
 

1 
 

Title: Convergent gene expression highlights shared vocal motor 
microcircuitry in songbirds and humans  

Authors: Gregory L Gedman1,2†, Matthew T. Biegler1,2, Bettina Haase1, Morgan E. Wirthlin3, 
Olivier Fedrigo1, Andreas R. Pfenning3, and Erich D. Jarvis1,2† 

 5 

Affiliations: 
1 The Rockefeller University; New York, NY, 10065, USA.  
2 Howard Hughes Medical Institute; Chevy Chase, MD 20815, USA. 
3 Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213 
† Corresponding authors. Email: glgedman@gmail.com and ejarvis@rockefeller.edu 10 
 
Abstract: Vocal learning is a skilled motor behavior observed in several mammalian and avian 
species and is critical for human speech. While convergent gene expression patterns have 
highlighted similar primary motor and striatal pathways for vocal imitation in songbirds and 
humans, the extent of molecular and circuit convergence remains unresolved. Here we profiled the 15 
four principal song nuclei of the zebra finch (HVC, LMAN, RA, Area X) and their surrounding 
brain regions using RNA-Seq and compared them with specialized markers we identified for 
human speech brain regions. Expanding previous work, both songbird RA and HVC exhibited 
convergent specialized gene expression of ~350 genes with human laryngeal sensorimotor cortex. 
The songbird HVCRA intratelencephalic (IT) neurons were the predominant cell type that was 20 
convergent with human, specifically layer 2/3 IT neurons, while the songbird RA 
extratelencephalic (ET) projection neurons exhibited convergent expression with human layer 5 
ET projection neurons. The molecular specializations of both songbird LMAN and human Broca’s 
area were more unique to each species. These findings demonstrate the extent of convergent 
molecular specializations in distantly related species for vocal imitation and emphasize important 25 
evolutionary constraints for this complex trait.  
One-Sentence Summary: Our data provide hundreds of candidate genes to study the molecular 
basis and evolution of song and speech across species. 
 
  30 
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Main Text:  
Across the animal lineage, the neural control of musculature is an essential component for survival 
and interaction with one’s environment. A diverse range of vertebrate cortical motor systems can 
be found in nature, evolving either through homologous inheritance from a common ancestor or 
through convergence in independent lineages (1). Convergent evolution of cortical motor circuits 5 
implies great functional importance and limited mechanisms for complex nervous systems to 
accomplish a particular motor task.  

Vocal learning is one example where convergent motor brain regions can give rise to a 
convergent motor phenotype. Vocal learning is the ability to imitate sounds through social 
exposure. Vocal learning has been observed in several diverse mammalian (humans, bats, 10 
cetaceans, pinnepeds, and elephants) and avian (songbirds, parrots, and hummingbird) lineages, 
and is a critical component of human spoken language (2). Of those species studied, all have 
evolved a specialized forebrain sensorimotor learning circuit that is absent or very rudimentary in 
their closer vocal non-learning relatives (3). In songbirds and humans, several regions in this 
convergent vocal motor circuit also exhibit convergent molecular specializations, including the 15 
songbird robust nucleus of the arcopallium (RA) with the human laryngeal sensorimotor cortex 
(LSMC), and songbird Area X with a part of the human anterior striatum (ASt) active during 
speech production learning (Fig. 1) (4, 5). The premotor components of the songbird (HVC, 
LMAN) and human (Broca’s, SMA) vocal learning/speech circuit were either found to have weak 
or no significant shared gene expression specializations, despite competing hypotheses on shared 20 
connectivity and/or function (3, 6-10). Technical limitations could explain this lack of shared 
molecular specializations, including an incomplete sampling of the transcriptome using oligo 
microarrays, insufficient sampling of surrounding control brain regions, and use of a “winner-take-
all” approach that limited more than one brain region from one species matching the same brain 
region in another (4). Alternatively, this apparent lack of convergence could simply reflect real 25 
biological differences across vocal learning species. 
 Here, we set out to address these limitations and test the extent of molecular convergence 
in songbird and human vocal learning/speech circuitry. We profiled the whole transcriptome of 
songbird (zebra finch) posterior forebrain pathway (PFP) nuclei HVC and RA, anterior forebrain 
pathway (AFP) nuclei LMAN and Area X, as well as their adjacent non-vocal motor brain regions, 30 
using bulk RNA sequencing (RNA-Seq). We compared our RNA-Seq expression data with human 
brain microarray (11) and single-nuclei (12) RNA-Seq datasets from the Allen Institute for Brain 
Science, as well as single nuclei data from songbird HVC and RA (13), using gene set enrichment 
analyses allowing a one-to-many mapping of brain regions or cell types across species. We 
confirmed and more strongly support a convergent specialized molecular relationship between 35 
songbird RA and human LSMC regions, and songbird Area X and human ASt. We found novel 
molecular convergence between songbird HVC and human LSMC, but no strong relationship 
between songbird LMAN and human Broca’s. Both HVC and RA demonstrate molecular 
convergence with specific cell classes within human motor cortex, suggesting a convergent 
microcircuitry governing learned vocal production. We present a more holistic hypothesis of 40 
molecular convergence in motor circuits for song and speech in vocal learning birds and humans. 
 
The zebra finch song system is distinguished by several thousand specialized genes 
We used laser capture microscopy to precisely isolate the four principal song nuclei (HVC, 
LMAN, RA, Area X) and their non-vocal motor surrounds (Fig. S1), and then profiled their 45 
transcriptomes using bulk RNA sequencing (Methods). Utilizing a newly assembled and annotated 
zebra finch genome (14), we then performed differential gene expression analysis between each 
of the song nuclei and their adjacent non-vocal motor brain regions, controlling for possible batch 
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effects (Fig. S2-4, Table S1). Remarkably, we found that ~25% of the annotated transcriptome (n 
= 5473 genes) exhibited specialized up- or down-regulation in one or more of the song nuclei 
relative to their adjacent non-vocal motor brain regions, ranging from ~1000-3800 genes each 
(HVC = 1542; LMAN = 3878; RA = 1002; Area X = 1052; Fig. 2A). Despite these large 
differentially expressed gene sets, only 0.5% (n = 26) were similarly specialized to all nuclei, and 5 
1% (n = 55) to all pallial/cortical nuclei, whereas most genes (~30-60%) were uniquely specialized 
within one song nucleus each (Fig. 2B). In addition, we noted some similarity in the specialized 
gene expression exclusively found between the PFP (1.2%; n = 67) and AFP (3.9%; n = 216) 
nuclei, suggesting distinct molecular properties in each anatomical pathway. The nidopallial nuclei 
HVC and LMAN shared the largest overlap in molecular specializations (12.7%; n = 697), likely 10 
due to their shared nidopallial origin. To assess the accuracy of our differential gene expression 
analysis, we compared our specialized gene lists for each nucleus with validated markers of the 
song system by in situ hybridization data from our lab (n = 32 genes), the zebra finch expression 
brain atlas (ZeBrA, n = 142), and other published studies (n = 4) (4, 15-17). Of the genes examined 
across all nuclei (n = 178), we found high concordance (~72-89% true positive rate) between our 15 
RNA-Seq data and in-situ hybridization gene expression patterns (Fig. 2C, Fig. S5, Table S2), 
suggesting our RNA-Seq data are an accurate representation of the molecular specializations in 
the zebra finch vocal learning circuit. Together, these findings highlight a 5- to 10-fold higher 
degree of specialization distinguishing each song nucleus from its non-vocal motor surround than 
previously reported (4). These improvements are presumably due to profiling the entire 20 
transcriptome, including additional surrounding brain regions, and utilizing a higher-quality 
reference genome with more completely annotated genes.  
 
Gene expression specialization distinguish the human speech system from the whole cortex 
To test for molecular convergence across species, we first set out to define the molecular 25 
specializations for key nodes of the human spoken language network relative to the rest of the 
cortex as well as within the striatum (See Methods). We utilized the Allen Brain Expression Atlas, 
a comprehensive coordinate-based microarray dataset comprising 3681 samples from 6 
postmortem brains (11, Table S3), which allowed us to select gene expression data from brain 
regions demonstrating activation during human speech production (5, 9, 18-20). These included 30 
human speech regions hypothesized to be functionally and molecularly analogous to different 
songbird song nuclei, namely the LSMC, SMA, and Broca’s area in the cortex, and ASt in the 
striatum (3, 6-10). Each of these broad regions consists of several subregions activated during 
different spoken language tasks (5, 9, 20-23), so additional specialized gene sets were generated 
using samples in MNI coordinates showing speech-related activity (Fig. S6, Table S4).  We found 35 
distinct gene sets with specialized expression in each human speech brain region or subregion 
(median = 1330, Table S5). Unlike in songbird, molecular specializations defining human cortical 
LSMC regions shared the most gene markers with subcortical specializations of ASt (Fig. S7). 
This is consistent with recent evidence of shared transcriptional networks in functionally coupled 
cortico-striatal brain networks, possibly driven by specific interneuron subtypes (24). These 40 
specialized gene sets defining key nodes in the speech motor system and their subregions were 
used to test for molecular convergence with songbird vocal motor nuclei.  
 
Robust molecular convergence between songbird and human song and speech pathways 
To test for molecular convergence across species, we conducted gene set enrichment for significant 45 
overlap (convergence) in songbird and human molecular specializations using a hypergeometric 
test (Fig. S8), restricting the analysis to one-to-one orthologs in both species (n = 11,475 genes). 
Instances where the genes sets exhibited significant overlap (q < 0.05) greater than chance 
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(observed (O) /expected (E) > 1) were interpreted as molecular convergence (Fig. 3). We 
confirmed the previously observed significant molecular similarity between songbird RA with 
human LSMC regions (Fig. 3A,F; n = 155 genes; q = 0.04, O/E = 1.16) and songbird Area X with 
human ASt subregions (Figs. 3D, S9; n  = 118 genes; qCd/Pu = 0.015/0.023; O/ECd/Pu = 1.34/1.24). 
These relationships serve to validate our approach as well as triple previous numbers of 5 
convergently expressed genes (Table S6). Interestingly, we discovered that songbird HVC also 
shares robust molecular specialization with the human LSMC regions (Figs. 3A; q = 4.66e-05, 
O/E = 1.49), but with a largely distinct gene set from RA (Fig. 3F). Such robust molecular 
similarity found between HVC/RA and LSMC was not found in the adjacent human non-vocal 
sensorimotor (torso) cortex regions (Fig. 3A). In contrast, while HVC and LMAN exhibited a 10 
weaker signal of molecular convergence to SMA (Fig. S10), as well as HVC to Broca’s area (Fig. 
S11), both premotor nuclei also shared molecular similarity to non-vocal premotor cortex, 
suggesting the observed similarity is not specific to vocal learning/speech brain regions (Fig. 3C; 
q = 2.9e-03; O/E = 2.25). These data demonstrate that songbird HVC and RA share the greatest 
gene expression analogy to human LSMC, while LMAN shares expression similarities to the 15 
premotor cortex in general. 

The laryngeal sensorimotor cortex (LSMC) is comprised of three anatomically separated 
subregions with functional distinctions (Fig. S6). These include the ventral laryngeal motor cortex 
(vLMC), dorsal laryngeal somatosensory cortex (dLSC) and adjacent dorsal laryngeal motor 
cortex (dLMC;), a more functionally and evolutionarily novel region controlling human speech 20 
pitch and prosody (18-20, 22, 25, 26). Our prior analyses found that songbird RA exhibited greater 
molecular convergence with human dLMC compared to vLMC (4), so we hypothesized that 
songbird HVC might also exhibit more molecular convergence with the dLMC. To test this 
hypothesis, we compared the molecular specializations of each LSMC subregion with those of the 
zebra finch song system. We found evidence of clear regional specificity, with songbird HVC (q 25 
= 1.09e-07; O/E = 1.95), RA (q = 5.68e-05; O/E = 1.89), and LMAN (q = 2.59e-03; O/E = 0.96) 
exhibiting convergent molecular specializations with human dLMC (Fig. 3B, circles). None of 
these nuclei exhibited such a significant match to vLMC or dLSC alone. Yet when vLMC and 
dLSC are included with dLMC, additional genes show convergence with HVC and RA, indicating 
a weaker convergence with vLMC and dLSC. Since HVC and LMAN share a high degree (70%) 30 
of similarly specialized genes (Fig 2B), we hypothesized that the molecular convergence between 
LMAN and dLMC could be driven by shared gene sets with HVC. To test this, we examined 
unique gene sets for each nucleus, which contain genes exhibiting specialized expression to that 
nucleus and no other song nucleus. We found that the unique specialized gene sets from HVC and 
RA still exhibited significant molecular convergence with human dLMC, while the unique set from 35 
LMAN did not (Fig. 3B, diamonds; qHVC/RA = 0.03; O/E = 1.49-1.56). Importantly, no songbird 
nucleus exhibited convergent molecular similarity to the non-vocal motor sensorimotor cortical 
regions, suggesting the observed convergence is specific to vocal motor pathways. Together, these 
data suggest that the songbird vocal motor nuclei, HVC and RA, demonstrate molecular 
convergence with human LSMC, specifically the more evolutionarily novel dLMC region.  40 
 
Songbird HVC and RA are represented as an analogous microcircuit in human LSMC 
We next asked how two spatially and functionally distinct songbird vocal nuclei (HVC and RA), 
with distinct projection neuron types, can exhibit molecular similarity to the same human vocal 
LMC control region. One hypothesis is that these two songbird regions exhibit convergence to 45 
different cell types within the same human cortical column. Consistent with this idea, we noted 
that HVC and RA matched LSMC expression with largely distinct genes sets (Fig. 3F), suggesting 
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that each nucleus is drawn to a specific expression pattern (i.e. cell types) within the heterogenous 
LSMC transcriptome.  

To test this idea, we first asked if there are any specific cell types within songbird HVC 
and RA that strongly express genes exhibiting convergence with human LSMC. We made the 
comparison with genes convergent with the combined LSMC regions as opposed to dLMC alone, 5 
since the former included more significantly specialized convergent genes. Each songbird nucleus 
has several projection neurons types and local interneuron types (28). We utilized single nuclei 
RNA-Seq dataset of zebra finch HVC and RA (27), and correlated their expression levels to 
normalized fold changes of convergent genes shared between HVC/LSMC and RA/LSMC 
(Methods). We found that the HVC/LSMC convergent gene set most strongly correlated with the 10 
two types of mature HVC to RA projection neurons (HVCRA1, HVCRA2), which are known to 
control production of learned vocalizations, with strong anti-correlations to other HVC neuron 
classes (Fig. 4A). Similarly, the RA/LSMC convergent gene set most strongly correlated with one 
subclass of RA projection neurons, that control the activity of vocal motor neurons in the 
brainstem.  15 

Next, we asked which mammalian cortical cell type most closely resembled the brain 
subdivisions to which songbird HVC and RA belong, the surrounding nidopallium and arcopallium 
respectively. We utilized a recently published single-nuclei RNA-Seq dataset from the human 
primary motor cortex (M1)(12), and performed a gene set enrichment analysis between zebra finch 
nidopallium and arcopallium marker genes with each potential cell type analog (Methods). We 20 
found that the zebra finch nidopallium most closely resembled intratelencephalic (IT) cells in 
layers 2/3 and 6 of the human M1, while the zebra finch arcopallium most closely matched 
extratelencephalic (ET) cells in layer 5 of M1 (Fig. 4B), supporting a “nuclear to cortex-layered 
hypothesis” of avian mammalian brain homologous (4, 27).  

Finally, we sought to validate these results using in situ hybridization of several previously 25 
uncharacterized HVC/RA-LSMC convergent marker genes with either single labeling (n = 22) or 
double-labeling with retrograde tracing of HVCRA neurons by FITC-Dextran injections into RA (n 
= 4). We confirmed the specialized expression of these gene markers (Figs. S12-14), with all co-
labeled genes tested showing specialization to the HVCRA cell class (Fig. 4D-G). The collective 
data suggests evolution of a convergent microcircuit made up of analogous projection neuron types 30 
that enable the production of learned vocalizations in songbirds and humans.  
 
Function of convergent specialized genes in song and speech brain regions 
If these analogous cell types are important for establishing a specialized convergent vocal learning 
microcircuit, we expect their gene expression profiles to be significantly enriched for functional 35 
categories that help distinguish these song and speech brain regions from the surrounding tissue, 
such as neuronal connectivity and cell signaling. To test this hypothesis, we performed gene 
ontology enrichment analysis on the convergent gene set shared between human LSMC regions 
and either songbird HVC (n = 251) or RA (n = 155). We found significant enrichments in 
biological processes related to circuit development, including axon guidance, trans-synaptic 40 
signaling, and synapse organization (Fig. 5A, Table S7). These specializations were confined to 
neuronal signaling compartments, with signaling channels and receptors exhibiting specialized 
expression, including voltage-gated ion channels and glutamate receptors. Interestingly, all of the 
strongest functional enrichments were observed among downregulated genes (Fig. 5A), suggesting 
downregulation can be a powerful driver of functional diversity from neighboring neuronal 45 
circuits. This phenomenon was reversed in the striatum, with all functional enrichments localized 
to the upregulated convergent gene sets (Fig. 5B). 
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One prediction from these findings would be that disruption of these convergent molecular 
specializations would impact speech function. We cross-referenced our convergent gene sets with 
genes with known mutations resulting in dysarthria, ataxia, or developmental delay of speech 
according to the Human Phenotype Ontology database (29). We found a significant enrichment 
for genes involved in speech motor dysfunction in the convergent gene sets of HVC/RA/LSMC (p 5 
= 0.02, O/E = 1.46) and Area X/ASt (p = 0.045, O/E = 1.61), suggesting further functional 
convergence for learned song production (Table 1). The identified genes are involved in a range 
of functions, including intracellular signaling cascades, synaptic transmission, and transcription 
regulation. All impairments are either the result of single point mutations or large 
duplication/deletion events, which would disrupt the gene’s protein function or expression. The 10 
effects of the human mutations were largely reciprocal of our functional enrichment analyses, with 
downregulated genes exhibiting gain-of-function phenotypes and upregulated genes exhibiting 
loss-of-function phenotypes. These data highlight the critical role that many of these convergent 
genes play in normative human speech and emphasize the value of the songbird as a model to 
further study their mechanism of action.  15 
 
Discussion 
In the present study, we identify previously unknown patterns of molecular convergence in 
songbird and human brain regions controlling learned vocalizations of song and speech. We found 
robust molecular convergence between songbird HVC/RA and human LSMC, with human dLMC 20 
exhibiting the strongest match (Fig. 6). We did not find a robust molecular convergence between 
the LMAN song nucleus and human Broca’s area, in contrast to a prior hypothesis that proposed 
their functional analogies (7). The lack of molecular similarity between LMAN and Broca’s area 
could mean that these brain regions are defined by more unique gene expression profiles in each 
species. However, further investigation is necessary to confirm molecular and functional 25 
divergence, including the in-depth sampling of rare projection neuron classes in Broca's area with 
single-nuclei RNA-seq, as well as generating datasets for other more advanced vocal learning 
species with LMAN analogs, like the parrot NAO and hummingbird VAN nuclei.  

The avian PFP (HVC and RA) is spatially distinct in the songbird brain and controls the 
production of learned vocalizations through a class of specialized projection neurons. Our results 30 
indicate the existence of a molecularly analogous group of projection neurons in the dLMC cortical 
column, suggesting the evolution of a convergent microcircuit in both species. This is consistent 
with the functional findings that apparent projection neurons of both songbird RA and human 
dLMC modulate pitch through direct control of vocal motor neurons in the brainstem, a key 
characteristics of vocal learners (20, 30). Further highlighting their importance for premotor/motor 35 
coordination of speech, are their specialized genes associated with speech production deficits when 
mutated in humans. Whether these genes control similar aspects of vocal production learning in 
songbirds is an open question. Future work to alter the expression of specialized genes should help 
provide insight on shared molecular mechanisms underlying song and speech. A shared phenotype 
following disrupted expression in both species would offer strong evidence that molecular 40 
convergence can give rise to similar microcircuitry and functional convergence, even in brains 
with vastly different global cortical organization.  

Indeed, the shared molecular specializations described here further elevate songbirds as an 
invaluable model system to study the function of vocal motor systems in humans and other vocal 
learning species. The specialized downregulation of axon guidance gene families like ephrin 45 
(EPH4-6), plexin (PLXNA1,C1), and slit (SLIT1,3) suggest that modifying the expression levels 
of these and other genes could be a powerful mechanism of selectively targeting different regions 
in the cacophony of cortical gene expression. Convergent positive selection in regulatory elements 
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of surrounding transcription factors exhibiting convergent downregulation in avian and human 
vocal learners, like NEUROD6, implies a shared evolutionary mechanism for developing vocal 
learning circuitry (Cahill et al., 2021). The ZEB2 transcription factor, a convergent upregulated 
gene in songbird HVC and human LSMC, has known roles in axon guidance, and no current animal 
model captures the striking speech deficits associated with its mutation in patients with Mowat-5 
Wilson Syndrome (Srivatsa et al., 2015). Future experiments modulating or even reversing this 
specialized expression in the songbird vocal motor system will broaden our understanding of the 
convergent molecular mechanisms for vocal learning circuit dynamics across species.  

Molecular convergence governing behavioral convergence for vocal imitation in songbirds 
and humans highlights important evolutionary constraints on vertebrate motor circuits. We 10 
interpret these findings to indicate that vocal imitation maybe an emergent property from the 
evolutionary modulation of a specific set of genes for neuronal firing and connectivity between 
brain regions of a vocal motor learning circuit. Songbirds and humans may have evolved vocal 
imitation due to the modification of these core genes, either through convergent evolution from a 
deep homology in genes and brain structure (31). Regardless of origin, we predict the molecular 15 
specializations found here will be present in other vocal learning species, as seen in the analogs of 
RA for parrots and hummingbirds for the initial set of genes discovered (4, 32). However, more 
extensive screens in these species, as well as other vocal learning mammals (bats, cetaceans, 
pinnepeds, elephants) will be necessary to determine the extent of molecular convergence for this 
trait in nature.  20 

Together, our results describe remarkable molecular, circuit, and behavioral convergence 
to produce learned vocalizations in songbirds and humans. Such parallels open new possibilities 
for cross-species translation of molecular mechanisms from the songbird to inform the research of 
human speech dysfunction.  

 25 
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Fig 1: Songbird and human circuit and molecular convergence for vocal imitation. Both the species 
exhibit convergent neural circuitry for the control of vocal imitation, with a cortico-striatal-thalamic loop 5 
(white arrows) and a direct cortical connection to the motoneurons controlling the vocal organ (red arrows). 
Previous work (4) found that this circuit convergence is accompanied by molecular convergence between 
songbird RA and human LSMC (purple) as well as songbird Area X and human anterior putamen (pink). 
Importantly, no significant molecular analog of songbird HVC or LMAN was found in the human brain. 
N: Nidopallium. A: Arcopallium. S: Striatum.  10 
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Fig 2: Molecular specializations of the zebra finch song system. (A) Heatmap of specialized genes 
(n=5473) between Area X, LMAN, HVC, and RA relative to their non-vocal motor surrounding regions. 
Each column is a replicate for the indicated brain region (color key) and each row is z-score normalized 
expression of a given gene. (B) Venn diagram quantifying overlap of molecular specializations across the 5 
song system. (C) Summary of in situ hybridization validations of differentially expressed genes (n = 178) 
in the zebra finch song system. Our gene expression data exhibit a high concordance rate with in situ 
expression patterns.  
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Fig 3: Molecular convergent between zebra finch HVC/RA and human LSMC. (A-D) Results of 
hypergeometric test for significant overlap in specialized gene expression. Gene sets defining each human 
brain region were independently tested against molecular specializations of each zebra finch song nucleus. 
Significant overlaps are those that pass FDR < 0.05 (dotted line). Size of the circle is the fold enrichment 
of the observed overlap over expected chance. Specialized gene sets from songbird Area X (pink), LMAN 5 
(blue), HVC (green), and RA (purple) were generally defined relative to their surrounding non-vocal motor 
brain regions (circles) or specifically by genes uniquely specialized to a given nucleus and no others 
(diamonds). Test regions include: (A) human laryngeal sensorimotor cortex (LSMC) and adjacent non-
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vocal (torso) sensorimotor cortex; (B) each LSMC subregion individually (dLMC, vLMC, and dLSC); (C) 
human supplementary motor area (SMA); Broca’s area, and non-vocal premotor cortex (BA6); and (D) 
human anterior caudate and putamen, as well as adjacent non-vocal motor portions of each. (F) Heatmap 
visualizing z-score normalized expression of the convergent gene set shown in (A) for songbird HVC/RA 
(left) and human LSMC (right). Each column is a replicate of the above brain region. Each row is a gene 5 
exhibiting convergent expression across songbird and human vocal motor regions. Non-vocal motor regions 
for each species and other cortical regions (human) are included as reference. A subset of the three 
subregions of the LSMC are delineated (dotted lines). 
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Fig 4: Evidence for convergent microcircuitry for production of learned vocalizations in songbirds 
and humans (A) Heatmap showing correlations of normalized fold change values between 
HVC/RA/LSMC convergent molecular specializations (bulk RNA-Seq, this study) and marker genes for 5 
glutamatergic cell classes in HVC and RA (snRNA-Seq, Colquitt et al. 2021). Asterisks denote significance 
at p < 0.05 (*) and p < 0.001 (***). The HVC/LSMC convergent specializations were strongly correlated 
with markers for HVCRA projection neurons, suggesting these cells are the primary drivers of the observed 
molecular convergence. (B) Heatmap showing enrichment scores of gene markers of human glutamatergic 
cell types and finch nidopallium (green, HVC parent population) and arcopallium (purple, RA parent 10 
population). The intratelencephalically (IT) cells of the human primary motor cortex (PMC) are more 
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nidopallium-like, both in the superficial (2/3) and deep (6) layers. The extratelencephalic cells (ET) are 
more arcopallium like. (C-F) Fluorescent in situ hybridization of NEUROD6 (C), ZEB2 (D), VAMP1 (E), 
and SYT2 (F) expression in the zebra finch HVC. Retrograde labeling of HVCRA neurons (green) and target 
gene signal (pink) show colocalization (yellow), suggesting this cell type is the principal driver of the 
observed molecular convergence. Scale bar is 200μM.  5 
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 5 
Fig 5: Functional enrichments for genes with convergent specialized expression in songbird and 
human. (A) Gene ontology enrichment plot of convergent HVC/RA and LSMC genes. (B) Enrichment plot 
for convergent Area X and ASt genes. Upregulated and downregulated gene sets from each nucleus were 
tested separately. Terms shown were significant at FDR < 0.05 (dotted line). Shapes are color coded by 
specialized songbird nucleus. Direction of shape denotes direction of specialized expression. Size of shape 10 
denotes the number of genes contributing to the given GO Term. Genes exhibiting convergent 
downregulation in the cortex/pallium were functionally enriched, while the opposite phenomenon was 
observed in genes exhibiting convergent upregulation in the striatum.  
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Fig 6: Molecular convergence supports parallel microcircuitry between songbird HVC/RA and 
human LSMC. Projection neurons in songbird posterior forebrain pathway nuclei HVC (green) and RA 
(purple) exhibit analogous microcircuitry with human intratelencephalic (IT) neurons (orange arrows) and 5 
extratelencephalic (ET) neurons (red arrows) in the human LSMC respectively. This circuit convergence is 
hallmarked with robust downregulation of neuronal signaling and axon guidance genes. There is additional 
molecular and circuit convergence between songbird Area X and the human anterior striatum (not shown).  
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Table 1: Mutations in genes exhibiting convergent expression specializations in songbird and human 
song/speech brain regions are associated with human speech dysfunction. List of 32 genes exhibiting 
convergent expression specializations in songbird and human whose mutation results in delayed/impaired 
speech phenotypes. Side color bars indicate: (A) specialized upregulation (red) or downregulation (blue); 5 
(B) human specialized expression in LSMC (orange) or anterior striatum (cyan); and (C) songbird 
specialized expression in Area X (pink), HVC (green), or RA (purple). Genes with multiple colors in these 
bars (slashes) indicate specialized expression in multiple regions. Genes with validated expression via in 
situ hybridization in the songbird are noted as true positive (bright green), inconclusive (yellow), or not 
tested (grey).  10 
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