitive protein sequence
676 searching for the analysis of massive data sets', *Nat Biotechnol*, 35: 1026-28.

677 Swuec, P., L. Renault, A. Borg, F. Shah, V. J. Murphy, S. van Twent, A. P. Snijders, A. J.
678 Deans, and A. Costa. 2017. 'The FA Core Complex Contains a Homo-dimeric
679 Catalytic Module for the Symmetric Mono-ubiquitination of FANCI-FANCD2', *Cell
680 Rep*, 18: 611-23.

681 Tao, Y., C. Jin, X. Li, S. Qi, L. Chu, L. Niu, X. Yao, and M. Teng. 2012. 'The structure of the
682 FANCM-MHF complex reveals physical features for functional assembly', *Nat
683 Commun*, 3: 782.

684 Van Leene, J., D. Eeckhout, B. Cannoot, N. De Winne, G. Persiau, E. Van De Slijke, L.
685 Vercruyse, M. Dedecker, A. Verkest, K. Vandepoele, L. Martens, E. Witters, K.
686 Gevaert, and G. De Jaeger. 2015. 'An improved toolbox to unravel the plant cellular
687 machinery by tandem affinity purification of *Arabidopsis* protein complexes', *Nat
688 Protoc*, 10: 169-87.

689 Van Leene, J., C. Han, A. Gadeyne, D. Eeckhout, C. Matthijs, B. Cannoot, N. De Winne, G.
690 Persiau, E. Van De Slijke, B. Van de Cotte, E. Stes, M. Van Bel, V. Storme, F.
691 Impens, K. Gevaert, K. Vandepoele, I. De Smet, and G. De Jaeger. 2019. 'Capturing
692 the phosphorylation and protein interaction landscape of the plant TOR kinase', *Nat
693 Plants*, 5: 316-27.

694 Walden, H., and A. J. Deans. 2014. 'The Fanconi anemia DNA repair pathway:
695 structural and functional insights into a complex disorder', *Annu Rev Biophys*,
696 43: 257-78.

697 Wang, S., R. Wang, C. Peralta, A. Yaseen, and N. P. Pavletich. 2021. 'Structure of the FA
698 core ubiquitin ligase closing the ID clamp on DNA', *Nat Struct Mol Biol*, 28: 300-09.

699 Waterhouse, A. M., J. B. Procter, D. M. Martin, M. Clamp, and G. J. Barton. 2009. 'Jalview
700 Version 2--a multiple sequence alignment editor and analysis workbench',
701 *Bioinformatics*, 25: 1189-91.

702 Yan, Z., M. Delannoy, C. Ling, D. Daee, F. Osman, P. A. Muniandy, X. Shen, A. B. Oostra,
703 H. Du, J. Steltenpool, T. Lin, B. Schuster, C. Decaillet, A. Stasiak, A. Z. Stasiak, S.
704 Stone, M. E. Hoatlin, D. Schindler, C. L. Woodcock, H. Joenje, R. Sen, J. P. de
705 Winter, L. Li, M. M. Seidman, M. C. Whitby, K. Myung, A. Constantinou, and W.
706 Wang. 2010. 'A histone-fold complex and FANCM form a conserved DNA-remodeling
707 complex to maintain genome stability', *Mol Cell*, 37: 865-78.

708 Youds, J. L., and S. J. Boulton. 2011. 'The choice in meiosis - defining the factors that
709 influence crossover or non-crossover formation', *J Cell Sci*, 124: 501-13.

710 Zapata, L., J. Ding, E. M. Willing, B. Hartwig, D. Bezdan, W. B. Jiao, V. Patel, G. Velikkakam
711 James, M. Koornneef, S. Ossowski, and K. Schneeberger. 2016. 'Chromosome-level
712 assembly of *Arabidopsis thaliana* Ler reveals the extent of translocation and inversion
713 polymorphisms', *Proc Natl Acad Sci U S A*, 113: E4052-60.

714 Zhang, X. Y., J. Langenick, D. Traynor, M. M. Babu, R. R. Kay, and K. J. Patel. 2009. 'Xpf
715 and not the Fanconi anaemia proteins or Rev3 accounts for the extreme resistance to
716 cisplatin in *Dictyostelium discoideum*', *PLoS Genet*, 5: e1000645.

717 Zimmermann, L., A. Stephens, S. Z. Nam, D. Rau, J. Kubler, M. Lozajic, F. Gabler, J.
718 Soding, A. N. Lupas, and V. Alva. 2018. 'A Completely Reimplemented MPI
719 Bioinformatics Toolkit with a New HHpred Server at its Core', *J Mol Biol*, 430: 2237-
720 43.

721 Ziolkowski, P. A., L. E. Berchowitz, C. Lambing, N. E. Yelina, X. Zhao, K. A. Kelly, K. Choi, L.
722 Ziolkowska, V. June, E. Sanchez-Moran, C. Franklin, G. P. Copenhaver, and I. R.
723 Henderson. 2015. 'Juxtaposition of heterozygous and homozygous regions causes
724 reciprocal crossover remodelling via interference during *Arabidopsis* meiosis', *Elife*, 4.

725

726

727 **Figure 1. Analysis of fertility of zmm suppressor mutants.**

728 (A) Each dot indicates the fertility of an individual plant, measured as the number of
729 seeds per fruit averaged on ten fruits. The mean fertility for each genotype is shown
730 by a red bar. Each mutant was compared to sibling controls grown together, and the
731 data of independent experiments are shown in Figure S2. Some genotypes were
732 represented in several experiments and their data were pooled for this figure. Stars
733 summarize the one-way ANOVA followed by Sidak test shown in Figure S2. (B-E)

734 Representative fruits of *wild type*, *fancc-2*, *msh4*, and *fancc-2 msh4*, cleared with 70%
735 ethanol.

736

737 **Figure 2. Structural analysis of the experimental human and modeled *A. thaliana***
738 **FANCC-FANCE-FANCF complexes.**

739 (A) Structural representation of the human FANC core complex (PDB:7KZP) (Wang et
740 al. 2021) Most of the subunits are shown in gray with the exception of those in direct
741 contact with the human FANCC (light green), namely hFANCE (light pink), hFANCL
742 (yellow) and hFANCF (light blue). A zoomed-in view of the four subunits is shown in
743 the inset on the right with the contact region between hFANCL and hFANCC
744 highlighted by a dotted rectangle. (B) AlphaFold2 structural model of the AtFANCC-
745 AtFANCE-AtFANCF complex represented as a cartoon in two orientations with a
746 dotted square indicating the C-terminal domain of FANCE located in a region of
747 FANCC that directly binds to the FANCL subunit in the human FANC core complex
748 structure. (C) Same view as (B) with AtFANCC shown as a surface and colored
749 according to conservation from white to red for the least to most conserved positions.
750 Pymol software was used to draw the different structures (The PyMOL Molecular
751 Graphics System, Version 2.0 Schrödinger, LLC).

752

753

754 **Figure 3. Metaphase chromosome spreads of male meiocytes.**

755 (A) Wild type with five bivalents, (B) *msh4* with one bivalent, (C) *fancc-2* with four
756 bivalents and one pair of univalents. (D) *fancc-2* with five bivalents (E) *fancc-2 msh4*
757 with two bivalents (F) *fancc-2 fance fancf msh4* with two bivalents. Scale bar, 10 μ m.

758 (G) Quantification of bivalents at metaphase I. The proportion of cells with 0–5
759 bivalents is shown with a color code. The number of analyzed cells and the average
760 bivalent number per cell is shown for each genotype. All the genotypes are in the Col
761 background, except when Ler is mentioned.

762

763 **Figure 4. Recombination in *fancc*, *fance* and *fancf* mutant.**

764 (A) Recombination was measured in seeds produced by crosses with wild type (female
765 and male) or after selfing. Each dot represents the recombination frequency measured
766 in an individual plant, and the red lines show the mean. *P* values are from two-sided
767 Fisher's exact test on the proportion of recombined seeds. Raw data are shown in
768 Table S2 (B–D). Representative image of seeds from a 420/++ hemizygote imaged
769 under bright-field, red fluorescence channel, green fluorescence channel, and merged
770 fluorescence.

771

772 **Figure 5. Combining *fanc* and *mus81* mutations leads to reduced fertility and**
773 **chromosome fragmentation at meiosis.** (A) Each dot indicates the fertility of an
774 individual plant, measured as the number of seeds per fruit averaged on ten fruits. The
775 means for each genotype are shown by red bars. Each double mutant was compared
776 to sibling controls grown together; the independent experiments are shown in Figure
777 S8. Wild type and *mus81* control were represented in several experiments and their
778 data are pooled in this plot. (B) Quantification of cells with and without chromosome
779 fragments. N=number of cells analyzed for each genotype. Stars summarize the one-
780 way ANOVA followed by Sidak test shown in Figure S8. (C–J) Chromosome spreads

781 of male meiocytes (Scale bar, 10 μ m). Arrow heads indicate chromosome fragments.

782 (C, G) *mus81*. (D, H) *fancc-2 mus81*. (E, I) *fance mus81* (F, J) *fancf mus81*.

783

784

785

786 **Table 1. Summary of the *zmm* suppressor screen results.**

	Number of alleles identified in each screen					
	total	<i>zip4</i>	<i>hei10</i>	<i>msh5</i>	<i>shoc1</i>	<i>msh4</i> (<i>Ler</i>)
Number of M2 populations screened	~7,000	~2,000	~2,000	~1,000	~1,000	~1,000
identified gene	<i>FANCC</i>	1				1
	<i>FANCM</i>	29	5	5	4	8
	<i>MHF2</i>	4	1	2		1
	<i>TOP3</i>	4		3		1
	<i>RECQL</i>	3				3
	<i>RMI1</i>	2			1	1
	<i>FIGL1</i>	15	2	5	3	2
	<i>FLIP</i>	1		1		
	total	59	8	16	7	12

787

788 A suppressor screen was performed in five *zmm* mutants (*zip4*, *hei10*, *msh5*, *shoc1*,
789 *and msh4*). One to two thousand independent M2 populations were screened for each
790 *zmm*. A total of 59 causal mutations falling in eight genes were identified and we report
791 the number of alleles identified per gene and per screen. The colors represent three
792 distinct pathways (FA blue, BTR green, FIGL1 red). Note that *msh4* is in the Ler
793 background while others are in Col. As RECQL is duplicated in Col but not in Ler, it
794 could be found only in the *msh4* screen. The list of mutant alleles is shown in Table
795 S1.

796

797

798 **Table 2. Pull-down protein purification using At3G60310/FANCC as bait.**

Gene Id	Protein name	CGSrino PD1	CGSrino PD2	CGSrino PD3
At3G60310	FANCC	19	18	15
AT4G29560	FANCE	6	4	5
AT5G65740	FANCL	5	4	4
At1G78790	MHF2	2	-	3
AT1G35530	FANCM*	2	-	-

799

800 Three replicates of pull-down purifications (IP1, IP2 and IP3) followed by mass
801 spectrometry were performed using FANCC as a bait. After filtering (see material and
802 methods), the number of specific peptides is reported for each identified protein. *Only
803 identified in one experiment. MS data are shown in table S4.

804 **Figure S1. Schematic representation of the AtFANCC, AtFANCE and AtFANCF**
805 **genes.**

806 Gene orientations are indicated by horizontal arrows. A vertical red line indicates a
807 point mutation, and red triangles indicate T-DNA insertions. The numbers on inverted
808 triangles and vertical line denote corresponding alleles of *fancc*. Exons are indicated
809 by a solid black box, while introns and untranslated regions (UTR) are represented by
810 a line.

811

812 **Figure S2. Analysis of fertility of zmm suppressor mutants.** Each dot indicates the
813 fertility of an individual plant, measured as the number of seeds per fruit averaged on
814 ten fruits. The mean for each genotype is represented by a red bar. The vertical lines
815 separate experiments performed independently. Within each experiment, all plants
816 were cultivated together in a population segregating for the mutations. *P* values are
817 from one-way ANOVA followed by the Sidak test for multiple comparisons.

818 **Figure S3. Superimposition of the five models of the AtFANCC-AtFANCE-**
819 **AtFANCF complex calculated by AlphaFold2.** (A) Representation showing the
820 convergence of the five models of FANCC and FANCF superimposed with only one
821 example of FANCE for the sake of clarity. (B) Same view as (A) with the five models
822 of FANCE shown in different shades of pink color. In the top panel, the C-terminal
823 orientation of FANCE is found to be poorly defined due to the flexible short linker
824 connecting it to its N-terminal domain (lower panel) whose orientation is, in contrast,
825 very well defined due to a large binding interface with FANCC. (C) 2D map of the
826 predicted alignment error (PAE) calculated by AlphaFold2 which can be used as a
827 proxy for the reliability of the structural model of every subunit and of the binding
828 interfaces. As in panel B, the interface between the N-terminal domain of FANCE and

829 FANCC is predicted to be accurately modeled, while its C-terminal domain is not
830 predicted to bind as specifically and reliably. (D) Representation of the PAE map
831 calculated for each of the five AlphaFold2 models.

832

833 **Figure S4. Multiple sequence alignment of FANCC orthologs in ten**
834 **representative plant species.** The structural model of the complex is shown on top.
835 The abbreviated species names and their NCBI indexes are provided in the headers.
836 The regions of FANCC interacting with FANCF and FANCE are indicated by blue and
837 pink straight lines around them, respectively. MSA is represented using JalView
838 (Waterhouse et al. 2009).

839

840 **Figure S5. Circular representation of the phylogenetic tree of FANCC orthologs.**
841 A phylogenetic tree comprising 72 plant species orthologs was calculated using PhyML
842 (Dereeper et al. 2008) and represented with iTOL(Letunic and Bork 2021). A sampled
843 multiple sequence alignment of nine FANCC orthologs in the species labelled at the
844 end of the branches is available in Figure S4. Confidence supports for each clade in
845 the tree are indicated by the size of the gray disks; the reliable branches are green,
846 while the unreliable ones range from yellow to red.

847

848 **Figure S6. FANCC interactions tested by yeast two-hybrid.**

849 Proteins of interest were fused with Gal4 DNA binding domain (BD) as bait and with
850 Gal4 activation domain as prey (AD), respectively, then expressed in yeast cells. For
851 each combination, yeast cells were spotted on non-selective medium (-LW) as control

852 and moderately selective media (-LWH). Growth on -LWH is interpreted as direct
853 interaction between the two tested proteins.

854

855 **Figure S7. Chromosome spreads of male meiocytes at metaphase I.**

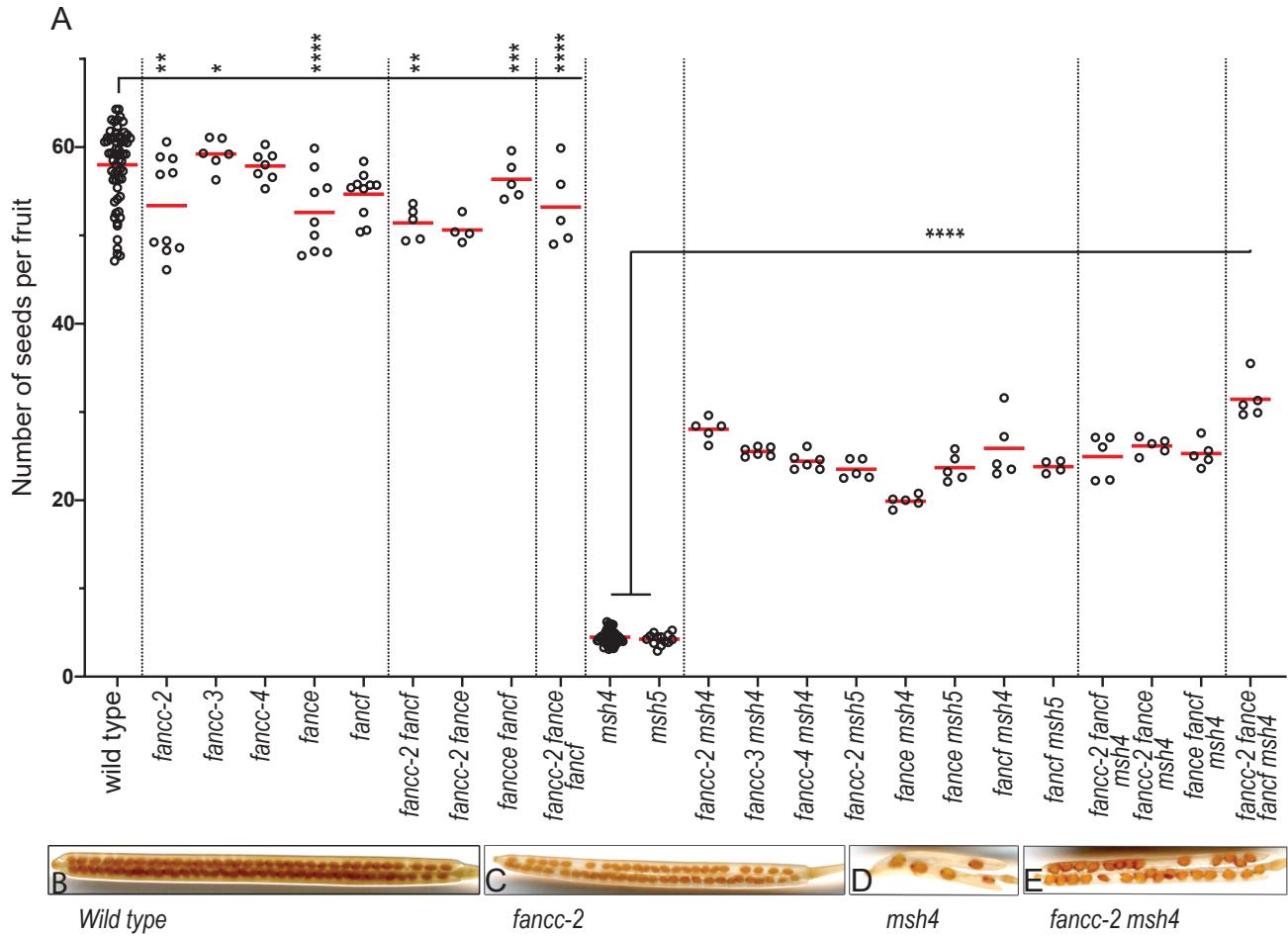
856 (A–B) *fance* (C–D) *fancf*, A and C are normal metaphase I with five bivalents while B
857 and D have one pair of univalent and four bivalents. (Scale bar, 10 μ m).

858

859 **Figure S8. Analysis of fertility of *fanc* mutants combined with *mus81*.** Each dot
860 indicates the fertility of an individual plant, measured as the number of seeds per fruit
861 averaged on ten fruits. The mean for each genotype is represented by a red bar. The
862 vertical lines separate independent experiments. All plants were cultivated in parallel
863 in each experiment, and the wild-type controls were mutant siblings except for the
864 *mus81 fance* combination because the two genes are linked. In this latter case, *mus81*
865 segregating and *fance* segregating population mutants were used as controls. *P* values
866 are from one-way ANOVA followed by the Sidak test for multiple comparisons.

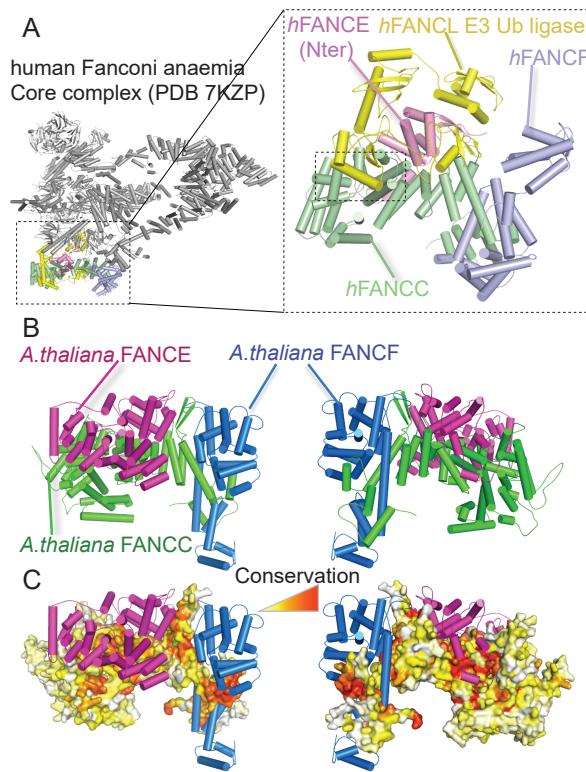
867 **Figure S9. Combining *fanc* and *mus81* mutations instigates chromosome**

868 **fragmentation at meiosis.** (A–K) Chromosome spreads of male meiocytes (Scale
869 bar, 10 μ m). Arrow heads indicate chromosome fragments.

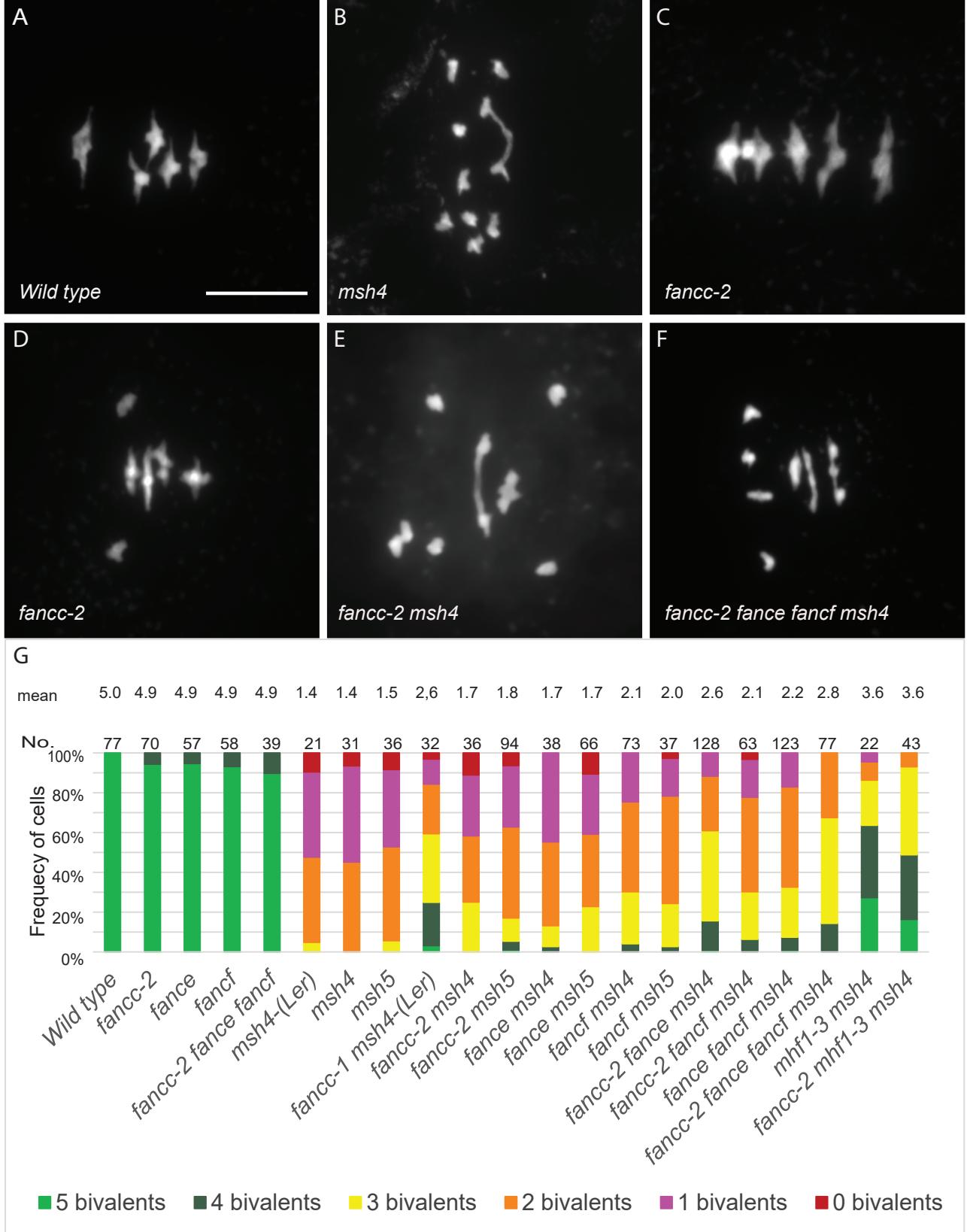

870

871 **Table S1. Mutations identified in the *zmm* suppressor screen.**

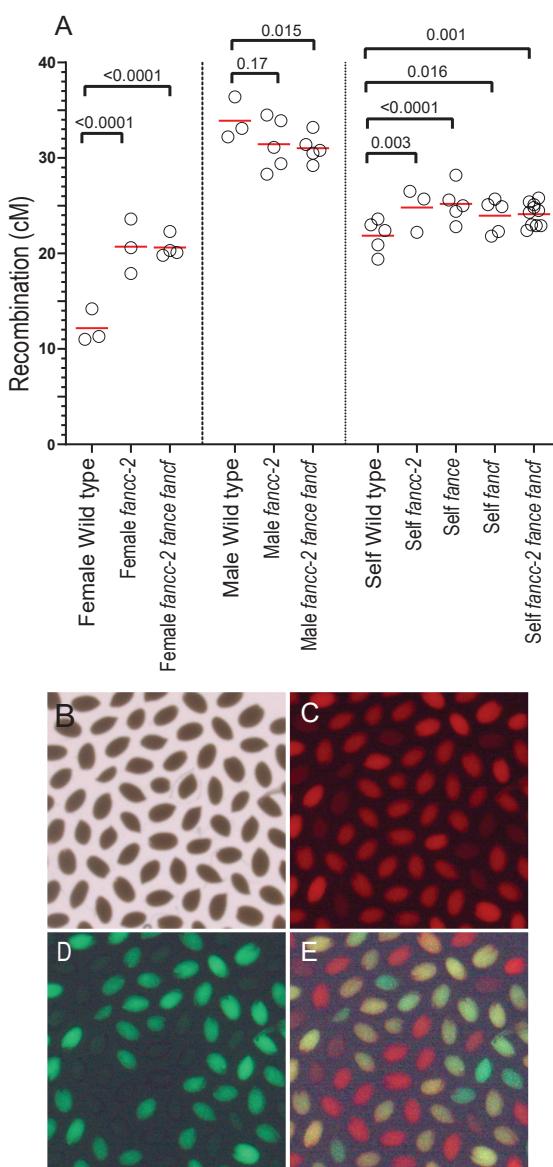
872 **Table S2. FTL seed data used to measure genetic recombination.**


873 **Table S3. Primers used in this study.**

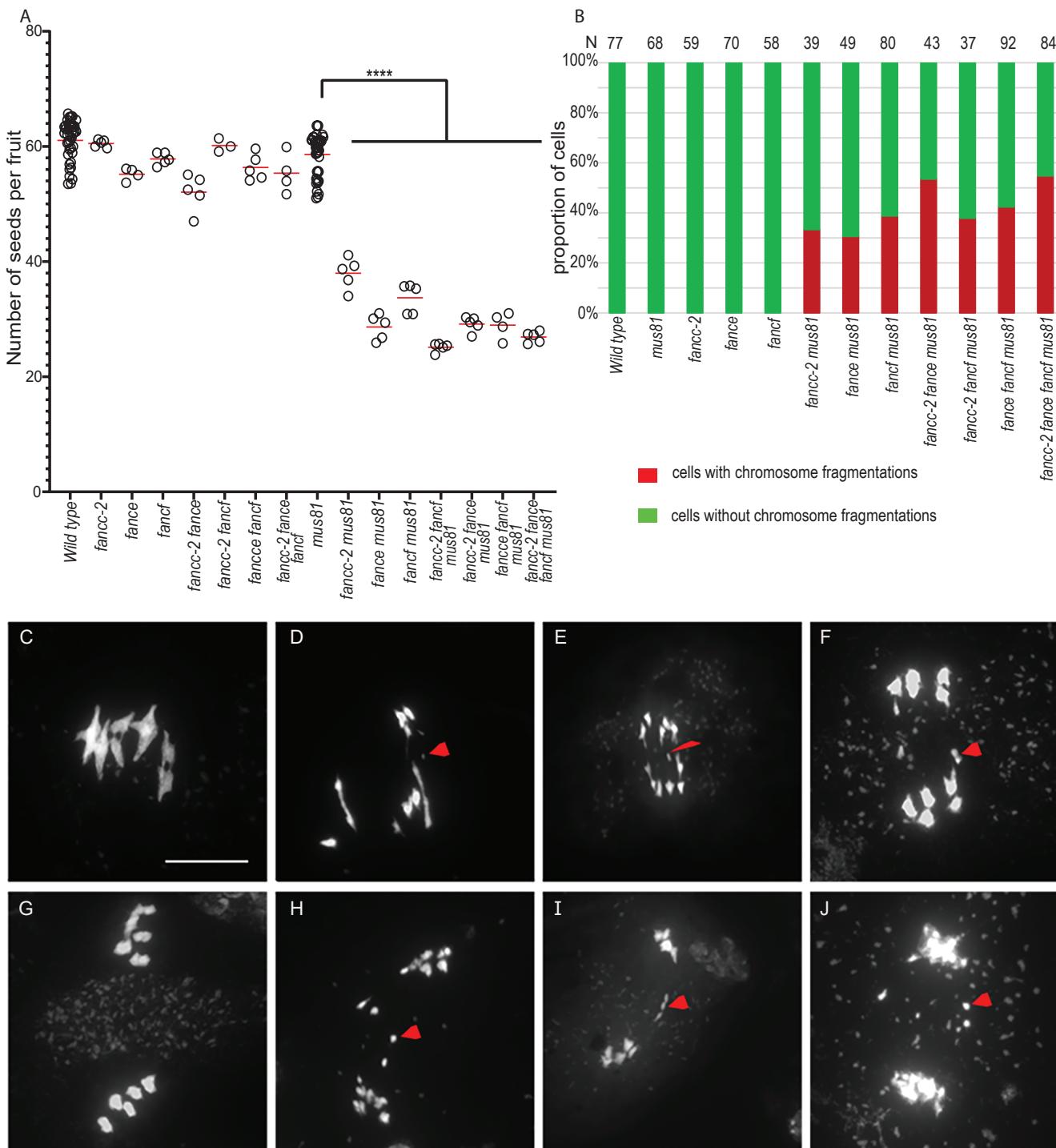
874 **Table S4. MS data**


Figure 1. Analysis of fertility of zmm suppressor mutants.

(A) Each dot indicates the fertility of an individual plant, measured as the number of seeds per fruit averaged on ten fruits. The mean fertility for each genotype is shown by a red bar. Each mutant was compared to sibling controls grown together, and the data of independent experiments are shown in Figure S2. Some genotypes were represented in several experiments and their data were pooled for this figure. Stars summarize the one-way ANOVA followed by Sidak test shown in Figure S2. (B–E) Representative fruits of wild type, *fancc-2*, *msh4*, and *fancc-2 msh4*, cleared with 70% ethanol.


Figure 2. Structural analysis of the experimental human and modeled *A. thaliana* FANCC-FANCE-FANCF complexes.

(A) Structural representation of the human FANC core complex (PDB:7KZP) (Wang et al. 2021) Most of the subunits are shown in gray with the exception of those in direct contact with the human FANCC (light green), namely hFANCE (light pink), hFANCL (yellow) and hFANCF (light blue). A zoomed-in view of the four subunits is shown in the inset on the right with the contact region between hFANCL and hFANCC highlighted by a dotted rectangle. (B) AlphaFold2 structural model of the AtFANCC-AtFANCE-AtFANCF complex represented as a cartoon in two orientations with a dotted square indicating the C-terminal domain of FANCE located in a region of FANCC that directly binds to the FANCL subunit in the human FANC core complex structure. (C) Same view as (B) with AtFANCC shown as a surface and colored according to conservation from white to red for the least to most conserved positions. Pymol software was used to draw the different structures (The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC).


Figure 3. Metaphase chromosome spreads of male meiocytes.

(A) Wild type with five bivalents, (B) *msh4* with one bivalent, (C) *fancc-2* with four bivalents and one pair of univalents. (D) *fancc-2* with five bivalents (E) *fancc-2 msh4* with two bivalents (F) *fancc-2 fance fancf msh4* with two bivalents. Scale bar, 10 μ m. (G) Quantification of bivalents at metaphase I. The proportion of cells with 0–5 bivalents is shown with a color code. The number of analyzed cells and the average bivalent number per cell is shown for each genotype. All the genotypes are in the Col background, except when Ler is mentioned.

Figure 4. Recombination in *fancc*, *fance* and *fancf* mutant.

(A) Recombination was measured in seeds produced by crosses with wild type (female and male) or after selfing. Each dot represents the recombination frequency measured in an individual plant, and the red lines show the mean. P values are from two-sided Fisher's exact test on the proportion of recombined seeds. Raw data are shown in Table S2 (B–D). Representative image of seeds from a 420/++ hemizygote imaged under bright-field, red fluorescence channel, green fluorescence channel, and merged fluorescence.

Figure 5. Combining *fanc* and *mus81* mutations leads to reduced fertility and chromosome fragmentation at meiosis. (A) Each dot indicates the fertility of an individual plant, measured as the number of seeds per fruit averaged on ten fruits. The means for each genotype are shown by red bars. Each double mutant was compared to sibling controls grown together; the independent experiments are shown in Figure S8. Wild type and *mus81* control were represented in several experiments and their data are pooled in this plot. (B) Quantification of cells with and without chromosome fragments. N=number of cells analyzed for each genotype. Stars summarize the one-way ANOVA followed by Sidak test shown in Figure S8. (C–J) Chromosome spreads of male meiocytes (Scale bar, 10 μ m). Arrow heads indicate chromosome fragments. (C, G) *mus81*. (D, H) *fancc-2 mus81*. (E, I) *fance mus81* (F, J) *fancf mus81*.