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Abstract

Predefined sets of short DNA sequences are commonly used as barcodes to identify
individual biomolecules in pooled populations. Such use requires either sufficiently small
DNA error rates, or else an error-correction methodology. Most existing DNA
error-correcting codes (ECCs) correct only one or two errors per barcode in sets of
typically ≲ 104 barcodes. We here consider the use of random barcodes of sufficient
length that they remain accurately decodable even with ≳ 6 errors and even at ∼ 10%
or 20% nucleotide error rates. We show that length ∼ 34 nt is sufficient even with ≳ 106

barcodes. The obvious objection to this scheme is that it requires comparing every read
to every possible barcode by a slow Levenshtein or Needleman-Wunsch comparison. We
show that several orders of magnitude speedup can be achieved by (i) a fast triage
method that compares only trimer (three consecutive nucleotide) occurence statistics,
precomputed in linear time for both reads and barcodes, and (ii) the massive parallelism
available on today’s even commodity-grade GPUs. With 106 barcodes of length 34 and
10% DNA errors (substitutions and indels) we achieve in simulation 99.9% precision
(decode accuracy) with 98.8% recall (read acceptance rate). Similarly high precision
with somewhat smaller recall is achievable even with 20% DNA errors. The amortized
computation cost on a commodity workstation with two GPUs (2022 capability and
price) is estimated as between US$ 0.15 and US$ 0.60 per million decoded reads.

1 Introduction 1

The use of DNA barcode libraries to identify tagged individual biomolecules in pooled 2

populations has become an essential tool for today’s massively parallel biomedical 3

experiments. Barcodes find use in gene synthesis [1, 2], antibody screens [3, 4], drug 4

discovery via tagged chemical libraries [5–7], and many other applications [8–14], 5

including their potential use in schemes for engineered DNA data storage [15,16]. For 6

some applications, barcodes must function robustly in experimental situations subject 7

to significant error rates (that is, the unintended occurrence of nucleotide substitutions, 8

insertions, and deletions). Errors may be introduced during barcode synthesis, the 9

processes of the experiment, the final sequencing, or all of these [15]. Errors in barcode 10

synthesis (“wrong barcodes”) are particularly troublesome, because they create errors 11

that persist at any depth of final sequencing. 12
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“Next-Generation Sequencing” (NGS), as exemplified in Illumna technology [17], has 13

relatively short read lengths (200-300 nt), but also relatively small error rates 14

(10−3–10−4 per nt). In this regime, barcodes need to be short (≲ 20 nt), but they need 15

only modest (if any) error-correction capability. In other words, barcodes as ultimately 16

sequenced can be assumed to have at most one or two errors, allowing the use of 17

repurposed mathematical error-correcting codes (ECCs) [18, 19], sometimes [20–24], but 18

not always [25,26], with the necessary extensions to account for insertion and deletion 19

errors (“indels”). By a “mathematical” ECC, we mean a set of codewords and also an 20

algorithm for recovering an original codeword from its garbled version, specifically 21

without needing to compare every potentially garbled read to every known possible 22

codeword in the library. (We use the terms “barcode” and “codeword” almost 23

interchangeably, the former being the physical manifestation in DNA of the 24

mathematical latter.) 25

Useful mathematical ECCs for use with NGS have in practice been limited to 26

libraries with no more than tens of thousands of unique codewords. While any code 27

should ideally signal a reject (“erasure”) rather than return a wrong identification if the 28

garbled word has more errors than the ECC can handle, this in general cannot be 29

mathematically assured if the number of errors is not strictly bounded [19]. 30

Hawkins et al.’s “FREE” barcodes [27] overcame some of these limitations with a 31

direct approach: Libraries of pairwise dissimilar codewords were constructed by 32

comparing each proposed new codeword to all previously accepted ones, a slow, but 33

one-time, process. A novel similarity measure was designed to be tolerant of indels that 34

could produce garbled barcodes with unknown, altered lengths. Advantageously, 35

codewords could be constrained to have balanced GC content, minimal homopolymer 36

runs, reduced hairpin propensity, or any other experimentally motivated constraints. In 37

the FREE scheme, garbled codewords are decoded by table lookup into a very large 38

table containing not only the codewords, but also all of their possible single- or 39

double-error garbles. This is very fast, but requires very large computer memory. 40

Practically, this scheme achieves single-error–correcting codes of 16-nt length, with 41

1.6× 106 barcodes, or double-error–correcting codes of 17-nt length with 23,000 codes. 42

In recent years, third-generation sequencing (also known as TGS or long-read 43

sequencing), in variants developed by Pacific Biosciences and Oxford Nanopore [28], has 44

changed the landscape. TGS is capable of very long reads, > 104 nt, so barcode length 45

is of small consequence. However, read error rates may be as high as ∼ 10% [29]. Such 46

error rates render virtually useless single- and double-error correcting barcode libraries 47

of useful size. In the most favorable case of independent random errors, three or more 48

errors can occur frequently; burst errors such as stuttering or repeated deletions only 49

make things worse. 50

This paper explores a possible solution via the use of random barcodes 51

(“randomers”) [30], that is, barcode libraries of any desired size (≳ 106, for example) 52

whose codewords are approximately uniformly random, as generated by computer, with 53

constraints of GC content, homopolymers, etc., easily imposed. Like “designed” 54

barcodes, random barcodes would be synthesized in defined oligo pools, but with the 55

difference that the number of pools could be as large as desired. There are two obvious, 56

immediate objections to this scheme that must be overcome: 1. How can we avoid 57

too-similar pairs of codewords in the library, so that the garbles of one are not 58

mistakenly decoded as the other? 2. How can we avoid the impractical all-to-all in-silico 59

comparison of every read to every codeword in the library? 60

The answers are unexpectedly simple: 1. We use barcodes of length sufficient to 61

make near-collisions statistically unlikely to any desired degree. To implement this, we 62

below investigate the statistics of such near-collisions. 2. Instead of rejecting 63

all-against-all brute force comparison, we embrace it. Below, we will describe a novel, 64
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fast computational technique that characterizes codewords by their overlapping trimers 65

(three-nucleotide sequences), both trimer presence versus absence and the order of those 66

present. We show in particular that these techniques can run with massive parallelism 67

on commodity graphics processing units (GPUs) and that cloud GPU 68

availability [31, 32] makes such all-against-all comparisons practical at low cost and with 69

reasonable throughput. 70

2 Materials and Methods 71

2.1 Distance Measures 72

Given a set of barcode codewords, and given a garbled barcode read (possibly, because 73

of indels, prefixed or suffixed by spurious nucleotides), by definition the best decode we 74

can do is to assign the read to its most probable codeword—or to declare it an erasure 75

that cannot be reliably so assigned. “Most probable” implies an accurate statistical 76

characterization of all the processes that produce errors, in practice rarely available [33]. 77

So, any practical procedure involves choosing a surrogate, a distance measure between 78

the two strings that at least approximates (a monotonic function of) P (R|C), the 79

probability of a garbled read R given the true codeword C. 80

A gold standard for such an approximation, is the Needleman-Wunsch [34] alignment 81

distance between the strings, with the skew, substitution, insertion, and deletion 82

penalties set to the negative log-probabilities of their respective occurrence in an 83

experimentally validated error model. To the degree that errors are independent, the 84

distance so obtained is the negative log-probability of the most probable single path 85

from codeword to read. Note that even this gold standard is not exact, because (i) the 86

implied model of independent and identically distributed (i.i.d.) errors is surely not 87

right in detail, and (ii) the probability P (R|C) is actually a sum over all possible paths, 88

not the single most probable path. 89

Levenshtein distance (also called edit distance) [22] is a kind of silver standard, not 90

as good as Needleman-Wunsch, but also not dependent on knowing error probabilities. 91

Levenshtein distance is identical to Needleman-Wunsch when the skew, substitution, 92

insertion, and deletion penalties all set to the same constant value (without loss of 93

generality the value 1). In the remainder of this paper, we will use Levenshtein distance 94

exclusively. However, all of the algorithms developed (and all of the implementing 95

computer code) is designed to allow arbitrary penalties, hence the easy generalization to 96

Needleman-Wunsch. 97

2.2 Levenshtein Distance Distribution of Random Strings 98

If there were no indels, then the Levenshtein distance between two random strings of 99

the same length would be their Hamming distance, with an easily calculated binomial 100

probability distribution (for independent errors). With indels, the distribution of 101

Levenshtein distances between two random strings is a famously unsolved problem, 102

closely related to the better-known unsolved problem of longest-common 103

subsequences [35]. While it is known that for asymptotically long strings the mean 104

distance scales as a constant γc times string length (hardly a surprise, given that the 105

errors are local), γc, termed the Chvátal-Sankoff constant [36], is not known, though it 106

is conjectured to be 2/(1 +
√
c), where c is the alphabet size (for us, 4). Beyond this 107

mean, virtually nothing is known about the distribution of distances, although there is a 108

conjectured connection to so-called Tracy-Widom distributions [37]. 109

While little is known analytically, simulation is straightforward. Supporting 110

Information S1 (text) describes how one-to-many Levenshtein distances can be 111

3/22

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 4, 2022. ; https://doi.org/10.1101/2022.07.02.498575doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.02.498575
http://creativecommons.org/licenses/by-nc/4.0/


parallelized on a GPU, allowing the calculation of > 108 distances on a single-headed 112

desktop machine in minutes. Figure 1 shows the results of such a simulation. 113
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Figure 1. Probability dis-
tribution of Levenshtein dis-
tances. Random oligomers of
lengths 18, 22, 26, 30, and 34 are
generated and random pairwise
Levenshtein distances are calcu-
lated. Dots show the results. The
curves are a bivariate polynomial
fit (in log-space) to all the dots
simultaneously. The distributions
are non-Gaussian in their tail, the
curves deviating from parabolas
slightly but significantly.

We are concerned about the extreme left-hand tails of the distributions, where a 114

garbled read from one codeword might end up by unlucky chance close to another in a 115

large set of barcodes. In this regime, direct sampling is impractical, but we can use the 116

polynomial extrapolations (in log-space) shown in Figure 1. Their uncertainty at 117

probability 10−12 is likely ≲ 1 in Levenshtein distance, as estimated by robustness of 118

the curves as details of the fitting procedure are varied. Supporting Information S2 119

gives details of the polynomial fit shown in the figure. 120

2.3 Distribution of Closest Non-Causal Distance to a Set of N 121

Codewords 122

Given a set of N random codewords {C} of length M from which a given read R does 123

not derive, what is the probability P (L) that R’s smallest Levenshtein distance to the 124

set is L? We may assume that R is itself (close to) random, because it derives from 125

errors on a random starting point, its true codeword. Given one of the distributions in 126

Figure 1, which we now denote p(L|M), this is a straightforward calculation in extreme 127

value theory [38]: The probability P (0) is the cumulative Poisson probability of one or 128

more zero distances when the mean number is Np(0|M), 129

P (0) = Poisson{≥ 1, Np(0|M) } (1)

Then, recursively, 130

P (i+ 1) =

1−
i∑

j=0

P (j)

Poisson{≥ 1, Np(i+ 1|M) }, (2)

where the term in parentheses is the remaining probability to be allocated, and the 131

Poisson cumulative distribution function is the probability of allocating it to the value 132
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i+ 1. Equation 2 is easily computed numerically and is shown for the case of M = 34 nt 133

in Figure 2. The values near the peaks seem haphazard due to discreteness effects, but 134

are accurately shown. 135

136

0 1 2 3 4 5 6 7 8 9 10 11 12 13
smallest Levenshtein distance to N random codewords 

10 4

10 3

10 2

10 1

100

pr
ob

ab
ilit

y

34-mer codewords
N = 1.0e+04
N = 1.0e+05
N = 1.0e+06
N = 1.0e+07

0 1 2 3 4 5 6 7 8 9 10 11 12 13
smallest Levenshtein distance to N random codewords 

10 4

10 3

10 2

10 1

100

cu
m

ul
at

iv
e 

pr
ob

ab
ilit

y

34-mer codewords

binomial cdf 5% error rate
binomial cdf 10% error rate
binomial cdf 20% error rate

137

Figure 2. Probability of smallest distance to a set of N 34 nucleotide random codewords. Left: Probability 138

mass function. The larger is N , the smaller is the expected distance to a given garbled read by chance. Right: Cumulative 139

distribution function. Also shown as thin green lines are cumulative binomial probabilities for the number of errors in a 140

garbled 34-mer for the large error rates (per nucleotide) 5%, 10% and 20%. 141

The figure also plots the cumulative distribution functions for binomial deviates with 142

parameters 34 (the codeword length) and probabilities 0.05, 0.10, and 0.20. These 143

model, at least crudely, the Levenshtein distances to be expected in the causal case of 144

comparison to the correct codeword. That fact that some orders of magnitude of 145

vertical white space lie between each green curve and at least one other-colored curve 146

points the way forward: By picking an appropriate threshold Levenshtein distance T , 147

calling as decodes all reads with ≤ T and as erasures all reads with > T , we may hope 148

to achieve both very high accuracy (high precision) on decodes and a very low erasure 149

rate (high recall). The figure demonstrates this in an approximate, but relatively 150

model-independent way. In Results, we will explore a more accurate, detailed model 151

and, importantly, will give a procedure for choosing T based on observed data. 152

Supporting Information S3 shows figures analogous to Figure 2 for the cases of other 153

codeword lengths, M = 30, 26, 22, and 18 nt. 154

2.4 Three-parameter Poisson Error Model for Substitutions, 155

Insertions, and Deletions 156

An error model for a M -mer barcode set can be described by three parameters psub, 157

pins, and pdel, respectively the probabilities per nucleotide of a substitution, insertion, 158

or deletion error. Formally, we need to be more precise: the different types of errors can 159

interact; and, insertion and deletion errors change the length of the string. Among 160
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various equally good possibilities, for purposes of this paper we adopt the following 161

error-generation model, the steps to be executed in the order listed. 162

• Start with a codeword string in {a, c, g, t} of length M , indexed as 0 . . .M − 1. 163

• Substitutions. Draw a deviate nsub ∼ Binomial(M, 4
3psub). The factor 4/3 corrects 164

for the fact that 1/4 of substitutions will substitute an unchanged nucleotide. 165

Draw (with replacement) nsub indices in the uniform distribution U(0, ...,M − 1). 166

Draw (with replacement) nsub values uniformly in the nucleotides {a, c, g, t}. 167

Substitute the values at the indices. (Note that indices may collide, in which case 168

only one of the corresponding values will “win” the substitution, it doesn’t matter 169

which.) 170

• Deletions. Draw a deviate ndel ∼ Binomial(M,pdel). Draw (with replacement) 171

ndel indices in the uniform distribution U(0, ...,M − 1). Delete the nucleotides at 172

those positions. Here, colliding indices delete the same position only once. Call 173

the new string length M ′ ≥ M − ndel with equality in the case of no collisions. 174

• Insertions. Draw a deviate nins ∼ Binomial(M ′, pins). Draw (with replacement) 175

nins indices in the uniform distribution U(0, ...,M ′). Draw (with replacement) 176

nins values uniformly in the nucleotides {a, c, g, t}. Insert each value before the 177

original index position (or, for index M ′, after the last character). Here, colliding 178

indices result in more than one insertion before an existing character (order 179

irrelevant). The string length is now M ′′ = M ′ + nins 180

• Padding or truncation. If M ′′ > M , truncate the string to length M . If M ′′ < M 181

pad the string to length M with random characters in {a, c, g, t}. The resulting 182

string of length M is the garbled codeword. This padding/truncation implements 183

the worst-case assumption that we have no independent information about where 184

the true barcode begins or ends, but simply attempt to decode exactly M 185

characters at the codeword’s nominal position (e.g., beginning of strand). 186

2.5 Fast Triage of Codewords by Trimer Similarity 187

We are committed to comparing each of Q (possibly many millions of) reads to each of 188

N (possibly millions) codewords of length M , so as to find, for each read, that 189

codeword with smallest Levenshtein distance. Naively, the number of implied operations 190

is const×Q×N ×M2, where the constant is ∼ 10 and the factor M2 is the 191

Levenshtein calculation. While feasible on a supercomputer, the implied ∼ 1016 192

operation count is not to be recommended. Here, we show how to reduce it to ∼ 1013 193

operations that can be done on a commodity GPU with 103 − 104 parallelism, implying 194

as few as ∼ 109 calculation steps, feasible on a single-head desktop machine. 195

We will employ a strategy of “triage”, that is, comparing each read to every 196

codeword using only an approximate distance metric or similarity score, but one with a 197

very small number of computer operations per comparison. This step will eliminate a 198

large (often very large) fraction of possible identifications. Then, it is feasible to apply a 199

more exact comparison to the small number of possible identifications that 200

remain—either as a secondary triage (another approximate distance measure) or a true 201

Levenshtein calculation. The final step will always be a Levenshtein (or similar) 202

distance comparison, finding the decoding with the smallest true distance. 203

Primary Triage by Trimer Hamming Popcount 204

Every codeword of length M has exactly M − 2 overlapping, consecutive trimers in 205

{a, c, g, t}3 (a set of cardinality 43 = 64). Why focus on trimers? Why not dimers or 206
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tetramers? The results of §2.3, especially Figures 2 and S2 (right panels) suggest the 207

need for barcodes of length ∼ 30. On average the 42 = 16 dimers will appear in a 208

barcode about twice, and ≳ 85% will occur at least once. So there is relatively little 209

information in either their uniqueness of occurrence or uniqueness of position. For 210

tetramers, which number 44 = 256, only ∼ 10% of them will appear in any given 211

barcode, so ∼ 90% of the effort of keeping track of them is wasted. Trimers, each 212

appearing on the order of once per barcode, is a unique sweet spot. 213

A suitable function B(Ci) maps each codeword Ci to a 64-bit unsigned integer 214

whose bits signify the presence (1) or absence (0) of each trimer in Ci The values 215

Bi = B(Ci) can be precomputed. Now, for each garbled M -mer read Rj , we compute 216

the distance measure 217

S = Popcount(B(Rj)⊕Bi) (3)

where ⊕ denotes bitwise exclusive-or and Popcount returns the number of set bits in a 218

word, here the Hamming distance. Popcount is a single machine-language CUDA 219

instruction on GPUs [39] that can readily be made accessible to PyTorch, or calculated 220

(a few times slower) as a few-line PyTorch [40] function. Importantly, in either case, the 221

calculation of equation 3 can be done in parallel across all N of the Bi’s simultaneously. 222

We may then eliminate from further consideration those codewords with the largest 223

distances S, between 90% and 99%, depending on the DNA error rate (see further 224

details below). 225

Secondary Triage by Trimer Position Correlation 226

Conceptually, a secondary triage should need to be calculated, for each read, only for 227

the list of codeword candidates that survive the primary triage. The output of the 228

secondary triage would be an even shorter list of survivors. In practice, our proposed 229

secondary triage is almost as fast as the above primary triage. That being the case, it is 230

about equally efficient to apply the primary and secondary triages simultaneously to all 231

the codewords, and then combine the triages, as will be described below. This strategy 232

allows us to then jump directly to a Levenshtein comparison of the joint triage survivors. 233

Our secondary triage is motivated as follows: To be close in distance, a read Rj and 234

codeword Ci should not only be similar by set-comparison of their trimers (popcount 235

test above), but also close in the position indices, 0, . . . ,M − 3, of identical trimers. 236

Denote individual trimers as t ∈ [0, 64), and denote the ordered sequence of trimers 237

in a read or codeword as ti, i = 0, . . . ,M − 2. Let V (R) be a function returning an 238

integer vector of length 64, defined for a codeword or read R by the 64 components, 239

V (R)t =

{
i, if ti occurs in R

0, otherwise
(4)

This is not quite a well-posed definition, because we might have ti = tj for i ≠ j, i.e., a 240

collision in V (R)t. Supporting Information S4 discusses how collisions can be resolved 241

in a computationally fast manner. 242

Now, the dot product V (Rj) · V (Ci), something like an unnormalized correlation of 243

the two position functions, can be taken as a similarity measure. Since V (Rj) and 244

V (Ci) can be precomputed, the dot products over all i and j can all be done in parallel 245

on the GPU, exactly the kind of tensor calculation it is best at. 246

But why stop there? For any kernel function K that acts componentwise on a vector, 247

the dot product K(V (Rj)) ·K(V (Ci)) is also a similarity measure. Multiple K’s return 248

different similarity information. We find that kernels of cosine shape, 249

Kn(k) ≡ cos [πkn/(M − 1)] , n = 1, 2, . . . , k = 0, 1, . . . ,M − 1 (5)
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(with small n), each give good results, even better when combined as next described. 250

The intuition here is that values n > 1 are more sensitive to the ordering of trimers on 251

finer scales, but only up to some value of n where indels result, on average, in a loss of 252

phase coherence with the cosines. We find that 1 ≤ n ≤ 4 works well, with larger values 253

giving little improvement. 254

Combined Triage 255

Although operations across all pairs of reads and codewords are by definition expensive,
we have found it efficient to expend the cost of ranking (i.e., sorting) each read’s N
distance scores (against every codeword) for the handful of distance measures, equations
3 and 5 (with n = 1, 2, 3, 4). Let r(i, n) denote the rank of the ith codeword in the nth
distance measure, small ranks meaning most similar. Then we define the combined
distance measure r(i) as the product

r(i) ≡
∏
n

r(i, n)

This can be viewed as akin to a naive Bayes estimate, since r(i, n)/N is something like 256

a Bayes evidence factor provided by the distance measure n. Finally, we rank the r(i)s. 257

Figure 3 shows results for a simulation with N = 106 codewords of length M = 34 258

whose reads are corrupted (using the error model describe above) with 259

psub = pins = pdel = 0.03, a total error rate of 9%. One sees that, here, the Hamming 260

popcount is doing most of the heavy lifting, but combining with position similarity gives 261

substantial improvement. In the figure “cosn” denotes the kernel functions in equation 262

5. While these have very similar performance individually, the elimination of any of 263

them decreases the combined performance somewhat. 264

In this example, triage from 106 down to 103 codeword possibilities for each read 265

would capture the correct answer almost always (≫ 99%) so that the exact Levenshtein 266

calculation could be done on only the smaller set, at negligible computational cost. 267
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Figure 3. Triage performance
of individual filters and com-
bined. For N = 106 code-
words of length M = 34 nt, and
for an error model with psub =
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shows the probability of capturing
the correct codeword with triage
to sets of codeword possibilities
much smaller than N . Here, after
triage and with negligible loss of
recall, exact Levenshtein testing
is needed for fewer than 103 code-
words.

A somewhat less favorable, but still very feasible, example is for the large error rates 268

psub = 0.05, pins = 0.05, pdel = 0.10, as shown in Figure 4. Here, triage from 106 to 105 269

produces negligible loss of recall. We will see in Results that parallel computation of 270

Levenshtein on 105 codewords per read is also very feasible. 271

3 Results 272

Illustrating the use and practicality of the above methods, we here give the results of 273

detailed simulations for the case of one million barcodes (N = 106) of length M = 34 274

nucleotides in the presence of end-to-end DNA total error rates of 20% per nucleotide 275

(base case) with excursions to smaller (9%) and larger (30%) rates. These rates are 276

intentionally chosen to be all very large as compared to next-generation NGS error 277

rates, and even large or very large as compared to third-generation TGS rates (see 278

Section 1). We know of no previously proposed barcode sets capable of success with 279

these parameters at plausible computational workloads. 280
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Figure 4. Same as Figure 3,
but with error rates psub = 0.05,
pins = 0.05, pdel = 0.10. Here,
further testing on about a tenth
of codewords is required.

3.1 Precision and Recall 281

It is important to emphasize that the methods of this paper do not give either perfect 282

precision, that is, the correct decoding of every garbled read independent of its number 283

of errors; nor perfect recall, that is, no garbled reads rejected as undecodable erasures. 284

Rather, by choice of an integer threshold Levenshtein distance T , the user may set any 285

desired recall between 0% (all erasures) and 100% (no erasures) and must then accept 286

the implied level of precision. 287

For these tests, we generated either random sets of codewords, or else otherwise 288

random sets that excluded codewords with homopolymer runs of > 3, or CG or AT 289

fraction greater than 0.66. There was no discernible difference in results between 290

same-sized fully random and sequence-constrained codeword sets. 291

Garbled reads were assigned to the closest codeword by Levenshtein distance when 292

the distance was ≤ T , otherwise called as erasures. For the base case of 20% total 293

errors, with psub = 0.05, pins = 0.05, pdel = 0.10, the figure shows results for the full 294

range of choices of T . In a real experiment, the user does not know which decodes are 295

correct, so sees the sum of true and false positives (green and red histograms). That is 296

enough to calculate the recall for each possible value of T , but not the precision, which 297

requires “knowing the answers”. 298

299
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Figure 5. Simulation with 20% DNA error rate. Left: Distribution of distances seen when decoding to the 301

Levenshtein-closest codeword among 106 possibilities. The experimenter, not knowing which decodes are correct, sees 302

the sum of the red and green histograms. Right: With data from the left panel, for each choice of threshold T , recall is 303

the fraction of all events (green plus red) ≤ T . This is knowable to the experimenter. Precision is, for events ≤ T , the 304

fraction of green (versus red) events. This is not directly knowable but can be estimated by the models shown (see text). 305

However, the user does know that there is some red histogram whose expected shape 306

was already calculated above in equations 1 and 2 and Figure 2. The user also knows 307

that the green histogram should be roughly binomial, but “censored” by the red 308

histogram in a computable way. In Supporting Information S5, we show that this is 309

enough information to model the expected precision function either naively (shown as 310

Model 1) or, with additional assumptions, somewhat more accurately (shown as Model 311

2). So, in practice, the user can use these models to choose an appropriate value T . In 312

the figure, a suitable choice based only on the models might be T = 8, which in 313

simulation gives 99.6% precision with 67% recall. Whether this is sufficiently large 314

recall to be useful depends on the design of the experiment, for example, whether a 315

given barcode is expected to be read several or many times, in which case a 33% loss to 316

erasures can be tolerable. 317

Supporting Information S6 shows the analogous figures for error rates 10% (with 318

psub = 0.033, pins = 0.033, pdel = 0.033) and 30% (with psub = 0.075, pins = 0.075, 319

pdel = 0.15). For the former of these, the choice T = 9 yields precision 99.9% with recall 320

98.8%. For the latter, recall must be sacrificed to get good precision. T = 7 gives 321

precision 99.8% with recall 20.4%, while T = 8 gives precision 98.2% with recall 32.6%. 322

The user is assumed to know something about the experimental DNA error rate a 323

priori. However, if this is not the case, then the the above values can be assumed as 324

lower bounds. Specifically, for any assumed total error rate significantly less than 30%, 325

the value T = 8 should give > 99% precision along with a recall that will be 326

immediately known from the data, by the number of erasures called. 327
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3.2 Performance and Cost 328

The minimum requirement for using the methods described in this paper is a compute 329

node (or cloud instance) with at least 2 CPU cores and at least 1 commodity- or 330

server-grade GPU having at least 8 GB memory. To use exactly our code (as available 331

on Github), PyTorch [40] and its associated software tool chain is required, but porting 332

to other CUDA tool chains (e.g., TensorFlow [41]) should be straightforward. 333

We measured actual performance on a standalone workstation with an Intel i9-10900 334

processor (10 CPU cores, 20 logical processors) and 2 Nvidia RTX 3090 GPUs, each 335

with 10,496 CUDA cores and 328 tensor cores. The purchase price of this machine (year 336

2022) was US$12,000. The (year 2022) marginal cost of adding additional comparable 337

GPUs would be about US$1,500 each. 338

As a typical performance test, we generated 1,000,000 simulated reads of 34 nt 339

random barcodes with 20% error rates. (Performance does not actually depend on error 340

rate.) Reads were divided among processes running concurrently on separate CPU cores. 341

On the above machine, we found that four such processes, two assigned specifically to 342

each GPU, gave best performance, saturating the two GPUs (and four CPUs) at close 343

to 100% usage. Memory usage per GPU was 7.4 GB. Wallclock execution time was 4943 344

seconds, implying about 17.5 million reads per 24-hour day. This is likely adequate 345

performance for many applications and will only improve with time as GPU cycles get 346

faster and cheaper. 347

For applications requiring greater throughput, there are various options: Academic 348

supercomputer centers allocate time (at zero cost) competitively to academic users. A 349

current example is the Longhorn computer at the Texas Advanced Computing Center 350

(TACC) [42] with 384 Nvidia V100 GPUs, implying on the order of 7 billion reads per 351

day for the full machine. The “startup” allocation of 100 node hours should process on 352

the order of 150 million reads, and much larger allocations are routinely awarded. 353

Alternatively, commercial cloud instances of GPUs can be stood up by the hour in any 354

desired quantities and thus any desired throughput. Current (2022 [31,32]) prices of 355

about US$ 0.50 per GPU-hour imply a cost of about US$ 1.50 per million reads 356

processed. This can be compared to the 3-year amortized cost of the standalone 357

machine described above implying about US$ 0.60 per million reads; or the amortized 358

marginal cost of each additional GPU, which implies about US$ 0.15 per million reads. 359

4 Discussion 360

The main point of this paper is demonstrating the practicality of all-to-all comparisons 361

for closest Levenshtein or Needleman-Wunsch match (that is, comparing all reads to all 362

barcodes) with DNA barcodes sets of 106 barcodes or larger, and for reads numbering 363

many millions or more. The elements that make this possible are (1) the parallel 364

processing capabilities of current commodity GPUs, (2) the use of a novel, very fast, 365

parallel triage that, for each read, eliminates from competition all but a small fraction 366

of candidate barcodes, and (3) the ability to parallelize the Levenshtein or 367

Needleman-Wunsch computation a significant degree, both within a single calculation 368

and across many such. 369

All-to-all comparison in turn makes practical the use of random barcode sets 370

(defined and fixed for each experiment) that derive error-correcting capability simply by 371

the statistics of their average distances from one another. While the required lengths, 372

∼30 nucleotides, may be undesirably long for use with short read lengths, they are not a 373

detriment with read lengths of third-generation sequencing. And, in that context, the 374

ability to use of direct, parallel Levenshtein (or an even faster approximation as 375

discussed), allows as many as 6 to 8 errors to be corrected (set above by the threshold 376
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value T ), along with correctly flagging as undecodable “erasures” reads with more than 377

this number. At 10% errors per nucleotide, considered a large value, we are able to 378

demonstrate precision of 99.9% and recall of 98.8%. Even with 20% errors per 379

nucleotide, we demonstrate 99.6% precision with recall of 67% (meaning that at most 380

1/3 of reads are wasted). We know of no other existing, practical DNA barcode 381

methodologies that are able to operate in these high-error-rate regimes with ≳ 106 382

barcodes. In these statistics, errors in barcode synthesis (“wrong barcodes”), are as 383

equally correctable as errors created at later stages of an experiment or during final 384

sequencing. 385

In contrast to this paper, mathematically constructed error correcting codes (ECCs) 386

of a given length L are designed to have fewer near-collisions than our random barcodes 387

of the same length. If there existed known mathematical ECCs capable of (i) correcting 388

as many as 6 to 8 errors, and (ii) correcting not just substitution errors, but also 389

insertions and deletions (indels), then these would be superior to random barcodes. But 390

we know of no such ECCs. [27] 391

Code Availability 392

Python and PyTorch code for all the computations in this paper are available on Github 393

at https://github.com/whpress/RandomBarcodes . 394
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Supporting Information 400

S1. Parallel Computation of Needleman-Wunsch and Levenshtein 401

Distances 402

These distances are conventionally calculated by dynamic programming on a Cartesian 403

tableau, filling in squares from top to bottom and left to right (see Wikipedia, 404

“Needleman-Wunsch algorithm”). Mapping this to the CUDA strided-slice tensor 405

programming model on a GPU is facilitated by tilting the tableau 45◦, thus displaying 406

the desired calculation as a parallel calculation on a top-to-bottom directed acyclic 407

graph, shown as the red grid in Figure S1. Pink dots on the blue grid are filled with 408

multiples of the skew penalty. The Boolean tensor [Ai == Bj ] is calculated in parallel 409

on the red grid, then mapped to the blue. The calculation then proceeds top to bottom 410

on the blue grid filling in the green dots. Some parallelism is generated by doing each 411

row’s green dots in parallel (shown in the Figure as at most three, but actually as many 412

as M − 1 for M nt codewords. A much larger parallelism is achieved by “stacking” 413

10,000 to 50,000 such grids out of the plane, each with the same string A (shown as 414

A1, A2, A3) but different strings B (shown as B1, B2, B3, B4). PyTorch code for this 415

algorithm is included on GitHub.

Figure S1. One-to-many par-
allel Needleman-Wunsch or
Levenshtein distance calcula-
tions. The red grid is largely con-
ceptual. The main calculation is
done in parallel on a stack of many
blue grids, from top to bottom in
the figure. Green dot values are
filled with the minimum among
del, sub, and ins, i.e., the shortest
path to that dot. The stack of
answers appears as the blue dot
at the bottom.

416
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Approximate Levenshtein Referring to the red tableau in the figure, and to the 417

sub, ins, del arrows, a parallel calculation can be done for substitutions and insertions a 418

full (red) row at a time, but not for deletions, because the value in an earlier column 419

can affect a later one. Alternatively, a fully parallel calculation a column at a time is 420

possible for substitutions and deletions, but not insertions. 421

That said, we can ask what happens if we ignore this reality and just do the fully 422

parallel calculation? The answer will be wrong only slightly and only when there are 423

two or more consecutive deletions (if processing by rows) or insertions (if processing by 424

columns). Moreover, if we do the parallel deletion (insertion) step twice, literally 425
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repeating the same one line of code, then the answer will be wrong only when there are 426

three or more consecutive deletions (insertions), a relatively rare occurrence. 427

This parallel “approximate Levenshtein” calculation is found to be several times 428

faster on a commodity GPU than the parallel exact Levenshtein calculation. 429

Approximate Levenshtein can be used as a “tertiary triage” (in the language of section 430

2.5), bringing the computational burden of exact Levenshtein down to almost negligible. 431

In fact, in the simulations that we have tried, the use of approximate Levenshtein alone, 432

without any other followup, gives results for recall and precision (section 3.1) that are 433

virtually indistinguishable from those where exact Levenshtein is used. Since the goal is 434

correct decodes, not exact Levenshtein distances, the use of approximate Levenshtein 435

seems justified by the performance gain. 436

S2. Fitted Polynomial Expression for Levenshtein Distance 437

Distribution of Random Strings 438

Figure 1 in the main text indicated by dots the values actually obtained by simulation,
which have probabilities as small as ≲ 10−7. For smaller probabilities, we need to
extrapolate. Rather than fit each value M separately, which would allow extrapolation
on Levenshtein distance L, but not interpolation on codelengths M , we fit a bivariate
polynomial,

log10 p(L|M) ≈
I∑

i=0

J∑
j=0

cijM
iLj

Here p(L|M) is the probability that two random M nucleotide strings are separated by 439

a Levenshtein distance L. Bivariate fitting also acts to improve the accuracy, because 440

an improbably deviant small sample in the tail of one M value is mitigated by the other 441

M values. 442

The coefficients cij for the adopted best fit are,

log10p(L|M) =

[−1.347e+01 + 5.668e+00 L− 4.964e–01 L2 + 1.969e–03 L3]

+[+9.239e–01 − 4.846e–01 L+ 5.215e–02 L2 − 6.125e–04 L3]M

+[−5.333e–02 + 1.803e–02 L− 1.876e–03 L2 + 2.902e–05 L3]M2

+[+6.412e–04 − 2.185e–04 L+ 2.239e–05 L2 − 3.940e–07 L3]M3

443

S3. Distribution of Closest Non-Causal Distance to a Set of N Codewords for Other 444

Nucleotide Lengths 445

See main text Figure 2, which was for the case of M = 34-mer codewords. Here are analogous figures for M = 30, 26, 22, 446

and 18. 447

Figure S2. More Smallest Levenshtein Distances to Random Sets of Codewords 448

449
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454

S4. Collisions in the Trimer Position Function 455

We noted above that equation 4 might not define a single-valued equation for the 456

positions of each trimer, because a specific trimer (“cgt” for example) might occur in 457

more than one position. In practice, it is not too bad to pick any one position, 458

randomly. Such a function V (R)i returns a (any) position in the codeword for each of 459

64 trimers ti, defining the position to be zero if the trimer does not occur in the read R. 460
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Even better results are obtained by combining all positions {i} of a given trimer t 461

causally into some kind of pseudo-position. This can be done either before or after 462

applying the kernel K() in equation 5. After some trial and error among alternatives, 463

we replace the components of the vector K(V (Rj)), that appears in the dot product, by 464

K(V (Rj)) =⇒
∑

j s.t. t=tj

K(V (Rj)) (6)

that is to say, we sum the colliding kernels (in our case, cosines) before taking the dot 465

product. The sums can be done in parallel by a scatter-add operation. 466

S5. Models for Estimating Precision 467

Here we develop two models that allow a user to estimate, for codewords of length M , 468

as a function of threshold Levenshtein distance T , the precision of decoded garbled 469

barcode reads. The models can then be used to choose a value T that appropriately 470

trades off precision and recall. We assume that the user has an estimate for the total 471

error rate r (or chooses some value as an upper bound). 472

Model 1. For every read, there is a distribution of Levenshtein distances Lt from its 473

true (causal) codeword that we model as a binomial probability binom(Lt|M, r); and 474

there is a distribution P (Lf ) of its distances Lf from the closest false (non-causal) 475

codeword, which was calculated above in Section 2.3. When we have Lt ≤ T and 476

Lt < Lf we can score a true positive (TP). For ties Lt ≤ T and Lt = Lf , we resolve the 477

tie randomly and score half a true positive. Conversely, when we have Lf ≤ T and 478

Lf < Lt we can score a false positive (FP), or half a false positive if Lf = Lt. The 479

remaining case is when Lt > T and Lf > T , which is an erasure. 480

Parsing these inequalities in the two-dimensional grid of Lt and Lf , and with the 481

assumed probability distributions, gives the rates for TP and FP, 482

TP =
T∑

i=0

binom(i|M, r)

∞∑′

j=i

P (j)

FP =
T∑

j=0

P (j)

∞∑′

i=j

binom(i|M, r)

(7)

Here Σ′ denotes a sum with a factor 1/2 applied to its first term. In terms of these 483

quantities, 484

precision = TP/(TP + FP )

recall = TP + FP

erasure rate = 1− TP − FP

(8)

Model 2. A weakness is Model 1 is its assumption of a binomial distribution for Lt, 485

when we know this is not correct with indels. Also, Model 1 does not make use of the 486

experimentally observable distribution of distances L, a mixture of the causal and 487

non-causal distributions, 488

Ptot(L) ≡ αPc(L) + (1− α)P (L) (9)
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(In Figure 4, this mixture was shown as the green and red histograms.) Implicitly, 489

Model 1 estimated Pc(L) by 490

P̂ ′
c(L) = binom(L|M, r)

∞∑′

j=L

P (j) (censored binomial)

P̂c(L) = P̂ ′
c(L)

/ ∞∑
L=0

P̂ ′
c(L) (then renormalized)

(10)

where “hat” denotes an estimator. 491

For Model 2, we first least-squares estimate α in equation 9 by the formula, 492

α̂ =

∑
L[Ptot(L)− P (L)][P̂c(L)− P (L)]∑

L[P̂c(L)− P (L)]2
(11)

in terms of which the precision is then estimated by 493

precision = TP/(TP + FP ) =
T∑

L=0

α̂P̂c(L)
/ T∑

L=0

[
α̂P̂c(L) + (1− α̂)P (L)

]
(12)

It is not obvious mathematically that Model 2’s precision estimate must be better than 494

Model 1’s, but in simulation we generally find it to be. 495

S6. Precision and Recall for Other Simulated DNA Error Rates 496

These figures are analogous to Figure 3, but for the different DNA error rates 10% and 30%. 497

Figure S3. Precision and Recall Simulations for Additional DNA Error Rates 498
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