

1 **Title:**

2 DNA methylation is a widespread mechanism of light-induced circadian clock period plasticity

3 **Authors:**

4 Suil Kim¹ and Douglas G. McMahon^{*1,2}

5

6 **Author Affiliations:**

7 ¹Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA

8 ²Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA

9 *Correspondence to: douglas.g.mcmahon@vanderbilt.edu

10

11 Abstract

12 The suprachiasmatic nucleus (SCN) of the hypothalamus is a principal light-responsive circadian
13 clock that adjusts circadian rhythms in mammalian physiology and behavior to changes in external
14 light signals. Although mechanisms underlying how light acutely resets the timing of circadian
15 rhythms have been characterized, it remains elusive how light signals induce lasting changes in
16 circadian period, so-called period after-effects. Here we have found that the period after-effects
17 on circadian behavior of changing photoperiods are blocked by application of DNA
18 methyltransferase inhibitors directed to the SCN. At the level of single light pulses that act as
19 clock-resetting stimulations, pharmacologically inhibiting DNA methylation in the SCN significantly
20 attenuates period after-effects following acute phase shifts in behavioral rhythms *in vivo*, and
21 blocks period after-effects on clock gene rhythms in the isolated *ex vivo* SCN. Acute clock
22 resetting shifts themselves, however, do not appear to require DNA methylation at the SCN and
23 behavioral levels, in contrast to subsequent period plasticity. Our results indicate that DNA
24 methylation in the SCN mediates light-induced period after-effects in response to photoperiods,
25 and single light pulses, and together with previous studies showing that DNA methylation in the
26 SCN is essential for period after-effects of non-24hr light cycles (T-cycles), suggest that DNA
27 methylation in the SCN is a widespread mechanism of light-induced circadian period plasticity.

28

29 Introduction

30 Circadian rhythms are pervasive in mammalian physiology and behavior in anticipation of, and
31 alignment with, daily environmental cycles. Nearly all mammalian cells including neurons and glia
32 have an endogenous 24-hour timing mechanism, or circadian clock, the molecular basis of which
33 is self-sustained circadian oscillations of clock genes including *Period (Per)* and *Cryptochrome*
34 (*Cry*) genes via autoregulatory transcription-translation feedback mechanisms (Takahashi, 2017).
35 Individual cellular and tissue circadian rhythms in the body are adjusted in tune with daily light
36 cycles by the suprachiasmatic nucleus (SCN) in the hypothalamus which receives retinal light
37 input(Welsh et al., 2010). The period length of circadian rhythms, or circadian period, is species-
38 specific and genetically defined, but can be enduringly modified by the effects of external light
39 signals (Pittendrigh and Daan, 1976a, 1976b). Light exposures at night which cause acute delays
40 or advances in the timing (phase) of circadian rhythms also subsequently lead to enduring
41 changes in circadian period, or so-called period after-effects. Light-induced phase delays cause
42 period lengthening after-effects, while phase advances cause period shortening after-effects
43 (Pittendrigh and Daan, 1976a). In addition, synchronization or entrainment of circadian rhythms
44 to different light-dark (LD) cycles, such as altered durations of daylight (photoperiods; e.g., 16 hr
45 light and 8 hr dark per 24 hr [LD 16:8]), and non-24h light-dark cycles (T-cycles; e.g., 11 hr light
46 and 11 hr dark per 22 hr [T22]), cause pronounced period after-effects (Pittendrigh and Daan,
47 1976b).

48 Previous work (Azzi et al., 2014) showed that DNA methylation in the mouse SCN is necessary
49 for expression of after-effects on circadian period of behavioral rhythms following weeks of
50 entrainment to non-24h light cycles, suggesting that epigenetic regulation of gene expression
51 might mediate long-lasting changes in circadian clock properties. However, it remains an open
52 question whether DNA methylation is involved in period after-effects that arise from the
53 photoperiodic variation in 24-hour light cycles that is experienced by many organisms and people
54 across the seasons. Also, it remains unclear whether DNA methylation regulates period after-

55 effects at the level of single light pulses or clock-resetting cues, or it does so only after chronic
56 light exposures such as light entrainment.

57 Here, we show that pharmacological inhibition of DNA methylation *in vivo* directed near the SCN
58 significantly attenuates photoperiodic aftereffects on the circadian period of behavioral rhythms,
59 and uncover that DNA methylation regulates period plasticity of SCN clock gene rhythms and
60 behavioral output rhythms at the level of acute clock-resetting stimulations without influencing
61 induced phase shifts. Our results suggest that DNA methylation is a fundamental mechanism of
62 circadian plasticity to prior light history.

63

64 **Results**

65 **Inhibition of DNA methylation targeted to the SCN blunts the after-effects of photoperiods 66 on circadian behavior**

67 Entrainment of mouse circadian locomotor behavior to long summer-like photoperiods (e.g., 16
68 hr light per 24 hr) causes a subsequent shortening of the endogenous circadian period when
69 measured in constant darkness (Pittendrigh and Daan, 1976b). To test whether DNA methylation
70 is involved in period after-effects of long photoperiod entrainment, we infused RG108, a pan-
71 inhibitor of DNA methyltransferases, into the third ventricle adjacent to the SCN during
72 entrainment of wheel-running behavior rhythms to LD 16:8 photoperiods (Figure 1A). This method
73 of infusion was previously shown to effectively target the SCN (Azzi et al., 2014). Mice which had
74 been maintained in LD 12:12 cycles were placed in running wheel cages and allowed to free-run
75 for 7 days in constant darkness to establish their baseline circadian locomotor rhythm period.
76 Mice were then re-entrained to LD 12:12 cycles for 9-10 days, with infusion of RG108 started on
77 day 4 or 5, and either continued for an additional 10 days in LD 12:12 (Control), or entrained to
78 LD 16:8 cycles for 12 days (LD 16:8), and then allowed to free-run for 7 days to assay for period
79 after-effects. Control group RG108-infused mice did not show significant differences in

80 endogenous period change compared to vehicle controls (Figure 1B), suggesting that inhibition
81 of DNA methylation does not itself affect the baseline circadian period. In contrast, LD 16:8 vehicle
82 control mice exhibited the expected shortening of their circadian locomotor period, which was
83 significantly blunted by RG108 (Figure 1), suggesting that DNA methylation regulates changes to
84 circadian period following photoperiodic entrainment.

85

86 **Expression of period after-effects in circadian behavior following acute phase shifts
87 depends on DNA methylation**

88 Resetting of circadian rhythms by discrete light exposure is fundamental for circadian entrainment
89 to light cycles (Pittendrigh and Daan, 1976b). In addition, acute phase delays or advances in
90 circadian rhythms induced by brief light exposures cause period after-effects, with period
91 lengthening or shortening on subsequent cycles (Pittendrigh and Daan, 1976a). Interestingly, the
92 magnitude of subsequent period changes is positively correlated with the magnitude of the
93 preceding phase shifts (Sharma and Daan, 2002; Sharma, 2003). We thus sought to investigate
94 two questions. First, is DNA methylation involved in period changes following acute light exposure,
95 not just following weeks of entrainment to different photoperiods (Figure 1), or non-24h light cycles
96 (Azzi et al., 2014)? Second, does DNA methylation regulate period after-effects by modulating
97 the magnitude of initial phase shifts, or rather by directly acting on expression of period after-
98 effects?

99 To test whether and how DNA methylation mediates period after-effects at the level of discrete
100 light pulses, we sought to inhibit DNA methylation in the mouse brain with RG108 injection into
101 the third ventricle near the SCN, and then delivered 1h light pulses in the early physiological night
102 (~circadian time (CT) 13.5, ~CT16.5) in constant darkness to induce phase shifts and period after-
103 effects in locomotor behavior rhythms (Figure 2A). Vehicle control mice showed phase delays
104 and period lengthening following light pulses, as expected (Figure 2B-D). RG108-treated mice

105 showed similar magnitude phase delays to the vehicle controls, but period lengthening was
106 blocked (Figure 2B-D), indicating that DNA methylation regulates period changes without directly
107 affecting phase shifts. This supports an idea that DNA methylation mediates expression of period
108 after-effects following acute resetting of circadian rhythms.

109

110 **After-effects of phase resetting on the period of SCN molecular rhythms are modulated by**
111 **DNA methylation**

112 The preceding experiments in intact animals showed that inhibition of DNA methylation directed
113 at the SCN blocks expression of behavioral period plasticity to photoperiodic entrainment and to
114 single phase shifts. As circadian behavioral rhythms are regulated by interactions between the
115 central SCN clock and other peripheral brain clocks (Kalsbeek et al., 2006; Begemann et al.,
116 2020), in principle, DNA methylation might be acting directly on expression of period plasticity in
117 the SCN itself, or through actions on other brain clocks downstream of the SCN for behavioral
118 outputs.

119 To test whether DNA methylation mediates circadian after-effects directly on SCN molecular
120 rhythms, we used organotypic SCN slice cultures expressing a bioluminescent reporter of clock
121 protein PER2 expression (PER2::LUC; Yoo et al., 2004), and induced phase shifts in PER2::LUC
122 rhythms in SCN slices by applying vasoactive intestinal peptide (VIP), a neuropeptide mediating
123 light-induced SCN clock resetting (Welsh et al., 2010), at early physiological night (CT14) in the
124 presence or absence of the DNA methylation blocker RG108 in the culture medium (Figure 3).
125 RG108 treatment itself without VIP application did not change the phase or period of PER2::LUC
126 bioluminescence rhythms in SCN slices (Figure 3A-C), suggesting that DNA methylation is not
127 essential for maintaining SCN rhythms in the resting state. This is consistent with previous
128 observations (Azzi et al., 2014) and our results here that blocking DNA methylation itself does not
129 affect the endogenous period of circadian behavior. When VIP was applied to SCN slices, RG108

130 co-treatment did not affect VIP-induced phase shifts in SCN rhythms, but it attenuated VIP-
131 induced period changes (Figure 3A-C). This suggests that DNA methylation directly modulates
132 expression of SCN rhythm after-effects following acute phase shifts, consistent with our findings
133 in behavioral experiments.

134 Since in the previous experiments VIP was applied as a bolus and not washed out, its continued
135 presence in the medium could potentially confound after-effects on period with persistent ongoing
136 effects of VIP itself on period. Therefore, we sought to test these results with a more temporally
137 precise stimulus to the ex vivo SCN. Recently, our lab showed that optogenetic stimulation of the
138 ex vivo SCN using a red light-sensitive opsin ChrimsonR mimics light-induced resetting of
139 circadian rhythms in vivo (Kim and McMahon, 2021). Here, we expressed ChrimsonR in neurons
140 in SCN slices from PER2::LUC mice with an AAV (AAV-Synapsin-ChrimsonR-tdTomato;
141 Klapoetke et al., 2014). We then applied to the SCN slices a different class of pan-DNA
142 methyltransferase inhibitor, SGI-1027, and one day later delivered 15-minutes of optogenetic
143 stimulation (625 nm, 10 Hz, 10 ms pulse width) to SCN neurons in their early physiological night
144 (CT14) to mimic retinal light input to the SCN (Figure 4). SGI-1027 treatment itself without
145 optogenetic stimulation did not affect SCN PER2::LUC rhythms (Figure 4A-C), suggesting again
146 that DNA methylation does not influence resting-state circadian rhythms in the SCN. SGI-1027
147 treatment prior to optogenetic stimulation suppressed period changes in the SCN rhythms
148 following the stimulation, but it did not impact phase shifts (Figure 4A-C). This further supports
149 the notion that DNA methylation is not essential for phase shifts in SCN rhythms following acute
150 light input, but it is required for expression of after-effects on SCN rhythm period on subsequent
151 cycles.

152

153 **Discussion**

154 This study extends the understanding that DNA methylation is involved in light modulation of
155 circadian period, a lasting form of plasticity in the mammalian brain biological clock. Here we have
156 shown that entrainment to altered daytime lengths (photoperiods) involves DNA methylation to
157 express after-effects on circadian period, and uncovered that at the level of single light pulses the
158 SCN expresses circadian after-effects via DNA methylation. Thus, our results suggest that the
159 SCN involves DNA methylation as a widespread mechanism of period after-effects at the
160 molecular and behavioral output levels.

161 After-effects on circadian period is a prominent example of circadian clock plasticity to different
162 lighting conditions. DNA methylation was previously shown to be necessary for period plasticity
163 in the specific case of T-cycle entrainment (Azzi et al., 2014, 2017). However, the role of DNA
164 methylation in period plasticity following other forms of light exposure remained uncharacterized.
165 Unlike T-cycle entrainment, which is rarely, if ever, experienced in nature, photoperiod
166 entrainment is a key function of the circadian clock critical for mediating seasonal changes in
167 animal physiology and behavior. We now show that period plasticity following photoperiod
168 entrainment likely involves DNA methylation in the SCN. Interestingly, DNA methylation plays a
169 key role in regulating seasonal timing of reproduction in many different taxa including animals and
170 plants (Viitaniemi et al., 2019). In rodents, DNA methylation is critical for hypothalamic regulation
171 of seasonal reproductive organ development (Stevenson and Prendergast, 2013). This suggests
172 that seasonal changes in DNA methylation patterns in different brain regions, including the SCN,
173 might coordinately regulate seasonality of animal physiology and behavior. Future studies will be
174 needed to investigate how photoperiod-induced period plasticity is coordinated with other
175 hypothalamic regulation for seasonal physiology and behavior.

176 Another important point of this study is that our data suggest that DNA methylation can take place
177 in the SCN following even a brief light exposure or a clock-resetting stimulation to mediate period
178 plasticity. Given that DNA methylation is essential for period changes following months of T-cycle

179 entrainment (Azzi et al., 2014), this suggests that DNA methylation might universally regulate
180 light-induced period plasticity regardless of the duration of altered lighting paradigms, although
181 DNA methylation might act on different targets for period changes following acute light exposure
182 than those following entrainment. Interestingly, ontological analyses of DNA methylation in the
183 SCN following T-cycle entrainment revealed that the most significant changes in DNA methylation
184 were found in genes encoding neurotransmitter receptors and ion channels (Azzi et al., 2017),
185 suggesting that changes in intercellular coupling within the SCN might be regulated by DNA
186 methylation to induce period plasticity. Further investigating targets of DNA methylation for period
187 plasticity to different lighting conditions will deepen our understanding of epigenetic regulation of
188 circadian clock plasticity.

189 Lastly, our study has implications in human health. Our data suggest that DNA methylation
190 patterns in the SCN might change dynamically following altered lighting conditions, including a
191 brief light exposure at night or seasonal changes in daylight lengths, to mediate after-effects on
192 circadian period. Given that animals including humans can experience highly varying circadian
193 lighting conditions throughout their lifetime, this suggests that studying dynamics of DNA
194 methylation patterns in the SCN might contribute to understanding the molecular basis of effects
195 of prior light history on the circadian clock (Pittendrigh and Daan, 1976a), and to assessing
196 potential health impacts on human populations experiencing a high degree of changes in
197 environmental lighting conditions including those living at a high latitude with large seasonal
198 changes in daylight and those experiencing circadian misalignments such as shift workers and
199 those frequently traveling across time zones.

200

201 **Materials and methods**

202 **Animals and housing**

203 Wild-type C57BL/6J mice (2-4 months old; 000664, Jackson Laboratory) were used for behavioral
204 experiments. For organotypic SCN slice culture from heterozygous PER2::LUC knock-in mice
205 (Yoo et al., 2004), 2-4 months old mice were used in VIP application experiments and P11-14
206 mice were used in optogenetic stimulation experiments. We used heterozygous PER2::LUC mice
207 as the PER2::LUC knock-in allele can alter circadian functions such as free-running period (Ralph
208 et al., 2021). All animals were housed in a 12:12 light-dark cycle (except as noted), and had food
209 and water provided ad libitum. For circadian behavioral experiments, male mice were used to
210 avoid effects of the estrous cycle on circadian behavior and transferred from their home cages to
211 individually housed wheel-running cages connected to a computer for monitoring locomotor
212 activity using ClockLab software (Actimetrics). Wheel-running cages with ad libitum access to
213 food and water were placed in light-tight chambers and exposed to various lighting conditions
214 controlled by ClockLab including constant darkness and a 16:8 light-dark cycle. For ex vivo
215 assays, both male and female mice were used in experiments. Experiments were performed in
216 accordance with the Vanderbilt University Institutional Animal Care and Use Committee and
217 National Institutes of Health guidelines.

218

219 **Stereotaxic surgery and drug delivery to the brain**

220 Mice were anesthetized with 2% isoflurane and placed securely in a stereotaxic apparatus (Kopf
221 Instruments) with the body temperature maintained at 36°C using a homeothermic heating pad
222 (Harvard Apparatus). Eye lubricant was applied to prevent drying during surgery. For RG108
223 infusion into the third ventricle, an implantable osmotic pump (infusion rate 0.11µl/hr, Model 1004,
224 Alzet) was filled with 200µM RG108 in aCSF (0.66% DMSO) or vehicle and primed with sterile
225 saline at 36.8°C before use as per manufacturer's instruction. RG108 concentration was chosen

226 based on previous studies examining behavioral outcomes associated with blocking DNA
227 methylation in a brain region (Lapplant et al., 2010; Day et al., 2013). An osmotic cannula (28
228 gauge, Plastics One) was stereotactically implanted in the third ventricle near the SCN (relative to
229 bregma, A/P: -0.5 mm, M/L: 0.0 mm, D/V: -4.5 mm) and connected to the osmotic pump via a
230 vinyl catheter tubing (Alzet). The osmotic pump was then implanted subcutaneously under the
231 back skin as per manufacturer's recommendations. After stereotaxic surgery, mice were returned
232 to individually housed wheel-running cages for recovery and subsequent behavioral experiments.
233 To ensure pump infusion, the pump reservoir was inspected after behavioral experiments.
234 For RG108 injection into the third ventricle, a guide cannula (26 gauge, Plastics One) was
235 implanted in the same location as for infusion, and capped with a dummy cannula (Plastics One).
236 After stereotaxic surgery, mice were returned to individually housed wheel-running cages for
237 recovery and subsequent experiments. On the day of light stimulation in constant darkness, mice
238 were taken out of their cages, and while mice were held tightly under dim red light a dummy
239 cannula was removed and an internal cannula (Plastics One) was inserted into a guide cannula
240 and connected to a 10 μ l microsyringe (Model 1701, Hamilton) filled with 100 μ M RG108 in aCSF
241 (0.66% DMSO) or a vehicle via PE50 tubing (Plastics One). Mice were released and allowed to
242 move around while RG108 or a vehicle was dispensed at 0.5 μ l/sec using a syringe dispenser
243 (Hamilton). After injection, the injection system was disassembled and mice were returned to their
244 cages under dim red light.

245

246 **Circadian wheel-running behavioral assays and data analyses**

247 Mice were transferred to individually housed wheel-running cages in light-tight chambers provided
248 with experimental lighting conditions. Mice were habituated in wheel-running cages under a 12:12
249 LD cycle for at least three days before experiments. For photoperiodic entrainment assays, mice
250 were released into constant darkness for a week to measure a baseline circadian period before

251 re-exposure to a 12:12 LD cycle, and they received stereotaxic brain surgery for RG108 or a
252 vehicle infusion on day 4 or 5 during the 12:12 LD cycle. After additional four or five days in a
253 12:12 LD cycle, mice were exposed to a 16:8 LD cycle for 12 days and then released into constant
254 darkness to measure an after-effect on circadian period. Light cycle control mice remained in a
255 12:12 LD cycle for a total of 20 days before a release into constant darkness. For light pulse
256 experiments, mice received stereotaxic brain surgery and after a week of recovery in a 12:12 LD
257 cycle they were released into constant darkness for six days to measure a baseline circadian
258 period. On day 7, mice received RG108 or a vehicle injection under dim red light around CT10.5
259 (CT12 was defined as the onset of nocturnal locomotor activity) and were given two one-hour light
260 pulses in constant darkness around CT13.5 and CT16.5. Wheel-running activity after the light
261 pulses was recorded to measure phase shifts and period changes.

262 Wheel-running activity records were extracted and analyzed using ClockLab software running in
263 Matlab (Mathworks). Single- or double-plotted 24-hour actograms with lighting information were
264 produced and activity onsets were determined using ClockLab. Phase shifts were calculated as
265 difference in time between the activity onsets observed following light exposure and those
266 predicted using linear regression from activity onsets before light exposure. Period changes were
267 calculated as differences in the period length of at least six cycles before and after changes in
268 light exposure using Chi-square periodogram in ClockLab.

269

270 **Ex vivo SCN bioluminescence rhythm assays**

271 Organotypic SCN slice culture was performed as previously described (Kim and McMahon, 2021).
272 Briefly, 300 μ m-thick coronal slices containing the SCN were obtained from PER2::LUC mouse
273 brains using a vibratome (Leica) and placed on a semi-permeable membrane insert (PTFE,
274 Millipore) in 35-mm culture dishes. The culture dishes were sealed with a transparent PCR plate
275 film (Bio-Rad) and maintained in a multi-channel luminometer LumiCycle (Actimetrics) inside an

276 incubator at 36.8°C. Bioluminescence from PER2::LUC SCN slices was recorded in 10 min
277 intervals. For VIP application experiments, culture medium was 1.2ml of DMEM supplemented
278 with 10mM HEPES, 25U/ml penicillin/streptomycin, 2% B-27 Plus (Gibco), and 0.1mM D-luciferin
279 sodium salt (Tocris). 1µM VIP (Tocris) dissolved in sterile water was applied at CT14 to the culture
280 medium 15 mins prior to 200µM RG108 (dissolved in 0.66% DMSO) application in the medium.
281 CT12 was defined as the peak of PER2::LUC rhythms. CT14 was determined using at least three
282 cycles of PER2::LUC rhythms before drug application. Drugs were pre-warmed before application
283 and not washed off.

284 For optogenetic stimulation experiments, culture medium was the same as for VIP application
285 experiments except that it contained 2mM Glutamax (Gibco) instead of L-glutamine. 1µl AAV
286 (pAAV1-Syn-ChrimsonR-tdTomato, Addgene; Klapoetke et al., 2014) was applied onto SCN
287 slices before sealing culture dishes. The opsin expression was confirmed by imaging tdTomato
288 fluorescence 10 days after viral transduction. 10µM SGI-1027 (Tocris) dissolved in DMSO was
289 applied to culture medium one day before optogenetic stimulation. For optogenetic stimulation,
290 625nm LED light pulses (10Hz, 10ms) were illuminated onto SCN slices at CT14 for 15 minutes
291 using an integrated system of luminometry and optogenetic stimulation previously described (Kim
292 and McMahon, 2021).

293

294 **Bioluminescence recording data analysis**

295 Bioluminescence data were analyzed as previously described (Kim and McMahon, 2021). Briefly,
296 raw data were baseline-subtracted and smoothed using LumiCycle Analysis software
297 (Actimetrics). Then they were loaded into Matlab-run ClockLab for further analyses. Phase shifts
298 were calculated as difference in time between the rhythm peaks observed following drug
299 application or optogenetic stimulation and those predicted using linear regression from peaks
300 before manipulation. Period changes were determined as difference in the period length of at

301 least three cycles using linear regression of peaks. Bioluminescence data were visualized using
302 Excel (Microsoft) and Prism (Graphpad).

303

304 **Experimental design and statistical analysis**

305 For all experiments, mice were randomly assigned to control and experimental groups. For
306 circadian behavior assays, only male mice were used to avoid estrous cycle effects on circadian
307 period. For ex vivo SCN rhythm assays, both males and females were used. For statistical
308 comparisons, unpaired t-tests, one-way ANOVAs with Tukey's post hoc tests, or two-way
309 ANOVAs with Sidak's post hoc tests were performed using Prism, and tests used for individual
310 experiments are described in the figure legends. Data are presented as mean \pm standard error of
311 mean (SEM). Differences between groups were considered statistically significant when the p-
312 value was less than 0.05.

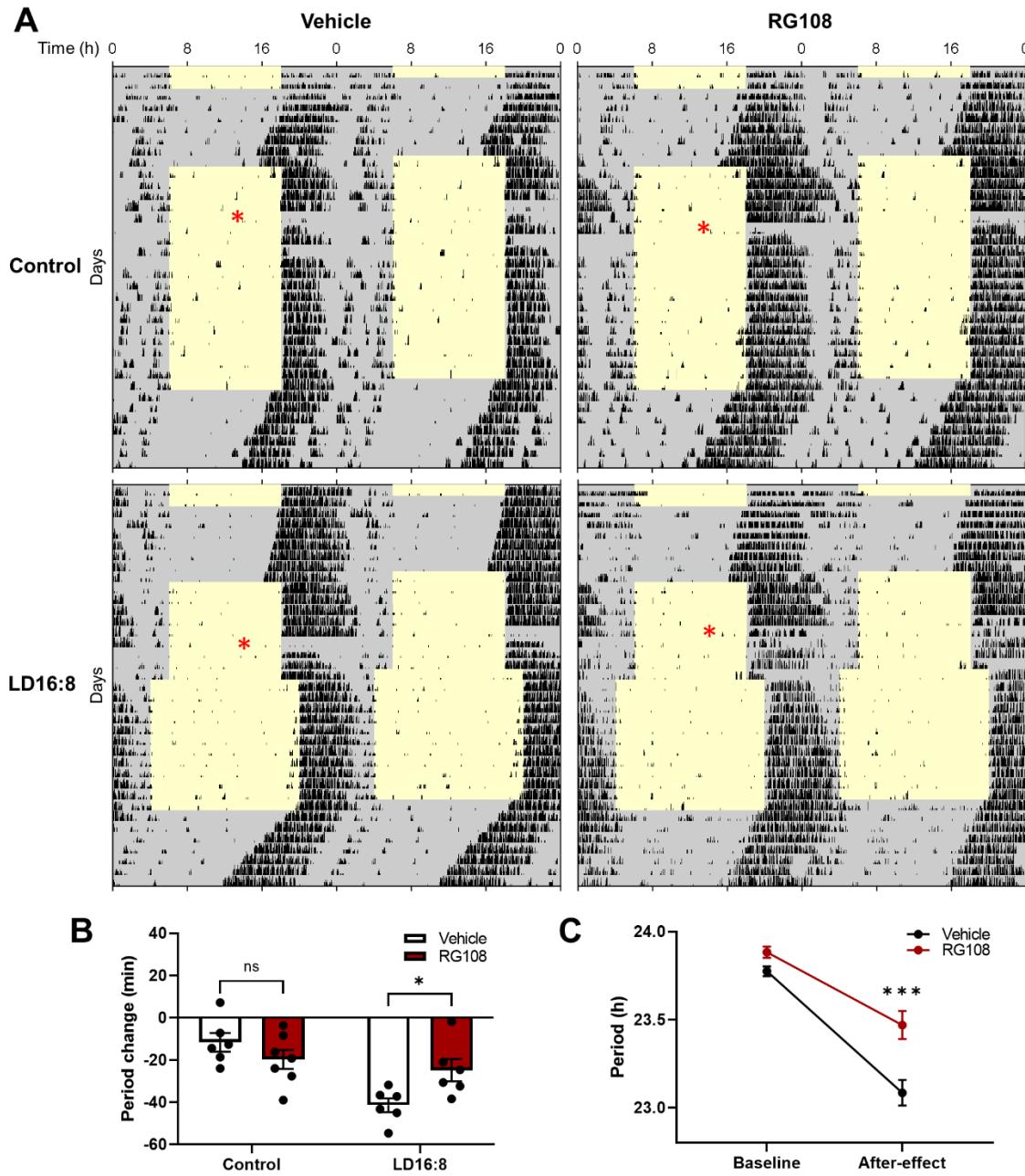
313

314 **References**

315 Azzi A, Dallmann R, Casserly A, Rehrauer H, Patrignani A, Maier B, Kramer A, Brown SA
316 (2014) Circadian behavior is light-reprogrammed by plastic DNA methylation. *Nat Neurosci*
317 17:377–382.

318 Azzi A, Evans JA, Leise T, Myung J, Takumi T, Davidson AJ, Brown SA (2017) Network
319 Dynamics Mediate Circadian Clock Plasticity. *Neuron* 93:441–450.

320 Begemann K, Neumann AM, Oster H (2020) Regulation and function of extra-SCN circadian
321 oscillators in the brain. *Acta Physiol* 229:e13446.

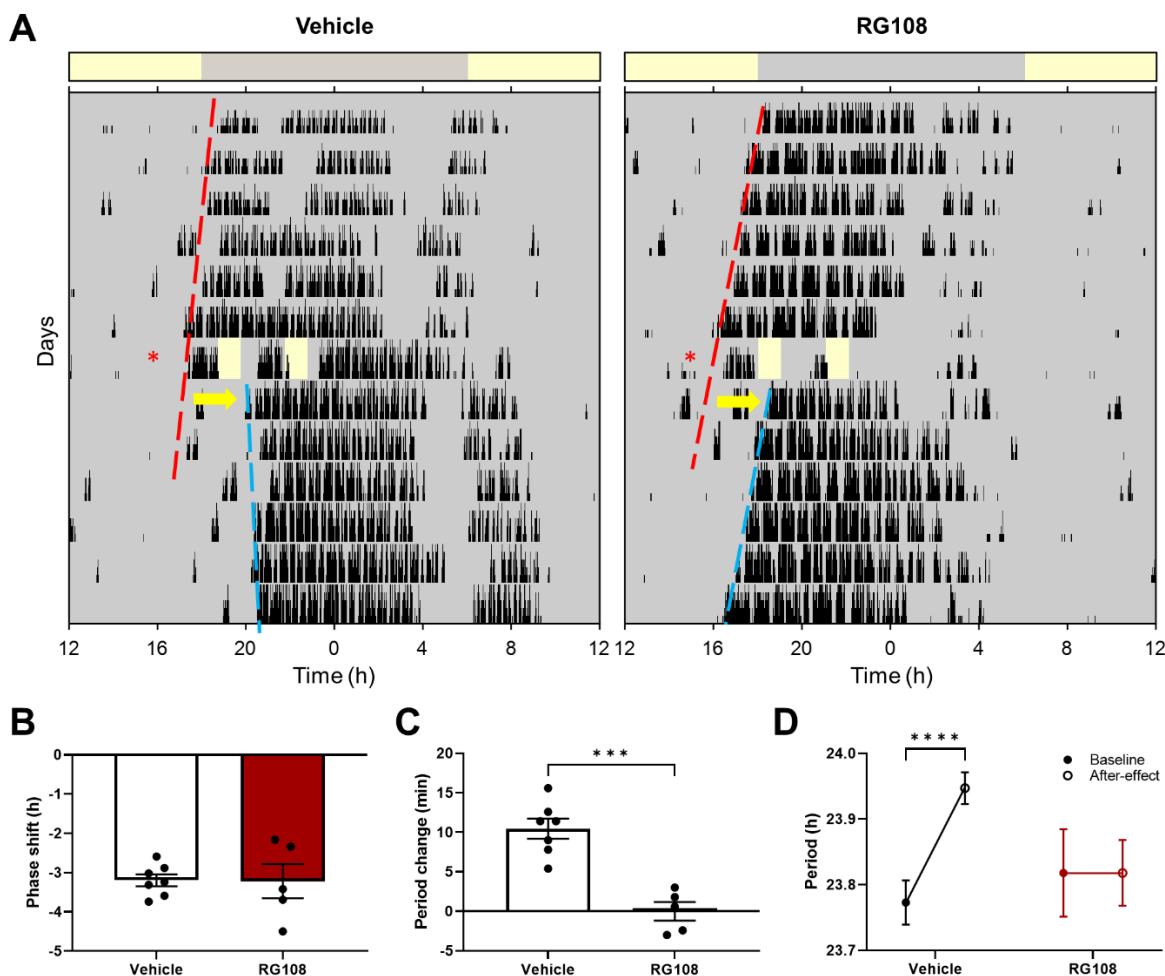

322 Day JJ, Childs D, Guzman-Karlsson MC, Kibe M, Moulden J, Song E, Tahir A, Sweatt JD (2013)
323 DNA methylation regulates associative reward learning. *Nat Neurosci* 2013 1610 16:1445–
324 1452.

- 325 Kalsbeek A, Palm IF, La Fleur SE, Scheer FAJL, Perreau-Lenz S, Ruiter M, Kreier F, Cailotto C,
326 Buijs RM (2006) SCN outputs and the hypothalamic balance of life. *J Biol Rhythms* 21:458–469.
- 327 Kim S, McMahon DG (2021) Light sets the brain's daily clock by regional quickening and
328 slowing of the molecular clockworks at dawn and dusk. *Elife* 10:e70137.
- 329 Klapoetke NC et al. (2014) Independent optical excitation of distinct neural populations. *Nat
330 Methods* 11:338–346.
- 331 Laplant Q et al. (2010) Dnmt3a regulates emotional behavior and spine plasticity in the nucleus
332 accumbens. *Nat Neurosci* 2010 139 13:1137–1143.
- 333 Pittendrigh CS, Daan S (1976a) A functional analysis of circadian pacemakers in nocturnal
334 rodents - I. The stability and lability of spontaneous frequency. *J Comp Physiol* 106:223–252.
- 335 Pittendrigh CS, Daan S (1976b) A functional analysis of circadian pacemakers in nocturnal
336 rodents - IV. Entrainment: Pacemaker as clock. *J Comp Physiol* 106:291–331.
- 337 Ralph MR, Shi S, Johnson CH, Houdek P, Shrestha TC, Crosby P, O'Neill JS, Sládek M,
338 Stinchcombe AR, Sumová A (2021) Targeted modification of the Per2 clock gene alters
339 circadian function in mPer2luciferase (mPer2Luc) mice. *PLOS Comput Biol* 17:e1008987.
- 340 Sharma VK (2003) Period Responses to Zeitgeber Signals Stabilize Circadian Clocks During
341 Entrainment. *Chronobiol Int* 20:389–404.
- 342 Sharma VK, Daan S (2002) Circadian phase and period responses to light stimuli in two
343 nocturnal rodents. *Chronobiol Int* 19:659–670.
- 344 Stevenson TJ, Prendergast BJ (2013) Reversible DNA methylation regulates seasonal
345 photoperiodic time measurement. *Proc Natl Acad Sci U S A* 110:16651–16656 Available at:
346 <https://www.pnas.org/content/110/41/16651> [Accessed December 15, 2021].
- 347 Takahashi JS (2017) Transcriptional architecture of the mammalian circadian clock. *Nat Rev
348 Genet* 18:164–179 Available at: www.nature.com/nrg [Accessed October 29, 2020].

- 349 Viitaniemi HM, Verhagen I, Visser ME, Honkela A, Van Oers K, Husby A, Meyer M (2019)
350 Seasonal Variation in Genome-Wide DNA Methylation Patterns and the Onset of Seasonal
351 Timing of Reproduction in Great Tits. *Genome Biol Evol* 11:970 Available at:
352 [/pmc/articles/PMC6447391/](https://PMC6447391/) [Accessed December 15, 2021].
- 353 Welsh DK, Takahashi JS, Kay SA (2010) Suprachiasmatic nucleus: cell autonomy and network
354 properties. *Annu Rev Physiol* 72:551–577.
- 355 Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong HK, Oh
356 WJ, Yoo OJ, Menaker M, Takahashi JS (2004) PERIOD2::LUCIFERASE real-time reporting of
357 circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. *Proc
358 Natl Acad Sci U S A* 101:5339–5346.
- 359
- 360
- 361 **Funding**
- 362 This study was supported by National Institute of Health grant R01 GM117650 to D.G.M;
363 Vanderbilt International Scholarship to S.K.

364 Figures

365

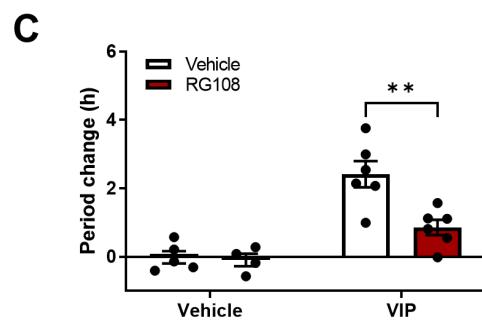
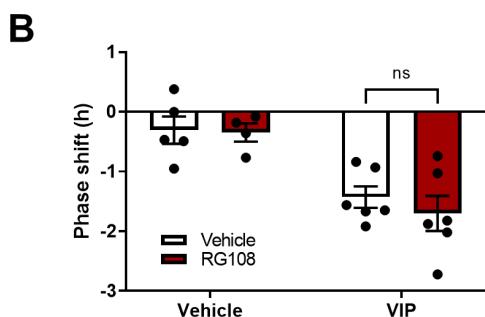
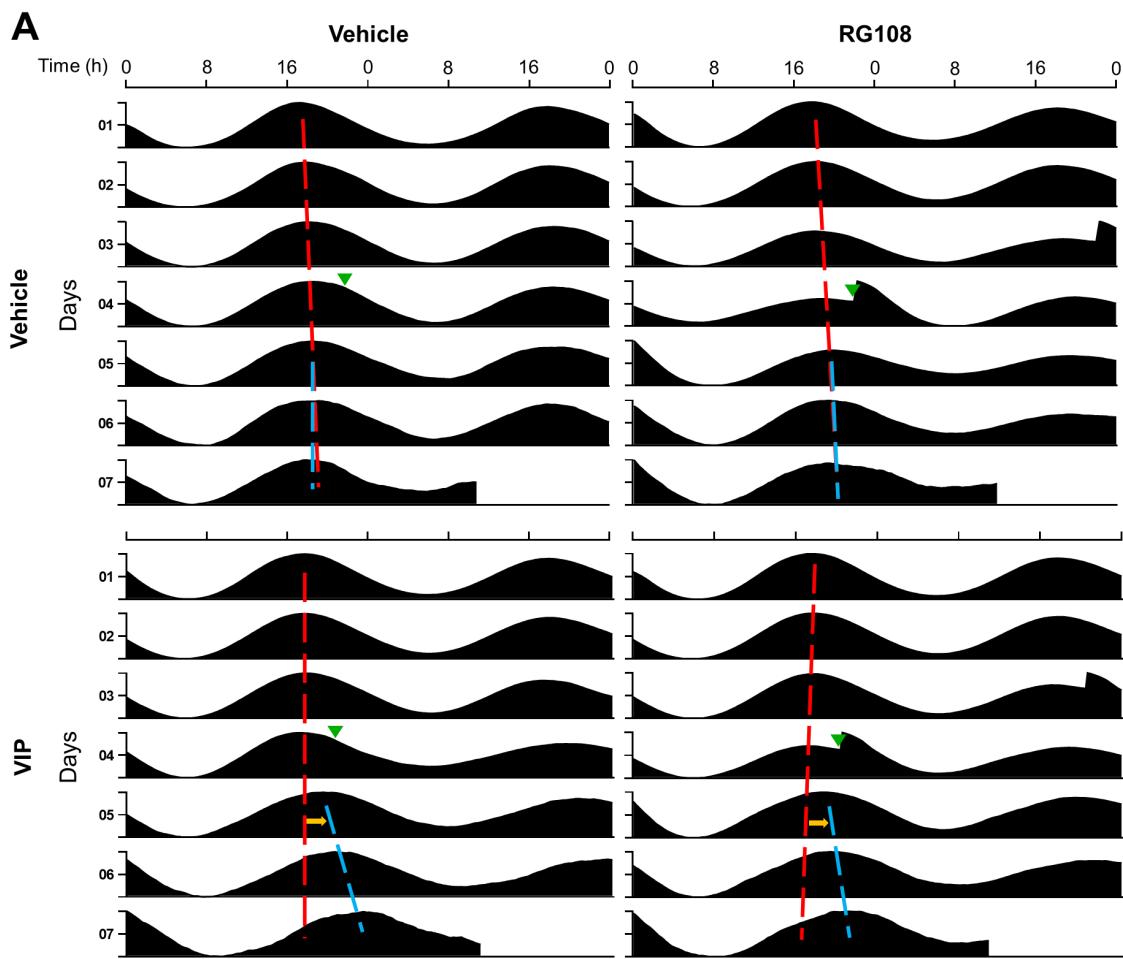


366

367

368 **Figure 1. DNA methylation inhibitor attenuates after-effects on circadian period following**
369 **long photoperiod entrainment.**

370 **(A)** Representative double-plotted mouse locomotor actograms under different lighting conditions
371 (LD 12:12 cycle, LD 16:8 cycle, constant darkness). Yellow and grey areas indicate light and dark
372 phases, respectively. Black ticks indicate wheel-running behavior patterns. Red asterisks denote
373 onset of RG108 or vehicle infusion into the third ventricle of the brain. **(B)** Quantification of
374 changes in the endogenous period in constant darkness in control (LD 12:12 cycle) and LD 16:8
375 (change from LD 12:12 to LD 16:8 cycle) conditions with RG108 or vehicle infusion. (Two-way
376 ANOVA with Sidak's multiple comparisons tests, mean \pm SEM, n = 6-7, ns: not significant, *p <
377 0.05). **(C)** Quantification of the endogenous period at baseline (the first constant darkness) and
378 at the after-effect period (the second constant darkness) following long photoperiod entrainment
379 in the presence of RG108 or vehicle infusion. (RM two-way ANOVA with Sidak's multiple
380 comparisons tests, mean \pm SEM, n = 6, ***p < 0.001).

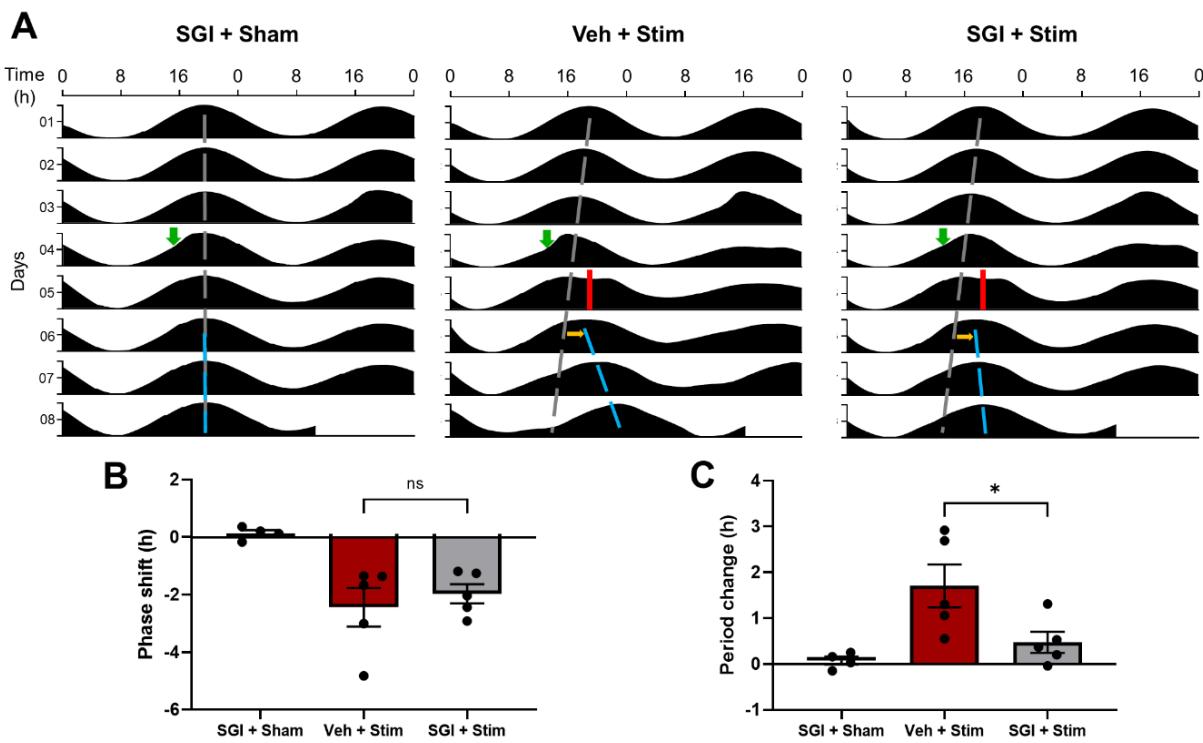



381

382

383 **Figure 2. DNA methylation mediates after-effects on circadian period of locomotor
384 behavioral rhythms without affecting acute phase delays.**

385 **(A)** Representative wheel-running behavior actograms with brief light exposure (yellow bars) in
386 constant darkness with a drug vehicle (left) or RG108 (right) injection (red asterisk) in the third
387 ventricle. Bars above the actograms indicate the 12h light (yellow) and 12h dark (grey) cycle
388 previously entrained to which mice were before release into constant darkness. Red and blue
389 dashed lines indicate linear regression of locomotor activity onsets before and after light exposure,
390 respectively. The slopes of regression lines are the calculated activity rhythm periods. Yellow
391 arrows denote phase shifts. **(B-C)** Quantification of phase shifts **(B)** and period changes **(C)**
392 following light exposure in vehicle- and RG108-injected mice. (Unpaired t-test, mean \pm SEM,
393 n = 5-7, ***p<0.001). **(D)** Quantification of the endogenous period before and after light exposure
394 (baseline, after-effect) in vehicle- and RG108-injected mice. (RM two-way ANOVA with Sidak's
395 multiple comparisons tests, mean \pm SEM, n=5-7, ****p<0.0001).

396



397

398

399 **Figure 3. DNA methylation mediates VIP-induced after-effects on the ex vivo SCN rhythm**
400 **period without affecting acute phase delays.**

401 **(A)** Representative double-plotted actograms of PER2::LUC bioluminescence rhythms in SCN
402 slices treated with one of combinations of VIP, RG108, and their vehicles. Red and blue lines
403 indicate linear regression of peaks before and after treatment (green triangles), respectively.
404 Yellow arrows denote phase shifts. **(B-C)** Quantification of phase shifts **(B)** and period changes
405 **(C)** following treatment. (Two-way ANOVA with Sidak's multiple comparisons tests, mean \pm SEM,
406 n=4-6, ns: not significant, **p<0.01).

409 **Figure 4. DNA methylation is critical for after-effects on the ex vivo SCN rhythm period**
410 **following acute optogenetic stimulation of SCN neurons.**

411 **(A)** Representative double-plotted actograms of PER2::LUC bioluminescence rhythms in SCN
412 slices with SGI-1027 or its vehicle treatment (green arrows), and sham or optogenetic stimulation
413 (red bars). Grey and blue dashed lines indicate linear regression of peaks before and after
414 stimulation, respectively. Yellow arrows denote phase shifts. **(B-C)** Quantification of phase shifts
415 and period changes **(C)** following sham or optogenetic stimulation. (One-way ANOVA with
416 Tukey's multiple comparisons tests, mean \pm SEM, n=4-5, ns: not significant, *p<0.01).