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Abstract7

A common inference task in population genetics is to estimate recombination rate from8

multiple sequence alignments. Traditionally, recombination rate estimators have been de-9

veloped from biologically-informed, statistical models, but more recently deep learning10

models have been employed for this task. While deep learning approaches offer unique11

advantages, their performance is inconsistent across the range of potential recombination12

rates. Here, we generate and characterize data sets (genotype alignments with known re-13

combination rates) for use by deep learning estimators and assess how their features limit14

estimator performance. We find that certain input parameter regimes produce genotype15

alignments with low sequence diversity, which are inherently information-limited. We next16

test how estimator performance is impacted by training and evaluating neural networks on17

data sets with varying degrees of diversity. The inclusion of genotype alignments with low18

diversity at high frequency results in considerable performance declines across two differ-19

ent network architectures. In aggregate, our results suggest that genotype alignments have20

inherent information limits when sequence diversity is low, and these limitations need to21

be considered both when training deep learning recombination rate estimators and when22

using them in inference applications.23

Introduction24

Recombination is a major evolutionary force introducing diversity into eukaryotic genomes.25

During sexual reproduction, maternally- and paternally-inherited chromosomes line up and26

recombine, exchanging homologous segments of DNA via crossover events. The byproduct27

of this process is the creation of novel haplotypes, combinations of alleles found on the same28

chromosome, on which selection can act. A major focus of population genetics has been to29

quantify the rate of recombination to better understand the historical effects of recombina-30

tion in a population (Hahn, 2019). Directly measuring recombination rate in natural and31

lab populations is often infeasible or impractical. Thus, population recombination rates are32

commonly inferred using statistical estimators applied to large, high-throughput sequenc-33

ing data sets (Hahn, 2019; Peñalba and Wolf, 2020). Understanding the historical pattern34

of recombination in individual regions and across the genome is crucial; these estimates35

provide information necessary to detect genome wide associations, changes in demography36

(population growth and bottlenecks), and events of recent positive selection (Pritchard and37

Przeworski, 2001; Ardlie et al., 2002; Sodeland et al., 2011; Sabeti et al., 2002).38

Recombination rate is known to vary widely across genomes and between individu-39

als, sexes, populations, and species (Stapley et al., 2017; Sardell and Kirkpatrick, 2020;40
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Peñalba and Wolf, 2020). However, the causes of and extent of this observed variation41

remain under-explored as researchers are limited by the tools available (Peñalba and Wolf,42

2020; Adrion et al., 2020). State-of-the-art estimators of population recombination rate43

include composite likelihood methods (McVean et al., 2002; Stumpf and McVean, 2003;44

Chan et al., 2012) and supervised machine learning methods (Lin et al., 2013; Gao et al.,45

2016). To achieve accurate estimates for a given population, these methods require consid-46

erable computational resources and large, high-quality alignments of phased haplotypes.47

Additionally, these methods rely on existing population genetic theory to connect features48

of the population data to the underlying evolutionary process that generated the observed49

haplotypes (Flagel et al., 2019). Recent studies have found that some common pitfalls50

of conventional methods can be avoided by training deep neural networks with simula-51

tion data (Chan et al., 2018; Flagel et al., 2019; Adrion et al., 2020). Neural network52

estimators are particularly promising because of their applicability to populations where53

conventional methods cannot be used to estimate recombination rate (Flagel et al., 2019).54

This methodological advancement has the potential to expand our understanding of how55

and where recombination rate varies, elucidating the role of recombination in evolutionary56

history. Yet, the performance advantage of neural networks (respective to conventional57

methods) appears to be dependent on the recombination rate; neural networks work best58

when recombination rates are relatively high, but are outperformed by traditional esti-59

mators when recombination rate is low (Flagel et al., 2019). The conditions under which60

neural networks perform poorly for recombination rate estimation are not fully understood.61

Here, we assess limitations of deep learning models trained for population recombi-62

nation rate estimation by: 1) simulating alignments under different parameter regimes63

and quantifying their sequence diversity (information quality) and 2) analyzing the impact64

of low-diversity alignments on the performance of convolutional neural networks (CNNs)65

trained as estimators (LeCun et al., 1998). Each coalescent simulation produces a genotype66

alignment (a matrix of 0s and 1s) and a vector of positional information (chromosomal co-67

ordinates) for all variable sites in the population. We generate data sets from a range of68

input parameter values, selected to either maximize or minimize information, and compare69

the variation across genotype alignments within a given regime. Parameter regimes with70

low sequence diversity are expected to have a detrimental impact on network training.71

We demonstrate that this is the case in two CNN models (a previously published model72

and a modification thereof) trained to estimate historical population-scaled recombination73

rate. Further, we observe that, when alignment sequence diversity is limited, including the74

associated positional information has mixed success in improving model performance. Our75

findings suggest that the previously observed inconsistency of CNN performance across76

recombination rates may be influenced by the amount of information in the corresponding77

alignments. CNN estimators perform poorly on alignments with low sequence diversity,78

i.e., when alignments have few segregating sites.79

Results80

We investigate the limitations of CNNs in the context of recombination rate estimation.81

Population recombination rate, ρ, is defined as ρ = 4Nr, where N is population size and82

r is the crossover rate per base pair per meiosis. A previous study has shown that ρ83

can be estimated surprisingly well by CNNs, using as input only sequence data (Flagel84

et al., 2019). However, CNNs trained to estimate ρ are essentially black boxes: they take85

in population sequence data (paired genotype alignments and positional vectors derived86

from the original sequences) and output ρ values without any knowledge of the underlying87

biological processes. As a result, CNN performance is entirely dependent on the information88

that the network can learn from the labeled input data.89

To understand the limitations of CNN ρ estimators, we first need to consider the data90

used in training and the information it contains. Genotype alignments are simplified rep-91

2

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 2, 2022. ; https://doi.org/10.1101/2022.07.01.498489doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.01.498489
http://creativecommons.org/licenses/by/4.0/


resentations of biological sequence data. Alignments can be best visualized as a matrix92

of 0s and 1s, where the rows correspond to sampled, phased chromosomes that have been93

aligned so that each column represents a site along the chromosome. For example, consider94

two independent, complete alignments of five sampled chromosomes sequenced across ten95

sites (Figure 1). All variable sites (also called segregating sites) have been encoded as 0s96

or 1s to indicate the presence of the reference (ancestral, 0) or alternate (derived, 1) allele.97

Sites that are conserved across all sampled chromosomes contain only 0s. Both alignments98

shown in Figure 1 have two segregating sites; however, the segregating sites vary in their99

location on the chromosome. This representation can be further reduced to two pieces of100

information: an alignment that only contains the segregating sites and a vector of loca-101

tions of those segregating sites in the original chromosomes. The removal of conserved sites102

drastically reduces the computational power and memory required to work with large-scale103

genotype alignment data.104

Genotype alignments are frequently subjected to an additional pre-processing step prior105

to being fed into recombination rate estimators; specifically, chromosomes are reordered106

within the alignment based on genetic similarity so that those most similar are sorted near107

each other. In the example of Figure 1, while we observe that the original alignments108

actually differ, the process of removing conserved sites and sorting results in two identical109

genotype alignments. We refer to this scenario as “duplicate” alignments. We expect110

that populations with little diversity (namely, those that produce alignments with few111

segregating sites) will produce duplicate alignments at considerable frequency.112

While we know that some input parameter regimes may inherently produce data sets113

with limited diversity, it is not clear a priori which parameter settings are most problematic.114

We investigate this question by simulating populations with known historical recombina-115

tion rates ρ, spanning several orders of magnitude. All data sets are generated with the116

ms coalescent simulation program, implemented in the msprime Python library (Hudson,117

2002; Kelleher et al., 2016; Van Rossum and Drake, 2009). We study the sequence varia-118

tion produced by different parameter regimes by systematically varying input parameters;119

i.e., we vary a single parameter at a time while holding others constant. Specifically, we120

consider a range of mutation rates (µ) and population sizes (N) in these simulations. We121

process our ms simulation output as one would for use by a CNN model or by a more122

conventional estimator such as LDhat (Flagel et al., 2019; McVean and Auton, 2007).123

Genotype alignments are separated from their positional information and, for CNN mod-124

els, are subsequently sorted for similarity. Note that the order of sequences in an alignment125

is arbitrary, and thus sorting should be irrelevant. However, it helps with CNN training126

and convergence, as it reduces the input parameter space over which the network has to127

generalize its predictions.128

Within each parameter regime (unique combination of N and µ), we do an all-by-129

all comparison of the 20,000 genotype alignments produced. We evaluate the genotype130

alignments for uniqueness before and after the additional pre-processing step of sorting. We131

find that certain parameter regimes produce duplicates at a substantial rate. Specifically,132

simulations with smaller population sizes N or mutation rates µ inherently have more133

duplicates (Figure 2). This effect is amplified when both mutation rate and population134

size are low.135

Flagel et al. (2019) found that sorting genotype alignments prior to training improves136

CNN performance. The sorting process allows the neural networks to more easily learn to137

estimate ρ because they do not have to generalize over many different, arbitrary orderings138

that inherently convey the same information and correspond to the same value of ρ. Because139

we are here focusing on CNNs for recombination rate inference, for the remainder of this140

work we consider exclusively the fully processed, sorted data sets. We note that sorting141

alignments for similarity increases the degree of duplication within a parameter regime by142

as much as 30% (Figure 2).143

When we generate a training set for a CNN ρ estimator, our primary focus will be on144

the range of ρ values used to ensure it can accurately estimate all potential values. Here,145
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we specifically generate data sets so that the simulations within each parameter regime146

span a comparable magnitude of ρ values, following the procedures introduced by Flagel147

et al. (2019). We visualize the relationship between the distribution of ρ values for the148

N and µ input values considered in the regimes shown in Figure 2 (left). By design, all149

regimes span a comparable magnitude of ρ values, with smaller N values corresponding to150

smaller ρ values (Figure 3). Because ρ does not depend on µ, the selected input values of151

µ do not impact its distribution. While these data sets seem interchangeable as training152

sets from the perspective of variation in ρ, they contain varying degrees of information.153

Parameter regimes associated with lower values of µ are more likely to contain redundant,154

duplicated alignments (Figure 2).155

We have seen that duplicates arise in simulations with low population size and/or low156

mutation rate, and we have also seen that these parameter regimes are associated with157

lower values of ρ (Figure 3). Next, we ask where those duplicates fall across the range of158

ρ values within a simulation set. For every given population size N and mutation rate µ,159

we find that duplicate alignments are found to be evenly distributed across ρ (Figure 4A).160

We further examine characteristics of the resulting alignments to explain the occurrence161

of duplicates. We find that duplicates frequently occur in ms simulations when there are162

zero or one segregating (i.e., variable) sites in an alignment (Figure 4B). Duplicates are163

less frequent when the number of segregating sites exceeds one, but they still occur at164

non-negligible frequencies in alignments with two or three segregating sites (Figure 4B).165

Smaller population sizes inherently produce genotype alignments with relatively few segre-166

gating sites, and thus more duplicates. Similar results are found across all mutation rates167

and population sizes we considered (Figure S1). Importantly, the number of segregating168

sites is not a parameter in the simulations but rather an emergent property that displays169

substantial variation across replicates. Even if the expected number of segregating sites170

exceeds three, there may be a non-negligible fraction of simulations where the observed171

number of segregating sites is lower. As a consequence, a non-trival amount of duplicates172

may be observed in such parameter regimes (Figure S1, right-most panels).173

We have observed that certain parameter regimes produce duplicate genotype align-174

ments. Next, we investigate how these duplicates affect recombination rate inference by175

CNN. We consider two extreme cases by generating data sets with values on either end of176

the spectrum: one data set comes from a regime that produces many duplicates (referred177

to as “high duplicates” data set), while the other contains relatively few duplicates (re-178

ferred to as “low duplicates” data set). The high duplicates data set includes alignments179

containing between 1 and 17 segregating sites, while the low duplicates data set includes180

alignments containing between 1 and 174 segregating sites (median number of segregating181

sites is 4 and 38, respectively). We use both data sets separately to train a CNN model182

to estimate recombination rate ρ, using the architecture described by Flagel et al. (2019).183

In each case, the model is trained for 18 epochs. This amount of training appears to184

achieve optimal performance, as can be seen from the relationship between the reported185

error on the training and validation sets (Figure S2, the validation error begins to diverge186

from the training error around epoch 18). This CNN, trained on paired alignment and187

positional data, performs relatively well on the low duplicates data set as reported by the188

performance metrics, R2 and RMSE, calculated on the test set (Figures 5 and S3, top left).189

The distance between the actual and estimated ρ values increases for smaller values of ρ,190

indicating that the CNN performs better for larger values of ρ on average. By contrast,191

the presence of duplicates at high abundance drastically decreases model performance for192

all ρ values (Figures 5 and S3, top right).193

We further evaluate the impact of duplicates by training an alternate CNN. This model194

is a simplified version of the architecture presented by Flagel et al. (2019); rather than195

feeding in both genotype alignments and positional vectors separately into two network196

branches and later merging these branches into a combined network, we now utilize only197

the branch with alignment data. In other words, we entirely discard any positional infor-198

mation about where in the alignment the segregating sites occur. Naively, we would expect199
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such a network to perform worse, as this positional information may both contain useful200

additional data about the recombination rate ρ and have the potential to disambiguate201

duplicates. (Two alignments that are identical except for the positional information will202

look entirely indistinguishable to this simplified network.) We find that the usefulness of203

the positional information is context- and model-dependent. For the high duplicates data204

set, removing the second branch and the positional vectors improves model performance in205

training (Figure S2, bottom) and testing (Figures 5 and S3, bottom left). By contrast, for206

the low duplicates data set, removal of positional information reduces model performance207

in training (Figure S2, bottom) and testing (Figures 5 and S3, bottom right). Importantly,208

discarding the positional information leads to a bigger increase in performance for high209

duplicates (7.8 percentage points increase in R2, from 30.5% to 38.3%) than it degrades210

performance for low duplicates (0.9 percentage points decrease in R2, from 79.0% to 78.1%).211

Thus, overall, it appears the CNN does not make efficient use of positional information.212

And in particular, in the parameter regimes where positional information would be the213

most critical, when there are many duplicates, the network actually performs better when214

it does not have access to this data.215

Discussion216

We have characterized genotype alignments generated via coalescent simulations under a217

wide range of input parameters and corresponding recombination rates, and we have found218

that certain input parameter regimes limit the information contained within the alignments219

about the recombination rate. Unsurprisingly, information is limited when simulations220

are in a regime expected to produce low diversity; i.e., the simulated populations have a221

small population size N and/or a small mutation rate µ. Simulations in such parameter222

regimes generate alignments with relatively few segregating sites, which results in the same223

alignment being produced multiple times. We have further found that CNNs trained to infer224

recombination rate from genotype alignments are negatively impacted by the duplicates225

found in parameter regimes with low sequence diversity. One might assume that providing226

the paired positional data (locations of segregating sites) might provide enough distinction227

to overcome the information lost by duplicates. However, we have observed the opposite in228

a CNN that does not make use of this data: When duplicates are highly abundant, including229

positional information leads to a performance decline. Yet positional information increases230

model performance when duplicates occur at relatively low frequency.231

Several groups have previously demonstrated the promising potential of deep learning232

inference to fill gaps left by traditional approaches to recombination rate estimation (Chan233

et al., 2018; Flagel et al., 2019; Adrion et al., 2020; Wang et al., 2021). We have here234

re-implemented a previously published CNN model (Flagel et al., 2019), and we have235

observed model performance similar to the reported performance when the training sets236

contained duplicates at low frequency. Notably, we have observed that the CNNs have the237

most difficulty estimating small ρ values, as previously reported. This region corresponds238

to parameter regimes that are most likely to contain duplicates, due to the correlation239

between ρ and N . We note that in Flagel et al. (2019)’s comparison of their CNN to a240

conventional method (LDhat), this was also the portion of the distribution where the CNN241

performed worse than LDhat (McVean and Auton, 2007). We speculate that the inferior242

performance of the CNN for small values of ρ could be caused, at least in part, by the243

presence of duplicate alignments in that part of the parameter regime.244

Flagel et al. (2019) used a branched CNN with two separate inputs, genotype align-245

ments and positional vectors. Here, we have additionally tested a variant architecture246

which ignores the positional vectors and estimates ρ using genotype alignment data alone.247

Our results suggest that the original approach, where genotype alignments and positional248

vectors are used as separate inputs, is vulnerable to performance declines in certain param-249

eter regimes. Rather than helping with inference, the positional vectors seem to degrade250
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network performance specifically when there are frequent duplicates, i.e., when positional251

information should be most relevant for accurate inference. This finding also suggests that252

the CNN estimators do not extract the maximum possible amount of information out of253

low-diversity alignments (since the positional data, which should be useful, is not making254

a difference), and it likely explains the prior observation that CNNs perform worse than255

traditional recombination rate estimators when ρ is small.256

We have focused here on CNN estimators, but the implications of our findings are not257

limited to CNN models. The deep learning models developed for the task of recombination258

rate estimation have been benchmarked against conventional ρ estimators like LDhat and259

LDhelmet, and the boosted regression method FastEPRR (Flagel et al., 2019; Adrion et al.,260

2020; McVean et al., 2002; Chan et al., 2012; Gao et al., 2016). CNNs perform about as261

well as conventional methods overall, but offer performance benefits in the context of novel262

application and estimation when samples are limited. We expect that genotype alignments263

from regimes with limited diversity and information will suffer similar fates regardless264

of inference method; i.e., conventional methods will also see a reduction in performance265

with the inclusion of duplicates. The magnitude of this impact however may vary across266

methods. Inference methods based on explicit population genetics models may be better267

at taking advantage of positional information and thus outperform CNNs on alignments268

with few segregating sites.269

We emphasize that the parameter regimes considered here have been selected to present270

extreme scenarios; training sets generated for realistic applications may not include as many271

duplicates as some of the regimes considered here. Nevertheless, our work highlights the272

importance of carefully evaluating the data sets used for model training. CNNs and other273

deep learning architectures learn to estimate recombination rate ρ from labeled training274

data alone, so their performance is dependent on the quality of the training data. It is275

imperative that information limits are identified and accounted for in model training.276

We offer this analysis to emphasize an inherent limitation of genotype alignments. Not277

all parameter regimes have equivalent sequence diversity and thus information quality. As278

a result, caution should be used when applying deep learning inference to low diversity279

data sets. In the CNNs considered here, we have seen that variant architectures are able to280

extract more or less information from a given data set. Different architectures, specifically281

those that better leverage the information in paired alignments and positional vectors,282

might be better suited for sequences with low diversity. While multi-branch CNNs are283

commonly used, the best architectures and concatenation procedures have not yet been284

established (Khan et al., 2020; Yuan et al., 2020). By identifying a better representation for285

the data and an architecture that utilizes the full context of the data, further improvements286

to model inference ability could be possible (Alzubaidi et al., 2021).287

One potential architecture that has already been successfully adopted for a closely288

related task is a recurrent neural network (RNN). CNNs are hierachical models frequently289

used in tasks like computer vision, while RNNs are sequence-based architectures developed290

for use in natural language processing or text prediction (LeCun et al., 1998; Elman, 1990;291

Dhruv and Naskar, 2020). Adrion et al. (2020) developed a RNN, trained on sequence data,292

to infer recombination landscapes by estimating local crossover rates (r) in sliding windows293

along the chromosomes. This neural network outperformed popular conventional and CNN294

ρ estimators (when ρ estimates were transformed to r values for comparison), especially295

in contexts where sample data was limited or missing (Flagel et al., 2019; McVean et al.,296

2002; Chan et al., 2012; Gao et al., 2016). Whether or not RNNs are similarly impacted by297

the inclusion of low-diversity alignments as the CNNs considered here remains unknown. A298

RNN ρ estimator might see performance improvements over a CNN estimator as has been299

observed for r estimation. As RNNs and CNNs represent and extract features from data in300

different manners, RNN architectures might be more suitable to leveraging the information301

in paired alignment and positional data.302
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Methods303

Data generation304

To train and test convolutional neural networks, we need labeled data. Here, that means305

genotype alignments sampled from populations with known historical recombination rates306

(ρ). We generate data sets with known ρ values via ms, a coalescent simulator which has307

been used for this purpose by others (Hudson, 2002; Flagel et al., 2019). Specifically, we308

run ms simulations with the mspms command line application in the msprime Python309

library (Van Rossum and Drake, 2009; Kelleher et al., 2016).310

Each simulation takes a number of input arguments and produces a sample of chro-311

mosomes from a population evolved under a Wright-Fisher neutral model with constant312

population size. Program input arguments used here include: mutation rate (θ), recom-313

bination rate (ρ), number of loci (L), sample size, and number of replicates. For all314

simulations considered in our analysis, we vary mutation and recombination rates across315

simulations, while holding all other parameters constant. Following Flagel et al. (2019),316

we use a fixed number of loci undergoing recombination (L = 20 kb), maintain a sample317

size of 50 chromosomes per simulation, and generate only one replicate per function call.318

The population-scaled mutation parameter is thus defined as θ = 4NµL, where N is the319

population size and µ is the mutation rate per base pair per generation. Similarly, the320

population-scaled recombination rate is redefined as ρ = 4NrL, scaled across a constant321

genome size. Values of r are independently drawn from an exponential distribution with322

values spanning 10−8 to 10−6 for each simulation.323

We generate data sets with variation in θ and ρ for two purposes: 1) to evaluate the324

prevalence of identical alignments across different parameter regimes, and 2) to evaluate325

the impact on model performance when training sets contain duplicates at either extreme.326

We create variation by altering the values of µ and N used in simulations. For our dupli-327

cates analysis, we consider various combinations of µ and N . In our first set of simulations,328

we consider 3 fixed values of µ (µ ∈ {1.5× 10−7, 1.5× 10−8, 1.5× 10−9}) and vary N log-329

arithmically (N ∈ {1.0× 102, 3.16× 102, 1.0× 103, 3.16× 103, 1.0× 104, 3.16× 104}). We330

additionally consider 3 fixed population sizes (N ∈ {103, 104, 105}) and vary µ logarith-331

mically (µ ∈ {1.0× 10−10, 3.16× 10−10, 1.0× 10−9, 3.16× 10−9, 1.0× 10−8, 3.16× 10−8}).332

For each combination of the considered µ and N values, 20, 000 independent simulations333

are generated, processed, and compared.334

To generate data sets for model evaluation, we use two sets from either ex-335

treme. On one end, we have our high duplicate data set, which is generated un-336

der a parameter regime that guarantees a high proportion of alignments with ex-337

act matches. This set contains simulations with µ = 1.5× 10−9 and N ∈338

{1.0× 103, 2.0× 103, 5.0× 103, 1.0× 104, 1.5× 104, 2.0× 104}. We generate 20, 000 inde-339

pendent simulations per population size considered. We produce a low duplicate data set340

from the same range of population sizes, but push it towards the other end of the extreme341

by using a higher mutation rate (µ = 1.5× 10−8). Again, 20, 000 simulations per N value342

are generated. The result is 120, 000 independent simulations for both the low and high343

duplicate data sets to be used in CNN training and testing.344

Data processing345

From the standard ms output, we extract the following for each simulation: a genotype346

alignment, a variable position vector, and a recombination rate ρ. Genotype alignments347

are matrices of 0s and 1s, with 0s corresponding to the ancestral allele and 1s to the348

derived allele at a variable (segregating) site in the population. Position vectors contain349

the locations of all segregating sites in the population along the chromosome. For the350

purposes of CNN training, all input data types are processed with the standard procedures351

found to maximize model performance in prior work (Flagel et al., 2019). We prepare the352
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data sets for all analyses as we would for deep learning. The specific pre-processing steps353

are described in the following paragraphs.354

Across simulations, each alignment has a fixed number of chromosomes and a variable355

number of segregating sites ([50× n]), and thus a variably-sized positional vector (n). All356

alignments and position vectors in a data set are required to be a consistent size for use357

in convolutional neural networks, so we pad all alignments and positional vectors to the358

maximum number of segregating sites found in that set. Padding is performed using the359

pad sequences function in the keras R package, which adds 0s and −1s to the right end of360

matrices and vectors (respectively) to enforce a consistent size across simulations (Allaire361

and Chollet, 2022).362

Genotype alignments are additionally subjected to sorting and matrix operations prior363

to use in analysis and use in CNNs. The chromosomes, or rows, of each individual align-364

ment are sorted for similarity based on their Manhattan distance (R Core Team, 2019).365

Chromosomes are reordered within their alignments accordingly. The sorting process in-366

troduces a logical order to alignments, which leads to improved training for CNNs (Flagel367

et al., 2019). Following sorting, alignments are transposed resulting in segregating sites as368

rows and chromosomes as columns, ([n× 50]). For the models considered here, this results369

in 1D convolutional filters being applied across segregating sites.370

Within simulation sets, the distribution of ρ values is skewed towards 0. We balance371

data, and thus improve CNN training, by transforming the ρ values in training, validation,372

and test sets in the follow ways: all values within a set are log transformed then centered373

on the mean of the training set (by subtracting the mean from each value). The log mean374

centered ρ values are used in training, and as a result, the CNN models output ρ values on a375

similar scale. To directly compare model estimates with the standard range of ρ values, we376

must back-transform the estimates. We do so by adding the mean from the training data377

to each observation and then exponentially transform the values. Similar transformations378

are applied generally in deep learning and specifically in the context of this model (Flagel379

et al., 2019).380

Identifying duplicates381

In our analysis, we quantify the information quality of different parameter regimes based382

on the degree of duplicated alignments found in the data set. When comparing individual383

simulations, we treat genotype alignments separate from their positional vectors. While384

this data is paired, it is treated separately by the network, being fed into two different385

branches. The convolutional layers learn based on alignment matrices alone, and thus we386

treat them as independent data to assess information quality in early network learning.387

The degree of duplication within a parameter regime (here, all 20, 000 simulations for388

each unqiue combination of N and µ) is determined through an all-by-all comparison of389

padded genotype alignments before and after sorting. If an individual alignment has at390

least one exact match within the set, it is labeled a “duplicate”. Alignments without an391

exact match are considered “unique”. We present the proportion of duplicates for each392

parameter regimes, and calculate it by dividing the total number of duplicates found by393

20, 000, the total number of simulations considered.394

CNN model implementation, training, and evaluation395

We re-implement the CNN architecture used by Flagel et al. (2019) to estimate ρ. The CNN396

has two branches, which independently consider the input data (alignments and positional397

vectors). It estimates the parameter label (ρ). Genotype alignments go through three398

1D convolutional layers with ReLu activation, average pooling, and dropout. Positional399

vectors pass through a fully connected layer with dropout before being merged with the400

flattened output of the convolutional layers. The merged branches are then fed through two401

final, fully connected layers. In addition to this two branch model, we consider an alternate402
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model that considers only genotype alignment information. The architecture follows that403

of Flagel et al. (2019) but excludes the positional vector branch with its data and fully404

connected layer; instead, the flattened output of the convolutional layers is passed to the405

final fully connected layers alone.406

All models considered here utilize an Adam optimizer with a learning rate of 0.00001407

and weight decay (or L2 regularization) parameter of 0.0001. Training was performed on408

CPUs using batch normalization (batch size = 32) and validation. We implement our409

CNNs via the R package torch (Falbel and Luraschi, 2022). Torch uses the functionality410

of the PyTorch natively in R by interfacing directly with its C++ library, libtorch (Falbel411

and Luraschi, 2022; Paszke et al., 2019).412

We train each CNN independently for the 120,000 simulations in the low duplicate data413

set and 120,000 for the high duplicate data set (see subsection “Data generation” for details414

on parameter settings in simulated data sets). The respective sizes of padded alignments415

in these data sets are [174 × 50] and [27 × 50]. Following the standard convention, we416

split our data into training and validation sets (60% and 20%) and test sets (20%). Root-417

mean-square error (RMSE), which measures the error of the model in predicting ρ, is used418

as a metric for performance and model comparison (Twomey and Smith, 1995). RMSE is419

calculated between the model estimate of ρ and its label value (the ground truth). Training420

occurs over 18 epochs, which was found to be optimal for maximizing model performance421

while minimizing over-fitting to the training data by comparing the RMSE curves (Figure422

S2).423

Code424

Data and code for this work are available at:425

https://github.com/mmjohn/genotype-alignment-information. All data analysis and426

figure production was performed in R version 3.6.1 (R Core Team, 2019), making extensive427

use of the tidyverse family of packages (Wickham et al., 2019). Additional functionality for428

data generation and prep come from a custom R package available at: https://github.429

com/mmjohn/popgencnn. All neural networks were implemented in the torch R package430

version 0.5.0 (Falbel and Luraschi, 2022).431
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Figure 1: Duplicates are produced by removing conserved sites in sorted alignments. On the
left, two independent, full sequence alignments are shown. Each row corresponds to a sampled
chromosome, and each column represents a biallelic site along the chromosome. Alleles are
encoded as 0s and 1s, where 0 corresponds to the ancestral/reference allele and 1 is a derived
allele. The alignments considered in A and B both contain 2 variable (segregating) sites, with
variation at sites 4 and 7 (panel A) or sites 2 and 8 (panel B). Genotype alignments used
for model training include only segregating sites and have been reordered based on similarity.
The result of this processing is two identical (duplicate) genotype alignments (shown on right).
Positional vectors still vary between the identical alignments.
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Figure 2: Percent of genotype alignments with at least one duplicate across simulation input
parameter values. (A) Unsorted alignments. (B) Sorted alignments. Population size N and
mutation rate µ vary across simulation sets, while all others input parameters are constant. Each
point represents a set of 20,000 simulations in that parameter regime. We vary N logarithmically
for 3 fixed µ values, and vice versa.
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Figure 3: Distribution of ρ values used in simulations across associated parameter regimes. For
the data sets considered in Figure 2, left, we show the ρ values against the population size N
and mutation rate µ values used in simulations. Each unique N and µ combination represents
a parameter regime with 20,000 independent simulations.
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Figure 4: Distribution of ρ values and segregating sites for simulated alignments classified as
either duplicate or unique in an all-by-all comparison of alignments within a given parameter
regime. We consider a mutation rate of µ =1.5× 10−8 and population sizes of N = 100, N = 316,
and N = 1000 (left to right). Alignment identity (duplicate vs unique) is distinguished with
color, where light purple represents alignments with at least one duplicate and dark purple for
unique alignments. (A) The x axis has the range of ρ values generated in a regime, while the
relative proportion of alignments based on identity (uniqueness) are depicted by the filled area.
(B) The histograms show the distribution of alignments with between 0 and 10 segregating (or
variable) sites.
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Figure 5: Performance of two distinct CNN architectures for ρ estimation trained on data sets
with a low and high frequency of duplicate alignments. Plots show the log-transformed and
mean-centered ρ values estimated by the trained CNN on each simulation in the test set against
the actual (transformed and centered) ρ value used as input. The orange line references a 1-to-1
relationship that would be achieved if error was minimized to 0. All models are trained for 18
epochs before testing on a corresponding novel data set. The CNN model trained on genotype
alignment and positional data (top, Flagel et al. (2019) architecture) achieves a RMSE of 0.805
on the low duplicate data set (left) and 1.426 on the high duplicate data set (right). With the
removal of positional information and its corresponding branch, the alternate model (bottom)
reaches an RMSE of 0.809 and 1.346, respectively, for the low and high duplicate data sets.
Within each plot, the R2 and RMSE of the model on the designated test set are listed.
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Figure S1: Distribution of ρ values and segregating sites for simulated alignments classified as
either duplicate or unique in an all-by-all comparison of alignments within a given parameter
regime. We consider a population size of N = 104 and mutation rates of µ = 1.0× 10−10,
µ = 3.16× 10−10, and µ = 1.0× 10−9 (left to right). Alignment identity (duplicate vs unique)
is distinguished with color, where light red represents alignments with at least one duplicate
and dark red for unique alignments. (A) The x axis has the range of ρ values generated in a
regime, while the relative proportion of alignments based on identity (uniqueness) are depicted
by the filled area. (B) The histograms show the distribution of alignments with between 0 and
10 segregating (or variable) sites.
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Figure S2: Training curves for a CNN ρ estimator and a variant architecture, using either
genotype alignment data or alignment and positional data from each independent simulation,
across 18 epochs. The estimator’s error (RMSE) is reported after each epoch on the training
set (blue) and validation set (yellow). All models are trained on 72,000 simulations with a
validation set containing 24,000 independent simulations. The low duplicate data set (left) has
been simulated to contain relatively few duplicates, while the high duplicate data set (right)
comes from a regime expected to produce duplicates frequently. Performance of each trained
model on its respective test set is shown in Figures 5 and S3, presented as either log-transformed
and mean-centered ρ values or population-scaled ρ values.
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Figure S3: Performance of trained CNNs shown for untransformed ρ estimates. The orange
line is included for reference to a perfect estimate (achieved if error is minimized to 0). The
data points shown here are identical to those in Figure 5, except that ρ values now are not
log-transformed or mean-centered.
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