

1 RPG interacts with E3-ligase CERBERUS to mediate rhizobial infection in

2 *Lotus japonicus*

3 Xiaolin Li^{a,b}, Miaoxia Liu^a, Min Cai^{a,b}, David Chiasson^{d,1}, Martin Groth^{d,2}, Anne B.

4 Heckmann^c, Trevor L. Wang^c, Martin Parniske^d, J. Allan Downie^c and Fang Xie^{a,*}

⁵ ^a National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in
⁶ Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of
⁷ Sciences, Shanghai 200032, China

^b University of the Chinese Academy of Sciences, Beijing, China

⁹ ^c John Innes Centre, Norwich Research Park, NR4 7UH, United Kingdom Univ Munich

10 ^d LMU, Faculty of Biology, D-82152 Martinsried, Germany

11 ¹ Current address: Department of Biology, Saint Mary's University, Halifax, Canada, B3H

12 3C3

13 ² Current address: Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764

14 Neuherberg, Germany

15 * Correspondence author Email: fxie@cemps.ac.cn

16

17 Short Title: RPG-CERBERUS complex media

18 **One sentence summary:** Puncta localization RPG-CERBERUS protein complex
19 promote polarity growth of ITs driven by nuclear migration.

20

21 The author responsible for distribution of materials integral to the findings presented
22 in this article in accordance with the policy described in the Instructions for Authors
23 (<https://academic.oup.com/plcell/pages/General-Instructions>) is: Fang Xie
24 (fxie@cemps.ac.cn).

25

26

27 **ABSTRACT**

28 Symbiotic interactions between rhizobia and legumes result in the formation of root
29 nodules, which fix nitrogen that can be used for plant growth. Rhizobia usually invade
30 legume roots through a plant-made tunnel-like structure called an infection thread
31 (IT). Rhizobium-directed polar growth (*RPG*) encodes a coiled-coil protein that was
32 identified in *Medicago truncatula* as required for root nodule infection, but the
33 function of *RPG* remains poorly understood. In this study, we identified and
34 characterized *RPG* in *Lotus japonicus* and determined that it is required for IT
35 formation. *RPG* was induced by *Mesorhizobium loti* or purified Nodulation factor and
36 displayed an infection-specific expression pattern. Nodule inception (NIN) bound to
37 the *RPG* promoter and induced its expression. A GFP-RPG protein was localized in
38 puncta subcellular localization in *L. japonicus* root protoplasts and in root hairs
39 infected by *M. loti*. The N-terminal predicted C2 lipid-binding domain of *RPG* was
40 not required for this subcellular localization or for function. CERBERUS, a U-box E3
41 ligase which is also required for rhizobial infection, was found to be localized in
42 similar puncta. *RPG* co-localized and directly interacted with CERBERUS at the
43 early endosomes (TGN/EE) compartment and near the nuclei in root hairs after
44 rhizobia inoculation. Our study sheds light on that a *RPG*-CERBERUS protein
45 complex that is involved in an exocytotic pathway mediating IT polarity growth
46 which is driven by nuclear migration.

47

48 **INTRODUCTION**

49 Nitrogen-fixing root nodule symbioses (RNS) between legumes and their rhizobial
50 symbionts are important because the plants can obtain nitrogen from gaseous N₂
51 reduced to NH₃ by rhizobia. The establishment and maintenance of this symbiosis
52 depend on a molecular dialogue between the partners. The formation of N₂-fixing
53 nodules requires two developmental processes: nodule organogenesis and bacterial
54 infection. Although the two processes can be genetically separated, they must be

55 spatially and temporally coordinated to ensure nodule organogenesis at sites of
56 bacterial infection (Oldroyd and Downie, 2008). In response to flavonoids exuded by
57 the plant, rhizobia secrete decorated lipochito-oligosaccharide molecules called
58 nodulation factors (NFs) that can activate nodule organogenesis, and can induce
59 cellular changes associated with the initiation of bacterial infection (Oldroyd and
60 Downie, 2004).

61 In most legume-rhizobium symbioses, rhizobia invade legume roots *via* root
62 hairs. Rhizobia attach to root hairs, triggering root-hair curling that entraps rhizobia
63 which induce localized cell-wall degradation and rearrangement of the plant
64 cytoskeleton, contributing to the formation of plant-made tunnel-like structures called
65 the infection threads (ITs) (Gage, 2004). Rhizobia colonize the ITs which grow
66 through root cells, ultimately reaching the nodule primordium; the bacteria are then
67 budded off surrounded by a plant-made membrane into plant cells in which they fix
68 nitrogen using carbon supplied by the plant (Robertson et al., 1978). Genetic studies
69 in *Lotus japonicus* and *Medicago truncatula* have identified several genes required for
70 IT initiation and formation. Some are associated with changes in the actin
71 cytoskeleton to promote IT growth. For example, PIR1 (121F-specific p53 inducible
72 RNA 1), NAP1 (Nck-associated protein 1), and SCARN (SCAR-Nodulation) (Yokota
73 et al., 2009; Miyahara et al., 2010; Qiu et al., 2015) are components of an actin
74 assembly SCAR/WAVE complex, and ARPC1 (actin related protein complex 1) is a
75 predicted subunit of the actin-related protein complex ARP2/3 (Hossain et al., 2012).
76 Another component is a legume-specific pectate lyase, NPL, which may be involved
77 in cell wall remodeling during IT initiation (Xie et al., 2012). Rhizobia induce
78 expression of root-hair-specific genes such as *CBS1* (Cystathionine- β -synthase-like 1),
79 *RPG* (Rhizobium-directed polar growth), and *RINRK1* (Rhizobia infection receptor-
80 like kinase 1) (Arrighi et al., 2008; Sinharoy et al., 2016; Li et al., 2019), although
81 these genes have been identified but their biological functions in IT formation are not
82 yet clear.

83 In response to rhizobia-secreted NFs, the root hair tips deform and entrap the
84 bacteria; root hair cell nuclei then move to a location close to root hair tips and the
85 plasma membrane invaginates to form an IT (Gage, 2004). Subsequent IT progression
86 within root hairs follows the path of the moving nucleus, regardless of its direction,
87 supporting the idea that nuclear movement is necessary for IT guidance (Fahraeus,

88 1957). The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex in *M.*
89 *truncatula* is necessary for proper nuclear shaping and movement in *Medicago* root
90 hairs, and it plays a role in IT initiation and nodulation (Newman-Griffis et al., 2019).
91 A cytoplasmic column, rich in secretory organelles, accumulates between the IT and
92 the nucleus (Fournier et al., 2008) and encompasses a structure referred to as an
93 infectosome (Liu et al., 2019b; Roy et al., 2020). In *L. japonicus*, the NF receptor
94 NFR5 can interact with LjROP6 (Rho of Plants 6), which is activated by the DOCK
95 family GEF (guanine nucleotide exchange factor) LjSPIKE1 (SPK1). LjSPK1-
96 LjROP6 then guides polarized IT growth in root hairs (Ke et al., 2012; Liu et al.,
97 2020). *L. japonicus* CERBERUS and its orthologue LIN (Lumpy infection) in *M.*
98 *truncatula* displayed puncta localization and interacted with VAPYRIN, a protein of
99 unknown function, to mediate IT polar growth (Murray et al., 2011; Liu et al., 2019b;
100 Liu et al., 2021). Exo70H4, an exocyst subunit, co-localized with VAPYRIN and LIN
101 during rhizobia infection, suggested that LIN, VAPYRIN and Exo70H4 may form a
102 symbiosis-specific machinery to regulate polar growth of IT (Liu et al., 2019b).

103 NIN (Nodule inception) and RPG had been identified as two key genes which
104 were lost in most non-nodulating species but essential for root nodule symbioses in
105 nitrogen-fixing root nodule (NFN) clades including Fabales, Fagales, Cucurbitales,
106 Rosales and Parasponia (Griesmann et al., 2018; van Velzen et al., 2018). A *M.*
107 *truncatula* *rpg* mutant formed abnormally thick and slow-growing ITs, indicating that
108 RPG plays an important role in IT tip growth (Arrighi et al., 2008). However, RPG
109 has not been characterized in other legumes, and its precise biological function has
110 remained elusive. In this study, we identified the *RPG* gene in *L. japonicus* and
111 showed that it was required for IT formation. *RPG* displayed an infection-specific
112 expression pattern and was directly induced by NIN. RPG showed punctate
113 subcellular localization, could co-localize and interact with CERBERUS close to the
114 nuclei in root hairs after rhizobia inoculation. We propose that the IT elongation,
115 driven by movement of nucleus in root hairs is mediated by this infection-associated
116 complex.

117

118 RESULTS

119 Identification of the *L. japonicus* *RPG* gene in infection-deficient mutants

120 Two symbiosis-defective mutants (SL5706-3 and SL454-2) were isolated from an
121 ethyl methanesulfonate (EMS) mutagenized population in *L. japonicus* Gifu B-129.
122 Both mutant lines produced small white nodules three weeks after inoculation (Figure
123 1, A- B and Supplemental Figure S1). SL5706-3 and SL454-2 were then crossed with
124 the ecotype MG20 (Miyakojima) to generate mapping populations. F_1 plants produced
125 pink nodules two weeks after inoculation with *Mesorhizobium loti*. The nodulation
126 phenotype was scored in F_2 seedlings and revealed segregation of a monogenic
127 recessive mutation in each line (SL5706-3: 145 nod⁺ and 37 nod⁻, χ^2 value = 1.132;
128 SL454-2: 237 nod⁺ and 60 nod⁻, χ^2 value = 1.954). Rough mapping using established
129 DNA markers (<http://www.kazusa.or.jp/lotus/>) revealed that both mutations were on *L.*
130 *japonicus* linkage group 5, between markers TM0913 and TM0052. Two infection-
131 related genes, *CERBERUS/LIN* and *RPG*, had previously been mapped to the
132 corresponding region in *M. truncatula* (Arrighi et al., 2008; Kiss et al., 2009; Yano et
133 al., 2009). We amplified and sequenced the genomic DNA corresponding to the
134 coding region of *CERBERUS* and *RPG* in SL5706-3 and SL454-2. This revealed that
135 neither line had a mutation in the *CERBERUS* gene, but each had a single point
136 mutation in the putative ortholog of *RPG* (Lj5g3v1699100.1). SL5706-3 had a G to A
137 transition at +3395 bp from the predicted start codon and SL454-2 had a G to A
138 transition at +3650 bp; these mutations caused premature stops at residues W258 and
139 W343 (Figure 1, C- D and Table 1).

140 To test if these mutations caused infection defects in the two mutant lines, wild
141 type (WT) cDNA was amplified from Gifu mRNA and inserted into a plasmid under
142 the control of the *L. japonicus* ubiquitin promoter. This construct (pUB:RPG) was
143 introduced into SL5706-3 and SL454-2 by *Agrobacterium rhizogenes*-mediated hairy-
144 root transformation, restoring normal nodulation in both mutants (Figure 1, E and
145 Supplemental Figure S2). We conclude that the identified mutations in *RPG* caused
146 the nodulation defect, and the alleles in SL5706-3 and SL454-2 were designated *rpg-1*
147 and *rpg-2*, respectively.

148 *RPG* in *L. japonicus* is a 6.2-kb gene composed of seven exons separated by six
149 introns (Figure 1, C). Reverse transcription and DNA sequencing indicated that the
150 *LjRPG* cDNA is 3528 bp, encoding a protein 1176 amino acids in length. The
151 predicted protein was 60% identical to MtRPG. The LjRPG protein domain was
152 predicted to have four long coiled-coil domains, similar to MtRPG (Arrighi et al.,

153 2008). As predicted for the *Parasponia* RPG (Zhang and Aravind, 2010; van Velzen
154 et al., 2018), the LjRPG N-terminus had a predicted C2 (NT-C2) domain which
155 predicted to mediate lipid-binding (Figure 1D) (Zhang and Aravind, 2010).

156

157 **Mutation of *RPG* blocks IT formation but not induction of early nodulation
158 genes**

159 Infection and nodulation phenotypes of the *rpg-1* and *rpg-2* mutants were analyzed
160 after inoculation with *M. loti* R7A containing either a constitutively-expressed green
161 fluorescent protein (GFP) or β -galactosidase (*lacZ*) marker gene. The WT plants
162 produced elongated infection threads four days after inoculation (Figure 1, F), but
163 most infection events in the *rpg* mutants were blocked at the stage of formation of
164 infection foci (Figure 1, F). As observed with other infection-defective mutants
165 (Murray et al., 2007; Yokota et al., 2009; Qiu et al., 2015; Li et al., 2019), bacteria
166 were sometimes seen in the root hair cells (here we designated them as “others”)
167 (Figure 1, F). Analysis of infection events in the *rpg* mutants four and ten days post
168 inoculation (dpi) revealed that most infection events were arrested as infection foci,
169 and neither mutant formed any normal-looking infections until 10 dpi (Figure 1, G).

170 Three *LORE1* insertion mutants (Fukai et al., 2012; Urbański et al., 2012) were
171 obtained for *rpg* and the alleles were designated *rpg-3*, *rpg-4*, and *rpg-5* (Figure 1, C
172 and Table 1). A third EMS-induced mutant line with an infection defect (SL0181)
173 was also isolated and the mutation mapped in a similar manner to *rpg-1* and *rpg-2*
174 (Supplemental Figure S3, A-B). SL0181 was found to have a C3778T transition in the
175 sequence of *RPG* leading to a premature stop codon at Q390, then it was designated
176 *rpg-6* (Figure 1, C-D and Supplemental Figure S3, C). Similar to the *rpg-1* and *rpg-2*
177 mutants, most rhizobial infections in the *LORE1* insertion mutants did not go further
178 than infection foci, although some infection threads were observed (Supplemental
179 Figure S4, A-C). However, the *LORE1 rpg* mutants formed pink nodules three weeks
180 after inoculation. The *rpg-3* mutant produced a similar number of mature-looking
181 pink nodules as the WT, whereas *rpg-4* and *rpg-5* had fewer pink nodules
182 (Supplemental Figure S4, B, D and E). The *rpg-6* mutant had a strongly reduced
183 number of nodules and a high number of uninfected nodule primordia (Supplemental
184 Figure S5, A-B). *RPG* expression was measured by quantitative reverse transcription

185 (qRT)-PCR in all five *rpg* mutants. *RPG* transcript levels were significantly decreased
186 in *rpg-1* and *rpg-2* but not in *rpg-3* or *rpg-4* mutants (Supplemental Figure S6).

187 *NIN*, *NPL*, *RINRK1* and *VPY1* are all induced by rhizobial infection (Schauser et
188 al., 1999; Xie et al., 2012; Li et al., 2019; Liu et al., 2021). These genes were all
189 expressed at similar levels in the *rpg-1* and *rpg-2* mutants as in the WT (Supplemental
190 Figure S7) indicating that *RPG* is not required for the induction of rhizobial infection-
191 related genes.

192 Arbuscular mycorrhization by *Rhizofagus irregularis* was also scored in the *rpg-1*
193 and *rpg-2* mutants; microscopic examination and quantification of infections five
194 weeks after inoculation identified no difference in hyphal penetration, or arbuscule
195 formation compared with WT (Supplemental Figure S8) indicating that *RPG* is
196 required for infection by rhizobia but not by arbuscular mycorrhizal fungi (AMF).

197

198 ***RPG* is induced by *NIN* and shows infection-specific expression**

199 *RPG* transcript levels were increased in roots at several time points after inoculation
200 with *M. loti* or after addition of purified *M. loti* NF (Figure 2, A-B). To investigate the
201 spatial and temporal expression pattern of *RPG* during infection and nodulation, we
202 used *A. rhizogenes* to transform *L. japonicus* WT roots with p*RPG:GUS*, which
203 carries the β -glucuronidase (GUS) gene behind the *RPG* promoter. Expression could
204 be detected in some epidermal cells (including root hairs) three to five days after
205 inoculation with *M. loti* (Figure 2, C). We observed strong p*RPG:GUS* expression in
206 infected root hairs; GUS staining co-localized with GFP-marked *M. loti* (Figure 2, D).
207 Strong GUS staining was observed in nodule primordia, but there was much less
208 staining in mature nodules (Figure 2, E-F). Sections of developing nodule primordia
209 (at 5 dpi) revealed GUS expression in all cell layers (Figure 2, G), although GUS
210 expression was then restricted to the nodule parenchyma cells in young mature
211 nodules (14 dpi) (Figure 2, H).

212 To analyze how *RPG* expression is regulated by NF signaling, we measured *RPG*
213 expression in *nin-2* and *ern1-2* mutants. This revealed that *M. loti*-induced *RPG*
214 expression requires *NIN* and *ERN1* in *L. japonicus* roots (Figure 3, A). We then used
215 a dual-luciferase (dual-LUC) reporter assay to analyze whether *NIN* or *ERN1* directly
216 affects *RPG* transcription by co-expressing p*RPG:LUC* with p*35S:NIN* or p*35S:ERN1*
217 in *Nicotiana benthamiana* leaf cells. Luciferase activity was quantified in leaf discs,

218 revealing that NIN, but not ERN1, could induce *RPG* expression (Figure 3, B). Two
219 putative NIN-binding nucleotide sequences (NBS) (Soyano et al., 2014) were
220 identified 1157 bp (S1) and 241 bp (S2) upstream of the *RPG* translation start codon
221 (Supplemental Figure S9). We used an electrophoresis mobility shift assay (EMSA)
222 to determine whether NIN could bind to these regions of the *RPG* promoter. A
223 mobility shift was observed when the carboxyl-terminal half of the NIN recombinant
224 protein was incubated with a synthetic oligonucleotide corresponding to the identified
225 sequence in the *RPG* promoter S1 and S2 regions; an unlabeled competitor
226 oligonucleotide outcompeted binding by the labelled probe (Figure 3, C-D). Deletion
227 of the conserved NBS of the S2 region (Δ S2, -29 bp) prevented NIN binding, but
228 deletion of the S1 region (Δ S1, -35 bp) did not block NIN binding (Figure 3, C-D).
229 In a competition assay, unlabeled Δ S2 could not outcompete NIN binding to the
230 labelled S2 region, whereas unlabeled Δ S1 could outcompete the NIN binding to the
231 S1 probe (Figure 3, C-D). These results all suggest that the S2 region is critical for
232 NIN binding to the *RPG* promoter. To verify this, we used a dual-LUC system with
233 p*RPG*:LUC containing deletions of S1 (p*RPG* Δ S1:LUC), S2 (p*RPG* Δ S2:LUC) or
234 with both S1 and S2 deleted (p*RPG* Δ S1,2:LUC) and co-expressed each with
235 p35S:NIN in *N. benthamiana* leaves. The results showed that NIN could not induce
236 expression of p*RPG* Δ S2:LUC or p*RPG* Δ S1,2:LUC, but could induce p*RPG* Δ S1:LUC
237 expression (Figure 3, B). This indicates that S2 is essential for induction of *RPG* by
238 NIN. The results were validated in *L. japonicus* by expressing p*RPG*:GUS, p*RPG* Δ
239 S1:GUS, or p*RPG* Δ S2:GUS in transformed *L. japonicus* hairy roots; p*RPG*:GUS and
240 p*RPG* Δ S1:GUS had similar expression patterns in roots inoculated with *M. loti*
241 (Figure 3, E-F). In contrast, about half of the p*RPG* Δ S2:GUS transgenic roots (13/27)
242 had no detectable GUS expression (Figure 3, H) and the remainder (14/27) showed
243 weaker GUS staining than p*RPG*:GUS (Figure 3, G). Based on these observations, we
244 conclude that *RPG* is induced by NIN through an interaction with the S2 region,
245 resulting in an infection-specific expression pattern.

246

247 **RPG displays punctate subcellular localization**

248 To investigate the subcellular localization of RPG, we first used assays in *N.*
249 *benthamiana* leaves. We had expected RPG to be localized to the nucleus based on
250 prior results with *Medicago* RPG (Arrighi et al., 2008) and the predicted nuclear

251 localization signal (NLS) (<http://www.psort.org/>) at the C-terminus of LjRPG (Figure
252 1, D). However, GFP-RPG made by fusing *GFP* with *RPG* cDNA and expressed by
253 the 35S promoter showed strong fluorescence with punctate foci, some of which were
254 close to the nucleus (Figure 4, B). Expressing the p35S:*GFP-RPG* construct in the
255 *rpg-1* mutant can rescue its infection defects and produce pink mature nodules
256 (Supplemental Figure S10). This observation was confirmed in *L. japonicus* root
257 protoplasts in which *L. japonicus* ASTRAY, a homologue of *Arabidopsis thaliana*
258 HY5 (Nishimura et al., 2002), was used as a nuclear marker. Co-expression of GFP-
259 RPG and ASTRAY-mRFP in *L. japonicus* root protoplasts revealed puncta of GFP-
260 RPG, some of which were close to, but distinct from the nucleoplasm (Figure 4, D).
261 As expected, expression of GFP alone (p35S:*GFP*) showed both nuclear and
262 cytoplasmic localization (Figure 4, A and C).

263 To analyze RPG subcellular localization in legumes after rhizobial inoculation,
264 the *L. japonicus* *rpg-1* mutant was stably transformed with *GFP* fused to *RPG* cDNA
265 downstream of the native *RPG* promoter (p*RPG*:*GFP-RPG*). Analysis of T₂ plants of
266 this transformant revealed that those that expression of p*RPG*:*GFP-RPG* in the *rpg-1*
267 mutant resulted in formation of normal ITs and pink nodules as seen in the WT. In
268 contrast, T₂ segregants lacking p*RPG*:*GFP-RPG* (*rpg-1*) formed infection foci and
269 white nodules as seen in the mutant (Supplemental Figure S11). This shows that the
270 GFP-RPG fusion protein functioned in the transgenic roots of the *rpg-1* mutant. No
271 GFP fluorescence could be reliably detected in live roots, so we immuno-localized the
272 protein using GFP antiserum. There was little or no detectable signal in the absence of
273 *M. loti*, but punctate localization of GFP-RPG was observed in root hairs with
274 infection foci after inoculation with *M. loti* MAFF303099/RFP (Figure 4, E-F) or ITs
275 (Supplemental Figure S12, A), and was also observed in inoculated root hairs that did
276 not contain entrapped rhizobia (Supplemental Figure S12, B). Taken together, these
277 results showed that RPG localizes in puncta close to the nucleus when expressed in *N.*
278 *benthamiana* leaves or *L. japonicus* root protoplasts, also showed puncta dots in *L.*
279 *japonicus* root hairs following inoculation with *M. loti*.

280 To analyze the domain of RPG that determines its subcellular localization, we
281 made constructs in which the GFP was fused either to the RPG N-terminal NT-C2
282 domain contained in the first 300 amino acids of RPG (GFP-NT-C2) or the region of
283 the protein (residues 170-1176) lacking the NT-C2 domain but containing all the C-

284 terminal coiled-coil domains (GFP-CC). In *N. benthamiana* leaves GFP-NT-C2 was
285 expressed throughout cells (Figure 4, G), similar to free GFP (Figure 4, A), whereas
286 GFP-CC displayed the same punctate localization as full-length GFP-RPG (Figure 4,
287 B and H); protein levels were quantified by immunoblotting with anti-GFP antiserum
288 (Supplemental Figure S13). The observed localization suggested that the NT-C2
289 domain is not required for the observed subcellular localization of RPG. Constructs
290 were then generated in which the NT-C2 or the protein lacking the NT-C2 domain
291 were expressed by the *L. japonicus* *Ubiquitin* promoter (Maekawa et al., 2008); these
292 were expressed in roots of *rpg-1* using hairy root transformation. Expression of the
293 *RPG* lacking the NT-C2 domain (pUB:CC) rescued the *rpg-1* infection defect as
294 effectively as full-length *RPG* and the transformants formed normal ITs and pink
295 mature nodules (Figure 4, I-J and Supplemental Figure S14). No rescue was observed
296 in roots expressing NT-C2 (pUB:NT-C2) (Figure 4, I-J and Supplemental Figure S14)
297 and in all cases transformation was confirmed with a separate GFP marker. Based on
298 these data, we conclude that RPG displays punctate subcellular localization, and that
299 the N-terminal C2 domain is not required for this subcellular localization or its
300 biological function.

301

302 **RPG interacts with CERBERUS at the TGN/EE compartment**

303 The punctate localization of RPG is similar to that reported for MtLIN and
304 LjCERBERUS (Liu et al., 2019b; Liu et al., 2021). We hypothesized that RPG and
305 CERBERUS may function together to promote IT formation. To define the
306 subcellular compartment in which RPG localized, we co-expressed GFP-RPG or
307 mCherry-RPG with the following subcellular markers in *N. benthamiana* leaves:
308 Sec12-PHB-mCherry for the endoplasmic reticulum (ER); HAP3-GFP or SYP61-
309 mCherry for the TGN/EE; ARA6-mCherry or mRFP-VSR2 for multivesicular bodies
310 (MVB); and CD3-963-GFP for the Golgi (Bar-Peled and Raikhel, 1997; Ueda et al.,
311 2001; Nelson et al., 2007; Drakakaki et al., 2012; Wang et al., 2013). The results
312 showed that RPG co-localized with ER and TGN/EE markers (Figure 5, A and
313 Supplemental Figure S15, A-B) but not with the Golgi or MVB markers
314 (Supplemental Figure S15, C-E). This is similar to the observed subcellular
315 localization of CERBERUS and indeed, co-expressed GFP-RPG and CERBERUS-
316 mCherry in *N. benthamiana* leaves co-localized to punctate loci (Figure 5, B).

317 We used a bimolecular fluorescence complementation (BiFC) assay in *N.*
318 *benthamiana* using split-Venus fused to RPG and CERBERUS to determine if RPG
319 can associate with CERBERUS. Co-expression of nVenus-CERBERUS and cVenus-
320 RPG resulted in strong Venus fluorescence in puncta, some of which were close to the
321 nucleus, which was marked with nuclear localized DsRed (NLS-DsRed) (Figure 5,
322 C). Co-expression of a BiFC construct (containing *pAtUBI10:nVenus-CERBERUS*
323 and *pLjUBI1:cVenus-RPG*) with markers for the ER (Sec12-PHB-mCherry) and
324 TGN/EE (SYP61-mCherry) in *N. benthamiana* leaves confirmed that the RPG-
325 CERBERUS complex co-localized with ER and TGN/EE markers (Figure 5, D and
326 Supplemental Figure S15F), suggesting that the RPG-CERBERUS may interact to
327 function in endosome trafficking during IT formation.

328 We used multiple assays to check which domains of RPG and CERBERUS
329 mediate their interaction. Yeast two-hybrid (Y2H) assays confirmed that RPG could
330 interact with full length CERBERUS, and showed that the CERBERUS Armadillo-
331 like domain (ARM) (but not the WD40 domain) and the RPG coiled-coil domain
332 (CC) were sufficient for the interaction (Figure 6, A). Split-luciferase
333 complementation imaging assays in *N. benthamiana* leaves confirmed that
334 CERBERUS could interact with RPG, and showed that the CERBERUS ARM
335 domain interacted more strongly than full-length CERBERUS (Figure 6, B).
336 Interaction of RPG and CERBERUS was also detected in a co-immunoprecipitation
337 (Co-IP) assay in which GFP-RPG was co-expressed with CERBERUS-mCherry in *N.*
338 *benthamiana* leaves (Figure 6, C).

339 We further validated the RPG-CERBERUS interaction using BiFC in legumes.
340 Transformation of *L. japonicus* roots with *pAtUBI10:nVenus-CERBERUS* and
341 *pLjUBI1:cVenus-RPG* was selected using NLS-DsRed as a marker of transformation
342 but we could not reproducibly detect Venus fluorescence. To try to enhance
343 sensitivity, the same BiFC construct was expressed in roots of the *M. truncatula sunn-*
344 *I* mutant, which shows increased levels of gene expression due to lack of
345 autoregulation of nodulation (Schnabel et al., 2010). After inoculation with
346 *Sinorhizobium meliloti* 1021, which carried an mCherry reporter, punctate Venus
347 fluorescence was detected in root hairs close to the nucleus (Figure 6, D) and in
348 curled root hairs (Figure 6, E-F), and was co-localized with bacteria in the curled root
349 hair (Figure 6, G). These puncta labelled with the interacting proteins were similar to

350 those labelled by GFP-LIN in *M. truncatula* PITs (Liu et al., 2019b). Based on these
351 results, we conclude that RPG interacts with CERBERUS in infected root hairs.

352

353 **DISCUSSION**

354 RPG was identified as a key gene in nodulating FaFaCuRo clades (Griesmann et al.,
355 2018; van Velzen et al., 2018), which was required for IT polar growth in *M.*
356 *truncatula* (Arrighi et al., 2008), and play more important roles in root hair ITs than
357 transcellular ITs in *L. japonicus* (Montiel et al., 2021). In this study, we showed in *L.*
358 *japonicus* *rpg* showed similar symbiotic phenotype as other infection threads deficient
359 (*itd*) mutants, such as *rinrk1*, *scarn*, *cerberus* and *npl* (Lombardo et al., 2006; Yano et
360 al., 2009; Xie et al., 2012; Qiu et al., 2015; Li et al., 2019). However, *RINRK1* was
361 required for rhizobia-induced nodulation genes expression (Li et al., 2019), while the
362 induction of these genes by rhizobia was not affected in *scarn* and *rpg* mutants (Qiu et
363 al., 2015 and this study), suggested that the biological roles of SCARN and RPG in IT
364 formation were different with *RINRK1*, which may involve in NF signaling
365 transduction pathway.

366 *RPG* is induced by either purified NF or inoculation with *M. loti*. It was
367 previously reported that *MtRPG* expression is dependent on NIN (Liu et al., 2019a),
368 and chromatin immunoprecipitation also showed that NIN could directly bind with
369 the *RPG* promoter in *L. japonicus* roots (Soyano et al., 2014). We found that the
370 induction of *RPG* by rhizobia requires ERN1 and NIN, whereas NIN but not ERN1,
371 could directly bind to the *RPG* promoter to activate *RPG* expression. This may be
372 because ERN1 functions upstream of NIN, as has been suggested in *M. truncatula*
373 (Hirsch and Oldroyd, 2009). Thus, ERN1 induction of *NIN* could induce *RPG*
374 expression. Two predicted NIN binding sites were present in the *RPG* promoter, and
375 although NIN could directly bind to both *in vitro*, but, only one was required for *RPG*
376 induction in roots.

377 *RPG* contains a predicted NT-C2 domain and four predicted long coiled-coil
378 domains. Proteins containing the NT-C2 domain, such as vertebrate estrogen early-
379 induced gene1 (EEIG1) (Wang et al., 2004) and its ortholog in *Drosophila*, are
380 required for uptake of dsRNA *via* the endocytic machinery to induce RNAi silencing
381 (Saleh et al., 2006). In *Arabidopsis*, PLASTID MOVEMENT IMPAIRED 1 (PMI1) is
382 a plant-specific C2-domain protein that is required for efficient movement of

383 chloroplasts nuclei in response to light (DeBlasio et al., 2005; Suetsugu et al., 2015).
384 However, in this study, we did not observe a requirement for the predicted NT-C2
385 domain for IT formation suggesting that the lipid binding activity of RPG NT-C2
386 domain should be tested. RPG C-terminal long coiled-coil domain is sufficient for its
387 protein subcellular localization and biological function. Long coiled-coils are highly
388 versatile protein folding motif which function involved in organelle architecture, in
389 nuclear organization and the cytoskeletal motor proteins (Rose et al., 2004;
390 Truebestein and Leonard, 2016). MtRPG can interact with MtIEF (Infection-related
391 epidermal factor), a legume-specific protein which contain a coiled-coil region and a
392 DUF761 domain with unknown function (Kovács et al., 2022). In this study, we
393 found that RPG was localized in puncta close to the nucleus in *N. benthamiana* leaves
394 and *L. japonicus* root protoplasts. A very recent study in *M. truncatula* showed that
395 the IT tip-to-nucleus microtubule connectivity is perturbed in *rpg-1* (Lace et al., 2022).
396 Together all these studies strongly indicated that RPG plays important roles in
397 nuclear-led IT elongation. MtLIN (the orthologue of CERBERUS) is localized at PIT
398 tips, and also localizes in clear puncta associated with the nucleus (Liu et al., 2019b).
399 RPG and CERBERUS interact near the nucleus and TGN/EE compartment; this
400 suggests that the RPG–CERBERUS complex could promote polar growth of ITs by
401 affecting nuclear migration through a connection to endosome trafficking and/or
402 cytoskeletal changes during IT formation.

403 CERBERUS contains a U-box domain and has auto-ubiquitination activity (Yano
404 et al., 2009; Liu et al., 2021). CERBERUS interacts with LjVPY1/2, but promotes
405 LjVPY1/2 accumulation in *N. benthamiana* and *L. japonicus* (Liu et al., 2021).
406 Despite persistent efforts, we were unable to express and purify RPG from
407 *Escherichia coli*, and RPG expression in *N. benthamiana* was too low to perform an
408 *in vitro* ubiquitination assay for CERBERUS and RPG. Moreover, LIN-VPY-
409 Exo70H4 form a protein complex in infectosome in *M. truncatula* root hairs (Liu et
410 al., 2019b). It will be very important to determine in the future the detailed molecular
411 mechanisms of how the RPG, CERBERUS, VAPRYIN, and exocyst polar growth
412 machinery operates in IT formation.

413

414 MATERIALS and METHODS

415 Plant materials and strains

416 The *L. japonicus* ecotypes Gifu B-129 and Myakojima (MG-20) and mutant lines *nin-*
417 *2*, *ern1-2* (Cerri et al., 2017), and *cerberus-12* (Liu et al., 2021) were used in this
418 study. For *M. truncatula*, the mutant line *sunn-1* (Schnabel et al., 2005) was used. The
419 mutant lines *rpg-1* (SL5706-3), *rpg-2* (SL454-2), and *rpg-6* (SL0181) were isolated
420 from forward genetic screening of an EMS mutagenesis population of *L. japonicus*
421 Gifu B-129. Other *rpg* alleles were obtained from a *LORE1* retrotransposon insertion
422 mutagenesis pool (Urbański et al., 2012). The transposon insertion in each gene was
423 verified by PCR product sequencing; primers are shown in Supporting Information
424 supplemental Table S1. *Meshorhizobium loti* R7A, constitutively expressing GFP or
425 *lacZ* (referred to as R7A GFP or R7A LacZ), or *M. loti* MAFF303099 carrying RFP,
426 or DsRED were used for *L. japonicus* nodulation experiments, and *Sinorhizobium*
427 *meliloti* 1021-mCherry was used for *M. truncatula* nodulation experiments. Spores of
428 the mycorrhizal fungus *Rhizophagus irregularis* were used for analysis of AM
429 symbiotic phenotypes. For hairy root transformation of *L. japonicus* or *M. truncatula*
430 roots, *Agrobacterium rhizogenes* strain AR1193 was used. *A. tumefaciens* strain
431 EHA105 or GV3101 (pSoup) were used for *N. benthamiana* transient expression and
432 stable transformation of *L. japonicus* as previously described (Tirichine et al., 2005).
433 Plasmids were cloned in *Escherichia coli* DH10B or DH5 α and *E. coli* Rosetta was
434 used for protein expression. *Saccharomyces cerevisiae* strain AH109 was used for the
435 yeast two-hybrid assay.

436

437 **Cloning, DNA manipulation, and plasmid construction**

438 For genetic complementation, the coding sequence (CDS) of RPG was amplified from
439 a cDNA library of inoculated Gifu roots using the primers *RPG-XbaI-F* and *RPG-*
440 *Ascl-R*. The PCR products and pUB-GFP plasmid were digested with *XbaI* and *Ascl*,
441 then RPG was inserted into pUB-GFP to form pUB:RPG. The NT-C2 and entire CC
442 domains of RPG were amplified by PCR using the primers *RPG-attB-F/NT-C2-attB-*
443 *R* or *CC-attB-F/RPG-attB-R*. The PCR product was inserted into pDONR207 via a
444 BP reaction (Invitrogen, Waltham, MA, USA) and combined into pUB-GW-GFP to
445 generate the pUB:NT-C2 or pUB:CC construct via the LR reaction (Invitrogen).

446 For yeast two-hybrid assays, RPG PCR products were recombined into
447 pDONR207 via a BP reaction. RPG/pDONR207, NT-C2/pDONR207, and

448 CC/pDONR207 were recombined into pDEST-GBKT7 or pDEST-GADT7 using the
449 LR reaction.

450 For split-luciferase complementation imaging assays, *RPG*, *CERBERUS*, and a
451 fragment encoding the CERBERUS ARM domain were inserted into the destination
452 vectors 771-LUCn and 772-LUCc following *KpnI* and *SalI* digestion.

453 To determine the subcellular localization of *RPG* in *N. benthamiana* leaves,
454 *RPG*/pDONR207, NT-C2/pDONR207, and CC/pDONR207 were recombined into
455 destination vector pK7WGF2-NLS-DsRed, which was modified from pK7WGF2.
456 The kanamycin resistance gene of pK7WGF2 was replaced with a fragment of *NLS-*
457 *DsRed* which was driven by the ubiquitin promoter. To obtain stably transformed
458 plants, *RPG*/pDONR207 was recombined into pK7WGF2. The *RPG* promoter was
459 amplified to replace the 35S promoter in *RPG*/pK7WGF2 to generate p*RPG:GFP-RPG*.
460

461 For co-localization and BiFC analyses in *N. benthamiana* leaves, *L. japonicus*
462 plants, and *M. truncatula* hairy roots, mCherry-RPG constructs (co-localization
463 assays) or *RPG* and *CERBERUS* constructs (BiFC assays) were generated with
464 Golden Gate cloning (Weber et al., 2011). The *RPG* and *CERBERUS* CDS were
465 synthesized in the level 0 vector pL0V-SC3 (Shanghai Xitubio Biotechnology) to
466 generate p*L0M-SC3-RPG* or p*L0M-SC3-CERBERUS*. p*L0M-SC3-RPG* and the
467 EC15111 vector were digested with *BsaI* to generate mCherry-RPG as the level 1
468 construct. This level 1 mCherry-RPG was assembled into EC50507
469 (<https://www.ensa.ac.uk/>) to generate the level 2 construct mCherry-RPG binary
470 vector. p*L0M-SC3-RPG* was assembled into EC10048 to generate cVenus-RPG, and
471 p*L0M-SC3-CERBERUS* was assembled into EC10044 to generate nVenus-
472 CERBERUS. Finally, these constructs were assembled into EC50507, adding
473 p*35S:NLS-DsRed* or p*35S:GUS* as a transgenic marker, to generate the BiFC
474 construct p*AtUBII0:nVenus-CERBERUS/pLjUBII:cVenus-RPG*. For transient
475 expression in *L. japonicus* root protoplasts, the *GFP-RPG* fragment was amplified
476 using *RPG*/pK7WGF2-NLS-DsRed as a template. The PCR products and pA7-GFP
477 were digested with *SpeI* and *BamHI*, then *GFP-RPG* was inserted into pA7-GFP to
478 form pA7-GFP-RPG. *ASTRAY* cDNA was amplified from Gifu cDNA using the
479 primers *ASTRAY-BamHI-F* / *ASTRAY-BamHI-R*. The PCR products and pA7-mRPF

480 were digested with BamHI, then inserted into pA7-mRFP to generate ASTRAY-
481 mRFP by homologous recombination methods (Vazyme).

482 For the dual-luciferase reporter assay in *N. benthamiana*, the *RPG* promoter
483 fragments or those with NBSs deleted were amplified via PCR using the primers
484 shown in Supplemental Table S1. Single or multiple PCR products were then inserted
485 into the pGreen II vector using homologous recombination methods (Vazyme)
486 following KpnI and HindIII/SpeI digestion to generate the *pRPG:LUC*,
487 *pRPGΔS1:LUC*, *pRPGΔS2:LUC*, and *pRPGΔS1,2:LUC* constructs. The effector
488 construct was generated by inserting NIN or ERN1 CDS into the pRI101 vector
489 (containing the 35S promoter) using the KpnI/EcoRI restriction sites.

490 For expression analysis of *RPG* in *L. japonicus* hairy roots, *RPG* promoter
491 fragments (1581 bp upstream of their respective start codons) were amplified from
492 genomic DNA extracted from Gifu leaves by PCR. The *RPG* fragments with NBS S1
493 or S2 deleted from the promoter were amplified using *pRPGΔS1:LUC* or
494 *pRPGΔS2:LUC* as a template. PCR products were cloned into pDONR207 with a BP
495 reaction, and combined into pKGWFS7-NLS-DsRed to generate the *pRPG:GUS*,
496 *pRPGΔS1:GUS* or *pRPGΔS2:GUS* constructs via LR reaction. The pKGWFS7.0-
497 NLS-DsRed vector was modified from pKGWFS7.0 by replacing the kanamycin with
498 the *ubiquitin* drive *NLS-DsRed*.

499 All PCR amplification was performed using MAX (Vazyme), and all constructs
500 were confirmed by DNA sequencing. Primers are shown in Supplemental Table S1
501 and constructs are listed in Supplemental Table S2.

502

503 **Map-based cloning**

504 The *rpg-1*, *rpg-2* and *rpg-6* mutations were mapped using an F₂ populations
505 established by using SL5706-3, SL454-2 and SL0181 as pollen donors to *L. japonicus*
506 ecotype MG20. Plants were inoculated with *M. loti* R7A LacZ and scored at 21 dpi
507 for the nodulation phenotype. Genomic DNA was extracted from leaves as previously
508 described (Pajuelo and Stougaard, 2005). Primer sequences and information for SSR
509 markers were retrieved from the miyakogusa.jp website
510 (<http://www.kazusa.or.jp/lotus/>).

511

512 **Plant growth conditions, symbiotic inoculations, and phenotype observation**

513 *L. japonicus* or *M. truncatula* seeds were scarified, surface sterilized, and grown as
514 previously described (Qiu et al., 2015; Luo et al., 2021). After five to seven days of
515 growth, seedlings were inoculated with *M. loti* R7A LacZ, MAFF303099 GFP or
516 DsRED strains. Nodule number was scored three and four weeks after inoculation.
517 For phenotyping of *rpg-6*, WT and SL0181 (M4) plants were grown at 24 °C, 16
518 hours photoperiod as previously described (Groth et al., 2010). Nodules and
519 uninfected nodule primordia were quantified 14 days after inoculation with DsRED-
520 expressing *M. loti* MAFF303099 by fluorescence and bright-field microscopy (Leica
521 MZ16 FA). The number of infection events was determined by microscopy of the
522 whole root stained with 5-bromo-4-chloro-3-indolylbeta-D-galacto-pyranoside (X-
523 Gal) at 4 and 10 dpi with *M. loti* R7A LacZ; at least nine plants were scored at each
524 time point. LacZ staining, observation of GFP-marked *M. loti*-inoculated roots, and
525 light microscopy of nodule sections were performed as previously described (Qiu et
526 al., 2015).

527 For mycorrhizal analysis, *L. japonicus* seedlings were grown in pots containing
528 sand and perlite (1:4) with sterile *R. irregularis* spores. The roots were stained with
529 ink/vinegar and fungal structures quantified five weeks after inoculation as previously
530 described (Zhang et al., 2015). The samples were analyzed at 10x magnification with
531 a bright-field microscope (Nikon Eclipse). Images of roots stained with WGA-Alexa
532 Fluor 488 were taken with confocal microscopy (Olympus FV10-ASW).

533

534 **Complementation tests**

535 Roots of WT, *rpg-1* or *rpg-2* mutants were transformed with pUB:RPG using *A.*
536 *rhizogenes* AR1193-mediated hairy root transformation. The transformed chimeric
537 plants were transplanted into vermiculite/perlite pots and inoculated with *M. loti* R7A
538 LacZ after five to seven days. Infection events were analyzed at seven dpi and the
539 nodulation phenotypes were scored two or three weeks after inoculation.

540

541 **Gene expression pattern analysis**

542 *L. japonicus* WT (Gifu), *rpg-1*, *rpg-2*, *nin-2*, and *ern1-2* seedlings were grown on FP
543 agar medium for seven days. Plants were then either inoculated with *M. loti* R7A or
544 10 nM purified *M. loti* NFs was added. Samples were collected at 0, 1, 3, and 7 days
545 after *M. loti* inoculation or 0, 6, 12, and 24 h after NF treatment, immediately frozen

546 in liquid nitrogen, and stored at -80 °C until use. Total RNA was extracted using the
547 TRIpure Isolation Reagent (Aidlab, China); RNA was reverse transcribed using
548 TransScript one-step gDNA removal and cDNA synthesis SuperMix (Trans Gen
549 Biotech). qRT-PCR reactions were performed with the TOYOBO SYBR Green
550 Realtime PCR Master Mix (TOYOBO) and analyzed with a step-one Plus PCR
551 system (ABI). *Lotus* Ubiquitin (Lj5g3v2060710.1) was used as a reference gene to
552 normalize expression. All of the primers used for qRT-PCR of target transcripts are
553 shown in Supplemental Table S1.

554 For promoter GUS assays, the pRPG:GUS, pRPGΔS1:GUS, pRPGΔS2:GUS
555 construct was transferred into AR1193, then expressed in *L. japonicus* WT by hairy
556 root transformation. Transgenic plants were transferred into a 1:1 vermiculite:perlite
557 mixture and inoculated with *M. loti* R7A LacZ after five to seven days. GUS
558 expression was analyzed at seven and 14 dpi.

559

560 **Electrophoresis mobility shift assays (EMSA)**

561 NIN carrying a C-terminal His tag was purified as previously described (Xie et al.,
562 2012). The RPG promoter regions S1(-1037 to -1231 bp), S2 (-141 to -339 bp),
563 ΔS1, and ΔS2 were amplified via PCR using pRPG:GUS, pRPGΔS1:GUS, and
564 pRPGΔS2:GUS as the template; primers are shown in Supplemental Table S1. PCR
565 products were fluorescently labeled at the 5' ends with Cy5 (Yingjun Corp. China)
566 and purified by gel extraction (OMEGA Bio-TEK). Fluorescently-labeled DNA was
567 then detected using a Biophotometer Plus (Eppendorf) and 1 nM of DNA incubated
568 with the purified NIN protein in 20 μL of binding buffer (20 mm Tris, pH 7.5; 5%
569 [w/v] glycerol; 10 mm MgCl₂; 0.25 mm dithiothreitol; 0.8 μg bovine serum albumin
570 [BSA]; and 1 μg salmon sperm DNA). After incubation at 30 °C for 20 min, the
571 products were electrophoresed at 4 °C on a 6% native polyacrylamide gel in Tris-
572 borate/EDTA buffer for 2 h at 100 V. Fluorescence in the gel was detected with a
573 Starion FLA-9000 (FujiFilm).

574

575 **Dual-luciferase reporter assays in *N. benthamiana***

576 The dual-luciferase reporter assay was performed in *N. benthamiana* leaves as
577 previously described (Luo et al., 2021). The indicated constructs were transferred into
578 *A. tumefaciens* GV3101 (pSoup), then introduced into *N. benthamiana* leaves by

579 infiltration. After two days, the LUC/REN ratio was measured with the dual-luciferase
580 reporter assay system following the manufacturer's protocols (Promega). Mean values
581 and standard deviations were calculated from three biological replicates.

582

583 **Protein subcellular localization and co-localization in *N. benthamiana* leaves or**
584 ***L. japonicus* root protoplasts**

585 CERBERUS-mCherry and the other organelle markers used for protein subcellular
586 localization analysis in *N. benthamiana* leaves have been described previously (Liu et
587 al., 2021). The constructs were introduced into *A. tumefaciens* EHA105 by
588 electroporation, and *N. benthamiana* leaves were infiltrated with the resulting strains
589 either alone or together. All were infiltrated with p19, which inhibits gene silencing
590 (Voinnet et al., 2003). Images were taken two days later with laser scanning confocal
591 microscopy (Leica TCS SP8). The level of colocalization was analyzed using ImageJ.
592 All protein subcellular localization assays were repeated at least three times.

593 For transient expression in *L. japonicus* root protoplasts, constructs (pA7-GFP-
594 RPG, pA7-GFP-RPG, and ASTRAY-mRFP) were transiently expressed or co-
595 expressed in *L. japonicus* root protoplasts using a DNA-PEG-calcium transfection
596 method (Jia et al., 2018). Images were taken 16 h after transfection by laser scanning
597 confocal microscopy (Leica TCS SP8). For GFP, the filter sets for excitation and
598 emission were 488 nm and 498-550 nm, respectively; for mCherry, DsRed, and
599 mRFP, they were 561 nm and 575-650 nm. The level of colocalization was analyzed
600 using ImageJ. All protein subcellular localization assays were repeated at least three
601 times.

602

603 **Whole-mount immunolocalization assays for RPG subcellular localization in *L.***
604 ***japonicus* roots**

605 The p35S:GFP-RPG or pRPG:GFP-RPG plasmid was introduced into *A. tumefaciens*
606 strain EHA105, then expressed in *rpg-1* by *A. tumefaciens*-mediated transformation
607 (Tirichine et al., 2005) to generate stably transformed plants.

608 RPG subcellular localization was analyzed using whole-mount immunolocalization
609 as previously described (Sauer et al., 2006). Briefly, transgenic plants were inoculated
610 with MAFF303099/RFP and 5-7 days after inoculation, the roots were submerged in
611 fixative solution (4% formaldehyde in phosphate-buffered saline (PBS)) in a vacuum

612 desiccator for 1 h. Fixative solution was removed and seedlings were washed two
613 times for 5-10 min each with 1x PBS at room temperature. This was followed by two
614 washes with water for 5 min each. Root pieces were transferred to microscope slides
615 and dried overnight, then root tissue was rehydrated by pipetting 1× PBS onto the
616 microscope slides and incubating for 5 min at room temperature. Roots were collected
617 into 2 mL EP tubes, then permeated with 2% Driselase in PBS and incubated for 60
618 min at 37 °C, followed by five washes with 1× PBS for 10 min each. A mixture of 3%
619 IGEPAL CA-630 with 10% DMSO in PBS was added, then after 1 h the tissues were
620 washed with 1× PBS five times for 10 min each. After blocking with 3% BSA in PBS,
621 the fixed roots were incubated with primary antibody (anti-GFP, 1:300, Abmart) for at
622 least 4 h at 37 °C. Alexa Fluor 488-conjugated AffiniPure Donkey Anti-Mouse IgG
623 secondary antibody (1:500, Jackson) was added and incubated for at least 3 h at
624 37 °C, then samples were washed with 1× PBS five times for 10 min each. Images
625 were taken with a confocal microscope (Leica TCS SP8). For RFP, the filter sets for
626 excitation and emission were 561 nm and 575-650 nm, respectively; for Alexa 488,
627 they were 488 nm and 498-519 nm.

628

629 **Protein-protein interaction assays**

630 Interactions between CERBERUS, WD40, and ARM were assayed using the yeast
631 two- hybrid system as previously described (Liu et al., 2021). The yeast strain AH109
632 was transformed with the constructs in destination vectors using lithium acetate
633 transformation (Yeast Protocols Handbook PT3024-1, Clontech). The transformants
634 were grown on synthetic defined medium (0.67% yeast nitrogen base, 2% Bacto-agar
635 and amino acid mix) without the appropriate auxotrophic markers after gradient
636 dilution. These assays were repeated three times.

637 For split-luciferase complementation imaging assays in *N. benthamiana* leaves,
638 LUCc-RPG was co-expressed with CERBERUS-LUCn, ARM-LUCn, in *N.*
639 *benthamiana* leaves via agroinfiltration with p19, which inhibits gene silencing. The
640 transformed plants were grown in a growth chamber. After two days, images were
641 captured by CCD (TANON 5200, China) after 1 mM luciferin (Promega) was sprayed
642 onto the leaves. All images were acquired using the same exposure settings. Each
643 interaction group was validated with at least three replicates, and two or three
644 independent experiments were performed.

645 For co-immunoprecipitation (Co-IP) assays, GFP-RPG and CERBERUS-
646 mCherry were co-expressed in *N. benthamiana* leaves. Leaves were harvested 60 h
647 after agroinfiltration, and approximately 0.6 g of plant tissue was extracted with 2 ml
648 lysis buffer (50 mM Tris-MES at pH 8.0, 0.5 M sucrose, 1 mM MgCl₂, 10 mM
649 EDTA, 5 mM DTT, 0.2% NP-40, 1 mM phenylmethanesulfonyl fluoride (PMSF] and
650 proteinase inhibitor cocktail tablet (Roche]) for 15 min then centrifuged at 12,000 rpm
651 for 10 min. The supernatants were collected for Co-IP. Samples were incubated for
652 1.5 h with 30 µL Anti-RFP Affinity beads 4FF (Cat. SA072C, SMART) at 4 °C on a
653 rotating wheel, then centrifuged at 2000 rpm for 2 min at 4 °C. The beads were
654 washed and analyzed by immunoblotting using anti-mCherry (Cat.T0090, Affinity
655 Biosciences, Cincinnati, OH, USA) and anti-GFP antibody (Cat. M20004L, Abmart).
656 Approximately 10 µL of lysis buffer containing total protein was loaded as the input
657 control.

658 For BiFC assays, the construct pAtUBI10:nVenus-CERBERUS/pLjUBI1:cVenus-
659 RPG was expressed in *N. benthamiana* leaves by agroinfiltration with p19.
660 Transformed plants were grown in a growth chamber, and images were captured two
661 to three days later by laser scanning confocal microscopy (Leica TCS SP8). The BiFC
662 construct was also expressed in WT *L. japonicus* or *M. truncatula sunn-1* by hairy
663 root transformation. The transgenic hairy roots were scored based on the NLS-DsRed
664 marker and inoculated with *M. loti* MAFF303099/RFP or Sm1021/mCherry (OD₆₀₀:
665 0.001). Images were analyzed at five to seven dpi. The filter sets for excitation and
666 emission were 514 nm and 524 to 545 nm, respectively, for Venus, and 561 nm and
667 600 to 630 nm for DsRed. All BiFC experiments were repeated twice, and at least five
668 leaves or roots were analyzed each time.

669

670 Statistical analysis

671 Statistical significance was analyzed by Student's *t*-test (**P* < 0.05, ***P* < 0.01, ****P*
672 < 0.001, *****P* < 0.0001) and error bars indicate SD. Histograms were generated
673 using GraphPad Prism 8.0 software.

674

675 Accession Numbers

676 Sequence data from this article can be found in the GenBank data libraries under
677 accession number ON756094 for LjRPG.

678

679 **SUPPLEMENTAL INFORMATION**

680 This manuscript contains 15 Supporting Figures and 2 Supporting Tables.

681 **Supplemental Figure S1.** Nodule sections of nodules formed on *L. japonicus rpg*
682 mutants.

683 **Supplemental Figure S2.** *RPG* complementation of *rpg-1* and *rpg-2* mutants.

684 **Supplemental Figure S3.** Map-based cloning of the *rpg-6*.

685 **Supplemental Figure S4.** Infection and nodulation phenotypes of *rpg*:*LORE1*
686 insertion mutants.

687 **Supplemental Figure S5.** Nodule phenotype and complementation of *rpg-6*.

688 **Supplemental Figure S6.** *RPG* expression in *LORE1* insertion mutant roots after
689 inoculation with *M. loti* R7A.

690 **Supplemental Figure S7.** Expression of early nodulin genes in wild type (WT) and
691 *rpg* mutant roots after inoculation with *M. loti* R7A.

692 **Supplemental Figure S8.** Root colonization of *rpg* mutants by the AM fungus *R.*
693 *irregularis*.

694 **Supplemental Figure S9.** Alignment of putative NIN-binding sites in the *RPG*
695 promoter region.

696 **Supplemental Figure S10.** GFP-RPG can rescue *rpg-1* phenotype.

697 **Supplemental Figure S11.** Nodulation phenotype of the *rpg-1* mutant stably
698 transformed with p*RPG*:GFP-RPG.

699 **Supplemental Figure S12.** Subcellular localization of GFP-RPG in *L. japonicus* root
700 hairs after inoculation with *M. loti*.

701 **Supplemental Figure S13.** West blot analysis of full-length RPG and domains of
702 RPG fused to GFP extracted from transiently transformed *N. benthamiana* leaves.

703 **Supplemental Figure S14.** RPG CC can rescue *rpg-1* nodulation phenotype.

704 **Supplemental Figure S15.** Co-localization of RPG with ER and TGN/EE markers
705 but not Golgi or MVB markers.

706 **Supplemental Table S1.** Primers used in this study.

707 **Supplemental Table S2.** Constructs used in this study.

708

709 **ACKNOWLEDGMENTS**

710 We thank Prof. Chi-Kuang Wen (CEMPS, CAS) and Prof. Yan Zhang (Shandong
711 Agriculture U. China) for providing markers. Dr. Wenjuan Cai and Dr. Shuining Yin
712 (CEMPS, CAS, China) for help with microscopy on this study. This work was funded
713 by grants from CAS project for Young Scientists in Basic Research (YSBR-011),
714 Program of Shanghai Academic/Technology Research Leader (21XD1403900), the
715 Strategic Priority Research Program of the Chinese Academy of Sciences
716 (XDB27040208), and the National Natural Science Foundation of China (31400214).

717

718 **AUTHOR CONTRIBUTIONS**

719 X.L. Li and F. Xie designed the experiments, X.L. Li performed most of the
720 experiments, M.X. Liu mapped *rpg-2*. M. Cai performed some promoter analysis.
721 DC, MG and MP identified *rpg-6*. AH, MP, TLW and JAD contributed with *rpg-1*,
722 *rpg-2* and *rpg-6* materials. X.L. Li, M.X. Liu and F. Xie analyzed the data and wrote
723 the manuscript with editing by JAD.

724

725 **Table 1. *L. japonicus rpg* mutant alleles**

Allele (Previous name)	Mutation	Reading Frame Change
<i>rpg-1</i> (SL5706-3)	G3395A	W258 stop
<i>rpg-2</i> (SL454-2)	G3650A	W343 Stop
<i>rpg-3</i> (30053003)	LORE1 insertion in exon 4 (genome position 2381 bp)	Insertion of 7 aa after G122 Premature stop
<i>rpg-4</i> (30055099)	LORE1 insertion in exon 7 (genome position 4519 bp)	Insertion of 6 aa after N632 Premature stop
<i>rpg-5</i> (30010526)	LORE1 insertion in exon 7	Insertion of 36 aa after E763 Premature stop
<i>rpg-6</i> (SL0181)	(genome position 4911 bp) C3778T	Q390 Stop

726

727 **FIGURE LEGENDS**

728 **Figure 1.** Phenotype and genotype of *rpg-1* and *rpg-2* mutants. A and B, Nodule
729 phenotype (A) and the nodule numbers (B) of wild type (WT) and *rpg* mutants two

730 weeks after inoculation. The total number of nodules per plant was scored at three and
731 four weeks after inoculation with *M. loti* R7A LacZ (n>10). C, The gene structure of
732 *RPG*, showing seven exons and six introns. The position of three EMS mutations,
733 *rpg-1* (SL5706-3), *rpg-2* (SL454-2) and *rpg-6* (SL0181), and three *LORE1* insertion
734 mutations, *rpg-3* (30053003), *rpg-4* (30055099), and *rpg-5* (30010526) are shown. D,
735 Outline of *RPG* protein structure, indicating the predicted NT-C2 domain, four coiled-
736 coil (CC) domains, and a predicted nuclear localization signal (NLS). The locations of
737 translation stops in *RPG-1*, *RPG-2* and *RPG-6* are indicated. E, The nodule numbers
738 of WT, *rpg-1* and *rpg-2* mutant plants in roots transformed with the vector control
739 (EV) or *pUB:RPG* and scored three weeks after inoculation with *M. loti* R7A/LacZ
740 (n>7). F, Infection phenotypes of WT, *rpg-1* and *rpg-2* mutants were visualized by
741 fluorescence microscopy of roots inoculated with *M. loti* R7A/GFP. Shown are a
742 normal elongating IT in WT, and infection foci (IF) and abnormal ITs observed in
743 *rpg-1* and *rpg-2* mutants. Roots were scored seven days after inoculation and were
744 counterstained with propidium iodide. Green fluorescence shows rhizobia and
745 magenta fluorescence shows root hair stained with propidium iodide. G, Number of
746 infection events in WT plants and *rpg* mutants. The total number of infection events
747 per plant was scored 4 and 10 days after inoculation with *M. loti* R7A/LacZ. IF,
748 infection foci; ITs, infection threads; Others correspond to abnormal ITs in root hairs
749 as illustrated in panel F (n>9). Statistical significance was evaluated, comparison with
750 WT. Scale bars: 1 mm (A); 20 μ m (F).

751

752 **Figure 2.** *RPG* expression pattern in *L. japonicus* roots. A and B, qRT-PCR analysis
753 of *RPG* transcript levels in roots of wild type (WT) *L. japonicus*. Samples were
754 collected at 0, 6, 12, and 24 h after inoculation with purified Nod factor (A) or at 0, 1,
755 3 and 7 days after inoculation with *M. loti* R7A (B). Expression is relative to that of
756 mock-treated samples (0 h or 0 dpi) and normalized to *L. japonicus Ubiquitin*.
757 Statistical significance was evaluated, comparison with 0 and indicated time points. C
758 to F, *pRPG:GUS* expression in WT roots after inoculation with *M. loti* R7A (C, E, F)
759 or *M. loti* R7A GFP (D). Strong GUS staining was detected in epidermal cells (C) and
760 (D) and young nodules (E), but there was much lower staining in mature nodules (F).
761 Bacteria are colored green to indicated infection threads (D). G and H, Nodule
762 sections showed that *pRPG:GUS* induced GUS expression in all cell layers of young

763 nodules (G), but GUS was only expressed in epidermal and nodule parenchyma cells
764 in mature nodules (H). Scale bars: 100 μ m (C-D and G-H); 1 mm (E-F).

765

766 **Figure 3.** NIN induces *RPG* expression. A, qRT-PCR analysis of *RPG* transcript
767 levels in WT, *nin-2*, or *ern1-2* roots 5 days after inoculation with *M. loti* R7A.
768 Expression is relative to that of mock-inoculated WT and normalized to *L. japonicus*
769 *Ubiquitin*. Statistical significance was evaluated, comparison with mock-inoculated
770 WT. B, Transcriptional activation ability of ERN1 or NIN to *RPG* promoter in *N.*
771 *benthamiana* leaves. Co-expressed effector (ERN1 or NIN) and a double-reporter
772 plasmid contain *RPG* promoter driven LUC reporter gene and Renilla Luciferase
773 (REN) driven by CaMV35S in *N. benthamiana* leaves. *Renilla* Luciferase (REN)
774 activity was used to normalize for the efficiency of transformation. Statistical
775 significance was evaluated, comparison with empty vector (EV). C and D, Gel-shift
776 assays of NIN binding to the promoter of *RPG*. DNA fragments (1 nM) from portions
777 of the *RPG* promoter carrying the S1 and S2 regions were amplified by PCR,
778 fluoresently labeled (CY5), and incubated with the indicated concentrations of NIN
779 protein for 20 min at 30 °C. The protein-DNA complexes were separated by
780 electrophoresis on native 6% polyacrylamide gels, and the fluoresently-labelled
781 DNA was detected by fluorimetry. For S1 and S2, a 2-fold and 10-fold excess of
782 unlabeled DNA fragments were added as competitors for binding. E to H, Assays of
783 p*RPG*:GUS, p*RPG* Δ S1:GUS, p*RPG* Δ S2:GUS expression in transformed *L. japonicus*
784 roots. GUS activity was similar in p*RPG*:GUS (E) and p*RPG* Δ S1:GUS (F), but
785 showed reduced levels in p*RPG* Δ S2:GUS (G) and (H). Scale bars: 5 mm (E-H).

786

787 **Figure 4.** Subcellular localization of the RPG protein. A, B, G and H, Confocal
788 microscopy images of *N. benthamiana* leaves expressing p35S:GFP (A), p35S:GFP-
789 *RPG* (B), and the separate RPG domains RPG p35S:GFP-NT-C2 (G) and p35S:GFP-
790 CC (H). In each, the green, magenta and merged images are shown in adjacent panels.
791 The nucleus was labeled with NLS-DsRed (magenta). Sections within an image that
792 are outlined in dotted yellow lines are showed enlarged in the top right corner of that
793 image. C and D, p35S:GFP (C) or p35S:GFP-RPG (green) and the nuclear marker,
794 ASTRAY5-mRFP (magenta) (D), were co-expressed in *L. japonicus* root protoplasts
795 using a DNA-PEG-calcium transfection method. E and F, p*RPG*:GFP-RPG was

796 introduced into *rpg-1* by *A. tumefaciens*-mediated stable transformation. To detect
797 GFP-RPG subcellular localization 5 days after inoculation with *M. loti*
798 MAFF303099/RFP, the roots were analyzed using whole-mount immunolocalization
799 with GFP primary antibody and Alexa Fluor 488-conjugated Affinipure donkey anti-
800 Mouse IgG secondary antibody. Green shows RPG subcellular localization and
801 magenta shows *M. loti*. I and J, Assays of complementation of the *rpg-1* mutant by the
802 predicted NT-C2 domain (pUB:NT-C2) and by RPG lacking the NT-C2 domain
803 (pUB:CC) showing the NT-C2 domain is not required for complementation of
804 infection. Infection phenotypes (H) and Infection events (I) of the RPG NT-C2 or CC
805 domain were driven by pUB promoter and expressed in *rpg-1* using hairy root
806 transformation after inoculation with *M. loti* R7A/LacZ (n>14). Statistical
807 significance was evaluated, comparison with empty vector WT/EV. Scale bars: 25 μ m
808 (A-B and G-H); 10 μ m (C-F); 20 μ m (I).

809

810 **Figure 5.** RPG co-localization with a TGN/EE marker and interaction with
811 CERBERUS. A and B, GFP-RPG (green) and TGN/EE marker SYP61-mCherry
812 (magenta) (A) or CERBERUS-mCherry (magenta) (B) were co-expressed in *N.*
813 *benthamiana* leaf cells. The images show GFP, mCherry and merged fluorescence
814 images. Plots (A'') and (B'') show fluorescence intensities of GFP-RPG and SYP61-
815 mCherry or CERBERUS-mCherry in regions of interest (indicated by white line in
816 [A''] and [B'']). C, Co-expressed RPG-CERBERUS BiFC construct (yellow) and
817 NLS-DsRed (magenta) in *N. benthamiana* leaf cells. The image shows strong Venus
818 fluorescence localized in puncta, some of which were close to the nucleus. (C'') shows
819 an enlargement of the area in outlined in yellow in the merged image (C''). D, Co-
820 expressed RPG-CERBERUS BiFC construct (yellow) and TGN marker SYP61-
821 mCherry (magenta). The image shows merging of Venus (yellow) and TGN marker
822 fluorescence. Plot (D'') shows fluorescence intensities of Venus and SYP61-mCherry
823 in regions of interest (inset in [D'']). Scale bars: 25 μ m (A-D).

824

825 **Figure 6.** RPG interactions with CERBERUS. A, A GAL4-based yeast two-hybrid
826 system was used to analyze the interaction between CERBERUS and full-length RPG
827 (RPG-FL) or RPG lacking the NT-C2 domain (CC), and between CERBERUS ARM
828 or WD40 and RPG-FL or RPG-CC. Potential interactions were assayed by growth on

829 SD/-LWH (medium without histidine, leucine, or tryptophan) after gradient dilution.
830 Images show the growth of co-transformants on selection media after three days. B,
831 Luciferase biomolecular complementation assays of the interaction between RPG and
832 full-length CERBERUS or CERBERUS ARM in *N. benthamiana* leaf cells. The
833 indicated constructs were transiently co-expressed in *N. benthamiana* leaves, and
834 luciferase complementation imaging was conducted two days after agroinfiltration.
835 LUCn, N-terminal fragment of firefly luciferase. LUCC, C-terminal fragment of
836 firefly luciferase. Fluorescence signal intensity is indicated. C, Co-
837 Immunoprecipitation (Co-IP) assays of interactions between GFP-RPG and
838 CERBERUS-mCherry in *N. benthamiana* leaves. GFP-RPG and CERBERUS-
839 mCherry were co-expressed in *N. benthamiana* leaves. Co-IP was assayed using anti-
840 mCherry antibody, and the precipitated proteins were detected by immunoblot
841 analysis with anti-mCherry and anti-GFP antibodies. One representative results out of
842 two biological replicates is shown. D to G, RPG-CERBERUS BiFC construct was
843 expressed in *M. truncatula sunn-1* by hairy root transformation. To detect RPG and
844 CERBERUS interaction, the transgenic roots were observed seven days after
845 inoculation with Sm1021/mCherry. Venus Fluorescence (yellow) shows RPG and
846 CERBERUS interaction. NLS-DsRed (magenta) indicates the nucleus (D). mCherry
847 (magenta) shows rhizobium Sm1021/mCherry in (G' and G''). Scale bars: 10 μ m (D-
848 G).

849

850 REFERENCES

851 **Arrighi JF, Godfroy O, de Billy F, Saurat O, Jauneau A, Gough C** (2008) The
852 RPG gene of *Medicago truncatula* controls Rhizobium-directed polar growth
853 during infection. *Proc Natl Acad Sci USA* **105**: 9817-9822

854 **Bar-Peled M, Raikhel NV** (1997) Characterization of AtSEC12 and AtSAR1.
855 Proteins likely involved in endoplasmic reticulum and Golgi transport. *Plant
856 Physiol* **114**: 315-324

857 **Cerri MR, Wang Q, Stolz P, Folgmann J, Frances L, Katzer K, Li X, Heckmann
858 AB, Wang TL, Downie JA, Klingl A, de Carvalho-Niebel F, Xie F,
859 Parniske M** (2017) The ERN1 transcription factor gene is a target of the
860 CCaMK/CYCLOPS complex and controls rhizobial infection in *Lotus
861 japonicus*. *New Phytol* **215**: 323-337

862 **DeBlasio SL, Luesse DL, Hangarter RP** (2005) A plant-specific protein essential for
863 blue-light-induced chloroplast movements. *Plant Physiol* **139**: 101-114

864 **Drakakaki G, van de Ven W, Pan S, Miao Y, Wang J, Keinath NF, Weatherly B, Jiang L, Schumacher K, Hicks G, Raikhel N** (2012) Isolation and proteomic analysis of the SYP61 compartment reveal its role in exocytic trafficking in *Arabidopsis*. *Cell Res* **22**: 413-424

868 **Fahraeus G** (1957) The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. *J Gen Microbiol* **16**: 374-381

870 **Fournier J, Timmers AC, Sieberer BJ, Jauneau A, Chabaud M, Barker DG** (2008) Mechanism of infection thread elongation in root hairs of *Medicago truncatula* and dynamic interplay with associated rhizobial colonization. *Plant Physiol* **148**: 1985-1995

874 **Fukai E, Soyano T, Umehara Y, Nakayama S, Hirakawa H, Tabata S, Sato S, Hayashi M** (2012) Establishment of a *Lotus japonicus* gene tagging population using the exon-targeting endogenous retrotransposon LORE1. *Plant J* **69**: 720-730

878 **Gage DJ** (2004) Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. *Microbiol Mol Biol Rev* **68**: 280-300

881 **Griesmann M, Chang Y, Liu X, Song Y, Haberer G, Crook MB, Billault-Penneteau B, Lauressergues D, Keller J, Imanishi L, Roswanjaya YP, Kohlen W, Pujic P, Battenberg K, Alloisio N, Liang Y, Hilhorst H, Salgado MG, Hocher V, Gherbi H, Svistoonoff S, Doyle JJ, He S, Xu Y, Xu S, Qu J, Gao Q, Fang X, Fu Y, Normand P, Berry AM, Wall LG, Ane JM, Pawlowski K, Xu X, Yang H, Spannagl M, Mayer KFX, Wong GK, Parniske M, Delaux PM, Cheng S** (2018) Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. *Science* **361**:125-126

889 **Groth M, Takeda N, Perry J, Uchida H, Dräxl S, Brachmann A, Sato S, Tabata S, Kawaguchi M, Wang TL, Parniske M** (2010) NENA, a *Lotus japonicus* homolog of Sec13, is required for rhizodermal infection by arbuscular mycorrhiza fungi and rhizobia but dispensable for cortical endosymbiotic development. *Plant Cell* **22**: 2509-2526

894 **Hirsch S, Oldroyd GE** (2009) GRAS-domain transcription factors that regulate plant

895 development. *Plant Signal Behav* **4**: 698-700

896 **Hossain MS, Liao J, James EK, Sato S, Tabata S, Jurkiewicz A, Madsen LH,**
897 **Stougaard J, Ross L, Szczyglowski K** (2012) *Lotus japonicus* ARPC1 is
898 required for rhizobial infection. *Plant Physiol* **160**: 917-928

899 **Jia N, Zhu Y, Xie F** (2018) An Efficient Protocol for Model Legume Root Protoplast
900 Isolation and Transformation. *Front Plant Sci* **9**: 670

901 **Ke D, Fang Q, Chen C, Zhu H, Chen T, Chang X, Yuan S, Kang H, Ma L, Hong**
902 **Z, Zhang Z** (2012) The small GTPase ROP6 interacts with NFR5 and is
903 involved in nodule formation in *Lotus japonicus*. *Plant Physiol* **159**: 131-143

904 **Kiss E, Oláh B, Kaló P, Morales M, Heckmann AB, Borbola A, Lózsa A, Kontár**
905 **K, Middleton P, Downie JA, Oldroyd GE, Endre G** (2009) LIN, a novel
906 type of U-box/WD40 protein, controls early infection by rhizobia in legumes.
907 *Plant Physiol* **151**: 1239-1249

908 **Kovács S, Kiss E, Jenei S, Fehér-Juhász E, Kereszt A, Endre G** (2022) The
909 *Medicago truncatula* IEF Gene Is Crucial for the Progression of Bacterial
910 Infection During Symbiosis. *Mol Plant Microbe Interact* **35**: 401-415

911 **Lace B, Su C, Perez DI, Rodriguez-Franco M, Vernié T, Batzenschlager M, Egli**
912 **S, Liu C-W, Ott T** (2022) RPG acts as a central determinant for infectosome
913 formation and cellular polarization during intracellular rhizobial infections.
914 bioRxiv: 2022.2006.2003.494689

915 **Li X, Zheng Z, Kong X, Xu J, Qiu L, Sun J, Reid D, Jin H, Andersen SU,**
916 **Oldroyd GED, Stougaard J, Downie JA, Xie F** (2019) Atypical Receptor
917 Kinase RINRK1 Required for Rhizobial Infection But Not Nodule
918 Development in *Lotus japonicus*. *Plant Physiol* **181**: 804-816

919 **Liu CW, Breakspear A, Guan D, Cerri MR, Jackson K, Jiang S, Robson F,**
920 **Radhakrishnan GV, Roy S, Bone C, Stacey N, Rogers C, Trick M, Niebel**
921 **A, Oldroyd GED, de Carvalho-Niebel F, Murray JD** (2019a) NIN Acts as a
922 Network Hub Controlling a Growth Module Required for Rhizobial Infection.
923 *Plant Physiol* **179**: 1704-1722

924 **Liu CW, Breakspear A, Stacey N, Findlay K, Nakashima J, Ramakrishnan K,**
925 **Liu M, Xie F, Endre G, de Carvalho-Niebel F, Oldroyd GED, Udvardi**
926 **MK, Fournier J, Murray JD** (2019b) A protein complex required for polar
927 growth of rhizobial infection threads. *Nat Commun* **10**: 2848

928 **Liu J, Liu MX, Qiu LP, Xie F** (2020) SPIKE1 Activates the GTPase ROP6 to Guide
929 the Polarized Growth of Infection Threads in *Lotus japonicus*. *Plant Cell* **32**:
930 3774-3791

931 **Liu M, Jia N, Li X, Liu R, Xie Q, Murray JD, Downie JA, Xie F** (2021)
932 CERBERUS is critical for stabilization of VAPYRIN during rhizobial
933 infection in *Lotus japonicus*. *New Phytol* **229**: 1684-1700

934 **Lombardo F, Heckmann AB, Miwa H, Perry JA, Yano K, Hayashi M, Parniske
935 M, Wang TL, Downie JA** (2006) Identification of symbiotically defective
936 mutants of *Lotus japonicus* affected in infection thread growth. *Mol Plant
937 Microbe Interact* **19**: 1444-1450

938 **Luo Z, Lin JS, Zhu Y, Fu M, Li X, Xie F** (2021) NLP1 reciprocally regulates nitrate
939 inhibition of nodulation through SUNN-CRA2 signaling in *Medicago
940 truncatula*. *Plant Commun* **2**: 100183

941 **Maekawa T, Kusakabe M, Shimoda Y, Sato S, Tabata S, Murooka Y, Hayashi M**
942 (2008) Polyubiquitin promoter-based binary vectors for overexpression and
943 gene silencing in *Lotus japonicus*. *Mol Plant Microbe Interact* **21**: 375-382

944 **Miyahara A, Richens J, Starker C, Morieri G, Smith L, Long S, Downie JA,
945 Oldroyd GE** (2010) Conservation in function of a SCAR/WAVE component
946 during infection thread and root hair growth in *Medicago truncatula*. *Mol
947 Plant Microbe Interact* **23**: 1553-1562

948 **Montiel J, Reid D, Grønbæk TH, Benfeldt CM, James EK, Ott T, Ditengou FA,
949 Nadzieja M, Kelly S, Stougaard J** (2021) Distinct signaling routes mediate
950 intercellular and intracellular rhizobial infection in *Lotus japonicus*. *Plant
951 Physiol* **185**: 1131-1147

952 **Murray JD, Karas BJ, Sato S, Tabata S, Amyot L, Szczyglowski K** (2007) A
953 cytokinin perception mutant colonized by Rhizobium in the absence of nodule
954 organogenesis. *Science* **315**: 101-104

955 **Murray JD, Muni RR, Torres-Jerez I, Tang Y, Allen S, Andriankaja M, Li G,
956 Laxmi A, Cheng X, Wen J, Vaughan D, Schultze M, Sun J, Charpentier
957 M, Oldroyd G, Tadege M, Ratet P, Mysore KS, Chen R, Udvardi MK**
958 (2011) Vapyrin, a gene essential for intracellular progression of arbuscular
959 mycorrhizal symbiosis, is also essential for infection by rhizobia in the nodule
960 symbiosis of *Medicago truncatula*. *Plant J* **65**: 244-252

961 **Nelson BK, Cai X, Nebenführ A** (2007) A multicolored set of in vivo organelle
962 markers for co-localization studies in *Arabidopsis* and other plants. *Plant J* **51**:
963 1126-1136

964 **Newman-Griffis AH, Del Cerro P, Charpentier M, Meier I** (2019) *Medicago* LINC
965 Complexes Function in Nuclear Morphology, Nuclear Movement, and Root
966 Nodule Symbiosis. *Plant Physiol* **179**: 491-506

967 **Nishimura R, Ohmori M, Kawaguchi M** (2002) The novel symbiotic phenotype of
968 enhanced-nodulating mutant of *Lotus japonicus*: astray mutant is an early
969 nodulating mutant with wider nodulation zone. *Plant Cell Physiol* **43**: 853-859

970 **Oldroyd GE, Downie JA** (2004) Calcium, kinases and nodulation signalling in
971 legumes. *Nat Rev Mol Cell Biol* **5**: 566-576

972 **Oldroyd GE, Downie JA** (2008) Coordinating nodule morphogenesis with rhizobial
973 infection in legumes. *Annu Rev Plant Biol* **59**: 519-546

974 **Pajuelo E, Stougaard J** (2005) *Lotus japonicus*’s a model system. In AJ Márquez,
975 ed, *Lotus japonicus* Handbook. Springer Netherlands, Dordrecht, pp 3-24

976 **Qiu L, Lin JS, Xu J, Sato S, Parniske M, Wang TL, Downie JA, Xie F** (2015)
977 SCARN a Novel Class of SCAR Protein That Is Required for Root-Hair
978 Infection during Legume Nodulation. *PLoS Genet* **11**: e1005623

979 **Robertson JG, Warburton MP, Lyttleton P, Fordyce AM, Bullivant S** (1978)
980 Membranes in lupin root nodules. II. Preparation and properties of
981 peribacteroid membranes and bacteroid envelope inner membranes from
982 developing lupin nodules. *J Cell Sci* **30**: 151-174

983 **Rose A, Manikantan S, Schraegle SJ, Maloy MA, Stahlberg EA, Meier I** (2004)
984 Genome-wide identification of *Arabidopsis* coiled-coil proteins and
985 establishment of the ARABI-COIL database. *Plant Physiol* **134**: 927-939

986 **Roy S, Liu W, Nandety RS, Crook A, Mysore KS, Pislariu CI, Frugoli J,
987 Dickstein R, Udvardi MK** (2020) Celebrating 20 Years of Genetic
988 Discoveries in Legume Nodulation and Symbiotic Nitrogen Fixation. *Plant
989 Cell* **32**: 15-41

990 **Saleh MC, van Rij RP, Hekele A, Gillis A, Foley E, O’Farrell PH, Andino R**
991 (2006) The endocytic pathway mediates cell entry of dsRNA to induce RNAi
992 silencing. *Nat Cell Biol* **8**: 793-802

993 **Sauer M, Paciorek T, Benková E, Friml J** (2006) Immunocytochemical techniques

994 for whole-mount *in situ* protein localization in plants. *Nat Protoc* **1**: 98-103

995 **Schauser L, Roussis A, Stiller J, Stougaard J** (1999) A plant regulator controlling

996 development of symbiotic root nodules. *Nature* **402**: 191-195

997 **Schnabel E, Journet EP, de Carvalho-Niebel F, Duc G, Frugoli J** (2005) The

998 *Medicago truncatula* SUNN gene encodes a CLV1-like leucine-rich repeat

999 receptor kinase that regulates nodule number and root length. *Plant Mol Biol*

1000 **58**: 809-822

1001 **Schnabel E, Smith L, Long S, Frugoli J** (2010) Transcript profiling in *M. truncatula*

1002 *lss* and *sunn-1* mutants reveals different expression profiles despite disrupted

1003 SUNN gene function in both mutants. *Plant Signal Behav* **5**: 1657-1659

1004 **Sinharoy S, Liu C, Breakspear A, Guan D, Shailes S, Nakashima J, Zhang S,**

1005 **Wen J, Torres-Jerez I, Oldroyd G, Murray JD, Udvardi MK** (2016) A

1006 *Medicago truncatula* Cystathionine- β -Synthase-like Domain-Containing

1007 Protein Is Required for Rhizobial Infection and Symbiotic Nitrogen Fixation.

1008 *Plant Physiol* **170**: 2204-2217

1009 **Soyano T, Hirakawa H, Sato S, Hayashi M, Kawaguchi M** (2014) Nodule

1010 Inception creates a long-distance negative feedback loop involved in

1011 homeostatic regulation of nodule organ production. *Proc Natl Acad Sci USA*

1012 **111**: 14607-14612

1013 **Suetsugu N, Higa T, Kong SG, Wada M** (2015) PLASTID MOVEMENT

1014 IMPAIRED1 and PLASTID MOVEMENT IMPAIRED1-RELATED1

1015 Mediate Photorelocation Movements of Both Chloroplasts and Nuclei. *Plant*

1016 *Physiol* **169**: 1155-1167

1017 **Tirichine L, Herrera-Cervera JA, Stougaard J** (2005) Transformation-regeneration

1018 procedure for *Lotus japonicus*. In AJ Márquez, ed, *Lotus japonicus* Handbook.

1019 Springer Netherlands, Dordrecht, pp 279-284

1020 **Truebestein L, Leonard TA** (2016) Coiled-coils: The long and short of it. *Bioessays*

1021 **38**: 903-916

1022 **Ueda T, Yamaguchi M, Uchimiya H, Nakano A** (2001) Ara6, a plant-unique novel

1023 type Rab GTPase, functions in the endocytic pathway of *Arabidopsis thaliana*.

1024 *Embo j* **20**: 4730-4741

1025 **Urbański DF, Małolepszy A, Stougaard J, Andersen SU** (2012) Genome-wide

1026 LORE1 retrotransposon mutagenesis and high-throughput insertion detection

1027 in *Lotus japonicus*. *Plant J* **69**: 731-741

1028 **van Velzen R, Holmer R, Bu F, Rutten L, van Zeijl A, Liu W, Santuari L, Cao Q,**
1029 **Sharma T, Shen D, Roswanjaya Y, Wardhani TAK, Kalhor MS, Jansen J,**
1030 **van den Hoogen J, Gungor B, Hartog M, Hontelez J, Verver J, Yang WC,**
1031 **Schijlen E, Repin R, Schilthuizen M, Schranz ME, Heidstra R, Miyata K,**
1032 **Fedorova E, Kohlen W, Bisseling T, Smit S, Geurts R** (2018) Comparative
1033 genomics of the nonlegume *Parasponia* reveals insights into evolution of
1034 nitrogen-fixing rhizobium symbioses. *Proc Natl Acad Sci USA* **115**: E4700-
1035 E4709

1036 **Voinnet O, Rivas S, Mestre P, Baulcombe D** (2003) An enhanced transient
1037 expression system in plants based on suppression of gene silencing by the p19
1038 protein of tomato bushy stunt virus. *Plant J* **33**: 949-956

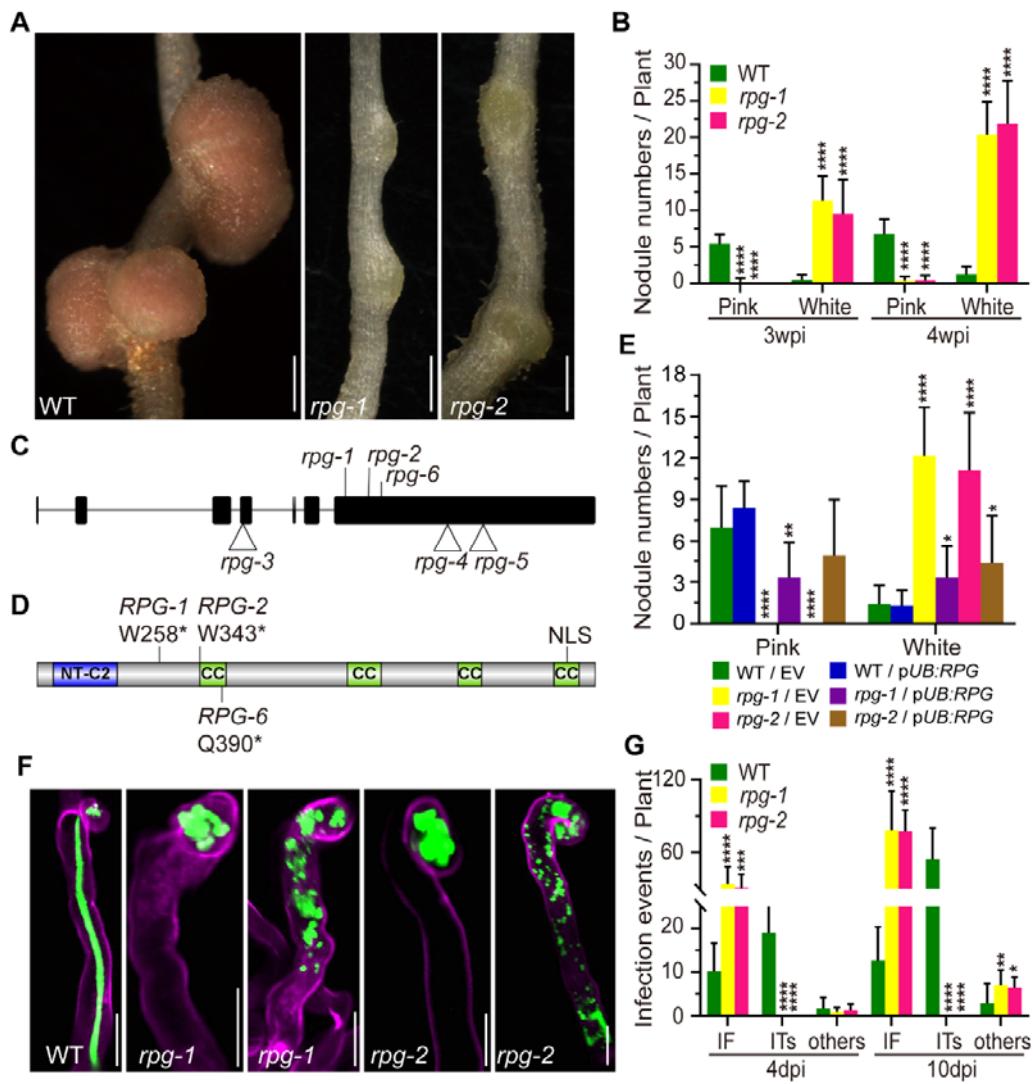
1039 **Wang DY, Fulthorpe R, Liss SN, Edwards EA** (2004) Identification of estrogen-
1040 responsive genes by complementary deoxyribonucleic acid microarray and
1041 characterization of a novel early estrogen-induced gene: EEIG1. *Mol*
1042 *Endocrinol* **18**: 402-411

1043 **Wang JG, Li S, Zhao XY, Zhou LZ, Huang GQ, Feng C, Zhang Y** (2013)
1044 HAPLESS13, the *Arabidopsis* μ 1 adaptin, is essential for protein sorting at the
1045 trans-Golgi network/early endosome. *Plant Physiol* **162**: 1897-1910

1046 **Weber E, Engler C, Gruetzner R, Werner S, Marillonnet S** (2011) A modular
1047 cloning system for standardized assembly of multigene constructs. *PLoS One*
1048 **6**: e16765

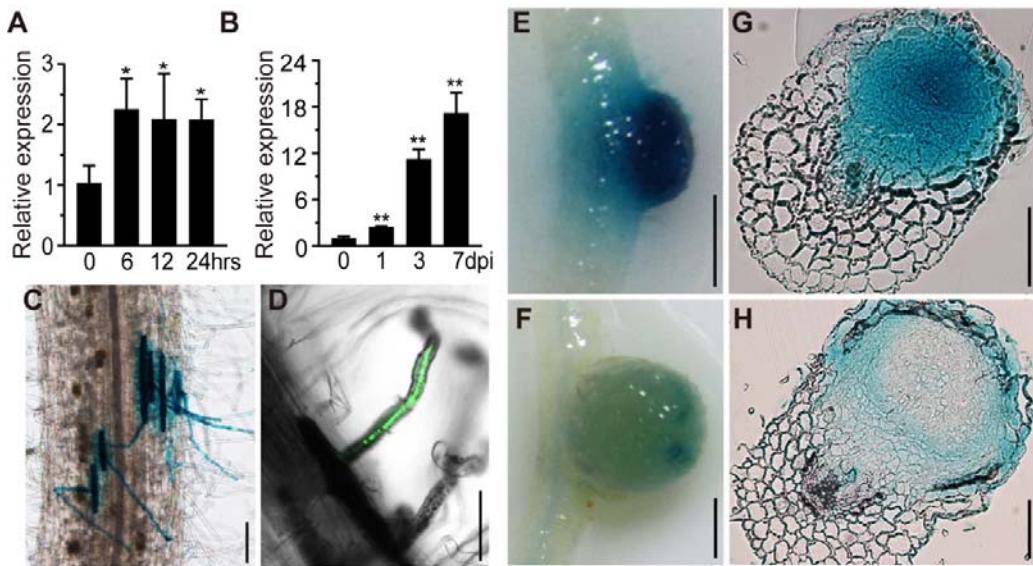
1049 **Xie F, Murray JD, Kim J, Heckmann AB, Edwards A, Oldroyd GE, Downie JA**
1050 (2012) Legume pectate lyase required for root infection by rhizobia. *Proc Natl*
1051 *Acad Sci USA* **109**: 633-638

1052 **Yano K, Shibata S, Chen WL, Sato S, Kaneko T, Jurkiewicz A, Sandal N, Banba**
1053 **M, Imaizumi-Anraku H, Kojima T, Ohtomo R, Szczyglowski K,**
1054 **Stougaard J, Tabata S, Hayashi M, Kouchi H, Umehara Y** (2009)
1055 CERBERUS, a novel U-box protein containing WD-40 repeats, is required for
1056 formation of the infection thread and nodule development in the legume-
1057 Rhizobium symbiosis. *Plant J* **60**: 168-180


1058 **Yokota K, Fukai E, Madsen LH, Jurkiewicz A, Rueda P, Radutoiu S, Held M,**
1059 **Hossain MS, Szczyglowski K, Morieri G, Oldroyd GE, Downie JA,**

1060 **Nielsen MW, Rusek AM, Sato S, Tabata S, James EK, Oyaizu H, Sandal**
1061 **N, Stougaard J** (2009) Rearrangement of actin cytoskeleton mediates
1062 invasion of *Lotus japonicus* roots by *Mesorhizobium loti*. *Plant Cell* **21**: 267-
1063 284

1064 **Zhang D, Aravind L** (2010) Identification of novel families and classification of the
1065 C2 domain superfamily elucidate the origin and evolution of membrane
1066 targeting activities in eukaryotes. *Gene* **469**: 18-30


1067 **Zhang X, Pumplin N, Ivanov S, Harrison MJ** (2015) EXO70I Is Required for
1068 Development of a Sub-domain of the Periarbuscular Membrane during
1069 Arbuscular Mycorrhizal Symbiosis. *Curr Biol* **25**: 2189-2195

1070

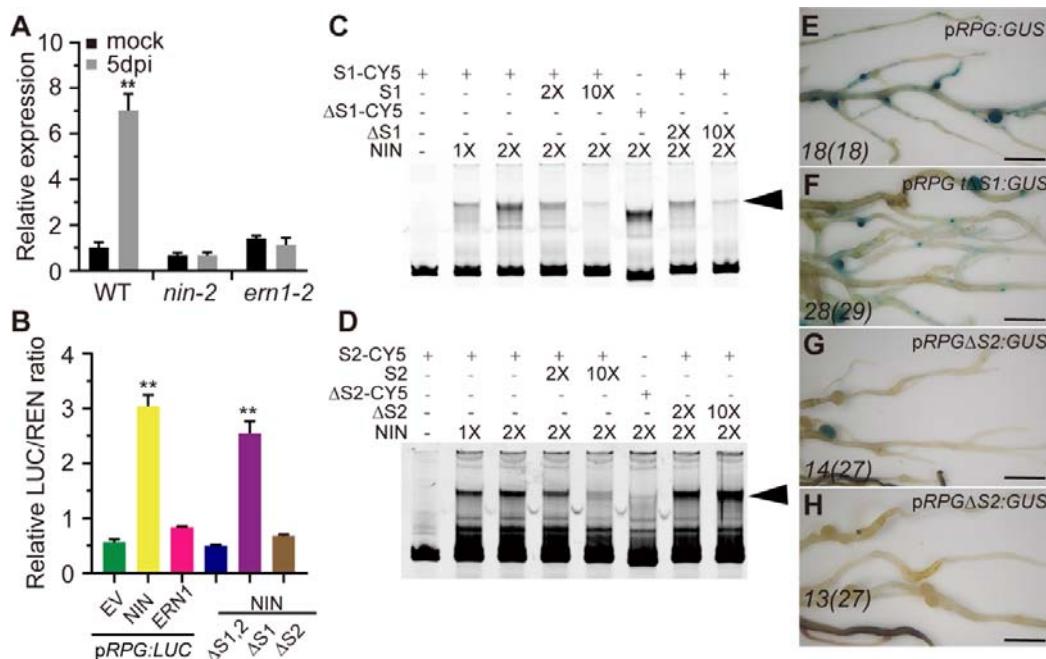


Figure 1. Phenotype and genotype of *rpg-1* and *rpg-2* mutants. **A** and **B**, Nodule phenotype (A) and the nodule numbers (B) of wild type (WT) and *rpg* mutants two weeks after inoculation. The total number of nodules per plant was scored at three and four weeks after inoculation with *M. loti* R7A LacZ (n>10). **C**, The gene structure of *RPG*, showing seven exons and six introns. The position of three EMS mutations, *rpg-1* (SL5706-3), *rpg-2* (SL454-2) and *rpg-6* (SL0181), and three *LORE1* insertion mutations, *rpg-3* (30053003), *rpg-4* (30055099), and *rpg-5* (30010526) are shown. **D**, Outline of *RPG* protein structure, indicating the predicted NT-C2 domain, four coiled-coil (CC) domains, and a predicted nuclear localization signal (NLS). The locations of translation stops in *RPG-1*, *RPG-2* and *RPG-6* are indicated. **E**, The nodule numbers of WT, *rpg-1* and *rpg-2* mutant plants in roots transformed with the vector control (EV) or *pUB:RPG* and scored three weeks after inoculation with *M. loti* R7A/LacZ (n>7). **F**, Infection phenotypes of WT, *rpg-1* and *rpg-2* mutants were visualized by fluorescence microscopy of roots inoculated with *M. loti* R7A/GFP. Shown are a normal elongating IT in WT, and infection foci (IF) and abnormal ITs observed in *rpg-1* and *rpg-2* mutants. Roots were scored seven days after inoculation

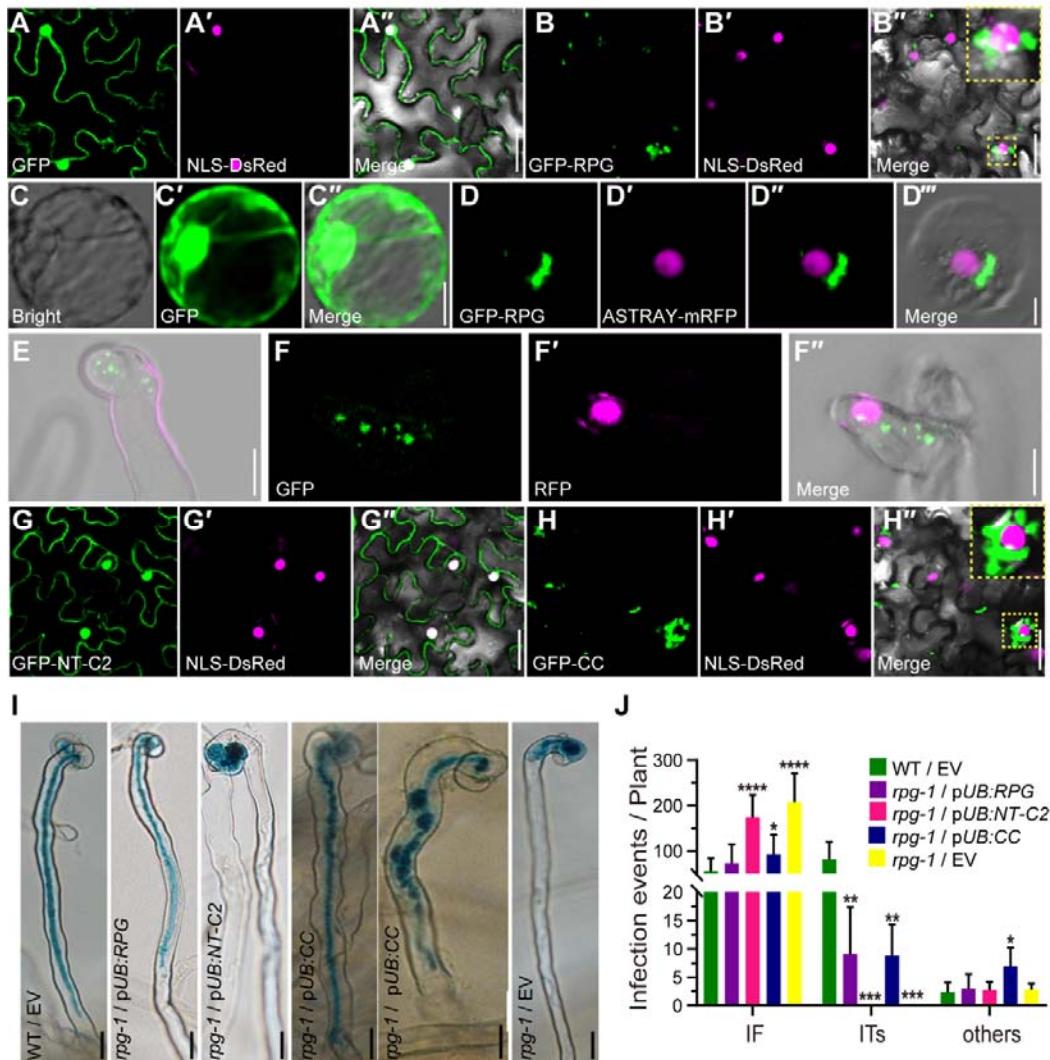

and were counterstained with propidium iodide. Green fluorescence shows rhizobia and magenta fluorescence shows root hair stained with propidium iodide. G, Number of infection events in WT plants and *rpg* mutants. The total number of infection events per plant was scored 4 and 10 days after inoculation with *M. loti* R7A/LacZ. IF, infection foci; ITs, infection threads; Others correspond to abnormal ITs in root hairs as illustrated in panel F (n>9). Statistical significance was evaluated, comparison with WT. Scale bars: 1 mm (A); 20 μ m (F).

Figure 2. *RPG* expression pattern in *L. japonicus* roots. A and B, qRT-PCR analysis of *RPG* transcript levels in roots of wild type (WT) *L. japonicus*. Samples were collected at 0, 6, 12, and 24 h after inoculation with purified Nod factor (A) or at 0, 1, 3 and 7 days after inoculation with *M. loti* R7A (B). Expression is relative to that of mock-treated samples (0 h or 0 dpi) and normalized to *L. japonicus* *Ubiquitin*. Statistical significance was evaluated, comparison with 0 and indicated time points. C to F, *pRPG:GUS* expression in WT roots after inoculation with *M. loti* R7A (C, E, F) or *M. loti* R7A GFP (D). Strong GUS staining was detected in epidermal cells (C) and (D) and young nodules (E), but there was much lower staining in mature nodules (F). Bacteria are colored green to indicated infection threads (D). G and H, Nodule sections showed that *pRPG:GUS* induced GUS expression in all cell layers of young nodules (G), but GUS was only expressed in epidermal and nodule parenchyma cells in mature nodules (H). Scale bars: 100 μ m (C-D and G-H); 1 mm (E-F).

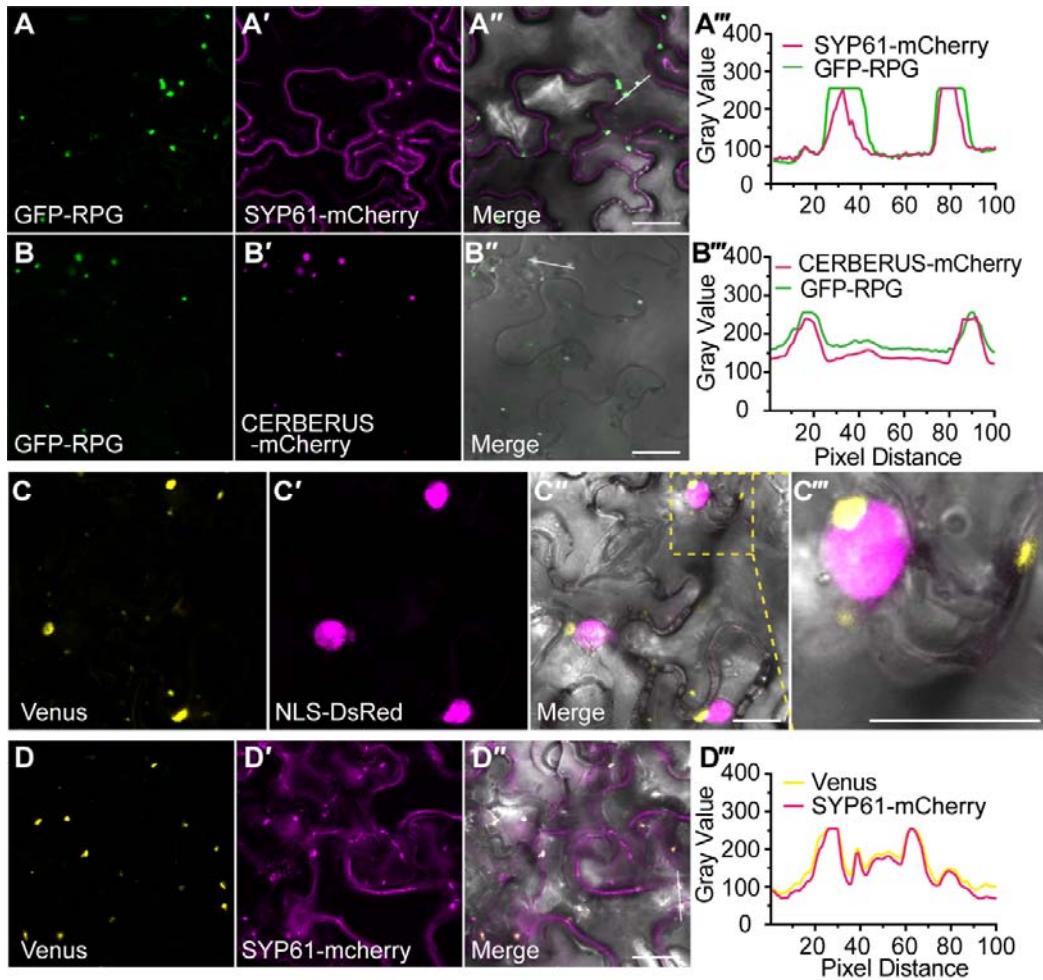


Figure 3. NIN induces *RPG* expression. A, qRT-PCR analysis of *RPG* transcript levels in WT, *nin-2*, or *ern1-2* roots 5 days after inoculation with *M. loti* R7A. Expression is relative to that of mock-inoculated WT and normalized to *L. japonicus* *Ubiquitin*. Statistical significance was evaluated, comparison with mock-inoculated WT. B, Transcriptional activation ability of ERN1 or NIN to *RPG* promoter in *N. benthamiana* leaves. Co-expressed effector (ERN1 or NIN) and a double-reporter plasmid contain *RPG* promoter driven LUC reporter gene and Renilla Luciferase (REN) driven by CaMV35S in *N. benthamiana* leaves. Renilla Luciferase (REN) activity was used to normalize for the efficiency of transformation. Statistical significance was evaluated, comparison with empty vector (EV). C and D, Gel-shift assays of NIN binding to the promoter of *RPG*. DNA fragments (1 nM) from portions of the *RPG* promoter carrying the S1 and S2 regions were amplified by PCR, fluorescently labeled (CY5), and incubated with the indicated concentrations of NIN protein for 20 min at 30 °C. The protein-DNA complexes were separated by electrophoresis on native 6% polyacrylamide gels, and the fluorescently-labelled DNA was detected by fluorimetry. For S1 and S2, a 2-fold and 10-fold excess of unlabeled DNA fragments were added as competitors for binding. E to H, Assays of pRPG:GUS, pRPGΔS1:GUS, pRPGΔS2:GUS expression in transformed *L. japonicus* roots. GUS activity was similar in pRPG:GUS (E) and pRPGΔS1:GUS (F), but showed reduced levels in pRPGΔS2:GUS (G) and (H). Scale bars: 5 mm (E-H).

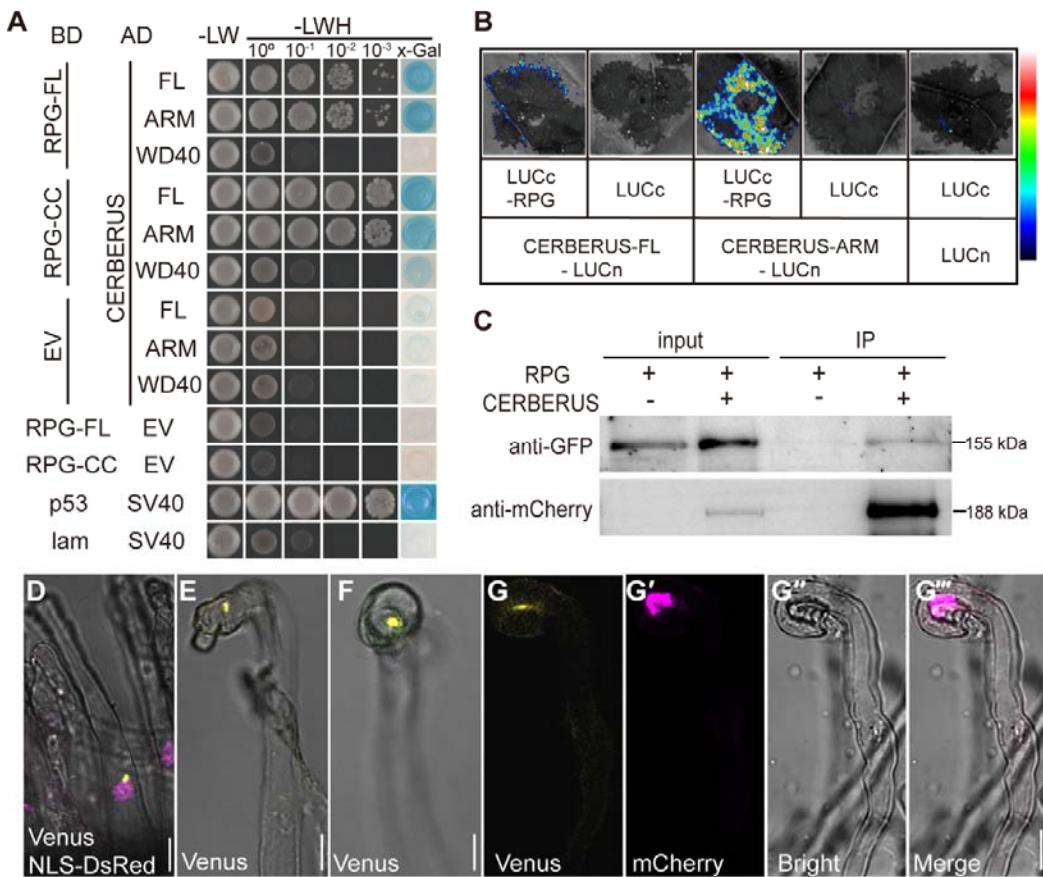


Figure 4. Subcellular localization of the RPG protein. A, B, G and H, Confocal microscopy images of *N. benthamiana* leaves expressing p35S:GFP (A), p35S:GFP-RPG (B), and the separate RPG domains RPG p35S:GFP-NT-C2 (G) and p35S:GFP-CC (H). In each, the green, magenta and merged images are shown in adjacent panels. The nucleus was labeled with NLS-DsRed (magenta). Sections within an image that are outlined in dotted yellow lines are showed enlarged in the top right corner of that image. C and D, p35S:GFP (C) or p35S:GFP-RPG (green) and the nuclear marker, ASTRAY5-mRFP (magenta) (D), were co-expressed in *L. japonicus* root protoplasts using a DNA-PEG-calcium transfection method. E and F, pRPG:GFP-RPG was introduced into *rpg-1* by *A. tumefaciens*-mediated stable transformation. To detect GFP-RPG subcellular localization 5 days after inoculation with *M. loti* MAFF303099/RFP, the roots were analyzed using whole-mount immunolocalization with GFP primary antibody and Alexa Fluor 488-conjugated Affinipure donkey anti-Mouse IgG secondary antibody. Green shows RPG subcellular localization and magenta shows *M. loti*. I and J, Assays of complementation of the *rpg-1* mutant by the predicted NT-C2 domain (pUB:NT-C2) and by RPG lacking the

NT-C2 domain (pUB:CC) showing the NT-C2 domain is not required for complementation of infection. Infection phenotypes (H) and Infection events (I) of the RPG NT-C2 or CC domain were driven by pUB promoter and expressed in *rpg-1* using hairy root transformation after inoculation with *M. loti* R7A/LacZ (n>14). Statistical significance was evaluated, comparison with empty vector WT/EV. Scale bars: 25 μ m (A-B and G-H); 10 μ m (C-F); 20 μ m (I).

Figure 5. RPG co-localization with a TGN/EE marker and interaction with CERBERUS. A and B, GFP-RPG (green) and TGN/EE marker SYP61-mCherry (magenta) (A) or CERBERUS-mCherry (magenta) (B) were co-expressed in *N. benthamiana* leaf cells. The images show GFP, mCherry and merged fluorescence images. Plots (A'') and (B'') show fluorescence intensities of GFP-RPG and SYP61-mCherry or CERBERUS-mCherry in regions of interest (indicated by white line in [A''] and [B'']). C, Co-expressed RPG-CERBERUS BiFC construct (yellow) and NLS-DsRed (magenta) in *N. benthamiana* leaf cells. The image shows strong Venus fluorescence localized in puncta, some of which were close to the nucleus. (C'') shows an enlargement of the area in outlined in yellow in the merged image (C''). D, Co-expressed RPG-CERBERUS BiFC construct (yellow) and TGN marker SYP61-mCherry (magenta). The image shows merging of Venus (yellow) and TGN marker fluorescence. Plot (D'') shows fluorescence intensities of Venus and SYP61-mCherry in regions of interest (inset in [D'']). Scale bars: 25 μ m (A-D).

Figure 6. RPG interactions with CERBERUS. **A**, A GAL4-based yeast two-hybrid system was used to analyze the interaction between CERBERUS and full-length RPG (RPG-FL) or RPG lacking the NT-C2 domain (CC), and between CERBERUS ARM or WD40 and RPG-FL or RPG-CC. Potential interactions were assayed by growth on SD/-LWH (medium without histidine, leucine, or tryptophan) after gradient dilution. Images show the growth of co-transformants on selection media after three days. **B**, Luciferase biomolecular complementation assays of the interaction between RPG and full-length CERBERUS or CERBERUS ARM in *N. benthamiana* leaf cells. The indicated constructs were transiently co-expressed in *N. benthamiana* leaves, and luciferase complementation imaging was conducted two days after agroinfiltration. LUCn, N-terminal fragment of firefly luciferase. LUCc, C-terminal fragment of firefly luciferase. Fluorescence signal intensity is indicated. **C**, Co-Immunoprecipitation (Co-IP) assays of interactions between GFP-RPG and CERBERUS-mCherry in *N. benthamiana* leaves. GFP-RPG and CERBERUS-mCherry were co-expressed in *N. benthamiana* leaves. Co-IP was assayed using anti-mCherry antibody, and the precipitated proteins were detected by immunoblot analysis with anti-mCherry and anti-GFP antibodies. One representative results out of two biological replicates is shown. **D** to **G**, RPG-CERBERUS BiFC construct was expressed in *M. truncatula sunn-1* by hairy root transformation. To detect RPG and CERBERUS interaction, the transgenic roots were observed seven days after inoculation with Sm1021/mCherry. Venus Fluorescence (yellow) shows

RPG and CERBERUS interaction. NLS-DsRed (magenta) indicates the nucleus (D). mCherry (magenta) shows rhizobium Sm1021/mCherry in (G' and G''). Scale bars: 10 μ m (D-G).

Parsed Citations

Arrighi JF, Godfroy O, de Billy F, Saurat O, Jauneau A, Gough C (2008) The RPG gene of *Medicago truncatula* controls Rhizobium-directed polar growth during infection. Proc Natl Acad Sci USA 105: 9817-9822

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bar-Peled M, Raikhel NV (1997) Characterization of AtSEC12 and AtSAR1. Proteins likely involved in endoplasmic reticulum and Golgi transport. Plant Physiol 114: 315-324

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cerri MR, Wang Q, Stoltz P, Folgmann J, Frances L, Katzer K, Li X, Heckmann AB, Wang TL, Downie JA, Klingl A, de Carvalho-Niebel F, Xie F, Parniske M (2017) The ERN1 transcription factor gene is a target of the CCaMK/CYCLOPS complex and controls rhizobial infection in *Lotus japonicus*. New Phytol 215: 323-337

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

DeBlasio SL, Luesse DL, Hangarter RP (2005) A plant-specific protein essential for blue-light-induced chloroplast movements. Plant Physiol 139: 101-114

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Drakakaki G, van de Ven W, Pan S, Miao Y, Wang J, Keinath NF, Weatherly B, Jiang L, Schumacher K, Hicks G, Raikhel N (2012) Isolation and proteomic analysis of the SYP61 compartment reveal its role in exocytic trafficking in *Arabidopsis*. Cell Res 22: 413-424

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fahraeus G (1957) The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. J Gen Microbiol 16: 374-381

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fournier J, Timmers AC, Sieberer BJ, Jauneau A, Chabaud M, Barker DG (2008) Mechanism of infection thread elongation in root hairs of *Medicago truncatula* and dynamic interplay with associated rhizobial colonization. Plant Physiol 148: 1985-1995

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fukai E, Soyano T, Umehara Y, Nakayama S, Hirakawa H, Tabata S, Sato S, Hayashi M (2012) Establishment of a *Lotus japonicus* gene tagging population using the exon-targeting endogenous retrotransposon LORE1. Plant J 69: 720-730

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gage DJ (2004) Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68: 280-300

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Griesmann M, Chang Y, Liu X, Song Y, Haberer G, Crook MB, Billault-Penneteau B, Lauressergues D, Keller J, Imanishi L, Roswanjaya YP, Kohlen W, Pujic P, Battenberg K, Alloisio N, Liang Y, Hilhorst H, Salgado MG, Hocher V, Gherbi H, Svistoonoff S, Doyle JJ, He S, Xu Y, Xu S, Qu J, Gao Q, Fang X, Fu Y, Normand P, Berry AM, Wall LG, Ane JM, Pawłowski K, Xu X, Yang H, Spannagl M, Mayer KFX, Wong GK, Parniske M, Delaux PM, Cheng S (2018) Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. Science 361:125-126

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Groth M, Takeda N, Perry J, Uchida H, Dräxl S, Brachmann A, Sato S, Tabata S, Kawaguchi M, Wang TL, Parniske M (2010) NENA, a *Lotus japonicus* homolog of Sec13, is required for rhizodermal infection by arbuscular mycorrhiza fungi and rhizobia but dispensable for cortical endosymbiotic development. Plant Cell 22: 2509-2526

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hirsch S, Oldroyd GE (2009) GRAS-domain transcription factors that regulate plant development. Plant Signal Behav 4: 698-700

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hossain MS, Liao J, James EK, Sato S, Tabata S, Jurkiewicz A, Madsen LH, Stougaard J, Ross L, Szczyglowski K (2012) *Lotus japonicus* ARPC1 is required for rhizobial infection. Plant Physiol 160: 917-928

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Jia N, Zhu Y, Xie F (2018) An Efficient Protocol for Model Legume Root Protoplast Isolation and Transformation. Front Plant Sci 9: 670

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ke D, Fang Q, Chen C, Zhu H, Chen T, Chang X, Yuan S, Kang H, Ma L, Hong Z, Zhang Z (2012) The small GTPase ROP6 interacts with NFR5 and is involved in nodule formation in *Lotus japonicus*. Plant Physiol 159: 131-143

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kiss E, Oláh B, Kaló P, Morales M, Heckmann AB, Borbola A, Lózsa A, Kontár K, Middleton P, Downie JA, Oldroyd GE, Endre G (2009) LIN, a novel type of U-box/WD40 protein, controls early infection by rhizobia in legumes. Plant Physiol 151: 1239-1249

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kovács S, Kiss E, Jenei S, Fehér-Juhász E, Kereszt A, Endre G (2022) The *Medicago truncatula* IEF Gene Is Crucial for the Progression of Bacterial Infection During Symbiosis. *Mol Plant Microbe Interact* 35: 401-415

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lace B, Su C, Perez DI, Rodriguez-Franco M, Vernié T, Batzschlager M, Egli S, Liu C-W, Ott T (2022) RPG acts as a central determinant for infectosome formation and cellular polarization during intracellular rhizobial infections. *bioRxiv*: 2022.2006.2003.494689

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Li X, Zheng Z, Kong X, Xu J, Qiu L, Sun J, Reid D, Jin H, Andersen SU, Oldroyd GED, Stougaard J, Downie JA, Xie F (2019) Atypical Receptor Kinase RINRK1 Required for Rhizobial Infection But Not Nodule Development in *Lotus japonicus*. *Plant Physiol* 181: 804-816

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Liu CW, Breakspear A, Guan D, Cerri MR, Jackson K, Jiang S, Robson F, Radhakrishnan GV, Roy S, Bone C, Stacey N, Rogers C, Trick M, Niebel A, Oldroyd GED, de Carvalho-Niebel F, Murray JD (2019a) NIN Acts as a Network Hub Controlling a Growth Module Required for Rhizobial Infection. *Plant Physiol* 179: 1704-1722

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Liu CW, Breakspear A, Stacey N, Findlay K, Nakashima J, Ramakrishnan K, Liu M, Xie F, Endre G, de Carvalho-Niebel F, Oldroyd GED, Udvardi MK, Fournier J, Murray JD (2019b) A protein complex required for polar growth of rhizobial infection threads. *Nat Commun* 10: 2848

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Liu J, Liu MX, Qiu LP, Xie F (2020) SPIKE1 Activates the GTPase ROP6 to Guide the Polarized Growth of Infection Threads in *Lotus japonicus*. *Plant Cell* 32: 3774-3791

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Liu M, Jia N, Li X, Liu R, Xie Q, Murray JD, Downie JA, Xie F (2021) CERBERUS is critical for stabilization of VAPYRIN during rhizobial infection in *Lotus japonicus*. *New Phytol* 229: 1684-1700

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lombardo F, Heckmann AB, Miwa H, Perry JA, Yano K, Hayashi M, Parniske M, Wang TL, Downie JA (2006) Identification of symbiotically defective mutants of *Lotus japonicus* affected in infection thread growth. *Mol Plant Microbe Interact* 19: 1444-1450

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Luo Z, Lin JS, Zhu Y, Fu M, Li X, Xie F (2021) NLP1 reciprocally regulates nitrate inhibition of nodulation through SUNN-CRA2 signaling in *Medicago truncatula*. *Plant Commun* 2: 100183

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Maekawa T, Kusakabe M, Shimoda Y, Sato S, Tabata S, Murooka Y, Hayashi M (2008) Polyubiquitin promoter-based binary vectors for overexpression and gene silencing in *Lotus japonicus*. *Mol Plant Microbe Interact* 21: 375-382

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Miyahara A, Richens J, Starker C, Morieri G, Smith L, Long S, Downie JA, Oldroyd GE (2010) Conservation in function of a SCAR/WAVE component during infection thread and root hair growth in *Medicago truncatula*. *Mol Plant Microbe Interact* 23: 1553-1562

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Montiel J, Reid D, Grønbæk TH, Benfeldt CM, James EK, Ott T, Ditengou FA, Nadzieja M, Kelly S, Stougaard J (2021) Distinct signaling routes mediate intercellular and intracellular rhizobial infection in *Lotus japonicus*. *Plant Physiol* 185: 1131-1147

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Murray JD, Karas BJ, Sato S, Tabata S, Amyot L, Szczyglowski K (2007) A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. *Science* 315: 101-104

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Murray JD, Muni RR, Torres-Jerez I, Tang Y, Allen S, Andriankaja M, Li G, Laxmi A, Cheng X, Wen J, Vaughan D, Schultze M, Sun J, Charpentier M, Oldroyd G, Tadege M, Ratet P, Mysore KS, Chen R, Udvardi MK (2011) Vapyrin, a gene essential for intracellular progression of arbuscular mycorrhizal symbiosis, is also essential for infection by rhizobia in the nodule symbiosis of *Medicago truncatula*. *Plant J* 65: 244-252

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Nelson BK, Cai X, Nebenführ A (2007) A multicolored set of in vivo organelle markers for co-localization studies in *Arabidopsis* and other plants. *Plant J* 51: 1126-1136

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Newman-Griffis AH, Del Cerro P, Charpentier M, Meier I (2019) Medicago LINC Complexes Function in Nuclear Morphology, Nuclear Movement, and Root Nodule Symbiosis. *Plant Physiol* 179: 491-506

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Nishimura R, Ohmori M, Kawaguchi M (2002) The novel symbiotic phenotype of enhanced-nodulating mutant of *Lotus japonicus*: astray mutant is an early nodulating mutant with wider nodulation zone. *Plant Cell Physiol* 43: 853-859

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Oldroyd GE, Downie JA (2004) Calcium, kinases and nodulation signalling in legumes. *Nat Rev Mol Cell Biol* 5: 566-576

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. *Annu Rev Plant Biol* 59: 519-546

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Pajuelo E, Stougaard J (2005) *Lotus japonicus*'s a model system. In AJ Márquez, ed, *Lotus japonicus Handbook*. Springer Netherlands, Dordrecht, pp 3-24

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Qiu L, Lin JS, Xu J, Sato S, Parniske M, Wang TL, Downie JA, Xie F (2015) SCARN a Novel Class of SCAR Protein That Is Required for Root-Hair Infection during Legume Nodulation. *PLoS Genet* 11: e1005623

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Robertson JG, Warburton MP, Lyttleton P, Fordyce AM, Bullivant S (1978) Membranes in lupin root nodules. II. Preparation and properties of peribacteroid membranes and bacteroid envelope inner membranes from developing lupin nodules. *J Cell Sci* 30: 151-174

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Rose A, Manikantan S, Schraegle SJ, Maloy MA, Stahlberg EA, Meier I (2004) Genome-wide identification of *Arabidopsis* coiled-coil proteins and establishment of the ARABI-COIL database. *Plant Physiol* 134: 927-939

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Roy S, Liu W, Nandety RS, Crook A, Mysore KS, Pislaru CI, Frugoli J, Dickstein R, Udvardi MK (2020) Celebrating 20 Years of Genetic Discoveries in Legume Nodulation and Symbiotic Nitrogen Fixation. *Plant Cell* 32: 15-41

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Saleh MC, van Rij RP, Hekele A, Gillis A, Foley E, O'Farrell PH, Andino R (2006) The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. *Nat Cell Biol* 8: 793-802

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sauer M, Paciorek T, Benková E, Friml J (2006) Immunocytochemical techniques for whole-mount *in situ* protein localization in plants. *Nat Protoc* 1: 98-103

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Schauser L, Roussis A, Stiller J, Stougaard J (1999) A plant regulator controlling development of symbiotic root nodules. *Nature* 402: 191-195

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Schnabel E, Journet EP, de Carvalho-Niebel F, Duc G, Frugoli J (2005) The *Medicago truncatula* SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length. *Plant Mol Biol* 58: 809-822

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Schnabel E, Smith L, Long S, Frugoli J (2010) Transcript profiling in *M. truncatula* *iss* and *sunn-1* mutants reveals different expression profiles despite disrupted SUNN gene function in both mutants. *Plant Signal Behav* 5: 1657-1659

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sinharoy S, Liu C, Breakspear A, Guan D, Shailes S, Nakashima J, Zhang S, Wen J, Torres-Jerez I, Oldroyd G, Murray JD, Udvardi MK (2016) A *Medicago truncatula* Cystathionine- β -Synthase-like Domain-Containing Protein Is Required for Rhizobial Infection and Symbiotic Nitrogen Fixation. *Plant Physiol* 170: 2204-2217

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Soyano T, Hirakawa H, Sato S, Hayashi M, Kawaguchi M (2014) Nodule Inception creates a long-distance negative feedback loop involved in homeostatic regulation of nodule organ production. *Proc Natl Acad Sci USA* 111: 14607-14612

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Suetsugu N, Higa T, Kong SG, Wada M (2015) PLASTID MOVEMENT IMPAIRED1 and PLASTID MOVEMENT IMPAIRED1-RELATED1 Mediate Photorelocation Movements of Both Chloroplasts and Nuclei. *Plant Physiol* 169: 1155-1167

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Tirichine L, Herrera-Cervera JA, Stougaard J (2005) Transformation-regeneration procedure for *Lotus japonicus*. In AJ Márquez, ed, *Lotus japonicus Handbook*. Springer Netherlands, Dordrecht, pp 279-284

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Truebestein L, Leonard TA (2016) Coiled-coils: The long and short of it. *Bioessays* 38: 903-916

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ueda T, Yamaguchi M, Uchimiya H, Nakano A (2001) Ara6, a plant-unique novel type Rab GTPase, functions in the endocytic pathway of *Arabidopsis thaliana*. *Embo J* 20: 4730-4741

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Urbański DF, Małolepszy A, Stougaard J, Andersen SU (2012) Genome-wide LORE1 retrotransposon mutagenesis and high-throughput insertion detection in *Lotus japonicus*. *Plant J* 69: 731-741

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

van Velzen R, Holmer R, Bu F, Rutten L, van Zeijl A, Liu W, Santuari L, Cao Q, Sharma T, Shen D, Roswanjaya Y, Wardhani TAK, Kalhor MS, Jansen J, van den Hoogen J, Gungor B, Hartog M, Hontelez J, Verver J, Yang WC, Schijlen E, Repin R, Schilthuizen M, Schranz ME, Heidstra R, Miyata K, Fedorova E, Kohlen W, Bisseling T, Smit S, Geurts R (2018) Comparative genomics of the nonlegume *Parasponia* reveals insights into evolution of nitrogen-fixing rhizobium symbioses. *Proc Natl Acad Sci USA* 115: E4700-E4709

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. *Plant J* 33: 949-956

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wang DY, Fulthorpe R, Liss SN, Edwards EA (2004) Identification of estrogen-responsive genes by complementary deoxyribonucleic acid microarray and characterization of a novel early estrogen-induced gene: EEIG1. *Mol Endocrinol* 18: 402-411

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wang JG, Li S, Zhao XY, Zhou LZ, Huang GQ, Feng C, Zhang Y (2013) HAPLESS13, the *Arabidopsis* μ 1 adaptin, is essential for protein sorting at the trans-Golgi network/early endosome. *Plant Physiol* 162: 1897-1910

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Weber E, Engler C, Gruetzner R, Werner S, Marillonnet S (2011) A modular cloning system for standardized assembly of multigene constructs. *PLoS One* 6: e16765

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Xie F, Murray JD, Kim J, Heckmann AB, Edwards A, Oldroyd GE, Downie JA (2012) Legume pectate lyase required for root infection by rhizobia. *Proc Natl Acad Sci USA* 109: 633-638

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yano K, Shibata S, Chen WL, Sato S, Kaneko T, Jurkiewicz A, Sandal N, Banba M, Imaizumi-Anraku H, Kojima T, Ohtomo R, Szczyglowski K, Stougaard J, Tabata S, Hayashi M, Kouchi H, Umehara Y (2009) CERBERUS, a novel U-box protein containing WD-40 repeats, is required for formation of the infection thread and nodule development in the legume-Rhizobium symbiosis. *Plant J* 60: 168-180

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yokota K, Fukai E, Madsen LH, Jurkiewicz A, Rueda P, Radutoiu S, Held M, Hossain MS, Szczyglowski K, Morieri G, Oldroyd GE, Downie JA, Nielsen MW, Rusek AM, Sato S, Tabata S, James EK, Oyaizu H, Sandal N, Stougaard J (2009) Rearrangement of actin cytoskeleton mediates invasion of *Lotus japonicus* roots by *Mesorhizobium loti*. *Plant Cell* 21: 267-284

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhang D, Aravind L (2010) Identification of novel families and classification of the C2 domain superfamily elucidate the origin and evolution of membrane targeting activities in eukaryotes. *Gene* 469: 18-30

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhang X, Pumplin N, Ivanov S, Harrison MJ (2015) EXO70l Is Required for Development of a Sub-domain of the Periarbuscular Membrane during Arbuscular Mycorrhizal Symbiosis. *Curr Biol* 25: 2189-2195

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)