

Functional and compositional changes in the fecal microbiome of a shorebird during pre-migratory weight gain

Kirsten Grond^{1,2*}, Artemis S. Louyakis^{1,3} & Sarah M. Hird^{1,4*}

¹ Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT

² Current address: Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK

³ Current address: Colgate-Palmolive Company, Piscataway, NJ

⁴ Institute for Systems Genomics, University of Connecticut, Storrs, CT

* These authors contributed equally to this work

* These authors contributed equally to this work

Corresponding author: sarah.hird@uconn.edu

ABSTRACT

Shorebirds migrate long distances twice annually, which requires intense physiological and morphological adaptations, including the ability to rapidly gain weight via fat deposition at stopover locations. The role of the microbiome in weight gain in avian hosts is unresolved, but there is substantial evidence to support the hypothesis that the microbiome is involved with host weight from mammalian microbiome literature. Here, we collected 100 fecal samples of Ruddy Turnstones to investigate microbiome composition and function during stopover weight gain in Delaware Bay, USA. Using 16S rRNA sequencing on 90 of these samples and metatranscriptomic sequencing on 22, we show that taxonomic composition of the microbiome shifts during weight gain, as do functional aspects of the metatranscriptome. We identified ten genes that are associated with weight class and polyunsaturated fatty acid biosynthesis in the microbiota is significantly increasing as birds gain weight. Our results support that the

25 microbiome is a dynamic feature of host biology that interacts with both the host and the
26 environment and may be involved in the rapid weight gain of shorebirds.

27

28 **Running Title:** Microbiota dynamics during shorebird fattening

29 **Keywords:** 16S rRNA, fatty acid, metatranscriptome, migration, mRNA, Ruddy Turnstone

30 **INTRODUCTION**

31 Migratory birds go through a myriad of physiological changes throughout their annual cycle. The
32 most extreme changes are associated with the act of migration [1, 2]. Shorebirds (Order:
33 Charadriiformes) undertake migrations of thousands of kilometers, twice a year, between their
34 breeding grounds and non-breeding grounds (Fig. 1). To prepare for migration, shorebirds absorb
35 part of their digestive tract, which is unused during flight, to reduce body weight. They also
36 increase the size of their pectoral muscles to maximize flight performance [3, 4]. Prior to
37 migration, shorebirds rapidly gain weight to fuel their flights, often almost doubling their body
38 mass in as little as 14 days [5]. This rapid weight gain is due to a short period of extreme foraging
39 behavior, called hyperphagia. Birds increase their food intake by 20-40% and can accomplish a
40 7% mass gain per day [6, 7]. The weight is largely comprised of fat, which provides the most
41 efficient fuel to complete their migrations. The causes and consequences of these physiological
42 changes, including that they relate to a complex and demanding vertebrate behavior, continue to
43 be explained. One major question with both basic and applied implications is the role of the
44 microbiome.

45 A vertebrate's microbiome – the microorganisms that live on and inside a host – is
46 intimately involved in many aspects of vertebrate biology, including development, immunity,
47 behavior and digestion (reviewed in [8]). The microbiome is associated with weight gain, with an
48 applied focus on humans and model organisms [9, 10]. Bacteria within the phylum *Firmicutes* has
49 been associated with obesity when paired with a high fat diet ([11] but see [12]); conversely,
50 other bacteria (notably *Bacteroidetes*) are associated with lean or normal weight [13–15]. Obese
51 mice with microbiomes rich in *Firmicutes* extract more energy from given amount of food than
52 lean mice with microbiomes relatively lower in *Firmicutes* [13]. Strong mechanistic links
53 between the microbiome and fat deposition involve bacterial metabolites, host gene regulation,
54 and lipogenesis [16]. The gut-microbiome-brain axis posits additional ways that the microbiome
55 can influence weight in hosts, through food-seeking behavior, appetite, taste and food preferences

56 (reviewed in [17]). Similar to the natural, high-fat state of pre-migratory shorebirds, many species
57 of mammals rapidly gain weight before hibernation, which sustains them through periods of low
58 food intake. For example, arctic ground squirrels (*Urocitellus parryii*) hibernate for 6-9 months
59 and rely completely on the fat mass accumulated during their active season. Although the role of
60 the microbiome in fattening is unknown in this species, the microbiome was recently shown to be
61 involved in maintaining lean mass during hibernation [18]. In another hibernator, the brown bear
62 (*Ursus arctos*), the microbiome undergoes annual changes. During the summer, while the bears
63 are gaining weight, the microbiome is relatively higher in Firmicutes, which can increase fat
64 deposition under controlled conditions when transplanted into mice [19].

65 There is a clear link between the microbiome and weight in birds. Antibiotics were
66 widely administered for decades for the purposes of increasing growth rate and weight gain in
67 livestock and poultry [20]. As the side effects of these widespread practices became apparent, the
68 industry moved away from antibiotics and has turned to probiotics to manipulate livestock and
69 poultry microbiomes, which can also positively impact weight in birds (reviewed in [21]). In wild
70 shorebirds, the increased food input combined with internal physiological shifts raises the
71 question of how the microbiome affects and is affected by these changes. The taxa within the
72 microbiome are frequently decoupled from the functional potential of the community (e.g., [15])
73 with dramatic differences in variance of these two metrics and questions remain about the relative
74 roles of each in community assembly and host-microbe interactions. Understanding how
75 taxonomic composition and microbial function are related to physiological changes may indicate
76 the mechanisms used in adjusting to changing environmental conditions.

77 The compositional dynamics of the microbial taxa in the gut microbiome of shorebirds
78 has been studied using 16S rRNA gene amplicon sequencing at different stages of the annual
79 cycle. Geographic location is significantly correlated to the taxonomic composition of the
80 microbiome across multiple host species [22] but in highly similar environments, bacterial
81 community structure can be host species specific [23]. After hatch, shorebird gut communities

82 grow exponentially for two days and then stabilize [24]; their long-distance migrations impact the
83 composition of the microbiome [25] but are also resistant to many potentially horizontally
84 transferred bacteria [26]. These 16S rRNA-based studies have robustly characterized taxonomic
85 dynamics. However, bacterial communities can assemble based on function [27] and
86 phylogenetic and functional diversity can reveal unique aspects of microbial communities [28].
87 Metatranscriptomics complements 16S rRNA amplicon data by extracting the total RNA in a
88 sample and enriching for and sequencing the mRNA to identify the recently transcribed genes.
89 Transcriptomics can reveal patterns at a relatively fine scale, resulting in a deep characterization
90 of the active processes, such as pathway utilization and unexpected gene activity. A
91 comprehensive investigation into the taxonomic composition and functional expression of the
92 microbiome in wild migrating birds will provide insight into how microorganisms relate to a
93 physiologically critical period in a vertebrate.

94 We investigated the Ruddy Turnstone (*Arenaria interpres*) fecal microbiome, collected in
95 Delaware Bay at different stages of fattening during the spring-migration staging period, using
96 both 16S rRNA gene amplicon and metatranscriptome sequencing. Ruddy Turnstones stop in
97 Delaware Bay for approximately 2 weeks during the month of May on their northwards migration
98 and double their body mass during this time period by intensive foraging on the eggs of the
99 Horseshoe Crab, *Limulus polyphemus* [29]. The primary aims of our study were: 1) compare
100 taxonomic and functional patterns in shorebird microbiomes during pre-migratory fattening, 2)
101 identify significantly differentially expressed microbial genes to elucidate pathways important to
102 changing host weight and potential variation between sexes.

103

104 **METHODS**

105 *Sample Collection*

106 Fecal samples were collected from 100 Ruddy Turnstones (*Arenaria interpres*) from 7-31 May
107 2018 at three beaches in Delaware Bay, DE (Fig. 1). Birds were captured using cannon nets as

108 part of the Delaware Shorebird Project, a program from the Delaware Department of Natural
109 Resources and Environmental Control. Upon capture, birds were placed in individual boxes lined
110 with 10% bleach-sterilized trays for up to 10 minutes. A mesh platform above the tray avoided
111 contamination of fecal samples by the birds' feet; see [30] for detailed sampling description.
112 Fecal samples were preserved in DNA/RNA shield (Zymo Research, Irvine CA) upon collection,
113 and frozen at -20°C within two hours of capture. After sample collection, weight and biometric
114 measurements (wing length, head and bill length) were collected and birds were sexed and aged
115 based on plumage characteristics (Fig. 1C).

116 Samples were sorted into three weight classes to increase sample size for statistical
117 analysis. Birds were classified as light (<100g), medium (100-150g), and heavy (>150g). The
118 medium weight category starts at 100g, as this is the average weight of Turnstones during the
119 wintering period [31]. Many (if not all) birds, when they first land at Delaware Bay, are below the
120 average wintering period weight and thus classified as "light" weight. "Heavy" was defined as a
121 50% increase above the wintering period average. Because all birds lose weight during migratory
122 flight and gain weight during stopover, the weight categories are approximate indicators of how
123 long they have been at the stopover location and how soon they may begin the next leg of their
124 migration.

125

126 *DNA Extraction & Sequencing*

127 DNA and RNA were extracted simultaneously using the ZymoBIOMIC™ DNA/RNA Miniprep
128 kit (Zymo Research, Irvine CA), following the parallel extraction protocol. Extracted RNA and
129 DNA were stored at -80°C until sequencing.

130 For the 16S rRNA gene sequencing, the V4 region of the 16S rRNA gene was PCR
131 amplified and sequenced at the University of Connecticut Microbial Analysis, Resources, and
132 Services facility, following the standard operating procedure. The V4 region of the 16S rRNA
133 gene was sequenced at the UConn Microbial Analysis, Resources, and Services facility. Quant-iT

134 PicoGreen kit was used to quantify DNA concentrations, and 30 ng of extracted DNA was used
135 as template to amplify the V4 region of the 16S rRNA gene. V4 primers (515F and 806R) with
136 Illumina adapters and dual barcodes were used for amplification [32, 33]. PCR conditions
137 consisted of 95°C for 3.5 min, 30 cycles of 30 s at 95.0°C, 30 s at 50.0°C and 90 s at 72.0°C,
138 followed by final extension at 72.0°C for 10 min. PCR products were normalized based on the
139 concentration of DNA from 250-400 bp and pooled. Pooled PCR products were cleaned using the
140 Mag-Bind RxnPure Plus (Omega Bio-tek) according to the manufacturer's protocol, and the
141 cleaned pool was sequenced on the MiSeq using v2 2x250 base pair kit (Illumina, Inc, San Diego,
142 CA).

143 For the metatranscriptomes, total RNA was quantified, and purity ratios determined for
144 each sample using the NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Waltham,
145 MA, USA). To assess RNA quality, total RNA was analyzed on the Agilent TapeStation 4200
146 (Agilent Technologies, Santa Clara, CA, USA) using the RNA High Sensitivity assay following
147 the manufacturers protocol. Ribosomal Integrity Numbers (RIN) were recorded for each sample.
148 Total RNA samples (300ng of Qubit quantified total RNA input) were prepared for prokaryotic
149 transcriptome sequencing by first ribodepleting bacterial ribosomal RNA using the RiboMinus
150 Transcriptome Isolation Kit, Bacteria (ThermoFisher Scientific, Waltham, MA, USA).
151 Ribodepletion efficiency was analyzed prior to the start of library preparation on the Agilent
152 TapeStation 4200 (Agilent Technologies, Santa Clara, CA, USA) using the RNA High Sensitivity
153 assay following the manufacturers protocol. Efficient ribodepletion is supported by the
154 disappearance of the 16S and 23S ribosomal RNA peaks (~1,000 nt and ~2,000 nt, respectively),
155 with the sample's electropherogram trace now showing a smear of shorter molecules (< 1,000nt).

156 Purified ribodepleted RNA underwent library preparation using the Illumina TruSeq
157 Stranded mRNA Sample Preparation kit following the manufacturer's protocol modification for
158 purified mRNA as input (Illumina, San Diego, CA, USA). Libraries were validated for length and
159 adapter dimer removal using the Agilent TapeStation 4200 D1000 High Sensitivity assay (Agilent

160 Technologies, Santa Clara, CA, USA) then quantified and normalized using the dsDNA High
161 Sensitivity Assay for Qubit 3.0 (Life Technologies, Carlsbad, CA, USA). Sample libraries of
162 sufficient quality were sequenced (Illumina MiSeq; paired end 2 x 75bp read length) with a
163 sequencing depth targeted at 7-10M total paired end reads/sample at the Center for Genome
164 Innovation at the University of Connecticut.

165

166 *Sequence quality control, assembly, annotation, and mapping*

167 For the 16S rRNA gene amplicon data, during standard Illumina demultiplexing, sequences were
168 quality checked and trimmed to remove adaptors and barcodes. The DADA2 (v. 3.11) pipeline in
169 R (v3.6.0) was used to quality control and process the reads [34, 35], low quality read areas were
170 removed following the DADA2 default parameters. Following assessment of error rates, paired-
171 end sequences were merged, and potentially chimeric sequences removed. All unique sequences
172 at greater than 1x abundance were then labeled as amplicon sequence variants, or ASVs, for
173 taxonomic analysis. Sequences were assigned to taxonomy using RDP's Naïve Bayesian
174 Classifier with the Silva (v. 132) reference database [36, 37]. Sequences identified as chloroplast
175 or mitochondrial sequences were removed from the dataset. A multiple-sequence alignment was
176 performed using the *DECIPHER* (v. 2.0) package [38], and a phylogenetic tree was constructed
177 with the package *phangorn* (v2.4.0; [39]). Likely sequence contaminants were identified and
178 removed using the *decontam* (v1.4.0; [40]) package using the negative control samples as
179 contaminants.

180 The metatranscriptome sequences were trimmed using Trimmomatic (v0.35; [41]) with a
181 threshold of Q5 and rRNA was removed using SortMeRNA [42]). The remaining sequences were
182 de novo assembled using Trinity (v2.2.0; [43]) with the following parameters: fastq assembly
183 (left read file contained forward and unpaired reads), minimum contig length of 75 bp and
184 normalized reads. Alignment was completed using Bowtie2 (v2.2.9; [44]) and RSEM (v1.2.7,
185 [45]) estimation was used for counts of sample replicates. RSEM estimates were rounded to

186 nearest integer, length corrected (transcripts per million method), trimmed mean of M-values
187 (TMM) adjusted for normalized expression values (EdgeR v3.16.5; [46]), and batch corrected
188 with ARSyNseq (in NOISeq,[47, 48]). The metatranscriptome assembly was annotated using
189 Trinotate (v3.0.1) using the complete pipeline (<http://trinotate.github.io>).

190

191 *Statistical methods*

192 A linear regression was used to confirm weight gain of Ruddy Turnstone over the stopover
193 period. To assess microbiome taxonomic compositional change with weight gain, alpha and beta
194 diversity measures were calculated for the 16S rRNA gene amplicons. For alpha diversity
195 analyses, samples were rarefied to 10 995 sequences, which was the lowest sequence coverage of
196 our samples. Two alpha diversity measures were calculated using *phyloseq* (v1.28.0; [49]): the
197 observed number of ASVs and Shannon's Diversity Index [50]. Statistical significances for
198 differences in alpha diversity for sites, weight classes, and sexes were calculated using analysis of
199 variance (ANOVA) testing. For beta diversity, three distance metrics were calculated to describe
200 differences between samples: Bray-Curtis dissimilarity, weighted UniFrac and unweighted
201 UniFrac [51]. These distance matrices were used for non-metric multidimensional scaling
202 (NMDS). The relative contributions to the variation in microbiome composition of three variables
203 (weight class, sex, and sampling site) were calculated using permutational multivariate analysis of
204 variance (PERMANOVA) with the adonis2 function from the *vegan* package (v2.5.6; [52]). We
205 tested for homogeneity of variance among weight classes and sexes using the betadisper function,
206 also in *vegan*. Differential abundance in taxa between weight classes was conducted using
207 *DESeq2* package in R (v1.24.0; [53]). Significance was set at $\alpha=0.001$.

208 We conducted a Principal Components Analysis on the TMM normalized expression
209 counts and identified significance and relative contributions of weight class and sex in functional
210 composition. A pairwise PERMANOVA using the *pairwise.perm.manova* function in the

211 *RVAideMemoire* package (v. 0.9.75; [54]) with 1 000 permutations was used to assess
212 significance between weight classes.

213 Differential gene expression between weight classes and sexes was conducted using
214 *NOISEq* package in R (v1.24.0; [47]) with significance set to at $\alpha=0.001$. Volcano plots were
215 constructed from NOISeq data using the *EnhancedVolcano* (v1.2.0; [55]) and *ggplot2* (v3.3.0;
216 [56]) packages. To identify similar patterns of expression among differentially expressed genes, a
217 cluster analysis using the *DESeq2* (v1.24.0; [53]) and the *DEGreport* [57] packages was
218 conducted. Likelihood Ratio Testing ($\alpha_{adj}=0.001/0.01/0.05$) identified differences in expression
219 across all weight classes and identified gene clusters across groups using the *degPatterns* function
220 from *DEGreport*.

221 Because Ruddy Turnstones' main activity during stopover is acquiring fat mass, we
222 focused on genes and pathways related to lipid metabolism. A variance stabilizing transformation
223 was applied to count matrices using the *vst* function in *DeSeq2*. To assess the relationship
224 between body weight of Ruddy Turnstones and specific expressed pathways, normalized
225 expression plots were constructed for biosynthesis of all Fatty Acids (FAs), and three essential
226 Polyunsaturated Fatty Acids (PUFAs): Arachidonic acid, Linoleic acid, and alpha-Linolenic acid.

227

228 **RESULTS**

229 Ruddy Turnstones consistently gained weight over the 2018 mid-migration stopover at Delaware
230 Bay (Fig. 1; Linear Regression Model, $F_{1,89}=182.8$, adj. $R^2=0.67$, $p<0.001$). Body mass
231 significantly differed among our three sampling sites (ANOVA: $F_{2,88}=78.51$, $p<0.001$), with the
232 lowest bird weights at Swains and the highest weights at Back North (Fig. S1).

233 From the 100 fecal samples collected from Ruddy Turnstones, 90 samples were of
234 sufficient post-extraction quality for 16S rRNA gene sequencing. We sampled 45 female (F) and
235 41 male (M) Turnstones. Four individuals could not reliably be assigned a sex and are referred to

236 as unknown (U). After quality control, we retained 3 700 042 high quality sequences across the
237 90 samples with an average of $40\ 660 \pm 1\ 733$ SE sequences per sample.

238

239 ***Taxonomic Composition and Diversity Using 16S rRNA***

240 *Alpha diversity* - Shannon's diversity index ("Shannon") significantly differed among weight
241 classes (Fig. 2A, ANOVA: Shannon $F_{2,88}=5.648, p=0.005$). Light and medium weight birds
242 differed significantly from heavy birds, but not from each other (TukeyHSD: <100g - >150g,
243 $p=0.005$; 100-150g - >150g, $p=0.032$; <100g – 100-150g, $p=0.876$). Observed number of ASVs
244 did not significantly differ between weight classes (ANOVA: Observed $F_{2,88}=2.967, p=0.057$).
245 Alpha diversity significantly differed among sampling sites (ANOVA: Shannon $F_{2,88}=6.449,$
246 $p=0.002$; Observed $F_{2,88}=3.335, p=0.040$), but did not differ between sexes (ANOVA: Shannon
247 $F_{1,88}=0.136, p=0.873$; Observed $F_{1,88}=0.493, p=0.612$).

248

249 *Beta diversity* - The NMDS plot showed clustering in microbiome communities by weight class
250 and showed directional change from light to heavy birds; medium weight class birds appeared to
251 be located in between the light and heavy weight classes (Fig. 2B). Weight class ($R^2=12\%$) and
252 sampling site ($R^2=3.6\%$) were significantly associated with variation in microbiome composition
253 ($p<0.001$). Sex of the birds was not significantly correlated with microbiome composition
254 (PERMANOVA: $F_{2,84}=0.62, R^2=0.014, p=0.994$). Homogeneity of variance (beta dispersion) did
255 not significantly differ among weight classes (Permutest: $F_{8,84}=0.75, p=0.668$), sexes (Permutest:
256 $F_{2,84}=0.50, p=0.612$), or sampling sites (Permutest: $F_{2,88}=1.18, p=0.330$).

257

258 *Community Composition* – Twenty-six phyla were identified across all samples; five phyla
259 comprised 97.3% of all sequences. The dominant phylum was Fusobacteria (40.7%), followed by
260 Proteobacteria (26.7%), Firmicutes (18.9%), Bacteroidetes (5.8%), and Tenericutes (5.2%; Fig.
261 S1). The 784 genera detected contained 4 463 ASVs. The Fusobacteria phylum was dominated by

262 two genera, *Fusobacterium* and *Cetobacterium*, which together comprised >99.9% of sequences
263 within this phylum. *Helicobacter* and *Campylobacter* were the dominant genera within the
264 Proteobacteria, *Catellicoccus* within the Firmicutes, and *Bacteroides* and *Flavobacterium* within
265 the Bacteroidetes. Within the most abundant genera, only *Vibrio* and *Flavobacterium* were
266 significantly different between any weight classes (Fig. 3; full statistical tests in Supplemental
267 Table S1).

268

269 *Differential Abundance of Taxa* - Pairwise tests identified many genera associated with weight
270 class (Supplemental Table S2). Those that were consistent across both pairwise tests (e.g., taxa
271 significantly associated with light weight birds in both the light against medium and light against
272 heavy comparisons) revealed 13 differentially abundant genera. Since some of these genera
273 contained more than one differentially expressed ASV, two genera were differentially expressed
274 in all three weight categories: *Tyzzera* and *Cetobacterium* (Fig. 3E). In the light birds, only
275 *Campylobacter* was differentially expressed in both its pairwise comparisons, in the medium
276 birds, only “*Candidatus Bacilloplasma*” and in the heavy birds, *Photobacterium*, *Shewanella* and
277 *WDS1C4*. Furthermore, *Vibrio* was overexpressed in the medium and heavy birds, when
278 compared to the light. *Helicobacter*, *Catellicoccus*, *Seohaecola* and *Prevotella Ga6A1 group*
279 were significantly higher in the light and medium birds when compared to the heavy and
280 *Grimontia* was significantly higher in the light and heavy birds when compared to medium.

281

282 *Functional Dynamics of the Metatranscriptome*

283 After ribodepletion and library preparation, 22 out of 40 initially selected RNA samples were
284 suitable for metatranscriptome sequencing, including 14 males and eight females in the following
285 weight class sample sizes: light (N=7), medium (N=9), and heavy (N=5).

286 We detected a significant difference in the functional gene community (based on KEGG
287 IDs) among the three weight classes (Fig. 4, PerMANOVA: $F_{2,19}=2.78$, $R^2=0.227$, $p=0.02$), but

288 not between sexes (PerMANOVA: $F_{1,20}=1.56$, $R^2=0.027$, $p=0.605$). Light birds and medium birds
289 differed significantly from each other ($p_{adj}=0.018$), but no difference in functional community
290 was detected between light birds and heavy birds ($p_{adj}=0.366$) or between medium birds and
291 heavy birds ($p_{adj}=0.226$). PCA beta dispersion differed among weight classes (ANOVA:
292 $F_{2,19}=5.10$, $p=0.017$), which was driven by a significant difference between light birds and heavy
293 birds (TukeyHSD: $p_{adj}=0.020$). Beta dispersion did not differ between light birds and medium
294 birds (TukeyHSD: $p_{adj}=0.074$) nor between medium birds and heavy birds (TukeyHSD:
295 $p_{adj}=0.588$).

296

297 *Differential expression* - Several KEGG objects were differentially expressed among weight
298 classes (light vs. medium, $N=7$; light vs. heavy, $N=4$; medium vs. heavy, $N=1$; Fig. 5,
299 Supplemental Table S3). One, K06422, was differentially expressed between female and male
300 individuals, as well as in light birds. K06422 is an unclassified gene that is active in small acid-
301 soluble spore protein E (*sspE*) production during cell growth.

302 Expression of three polyunsaturated fatty acids were significantly associated with weight
303 (Fig. 6): linoleic acid metabolism ($R^2=0.19$, $p=0.024$), alpha-linoleic acid metabolism ($R^2=0.23$,
304 $p=0.014$), arachidonic acid metabolism ($R^2=0.39$, $p=0.001$). Biosynthesis of unsaturated fatty
305 acids was not significantly associated with weight ($R^2=0.03$, $p=0.216$).

306 A clustering analysis was performed to group genes with shared expression patterns
307 together, resulting in four clusters at $p<0.05$ (Fig. 7, Supplemental Table S4). Group 1 ($N=130$
308 genes) and Group 3 ($N=76$ genes) had light birds with contrasting expression patterns to the
309 medium and heavy birds. Group 2 ($N=9$ genes) and Group 4 ($N=22$ genes) had medium weight
310 birds as the highest or lowest expression group, respectively. All genes, regardless of
311 significance, were analyzed as well and resulted in the same four expression patterns.

312

313 **DISCUSSION**

314 The microbiome is intertwined with host health, behavior and fitness and the microbiota can play
315 a key role in weight gain in model organisms and humans [11, 58]. Shorebirds participate in
316 extreme foraging behavior and rapid weight gain at stopovers during long distance migrations.
317 Examining extreme behaviors or physiological processes may provide novel insight into the
318 limits of how microbes facilitate vertebrate biology, and this has potential applied benefits to
319 human health. In a broader sense, many animals experience periods of rapid or sustained weight
320 gain (e.g., before migration or hibernation) or periods of weight loss, fasting or starvation that
321 must be recovered from. Here, we have shown in a system with a uniform diet at geographically
322 close sampling sites, that as the host's body undergoes rapid weight gain, the taxonomic
323 composition of the fecal microbiome changes in tandem with the host, as do some of the
324 functional capabilities of the microbiome.

325 Migration causes a significant disturbance to a bird's physiology and homeostasis;
326 individual migrants can lose diversity of the microbiome during flight [59] and a corresponding
327 successional recovery of the microbiota makes intuitive sense. Ruddy Turnstones gain an average
328 of 50% body weight during stopover at Delaware Bay; therefore, the weight of a bird is a proxy
329 for how long it has been at stopover. The three weight classes, light, medium and heavy, form
330 significantly distinct clusters in our beta diversity ordinations based on 16S taxonomic
331 composition and the medium weight birds are generally distributed between the low and heavy
332 clusters (Fig. 2). This pattern implies successional change in the taxonomic composition of the
333 fecal microbiome during stopover.

334 We used two methods to identify patterns within the taxa of the microbiomes: differential
335 abundance analysis and ANOVA of the most abundant genera within the most abundant phyla.
336 Succession within the microbiota may be further corroborated by the differentially abundant
337 genera found across multiple pairwise tests (Fig. 3, Table S1). Of particular note is that the genera
338 *Helicobacter*, *Catellicococcus* and *Campylobacter* are known bird gut-associated bacteria [60,
339 61] and these are more abundant in the light (or light and medium) birds. One hypothesis is that

340 as the birds lose weight mid-migration, the bacteria that have co-evolved to live with the birds are
341 in the mucus that remains in the gut while all transient or less well adapted bacteria are flushed
342 from the system. As they fatten, environmental (e.g., *Maribacter*, *Denitromonas*), and fatty acid
343 producing marine bacteria (e.g., *Vibrio*, *Shewanella*, *Photobacterium*, [62]) may flourish.

344 These taxonomic results contradicted our expectation that taxa from the Firmicutes would
345 increase as birds gained weight, since Firmicutes have been associated with obesity or weight
346 gain in mammals (but see [12]). The most abundant Firmicutes in the shorebirds were not
347 significantly different between the weight classes (Fig. 3A). The genera *Flavobacterium*
348 (Phylum: Flavobacteria) was significantly higher in heavy birds when compared to medium birds
349 and *Vibrio* (Phylum: Proteobacteria) were significantly higher in the heavy birds when compared
350 to both the light and medium birds (Fig. 3). Succession in microbiomes is seen in many vertebrate
351 systems (e.g., [24, 63]) and occurs after periods of microbiome disturbance (e.g., antibiotic
352 treatment). Our birds' alpha diversity statistics trended upward the heavier they got, perhaps
353 supporting a successional recovery of the microbiota. Continued investigation into the stability
354 and resilience of microbiomes post-migration, and especially across years, would tell us how
355 stable the shorebird microbiome is, on both short and long-term scales.

356 Sampling site was statistically associated with beta diversity in our 16S rRNA analyses,
357 although with an effect size approximately one quarter of the weight class. We also detected a
358 pattern between bird weight and the three sampling sites (Fig. S2). We hypothesize this is
359 because sampling sites vary in food quality and better-quality sites are defended by larger birds.
360 Broad scale associations between (food) quality of the sampling site and weight of the birds was
361 observed, with lighter birds more frequently found on the lower quality sites, and heavier birds on
362 the higher quality sites [64, 65].

363 As a community, and in contrast to the patterns displayed in taxonomic beta diversity
364 (Fig. 2B), the medium weight functional communities were not obviously intermediate to the
365 light and heavy weight categories (Fig. 4), although weight class was significantly associated

366 with the variation of the samples ($R^2=0.22$, $p=0.02$). To identify genes that may be associated
367 with weight or weight gain, we used multiple methods: an unbiased pairwise significance test
368 (Fig. 5), a cluster analysis (Fig. 7), and by specifically looking at pathways involved in
369 polyunsaturated fatty acid biosynthesis (Fig. 6).

370 Using the pairwise significance test, most functions were not significantly different
371 between the weight classes; only 10 functions (KEGG IDs, Table S3) rose above the significance
372 threshold of $p<0.001$. Of these 10 functions, K06422 showed up most, as significantly higher in
373 light birds (when compared to both medium and heavy birds) and as the only significant
374 difference between males and females (higher in males). K06422 is associated with *sspE*, a small
375 acid-soluble spore protein. As sporulation is a response to starvation in some bacteria, it may be
376 that this protein is overrepresented in the light birds because they are underweight, and the
377 microbiota had entered a stress/starvation response. The other functions associated with the light
378 birds, K01886 and K08139 are also generally associated with cell growth and metabolism. The
379 functions associated with the medium weight birds were all potentially associated with proteins
380 (Arginine biosynthesis, ribosome biogenesis and heat shock proteins). K13993 is also associated
381 with tissue remodeling and is significantly higher in both the medium and heavy birds when
382 compared to light. This result seems counterintuitive as fattening shorebirds are known to switch
383 from protein recovery post-migration to fat deposition around medium weight [5]. However,
384 bacteria are known to digest dietary protein to produce secondary metabolites, such as amino
385 acids, which could play a thus far unknown role in shorebird fattening [66]. Additionally, some
386 tissues and organs are grown throughout the stopover period in other shorebirds [67] and may
387 influence the microbiota.

388 The pathways identified in the heavy birds are more diverse than the previous groups.
389 They include functions that refer to organismal systems and human diseases (K00413) and
390 structural proteins (K07625). Of particular note is K08720, which is associated with *Vibrio*
391 biofilm formation, and may specifically involve iron balance [68]. *Vibrio* was one of the taxa that

392 was associated with heavier birds and is known to be a main microbial producer of
393 polyunsaturated fatty acids [62]. *Vibrio* are also found in the horseshoe crab microbiome [69], so
394 the increase could be due to dietary intake and benefit the host. Hosts could also be internally
395 filtering for *Vibrio*, or both processes could happen in tandem.

396 The clustering analysis that grouped genes based on shared expression patterns detected
397 four clusters. The 237 genes within these four clusters may contain interesting targets for groups
398 of genes that perform together and differentially depending on bird weight. Since birds go
399 through a period of protein recovery and immune suppression when they first land [70], genes in
400 Groups 1 and 3 affected by those processes. The immediate arrival of birds also returns the
401 microbes to a state of non-starvation, and genes in Group 3 could be many of those involved in
402 cell growth and division. Conversely, and if the birds do benefit from the metabolites or products
403 of the microbiota, as medium and heavy birds are prioritizing weight gain, the genes in Groups 1
404 and 3 may be downregulated and upregulated for fat deposition, respectively. The genes in
405 Groups 2 and 4 could be those responding to the immediate recovery of the microbiota and the
406 bird's final preparations for flight; shorebirds both gain and lose particular muscles and tissues in
407 response to and preparation for flight, and how the microbiota respond to those changes requires
408 further investigation.

409 We investigated an *a priori* hypothesis that polyunsaturated fatty acid biosynthesis would
410 increase as the birds fatten. “Essential” fatty acids are those an animal needs but cannot produce;
411 the diet of horseshoe crab eggs provide the essential fatty acids birds need and PUFAs in
412 particular are an extremely efficient way to store energy that shorebirds use to power their
413 migrations. Alpha-Linoleic acid is an n-3 PUFA, whereas Linoleic acid and Arachidonic acid
414 are n-6 PUFAs. These different categories of PUFA can have multiple and antagonistic effects
415 [71]. We hypothesize that the microbiome may also be producing essential fatty acids for the
416 birds during weight gain. This unconventional hypothesis would require tracking experiments to
417 confirm, but in our analyses, all three PUFAs (Linoleic acid, alpha-Linolenic acid and

418 Arachidonic acid) significantly increased as the birds gained weight (Fig. 6). Is the increase of
419 PUFAs simply a reflection of the microbiome rebounding and being a bigger collection of
420 microbes? General biosynthesis of unsaturated fatty acids did not significantly increase with
421 weight gain, indicating possible opposite patterns in other unsaturated FAs. A next step in our
422 study is to investigate the full spectrum of fatty acids to identify patterns in abundance with
423 weight change and pursue mechanistic explanations.

424

425 **DATA AVAILABILITY**

426 Sequence and metadata will be made available on Figshare and the NCBI SRA upon acceptance.

427

428 **ACKNOWLEDGMENTS**

429 We thank the Delaware Division of Fish and Wildlife and the Delaware Shorebird Project for
430 allowing us to collect samples under their permits. This work was supported by the University of
431 Connecticut [start-up funding to SMH]. Fieldwork of this project was funded, in part, through a
432 grant from the United States Fish & Wildlife Service's State Wildlife Grant Program. This work
433 does not represent the opinions of the State of Delaware, Delaware Department of Natural
434 Resources & Environmental Control or Delaware Division of Fish & Wildlife. Our work was
435 conducted on the traditional and unceded land and territories of the Lenape Mohegan,
436 Schaghticoke, Mashantucket Pequot, Eastern Pequot, Golden Hill Paugussett, and Nipmuc
437 Peoples (CT), and the and Nanticoke Nations (DE).

438

439 **CONFLICT OF INTERESTS STATEMENT**

440 The authors declare no conflict of interests.

441

442 **ETHICS STATEMENT**

443 Samples were collected with permission from the Delaware Division of Fish and Wildlife-
444 Department of Natural Resources and Environmental Control [2018-WSC-031 to KG], and the
445 Federal Bird Banding Permit [23332 to Delaware Division of Fish and Wildlife-Department of
446 Natural Resources and Environmental Control].

447

448 **REFERENCES**

449

- 450 1. Gutiérrez JS, Sabat P, Castañeda LE, Contreras C, Navarrete L, Peña-Villalobos I, et al.
451 Oxidative status and metabolic profile in a long-lived bird preparing for extreme endurance
452 migration. *Sci Rep* 2019; **9**: 17616.
- 453 2. Weber J-M. The physiology of long-distance migration: extending the limits of endurance
454 metabolism. *J Exp Biol* 2009; **212**: 593–597.
- 455 3. Battley PF, Piersma T, Dietz MW, Tang S, Dekking A, Hulsmann K. Empirical evidence for
456 differential organ reductions during trans-oceanic bird flight. *Proceedings of the Royal
457 Society of London Series B: Biological Sciences* 2000; **267**: 191–195.
- 458 4. Mathot KJ, Kok EMA, Burant JB, Dekking A, Manche P, Saintonge D, et al. Evolutionary
459 design of a flexible, seasonally migratory, avian phenotype: why trade gizzard mass against
460 pectoral muscle mass? *Proc Biol Sci* 2019; **286**: 20190518.
- 461 5. Atkinson PW, Baker AJ, Bennett KA, Clark NA, Clark JA, Cole KB, et al. Rates of mass
462 gain and energy deposition in red knot on their final spring staging site is both time- and
463 condition-dependent: Mass gain in red knot. *J Appl Ecol* 2007; **44**: 885–895.
- 464 6. Lindstrom A. Maximum Fat Deposition Rates in Migrating Birds. *Ornis Scandinavica* .
465 1991. , **22**: 12
- 466 7. Bairlein F. How to get fat: nutritional mechanisms of seasonal fat accumulation in migratory
467 songbirds. *Naturwissenschaften* 2002; **89**: 1–10.
- 468 8. Barko PC, McMichael MA, Swanson KS, Williams DA. The Gastrointestinal Microbiome:

469 A Review. *J Vet Intern Med* 2018; **32**: 9–25.

470 9. John GK, Wang L, Nanavati J, Twose C, Singh R, Mullin G. Dietary Alteration of the Gut
471 Microbiome and Its Impact on Weight and Fat Mass: A Systematic Review and Meta-
472 Analysis. *Genes* 2018; **9**.

473 10. Wilson AS, Koller KR, Ramaboli MC, Nesengani LT, Ocvirk S, Chen C, et al. Diet and the
474 Human Gut Microbiome: An International Review. *Dig Dis Sci* 2020; **65**: 723–740.

475 11. Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked
476 but reversible alterations in the mouse distal gut microbiome. *Cell Host Microbe* 2008; **3**:
477 213–223.

478 12. Magne F, Gotteland M, Gauthier L, Zazueta A, Pesoa S, Navarrete P, et al. The
479 Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients?
480 *Nutrients* 2020; **12**.

481 13. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-
482 associated gut microbiome with increased capacity for energy harvest. *Nature* 2006; **444**:
483 1027–1031.

484 14. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut microbiota from
485 twins discordant for obesity modulate metabolism in mice. *Science* 2013; **341**: 1241214.

486 15. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core
487 gut microbiome in obese and lean twins. *Nature* 2009; **457**: 480–484.

488 16. Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an
489 environmental factor that regulates fat storage. *Proc Natl Acad Sci U S A* 2004; **101**: 15718–
490 15723.

491 17. Sanmiguel C, Gupta A, Mayer EA. Gut Microbiome and Obesity: A Plausible Explanation
492 for Obesity. *Curr Obes Rep* 2015; **4**: 250–261.

493 18. Regan MD, Chiang E, Liu Y, Tonelli M, Verdoorn KM, Gugel SR, et al. Nitrogen recycling
494 via gut symbionts increases in ground squirrels over the hibernation season. *Science* 2022;

495 **375**: 460–463.

496 19. Sommer F, Ståhlman M, Ilkayeva O, Arnemo JM, Kindberg J, Josefsson J, et al. The Gut
497 Microbiota Modulates Energy Metabolism in the Hibernating Brown Bear *Ursus arctos*.
498 *Cell Rep* 2016; **14**: 1655–1661.

499 20. Jukes TH, Williams WL. Nutritional effects of antibiotics. *Pharmacol Rev* 1953; **5**: 381–
500 420.

501 21. Lutful Kabir SM. The role of probiotics in the poultry industry. *Int J Mol Sci* 2009; **10**:
502 3531–3546.

503 22. Grond K, Santo Domingo JW, Lanctot RB, Jumpponen A, Bentzen RL, Boldenow ML, et
504 al. Composition and Drivers of Gut Microbial Communities in Arctic-Breeding Shorebirds.
505 *Front Microbiol* 2019; **10**: 2258.

506 23. Grond K, Ryu H, Baker AJ, Santo Domingo JW, Buehler DM. Gastro-intestinal microbiota
507 of two migratory shorebird species during spring migration staging in Delaware Bay, USA.
508 *J Ornithol* 2014; **155**: 969–977.

509 24. Grond K, Lanctot RB, Jumpponen A, Sandercock BK. Recruitment and establishment of the
510 gut microbiome in arctic shorebirds. *FEMS Microbiol Ecol* 2017; **93**.

511 25. Risely A, Waite DW, Ujvari B, Hoye BJ, Klaassen M. Active migration is associated with
512 specific and consistent changes to gut microbiota in Calidris shorebirds. *J Anim Ecol* 2018;
513 **87**: 428–437.

514 26. Risely A, Waite D, Ujvari B, Klaassen M, Hoye B. Gut microbiota of a long-distance
515 migrant demonstrates resistance against environmental microbe incursions. *Mol Ecol* 2017.

516 27. Burke C, Steinberg P, Rusch D, Kjelleberg S, Thomas T. Bacterial community assembly
517 based on functional genes rather than species. *Proc Natl Acad Sci U S A* 2011; **108**: 14288–
518 14293.

519 28. Xenophontos C, Taubert M, Stanley Harpole W, Küsel K. Phylogenetic and functional
520 diversity have contrasting effects on the ecological functioning of bacterial communities.

521 *bioRxiv* . 2019. , 839696

522 29. Tsipoura N, Burger J. Shorebird Diet during Spring Migration Stopover on Delaware Bay.

523 *Condor* 1999; **101**: 635–644.

524 30. Knutie SA, Gotanda KM. A Non-invasive Method to Collect Fecal Samples from Wild

525 Birds for Microbiome Studies. *Microb Ecol* 2018.

526 31. Rodrigues RC, Azevedo-Júnior SM de, Larrazábal MEL de, Araujo HFP de. Temporal

527 variations of body mass and plumage in *Arenaria interpres* (Aves: Scolopacidae) along the

528 Brazilian coast. *Zoologia* 2009; **26**: 386–390.

529 32. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-

530 index sequencing strategy and curation pipeline for analyzing amplicon sequence data on

531 the MiSeq Illumina sequencing platform. *Appl Environ Microbiol* 2013; **79**: 5112–5120.

532 33. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al.

533 Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. *Proc*

534 *Natl Acad Sci U S A* 2011; **108**: 4516–4522.

535 34. R Core Team. R: a language and environment for statistical computing. 2012. Vienna,

536 Austria.

537 35. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-

538 resolution sample inference from Illumina amplicon data. *Nat Methods* 2016; **13**: 581–583.

539 36. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment

540 of rRNA sequences into the new bacterial taxonomy. *Appl Environ Microbiol* 2007; **73**:

541 5261–5267.

542 37. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, et al. SILVA: a

543 comprehensive online resource for quality checked and aligned ribosomal RNA sequence

544 data compatible with ARB. *Nucleic Acids Res* 2007; **35**: 7188–7196.

545 38. Wright ES. Using DECIPIER v2. 0 to analyze big biological sequence data in R. *R J* 2016;

546 **8**.

547 39. Schliep KP. phangorn: phylogenetic analysis in R. *Bioinformatics* 2011; **27**: 592–593.

548 40. Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple statistical
549 identification and removal of contaminant sequences in marker-gene and metagenomics
550 data. *Microbiome* 2018; **6**: 226.

551 41. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence
552 data. *Bioinformatics* 2014; **30**: 2114–2120.

553 42. Kopylova E, Noé L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs
554 in metatranscriptomic data. *Bioinformatics* 2012; **28**: 3211–3217.

555 43. Garber M, Grabherr MG, Guttman M, Trapnell C. Computational methods for transcriptome
556 annotation and quantification using RNA-seq. *Nat Methods* 2011; **8**: 469–477.

557 44. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nat Methods* 2012;
558 **9**: 357–359.

559 45. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or
560 without a reference genome. *BMC Bioinformatics* 2011; **12**: 323.

561 46. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential
562 expression analysis of digital gene expression data. *Bioinformatics* 2010; **26**: 139–140.

563 47. Tarazona S, Furió-Tarí P, Turrà D, Pietro AD, Nueda MJ, Ferrer A, et al. Data quality aware
564 analysis of differential expression in RNA-seq with NOISeq R/Bioc package. *Nucleic Acids
565 Res* 2015; **43**: e140.

566 48. Tarazona S, García-Alcalde F, Dopazo J, Ferrer A, Conesa A. Differential expression in
567 RNA-seq: a matter of depth. *Genome Res* 2011; **21**: 2213–2223.

568 49. McMurdie PJ, Holmes S. phyloseq: An R Package for Reproducible Interactive Analysis
569 and Graphics of Microbiome Census Data. *PLoS One* 2013; **8**: e61217.

570 50. Shannon CE, Weaver W, Wiener N. The Mathematical Theory of Communication. *Physics
571 Today* . 1950. , **3**: 31–32

572 51. Lozupone C, Knight R. UniFrac: a New Phylogenetic Method for Comparing Microbial

573 Communities. *Appl Environ Microbiol* 2005; **71**: 8228–8235.

574 52. Oksanen J, Blanchet FG, Kindt R, Legendre P, O'hara RB, Simpson GL, et al. *vegan*:

575 Community Ecology Package. R package version 1.17-2. <http://cran.r-project.org> > Acesso

576 em 2010; **23**: 2010.

577 53. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for

578 RNA-seq data with DESeq2. *Genome Biol* 2014; **15**: 550.

579 54. Hervé M. *RVAideMemoire*: testing and plotting procedures for biostatistics. *R Package*

580 Version 0.9-69 Available online at: <https://CRAN.R-project.org/package=RVAideMemoire>

581 2018.

582 55. Blighe K, Rana S, Lewis M. *EnhancedVolcano*: Publication-ready volcano plots with

583 enhanced colouring and labeling. *R package version* 2019; **1**.

584 56. Wickham H. *ggplot2*-Elegant Graphics for Data Analysis. Springer International Publishing.

585 Cham, Switzerland 2016.

586 57. Pantano L. *DEGreport*: Report of DEG analysis. 2022.

587 58. Bouter KE, van Raalte DH, Groen AK, Nieuwdorp M. Role of the Gut Microbiome in the

588 Pathogenesis of Obesity and Obesity-Related Metabolic Dysfunction. *Gastroenterology*

589 2017; **152**: 1671–1678.

590 59. Skeen HR, Cooper NW, Hackett SJ, Bates JM, Marra PP. Repeated sampling of individuals

591 reveals impact of tropical and temperate habitats on microbiota of a migratory bird. *Mol*

592 *Ecol* 2021; **30**: 5900–5916.

593 60. Lu J, Santo Domingo JW, Lamendella R, Edge T, Hill S. Phylogenetic diversity and

594 molecular detection of bacteria in gull feces. *Appl Environ Microbiol* 2008; **74**: 3969–3976.

595 61. Zhang Z, Yang Z, Zhu L. Gut microbiome of migratory shorebirds: Current status and

596 future perspectives. *Ecol Evol* 2021; **11**: 3737–3745.

597 62. Moi IM, Leow ATC, Ali MSM, Rahman RNZRA, Salleh AB, Sabri S. Polyunsaturated fatty

598 acids in marine bacteria and strategies to enhance their production. *Appl Microbiol*

599 *Biotechnol* 2018; **102**: 5811–5826.

600 63. Guittar J, Shade A, Litchman E. Trait-based community assembly and succession of the
601 infant gut microbiome. *Nat Commun* 2019; **10**: 512.

602 64. Fernández G, Lank DB. Sex, age, and body size distributions of western sandpipers during
603 the nonbreeding season with respect to local habitat. *Condor* 2006; **108**: 547.

604 65. Leyrer J, Lok T, Brugge M, Dekking A, Spaans B, van Gils JA, et al. Small-scale
605 demographic structure suggests preemptive behavior in a flocking shorebird. *Behav Ecol*
606 2012; **23**: 1226–1233.

607 66. Metges CC. Contribution of microbial amino acids to amino acid homeostasis of the host. *J*
608 *Nutr* 2000; **130**: 1857S–64S.

609 67. Piersma T, Gudmundsson GA, Lilliendahl K. Rapid changes in the size of different
610 functional organ and muscle groups during refueling in a long-distance migrating shorebird.
611 *Physiol Biochem Zool* 1999; **72**: 405–415.

612 68. Lv T, Dai F, Zhuang Q, Zhao X, Shao Y, Guo M, et al. Outer membrane protein OmpU is
613 related to iron balance in *Vibrio alginolyticus*. *Microbiol Res* 2020; **230**: 126350.

614 69. Friel AD, Neiswenter SA, Seymour CO, Bali LR, McNamara G, Leija F, et al. Microbiome
615 Shifts Associated With the Introduction of Wild Atlantic Horseshoe Crabs (*Limulus*
616 polyphemus) Into a Touch-Tank Exhibit. *Front Microbiol* 2020; **11**: 1398.

617 70. Buehler DM, Tielemans BI, Piersma T. Indices of Immune Function are Lower in Red Knots
618 (*Calidris canutus*) Recovering Protein than in those Storing Fat During Stopover in
619 Delaware Bay. *Auk* 2010; **127**: 394–401.

620 71. Schmitz G, Ecker J. The opposing effects of n-3 and n-6 fatty acids. *Prog Lipid Res* 2008;
621 **47**: 147–155.

622

623 **FIGURE LEGENDS**

624 **Figure 1.** Ruddy Turnstone attributes. (A) Distribution of North, Central and South American

625 breeding and non-breeding grounds. (B) Sampling site (Delaware Bay, DE). (C) Female (left) and
626 male (right) breeding plumage, photos (C) Gregory Breese, US Fish and Wildlife Service. (D)
627 Weight distribution of 91 Ruddy Turnstones sampled during stopover in 2018, linear regression
628 line with region of standard error highlighted in gray (adjusted $R^2 = 0.67$).

629 **Figure 2.** Alpha diversity of the three weight classes (p -values < 0.005 shown). (B) Non-metric
630 Multidimensional Scaling ordination constructed from a Bray-Curtis matrix of 16S rRNA gene
631 communities. Shapes and colors represent the three weight classes (black/triangle = Heavy,
632 gray/square = Medium, white/circle = Light).

633 **Figure 3.** Relative abundance of the dominant genera within the four most abundant phyla (A)
634 Firmicutes, (B) Proteobacteria, (C) Bacteroidetes, (D) Fusobacteria. Genera are separated by
635 weight on the x-axis; all significant ($p < 0.05$) changes within the genera across weight classes are
636 noted with respective p -values. (E) Genera detected by DESeq2 analysis to be differentially
637 abundant in two pairwise comparisons (light v medium, medium v heavy, light v heavy). NOTE:
638 Because some genera had more than one ASV differentially expressed, and those ASVs might
639 have been present in both categories, it's possible to have genera overexpressed in all three
640 categories.

641 **Figure 4.** Principal components analysis of fecal metatranscriptomes collected from Ruddy
642 Turnstones of different weights in Delaware Bay. Transcript counts were log-transformed, and
643 colors/shapes represent the three bird weight classes.

644 **Figure 5.** Volcano plots showing differentially expressed genes in metatranscriptomes from
645 different weight classes and sexes of Ruddy Turnstones. The horizontal lines represent $p=0.001$.
646 Genes that are differentially over or under expressed are identified with corresponding KEGG
647 IDs.

648 **Figure 6.** Linear regression (dotted line with gray 95% confidence intervals) of mean normalized
649 expression of (A) Biosynthesis of unsaturated fatty acids, (B) Linoleic acid metabolism, (C)
650 alpha-Linoleic acid metabolism, (D) Arachidonic acid metabolism. Error bars represent standard

651 errors.

652 **Figure 7.** Clusters of genes with significantly similar expression across the weight classes
653 (alpha=0.05). Y-axis represents Z-score. Positive values are upregulated compared to the average
654 Z-score and vice versa for negative values.

655

656 **SUPPLEMENTARY INFORMATION**

657 **Supplemental Table S1.** All ANOVA p-values for detection of significant changes within genera
658 across weight classes.

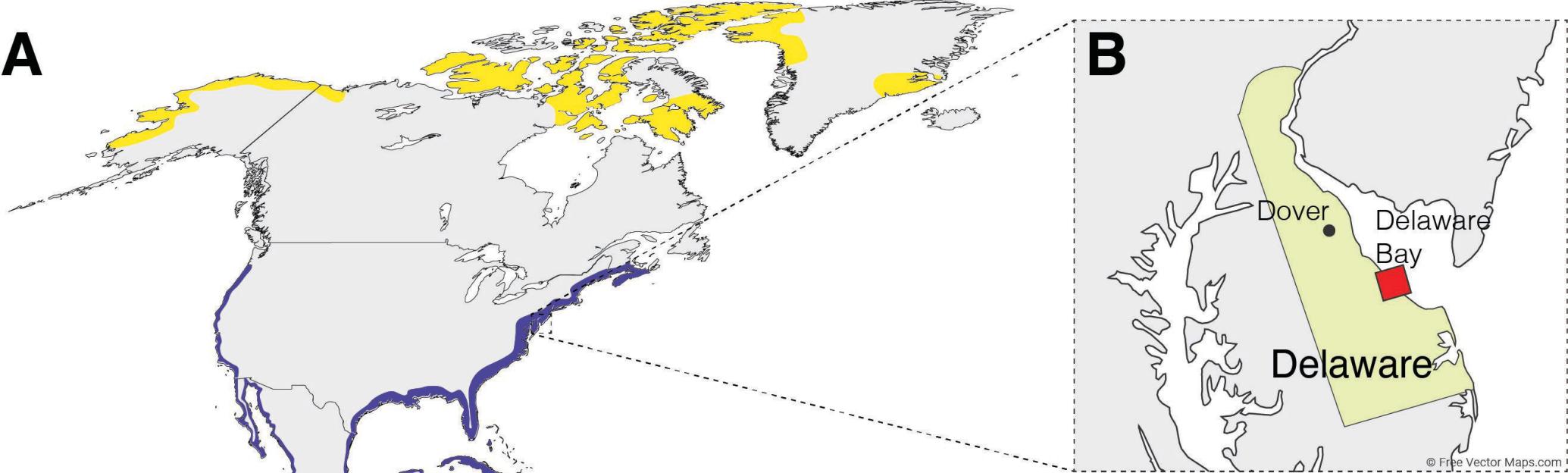
659 **Supplemental Table S2.** All genera identified as significantly overexpressed in the pairwise
660 DESeq differential abundance analyses using amplicon data. Taxa that were detected in more
661 than one pairwise comparison are bolded and on the same line of the table; the weight class (WC)
662 in which the genus was overrepresented is shown and also denoted by color (yellow = Light,
663 green = Medium, orange = Heavy).

664 **Supplemental Table S3.** All KEGG ID information for the functions identified as significant in
665 the differential expression analysis.

666 **Supplemental Table S4.** All KEGG ID information for the functions identified as significant in
667 the clustering analysis.

668 **Supplemental Figure S1.** Relationship between body weight and geographic sampling site.

669 **Supplemental Figure S2.** Individual level relative abundances of bacterial phyla, using 16S
670 rRNA amplicon data.

A**B****C**