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ABSTRACT 

Small nucleotide variants in non-coding regions of the genome can alter transcriptional regulation, 

leading to changes in gene expression which can activate oncogenic gene regulatory networks. 

Melanoma is heavily burdened by non-coding variants, representing over 99% of total genetic 

variation, including the well-characterized TERT promoter mutation. However, the compendium 

of regulatory non-coding variants is likely still functionally under-characterized. We developed a 

pipeline to identify hotspots, i.e. recurrently mutated regions, in melanoma containing putatively 

functional non-coding somatic variants that are located within predicted melanoma-specific 

regulatory regions. We identified hundreds of statistically significant hotspots, including the 

hotspot containing the TERT promoter variants, and focused in on a hotspot in the promoter of 

CDC20. We found that variants in the promoter of CDC20, which putatively disrupt an ETS motif, 

lead to lower transcriptional activity in reporter assays. Using CRISPR/Cas9, we generated an 

indel in the CDC20 promoter in a human A375 melanoma cell line and observed decreased 

expression of CDC20, changes in migration capabilities, and an altered transcriptional state 

previously associated with neural crest transcriptional programs and melanoma initiation.  Overall, 

our analysis prioritized several recurrent functional non-coding variants that, through 

downregulation of CDC20, led to perturbation of key melanoma phenotypes.  

 

INTRODUCTION 

With the widespread availability of whole-genome sequencing and fewer discoveries of 

novel functional coding mutations, recent efforts have increasingly focused on identification and 

characterization of variants in the non-coding space of cancer genomes. Cis-regulatory variants 

(CRV) modulate transcription by altering the regulatory landscape of a gene, which in turn can 

lead to dysregulation of genes involved in cancer-driving pathways. Identifying CRVs of interest 

is therefore, generally, a three-step process: (1) identification of variants by whole-genome or 

targeted sequencing, (2) validation of variants through reporter assays and/or precise genome 
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editing, (3) and characterization of the effect of the gene targeted by the CRV on tumorigenesis 

or cancer cell biology. For example, TERT promoter mutations were one of the earliest highly 

recurrent non-coding mutations identified in melanoma and are remarkable due to both a strong 

activating effect and prevalence in multiple cancers1–3. Present in ~80% of cutaneous melanomas, 

the TERT promoter mutation creates a novel ETS motif that leads to binding of GABPA and 

derepression of TERT4. The full extent of TERT’s influence on tumorigenesis, particularly via this 

regulatory variant, is still emerging, including its canonical role on telomere maintenance3,5. 

Beyond TERT promoter variants, few other CRVs have been identified and characterized in 

melanoma1,2,6–10. The next most common mutations in cutaneous melanoma are coding mutations 

in the MAPK pathway, predominantly BRAFV600E/K and NRASQ61K, as well as loss of key tumor 

suppressors like TP53, PTEN, and CDKN2A11,12, all with relatively clear canonical growth 

regulatory and proliferative functions. 

Taking a more global view of gene expression, numerous RNA-sequencing studies, both 

from bulk and single-cell sources, have detected distinct transcriptional states in various 

melanoma populations13–16. For example, high levels of MITF are associated with a more 

proliferative/melanocytic state, while high levels of AXL are associated with an invasive 

state13,15,17. In between these two states is a stable intermediate state, that has been recently 

identified, and is orchestrated by a different set of transcription factors13. Additionally, a neural 

crest transcriptional program, present in the developmental precursors of melanocytes, is 

prominent in the first cells of melanoma18,19. Aside from amplifications of MITF in 5-10% of 

melanomas, no other recurrent protein coding mutations have been associated with these distinct 

transcriptional subpopulations11,12, leading to our hypothesis that CRVs could be a source of 

transcriptional dysregulation. 

Guided by the threefold process described above, we leveraged whole genome 

sequencing of 183 melanomas from the International Cancer Genome Consortium and 69 

melanoma-specific chromatin functional datasets to identify recurrent non-coding variants 
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enriched in potentially functional enhancers/promoters. We validated several variants in the 

CDC20 promoter which decrease CDC20 promoter/enhancer-dependent reporter gene 

expression. We went further to genome engineer a promoter indel using CRISPR/Cas9 at this 

variant location in melanoma cell lines, which leads to decreased CDC20 expression, and then 

characterize the potential effects of the variant on cell viability, migration, and global gene 

expression changes, specifically in a subset of neural crest transcription factors. 

 

RESULTS 

Putative regulatory regions in melanoma are enriched for hotspot mutations 

To identify recurrent non-coding mutations in human melanoma, we used variants called 

from whole genome sequencing (WGS) data from the International Cancer Genome Consortium 

(ICGC), the largest collection of WGS for melanoma to our knowledge, including 183 melanoma 

samples made up of 75 primary tumors, 93 metastases, and 15 human melanoma cell lines, as 

exome sequencing does not include full promoters or distal regulatory elements. The bulk of these 

tumors are cutaneous (140) but includes 35 acral and 8 mucosal melanomas.  A total of 

20,894,255 substitutions and 96,467 indels were identified from the ICGC Melanoma cohort12.  

To refine our search space, we collated 69 previously published ChIP-seq and ATAC-seq 

datasets that were specifically performed on melanoma or melanocyte samples18,20–38 

(Supplemental Table 1). We reasoned these regions of the genome are more likely to bind 

transcription/chromatin factors and refer to them as putative melanoma regulatory regions 

(pMRRs). Genomic regions outside the pMRRs (red box, indicated by the lack of peak, Figure 

1A) serve as an empirical null distribution but still have large numbers of recurrent mutations.  
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pMRRs account for only ~12% of the genome and harbor 2,142,063 variants (~10% of 

total variants detected in the ICGC cohort).  Of these, 444,161 variants are merged into 118,741 

hotspots (3 or more variants within 25 bp are merged). Our empirical null distribution accounts for 

5,478,131 variants within 1,462,992 hotspots. The remaining variants are isolated (i.e. not within 

25 bp of another variant) and thus were not designated as hotspots. 

All hotspots are also scored based on recurrence (donor score) and the average predicted 

impact of all variants within a hotspot as computed by the FunSeq2 algorithm, which weighs 

attributes such as evolutionary conservation and likelihood of TF motif creation/destruction 

(Funseq2 score, Figure 1A’)39. Hotspots in pMRRs have higher hotspot scores (product of donor 

score and FunSeq2 score) than those in null regions (Figure 1B). While donor scores are 4.9-fold 

higher in hotspots within pMRRs than those in null regions, FunSeq2 scores are 6.7-fold higher, 

drastically reducing the hotspot scores in regions outside of pMRRs and therefore potentially 

reducing false positives (Figure 1C).  

Promoter regions are enriched in statistically significant test hotspots, while top-scoring 

null hotspots are commonly found in intergenic regions (Figure 1D). We identified 140 hotspots 

with FDR-adjusted p-values = 0 encompassing 2,631 mutations, notably including the known 

TERT promoter variant which has the 13th highest hotspot score (Supplemental Table 2).  

In order to evaluate for enrichment of putative TF binding site motifs, we used Homer 

analysis of pMRRs which identified motifs for TFs known to play prominent roles in melanoma, 

including SOX1018,40,41 (p-value = 1 x 10-472) and ETS family factors42 (Supplemental Figure 1A), 

as well the multifunctional chromatin regulator CTCF (p-value = 1 x 10-6092). However, pMRRs 

that encompassed statistically significant hotspots are only enriched in ETS motifs, as previously 

observed43 (Supplemental Figure 1A). No ETS factor motifs are enriched in the mutant 

sequences, suggesting that most mutations break ETS transcription factor motifs (Supplemental 

Figure 1A). We found an almost identical distribution of mutations around the canonical GGAA 
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ETS motif within the significant hotspots identified in our pipeline as previously reported43 (Figure 

1E).  

To focus our efforts on a candidate(s) among the top scoring hotspots (i.e. those with 

scores higher than TERT, encompassing thirteen candidates), we looked for consistent changes 

in gene expression for the gene nearest the recurrent variants between different stages of 

melanomagenesis (Supplemental Figure 1B). We used RNA-sequencing from 4 studies to 

calculate the fold change of the genes nearest to the hotspot between primary and metastatic 

tumors (The Cancer Genome Atlas, TCGA-SKCM11 and ICGC-MELA12), nevi and melanoma 

(Kunz44), and hPSC-derived melanoblasts with (KO melanoblasts) and without (WT melanoblasts) 

deletions in key tumor suppressors (Baggiolini45, see Methods for description of samples). CDC20 

(gene associated with the 8th highest-scoring hotspot) is consistently upregulated in expression 

between melanoma and nevi (Kunz) and the KO and WT melanoblasts (Baggiolini, Supplemental 

Figure 1B). We observe a small increase in metastatic tumors compared to primary tumors in the 

ICGC cohort and no change between primary and metastatic tumors in the TCGA. The only other 

log2 fold-change greater than 1 is seen in the ICGC cohort for TERT expression (increase in 

metastatic melanoma, Supplemental Figure 1B). Low levels of RPL18A (3rd highest-scoring 

hotspot), HNRPNUL1 (6th), and CDC20 (8th) tumors have higher survival rates than tumors with 

high expression of these genes (Supplemental Figure 1C). Taking both differential gene 

expression and association with survival rates for those with melanoma into consideration, we 

specifically focus on characterizing the CDC20 promoter in melanoma. 
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Supplemental Figure 1. Characterization of putative melanoma regulatory regions, hotspots, and associated genes. (A) 
Table of selected motifs identified by Homer analysis. First section shows results for all pMRRs, regardless of whether region harbors 
a hotspot. To showcase diversity of transcription factors, we chose high-ranking motifs from three distinct transcriptional families. 
Second section shows top 3 motifs for pMRRs harboring statistically significant hotspots (707 hotspots, FDR-adjusted p-value < 0.05). 
Last two sections show top 3 motifs when input is a 20 bp sequence containing either the WT (top) or mutant (bottom) allele for all 
variants within statistically significant hotspots. (B) Log2 Fold-Change for Top 13 genes in ICGC-MELA, TCGA-SKCM, Kunz, and 
Baggiolini. Order in which samples are written represents numerator and denominator (e.g. if higher in metastatic, positive 
fold-change). (C) Kaplan-Meier curves representing over-all survival rates for high (red) and low (blue) expressing tumors for the 
three genes listed). Data and p-values obtained from cBioPortal using OQL.

Supplemental Figure 1
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 Variants in the CDC20 promoter have different effects on its transcriptional 

regulatory activity 

 The CDC20 promoter is mutated in 39 of 183 donors in the ICGC dataset, all of which are 

skin cutaneous melanomas (27.9% of cutaneous melanoma). The most common single-

nucleotide variants (SNVs) are at adjacent positions chr1:43,824,528 (G>A, hereinafter termed 

G528A, mutated in 10 donors) and chr1:43,824,529 (G>A, G529A, 16 donors) as well as a SNV 

at position chr1:43,824,525 (G>A, G525A, 4 donors) and a multi-nucleotide variant (MNV) at 

positions chr1:43,824,528-43,824,529 (GG>AA, GG528AA, 4 donors) and are located within an 

ETS motif (Figure 2A). While at adjacent positions, G528A and G529A have different FunSeq2 

scores (second number) and Genomic Evolution Rate Profiling (GERP) scores (third number) 

reflecting different degrees of purifying selection46. G525A is located within the core ETS motif, at 

the position that is most often mutated when taking all variants within statistically significant 

hotspots into consideration (Figure 1E) but is not the most recurrent variant in the CDC20 

promoter hotspot, occurring only in 4/39 donors. Like G528A, G525A has both a high FunSeq2 

score and a high GERP score. 

Overlaying chromatin-related assessments of the locus, the CDC20 promoter is 

accessible in 4/7 datasets that assay genome-wide chromatin accessibility (Supplemental Table 

1). BRG1, CTCF, and TFAP2A are among the chromatin/transcription factors that have binding 

activity at the CDC20 promoter, as detected by ChIP-seq. ETV1, the only ETS factor with ChIP-

seq data in our collation of melanoma-specific functional datasets (Supplemental Table 1), did 

not have binding activity at the CDC20 promoter in the 2 cell lines assayed (A375 and COLO-

800, Supplemental Table 1).  

To understand how the variants affect the regulatory activity of the CDC20 promoter, we 

performed luciferase assays using a 150 bp sequence length in a promoter-less luciferase vector. 

We assayed the 3 most prevalent variants, G528A, G529A, and GG528AA, in A375 (BRAFV600E), 
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SK-MEL-2 (NRASQ61K), and primary melanocytes (newborn foreskin melanocytes). We also 

assayed G525A, C520T, and C537T in A375 and SK-MEL-2. CDC20 promoter hotspots are not 

more likely to co-occur with pathogenic BRAF mutations than NRAS (p-value = 0.67, Fisher’s 

Exact Test, Supplemental Figure 3A). 
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Of the 4 variants present in more than one donor, G525A has the strongest effect on 

reporter activity, leading to a 6.1-fold decrease in A375 and 2.78-fold decrease in SK-MEL-2 

(Figure 2B). G528A, G529A, and GG528AA, which flank the core ETS motif, lead to a decrease 

in reporter activity in A375 (2.4, 1.5, and 1.5-fold, respectively) and primary melanocytes (2.0, 1.7, 

1.5-fold) but not in SK-MEL-2. Both G528A and G529A co-occur with BRAF and NRAS 

pathogenic mutations, but GG528AA is only detected with NRAS mutations in the available 

datasets. C520T and C537T, while only present in one donor each (BRAF only), also lead to a 

strong decrease in reporter activity (2.4 and 4.6 in A375, 1.4 and 4.1 in SK-MEL-2, respectively).  

 We used motifBreakR47 to identify possible transcription factor binding motifs that are 

destroyed by the presence of the CDC20 promoter variants. As expected, the four variants closest 

to the core ETS motif are predicted to break sites for various ETS transcription factors, with G525A 

showing the largest reduction in ETS motifs of any variant (Supplemental Figure 2A). 

 We leveraged the RNA-sequencing data from a subset of the ICGC-MELA cohort to better 

predict the transcription factor (TF) that may have dysregulated binding in the mutated CDC20 

promoter samples12. We reason that if TFi binds to the CDC20 promoter at the core ETS motif 

that is disrupted by G525A, G528A, G529A, and GG528AA, CDC20 expression will correlate with 

TFi expression in WT samples but not in samples with the disrupted core ETS motif. Therefore, 

we calculated the Pearson correlation between every TF48 and CDC20 in both WT and mutated 

samples. We identified 8 TFs that had high correlation of their expression (Pearson Correlation > 

0.5) with CDC20 expression in WT samples but low correlation in mutated samples (Supplemental 

Figure 2B). These include E2F1 and E2F2, which are known to regulate genes involved in cell 

cycle progression49 and, interestingly, the ETS family TF ELK1. 
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CDC20-associated variants appear to be present as early clonal events but drop-out in 

distant metastatic melanomas 

We next sought to understand the degree of clonality of the CDC20 promoter variants in 

sequenced tumors. Variant allele frequencies (VAF) can indicate how clonal a variant is by 

associating higher VAF with earlier appearance of the variant50. We compared the CDC20 

promoter VAFs to those of the BRAFV600E, NRASQ61K/R, and TERT G228A and G250A variants 

since these have all been reported to occur early51 (Figure 3A, Supplemental Figure 3B). In 

primary tumors, the BRAF, NRAS, and TERT variants are detected at median frequencies around 

0.30, 0.32, and 0.41, respectively (Figure 3A). The median VAFs for the two most common 

CDC20 promoter variants G528A (0.34) and G529A (0.33) are only slightly lower than TERT and 

slightly higher than BRAF and NRAS, suggesting G528A and G529A mutations as early occurring 

events in melanomagenesis.  

Since CDC20 promoter variants led to a decrease in reporter activity and CDC20 has been 

shown to be essential for migration in melanoma mouse models52, we hypothesized that promoter 

variants might decrease or disappear in later metastases. The G528A variant is detected mostly 

in lymph node metastases, often the first site of metastasis (n=6/11) and primary tumors (n=4/11). 

Only one distant metastatic sample out of a total of 51 had the G528A variant (Supplemental 

Figure 3C). Unlike G528A, G529A is detected across all stages and at median variant allele 

frequencies like those seen in earlier stages (Supplemental Figure 3B).  Interestingly in A375 

melanoma cells, G529A decreases reporter activity less than G528A, consistent with a model in 

which G529A, which is less deleterious to CDC20 expression, does not seem to drop out in distant 

metastases like G528A, which lowers reporter expression more and, in agreement with published 

work52, thus would be disfavored in later metastases (Figure 2B). 
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Figure 3. Changes in CDC20 expression levels correlate with specific gene expression programs (A) Variant allele frequencies 
of the CDC20 promoter variants (each labelled), BRAFV600E (BRAF), NRASQ61K and NRASQ61R (NRAS), TERT G228A and G250A
(TERT) that are detected in primary melanomas. C520T and C541T are not detected in primary melanomas and have no data points. 
There are no statistically significant differences between G528A, G529A and other variants. (B) CDC20 expression in CDC20-Low, 
CDC20-Medium, and CDC20-High nevus or melanoma samples from Kunz et al. Each data point represents the log2 
DESeq2-normalized read count of CDC20. No nevi are classified as CDC20-high. (C and D) Gene set enrichment analysis of results for 
the Winnepenninckx Melanoma Metastasis Up gene set (C) and the Ehlers Aneuploidy Up gene set (D). Each point represents a gene, 
ranked by expression, at the current running-sum statistic. Negative scores indicate enrichment in CDC20-high samples (as seen in C). 
Positive scores indicate enrichment in CDC20-low samples (as seen D). (E) Heatmap depicting z-score normalized expression patterns 
of 20 key neural crest transcription factors. Samples and genes are hierarchically clustered with orange and blue indicating relatively 
higher and lower gene expression, respectively, across samples. All columns are annotated by CDC20 expression (top row of boxes, 
log2 DESeq2-normalized read count), CDC20 expression group (second row, for low, medium, or high), and sample type 
(nevus in orange or melanoma in dark brown).
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Distinct transcriptional programs emerge in nevi and melanoma in a CDC20 dosage-

associated manner 

 To begin to pry into the differences between a CDC20-low and CDC20-high phenotype 

and how these differences may drive or support cancer progression at different stages of 

melanoma, especially those representative of the earliest states of melanoma, we utilized the 

Kunz cohort of 23 nevi and 57 primary melanomas that were RNA-sequenced44. We stratified all 

samples by CDC20 expression with CDC20-high and CDC20-low classifications based on the 
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75th and 25th percentile of CDC20 expression, respectively. Remaining samples were classified 

as medium expression (Figure 3B).  

We performed gene set enrichment analysis53 (GSEA) on CDC20-low and CDC20-high 

samples. As expected, based on prior studies, genes in the CDC20-high samples are enriched 

for gene sets associated with metastasis52,54,55(Figure 3C, Supplemental Table 3). CDC20-low 

samples have an enrichment of genes expressed in uveal melanomas with high aneuploidy56 

(Figure 3D, Supplemental Table 2). This is in line with previous work that have shown increased 

aneuploidy in models with knockdown or mutated CDC2057–59.  

 We next sought to understand whether CDC20-low samples were enriched for key neural 

crest TFs, some of which (e.g. SOX10) are known to play important roles in melanoma 

initiation18,40,41. Hierarchical clustering using 20 neural crest TFs60 clustered samples into 3 major 

groups: samples with mostly low CDC20 (Group C, median log2 expression = 6.7), samples with 

mostly high CDC20 (Group B, median log2 expression = 9.4), and samples with medium CDC20 

expression (Group A, median log2 expression = 9.0, Figure 3E). This indicates differences in 

expression of these neural crest transcription factors is associated with CDC20 expression. 

Surprisingly, CDC20-low samples cluster more closely with CDC20-high than CDC20-medium, 

despite having a larger difference in CDC20 expression (Figure 3E).  

 Group C is made up of 13 nevi and 7 melanomas, 16 of which are classified as CDC20-

low and four as CDC20-medium. This sample group has relatively high expression of genes 

prevalent in premigratory neural crest cells (ETS1, SOX5, SOX9, and TFAP2B) and melanocyte 

lineage specifiers (SOX10 and MITF)60. Group A contains 6 nevi and 14 melanomas, 1 of which 

is classified as CDC20-low, 2 as CDC20-high, and 17 as CDC20-medium.  This group has 

relatively high expression of MYB and TFAP2B which are prevalent in premigratory neural crest60, 

MSX1 (neural plate border60), and MAFB, which is required for migrating cardiac neural crest 

cells61. Group B contains 32 melanomas and 4 nevi, 2 of which are classified as CDC20-low, 15 

as CDC20-high, and 19 as medium. This group did not have relatively high expression across the 
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group of any specific subset of transcription factors as seen with Group A and Group C. However, 

several isolated samples had relatively high expression of SOX10, TEAD2, and RXRG, as in 

Group C, and relatively high expression of TFAP2A, MSX2, and HES4, as in Group A. Notably, 

many of the neural crest transcription factors that are relatively higher in Group C are also known 

oncogenes in melanoma, particularly SOX1018,40,62, MITF62, ETS142, and MYC63. 

 

Genome-engineered CDC20 promoter mutants have altered phenotypes and 

transcriptional profiles 

 Thus far, we have identified variants prevalent in the CDC20 promoter in melanoma 

tumors that by luciferase reporter assay reduce transcriptional activity and see distinct profiles of 

neural crest transcription factors in naturally occurring human melanoma tumors and nevi 

associated with high, medium, and low levels of CDC2044. To determine the effect of CDC20 

promoter mutations on key cancer phenotypes and gene expression programs, we generated two 

CRISPR/Cas9-engineered A375 melanoma cell lines termed A3 and A10 (Figure 4A). The A3 line 

contains an indel on both alleles, both of which have the G528 and G529 nucleotides deleted. 

One allele retains the core GGAA motif while the other does not. The A10 line contains a larger 

deletion that completely removes the G525, G528, and G529 mutations, as well as the core ETS 

motif in both alleles (Figure 4A). 

 Both mutations decrease CDC20 expression by 2.0-fold on average as detected by RNA-

sequencing (FDR-adjusted p-value = 1.8 x 10-40, Figure 4B, Supplemental Table 4). The A3 strain 

has slightly lower CDC20 expression than A10 despite having a smaller deletion and the retention 

of one core ETS motif (Figure 4B). Principal component analysis shows a separation along PC1 

between the WT parental A375 line (high CDC20), the WT Cas9 control A375 line (high CDC20), 

and the mutant A3 and A10 line (low CDC20, Figure 4C). 
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Because CDC20 is an essential component of the cell cycle, we wondered if decreased 

CDC20 levels would lead to decreases in cell viability64. We assayed viability in the presence of 

media containing serum, media containing serum and DMSO, and media containing serum and 

30 nM dabrafenib (MAPKi) daily over the span of 6 days (Supplemental Figure 4A). A10 grows 

slightly slower than A375 and A3, despite having slightly higher levels of CDC20 than A3 

(Supplemental Figure 4A). No change in growth rates between A3 and A375 were observed 

(Supplemental Figure 4A). 

 We performed GSEA on the A375 WT and CDC20 promoter indel lines A3 and A10 using 

the same gene sets as above (Figure 3C and Figure 3D). There is significant enrichment of genes 

upregulated in WT vs CDC20 promoter indel cells for genes in the Winnepenninckx Melanoma 

Metastasis gene set55 (Figure 4D). While not statistically significant, we did see slight enrichment 

of genes upregulated in the mutant A375 line in the Ehlers aneuploidy gene set56 (Supplemental 

Table 3). To determine whether these gene sets are enriched in other melanoma cohorts, we 

performed GSEA on three other cohorts that underwent RNA-seq using the same CDC20 

stratification as before11–13 (Supplemental Table 3). All cohorts with high CDC20 expression have 

statistically significant enrichment of genes associated with metastasis gene sets, while all 

CDC20-low cohorts except for TCGA-low have enrichment of genes in gene sets associated with 

low metastasis (Supplemental Table 3). The Kunz-low, TCGA-low, and Wouters-low samples 

have enrichment of genes in the Ehlers’ Aneuploidy gene set (Supplemental Table 3). Together 

these analyses show association of CDC20-high states with metastasis and CDC20-low states 

with aneuploidy across multiple cohorts. 

To see whether our A375 promoter indel lines have altered migration capabilities as 

suggested by the results of GSEA and the literature52, we performed a scratch assay and 

observed decreased migration capabilities suggesting that, at least in this context, reduced levels 

of CDC20 affect migration more so than viability (Figure 4E). Because we see enrichment of an 
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aneuploidy gene set in CDC20-low samples, we checked the A375 mutant lines for increased 

aneuploidy but did not observe any in a karyotyping analysis (Supplemental Figure 4B). 

 

 Finally, we performed hierarchical clustering using the 9 differentially expressed (FDR-

adjusted p-value < 0.05) neural crest transcription factors from the 20 that were previously found 

to be correlated with differential CDC20 levels in naturally occurring nevi and melanomas (Figure 

3E, Supplemental Table 4). We observe similar patterns of neural crest transcription factor levels 

in high and low CDC20 samples. SOX10, SOX5, RXRG, and TFAP2B are consistently high 

across the A375 mutant lines and CDC20-low samples in the Kunz cohort. TFAP2A, TFAP2C, 

and FOXD1 were upregulated in WT A375 cells as well as in CDC20-medium or CDC20-high 

samples in the Kunz cohort. 
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Supplemental Figure 4

Supplemental Figure 4. Viability and aneuploidy of WT and CDC20 promoter indel cell lines. (A) Proliferation rates are slightly 
lower in A10 but unchanged in A3. Plot shows luminescence values obtained from CellTiterGlo normalized to the average WT 
luminescence for each day and for each specific condition. Each point represents the average of three replicates. Confidence 
intervals are calculated using a nonparametric bootstrap method. (B) Table showing the karyotype/nomenclature of WT A375, A3, 
and A10. Differences across cell lines are color-coded.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2022. ; https://doi.org/10.1101/2022.06.30.498319doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.30.498319
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

 Because we observe a similar association between neural crest transcription factor 

expression and CDC20 expression between our CDC20 promoter indel cell lines and a cohort of 

nevi and melanoma, we looked for such patterns in the ICGC-MELA, TCGA-SKCM, and Wouters 

samples as well11–13. We stratified all samples by CDC20 expression (low, medium, and high) and 

performed hierarchical clustering using the 20 neural crest transcription factors (Supplemental 

Figure 5A). We specifically looked at the 9 neural crest transcription factors that were differentially 

expressed between the CDC20 promoter indel and WT cell lines (Supplemental Figure 5B). 

FOXD1 and TFAP2C, which are upregulated in WT lines compared to mutant, are also relatively 

highly expressed in CDC20-high or CDC20-medium samples in 3 out of the 4 cohorts.  TFAP2B, 

SOX5, RXRG, and MYC, which are upregulated in the CDC20 promoter indel cells, are 

upregulated in CDC20-low or CDC20-medium samples in most or all cohorts. TFAP2A, SOX10 

and ETS1 were relatively highly expressed in multiple CDC20-expression groups. In conclusion, 

we observe a consistent trend across 5 cohorts between certain neural crest transcription factors 

and CDC20 expression. 
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Supplemental Figure 5

Supplemental Figure 5. Neural crest transcription factor signature across 5 RNA-sequencing melanoma cohorts. (A) Heatmap 
depicting relative expression of 20 neural crest transcription factors using the average of all samples classified as CDC20-high, 
medium, or low. The median log2-normalized CDC20 count is listed below each column of every heatmap. Orange indicates higher 
expression relative to other samples for the same gene. Genes in green are upregulated in WT A375 compared to CDC20 promoter 
indel cell lines. Genes in red are upregulated in CDC20 promoter indel cell lines. (B) Table summarizing whether a cohort has a 
relative gene level that matches or does not match the gene level seen in WT or CDC20 promoter indel cell lines. For a gene to 
agree, it needs to have relatively higher expression in the WT lines (green genes) or relatively higher expression in the CDC20 
promoter indel lines (red genes). Cohorts that have an asterisk neither completely agree or disagree (e.g. relatively higher in 
CDC20-medium samples or relatively high in CDC20-low and CDC20-high, see SOX10 in TCGA).
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DISCUSSION 

Using the largest available cohort of melanoma whole-genome sequencing data and 

several dozen melanoma-specific functional genomics datasets, we have identified hundreds of 

mutational hotspots containing putatively functional non-coding somatic variants. Under the 

assumption that variants outside of pMRRs are not, or are less likely to be, functional, we 

generated an empirical null distribution with which to calculate significance.  We chose to focus 

on characterizing variants in the promoter of CDC20, whose weighted rate of recurrence and 

predicted functional significance were greater than that of the well-studied TERT promoter 

variants and began to investigate how these variants alter melanoma behavior. 

At least half of the CDC20 promoter variants tested decreased reporter activity across all 

cell lines in this study. Four variants were within 2 bp of a core ETS motif but did not affect reporter 

activity to similar extents. G525A strongly reduced reporter activity in A375 and SK-MEL-2, while 

G528A, G529A, and GG528AA only reduced reporter activity in A375 and primary melanocytes, 

suggesting a cell-specific response to the variants. Most of these variants are not detected in 

distant metastases, which in agreement with previous work52, suggests that lower levels of 

CDC20 may be disfavored in later metastases. Therefore, we propose a dosage-dependent role 

of CDC20 on melanoma onset and progression, in which low levels of CDC20 are important in 

early stages of melanoma but higher levels may be important for later stages of melanoma. 

Like TERT, CDC20 performs a variety of canonical and non-canonical functions, many of 

which can be implicated in cancer formation49,52,58,59,65–71. Most crucial is its role in the cell cycle, 

where it interacts with the anaphase-promoting complex to degrade cyclin B and signal the end 

of metaphase and the start of anaphase72. Complete knock-down of CDC20 is lethal but several 

studies have shown that partial knock-down or missense mutations that impair the ability of 

CDC20 to bind to other interacting proteins leads to aneuploidy, an important hallmark of cancer57–

59,73,74. Although aneuploidy did not increase in the CDC20 promoter indel A375 cell lines, CDC20-

low samples in 3/5 cohorts analyzed had enrichment of genes associated with increased 
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aneuploidy (Supplemental Table 3). Additionally, we only observed a slight reduction in growth 

rates in one CDC20 promoter indel strain, A10, which has similar levels of CDC20 as the A3 strain 

despite a larger deletion in the CDC20 promoter, suggesting that at least in our model, a 2-fold 

reduction of CDC20 does not significantly alter cell growth rates. 

We have shown that three of the most common variants in the CDC20 promoter reduce 

reporter activity in a BRAFV600E-driven melanoma cell line and in primary melanocytes. Because 

we hypothesize that low CDC20 levels are critical in early stages of melanoma, we looked for the 

enrichment of a neural crest transcriptional program, a state observed in the first malignant cells 

of melanoma18,40. We show both in our genome engineered cells and in four other naturally 

occurring human melanoma cohorts that samples with low CDC20 can have relatively high 

expression of certain neural crest transcription factors, such as SOX10, RXRG, SOX5, TFAP2B, 

and MYC. Notably, SOX10 and MYC have already been established as oncogenes18,40,63. RXRG 

reportedly drives a neural crest stem cell state that is resistant to treatment in a subset of cells in 

melanoma minimal residual disease75. TFAP2B regulates the melanocyte stem cell lineage in 

adult zebrafish76, and SOX5 has been shown to inhibit MITF77. Taken together, we hypothesize 

that low levels of CDC20 in melanocytic nevi may support a transcriptional program associated 

with a partially de-differentiated, neural-crest like state. 

Meanwhile, as CDC20 levels increase, we observe an increase in a different subset of 

neural crest transcription factors, including FOXD1, which is known to impair migration and 

invasion in melanoma models when knocked-down78. Therefore, as CDC20 levels increase, cells 

may gain migration capabilities. In conjunction, we did not detect some of the more deleterious 

CDC20 promoter variants (i.e. those leading to lower reporter expression) in distant metastases. 

Additionally, we found enrichment of metastatic gene signatures in the CDC20-high expressing 

samples across all 5 melanoma cohorts (Supplemental Table 3) and observed loss of migratory 

capabilities in A3 and A10, the CDC20 promoter indel cell lines with lowered CDC20 levels. 
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The ever-expanding genomic data available for melanoma has been crucial in advancing 

our understanding of melanoma biology11,12, but most of the largest datasets with publicly 

available clinical outcomes data (i.e. TCGA) overrepresent metastatic lesions, and even a subset 

of metastatic lesion types (i.e. lymph node metastases in TCGA). Thus, while CDC20 has been 

implicated as a cancer-driving gene with higher levels often associated with melanoma 

metastases and poorer survival, we posit that specific levels of CDC20 expression may be crucial 

to supporting or allowing passage of melanocytes through malignant transformation (CDC20 low) 

to locally invasive cancer and then on to metastatic disease (CDC20 high, Figure 4G). As in the 

case of MITF, a rheostat model of CDC20 may exist, whereby higher levels of CDC20 drives 

metastasis and lower levels support a phenotype likely beneficial in earlier tumors79.  

  

METHODS 

Calculating hotspot scores 

Step 1: Merge mutations into hotpots. Mutation calls for SNVs and indels from the MELA-

AU cohort were downloaded from dcc.icgc.org after receiving DACO approval12. Using a 25 bp 

window, we merged mutation calls using bedtools intersect80 into hotspots based on the premise 

that highly recurrent variants may be under positive selection at some point during the melanoma 

life cycle (e.g. favor melanoma growth) and that a transcription factor binding site(s) (TFBSs) may 

be disrupted/created by modifying any of multiple nucleotides in this window.  

Step 2: Filter hotspots not in putative enhancers/promoters. We downloaded processed 

peak calls from ChIP-seq (e.g. H3K27Ac, H3K4me3, CTCF) and ATAC-Seq (revealing accessible 

chromatin domains) data from 69 melanoma datasets to enrich for putative Melanoma Regulatory 

Regions (pMRRs) which we reasoned are more likely to bind transcription/chromatin factors 

(Supplemental Table 1). These are indicated by the blue “peaks” in the example Figure 1A. We 

excluded exons and those regions (e.g. highly repetitive) from Encode excluded regions list81. 
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Step 3: Calculate Donor Score. The donor score for a given hotspot is represented as 

D2/G, where D is the number of samples (donors) with the specific variant and G is the number of 

nucleotide locations with variants in the hotspot. For example, in Figure 1A, the purple hotspot 

shows D = 3 + 1 + 2 + 4 = 10 mutations, at G = 4 different locations, for Donor Score of 102/4 = 

25.   

Step 4: Weight variants using FunSeq2 score. Each mutation is weighted for predicted 

functional significance by features including predicted TFBS motif creating/breaking effect and 

evolutionary conservation using pre-computed scores from the published FunSeq2 algorithm 

(http://funseq2.gersteinlab.org/downloads) with a higher score predicting higher likelihood of 

functional significance39.  

Step 5: Calculate Hotspot Score. Each hotspot is assigned a Hotspot Score as the product 

of the Donor Score (Step 3) and mean FunSeq2 score (Step 4) for all variants in the hotspot, to 

weigh both the number of variants and their predicted functional consequence in one metric. For 

example, in Figure 1A, the purple box shows (Average FunSeq2 score)*(Donor Score) = 1.5*25 

= 37.5 

Step 6: Calculate p-value for each hotspot in MRRs relative to the empirical null distribution 

(non-pMRR regions from Step 2). For each hotspot score within pMRRs, we calculated a p-value 

by determining the proportion of null hotspots with hotspot scores greater than or equal to it. All 

p-values were adjusted for false discovery rate (FDR). Adjusted p-values equal to 0 are provided 

(Supplemental Table 2). 

 

Genomic Analysis of Hotspots 

For all pMRRs, statistically significant hotspots (FDR adjusted p-value < 0.05, 707 

hotspots), and top-scoring hotspots outside of pMRRs (top 707 null hotspots by Hotspot Score), 

we annotated regions using the ChIPSeeker function annotatePeak82 (Figure 1D). For HOMER 

motif analysis, we ran findMotifsGenome.pl on BED files of all pMRRs and statistically significant 
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hotspots to identify known motifs (Supplemental Figure 1A). For each variant within statistically 

significant hotspots, we made FASTA files with 20 bp sequences corresponding to either the WT 

or mutant sequence (variant at position 10). These were processed through HOMER using the 

findMotfs.pl function (Supplemental Figure 1A). A BED file containing only the CDC20 promoter 

variants were processed through motifBreakR47 using the known and discovered motif information 

from transcription factor ChIP-seq datasets in Encode83. 

 To calculate the ETS motif distribution, we first made FASTA files containing 11 bp 

sequences corresponding to either the WT or mutant sequence (variant at position 6) from the 

707 statistically significant hotspots with FDR-adjusted p-values < 0.05. If a sequence contained 

the GGAA motif, we counted how far each variant within a statistically significant hotspot occurred 

from the nearest GGAA (if more than one instance was detected). If the reverse complement, 

TTCC was identified, as the nearest ETS motif, we first rewrote the sequence as its reverse 

complement and then counted the distance. A consensus sequence was generated with Web 

Logo (https://weblogo.berkeley.edu/logo.cgi) using a re-oriented version of the 11 bp WT fasta 

file where the first G of the GGAA motif is always at position 5. 

 

Cohort Comparison of Top 13 Genes 

 We downloaded DESeq2-normalized read counts from GSE112509 for the Kunz cohort 

and quantile-normalized read counts from Firehose (Broad GDAC) for the TCGA-SKCM cohort. 

The Kunz cohort is made of 23 laser-microdissected melanocytic nevi and 57 primary 

melanomas44. The TCGA cohort consists of 81 primary and 367 metastatic melanomas11.  

For ICGC-MELA, we downloaded BAM outputs from STAR84 from the European Genome-

Phenome Archive (EGA) under Study ID EGAD00001003353. Gene counts were calculated using 

RSEM85 and normalized by DESeq286. This cohort consists of 56 melanomas from 46 donors and 

consists of 25 metastatic melanomas, 17 primary melanomas, and 14 cell lines derived from 

tumors12.  
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For the Baggiolini cohort, we obtained raw counts from the supplementary material of the 

corresponding publication and normalized counts by DESeq286. This cohort is made up of human 

pluripotent stem cell derived cells that are engineered to contain doxycycline-inducible BRAFV600E. 

KO lines contain deletions to RB1, TP53, and P16. These cells were then differentiated into neural 

crest cells, melanoblasts, and melanocytes. For our study, we only considered WT and KO 

melanoblast samples that had activated BRAFV600E expression. In line with the corresponding 

publication, we consider KO melanoblasts to be melanoma-like (based on the ability to form 

tumors when subcutaneously injected into NSG mice) while WT melanoblasts were considered 

to be a non-tumorigenic precursor to melanocytes45. 

For each of the top 13 genes, we calculated the log2 fold-change between metastatic and 

primary melanomas (TCGA-SKCM and ICGC-MELA), primary melanoma and nevi (Kunz), and 

KO and WT melanoblasts.  

Survival rates and corresponding p-values for high and low expressing tumors were 

downloaded from cBioPortal87 (TCGA-SKCM) using the Onco Query Language (OQL): GENE: 

EXP < -0.5 and GENE: EXP > 0.5. Data was downloaded from cBioPortal.org and plotted with 

ggplot2. 

 

Cell Culture 

We obtained A375 cells from ATCC (CRL-1619). All A375s were grown in DMEM media (Corning, 

10-013-CV) with 10% Fetal Bovine Serum (Gibco, 261470) and 1X Penicillin/Streptavidin 

(Pen/Strep, Sigma-Aldrich, P4333). SK-MEL-2 cells were obtained directly from the NCI-60 

collection following written request and approval and were grown in RPMI-1640 media with 2 mM 

L-Glutamine (Gibco, 11875) with 10% FBS and 1X Pen/Strep. Newborn foreskin melanocytes 

were ordered from the specimen research core at the SPORE in Skin Cancer at Yale University. 

Primary melanocytes were grown in OPTI-MEM (Gibco, 31985) containing 5% FBS, 1X 

Pen/Strep, 10 ng bFGF (ConnStem, F1004), 4 mL of 5 mM IBMX (Sigma, #I-5879), 1 ng/mL 
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Heparin (Sigma, #3393), and 200 µL of 0.1 M dbcAMP (Sigma, #D-0627). Cells were grown in a 

dedicated incubator set to 37°C at 5% CO2. 

 

Luciferase Assays 

 To make the luciferase vectors, we synthesized a 170 bp sequence containing the WT 

CDC20 promoter sequence (chr1:43,824,464-43,824,633) (GenScript). From this template, we 

amplified a 150 bp sequence using primers pGL3-CDC20_F and pGL3-CDC20_R (Phusion High-

Fidelity PCR Master Mix, NEB M0531, Supplemental Table 5) that added restriction sites for SacI 

and XhoI to the 150 bp sequence. Both the pGL3-Basic Luciferase vector (Promega, E1751) and 

the CDC20 promoter amplicon were digested using SacI-HF (NEB, R3156S) and XhoI (NEB, 

R0146S) at 37°C overnight, followed by heat inactivation at 65°C for 20 minutes. Digested vector 

and amplicon were ligated using T4 DNA Ligase (NEB, M0202S) and transformed into OneShot 

Top10 Chemically Competent Cells (ThermoFisher, C404010). Individual colonies were mini-

prepped and confirmed by Sanger Sequencing (Azenta).  

 Using the Q5 Site-Directed Mutagenesis kit (NEB, E0554), we induced variants in the WT 

sequence using primers designed by NEBaseChanger (https://nebasechanger.neb.com/, 

Supplemental Table 5). Sequences that were successfully mutated, as well as the WT pGL3-

Basic vector and pRL-TK (Promega, E2241), were midi-prepped (Qiagen, 12941). 

 For A375, SK-MEL-2, and primary melanocyte transfections, 300,000 cells per well were 

seeded onto 6-well plates. All transfections were performed using 9 uL of Lipofectamine 2000 

(Invitrogen, 11668), 1.5 µg of luciferase vector, and 1.0 µg of control pRL-TK (renilla), following 

the manufacturer’s protocol. All transfections were performed at minimum in duplicate.  

 The following day, luciferase and renilla luminescence were measured using the Dual-

Luciferase Reporter Assay System (Promega, E1910) per manufacturer specifications. Cells 

were lysed using 500 µL of 1X Passive Lysis Buffer and incubated for 15 minutes on an orbital 
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shaker. 20 µL of lysate were added to clear-bottom 96-well plates. We ran three technical 

replicates per sample. Luminescence was measured on a GloMax 96 Microplate Luminometer 

(Promega) using a standard Dual Reporter Assay program. All luciferase values were normalized 

to renilla, as the internal transfection control. We then normalized all variant ratios to the 

corresponding average WT value. p-values were calculated using Student’s t-test. 

 

Correlation between TFs and CDC20 

 The ICGC RNA-sequencing cohort consists of 56 samples from 46 donors. 13 samples 

(from 10 donors) contained a variant in the CDC20 promoter. The remaining 43 samples were 

WT samples. We downloaded a list of all transcription factors from 

http://humantfs.ccbr.utoronto.ca. We calculated the Pearson correlation between CDC20 and 

every TF in either the samples with WT or mutant CDC20 promoter variants. We selected those 

that had correlations between the TF and the WT CDC20 promoter samples greater than 0.5 and 

less than 0.2 for those between the TF and mutant CDC20 promoter samples. 

 

Calculation of Variant Allele Frequencies 

 Mutation calls for SNVs and indels from the MELA-AU cohort were downloaded from 

dcc.icgc.org after receiving DACO approval12. We calculated variant allele frequencies by dividing 

the number of reads containing the variant divided by the total counts for each specimen. We then 

stratified specimens by tumor subtype (primary melanoma, lymph node metastasis, distant 

metastasis). VAFs from recurrent tumors or from cell lines derived from tumors were not 

considered. When plotting VAFs, the CDC20 promoter variants and the BRAFV600E variants were 

plotted separately. Variant allele frequencies for NRASQ61K and NRASQ61R and for TERT G228A 

and G250A were combined into one boxplot each. 

 

Kunz RNA-sequencing analysis 
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We downloaded DESeq2-normalized read counts from GSE112509 for the Kunz cohort44. 

We classified each sample as CDC20-low, medium, or high based on CDC20 expression. 

Samples with less than the 25th percentile of CDC20 expression were classified as low, while 

samples with greater than the 75th percentile of CDC20 expression were classified as high. All 

other samples are classified as having medium CDC20 expression.  

We performed gene set enrichment analysis (GSEA) on the 20 CDC20-low and 20 

CDC20-high samples using all gene sets in MSigDB (https://www.gsea-msigdb.org) that 

contained the keyword “melanoma”. We used the following parameters: 1000 permutations, the 

phenotypes were always set as low versus high (ergo enrichment scores are positive for CDC20-

low, negative for CDC20-high), and permutations were performed on the gene set. 

We manually curated a list of 20 neural crest transcription factors from two previously 

published sources60,88. DESeq2-normalized read counts for these genes were used to construct 

the heatmap. Counts across every gene were scaled by setting the parameter “scale” to “row” in 

the heatmap plotting function pheatmap. Genes and samples were clustered using Euclidean 

distance. 

 

Genome Engineering of A375 

A375 cells were nucleofected on a Lonza 4D nucleofector according to manufacturer 

recommendations (P3 solution, nucleofection program EH-100). Each nucleofection was 

performed with 1 x 105 cells, 0.75 µL Cas9 Protein at 10 µg/µL (IDT v3 Cas9 protein, glycerol-

free, # 10007806), and 0.75 µL of each sgRNA at 100uM (IDT) suspended in IDT Duplex Buffer 

(IDT, # 11-05-01-03) (Supplemental Table 5). Sham-nucleofections for WT A375 Cas9 controls 

were nucleofected with an equal volume of blank PBS. After nucleofection, cells were seeded into 

500 µL of DMEM complete in a 24-well plate at standard incubator conditions. 

72 hours post-nucleofection, cells were harvested, and split into 6-well culture for 

expansion and into lysis buffer for DNA extraction (homemade by GESC, formulation identical to 
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Lucigen Quick-Extract buffer). PCRs were performed with Platinum Superfi II 2x master mix 

(Thermofisher, #12368010) and primers against the sgRNAs target site (Supplemental Table 5). 

PCR products were sequenced by NGS using Illumina. 

After confirmation of cutting activity at, the pools were single-cell sorted using a Sony 

SH800 cell sorter at 1 cell per well into 4 x 96-well plates with 100uL of DMEM, with 50% 

conditioned media, 5 µM Rock Inhibitor, and 100 µM sodium pyruvate. Plates were allowed to 

grow for ~10 days, then clones were harvested and re-screened using PCR primers against the 

targeted locus (Supplemental Table 5). Homozygous knockout clones were identified based on 

the presence of deletion junction and absence of the target locus. WT A375 Cas9 controls were 

sequenced at all gRNA target sites to confirm wild-type genotype. Homozygous knockout clones 

and wild-type Cas9 control clones were expanded, checked by STR profiling, tested for 

mycoplasma contamination, and used for subsequent experiments. 

 

Cell Viability Assay of A375 CDC20 Promoter Knock-outs and Controls 

For each strain (A3, A10, and the wild-type Cas9 control), we seeded 1500 cells per well 

in a clear-bottom 96-well plate (Corning, #3903) in DMEM media containing 10% fetal bovine 

serum and 1X Pennicilin/Streptavidin (DMEM complete), DMEM complete with 30 nM dabrafenib 

(Selleck Chemicals, S2807), or DMEM complete with 1% DMSO. To measure viability, we used 

CellTiterGlo (Promega, G7570) as per the manufacturer’s protocol. Plates were read on a GloMax 

96 Microplate Luminometer (Promega) using the standard CellTiterGlo program. 

 

Cell Migration Assay of A375 CDC20 Promoter Knock-outs and Controls 

Scratch assays were performed by seeding 1 million cells per well in a 6-well plate in 

DMEM complete media. Using a P200 pipette, we scratched the plate at indicated positions. Cells 

were washed with 1X PBS and imaged on a Nikon Eclipse Ts2. Cells were then plated with DMEM 
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media with 1% FBS and 1X Pen/Strep. On the following day, cells were washed with 1X PBS and 

imaged. 

 

RNA-sequencing of A375 CDC20 Promoter Knock-outs and Controls 

300,000 cells of the parental A375 (in duplicate), two WT CRISPR/Cas9 clones (one 

replicate each), A3 (in duplicate), and A10 (in duplicate) were seeded on a 6-well plate. On the 

following day, we isolated RNA using the Qiagen RNeasy Plus Mini Kit (Qiagen, 74134). Samples 

were submitted to the Genome Technology Access Center at the McDonnell Genome Institute at 

Washington University School of Medicine for library preparation and sequencing. 

 Total RNA integrity was determined using Agilent Bioanalyzer or 4200 Tapestation.  

Library preparation was performed with 5 to 10ug of total RNA with a Bioanalyzer RIN score 

greater than 8.0. Ribosomal RNA was removed by poly-A selection using Oligo-dT beads (mRNA 

Direct kit, Life Technologies). mRNA was then fragmented in reverse transcriptase buffer and 

heating to 94 degrees for 8 minutes. mRNA was reverse transcribed to yield cDNA using 

SuperScript III RT enzyme (Life Technologies, per manufacturer's instructions) and random 

hexamers. A second strand reaction was performed to yield ds-cDNA. cDNA was blunt ended, 

had an A base added to the 3' ends, and then had Illumina sequencing adapters ligated to the 

ends. Ligated fragments were then amplified for 12-15 cycles using primers incorporating unique 

dual index tags. Fragments were sequenced on an Illumina NovaSeq-6000 using paired end 

reads extending 150 bases. RNA-seq reads were then aligned and quantitated to the Ensembl 

release 101 primary assembly with an Illumina DRAGEN Bio-IT on-premise server running 

version 3.9.3-8 software. 

 Read counts were normalized using DESeq2, comparing WT to mutant strains86. Principal 

component analysis was performed using the plotPCA function in the DESeq2 package. The 

heatmap was generated with pheatmap using z-score normalized counts of the manually curated 
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list of 20 neural crest transcription factors88 with FDR-adjusted p-values < 0.1 (between WT and 

mutant samples). 

 Gene set enrichment analysis was performed as previously described using the 25th and 

75th quantile to establish CDC20-low and CDC20-high expression groups, respectively. To 

generate heatmaps of all 4 cohorts, we downloaded Kunz, TCGA, and ICGC RNA-sequencing 

datasets as previously described. For the Wouters cohort, we downloaded normalized counts 

from bulk RNA-sequencing of 33 melanoma cultures13 (GSE134432). We calculated the mean 

across all samples classified as CDC20-low, medium, or high and plotted z-score normalized 

counts using the pheatmap function. Z-scores were calculated by scaling across rows, or genes. 

 

Karyotyping of A375 CDC20 Promoter Knock-outs and Controls 

Karyotyping and analysis was performed at the Cytogenetics and Molecular Pathology 

Laboratory at Washington University School of Medicine. The cytogenetic test/ karyotype analysis 

was performed to assess aneuploidy (gains and losses of whole chromosomes), structural 

changes (chromosomal translocations, inversions, segmental deletions and duplications). This 

assay involves growing of cells in appropriate culture medium, hypotonic treatment, fixing cells, 

staining cells with GTG banding and microscopic examination. Twenty cells are counted for 

enumerating the number of chromosomes in a metaphase spread. Three of these metaphase 

spreads are digitally processed to produce a detailed karyotype/karyogram to perform a detailed 

study (analysis) for variant counts and structural aberrations. Analyzing a metaphase is defined 

by band-by-band comparison between chromosome pairs. 

 

DATA ACCESS 

All raw and processed sequencing data generated in this study have been submitted to the NCBI 

Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession number 

GSE206639. 
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FIGURE LEGENDS 

Figure 1. A method to identify putative functional non-coding variants in human melanoma. 

(A) Summary of pipeline to identify hotspots (A) with a generalized schematic of three theoretical 

hotspots (A’).  Blue boxes indicate regions within putative Melanoma Regulatory Regions 

(pMRRs), and red box indicates null regions (i.e. those outside predicted regulatory regions). 

Numbered rectangles represent hotspots. Dot plots represent the number of variants within a 

given position. Donor score is equal to the square of the number of donors divided by the number 
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of mutated positions, and FunSeq2 score is a weighting factor with higher values indicating higher 

conservation within regulatory regions and/or TF binding site motif altering. (B) Kernel density 

estimate of hotspot scores in pMRRs (blue) and not in pMRRs/in null regions (red). Hotspots with 

log10 scores lower than 1 are not shown. Dashed line depicts hotspot scores with a p-value = 1 x 

10-6 , lower p-values are to the right (C) Boxplots showing the log10-transformed Donor, FunSeq2, 

and Hotspot (Donor x FunSeq2) for the Top 10,000 highest-scoring hotspots. (D) Bar chart 

demonstrating the frequency of genomic annotations for Top 10,000 null hotspots (red bars) and 

statistically significant hotspots (707 hotspots, FDR-adjusted p-value < 0.05, blue bars). (E) Bar 

chart of the total number of mutations in significant hotspots (707 hotspots) at each site within 4 

bp of the core ETS motif, GGAA (top, represents 5,561 mutations out of a total of 8,514 

mutations), and WebLogo of 11 bp WT sequence (bottom). 

Figure 2. Functional analysis of recurrent CDC20 promoter variants.  (A) The CDC20 

promoter hotspot. All variants within the hotspot are denoted by name, # of donors with given 

mutation, FunSeq2 score, and GERP score. Co-occurring GG528AA double mutant is depicted 

above. Variants with colored text were validated by luciferase assay. (B) Altered CDC20 promoter 

activity for variants as assayed by luciferase reporter assays in melanoma (A375, SK-MEL5) and 

primary melanocytes. Boxplots depict normalized (to WT) luciferase assay results in these 3 

different cell lines. The numbers below each boxplot indicate the number of donors in BRAF (left) 

or NRAS (right) tumors with the corresponding variant. 

Figure 3. Changes in CDC20 expression levels correlate with specific gene expression 

programs (A) Variant allele frequencies of the CDC20 promoter variants (each labelled), 

BRAFV600E (BRAF), NRASQ61K and NRASQ61R (NRAS), TERT G228A and G250A (TERT) that are 

detected in primary melanomas. C520T and C541T are not detected in primary melanomas and 

have no data points. There are no statistically significant differences between G528A, G529A and 

other variants. (B) CDC20 expression in CDC20-Low, CDC20-Medium, and CDC20-High nevus 

or melanoma samples from Kunz et al. Each data point represents the log2 DESeq2-normalized 
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read count of CDC20. No nevi are classified as CDC20-high. (C and D) Gene set enrichment 

analysis of results for the Winnepenninckx Melanoma Metastasis Up gene set (C) and the Ehlers 

Aneuploidy Up gene set (D). Each point represents a gene, ranked by expression, at the current 

running-sum statistic. Negative scores indicate enrichment in CDC20-high samples (as seen in 

C). Positive scores indicate enrichment in CDC20-low samples (as seen D). (E) Heatmap 

depicting z-score normalized expression patterns of 20 key neural crest transcription factors. 

Samples and genes are hierarchically clustered with orange and blue indicating relatively higher 

and lower gene expression, respectively, across samples. All columns are annotated by CDC20 

expression (top row of boxes, log2 DESeq2-normalized read count), CDC20 expression group 

(second row, for low, medium, or high), and sample type (nevus in orange or melanoma in dark 

brown). 

Figure 4. Engineered indels at the recurrently mutated CDC20 promoter locus leads to 

decreased CDC20 expression and changes in melanoma behavior. (A) Sequence alignment 

of the CDC20 promoter between hg19, WT A375, A3, and A10. Arrows denoting positions of 

G525A, G528A, and G529A. The ETS core motif is boxed. The last nucleotide of the sequence 

is 37 bp upstream of the TSS of CDC20. Nucleotides are color-coded and dashes indicate 

deletions. (B) Plot depicting log2 transformed DESeq2-normalized read counts of CDC20 in WT 

A375 and CDC20 promoter indel strains, A3 and A10, with decreased CDC20 expression. Each 

point represents CDC20 expression in one sample. (C) Principal component analysis of read 

counts normalized by regularized log transformation using the top 500 most variable genes. The 

horizontal axis, PC1, explains 58% of the variance associated across all samples and separates 

out WT from CDC20 promoter indel cell lines. The vertical axis, PC2, explains 28% of the variance 

and separated A3 from A10. (D) Gene set enrichment analysis of results for the Winnepenninckx 

Melanoma Metastasis Up gene set. Each point represents a gene, ranked by expression, at the 

current running-sum statistic. Negative scores indicate enrichment in WT A375 samples as 

compared to the engineered indel lines A3 and A10. (E) CDC20 indel lines A3 and A10 show 
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decreased migration capabilities compared to WT A375 cell lines. Images of scratch migration 

assay from day 0 (immediately after scratch) and day 1 (24 hours post-scratch). (F) Heatmap 

depicting z-score normalized expression patterns of 9 differentially expressed neural crest 

transcription factors. Samples and genes are hierarchically clustered with orange and blue 

indicating relatively higher or lower expression, respectively, of genes across samples. All 

columns are annotated by CDC20 expression (log2 DESeq2-normalized read count), and sample 

type (WT or mutant). SOX5, TFAP2B, SOX10, MYC, and RXRG are expressed at relatively higher 

levels in the CDC20 promoter indel-containing A3 and A10 cell lines. FOXD1, ETS1, TFAP2C, 

and TFAP2A are higher in WT (CDC20-high) A375 cell lines. (G) Model of CDC20 expression 

and neural crest transcription factor signature over melanoma onset and progression. CDC20 

levels increase as melanoma progresses. Neural crest transcription factors that correlate with 

CDC20 expression are more prevalent in migrating neural crest cells, whereas those that are 

relatively higher in CDC20-low settings are more prevalent in the melanocytic/pre-migratory 

neural crest states. 

 

SUPPLEMENTAL FIGURE LEGENDS 

Supplemental Figure 1. Characterization of putative melanoma regulatory regions, 

hotspots, and associated genes. (A) Table of selected motifs identified by Homer analysis. First 

section shows results for all pMRRs, regardless of whether region harbors a hotspot. To 

showcase diversity of transcription factors, we chose high-ranking motifs from three distinct 

transcriptional families. Second section shows top 3 motifs for pMRRs harboring statistically 

significant hotspots (707 hotspots, FDR-adjusted p-value < 0.05). Last two sections show top 3 

motifs when input is a 20 bp sequence containing either the WT (top) or mutant (bottom) allele for 

all variants within statistically significant hotspots. (B) Log2 Fold-Change for Top 13 genes in 

ICGC-MELA, TCGA-SKCM, Kunz, and Baggiolini. Order in which samples are written represents 

numerator and denominator (e.g. if higher in metastatic, positive fold-change). (C) Kaplan-Meier 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2022. ; https://doi.org/10.1101/2022.06.30.498319doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.30.498319
http://creativecommons.org/licenses/by-nc-nd/4.0/


 39 

curves representing over-all survival rates for high (red) and low (blue) expressing tumors for the 

three genes listed). Data and p-values obtained from cBioPortal using OQL. 

Supplemental Figure 2. Motif impact of recurrent CDC20 promoter variants. (A) Table 

summarizing motifBreakR results. All transcription factors listed have strong and significant motif 

altering predictions. ETS transcription factors are colored in pink. (B) Heatmap of Pearson 

correlation values between TF (column) and samples with WT CDC20 promoters (top row) or 

mutant CDC20 promoters (bottom row.)  

Supplemental Figure 3. Co-occurrence and clonality of recurrent CDC20 promoter variants. 

A) Mosaic plot of the number of donors with either BRAF and/or NRAS mutations and WT and/or 

mutant CDC20 promoter. (B) Variant allele frequencies of the CDC20 promoter variants (each 

labelled), BRAFV600E (BRAF), NRASQ61K and NRASQ61R (NRAS), TERT G228A and G250A (TERT) 

that are detected in lymph node metastases or distant metastases. (C) Each bar represents the 

number of specimens with the corresponding variant within the corresponding tumor subtype 

divided by the total number of specimens with the corresponding variant across all subtypes. 

Absolute counts for each subtype are labeled within the bar. Total counts across all subtypes are 

labeled within the legend. The total number of samples at each stage that contain one of the 

specified mutations are in parentheses below the row label; the number that follows is equal to 

the total number of samples in that tumor stage. 

Supplemental Figure 4. Viability and aneuploidy of WT and CDC20 promoter indel cell 

lines. (A) Proliferation rates are slightly lower in A10 but unchanged in A3. Plot shows 

luminescence values obtained from CellTiterGlo normalized to the average WT luminescence for 

each day and for each specific condition. Each point represents the average of three replicates. 

Confidence intervals are calculated using a nonparametric bootstrap method. (B) Table showing 

the karyotype/nomenclature of WT A375, A3, and A10. Differences across cell lines are color-

coded. 
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Supplemental Figure 5. Neural crest transcription factor signature across 5 RNA-

sequencing melanoma cohorts. (A) Heatmap depicting relative expression of 20 neural crest 

transcription factors using the average of all samples classified as CDC20-high, medium, or low. 

The median log2-normalized CDC20 count is listed below each column of every heatmap. Orange 

indicates higher expression relative to other samples for the same gene. Genes in green are 

upregulated in WT A375 compared to CDC20 promoter indel cell lines. Genes in red are 

upregulated in CDC20 promoter indel cell lines. (B) Table summarizing whether a cohort has a 

relative gene level that matches or does not match the gene level seen in WT or CDC20 promoter 

indel cell lines. For a gene to agree, it needs to have relatively higher expression in the WT lines 

(green genes) or relatively higher expression in the CDC20 promoter indel lines (red genes). 

Cohorts that have an asterisk neither completely agree or disagree (e.g. relatively higher in 

CDC20-medium samples or relatively high in CDC20-low and CDC20-high, see SOX10 in TCGA). 
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