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ABSTRACT 13 

Shorebirds migrate long distances twice annually, which requires intense physiological and 14 

morphological adaptations, including the ability to rapidly gain weight via fat deposition at 15 

stopover locations. The role of the microbiome in weight gain in avian hosts is unresolved, but 16 

there is substantial evidence to support the hypothesis that the microbiome is involved with host 17 

weight from mammalian microbiome literature. Here, we collected 100 fecal samples of Ruddy 18 

Turnstones to investigate microbiome composition and function during stopover weight gain in 19 

Delaware Bay, USA. Using 16S rRNA sequencing on 90 of these samples and 20 

metatranscriptomic sequencing on 22, we show that taxonomic composition of the microbiome 21 

shifts during weight gain, as do functional aspects of the metatranscriptome. We identified ten 22 

genes that are associated with weight class and polyunsaturated fatty acid biosynthesis in the 23 

microbiota is significantly increasing as birds gain weight. Our results support that the 24 
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microbiome is a dynamic feature of host biology that interacts with both the host and the 25 

environment and may be involved in the rapid weight gain of shorebirds. 26 

 27 

Running Title: Microbiota dynamics during shorebird fattening 28 
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INTRODUCTION 30 

Migratory birds go through a myriad of physiological changes throughout their annual cycle. The 31 

most extreme changes are associated with the act of migration [1, 2]. Shorebirds (Order: 32 

Charadriiformes) undertake migrations of thousands of kilometers, twice a year, between their 33 

breeding grounds and non-breeding grounds (Fig. 1). To prepare for migration, shorebirds absorb 34 

part of their digestive tract, which is unused during flight, to reduce body weight. They also 35 

increase the size of their pectoral muscles to maximize flight performance [3, 4]. Prior to 36 

migration, shorebirds rapidly gain weight to fuel their flights, often almost doubling their body 37 

mass in as little as 14 days [5]. This rapid weight gain is due to a short period of extreme foraging 38 

behavior, called hyperphagia. Birds increase their food intake by 20-40% and can accomplish a 39 

7% mass gain per day [6, 7]. The weight is largely comprised of fat, which provides the most 40 

efficient fuel to complete their migrations. The causes and consequences of these physiological 41 

changes, including that they relate to a complex and demanding vertebrate behavior, continue to 42 

be explained. One major question with both basic and applied implications is the role of the 43 

microbiome. 44 

A vertebrate’s microbiome – the microorganisms that live on and inside a host – is 45 

intimately involved in many aspects of vertebrate biology, including development, immunity, 46 

behavior and digestion (reviewed in [8]). The microbiome is associated with weight gain, with an 47 

applied focus on humans and model organisms [9, 10]. Bacteria within the phylum Firmicutes has 48 

been associated with obesity when paired with a high fat diet ([11] but see [12]); conversely, 49 

other bacteria (notably Bacteroidetes) are associated with lean or normal weight [13–15]. Obese 50 

mice with microbiomes rich in Firmicutes extract more energy from given amount of food than 51 

lean mice with microbiomes relatively lower in Firmicutes [13]. Strong mechanistic links 52 

between the microbiome and fat deposition involve bacterial metabolites, host gene regulation, 53 

and lipogenesis [16]. The gut-microbiome-brain axis posits additional ways that the microbiome 54 

can influence weight in hosts, through food-seeking behavior, appetite, taste and food preferences 55 
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(reviewed in [17]). Similar to the natural, high-fat state of pre-migratory shorebirds, many species 56 

of mammals rapidly gain weight before hibernation, which sustains them through periods of low 57 

food intake. For example, arctic ground squirrels (Urocitellus parryii) hibernate for 6-9 months 58 

and rely completely on the fat mass accumulated during their active season. Although the role of 59 

the microbiome in fattening is unknown in this species, the microbiome was recently shown to be 60 

involved in maintaining lean mass during hibernation [18]. In another hibernator, the brown bear 61 

(Ursus arctos), the microbiome undergoes annual changes. During the summer, while the bears 62 

are gaining weight, the microbiome is relatively higher in Firmicutes, which can increase fat 63 

deposition under controlled conditions when transplanted into mice [19].   64 

There is a clear link between the microbiome and weight in birds. Antibiotics were 65 

widely administered for decades for the purposes of increasing growth rate and weight gain in 66 

livestock and poultry [20]. As the side effects of these widespread practices became apparent, the 67 

industry moved away from antibiotics and has turned to probiotics to manipulate livestock and 68 

poultry microbiomes, which can also positively impact weight in birds (reviewed in [21]). In wild 69 

shorebirds, the increased food input combined with internal physiological shifts raises the 70 

question of how the microbiome affects and is affected by these changes. The taxa within the 71 

microbiome are frequently decoupled from the functional potential of the community (e.g., [15]) 72 

with dramatic differences in variance of these two metrics and questions remain about the relative 73 

roles of each in community assembly and host-microbe interactions. Understanding how 74 

taxonomic composition and microbial function are related to physiological changes may indicate 75 

the mechanisms used in adjusting to changing environmental conditions. 76 

The compositional dynamics of the microbial taxa in the gut microbiome of shorebirds 77 

has been studied using 16S rRNA gene amplicon sequencing at different stages of the annual 78 

cycle. Geographic location is significantly correlated to the taxonomic composition of the 79 

microbiome across multiple host species [22] but in highly similar environments, bacterial 80 

community structure can be host species specific [23]. After hatch, shorebird gut communities 81 
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grow exponentially for two days and then stabilize [24]; their long-distance migrations impact the 82 

composition of the microbiome [25] but are also resistant to many potentially horizontally 83 

transferred bacteria [26]. These 16S rRNA-based studies have robustly characterized taxonomic 84 

dynamics. However, bacterial communities can assemble based on function [27] and 85 

phylogenetic and functional diversity can reveal unique aspects of microbial communities [28] 86 

Metatranscriptomics complements 16S rRNA amplicon data by extracting the total RNA in a 87 

sample and enriching for and sequencing the mRNA to identify the recently transcribed genes. 88 

Transcriptomics can reveal patterns at a relatively fine scale, resulting in a deep characterization 89 

of the active processes, such as pathway utilization and unexpected gene activity. A 90 

comprehensive investigation into the taxonomic composition and functional expression of the 91 

microbiome in wild migrating birds will provide insight into how microorganisms relate to a 92 

physiologically critical period in a vertebrate.  93 

We investigated the Ruddy Turnstone (Arenaria interpres) fecal microbiome, collected in 94 

Delaware Bay at different stages of fattening during the spring-migration staging period, using 95 

both 16S rRNA gene amplicon and metatranscriptome sequencing. Ruddy Turnstones stop in 96 

Delaware Bay for approximately 2 weeks during the month of May on their northwards migration 97 

and double their body mass during this time period by intensive foraging on the eggs of the 98 

Horseshoe Crab, Limulus polyphemus [29]. The primary aims of our study were: 1) compare 99 

taxonomic and functional patterns in shorebird microbiomes during pre-migratory fattening, 2) 100 

identify significantly differentially expressed microbial genes to elucidate pathways important to 101 

changing host weight and potential variation between sexes. 102 

 103 

METHODS 104 

Sample Collection 105 

Fecal samples were collected from 100 Ruddy Turnstones (Arenaria interpres) from 7-31 May 106 

2018 at three beaches in Delaware Bay, DE (Fig. 1). Birds were captured using cannon nets as 107 
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part of the Delaware Shorebird Project, a program from the Delaware Department of Natural 108 

Resources and Environmental Control. Upon capture, birds were placed in individual boxes lined 109 

with 10% bleach-sterilized trays for up to 10 minutes. A mesh platform above the tray avoided 110 

contamination of fecal samples by the birds’ feet; see [30] for detailed sampling description. 111 

Fecal samples were preserved in DNA/RNA shield (Zymo Research, Irvine CA) upon collection, 112 

and frozen at -20°C within two hours of capture. After sample collection, weight and biometric 113 

measurements (wing length, head and bill length) were collected and birds were sexed and aged 114 

based on plumage characteristics (Fig. 1C).  115 

Samples were sorted into three weight classes to increase sample size for statistical 116 

analysis. Birds were classified as light (<100g), medium (100-150g), and heavy (>150g). The 117 

medium weight category starts at 100g, as this is the average weight of Turnstones during the 118 

wintering period [31]. Many (if not all) birds, when they first land at Delaware Bay, are below the 119 

average wintering period weight and thus classified as “light” weight. “Heavy” was defined as a 120 

50% increase above the wintering period average. Because all birds lose weight during migratory 121 

flight and gain weight during stopover, the weight categories are approximate indicators of how 122 

long they have been at the stopover location and how soon they may begin the next leg of their 123 

migration.  124 

   125 

DNA Extraction & Sequencing  126 

DNA and RNA were extracted simultaneously using the ZymoBIOMICTM DNA/RNA Miniprep 127 

kit (Zymo Research, Irvine CA), following the parallel extraction protocol. Extracted RNA and 128 

DNA were stored at -80°C until sequencing.  129 

For the 16S rRNA gene sequencing, the V4 region of the 16S rRNA gene was PCR 130 

amplified and sequenced at the University of Connecticut Microbial Analysis, Resources, and 131 

Services facility, following the standard operating procedure. The V4 region of the 16S rRNA 132 

gene was sequenced at the UConn Microbial Analysis, Resources, and Services facility. Quant-iT 133 
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PicoGreen kit was used to quantify DNA concentrations, and 30 ng of extracted DNA was used 134 

as template to amplify the V4 region of the 16S rRNA gene. V4 primers (515F and 806R) with 135 

Illumina adapters and dual barcodes were used for amplification [32, 33]. PCR conditions 136 

consisted of 95˚C for 3.5 min, 30 cycles of 30 s at 95.0°C, 30 s at 50.0°C and 90 s at 72.0°C, 137 

followed by final extension at 72.0°C for 10 min. PCR products were normalized based on the 138 

concentration of DNA from 250-400 bp and pooled. Pooled PCR products were cleaned using the 139 

Mag-Bind RxnPure Plus (Omega Bio-tek) according to the manufacturer’s protocol, and the 140 

cleaned pool was sequenced on the MiSeq using v2 2x250 base pair kit (Illumina, Inc, San Diego, 141 

CA). 142 

For the metatranscriptomes, total RNA was quantified, and purity ratios determined for 143 

each sample using the NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Waltham, 144 

MA, USA). To assess RNA quality, total RNA was analyzed on the Agilent TapeStation 4200 145 

(Agilent Technologies, Santa Clara, CA, USA) using the RNA High Sensitivity assay following 146 

the manufacturers protocol. Ribosomal Integrity Numbers (RIN) were recorded for each sample. 147 

Total RNA samples (300ng of Qubit quantified total RNA input) were prepared for prokaryotic 148 

transcriptome sequencing by first ribodepleting bacterial ribosomal RNA using the RiboMinus 149 

Transcriptome Isolation Kit, Bacteria (ThermoFisher Scientific, Waltham, MA, USA). 150 

Ribodepletion efficiency was analyzed prior to the start of library preparation on the Agilent 151 

TapeStation 4200 (Agilent Technologies, Santa Clara, CA, USA) using the RNA High Sensitivity 152 

assay following the manufacturers protocol. Efficient ribodepletion is supported by the 153 

disappearance of the 16S and 23S ribosomal RNA peaks (~1,000 nt and ~2,000 nt, respectively), 154 

with the sample’s electropherogram trace now showing a smear of shorter molecules (< 1,000nt). 155 

Purified ribodepleted RNA underwent library preparation using the Illumina TruSeq 156 

Stranded mRNA Sample Preparation kit following the manufacturer’s protocol modification for 157 

purified mRNA as input (Illumina, San Diego, CA, USA). Libraries were validated for length and 158 

adapter dimer removal using the Agilent TapeStation 4200 D1000 High Sensitivity assay (Agilent 159 
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Technologies, Santa Clara, CA, USA) then quantified and normalized using the dsDNA High 160 

Sensitivity Assay for Qubit 3.0 (Life Technologies, Carlsbad, CA, USA). Sample libraries of 161 

sufficient quality were sequenced (Illumina MiSeq; paired end 2 x 75bp read length) with a 162 

sequencing depth targeted at 7-10M total paired end reads/sample at the Center for Genome 163 

Innovation at the University of Connecticut. 164 

 165 

Sequence quality control, assembly, annotation, and mapping 166 

For the 16S rRNA gene amplicon data, during standard Illumina demultiplexing, sequences were 167 

quality checked and trimmed to remove adaptors and barcodes. The DADA2 (v. 3.11) pipeline in 168 

R (v3.6.0) was used to quality control and process the reads [34, 35], low quality read areas were 169 

removed following the DADA2 default parameters. Following assessment of error rates, paired-170 

end sequences were merged, and potentially chimeric sequences removed. All unique sequences 171 

at greater than 1x abundance were then labeled as amplicon sequence variants, or ASVs, for 172 

taxonomic analysis. Sequences were assigned to taxonomy using RDP’s Naïve Bayesian 173 

Classifier with the Silva (v. 132) reference database [36, 37]. Sequences identified as chloroplast 174 

or mitochondrial sequences were removed from the dataset. A multiple-sequence alignment was 175 

performed using the DECIPHER (v. 2.0) package [38], and a phylogenetic tree was constructed 176 

with the package phangorn (v2.4.0; [39]). Likely sequence contaminants were identified and 177 

removed using the decontam (v1.4.0; [40]) package using the negative control samples as 178 

contaminants. 179 

The metatranscriptome sequences were trimmed using Trimmomatic (v0.35; [41]) with a 180 

threshold of Q5 and rRNA was removed using SortMeRNA [42]). The remaining sequences were 181 

de novo assembled using Trinity (v2.2.0; [43]) with the following parameters: fastq assembly 182 

(left read file contained forward and unpaired reads), minimum contig length of 75 bp and 183 

normalized reads. Alignment was completed using Bowtie2 (v2.2.9; [44]) and RSEM (v1.2.7, 184 

[45]) estimation was used for counts of sample replicates. RSEM estimates were rounded to 185 
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nearest integer, length corrected (transcripts per million method), trimmed mean of M-values 186 

(TMM) adjusted for normalized expression values (EdgeR v3.16.5; [46]), and batch corrected 187 

with ARSyNseq (in NOISeq,[47, 48]). The metatranscriptome assembly was annotated using 188 

Trinotate (v3.0.1) using the complete pipeline (http://trinotate.github.io).  189 

 190 

Statistical methods 191 

A linear regression was used to confirm weight gain of Ruddy Turnstone over the stopover 192 

period. To assess microbiome taxonomic compositional change with weight gain, alpha and beta 193 

diversity measures were calculated for the 16S rRNA gene amplicons. For alpha diversity 194 

analyses, samples were rarefied to 10 995 sequences, which was the lowest sequence coverage of 195 

our samples. Two alpha diversity measures were calculated using phyloseq (v1.28.0; [49]): the 196 

observed number of ASVs and Shannon’s Diversity Index [50]. Statistical significances for 197 

differences in alpha diversity for sites, weight classes, and sexes were calculated using analysis of 198 

variance (ANOVA) testing. For beta diversity, three distance metrics were calculated to describe 199 

differences between samples: Bray-Curtis dissimilarity, weighted UniFrac and unweighted 200 

UniFrac [51]. These distance matrices were used for non-metric multidimensional scaling 201 

(NMDS). The relative contributions to the variation in microbiome composition of three variables 202 

(weight class, sex, and sampling site) were calculated using permutational multivariate analysis of 203 

variance (PERMANOVA) with the adonis2 function from the vegan package (v2.5.6; [52]). We 204 

tested for homogeneity of variance among weight classes and sexes using the betadisper function, 205 

also in vegan.  Differential abundance in taxa between weight classes was conducted using 206 

DESeq2 package in R (v1.24.0; [53]). Significance was set at α=0.001. 207 

We conducted a Principal Components Analysis on the TMM normalized expression 208 

counts and identified significance and relative contributions of weight class and sex in functional 209 

composition. A pairwise PERMANOVA using the pairwise.perm.manova function in the 210 
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RVAideMemoire package (v. 0.9.75; [54]) with 1 000 permutations was used to assess 211 

significance between weight classes. 212 

Differential gene expression between weight classes and sexes was conducted using 213 

NOISeq package in R (v1.24.0;.[47]) with significance set to at α=0.001. Volcano plots were 214 

constructed from NOISeq data using the EnhancedVolcano (v1.2.0; [55]) and ggplot2 (v3.3.0; 215 

[56]) packages. To identify similar patterns of expression among differentially expressed genes, a 216 

cluster analysis using the DESeq2 (v1.24.0; [53]) and the DEGreport [57] packages was 217 

conducted. Likelihood Ratio Testing (αadj=0.001/0.01/0.05) identified differences in expression 218 

across all weight classes and identified gene clusters across groups using the degPatterns function 219 

from DEGreport.  220 

Because Ruddy Turnstones’ main activity during stopover is acquiring fat mass, we 221 

focused on genes and pathways related to lipid metabolism. A variance stabilizing transformation 222 

was applied to count matrices using the vst function in DeSeq2. To assess the relationship 223 

between body weight of Ruddy Turnstones and specific expressed pathways, normalized 224 

expression plots were constructed for biosynthesis of all Fatty Acids (FAs), and three essential 225 

Polyunsaturated Fatty Acids (PUFAs): Arachidonic acid, Linoleic acid, and alpha-Linolenic acid.   226 

 227 

RESULTS 228 

Ruddy Turnstones consistently gained weight over the 2018 mid-migration stopover at Delaware 229 

Bay (Fig. 1; Linear Regression Model, F1,89=182.8, adj. R2=0.67, p<0.001). Body mass 230 

significantly differed among our three sampling sites (ANOVA: F2,88=78.51, p<0.001), with the 231 

lowest bird weights at Swains and the highest weights at Back North (Fig. S1).  232 

From the 100 fecal samples collected from Ruddy Turnstones, 90 samples were of 233 

sufficient post-extraction quality for 16S rRNA gene sequencing. We sampled 45 female (F) and 234 

41 male (M) Turnstones. Four individuals could not reliably be assigned a sex and are referred to 235 
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as unknown (U). After quality control, we retained 3 700 042 high quality sequences across the 236 

90 samples with an average of 40 660 ± 1 733 SE sequences per sample.  237 

 238 

Taxonomic Composition and Diversity Using 16S rRNA 239 

Alpha diversity - Shannon’s diversity index (“Shannon”) significantly differed among weight 240 

classes (Fig. 2A, ANOVA: Shannon F2,88=5.648, p=0.005). Light and medium weight birds 241 

differed significantly from heavy birds, but not from each other (TukeyHSD: <100g - >150g, 242 

p=0.005; 100-150g - >150g, p=0.032; <100g – 100-150g,  p=0.876).  Observed number of ASVs 243 

did not significantly differ between weight classes (ANOVA: Observed F2,88=2.967, p=0.057). 244 

Alpha diversity significantly differed among sampling sites (ANOVA: Shannon F2,88=6.449, 245 

p=0.002; Observed F2,88=3.335, p=0.040), but did not differ between sexes (ANOVA: Shannon 246 

F1,88=0.136, p=0.873; Observed F1,88 =0.493, p=0.612).  247 

 248 

Beta diversity - The NMDS plot showed clustering in microbiome communities by weight class 249 

and showed directional change from light to heavy birds; medium weight class birds appeared to 250 

be located in between the light and heavy weight classes (Fig. 2B). Weight class (R2=12%) and 251 

sampling site (R2=3.6%) were significantly associated with variation in microbiome composition 252 

(p<0.001). Sex of the birds was not significantly correlated with microbiome composition 253 

(PERMANOVA: F2,84=0.62, R2=0.014, p=0.994). Homogeneity of variance (beta dispersion) did 254 

not significantly differ among weight classes (Permutest: F8,84= 0.75, p=0.668), sexes (Permutest: 255 

F2,84= 0.50, p=0.612), or sampling sites (Permutest: F2,88= 1.18, p=0.330). 256 

 257 

Community Composition – Twenty-six phyla were identified across all samples; five phyla 258 

comprised 97.3% of all sequences. The dominant phylum was Fusobacteria (40.7%), followed by 259 

Proteobacteria (26.7%), Firmicutes (18.9%), Bacteroidetes (5.8%), and Tenericutes (5.2%; Fig. 260 

S1). The 784 genera detected contained 4 463 ASVs. The Fusobacteria phylum was dominated by 261 
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two genera, Fusobacterium and Cetobacterium, which together comprised >99.9% of sequences 262 

within this phylum. Helicobacter and Campylobacter were the dominant genera within the 263 

Proteobacteria, Catellicoccus within the Firmicutes, and Bacteroides and Flavobacterium within 264 

the Bacteroidetes. Within the most abundant genera, only Vibrio and Flavobacterium were 265 

significantly different between any weight classes (Fig. 3; full statistical tests in Supplemental 266 

Table S1). 267 

 268 

Differential Abundance of Taxa - Pairwise tests identified many genera associated with weight 269 

class (Supplemental Table S2). Those that were consistent across both pairwise tests (e.g., taxa 270 

significantly associated with light weight birds in both the light against medium and light against 271 

heavy comparisons) revealed 13 differentially abundant genera. Since some of these genera 272 

contained more than one differentially expressed ASV, two genera were differentially expressed 273 

in all three weight categories: Tyzzerella and Cetobacterium (Fig. 3E). In the light birds, only 274 

Campylobacter was differentially expressed in both its pairwise comparisons, in the medium 275 

birds, only “Candidatus Bacilloplasma” and in the heavy birds, Photobacterium, Shewanella and 276 

WDS1C4. Furthermore, Vibrio was overexpressed in the medium and heavy birds, when 277 

compared to the light. Helicobacter, Catellicoccus, Seohaeicola and Prevotella Ga6A1 group 278 

were significantly higher in the light and medium birds when compared to the heavy and 279 

Grimontia was significantly higher in the light and heavy birds when compared to medium. 280 

 281 

Functional Dynamics of the Metatranscriptome 282 

After ribodepletion and library preparation, 22 out of 40 initially selected RNA samples were 283 

suitable for metatranscriptome sequencing, including 14 males and eight females in the following 284 

weight class sample sizes: light (N=7), medium (N=9), and heavy (N=5).  285 

We detected a significant difference in the functional gene community (based on KEGG 286 

IDs) among the three weight classes (Fig. 4, PerMANOVA: F2,19=2.78, R2=0.227, p=0.02), but 287 
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not between sexes (PerMANOVA: F1,20=1.56, R2=0.027, p=0.605). Light birds and medium birds 288 

differed significantly from each other (padj=0.018), but no difference in functional community 289 

was detected between light birds and heavy birds (padj=0.366) or between medium birds and 290 

heavy birds (padj=0.226). PCA beta dispersion differed among weight classes (ANOVA: 291 

F2,19=5.10, p=0.017), which was driven by a significant difference between light birds and heavy 292 

birds (TukeyHSD: padj=0.020). Beta dispersion did not differ between light birds and medium 293 

birds (TukeyHSD: padj=0.074) nor between medium birds and heavy birds (TukeyHSD: 294 

padj=0.588).  295 

 296 

Differential expression - Several KEGG objects were differentially expressed among weight 297 

classes (light vs. medium, N=7; light vs. heavy, N=4; medium vs. heavy, N=1; Fig. 5, 298 

Supplemental Table S3). One, K06422, was differentially expressed between female and male 299 

individuals, as well as in light birds. K06422 is an unclassified gene that is active in small acid-300 

soluble spore protein E (sspE) production during cell growth.  301 

Expression of three polyunsaturated fatty acids were significantly associated with weight 302 

(Fig. 6): linoleic acid metabolism (R2=0.19, p=0.024), alpha-linoleic acid metabolism (R2=0.23, 303 

p=0.014), arachidonic acid metabolism (R2=0.39, p=0.001). Biosynthesis of unsaturated fatty 304 

acids was not significantly associated with weight (R2=0.03, p=0.216). 305 

A clustering analysis was performed to group genes with shared expression patterns 306 

together, resulting in four clusters at p<0.05 (Fig. 7, Supplemental Table S4). Group 1 (N=130 307 

genes) and Group 3 (N=76 genes) had light birds with contrasting expression patterns to the 308 

medium and heavy birds. Group 2 (N=9 genes) and Group 4 (N=22 genes) had medium weight 309 

birds as the highest or lowest expression group, respectively. All genes, regardless of 310 

significance, were analyzed as well and resulted in the same four expression patterns. 311 

 312 

DISCUSSION  313 
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The microbiome is intertwined with host health, behavior and fitness and the microbiota can play 314 

a key role in weight gain in model organisms and humans [11, 58]. Shorebirds participate in 315 

extreme foraging behavior and rapid weight gain at stopovers during long distance migrations. 316 

Examining extreme behaviors or physiological processes may provide novel insight into the 317 

limits of how microbes facilitate vertebrate biology, and this has potential applied benefits to 318 

human health. In a broader sense, many animals experience periods of rapid or sustained weight 319 

gain (e.g., before migration or hibernation) or periods of weight loss, fasting or starvation that 320 

must be recovered from. Here, we have shown in a system with a uniform diet at geographically 321 

close sampling sites, that as the host’s body undergoes rapid weight gain, the taxonomic 322 

composition of the fecal microbiome changes in tandem with the host, as do some of the 323 

functional capabilities of the microbiome.  324 

 Migration causes a significant disturbance to a bird’s physiology and homeostasis; 325 

individual migrants can lose diversity of the microbiome during flight [59] and a corresponding 326 

successional recovery of the microbiota makes intuitive sense. Ruddy Turnstones gain an average 327 

of 50% body weight during stopover at Delaware Bay; therefore, the weight of a bird is a proxy 328 

for how long it has been at stopover. The three weight classes, light, medium and heavy, form 329 

significantly distinct clusters in our beta diversity ordinations based on 16S taxonomic 330 

composition and the medium weight birds are generally distributed between the low and heavy 331 

clusters (Fig. 2). This pattern implies successional change in the taxonomic composition of the 332 

fecal microbiome during stopover.  333 

We used two methods to identify patterns within the taxa of the microbiomes: differential 334 

abundance analysis and ANOVA of the most abundant genera within the most abundant phyla. 335 

Succession within the microbiota may be further corroborated by the differentially abundant 336 

genera found across multiple pairwise tests (Fig. 3, Table S1). Of particular note is that the genera 337 

Helicobacter, Catellicococcus and Campylobacter are known bird gut-associated bacteria [60, 338 

61] and these are more abundant in the light (or light and medium) birds. One hypothesis is that 339 
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as the birds lose weight mid-migration, the bacteria that have co-evolved to live with the birds are 340 

in the mucus that remains in the gut while all transient or less well adapted bacteria are flushed 341 

from the system. As they fatten, environmental (e.g., Maribacter, Denitromonas), and fatty acid 342 

producing marine bacteria (e.g., Vibrio, Shewanella, Photobacterium, [62]) may flourish.  343 

These taxonomic results contradicted our expectation that taxa from the Firmicutes would 344 

increase as birds gained weight, since Firmicutes have been associated with obesity or weight 345 

gain in mammals (but see [12]). The most abundant Firmicutes in the shorebirds were not 346 

significantly different between the weight classes (Fig. 3A). The genera Flavobacterium 347 

(Phylum: Flavobacteria) was significantly higher in heavy birds when compared to medium birds 348 

and Vibrio (Phylum: Proteobacteria) were significantly higher in the heavy birds when compared 349 

to both the light and medium birds (Fig. 3). Succession in microbiomes is seen in many vertebrate 350 

systems (e.g., [24, 63]) and occurs after periods of microbiome disturbance (e.g., antibiotic 351 

treatment). Our birds’ alpha diversity statistics trended upward the heavier they got, perhaps 352 

supporting a successional recovery of the microbiota. Continued investigation into the stability 353 

and resilience of microbiomes post-migration, and especially across years, would tell us how 354 

stable the shorebird microbiome is, on both short and long-term scales. 355 

Sampling site was statistically associated with beta diversity in our 16S rRNA analyses, 356 

although with an effect size approximately one quarter of the weight class. We also detected a 357 

pattern between bird weight and the three sampling sites (Fig. S2). We hypothesize this is 358 

because sampling sites vary in food quality and better-quality sites are defended by larger birds. 359 

Broad scale associations between (food) quality of the sampling site and weight of the birds was 360 

observed, with lighter birds more frequently found on the lower quality sites, and heavier birds on 361 

the higher quality sites [64, 65].  362 

As a community, and in contrast to the patterns displayed in taxonomic beta diversity 363 

(Fig. 2B), the medium weight functional communities were not obviously intermediate to the 364 

light and heavy weight categories (Fig. 4), although weight class was significantly associated 365 
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with the variation of the samples (R2=0.22, p=0.02). To identify genes that may be associated 366 

with weight or weight gain, we used multiple methods: an unbiased pairwise significance test 367 

(Fig. 5), a cluster analysis (Fig. 7), and by specifically looking at pathways involved in 368 

polyunsaturated fatty acid biosynthesis (Fig. 6). 369 

Using the pairwise significance test, most functions were not significantly different 370 

between the weight classes; only 10 functions (KEGG IDs, Table S3) rose above the significance 371 

threshold of p<0.001. Of these 10 functions, K06422 showed up most, as significantly higher in 372 

light birds (when compared to both medium and heavy birds) and as the only significant 373 

difference between males and females (higher in males). K06422 is associated with sspE, a small 374 

acid-soluble spore protein. As sporulation is a response to starvation in some bacteria, it may be 375 

that this protein is overrepresented in the light birds because they are underweight, and the 376 

microbiota had entered a stress/starvation response. The other functions associated with the light 377 

birds, K01886 and K08139 are also generally associated with cell growth and metabolism. The 378 

functions associated with the medium weight birds were all potentially associated with proteins 379 

(Arginine biosynthesis, ribosome biogenesis and heat shock proteins). K13993 is also associated 380 

with tissue remodeling and is significantly higher in both the medium and heavy birds when 381 

compared to light. This result seems counterintuitive as fattening shorebirds are known to switch 382 

from protein recovery post-migration to fat deposition around medium weight [5]. However, 383 

bacteria are known to digest dietary protein to produce secondary metabolites, such as amino 384 

acids, which could play a thus far unknown role in shorebird fattening [66]. Additionally, some 385 

tissues and organs are grown throughout the stopover period in other shorebirds [67] and may 386 

influence the microbiota.   387 

The pathways identified in the heavy birds are more diverse than the previous groups. 388 

They include functions that refer to organismal systems and human diseases (K00413) and 389 

structural proteins (K07625). Of particular note is K08720, which is associated with Vibrio 390 

biofilm formation, and may specifically involve iron balance [68]. Vibrio was one of the taxa that 391 
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was associated with heavier birds and is known to be a main microbial producer of 392 

polyunsaturated fatty acids [62]. Vibrio are also found in the horseshoe crab microbiome [69], so 393 

the increase could be due to dietary intake and benefit the host. Hosts could also be internally 394 

filtering for Vibrio, or both processes could happen in tandem.  395 

The clustering analysis that grouped genes based on shared expression patterns detected 396 

four clusters. The 237 genes within these four clusters may contain interesting targets for groups 397 

of genes that perform together and differentially depending on bird weight. Since birds go 398 

through a period of protein recovery and immune suppression when they first land [70], genes in 399 

Groups 1 and 3 affected by those processes. The immediate arrival of birds also returns the 400 

microbes to a state of non-starvation, and genes in Group 3 could be many of those involved in 401 

cell growth and division. Conversely, and if the birds do benefit from the metabolites or products 402 

of the microbiota, as medium and heavy birds are prioritizing weight gain, the genes in Groups 1 403 

and 3 may be downregulated and upregulated for fat deposition, respectively. The genes in 404 

Groups 2 and 4 could be those responding to the immediate recovery of the microbiota and the 405 

bird’s final preparations for flight; shorebirds both gain and lose particular muscles and tissues in 406 

response to and preparation for flight, and how the microbiota respond to those changes requires 407 

further investigation. 408 

We investigated an a priori hypothesis that polyunsaturated fatty acid biosynthesis would 409 

increase as the birds fatten. “Essential” fatty acids are those an animal needs but cannot produce; 410 

the diet of horseshoe crab eggs provide the essential fatty acids birds need and PUFAs in 411 

particular are an extremely efficient way to store energy that shorebirds use to power their 412 

migrations. Alpha-Linoleic acid is an n-3 PUFA, whereas Lineoleic acid and Arachidonic acid 413 

are n-6 PUFAs. These different categories of PUFA can have multiple and antagonistic effects 414 

[71]. We hypothesize that the microbiome may also be producing essential fatty acids for the 415 

birds during weight gain. This unconventional hypothesis would require tracking experiments to 416 

confirm, but in our analyses, all three PUFAs (Linoleic acid, alpha-Linolenic acid and 417 
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Arachidonic acid) significantly increased as the birds gained weight (Fig. 6). Is the increase of 418 

PUFAs simply a reflection of the microbiome rebounding and being a bigger collection of 419 

microbes? General biosynthesis of unsaturated fatty acids did not significantly increase with 420 

weight gain, indicating possible opposite patterns in other unsaturated FAs. A next step in our 421 

study is to investigate the full spectrum of fatty acids to identify patterns in abundance with 422 

weight change and pursue mechanistic explanations.   423 

 424 
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 622 

FIGURE LEGENDS 623 

Figure 1. Ruddy Turnstone attributes. (A) Distribution of North, Central and South American 624 
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breeding and non-breeding grounds. (B) Sampling site (Delaware Bay, DE). (C) Female (left) and 625 

male (right) breeding plumage, photos (C) Gregory Breese, US Fish and Wildlife Service. (D) 626 

Weight distribution of 91 Ruddy Turnstones sampled during stopover in 2018, linear regression 627 

line with region of standard error highlighted in gray (adjusted R2 = 0.67). 628 

Figure 2. Alpha diversity of the three weight classes (p-values < 0.005 shown). (B) Non-metric 629 

Multidimensional Scaling ordination constructed from a Bray-Curtis matrix of 16S rRNA gene 630 

communities. Shapes and colors represent the three weight classes (black/triangle = Heavy, 631 

gray/square = Medium, white/circle = Light).  632 

Figure 3. Relative abundance of the dominant genera within the four most abundant phyla (A) 633 

Firmicutes, (B) Proteobacteria, (C) Bacteroidetes, (D) Fusobacteria. Genera are separated by 634 

weight on the x-axis; all significant (p<0.05) changes within the genera across weight classes are 635 

noted with respective p-values. (E) Genera detected by DESeq2 analysis to be differentially 636 

abundant in two pairwise comparisons (light v medium, medium v heavy, light v heavy). NOTE: 637 

Because some genera had more than one ASV differentially expressed, and those ASVs might 638 

have been present in both categories, it’s possible to have genera overexpressed in all three 639 

categories.   640 

Figure 4. Principal components analysis of fecal metatranscriptomes collected from Ruddy 641 

Turnstones of different weights in Delaware Bay. Transcript counts were log-transformed, and 642 

colors/shapes represent the three bird weight classes.  643 

Figure 5. Volcano plots showing differentially expressed genes in metatranscriptomes from 644 

different weight classes and sexes of Ruddy Turnstones. The horizontal lines represent p=0.001. 645 

Genes that are differentially over or under expressed are identified with corresponding KEGG 646 

IDs.  647 

Figure 6. Linear regression (dotted line with gray 95% confidence intervals) of mean normalized 648 

expression of (A) Biosynthesis of unsaturated fatty acids, (B) Linoleic acid metabolism, (C) 649 

alpha-Linoleic acid metabolism, (D) Arachidonic acid metabolism. Error bars represent standard 650 
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errors.  651 

Figure 7. Clusters of genes with significantly similar expression across the weight classes 652 

(alpha=0.05). Y-axis represents Z-score. Positive values are upregulated compared to the average 653 

Z-score and vice versa for negative values.  654 

 655 

SUPPLEMENTARY INFORMATION 656 

Supplemental Table S1. All ANOVA p-values for detection of significant changes within genera 657 

across weight classes.  658 

Supplemental Table S2. All genera identified as significantly overexpressed in the pairwise 659 

DESeq differential abundance analyses using amplicon data. Taxa that were detected in more 660 

than one pairwise comparison are bolded and on the same line of the table; the weight class (WC) 661 

in which the genus was overrepresented is shown and also denoted by color (yellow = Light, 662 

green = Medium, orange = Heavy).  663 

Supplemental Table S3. All KEGG ID information for the functions identified as significant in 664 

the differential expression analysis. 665 

Supplemental Table S4. All KEGG ID information for the functions identified as significant in 666 

the clustering analysis. 667 

Supplemental Figure S1. Relationship between body weight and geographic sampling site. 668 

Supplemental Figure S2. Individual level relative abundances of bacterial phyla, using 16S 669 

rRNA amplicon data.  670 
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