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Abstract

Predefined sets of short DNA sequences are commonly used as barcodes to identify
individual biomolecules in pooled populations. Such use requires either sufficiently small
DNA error rates, or else an error-correction methodology. Most existing DNA
error-correcting codes (ECCs) correct only one or two errors per barcode in sets of
typically < 10* barcodes. We here consider the use of random barcodes of sufficient
length that they remain accurately decodable even with 2 6 errors and even at ~ 10%
or 20% nucleotide error rates. We show that length ~ 34 nt is sufficient even with > 10°
barcodes. The obvious objection to this scheme is that it requires comparing every read
to every possible barcode by a slow Levenshtein or Needleman-Wunsch comparison. We
show that several orders of magnitude speedup can be achieved by (i) a fast triage
method that compares only trimer (three consecutive nucleotide) occurence statistics,
precomputed in linear time for both reads and barcodes, and (ii) the massive parallelism
available on today’s even commodity-grade GPUs. With 10 barcodes of length 34 and
10% DNA errors (substitutions and indels) we achieve in simulation 99.9% precision
(decode accuracy) with 98.8% recall (read acceptance rate). Similarly high precision
with somewhat smaller recall is achievable even with 20% DNA errors. The amortized
computation cost on a commodity workstation with two GPUs (2022 capability and
price) is estimated as between US$ 0.15 and US$ 0.60 per million decoded reads.

1 Introduction

The use of DNA barcode libraries to identify tagged individual biomolecules in pooled
populations has become an essential tool for today’s massively parallel biomedical
experiments. Barcodes find use in gene synthesis |1|2], antibody screens [3,/4], drug
discovery via tagged chemical libraries [5H7|, and many other applications [8+14],
including their potential use in schemes for engineered DNA data storage [15,|16]. For
some applications, barcodes must function robustly in experimental situations subject
to significant error rates (that is, the unintended occurrence of nucleotide substitutions,
insertions, and deletions). Errors may be introduced during barcode synthesis, the
processes of the experiment, the final sequencing, or all of these [15]. Errors in barcode
synthesis (“wrong barcodes”) are particularly troublesome, because they create errors
that persist at any depth of final sequencing.
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“Next-Generation Sequencing” (NGS), as exemplified in Illumna technology [17], has
relatively short read lengths (200-300 nt), but also relatively small error rates
(1073-10~* per nt). In this regime, barcodes need to be short (< 20 nt), but they need
only modest (if any) error-correction capability. In other words, barcodes as ultimately
sequenced can be assumed to have at most one or two errors, allowing the use of
repurposed mathematical error-correcting codes (ECCs) |18L[19], sometimes [20H24], but
not always [2526], with the necessary extensions to account for insertion and deletion
errors (“indels”). By a “mathematical” ECC, we mean a set of codewords and also an
algorithm for recovering an original codeword from its garbled version, specifically
without needing to compare every potentially garbled read to every known possible
codeword in the library. (We use the terms “barcode” and “codeword” almost
interchangeably, the former being the physical manifestation in DNA of the
mathematical latter.)

Useful mathematical ECCs for use with NGS have in practice been limited to
libraries with no more than tens of thousands of unique codewords. While any code
should ideally signal a reject (“erasure”) rather than return a wrong identification if the
garbled word has more errors than the ECC can handle, this in general cannot be
mathematically assured if the number of errors is not strictly bounded [19].

Hawkins et al.’s “FREE” barcodes |27] overcame some of these limitations with a
direct approach: Libraries of pairwise dissimilar codewords were constructed by
comparing each proposed new codeword to all previously accepted ones, a slow, but
one-time, process. A novel similarity measure was designed to be tolerant of indels that
could produce garbled barcodes with unknown, altered lengths. Advantageously,
codewords could be constrained to have balanced GC content, minimal homopolymer
runs, reduced hairpin propensity, or any other experimentally motivated constraints. In
the FREE scheme, garbled codewords are decoded by table lookup into a very large
table containing not only the codewords, but also all of their possible single- or
double-error garbles. This is very fast, but requires very large computer memory.
Practically, this scheme achieves single-error—correcting codes of 16-nt length, with
1.6 x 10% barcodes, or double-error—correcting codes of 17-nt length with 23,000 codes.

In recent years, third-generation sequencing (also known as TGS or long-read
sequencing), in variants developed by Pacific Biosciences and Oxford Nanopore [28], has
changed the landscape. TGS is capable of very long reads, > 10* nt, so barcode length
is of small consequence. However, read error rates may be as high as ~ 10% [29]. Such
error rates render virtually useless single- and double-error correcting barcode libraries
of useful size. In the most favorable case of independent random errors, three or more
errors can occur frequently; burst errors such as stuttering or repeated deletions only
make things worse.

This paper explores a possible solution via the use of random barcodes
(“randomers”) [30], that is, barcode libraries of any desired size (= 10°, for example)
whose codewords are approximately uniformly random, as generated by computer, with
constraints of GC content, homopolymers, etc., easily imposed. Like “designed”
barcodes, random barcodes would be synthesized in defined oligo pools, but with the
difference that the number of pools could be as large as desired. There are two obvious,
immediate objections to this scheme that must be overcome: 1. How can we avoid
too-similar pairs of codewords in the library, so that the garbles of one are not
mistakenly decoded as the other? 2. How can we avoid the impractical all-to-all in-silico
comparison of every read to every codeword in the library?

The answers are unexpectedly simple: 1. We use barcodes of length sufficient to
make near-collisions statistically unlikely to any desired degree. To implement this, we
below investigate the statistics of such near-collisions. 2. Instead of rejecting
all-against-all brute force comparison, we embrace it. Below, we will describe a novel,
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fast computational technique that characterizes codewords by their overlapping trimers
(three-nucleotide sequences), both trimer presence versus absence and the order of those
present. We show in particular that these techniques can run with massive parallelism
on commodity graphics processing units (GPUs) and that cloud GPU

availability [31,/32] makes such all-against-all comparisons practical at low cost and with
reasonable throughput.

2 Materials and Methods

2.1 Distance Measures

Given a set of barcode codewords, and given a garbled barcode read (possibly, because
of indels, prefixed or suffixed by spurious nucleotides), by definition the best decode we
can do is to assign the read to its most probable codeword—or to declare it an erasure
that cannot be reliably so assigned. “Most probable” implies an accurate statistical

characterization of all the processes that produce errors, in practice rarely available [33].

So, any practical procedure involves choosing a surrogate, a distance measure between
the two strings that at least approximates (a monotonic function of) P(R|C'), the
probability of a garbled read R given the true codeword C'.

A gold standard for such an approximation, is the Needleman-Wunsch [34] alignment
distance between the strings, with the skew, substitution, insertion, and deletion
penalties set to the negative log-probabilities of their respective occurrence in an
experimentally validated error model. To the degree that errors are independent, the
distance so obtained is the negative log-probability of the most probable single path
from codeword to read. Note that even this gold standard is not exact, because (i) the
implied model of independent and identically distributed (i.i.d.) errors is surely not
right in detail, and (ii) the probability P(R|C) is actually a sum over all possible paths,
not the single most probable path.

Levenshtein distance (also called edit distance) [22] is a kind of silver standard, not
as good as Needleman-Wunsch, but also not dependent on knowing error probabilities.
Levenshtein distance is identical to Needleman-Wunsch when the skew, substitution,
insertion, and deletion penalties all set to the same constant value (without loss of
generality the value 1). In the remainder of this paper, we will use Levenshtein distance
exclusively. However, all of the algorithms developed (and all of the implementing
computer code) is designed to allow arbitrary penalties, hence the easy generalization to
Needleman-Wunsch.

2.2 Levenshtein Distance Distribution of Random Strings

If there were no indels, then the Levenshtein distance between two random strings of
the same length would be their Hamming distance, with an easily calculated binomial
probability distribution (for independent errors). With indels, the distribution of
Levenshtein distances between two random strings is a famously unsolved problem,
closely related to the better-known unsolved problem of longest-common
subsequences [35]. While it is known that for asymptotically long strings the mean
distance scales as a constant 7. times string length (hardly a surprise, given that the
errors are local), 7., termed the Chvétal-Sankoff constant [36], is not known, though it
is conjectured to be 2/(1 + /c), where c is the alphabet size (for us, 4). Beyond this
mean, virtually nothing is known about the distribution of distances, although there is a
conjectured connection to so-called Tracy-Widom distributions [37].

While little is known analytically, simulation is straightforward. Supporting
Information S1 (text) describes how one-to-many Levenshtein distances can be
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Figure Probability dis-
tribution of Levenshtein dis-
tances. Random oligomers of
lengths 18, 22, 26, 30, and 34 are
generated and random pairwise
Levenshtein distances are calcu-
lated. Dots show the results. The
curves are a bivariate polynomial
fit (in log-space) to all the dots
simultaneously. The distributions
are non-Gaussian in their tail, the
curves deviating from parabolas
slightly but significantly.

parallelized on a GPU, allowing the calculation of > 108 distances on a single-headed
desktop machine in minutes. Figure 1 shows the results of such a simulation.

distribution of Levenshtein distance between pairs of random N-mers
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We are concerned about the extreme left-hand tails of the distributions, where a
garbled read from one codeword might end up by unlucky chance close to another in a
large set of barcodes. In this regime, direct sampling is impractical, but we can use the
polynomial extrapolations (in log-space) shown in Figure [I} Their uncertainty at
probability 10712 is likely < 1 in Levenshtein distance, as estimated by robustness of
the curves as details of the fitting procedure are varied. Supporting Information S2
gives details of the polynomial fit shown in the figure.

2.3 Distribution of Closest Non-Causal Distance to a Set of N
Codewords

Given a set of N random codewords {C'} of length M from which a given read R does
not derive, what is the probability P(L) that R’s smallest Levenshtein distance to the
set is L? We may assume that R is itself (close to) random, because it derives from

errors on a random starting point, its true codeword. Given one of the distributions in
Figure |1} which we now denote p(L|M), this is a straightforward calculation in extreme
value theory [38]: The probability P(0) is the cumulative Poisson probability of one or

more zero distances when the mean number is Np(0|M),
P(0) = Poisson{ > 1, Np(0| M) } (1)

Then, recursively,
P(i+1)=|1->_ P(j) | Poisson{ > 1, Np(i + 1|M) }, (2)
§=0

where the term in parentheses is the remaining probability to be allocated, and the
Poisson cumulative distribution function is the probability of allocating it to the value
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i+ 1. Equation [2]is easily computed numerically and is shown for the case of M = 34 nt
in Figure 2l The values near the peaks seem haphazard due to discreteness effects, but
are accurately shown.

34-mer codewords

10° 10°
—— N=1.0e+04
—— N=1.0e+05
—— N=1.0e+06
—— N=1.0e+07
10714 1071
2
3
> 3
= o
® 1072 510724
S 2
a ©
=]
€
=}
(o] ;
1034 10734/
' —— binomial cdf 5% error/rate
--+- binomial cdf 10% error rate
« binomial cdf 20% error rate
14+ 0 4+——+—+—* r -
01 2 3 4 5 6 7 8 9 10 11 12 13 01 2 3 4 5 6 7 8 9 1011 12 13
smallest Levenshtein distance to N random codewords smallest Levenshtein distance to N random codewords

Figure 2. Probability of smallest distance to a set of NV 34 nucleotide random codewords. Left: Probability
mass function. The larger is N, the smaller is the expected distance to a given garbled read by chance. Right: Cumulative
distribution function. Also shown as thin green lines are cumulative binomial probabilities for the number of errors in a
garbled 34-mer for the large error rates (per nucleotide) 5%, 10% and 20%.

The figure also plots the cumulative distribution functions for binomial deviates with
parameters 34 (the codeword length) and probabilities 0.05, 0.10, and 0.20. These
model, at least crudely, the Levenshtein distances to be expected in the causal case of
comparison to the correct codeword. That fact that some orders of magnitude of
vertical white space lie between each green curve and at least one other-colored curve
points the way forward: By picking an appropriate threshold Levenshtein distance T,
calling as decodes all reads with < 7" and as erasures all reads with > T', we may hope
to achieve both very high accuracy (high precision) on decodes and a very low erasure
rate (high recall). The figure demonstrates this in an approximate, but relatively
model-independent way. In Results, we will explore a more accurate, detailed model
and, importantly, will give a procedure for choosing 1" based on observed data.

Supporting Information S3 shows figures analogous to Figure [2| for the cases of other
codeword lengths, M = 30, 26, 22, and 18 nt.

2.4 Three-parameter Poisson Error Model for Substitutions,
Insertions, and Deletions

An error model for a M-mer barcode set can be described by three parameters pgyp,
Dins, and pge;, respectively the probabilities per nucleotide of a substitution, insertion,
or deletion error. Formally, we need to be more precise: the different types of errors can
interact; and, insertion and deletion errors change the length of the string. Among
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various equally good possibilities, for purposes of this paper we adopt the following 161
error-generation model, the steps to be executed in the order listed. 162

e Start with a codeword string in {a, ¢, g,t} of length M, indexed as 0... M — 1. 163

o Substitutions. Draw a deviate ng,, ~ Binomial(M, %psub). The factor 4/3 corrects 16

for the fact that 1/4 of substitutions will substitute an unchanged nucleotide. 165
Draw (with replacement) ng,; indices in the uniform distribution U(0, ..., M — 1). 1
Draw (with replacement) ng,; values uniformly in the nucleotides {a,c, g,t}. 167

Substitute the values at the indices. (Note that indices may collide, in which case 1
only one of the corresponding values will “win” the substitution, it doesn’t matter s

which.) 170
e Deletions. Draw a deviate nge; ~ Binomial(M, pge;). Draw (with replacement) 171
Nger indices in the uniform distribution U(0, ..., M — 1). Delete the nucleotides at 17
those positions. Here, colliding indices delete the same position only once. Call 173
the new string length M’ > M — ng.; with equality in the case of no collisions. 174

e Insertions. Draw a deviate n;,s ~ Binomial(M’, p;ns). Draw (with replacement) s

Nins indices in the uniform distribution U(0, ..., M"). Draw (with replacement) 176
Nins values uniformly in the nucleotides {a,c, g,t}. Insert each value before the 177
original index position (or, for index M’, after the last character). Here, colliding s
indices result in more than one insertion before an existing character (order 179
irrelevant). The string length is now M" = M’ 4 n;, 180

e Padding or truncation. If M > M, truncate the string to length M. If M" < M 1=
pad the string to length M with random characters in {a,c, g,t}. The resulting 182
string of length M is the garbled codeword. This padding/truncation implements 1
the worst-case assumption that we have no independent information about where 1ss

the true barcode begins or ends, but simply attempt to decode exactly M 185

characters at the codeword’s nominal position (e.g., beginning of strand). 186
2.5 Fast Triage of Codewords by Trimer Similarity 167
We are committed to comparing each of @ (possibly many millions of) reads to each of 1
N (possibly millions) codewords of length M, so as to find, for each read, that 189
codeword with smallest Levenshtein distance. Naively, the number of implied operations 1%
is const x Q x N x M?, where the constant is ~ 10 and the factor M? is the 101
Levenshtein calculation. While feasible on a supercomputer, the implied ~ 106 192

operation count is not to be recommended. Here, we show how to reduce it to ~ 1013 10
operations that can be done on a commodity GPU with 103 — 10* parallelism, implying 1o
as few as ~ 10° calculation steps, feasible on a single-head desktop machine. 105

We will employ a strategy of “triage”, that is, comparing each read to every 196
codeword using only an approximate distance metric or similarity score, but one with a 17
very small number of computer operations per comparison. This step will eliminate a 1
large (often very large) fraction of possible identifications. Then, it is feasible to apply a 19

more exact comparison to the small number of possible identifications that 200
remain—either as a secondary triage (another approximate distance measure) or a true on
Levenshtein calculation. The final step will always be a Levenshtein (or similar) 202
distance comparison, finding the decoding with the smallest true distance. 203
Primary Triage by Trimer Hamming Popcount 204
Every codeword of length M has exactly M — 2 overlapping, consecutive trimers in 205

{a,c,g,t}® (a set of cardinality 4% = 64). Why focus on trimers? Why not dimers or 206

o2
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tetramers? The results of especially Figures [2| and S2 (right panels) suggest the
need for barcodes of length ~ 30. On average the 42 = 16 dimers will appear in a
barcode about twice, and 2 85% will occur at least once. So there is relatively little
information in either their uniqueness of occurrence or uniqueness of position. For
tetramers, which number 4* = 256, only ~ 10% of them will appear in any given
barcode, so ~ 90% of the effort of keeping track of them is wasted. Trimers, each
appearing on the order of once per barcode, is a unique sweet spot.

A suitable function B(C;) maps each codeword C; to a 64-bit unsigned integer
whose bits signify the presence (1) or absence (0) of each trimer in C; The values
B; = B(C;) can be precomputed. Now, for each garbled M-mer read R;, we compute
the distance measure

S = Popcount(B(R;) @ B;) (3)

where @ denotes bitwise exclusive-or and Popcount returns the number of set bits in a
word, here the Hamming distance. Popcount is a single machine-language CUDA

instruction on GPUs [39] that can readily be made accessible to PyTorch, or calculated
(a few times slower) as a few-line PyTorch [40] function. Importantly, in either case, the

calculation of equation [3| can be done in parallel across all N of the B;’s simultaneously.

We may then eliminate from further consideration those codewords with the largest
distances S, between 90% and 99%, depending on the DNA error rate (see further
details below).

Secondary Triage by Trimer Position Correlation

Conceptually, a secondary triage should need to be calculated, for each read, only for
the list of codeword candidates that survive the primary triage. The output of the
secondary triage would be an even shorter list of survivors. In practice, our proposed
secondary triage is almost as fast as the above primary triage. That being the case, it is
about equally efficient to apply the primary and secondary triages simultaneously to all
the codewords, and then combine the triages, as will be described below. This strategy

allows us to then jump directly to a Levenshtein comparison of the joint triage survivors.

Our secondary triage is motivated as follows: To be close in distance, a read R; and
codeword C; should not only be similar by set-comparison of their trimers (popcount
test above), but also close in the position indices, 0,..., M — 3, of identical trimers.

Denote individual trimers as ¢ € [0, 64), and denote the ordered sequence of trimers
in a read or codeword as t;, i =0,..., M — 2. Let V(R) be a function returning an
integer vector of length 64, defined for a codeword or read R by the 64 components,

Cif e .
V(R), = {z, if ¢; oc?urs in R (4)
0, otherwise

This is not quite a well-posed definition, because we might have ¢; = t; for i # j, i.e., a
collision in V(R);. Supporting Information S4 discusses how collisions can be resolved
in a computationally fast manner.

Now, the dot product V(R;) - V(C;), something like an unnormalized correlation of
the two position functions, can be taken as a similarity measure. Since V(R,) and
V(C;) can be precomputed, the dot products over all ¢ and j can all be done in parallel
on the GPU, exactly the kind of tensor calculation it is best at.

But why stop there? For any kernel function K that acts componentwise on a vector,
the dot product K (V(R;)) - K(V(C;)) is also a similarity measure. Multiple K’s return
different similarity information. We find that kernels of cosine shape,

K,(k)=cos[rkn/(M -1)],n=1,2,..., k=0,1,...,. M —1 (5)
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(with small n), each give good results, even better when combined as next described. 250
The intuition here is that values n > 1 are more sensitive to the ordering of trimers on 2
finer scales, but only up to some value of n where indels result, on average, in a loss of 2
phase coherence with the cosines. We find that 1 < n < 4 works well, with larger values 23
giving little improvement. 254

Combined Triage 255

Although operations across all pairs of reads and codewords are by definition expensive,
we have found it efficient to expend the cost of ranking (i.e., sorting) each read’s N
distance scores (against every codeword) for the handful of distance measures, equations
and [5| (with n = 1,2,3,4). Let r(i,n) denote the rank of the ith codeword in the nth
distance measure, small ranks meaning most similar. Then we define the combined
distance measure (i) as the product

This can be viewed as akin to a naive Bayes estimate, since r(i,n)/N is something like s
a Bayes evidence factor provided by the distance measure n. Finally, we rank the r(é)s. 25

Figure [3| shows results for a simulation with N = 10° codewords of length M =34 s
whose reads are corrupted (using the error model describe above) with 250
Dsub = Pins = Pder = 0.03, a total error rate of 9%. One sees that, here, the Hamming 260
popcount is doing most of the heavy lifting, but combining with position similarity gives 2
substantial improvement. In the figure “cosn” denotes the kernel functions in equation 22

While these have very similar performance individually, the elimination of any of 263
them decreases the combined performance somewhat. 264

In this example, triage from 10 down to 10 codeword possibilities for each read 265
would capture the correct answer almost always (3> 99%) so that the exact Levenshtein 26
calculation could be done on only the smaller set, at negligible computational cost. 267
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Figure (3l Triage performance
of individual filters and com-
bined. For N = 10% code-
words of length M = 34 nt, and
for an error model with pg,, =
Pins = Pder = 0.03, the figure
shows the probability of capturing
the correct codeword with triage
to sets of codeword possibilities
much smaller than N. Here, after
triage and with negligible loss of
recall, exact Levenshtein testing
is needed for fewer than 103 code-
words.
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A somewhat less favorable, but still very feasible, example is for the large error rates
Dsub = 0.05, pins = 0.05, pge; = 0.10, as shown in Figure Here, triage from 10° to 10°
produces negligible loss of recall. We will see in Results that parallel computation of
Levenshtein on 10° codewords per read is also very feasible.

3 Results

Tllustrating the use and practicality of the above methods, we here give the results of
detailed simulations for the case of one million barcodes (N = 10°) of length M = 34
nucleotides in the presence of end-to-end DNA total error rates of 20% per nucleotide
(base case) with excursions to smaller (9%) and larger (30%) rates. These rates are
intentionally chosen to be all very large as compared to next-generation NGS error
rates, and even large or very large as compared to third-generation TGS rates (see
Section . We know of no previously proposed barcode sets capable of success with
these parameters at plausible computational workloads.
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Figure Same as Figure [3]
but with error rates ps,p = 0.05,
Pins = 0.05, pger = 0.10. Here,
further testing on about a tenth
of codewords is required.
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3.1 Precision and Recall

103

10

105

106

It is important to emphasize that the methods of this paper do not give either perfect
precision, that is, the correct decoding of every garbled read independent of its number
of errors; nor perfect recall, that is, no garbled reads rejected as undecodable erasures.
Rather, by choice of an integer threshold Levenshtein distance T, the user may set any
desired recall between 0% (all erasures) and 100% (no erasures) and must then accept

the implied level of precision.

For these tests, we generated either random sets of codewords, or else otherwise
random sets that excluded codewords with homopolymer runs of > 3, or CG or AT

fraction greater than 0.66. There was no discernible difference in results between

same-sized fully random and sequence-constrained codeword sets.
Garbled reads were assigned to the closest codeword by Levenshtein distance when
the distance was < T', otherwise called as erasures. For the base case of 20% total
errors, with psup = 0.05, pins = 0.05, pge; = 0.10, the figure shows results for the full
range of choices of T. In a real experiment, the user does not know which decodes are
correct, so sees the sum of true and false positives (green and red histograms). That is
enough to calculate the recall for each possible value of T, but not the precision, which

requires “knowing the answers”.
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1.0
0.141 —— best is correct (true positive) simulation error rates: .
—— best is incorrect (false positive) sub=5.0% Xy "
ins=5.0% R,
0.124 0.8 del=10.0% N
0.10
> - 0.6 1
= 0.081
Qo
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o
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0.2 —e— recall (=1 — erasures)
0.021 —e— precision (actual)
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—-— precision (model 2)
0.00 = : . . r . . 0.0 . . r r .
0 2 4 6 8 10 12 0 2 4 6 8 10
Levenshtein distance to best codeword max accepted Levenshtein distance

Figure 5. Simulation with 20% DNA error rate. Left: Distribution of distances seen when decoding to the
Levenshtein-closest codeword among 10° possibilities. The experimenter, not knowing which decodes are correct, sees
the sum of the red and green histograms. Right: With data from the left panel, for each choice of threshold T, recall is
the fraction of all events (green plus red) < T'. This is knowable to the experimenter. Precision is, for events < T, the

fraction of green (versus red) events. This is not directly knowable but can be estimated by the models shown (see text).

However, the user does know that there is some red histogram whose expected shape
was already calculated above in equations [I] and 2] and Figure 2] The user also knows
that the green histogram should be roughly binomial, but “censored” by the red
histogram in a computable way. In Supporting Information S5, we show that this is
enough information to model the expected precision function either naively (shown as
Model 1) or, with additional assumptions, somewhat more accurately (shown as Model
2). So, in practice, the user can use these models to choose an appropriate value T. In
the figure, a suitable choice based only on the models might be T" = 8, which in
simulation gives 99.6% precision with 67% recall. Whether this is sufficiently large
recall to be useful depends on the design of the experiment, for example, whether a
given barcode is expected to be read several or many times, in which case a 33% loss to
erasures can be tolerable.

Supporting Information S6 shows the analogous figures for error rates 10% (with
Psub = 0.033, pins = 0.033, pge; = 0.033) and 30% (with psyup = 0.075, pins = 0.075,
Pdet = 0.15). For the former of these, the choice T' =9 yields precision 99.9% with recall
98.8%. For the latter, recall must be sacrificed to get good precision. T = 7 gives

precision 99.8% with recall 20.4%, while T' = 8 gives precision 98.2% with recall 32.6%.

The user is assumed to know something about the experimental DNA error rate a
priori. However, if this is not the case, then the the above values can be assumed as
lower bounds. Specifically, for any assumed total error rate significantly less than 30%,
the value T' = 8 should give > 99% precision along with a recall that will be
immediately known from the data, by the number of erasures called.
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3.2 Performance and Cost

The minimum requirement for using the methods described in this paper is a compute
node (or cloud instance) with at least 2 CPU cores and at least 1 commodity- or
server-grade GPU having at least 8 GB memory. To use exactly our code (as available
on Github), PyTorch [40] and its associated software tool chain is required, but porting
to other CUDA tool chains (e.g., TensorFlow [41]) should be straightforward.

We measured actual performance on a standalone workstation with an Intel 19-10900
processor (10 CPU cores, 20 logical processors) and 2 Nvidia RTX 3090 GPUs, each
with 10,496 CUDA cores and 328 tensor cores. The purchase price of this machine (year
2022) was US$12,000. The (year 2022) marginal cost of adding additional comparable
GPUs would be about US$1,500 each.

As a typical performance test, we generated 1,000,000 simulated reads of 34 nt
random barcodes with 20% error rates. (Performance does not actually depend on error

rate.) Reads were divided among processes running concurrently on separate CPU cores.

On the above machine, we found that four such processes, two assigned specifically to
each GPU, gave best performance, saturating the two GPUs (and four CPUs) at close
to 100% usage. Memory usage per GPU was 7.4 GB. Wallclock execution time was 4943
seconds, implying about 17.5 million reads per 24-hour day. This is likely adequate
performance for many applications and will only improve with time as GPU cycles get
faster and cheaper.

For applications requiring greater throughput, there are various options: Academic
supercomputer centers allocate time (at zero cost) competitively to academic users. A
current example is the Longhorn computer at the Texas Advanced Computing Center
(TACC) |42] with 384 Nvidia V100 GPUs, implying on the order of 7 billion reads per
day for the full machine. The “startup” allocation of 100 node hours should process on
the order of 150 million reads, and much larger allocations are routinely awarded.
Alternatively, commercial cloud instances of GPUs can be stood up by the hour in any
desired quantities and thus any desired throughput. Current (2022 [31}32]) prices of
about US$ 0.50 per GPU-hour imply a cost of about US$ 1.50 per million reads
processed. This can be compared to the 3-year amortized cost of the standalone
machine described above implying about US$ 0.60 per million reads; or the amortized

marginal cost of each additional GPU, which implies about US$ 0.15 per million reads.

4 Discussion

The main point of this paper is demonstrating the practicality of all-to-all comparisons
for closest Levenshtein or Needleman-Wunsch match (that is, comparing all reads to all
barcodes) with DNA barcodes sets of 10 barcodes or larger, and for reads numbering
many millions or more. The elements that make this possible are (1) the parallel
processing capabilities of current commodity GPUs, (2) the use of a novel, very fast,
parallel triage that, for each read, eliminates from competition all but a small fraction
of candidate barcodes, and (3) the ability to parallelize the Levenshtein or
Needleman-Wunsch computation a significant degree, both within a single calculation
and across many such.

All-to-all comparison in turn makes practical the use of random barcode sets
(defined and fixed for each experiment) that derive error-correcting capability simply by
the statistics of their average distances from one another. While the required lengths,
~30 nucleotides, may be undesirably long for use with short read lengths, they are not a
detriment with read lengths of third-generation sequencing. And, in that context, the
ability to use of direct, parallel Levenshtein (or an even faster approximation as
discussed), allows as many as 6 to 8 errors to be corrected (set above by the threshold
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value T'), along with correctly flagging as undecodable “erasures” reads with more than
this number. At 10% errors per nucleotide, considered a large value, we are able to
demonstrate precision of 99.9% and recall of 98.8%. Even with 20% errors per
nucleotide, we demonstrate 99.6% precision with recall of 67% (meaning that at most
1/3 of reads are wasted). We know of no other existing, practical DNA barcode
methodologies that are able to operate in these high-error-rate regimes with > 106
barcodes. In these statistics, errors in barcode synthesis (“wrong barcodes”), are as
equally correctable as errors created at later stages of an experiment or during final
sequencing.

In contrast to this paper, mathematically constructed error correcting codes (ECCs)
of a given length L are designed to have fewer near-collisions than our random barcodes
of the same length. If there existed known mathematical ECCs capable of (i) correcting
as many as 6 to 8 errors, and (ii) correcting not just substitution errors, but also
insertions and deletions (indels), then these would be superior to random barcodes. But
we know of no such ECCs. [27]

Code Availability

Python and PyTorch code for all the computations in this paper are available on Github
at https://github.com/whpress/RandomBarcodes .
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Figure One-to-many par-
allel Needleman-Wunsch or
Levenshtein distance calcula-
tions. The red grid is largely con-
ceptual. The main calculation is
done in parallel on a stack of many
blue grids, from top to bottom in
the figure. Green dot values are
filled with the minimum among
del, sub, and ins, i.e., the shortest
path to that dot. The stack of
answers appears as the blue dot
at the bottom.

Supporting Information

S1. Parallel Computation of Needleman-Wunsch and Levenshtein
Distances

These distances are conventionally calculated by dynamic programming on a Cartesian
tableau, filling in squares from top to bottom and left to right (see Wikipedia,
“Needleman-Wunsch algorithm”). Mapping this to the CUDA strided-slice tensor
programming model on a GPU is facilitated by tilting the tableau 45°, thus displaying
the desired calculation as a parallel calculation on a top-to-bottom directed acyclic
graph, shown as the red grid in Figure Pink dots on the blue grid are filled with
multiples of the skew penalty. The Boolean tensor [A; == B;] is calculated in parallel
on the red grid, then mapped to the blue. The calculation then proceeds top to bottom
on the blue grid filling in the green dots. Some parallelism is generated by doing each
row’s green dots in parallel (shown in the Figure as at most three, but actually as many
as M — 1 for M nt codewords. A much larger parallelism is achieved by “stacking”
10,000 to 50,000 such grids out of the plane, each with the same string A (shown as
Al, A2, A3) but different strings B (shown as B1, B2, B3, B4). PyTorch code for this
algorithm is included on GitHub.

0 1 2 030 4 5 6 7 =]
0 0
Al Bl
. /,0’ 1 1
@\?‘
%
A2 B2 v
, 2 2
A3 B3
3 3
sub B4
B 4
del ins
5
6
i=7 (M+N,N)

Approximate Levenshtein Referring to the red tableau in the figure, and to the
sub, ins, del arrows, a parallel calculation can be done for substitutions and insertions a
full (red) row at a time, but not for deletions, because the value in an earlier column
can affect a later one. Alternatively, a fully parallel calculation a column at a time is
possible for substitutions and deletions, but not insertions.

That said, we can ask what happens if we ignore this reality and just do the fully
parallel calculation? The answer will be wrong only slightly and only when there are
two or more consecutive deletions (if processing by rows) or insertions (if processing by
columns). Moreover, if we do the parallel deletion (insertion) step twice, literally
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repeating the same one line of code, then the answer will be wrong only when there are
three or more consecutive deletions (insertions), a relatively rare occurrence.

This parallel “approximate Levenshtein” calculation is found to be several times
faster on a commodity GPU than the parallel exact Levenshtein calculation.
Approximate Levenshtein can be used as a “tertiary triage” (in the language of section

, bringing the computational burden of exact Levenshtein down to almost negligible.

In fact, in the simulations that we have tried, the use of approximate Levenshtein alone,
without any other followup, gives results for recall and precision (section that are
virtually indistinguishable from those where exact Levenshtein is used. Since the goal is
correct decodes, not exact Levenshtein distances, the use of approximate Levenshtein
seems justified by the performance gain.

S2. Fitted Polynomial Expression for Levenshtein Distance
Distribution of Random Strings

Figure |1] in the main text indicated by dots the values actually obtained by simulation,
which have probabilities as small as < 10~7. For smaller probabilities, we need to
extrapolate. Rather than fit each value M separately, which would allow extrapolation
on Levenshtein distance L, but not interpolation on codelengths M, we fit a bivariate
polynomial,

I J
log o p(LIM) = > > i M'L
i=0 j=0

Here p(L|M) is the probability that two random M nucleotide strings are separated by
a Levenshtein distance L. Bivariate fitting also acts to improve the accuracy, because
an improbably deviant small sample in the tail of one M value is mitigated by the other
M values.

The coefficients c;; for the adopted best fit are,

log,op(LIM) =
[~1.347e+01 + 5.668¢+00 L — 4.964e-01 L* + 1.969¢-03 L*]
+[49.239e-01 — 4.846e-01 L + 5.215¢-02 L? — 6.125e-04 L*] M
+[-5.333¢-02 + 1.803e-02 L — 1.876e-03 L? + 2.902e-05 L3 M?
+[+6.412¢-04 — 2.185e-04 L + 2.239¢-05 L? — 3.940e-07 L*] M?

S3. Distribution of Closest Non-Causal Distance to a Set of N Codewords for Other
Nucleotide Lengths

See main text Figure [2] which was for the case of M = 34-mer codewords. Here are analogous figures for M = 30, 26, 22,

Figure S2. More Smallest Levenshtein Distances to Random Sets of Codewords
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S4. Collisions in the Trimer Position Function

We noted above that equation [f] might not define a single-valued equation for the
positions of each trimer, because a specific trimer (“cgt” for example) might occur in

more than one position. In practice, it is not too bad to pick any one position,

randomly. Such a function V(R); returns a (any) position in the codeword for each of

64 trimers t¢;, defining the position to be zero if the trimer does not occur in the read R.

1722

452

454

455

457

458

459

460


https://doi.org/10.1101/2022.07.02.498575
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.02.498575; this version posted July 4, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Even better results are obtained by combining all positions {i} of a given trimer ¢ 461
causally into some kind of pseudo-position. This can be done either before or after 462
applying the kernel K () in equation [5| After some trial and error among alternatives, s
we replace the components of the vector K (V(R;)), that appears in the dot product, by 4

K(V(R)) = Y K(V(R)) (6)

j st t=t;

that is to say, we sum the colliding kernels (in our case, cosines) before taking the dot s

product. The sums can be done in parallel by a scatter-add operation. 466
S5. Models for Estimating Precision w67
Here we develop two models that allow a user to estimate, for codewords of length M, s
as a function of threshold Levenshtein distance T, the precision of decoded garbled 469
barcode reads. The models can then be used to choose a value T that appropriately 470
trades off precision and recall. We assume that the user has an estimate for the total an
error rate r (or chooses some value as an upper bound). a2

Model 1. For every read, there is a distribution of Levenshtein distances L; from its 4

true (causal) codeword that we model as a binomial probability binom(L;|M,r); and
there is a distribution P(Ly) of its distances Ly from the closest false (non-causal) 475
codeword, which was calculated above in Section When we have L; < T and 476
L, < Ly we can score a true positive (TP). For ties Ly < T and L, = Ly, we resolve the n
tie randomly and score half a true positive. Conversely, when we have Ly < T and a78
Ly < L; we can score a false positive (FP), or half a false positive if Ly = L;. The 479
remaining case is when L; > T and Ly > T, which is an erasure. 480
Parsing these inequalities in the two-dimensional grid of L; and Ly, and with the a81
assumed probability distributions, gives the rates for TP and FP, 482
T i
TP =) " binom(i|M,r) > P(j)
i=0 j=i
L. (7)
FP =Y P(j) > binom(i|M,r)
=0 i=j
Here ¥’ denotes a sum with a factor 1/2 applied to its first term. In terms of these 483
quantities, a8

precision = TP/(TP + FP)
recall =TP + FP (8)
erasure rate =1 —-TP — FP

Model 2. A weakness is Model 1 is its assumption of a binomial distribution for L;, s
when we know this is not correct with indels. Also, Model 1 does not make use of the s
experimentally observable distribution of distances L, a mixture of the causal and ag7
non-causal distributions, 488

Piot(L) = aP.(L) + (1 — ) P(L) 9)
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(In Figure 4, this mixture was shown as the green and red histograms.) Implicitly,
Model 1 estimated P.(L) by

J/DZ(L) = binom(L| M, r) Z, P(j) (censored binomial)
j=L

—

P.(L) = i’Z(L)/ Z i’Z(L) (then renormalized)
L=0

where “hat” denotes an estimator.
For Model 2, we first least-squares estimate « in equation [9] by the formula,

21 [Pior(L) — PUL))[Pe(L) — P(L)]
S [Pe(L) = P(L)]?

in terms of which the precision is then estimated by

a:

(11)

T T
precision = TP/(TP + FP) = > aP.(L) / > {&E(L) +(1-a&)P(L) (12)
L=0 L=0

It is not obvious mathematically that Model 2’s precision estimate must be better than
Model 1’s, but in simulation we generally find it to be.

S6. Precision and Recall for Other Simulated DNA Error Rates
These figures are analogous to Figure |3 but for the different DNA error rates 10% and 30%.

Figure S3. Precision and Recall Simulations for Additional DNA Error Rates
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