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Abstract  23 

Neuroscience currently requires the use of antibodies to study synaptic proteins, where antibody binding 24 

is used as a correlate to define the presence, plasticity, and regulation of synapses. Gephyrin is an 25 

inhibitory synaptic scaffolding protein used to mark GABAergic and glycinergic postsynaptic sites. 26 

Despite the importance of gephyrin in modulating inhibitory transmission, its study is currently limited 27 

by the tractability of available reagents. Designed Ankyrin Repeat Proteins (DARPins) are a class of 28 

synthetic protein binder derived from diverse libraries by in vitro selection, and tested by high-29 

throughput screening to produce specific binders. In order to generate a functionally diverse toolset for 30 

studying inhibitory synapses, we screened a DARPin library against gephyrin mutants representing both 31 

phosphorylated and dephosphorylated states. We validated the robust use of anti-gephyrin DARPin 32 

clones for morphological identification of gephyrin clusters in rodent neuron culture and brain tissue, 33 

discovering previously overlooked clusters. This DARPin-based toolset includes clones with 34 

heterogenous gephyrin binding modes that allowed for identification of the most extensive gephyrin 35 

interactome to date, and defined novel classes of putative interactors, creating a framework for 36 

understanding gephyrin’s non-synaptic functions. This study demonstrates anti-gephyrin DARPins as a 37 

versatile platform for studying inhibitory synapses in an unprecedented manner. 38 

 39 

Key words: Inhibitory synapse, post-synaptic density, gephyrin, GABAA receptor Designed Ankyrin 40 

Repeat Proteins (DARPins), protein-network, interactome.  41 
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Introduction  44 

Biological research has relied for decades on the accuracy and precision of specific antibodies to 45 

morphologically describe protein localization and dynamics, or to biochemically describe protein 46 

interaction partners, using techniques such as immuno-labelling, immunoprecipitation, and 47 

immunoassays, amongst others. While antibody-based tools have been invaluable, for a given protein 48 

we often lack a variety of binders which perform excellently across applications. Antibodies that detect 49 

fixed proteins in tissue (which are typically partially denatured), may not bind with the same affinity or 50 

specificity to the same protein in a lysate (which may retain a more native confirmation). The 51 

heterogeneous quality of some commercial antibodies presents an additional challenge as the often 52 

ambiguous or unknown antibody sequence, provenance, and specificity of poly- and monoclonal 53 

antibodies alike leads to false information and ultimately a high additional cost to research (Bradbury & 54 

Plückthun, 2015; “Protein Binder Woes,” 2015). This problem is especially relevant for the study of 55 

synaptic proteins, be they receptors or scaffolds, as these proteins are often used as markers to define 56 

the presence, plasticity, and regulation of synapses as a strong correlate for synaptic function. For 57 

example, ionotropic glutamate receptor subunits and the scaffolding molecule PSD-95 are frequently 58 

used to define the excitatory post-synapse, while GABAA receptors (GABAARs) and the scaffolding protein 59 

gephyrin define the inhibitory post-synapse (Micheva et al., 2010). 60 

Gephyrin is a highly conserved signaling scaffold which oligomerises into multimers and binds to cognate 61 

inhibitory synaptic proteins to functionally tether GABAARs at postsynaptic sites in apposition to pre-62 

synaptic GABA release sites (Tyagarajan & Fritschy, 2014). Gephyrin is composed of 3 major domains: 63 

the N-terminal G domain and C-terminal E domain facilitate self-oligomerization of a gephyrin lattice 64 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.06.30.498253doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.30.498253
http://creativecommons.org/licenses/by/4.0/


4 
 

underneath inhibitory postsynaptic sites, and they are linked together by the C domain which is a 65 

substrate for diverse posttranslational modifications (Sander et al., 2013; Tyagarajan & Fritschy, 2014). 66 

Gephyrin mediates its scaffolding role by coordinating the retention of inhibitory synaptic molecules (Fig 67 

1A) including GABAA and glycine receptors (GABAARs, GlyRs), collybistin, and neuroligin 2 through 68 

interactions at locations within the E domain or E/C domain interface (Choii & Ko, 2015; Tyagarajan & 69 

Fritschy, 2014), with additional protein interactors binding to the G and C domains. Therefore, via homo- 70 

and heterophilic protein-protein interactions, gephyrin can control inhibitory post-synaptic function.  71 

Gephyrin’s scaffolding role is dynamically regulated by its post-translational modifications (PTMs). 72 

Gephyrin phosphorylation at several defined serine residues controls gephyrin oligomerisation 73 

/compaction and thereby affect GABAergic transmission (Battaglia et al., 2018; Ghosh et al., 2016; Petrini 74 

& Barberis, 2014; Zacchi et al., 2014). Two of these phospho-sites, serines S268 and S270, are targeted 75 

by the kinases ERK1/2 and GSK3ß or cyclin-dependent kinases (CDKs) respectively, to downregulate 76 

gephyrin clustering (Fig 1B), thereby controlling post-synaptic strength (Tyagarajan et al., 2013). These 77 

phosphorylation events directly regulate gephyrin conformation via packing density changes to alter 78 

GABAA receptor dwell time (Battaglia et al., 2018), by altering gephyrin interacting partners (Zhou et al., 79 

2021), or some combination of the two (Specht, 2019). Unfortunately, the most widely used anti-80 

gephyrin antibody for identifying inhibitory postsynaptic sites, monoclonal antibody clone Ab7a, is 81 

sensitive to phosphorylation at serine 270 (Kalbouneh et al., 2014; Kuhse et al., 2012; Zhou et al., 2021), 82 

thus complicating interpretation of inhibitory postsynaptic presence, size, or dynamics.  83 

In addition to PTMs, gephyrin is regulated by alternative splicing by a suite of exonic splice cassette 84 

insertions (annotation outlined in (J.-M. Fritschy et al., 2008)). While the principal (P1) isoform of 85 

gephyrin in neurons facilitates its synaptic scaffolding role, gephyrin is also a metabolic enzyme which 86 
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participates in molybdenum cofactor (MOCO) biosynthesis (Nawrotzki et al., 2012; Schwarz & Mendel, 87 

2006; Tyagarajan & Fritschy, 2014). MOCO synthesis can be mediated in non-neuronal cells by an isoform 88 

that includes the C3 splice cassette (Licatalosi et al., 2008; Meier et al., 2000; Smolinsky et al., 2008), 89 

suggesting that gephyrin harbors both isoform- and cell-type-specific functions. 90 

Gephyrin has been reported to complex with a wide variety of proteins as determined by both targeted 91 

and unbiased interaction studies (Fuhrmann et al., 2002; Sabatini et al., 1999; Uezu et al., 2016). These 92 

screens have implicated gephyrin in non-synaptic processes including regulation of mTOR signaling 93 

(Sabatini et al., 1999; Wuchter et al., 2012), and motor protein complexes (Fuhrmann et al., 2002). 94 

Furthermore these interactomes have identified novel proteins such as InSyn1, with implications in 95 

understanding the heterogeneity of inhibitory synapse organisation (Uezu et al., 2019). Still, the overlap 96 

in coverage of gephyrin’s interactome in each study has been variable with respect to identification of 97 

canonical inhibitory synaptic proteins due to limitations of each screening technique. Taken together, 98 

there is a need to generate and characterise molecular tools that can 1) interrogate gephyrin in different 99 

applications 2) be functionally validated for the experiment in question, and 3) be diverse enough in their 100 

mode of interaction to not limit the different protein functional states that can be probed.  101 

Designed Ankyrin Repeat Proteins (DARPins) represent an attractive alternative tool compared to 102 

conventional antibodies as they are highly stable and specific synthetic protein binders, which can be 103 

generated via high-throughput in vitro selection and screening (Binz et al., 2004; Kohl et al., 2003). Since 104 

they possess a defined genetic sequence, they can be adapted into diverse fusion constructs, and their 105 

structural stability facilitates their engineering to achieve differential binding (Harmansa & Affolter, 106 

2018; Plückthun, 2015). DARPins are composed of a variable number (typically 2-3) ankyrin repeats 107 

containing randomised residues, flanked by N- and C-terminal capping repeats with a hydrophilic surface 108 
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that shield the hydrophobic core. Each repeat forms a structural unit, which consists of a β-turn followed 109 

by two antiparallel α-helices and a loop reaching the turn of the next repeat. The randomised residues 110 

on adjacent repeats within the β-turn turns and on the surface of the α-helices form a variable and 111 

contiguous concave surface that mediates specific interactions with target proteins. Using a DARPin 112 

library with high diversity (approx. 1012 unique DARPins), DARPins can be selected using ribosome display 113 

and then screened for particular binding characteristics (Dreier & Plückthun, 2012; Plückthun, 2012). 114 

Using this approach, DARPins have been shown to selectively bind to different conformations of 115 

proteins, include those brought about by phosphorylation (Kummer et al., 2012; Plückthun, 2015).  116 

Despite being used extensively as both experimental tools for structural biology as well as therapeutics 117 

(Plückthun, 2015; Tamaskovic et al., 2012), DARPins have not yet been applied to neuroscience research 118 

in the current literature. In order to generate a new toolset of anti-gephyrin binders, we screened a 119 

DARPin library for binding to different gephyrin phosphorylation mutants and characterised the resulting 120 

DARPins in both morphological and biochemical applications. We validated the use of anti-gephyrin 121 

DARPins to understand how different binders can reveal novel aspects of gephyrin and inhibitory 122 

synapse biology highlighting heterogenaity of inhibitory post-synapse morphology and composition. 123 

 124 

 125 
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Results  129 

Generation and selection of anti-gephyrin DARPins  130 

Gephyrin clusters GABAA receptors and other inhibitory molecules such as neuroligin 2 and collybistin at 131 

post-synaptic sites (Fig, 1A) where its clustering role is modified by phosphorylation, importantly at 132 

serines S268 and S270 (Fig. 1B). This phosphorylation of gephyrin links upstream signaling (e.g. 133 

neurotrophic factors, activity) to downstream gephyrin regulation of inhibitory synaptic function 134 

(Groeneweg et al., 2018; Tyagarajan & Fritschy, 2014). The commonly used commercial antibody clone 135 

for morphological detection of synaptic gephyrin (clone Ab7a) has been used extensively for almost four 136 

decades in the literature to identify inhibitory synapses (Pfeiffer et al., 1984). Though, rather than 137 

binding gephyrin regardless of its modified state, this antibody was recently demonstrated to specifically 138 

recognise gephyrin phosphorylated at serine S270 (Kuhse et al., 2012). This antibody’s specificity for 139 

phospho-gephyrin complicates interpretation of synaptic gephyrin cluster identification when using 140 

clone Ab7a, and prevents accurate detection of postsynaptic gephyrin clusters when gephyrin S270 141 

phosphorylation is low or blocked. This is illustrated by the lack of binding of Ab7a to gephyrin in brain 142 

tissue derived from a phospho-S268A/S270A phospho-mutant mouse line, in which serines S268 and 143 

S270 are mutated to alanines (Fig 1C). Therefore, to generate protein binders that can more robustly 144 

identify gephyrin independently of its phosphorylation status, we looked beyond antibody-based binders 145 

to Designed Ankyrin Repeat Proteins (DARPins).  146 

DARPins are small (~12-15 kDa) compared to conventional antibodies (Fig. 1D), and their binding to 147 

specific target proteins is mediated by several randomised residues contained within assemblies of 2-3 148 

variable ankyrin repeats (AR) flanked by capping repeats (Binz et al., 2004; Kohl et al., 2003). This basic 149 
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DARPin structure creates a rigid concave shape with enhanced thermostability (Fig. 1E). In addition, 150 

DARPins do not contain cysteines, allowing for functional cytoplasmic recombinant expression in E. coli 151 

as well as cytoplasmic expression and functional studies in mammalian cells. We performed a ribosome-152 

display selection, followed by screening of individual clones against recombinant gephyrin (P1 principal 153 

isoform) containing either S268A/S270A or S268E/S270E mutations (Fig. 1F) which mimic the respective 154 

de-phosphorylated and phosphorylated state, thus representing functionally distinct gephyrin 155 

conformations (Battaglia et al., 2018; Tyagarajan et al., 2013). This allowed us to define sensitivity 156 

towards the modified state and to widen the spectrum of DARPins obtained from the selection. Single 157 

DARPin clones were expressed in E. coli containing an N-terminal MRGS(H)8 (His8) tag and C-terminal 158 

FLAG tag (Fig. 1G). Initial screening was performed with 376 DARPin clones using a high-throughput HTRF 159 

assay with crude extracts derived from 96 well expression plates. Of the initial hits, 32 were sequenced 160 

and 25 unique DARPins identified. These DARPins were further screened using an ELISA-based assay for 161 

relative binding to the phospho-null or phospho-mimetic gephyrin isoforms, or the absence of target as 162 

control (Fig. 1 Suppl. 1). From this screen, eight DARPins were chosen for expression/purification and 163 

further analysis due to their high signal-to-background characteristics, as well as for equal binding to 164 

both phospho-mutant forms of gephyrin (Fig. 1 H, Fig. 1 Suppl. 1). These eight DARPins showed diversity 165 

in the variable residues in the target protein interaction surface, highlighting the broad spectrum of 166 

binders that were obtained with this technology, and suggesting that they likely interact with gephyrin 167 

using different binding orientation or epitopes and independent of phosphorylation (Fig. 1 Suppl. 2). 168 

 169 
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 170 

Figure 1. In vitro selection and generation of anti-gephyrin DARPins. A) Diagram of gephyrin function at the 171 

inhibitory post-synapse via its scaffolding role. B) Gephyrin domain structure and location of key phospho-serine 172 

residues S268 and S270, the commonly used antibody clone for detection of gephyrin (Ab7a) is pS270-specific. C) 173 

The antibody Ab7a does not detect gephyrin clusters colocalised with the γ2 GABAA receptor subunit (GABRG2) in 174 

a phospho-null mouse model where S268 and S270 are mutated to alanines. D) DARPins are an order of magnitude 175 

smaller than conventional antibodies and achieve target binding specificity by varying the sequence of ankyrin 176 

repeats (A.R.) with variable residues (magenta). E) DARPin library design, with residues in magenta randomized in 177 
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the original design and additional residues randomized in the caps (green). An N3C structure is shown with the N-178 

cap as a green ribbon and the C-cap as a cyan ribbon with green side chains. F) Schematic anti-gephyrin DARPin 179 

selection and screening. G) Structure of DARPin-FLAG clones used for initial validation experiments contain an N-180 

terminal His8 tag and C-terminal FLAG tag for purification and detection respectively. H) Coomassie-stained gel of 181 

the non-binding control (E3_5) and eight anti-gephyrin DARPin binders. 182 

Figure 1 – Source data 1: raw image and annotated uncropped Coomassie gel from Figure 1 H. 183 

 184 

 185 

 186 

 187 

Figure 1 Supplement 1: ELISA binding evaluation of anti-gephyrin DARPins. Anti-FLAG ELISA binding assay results 188 

indicating DARPin binding to phospho-null and phospho-mimetic gephyrin for 25 sequenced clones from a 189 

ribosome-display based DARPin binder selection. DARPin clones characterized further in this study are indicated 190 

in boxes. 191 

 192 

 193 
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 194 

Figure 1 Supplement 2: Sequence alignment of characterised anti-gephyrin DARPins. Aligned sequences of anti-195 

gephyrin DARPins characterised in detail in this study, containing 2 or 3 randomised ankyrin repeats (A.R.). The 196 

consensus DARPin sequence is indicated above with randomised residues indicated by a red X. See materials and 197 

methods Table 6 for both DNA and protein sequences. 198 

 199 

 200 

Characterisation of anti-gephyrin DARPins as morphological tools 201 

The antibody clone Ab7a has been used extensively to both define the location, size, and dynamics of 202 

postsynaptic gephyrin puncta (Bausen et al., 2010; Kalbouneh et al., 2014; Niwa et al., 2019). However, 203 

this antibody reacts preferentially with gephyrin phosphorylated at S270, and sometimes also labels non-204 

specific structures such as the nucleus (Fig. 2A). Alternative anti-gephyrin antibodies exist such as clone 205 

3B11 which can be used for immunoprecipitation of gephyrin and detection on immunoblots, but leads 206 

to high background when used to label synapses (Fig. 2 Suppl. 1B). To determine whether anti-gephyrin 207 

DARPins function as antibody-like tools in tissue staining (in addition to binding recombinant gephyrin in 208 

vitro), we compared FLAG-tagged anti-gephyrin DARPins against antibody clone Ab7a for staining in 209 

primary rat hippocampal neuron culture at 15 days in vitro (DIV) (Fig. 2 Suppl. 1. A-C). While the 210 

unselected control DARPin clone E3_5-FLAG (Binz et al., 2003) did not present with detectable signal 211 

(Fig. 2A), DARPin-FLAG clones 27B3, 27D3, 27F3, and 27G2 labelled gephyrin puncta with high specificity 212 
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(Fig. 2 A, Suppl. Fig 2A, B, C). Clone 27D5-FLAG produced no detectable signal, and clones 27B5, 27H2, 213 

and 27G4 labelled gephyrin puncta but produced considerable background comparable to another 214 

commercial anti-gephyrin antibody (clone 3B11) (Suppl. Fig. 2B). Moreover, clones 27B3, 27D3, 27F3, 215 

and 27G2 colocalised with presynaptic vesicular GABA transporter (VGAT)-containing axon terminals 216 

(Fig. 2B). We compared the fraction of detected gephyrin puncta colocalised with VGAT, as well as the 217 

size of detected gephyrin clusters, using both the antibody Ab7a and selected DARPin-FLAG clones that 218 

displayed low background namely 27B3, 27D3, 27F3, and 27G2 (Fig. 2C, Fig. 2D). We found no differences 219 

between DARPin-FLAG 27B3 or 27G2 and Ab7a colocalisation with VGAT indicating equal functionality 220 

in morphological applications. DARPin-FLAG 27D3 and 27F3 labelled puncta of a smaller size, which could 221 

relate either to their affinity for synaptic gephyrin or heterogeneity in epitope accessibility as different 222 

postsynaptic gephyrin puncta may differ in their isoform or post-translationally modified state.  223 

 224 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.06.30.498253doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.30.498253
http://creativecommons.org/licenses/by/4.0/


13 
 

 225 

Figure 2. Anti-gephyrin DARPins specifically label gephyrin at inhibitory postsynaptic sites. Native gephyrin in 226 

fixed hippocampal neuron cultures (DIV15) probed using DARPin-FLAG clones, subsequently detected with anti-227 

FLAG antibodies, and compared to staining with commercial anti-gephyrin antibody clone Ab7a. A) Representative 228 

images of DARPin-FLAG clones 27B3, 27D3, 27F3, and 27G2 gephyrin puncta colocalised to Ab7a signal compared 229 

to the control DARPin E3_5. B) Higher magnification images of dendrite segments showing detected DARPin-FLAG 230 
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signal colocalised with pre-synaptic VGAT. C) Colocalisation analysis indicating the fraction of gephyrin puncta that 231 

colocalize with VGAT along a proximal dendrite segment (> 30 neurons/group pooled across 3 experiments). D) 232 

Average puncta size identified by antibody Ab7a or DARPin-FLAG clones averaged by cell (pooled across neurons, 233 

>1100 synapses/group pooled across 3 experiment). Statistics: Panels C+D: One-way ANOVA, Tukey post-hoc test 234 

comparing all groups **** p<0.0001, *** p<0.0005, ** p<0.005 * p<0.05.  235 

Figure 2 – Source data 1. Contains the data and statistical analysis to generate the violin plot in panels C and D. 236 

 237 

 238 

 239 
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Figure 2 Supplement 1. Morphological characterization of DARPin-FLAG labelling in hippocampal neuron 240 

culture. Fixed embyronic E17 rat hippocampal neuron cultures (DIV15) were stained using DARPin-FLAG clones 241 

and subsequently detected with anti-FLAG antibodies and compared to staining with commercial anti-gephyrin 242 

antibody clone Ab7a or 3B11. A) DARPin-FLAG control (E3_5) and clone 27D5 with no synaptic labelling. B) DARPin-243 

FLAG clones and antibody 3B11 which demonstrate high background labelling. C) DARPin-FLAG clones with highly 244 

specific inhibitory synapse labelling. 245 

 246 

Anti-gephyrin DARPin-hFc fusion construct identifies phosphorylated and non-phosphorylated 247 

gephyrin clusters in mouse brain tissue 248 

Identification of inhibitory synapses often involves the co-labelling of both pre- and postsynaptic 249 

structures using multiple antibodies raised in different species. In order to label gephyrin clusters in the 250 

brain we replaced the His8 and FLAG epitope tags from DARPin-FLAG clones 27B3, 27F3, 27G2 and the 251 

control clone E3_5 with an N-terminal human serum albumin (HSA) leader sequence and C-terminal 252 

human Fc (hFc) tag for mammalian recombinant production and purification and detection (Fig. 3. Suppl. 253 

1.). The addition of the hFc tag allows for use in tandem with essentially all primary antibodies targeting 254 

synaptic markers raised in commonly used species such as rat, mouse, rabbit, goat, and guinea pig. 255 

Furthermore, it makes the construct bivalent. Consistently, DARPin-hFc 27G2 specifically labeled 256 

gephyrin puncta apposed to presynaptic VGAT terminals in both hippocampal neuron culture and mouse 257 

brain tissue (Fig. 3. Suppl. 2.). The specificity of this labelling could be confirmed by incubating DARPin-258 

hFc 27G2 with a molar excess of recombinant gephyrin as a competitor, which led to the loss of 259 

immunofluorescent signal (Fig. 3. Suppl. 3.).  260 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.06.30.498253doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.30.498253
http://creativecommons.org/licenses/by/4.0/


16 
 

A significant fraction of synaptic gephyrin clusters are phosphorylated at serine 270, and therefore lead 261 

to an uncertain interpretation when their size and dynamics are assessed using the phospho-specific 262 

antibody Ab7a (Kalbouneh et al., 2014; Specht, 2019; Zhou et al., 2021). As predicted, DARPins-hFc 27G2 263 

can label gephyrin puncta in both wild-type and phospho-S268A/S270A mutant mouse tissue while the 264 

commercial pS270-specific antibody Ab7a does not (Fig. 3 A).  265 

The relative amount of Ab7a to anti-gephyrin DARPin signal could be used as a proxy to estimate relative 266 

gephyrin S270 phosphorylation at synapses. Indeed, we found that the Ab7a signal varied considerably 267 

both between adjacent synapses within a neuron and between neurons (Fig 3B, Fig. 3. Suppl. 4.). We 268 

confirmed the phospho-sensitivity of this analysis method by inhibiting cyclin-dependent kinases 269 

(upstream of gephyrin S270 phosphorylation) using 5 µM Aminopurvalanol A applied for 24 hours. This 270 

treatment reduced Ab7a but not DARPin-hFc 27G2 signal as indicated by the decrease in the ratio 271 

between these two intensities seen both for individual synapses and when averaged by neuron (Fig. 3C, 272 

D). We therefore examined the Ab7a / DARPin-hFc 27G2 intensity ratio between the somatic, dendritic, 273 

and axon-initial segment (A.I.S.) compartments in primary hippocampal neuron culture (Fig 3 E, F), 274 

finding a significant reduction in Ab7a signal within the A.I.S. as defined by AnkyrinG immunolabelling 275 

(AnkG). Our results demonstrate that gephyrin phospho-S270 status varies between two neighbouring 276 

clusters within a dendrite segment and also for the first time we can label gephyrin within the A.I.S.  277 

 278 
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 279 

Figure 3: Phospho-insensitive DARPin-hFc 27G2 multiplexed with antibody Ab7a can assess synapse-specific 280 

gephyrin S270 phosphorylation. A) Representative images of DARPin-hFc 27G2 (but not antibody Ab7a) labelling 281 

gephyrin puncta in both wild-type (WT) and phospho-mutant gephyrin S268A/S270A mutant mouse brain tissue 282 

(somatosensory cortex layer 2/3). B) Representative images from hippocampal neuron culture showing the 283 
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relative Ab7a signal (indicating S270 phosphorylation) varies by synapse and between neurons. C) Representative 284 

image showing DARPin-hFc 27G2 binding at synaptic puncta in primary hippocampal neuron culture is preserved 285 

after inhibition of CDKs following 24-hour treatment with 5 µM Aminopurvalanol (PurvA) while Ab7a staining is 286 

severely reduced. D) The relative fluorescence intensity at individual synapses (pooled from 30 neurons per group) 287 

showing a pronounced decrease in the average Ab7a/DARPin-hFc 27G2 intensity ratio. Quantification of 288 

Ab7a/DARPin-hFc 27G2 fluorescence signal averaged across cells pooled from 3 independent experiments, n=30 289 

cells/group. E) Representative images of hippocampal neuron culture used for quantification of relative 290 

Ab7a/DARPin-hFc labelling of clusters on the soma, proximal dendrites, or the A.I.S. (AnkG). F) Ab7a/DARPin 291 

intensity ratio of individual synapses pooled from 45 cells over 3 independent experiments showing a decrease in 292 

A.I.S. cluster Ab7a staining. Lower: Quantification indicates significantly reduced A.I.S. Ab7a labelling of clusters 293 

compared to dendritic or somatic compartments. Statistics: Panels D: One-way ANOVA, Panel F: Repeated 294 

measures One-way ANOVA. All panels: * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. Mean and SD are 295 

presented. 296 

Figure 3 – Source Data 1: contains values and statistical results used to generate panels D and F. 297 

 298 

 299 

 300 

Figure 3 Supplement 1. Structure of DARPin-hFc 27G2. A) DARPin clones were inserted into a construct containing 301 

an N-terminal HSA leader sequence for mammalian recombinant expression and a C-terminal hFc tag for detection 302 

with secondary antibodies. 303 

 304 
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 305 

Figure 3 Supplement 2. Validation of DARPin-hFc 27G2 for immunostaining. Anti-gephyrin DARPin-hFc 27G2 306 

labels postsynaptic gephyrin puncta in hippocampal neuron culture and adult brain tissue (layer 2/3 307 

somatosensory cortex). 308 

 309 

 310 

Figure 3 Supplement 3. Competition with recombinant gephyrin reduces DARPin-hFc reactivity in tissue. 311 

DARPin-hFc 27G2 cluster detection is blocked by incubation with molar excess of recombinant gephyrin indicating 312 

its specificity in tissue. 313 
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 314 

Figure 3 Supplement 4. Variation in Ab7a reactivity. The ratio of fluorescent intensity signal between pS270-315 

specific antibody Ab7a and the phosphorylation non-specific DARPin-hFc 27G2 indicates that Ab7a labelling is 316 

variable between clusters within and between individual synapses and neurons. Each data represents one cluster 317 

analysed from 6 individual example neurons with different patterns of relative Ab7a reactivity. Median and SD are 318 

indicated in red. 319 

Figure 3 – Source Data 2: contains the values used to plot Figure 3. Supplement 4. 320 

 321 

DARPin-hFc 27G2 detects previously overlooked gephyrin clusters in brain tissue  322 

Antibody-based identification of gephyrin clusters in the brain is widely used to identify inhibitory 323 

synaptic sites, but current reagents may only capture a subset of synaptic gephyrin clusters, namely 324 

those with gephyrin significantly phosphorylated at S270. Therefore, we extended our analysis of post-325 

synaptic gephyrin clusters using DARPin-hFc 27G2 and the phospho-S270 specific antibody Ab7a to 326 

mouse brain tissue, using the hippocampal CA1 area as a model. The hippocampus is organised in a 327 

layered structure, stratifying somatic from dendritic compartments, with compartment-specific 328 

GABAergic interneuron innervation patterns well described (Pelkey et al., 2017). We found lamina-329 

specific variability in relative gephyrin phosphorylation at S270, which was significantly elevated in the 330 

stratum oriens and stratum lacunosum moleculare compared to other layers (stratum pyramidale and 331 
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radiatum) (Fig. 4 A, B, C). Within the stratum pyramidale, we noticed a population of large, relatively 332 

hypo-phosphorylated clusters (Fig. 4D, Fig. 4 Suppl. 1) reminiscent of axon initial segment (A.I.S.)  333 

synapses (Fig. 4E). Indeed, while DARPin-hFc 27G2 labels large gephyrin clusters apposed to presynaptic 334 

VGAT terminals, Ab7a reactivity within the A.I.S. is relatively weak (Fig. 4F). These hypo-phosphorylated 335 

clusters co-localise with the α2 GABAA receptor subunit thought to be enriched at the A.I.S. (Lorenz-336 

Guertin & Jacob, 2018), and span the length of the A.I.S. as defined by AnkG. Therefore, DARPin-hFc 337 

27G2 can better assess postsynaptic gephyrin at the A.I.S. and at synapses where gephyrin 338 

phosphorylation is low. These data indicate that gephyrin clusters on the A.I.S. have likely gone un- or 339 

under-reported in the literature, which is meaningful when considering that threshold-based detection 340 

of gephyrin is used as a proxy for inhibitory synapse presence and function (Micheva et al., 2010; 341 

Schneider Gasser et al., 2006). 342 

While gephyrin phosphorylation at S268 and S270 is thought to reduce gephyrin cluster size (Tyagarajan 343 

et al., 2013), the phospho-sensitivity of clone Ab7a has prevented our analysis of this relationship as this 344 

antibody does not react with dephosphorylated gephyrin (blocked in the mutant mouse). Therefore, we 345 

applied DARPin-hFc 27G2 to analyse gephyrin clusters in both WT and our phospho-null S268A/S270A 346 

mutant mouse model (GPHNS268A/S270A) (Fig 4H, I). We found that the median gephyrin cluster size is 347 

highest in the stratum oriens and stratum lacunosum moleculare in both WT and mutant mice, but that 348 

the median gephyrin cluster size is significantly enhanced across all layers when gephyrin 349 

phosphorylation is constitutively blocked in the S268A/S270A mutant mice (Fig. 4J). This represents the 350 

first confirmation that native gephyrin clusters in the brain are importantly regulated by serine 268 and 351 

270 phosphorylation. Moreover, the identification of layer- and compartment-specific gephyrin 352 
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phosphorylation in the hippocampus indicates that the use of DARPin-hFc binders may be a more robust 353 

morphological tool to investigate the heterogeneity of gephyrin and inhibitory synapses in the brain. 354 
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Figure 4. DARPin-hFc 27G2 labelling of gephyrin clusters demonstrates laminar and A.I.S.-specific S270 356 

phosphorylation and phosphorylation-dependent cluster size regulation. A) Left: the relative Ab7a to DARPin-357 

hFc 27G2 fluorescence intensity in the mouse hippocampus area CA1 shows layer-specific variability. Right: 358 

colourised gephyrin puncta indicating relative S270 phosphorylation as seen from hotter (more red/yellow) 359 

colouration. B) Distribution of relative gephyrin phosphorylated at S270 (p270) at puncta between hippocampal 360 

lamina. Data pooled between 6 adult mice, 3 sections analysed per mouse encompassing 14,000-47,000 gephyrin 361 

puncta per layer. C) Analysis of the median relative gephyrin pS270 ratio between hippocampal layers (data pooled 362 

between sections per mouse, n=6 mice quantified). D) Example distribution of gephyrin pS270 signal by puncta 363 

size in the CA1 stratum pyramidale, with a population of large, hypo-phosphorylated clusters outlined. E) 364 

Representative image of s. pyramidale with hot colours indicating gephyrin clusters with elevated 365 

phosphorylation, arrows indicate trains of large hypo-phosphorylated clusters. F) Representative image showing 366 

large DARPin-identified gephyrin clusters apposed to presynaptic VGAT-containing terminals with corresponding 367 

low Ab7a antibody signal. G) Representative image indicating gephyrin clusters on the A.I.S. (AnkG) colocalise with 368 

the α2 GABAA receptor subunit. H) Representative images of gephyrin puncta identified using cluster analysis 369 

software in WT and S268A/S270A phospho-null mutant mice in the hippocampus using identical imaging 370 

parameters. I) Violin plots indicating the distribution of gephyrin puncta sizes (14,000-47,000 puncta per group, 371 

pooled across 5-6 mice per group). J) Analysis of the median puncta size between hippocampal layers and 372 

genotypes indicating larger gephyrin clusters in mutant mice. Statistics: Panels C: One-way ANOVA, Panel J: Mixed 373 

effects analysis comparing hippocampal lamina (horizontal bars) and genotypes (angled bars). All panels: * p<0.05, 374 

** p<0.01, *** p<0.001, **** p<0.0001. Median and SD are presented. 375 

Figure 4 – Source Data 1: Contains data and statistical analysis presented in Figure 4 panels B, C, D, I, and J. 376 
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 377 

Figure 4 Supplement 1: Relative pS270 synaptic distribution in the hippocampal CA1. Extended example 378 

distribution of signal from adult brain tissue from Figure 4. including the s. oriens, pyramidale, radiatum, and 379 

stratum lacunosum moleculare (S.L.M.) A) Ab7a versus DARPin-hFc 27G2 puncta intensity. B) Ab7a/DARPin-hFc 380 

27G2 intensity ratio plotted by puncta size. 381 

Figure 4 – Source Data 2: Contains data and statistical analysis presented in Figure 4 Supplement 1 A and B. 382 

 383 

 384 
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Multiple gephyrin protein complex precipitations using unique DARPin binders establishes a 385 

consensus gephyrin interactome 386 

Beyond applications for morphological detection of proteins in tissue, antibodies are essential for 387 

isolation of target protein complexes to understand their functional interaction networks. However, a 388 

network discovered by one binder may be different from another binder either due to affinity, or epitope 389 

accessibility involving targets in specific functional states. Gephyrin was first identified as a scaffolding 390 

protein, and yet throughout the past decades has been implicated additionally in complex signaling 391 

processes mediated by changes in its ability to interact with different protein partners. To gain a more 392 

complete picture of gephyrin binding partners, we precipitated native gephyrin protein complexes from 393 

mouse brain lysates with the traditionally used antibody clone 3B11 (suitable for immunoprecipitations) 394 

and each one of our DARPin-hFc clones 27B3, 27F3, 27G2, and the control DARPin E3_5 (Fig. 5 Suppl. 1). 395 

We then subjected the precipitated gephyrin complexes to interactor identification using quantitative 396 

liquid chromatography tandem mass spectrometry (LC-MS/MS) and compared the resulting 397 

interactomes (Fig. 5A, B). We considered proteins to be present when they were detected using at least 398 

two peptide signatures. Furthermore, we considered proteins as part of gephyrin complexes when they 399 

were present either only in the binder condition, or at least a log2 > 2.5-fold enriched in the binder 400 

condition over the control DARPin E3_5 with a false discovery rate (FDR)-adjusted p-value cut-off under 401 

0.05 (Fig. 5B). These thresholds allow for a wider coverage to encompass most known interactors (Fig. 5 402 

Suppl. 2) such as collybistin (ARHG9), GABA receptor subunits (GBRA1, 2), and a list of gephyrin 403 

interactors identified via BioID labelling (Uezu et al., 2016). Our results demonstrated that the 404 

abundance of canonical interactors spanned several orders of magnitude (Fig. 5 Suppl. 2) and provided 405 

enhanced coverage compared to the previously established BioID-determined interactome (Fig. 5C, Fig. 406 
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5 Suppl. 3). Each interactome differed by the number of identified proteins (Fig. 5C) where DARPin-hFc 407 

clones 27B3 and 27G2 identified 2-4 times more interactors than DARPin-hFc 27F3 or antibody 3B11, 408 

thus confirming the limitations of using only one binder to explore interacting protein networks.  409 

High-confidence interactome determination is limited both by the sensitivity of interactor detection as 410 

well as by the presence of false positives. Therefore, to compile a higher-confidence list of gephyrin 411 

interactors, we combined coverage between experiments using each DARPin-hFc clone to create a 412 

common gephyrin interaction network. We additionally cross-referenced this list with interactors 413 

precipitated by the antibody 3B11 as well as known binders identified from the literature to compile a 414 

high-confidence consensus gephyrin interactome (Fig. 5D), representing the largest compilation of 415 

putative gephyrin interactors to date. This network encompasses the majority of canonical gephyrin-416 

associated proteins including GABAA and glycine receptors, inhibitory synaptic scaffolding and adhesion 417 

molecules, and cytoskeletal adaptor proteins. As expected, over-representation analysis of the 418 

consensus interactome found significant enrichment for synaptic organization processes, but also 419 

unexpectedly those involved in protein trafficking, mRNA regulation, and metabolic processes (Fig. 5 420 

Suppl. 4). Cataloguing of individual proteins by functional ontology revealed clusters of gephyrin 421 

interactors in mRNA regulation, cytoskeletal proteins and adaptors, metabolic enzymes and ribosomal 422 

subunits, together hinting at novel functions of gephyrin beyond synaptic scaffolding and molybdenum 423 

co-factor (MOCO) biosynthesis (Fig. 5E).  424 

 425 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.06.30.498253doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.30.498253
http://creativecommons.org/licenses/by/4.0/


28 
 

 426 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.06.30.498253doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.30.498253
http://creativecommons.org/licenses/by/4.0/


29 
 

Figure 5: A DARPin-based consensus gephyrin interactome captures both known and novel protein interactors. 427 

A) Mouse brain tissue lysate preparation diagram. B) LC-MS/MS and interactome determination methodology 428 

workflow indicating thresholds for consideration of interacting proteins. C) Scale-free interaction networks 429 

(STRING) of gephyrin interactors identified from pulldowns using the commercial antibody 3B11, or DARPin-hFc 430 

27B3, 27F3, and 27G2 compared to control conditions (containing antibody control IgG or the control DARPin-hFc 431 

E3_5). Nodes represent unique gephyrin interactors - red nodes indicate known (canonical) gephyrin interactors. 432 

D) Venn diagram of the overlap in identified interactors from gephyrin complexes isolated using different DARPin-433 

hFc clones, bottom indicates coverage compared to an extensive gephyrin interactome determined using BioID 434 

labeling (Uezu et al., 2016) and 22 canonical gephyrin interactors identified from the literature. E) Consensus 435 

interactome of proteins identified by all DARPin-hFc clones and coloured by protein ontology. Canonical gephyrin 436 

interacting proteins are indicated by blue font, bold font indicates interactors also identified by the antibody clone 437 

3B11. Asterisks indicate proteins previously identified by BioID (Uezu et al., 2016). Italic font indicates interactors 438 

exclusively identified by DARPins. Edges connecting protein nodes indicate putative interactions (STRING analysis), 439 

node circle size indicates relative protein abundance averaged across all experiments. 440 

Figure 5 – Source Data 1: List of interactors and relative abundance of detected proteins used to construct 441 

interaction networks and Venn diagrams in Figure 5 panels C, D, and E. 442 

 443 

 444 

 445 
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 446 

Figure 5 Supplement 1. Anti-gephyrin DARPins affinity purify gephyrin from mouse brain lysates. A) Coomassie 447 

stained acrylamide gel indicating abundant gephyrin precipitated both by the antibody 3B11 and DARPin-hFc 448 

27B3, 27F3, and 27G2 without signal in antibody (IgG) or DARPin (E3_5) controls. Lower bands correspond to IgG 449 

or DARPin-hFc protein. B) Immunoblot of gephyrin precipitated with different binders probed with the antibody 450 

3B11.  451 

Figure 5 – Source Data 2: Raw Coomassie gel images and immunoblots from Figure 5 Supplement 1. 452 

 453 

 454 

 455 

Figure 5 Supplement 2. Interactor identification plots. A) Volcano plots of enriched proteins with the Log2 FC >2.5 456 

and FDR-adjusted p-value compared to controls. Red points indicate identified gephyrin interacting proteins, with 457 
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canonical interactors indicated by enlarged text. B) Abundance of gephyrin interactors for antibody and DARPin-458 

hFc experiments with canonical interactors indicated in red demonstrating several orders of magnitude 459 

difference. interactors. 460 

Figure 5 – Source Data 3: Identity and quantification of abundance of interacting proteins presented in Figure 5 461 

Supplement 2. 462 

Figure 5 – Source Data 4: Compiled list of proteins from all gephyrin interactor experiments used to assess 463 

gephyrin interactor identity. 464 

 465 

 466 

 467 

Figure 5 Supplement 3. Interactome overlap with previous literature. Venn diagrams showing the overlap in 468 

identified interactors determined using both antibody and DARPin-based interactomes compared to previously 469 

identified interactors from the literature (see methods) and by and BioID (Uezu et al., 2016). 470 

 471 

 472 

 473 

 474 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.06.30.498253doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.30.498253
http://creativecommons.org/licenses/by/4.0/


32 
 

 475 

Figure 5 Supplement 4.  Ontological enrichment analysis of the consensus gephyrin interactome. Biological 476 

process enrichment (WebGestalt) for the 120 consensus gephyrin interactors showing significantly regulated 477 

ontologies. 478 

 479 

Unique DARPin-hFc clones capture overlapping but ontologically distinct gephyrin interactomes 480 

While our consensus gephyrin interactome may provide a robust framework to explore the related 481 

function of novel interacting proteins, the different scale of each network in terms of unique proteins 482 

identified and their different abundances suggests that each DARPin-hFc clone captures overlapping but 483 

unique gephyrin protein networks. To explore the extent of this phenomenon, we compared the relative 484 

abundance of interacting proteins which were constitutively present in all DARPin-hFc-derived gephyrin 485 

interactomes, and identified a subset of proteins, which showed significant variation in the abundance 486 

between the three DARPin-hFc-based pulldowns (Fig. 6 Suppl. 1). These included several canonical 487 

gephyrin interactors (Fig 6 A). For example, clone 27F3 precipitated significantly more IQEC3 (a guanine 488 

nucleotide exchange factor important for synapse specification (Früh et al., 2018)), while clone 27G2 489 

captured gephyrin complexes containing more collybistin (ARHG9) (Fig. 6A). Binder-specific protein 490 

abundance profiles were more pronounced when examining non-canonical gephyrin interactor sets such 491 

as metabolic enzymes, mRNA binding proteins, and ribosomal subunits. These ontology groups 492 

demonstrated a consistently higher abundance in clone 27B3 and 27G2 compared to 27F3-based 493 
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gephyrin interactomes. This differential interactor abundance could be due either to DARPins interacting 494 

with functionally distinct isoforms of gephyrin, or DARPin-specific interference with gephyrin 495 

conformation or interacting protein binding. 496 

Gephyrin function is executed by several functional domains (G, C, and E domains), but it is also highly 497 

modified by phosphorylation as well as splice cassette insertions. To determine whether DARPin-hFc 498 

clones bind to different gephyrin domains or modified isoforms with different strength, we used an in-499 

cell binding assay (Fig. 6 Suppl. 2) to assess the relative binding of these clones to different forms of 500 

eGFP-tagged gephyrin. As expected from the in vitro characterisation, there was no preference for any 501 

of the DARPin-hFc clones between wild-type gephyrin and the phospho-null or phospho-mimetic 502 

mutation-containing gephyrin at serines 268 and 270. Interestingly, we saw clear domain-specific 503 

binding preferences, with clones 27B3 and 27G2 interacting both with full-length gephyrin or the G and 504 

C domains in isolation, whereas clone 27F3 could only bind to full-length gephyrin (Fig. 6 B, Fig. 6 Suppl. 505 

2). Gephyrin splice cassette C3 is constitutively spliced out in neurons by the splicing factor NOVA 506 

(Licatalosi et al., 2008), implying it is not needed for synaptic scaffolding. However, the C3 cassette is 507 

included in gephyrin expressed within non-neuronal cells where is contributes towards molybdenum 508 

cofactor (MOCO) synthesis activity (Smolinsky et al., 2008), or possible other functions (Fig. 6C). We 509 

found that the C3 cassette is significantly less detected by DARPin-hFc 27F3, while clones 27B3 and 27G2 510 

bind to both the principal (P1) and C3-containing cassette isoforms equally (Fig. 6C, Fig. 6. Suppl. 2). We 511 

additionally probed for binding to gephyrin containing the C4a cassette (thought to be brain-enriched 512 

but without a clearly identified function). None of DARPin-hFc clones tested interacted strongly with the 513 

C4a-gephyrin isoform, while the antibody clone 3B11 interacted with this isoform at similar levels to the 514 

other gephyrin isoforms.  515 
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To understand whether the different DARPin-hFc clones can interact with ontologically distinct gephyrin 516 

protein networks, we performed over-representation analysis of proteins which are exclusive or 517 

significantly elevated in the interactome detected by clone 27F3 (neuronal isoform specific) or detected 518 

exclusively or significantly elevated by clones 27B3 and 27G2 (bind to neuronal and glial gephyrin 519 

isoforms). While we only saw enrichment for synaptic organization-related biological processes from 520 

DARPin-hFc 27F3 enriched interactors, we additionally found enrichment for cytoskeletal processes, 521 

ribosomal complex formation, and proteins involved in mRNA splicing and transport for the 27B3 and 522 

27G2 enriched interactomes (Fig. 6 D, E). This suggests that the non-neuronal isoforms of gephyrin could 523 

be involved in these other distinct biological processes. In support of this hypothesis, when examining 524 

for proteins of glial or myelin ontology, we saw overall higher presence and abundance in the 525 

interactomes determined using clones 27B3 and 27G2 (Suppl. Fig. 6F). These data indicate that 526 

understanding the isoform-specificity of different DARPin clones will be useful for future dissection of 527 

gephyrin functionality at synapses, but also outside of synaptic sites or in non-neuronal cells. 528 

 529 
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 530 

Figure 6: Diversity in DARPin-hFc clone-specific interactomes reveal putative isoform-specific gephyrin 531 

interactors. A) Canonical and non-canonical (metabolic, mRNA binding, and ribosomal ontology) gephyrin 532 

interactors show binder-specific abundance profiles. Only significantly regulated interactors are shown. B) 533 

DARPin-hFc clones 27B3 and 27G2 recognise both full length gephyrin and the GC-domain while clone 27F3 534 

recognises only full length gephyrin suggesting different binding epitopes. C) DARPin-hFc 27F3 only recognizes the 535 

principal P1 (synaptic) isoform of gephyrin while clones 27B3 and G2 additionally recognize non-neuronal isoforms 536 

containing the C3 cassette. D) DARPin-hFc 27F3-determined gephyrin interactome enriched over-representation 537 

analysis of biological processes. E) DARPin-hFc 27B3 and 27G2-determined gephyrin interactome enriched over-538 

representation analysis of biological processes. Statistics: Panel A: Two-way ANOVA with multiple comparisons 539 

correction comparisons all groups, 3 replicates per group. 540 

Figure 6 – Source Data 1: Values used to generate heat maps in Figure 6 panel A. 541 
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 542 

Figure 6 Supplement 1. DARPin-specific gephyrin interactor abundance. A) Common gephyrin interactors 543 

identified by all DARPin-hFc-based interactomes showing proteins with significantly different abundances relative 544 

to gephyrin, organised by hierarchical clustering. Only significantly regulated interactors are shown. Statistics: 545 

Two-way ANOVA with multiple comparisons correction comparisons all groups, 3 replicates per group.  546 

Figure 6 – Source Data 2: Values and statistical test results indicating differentially abundant gephyrin interactors 547 

between binding experiments. 548 

 549 
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 550 

Figure 6 Supplement 2. Identification of gephyrin-binding preferences of anti-gephyrin DARPins using an in-cell 551 

HEK293T fluorescence assay. A) Representative images of eGFP-gephyrin expressed in HEK cells which were fixed 552 

and probed using DARPin-FLAG clones or commercial antibody clone 3B11. Shown is eGFP and FLAG signal 553 

provided by the control (E3_5) and gephyrin-binding DARPin-FLAG clones (e.g. 27B3). the relative signal between 554 

eGFP and FLAG for a given cell are plotted, and the slope compared between clones to assess relative binding. B) 555 

Quantification of binder labelling of eGFP-tagged gephyrin WT versus S268A/S270A and S268E/S270E phospho-556 
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mutants overexpressed in HEK293T cells. C) Quantification of binding to overexpressed full length (P1 variant) 557 

gephyrin or GC or E domains only. D) Quantification of binding to eGFP-tagged gephyrin P1 isoform or isoforms 558 

including the C3 or C4a cassettes. Statistics: One-way ANOVA, * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. 559 

Data points represent the slope calculated from at least 25 cells in 3 independent experiments. All panels: mean 560 

and SD are presented. 561 

Figure 6 – Source Data 3: Values and statistical analysis performed to generate graphs in Figure 6 Supplement 2 562 

panels B, C, and D. 563 

 564 

 565 

 566 

Figure 6 Supplement 3. Non-neuronal interactor ontology. Heatmap of relative abundance of proteins of “myelin 567 

sheath” or “glial projection” ontology between different DARPin-detected interactomes, grey squares indicate 568 

that the binder was not detected as a gephyrin interactor using a given DARPin. 569 

Figure 6 – Source Data 4: Values used to generate heat maps in Figure 6  Supplement 3. 570 

 571 
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Discussion 572 

In this study, we generated and characterised anti-gephyrin DARPins as a novel tools to study inhibitory 573 

synapse biology. This novel class of gephyrin protein binders specifically interacts with gephyrin in both 574 

morphological and biochemical applications to allow us to label gephyrin clusters and isolate gephyrin 575 

protein complexes without the limitations of previous antibody-based tools. We furthermore 576 

demonstrated that these DARPins can capture a greater diversity of gephyrin forms and functions, which 577 

will allow researchers to further characterise gephyrin and inhibitory synapses alike. 578 

 579 

Use of anti-gephyrin DARPins as morphological tools 580 

Gephyrin is most widely used as an inhibitory postsynaptic marker due to its specific enrichment at 581 

inhibitory postsynaptic sites, but current antibody epitope limitations mask the heterogeneity of 582 

postsynaptic gephyrin clusters which can be probed. As our DARPins are insensitive to modification at 583 

two key phospho-sites thought to be dynamically regulated at synapses, we were able to identify 584 

previously masked gephyrin clusters at the axon initial segment where relative gephyrin S270 585 

phosphorylation is low (and thus difficult to detect with the antibody Ab7a). Because most image analysis 586 

methods use threshold-based detection of gephyrin cluster presence and dynamics, A.I.S. gephyrin 587 

clusters (and identification of inhibitory synapses) will be massively underrepresented in the literature. 588 

For example, by using only the antibody Ab7a, gephyrin was suggested to play a less important role in 589 

scaffolding A.I.S. synapses (Gao & Heldt, 2016), whereas the large gephyrin clusters illuminated using 590 

DARPins suggests the opposite. Inhibitory input onto the A.I.S. provided by Chandelier interneurons 591 

plays an important role in gating neuronal output (Pelkey et al., 2017). Therefore, studying gephyrin 592 
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A.I.S. dynamics is especially relevant for uncovering mechanisms of network plasticity and how inhibition 593 

controls circuit function. Outside of the A.I.S., we documented clear changes in relative gephyrin S270 594 

phosphorylation in the stratum oriens and stratum lacunosum moleculare, indicating potential 595 

interneuron-specific or input-layer specific regulation of gephyrin function. Therefore, these DARPin-596 

based tools can be used not only to robustly describe native gephyrin clusters in culture systems and in 597 

tissue, but they can also be used in tandem with gephyrin phospho-specific antibodies such as clone 598 

Ab7a to examine how genetics, environmental factors, or network activity regulate inhibitory 599 

adaptations via gephyrin. Moreover, DARPin binders may be able to better capture the heterogeneity of 600 

inhibitory postsynaptic sites that display differences in molecular composition regulation dependent on 601 

presynaptic inhibitory input (Chiu et al., 2018). The inclusion of the hFc tag on the DARPin constructs 602 

additionally allows them to be used with anti-human secondary reagents, and thus in conjunction with 603 

the vast majority of commercial and homemade antibodies against other synaptic markers raised in non-604 

human species. 605 

DARPins lack cysteines, and thus have an advantage as protein binders over traditional antibodies as 606 

they can be expressed intracellularly as “intrabodies” (Plückthun, 2015). Given their highly specific 607 

synaptic labelling, DARPin expression could be used as a tool to visualise inhibitory synapses in living 608 

neurons or non-neuronal cells in vivo after by fusing DARPin clones to genetically encoded fluorescent 609 

proteins. The small genetic size of DARPins allows for their packaging along with additional elements 610 

such as inducible expression systems or other functional moieties into viral vectors with small genomic 611 

packaging limits. Future derivatisation of anti-gephyrin DARPin binders, e.g. using cell type specific 612 

drivers to express DARPins fused to different genetically encoded fluorescent proteins, could improve 613 
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our understanding of how the inhibitory postsynapse remodels similarly or differentially within 614 

excitatory and inhibitory neurons within the same circuit after experimental intervention. 615 

 616 

Use of anti-gephyrin DARPins as biochemical tools 617 

While gephyrin is used experimentally to morphologically identify the inhibitory postsynapse, it achieves 618 

its function through protein-protein interactions. Unbiased protein interaction network identification 619 

broadens how we envisage protein function and regulation. For example a BioID-based gephyrin 620 

interactome discovered a novel inhibitory synaptic protein, InSyn1 (Uezu et al., 2016), which was found 621 

to be a key regulator of the dystroglycan complex and important for cognitive function (Uezu et al., 622 

2019). By combining identified gephyrin interactors from antibody-based and DARPin-based 623 

experiments (including three distinct DARPin clones with different binding modalities), we were able to 624 

develop a consensus gephyrin interactome which facilitates higher confidence pursuit of understanding 625 

how these proteins integrate or are regulated by gephyrin function. The thresholds and criteria used to 626 

identify gephyrin interactors were established to be inclusive, and are indeed able to capture a majority 627 

of established canonical gephyrin interactors, yet further assessment will be required to determine 628 

which interactors are functional, and additionally whether they interact with synaptic versus non-629 

synaptic gephyrin. 630 

Various interactome determination techniques may capture different pictures of gephyrin protein 631 

networks. Proximity-ligation based methods require expression of recombinant bait protein, which may 632 

not correspond to the endogenous expression level or diversity of isoforms of native proteins in cells, 633 

though they are able to capture transient interactions (Burke et al., 2015). Affinity purification of 634 
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gephyrin protein complexes is more likely to capture stable gephyrin protein complexes and may not 635 

identify transient interactors, but it allows for identification of native gephyrin protein complexes 636 

reflecting the heterogeneity in its isoforms present or its posttranslationally modified state. Therefore, 637 

using proximity-based labeling systems such as APEX, TurboID, et cetera in conjunction with DARPins will 638 

allow for a comparison of stable (possibly structural) functions of gephyrin and transient (possibly 639 

signaling) roles of gephyrin.  640 

Within our interactome data, we found previously unidentified but presumed interacting proteins which 641 

are well known regulators of gephyrin. These include kinases such as CAMKIIα, which enhances gephyrin 642 

scaffolding via phosphorylation of serine 305 (Flores et al., 2015), GSK3β which phosphorylates serine 643 

270, and MK01 (ERK2) which targets serine 268 to reduce clustering (Tyagarajan et al., 2013), as well as 644 

Protein Phosphatase 2A which antagonizes gephyrin phosphorylation at serine 270 (Kalbouneh et al., 645 

2014). Additionally, we found the presence of multiple signaling scaffolds including CNKR2, a PSD-646 

associated protein which may regulate RAS-dependent MAPK signaling and is associated with intellectual 647 

disability in humans (Hu et al., 2016). This protein was very recently confirmed to regulate network 648 

excitability using a genetic model (Erata et al., 2021). These data suggest that many of the kinases known 649 

to regulate gephyrin scaffolding as well as regulators of those kinases are part of gephyrin protein 650 

complexes. Discovering how these kinase scaffolds associate and regulate gephyrin via phosphorylation 651 

may pave the way for targeted therapeutic development.  652 

The name “gephyrin” is derived from the Greek word γέφυρα meaning “bridge” as it was discovered to 653 

link glycine receptors to the cytoskeleton (P. Pfeiffer et al., 1982; Prior et al., 1992), and subsequently 654 

found to interact with other cytoskeletal components including dynein light chains 1 and 2 (Fuhrmann 655 

et al., 2002). We have now expanded this list to include multiple cytoskeletal interactors including those 656 
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involved in microtubule nucleation during cell division (e.g. TBG1, CENPV). Interestingly, gephyrin 657 

colocalised with microtubule nucleation centres has been recently identified in U2OS cells (Zhou et al., 658 

2021).  659 

Our consensus interactome identified not only canonical gephyrin binders but also unexpected proteins 660 

related to mRNA regulation, metabolism, and ribosomal function which may suggest non-synaptic 661 

functions of gephyrin yet to be described, the signifiance of which can now be investiated further with 662 

independent methods. Canonical gephyrin interactors differed in their abundance within complexes 663 

precipitated by clones which bind the P1 or C3 cassette variants suggesting that different DARPin clones 664 

can access distinct synaptic gephyrin complexes. Gephyrin has been implicated previously in regulation 665 

of mTOR, a signaling scaffold (Machado et al., 2016; Sabatini et al., 1999; Wuchter et al., 2012) as well 666 

as with elongation factor EF1A1 which along with mTOR directs mRNA translation and acts as a 667 

cytoskeletal adaptor complex (Becker et al., 2013). We identified EF1A1 as an interactor enriched in 668 

DARPin-precipitated complexes along with other mRNA binding proteins involved in mRNA splicing and 669 

transport (e.g. PURA, PURB, PABP1). Additionally we detected the presence of transcription regulators 670 

such as SAFB1, DDX3X, and SIR2 from all DARPin complexes, and additional transcription factors 671 

including MECP2 (a Rett-syndrome associated protein regulating inhibitory network development 672 

(Pelkey et al., 2017) and present at the PSD (Aber et al., 2003)) found only in 27B3 and 27G2 gephyrin 673 

complexes. Gephyrin signaling has recently been implicated in coupling transcriptional signaling via ARX 674 

in pancreatic beta cells (Berishvili et al., 2017), and may therefore be involved in regulating additional 675 

transcriptional coupling in the brain via these described transcription factors. Many of the unexpected 676 

ribosomal and mRNA binding proteins were not detected in the control condition or using clone 27F3, 677 

suggesting that non-specific binding to these classes of proteins is not an intrinsic property of DARPins. 678 
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Further studies using isoform-specific DARPin clones to capture gephyrin protein networks in neuronal 679 

compared to non-neuronal cells will clarify which protein interactors may be isoform or cell type specific. 680 

Indeed our group recently demonstrated gephyrin affects microglial reactivity and synapse stability after 681 

stroke (Cramer et al., 2022).  682 

  683 

Further applications of DARPins 684 

Beyond morphological and biochemical applications, DARPin binders can be developed further as 685 

functional tools. To date no full-length experimentally-determined gephyrin structural information 686 

exists, possibly due to the instability of gephyrin’s C domain, making holo-gephyrin crystallisation 687 

difficult (Sander et al., 2013), and approaches to stabilize gephyrin for structure determination will be 688 

important to understand its structure-function relationship at the synapse (Fritschy et al., 2008). The 689 

stabilisation of target proteins for structure determination has been a major experimental application of 690 

DARPins (Batyuk et al., 2016; Tamaskovic et al., 2012; Wu et al., 2018). In this study we identified one 691 

DARPin clone (27F3) which binds only to the full length P1 isoform but not individual domains. Using 692 

structural biology to assess the interaction between DARPins and full-length gephyrin, we may not only 693 

be able to rationally engineer DARPins to achieve different binding functionality, but may also derive 694 

fundamental information about gephyrin’s form and function relationships, which would be essential for 695 

any future therapeutic efforts targeting gephyrin. 696 

 697 

 698 
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Importance of protein binder development for neuroscience 699 

Several synthetic protein binder scaffolds exist, including DARPins, nanobodies, anticalins, affibodies, 700 

and others (Harmansa & Affolter, 2018), providing a plethora of platforms to develop tools that detect 701 

or modify synaptic proteins, yet their application in neuroscience has lagged behind other fields. Of note, 702 

a fibronectin-based scaffold was used to generate intrabodies (termed FingRs by the authors) against 703 

gephyrin and the excitatory postsynaptic scaffold protein PSD-95 (Gross et al., 2013). This system has 704 

been used chiefly to label gephyrin clusters in living neurons (Crosby et al., 2019; Gross et al., 2016; Son 705 

et al., 2016; Uezu et al., 2016), but has been limited in its virus-based in vivo labeling and morphological 706 

detection of native gephyrin in tissue. Therefore, our DARPin-based toolset complements previously 707 

developed tools for live imaging, and future studies will test whether DARPins may be similarly used for 708 

native gephyrin tagging in living neurons. 709 

Due to their stability and structure, DARPins are facile and inexpensive to produce and purify using 710 

simple bacterial systems and affinity resins. In addition, DARPins have relatively small sizes and defined 711 

sequences which makes them experimentally tractable. We have shown that developing multiple 712 

DARPins to examine gephyrin is a useful strategy for understanding the heterogeneity of its signaling 713 

and function, and similar strategies applied to other synaptic beyond gephyrin are likely to yield fruitful 714 

insights, as previously demonstrated with other systems (Plückthun, 2015). For synaptic biology, these 715 

DARPins offer an additional toolset which we hope will be expanded in the future so that excellent and 716 

well characterised binders are available to probe a multitude of targets with the goal of enhancing 717 

research efficiency and facilitating discoveries. 718 

 719 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.06.30.498253doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.30.498253
http://creativecommons.org/licenses/by/4.0/


46 
 

Materials and methods 720 

Cloning and expression of gephyrin phosphorylation mutants 721 

The principal (P1) rat isoform of gephyrin (referred to as wild-type, WT), or the P1 variant containing 722 

mutated serine to alanine (phospho-null) or serine to glutamic acid (phospho-mimetic) mutations at 723 

serines 268 and 270 have been described previously (Tyagarajan et al., 2013). Primers introducing a 5’ 724 

EcoRI restriction site upstream of a 2x GSSS linker sequence and 3’ KpnI site (see primer table) were used 725 

to amplify WT or mutated gephyrin before restriction digest and ligation into target vectors for 726 

recombinant bacterial expression and purification containing a 5’ His8 tag or His-Avi tag. E. coli BL21-DE3 727 

Gold was transformed with the correct clones, and clones containing the His-Avi tag were transformed 728 

along with a plasmid encoding BirA for AviTag-specific biotin ligation. Bacteria were grown in THY media 729 

(20 g tryptone, 10 g yeast extract, 11 g HEPES, 5 g NaCl, 1 g MgSO4/L pH 7.4) containing ampicillin (100 730 

µg/mL) and chloramphenicol (10 µg/mL) to ensure expression of both tagged Avi-gephyrin and BirA. 731 

Overnight 5 mL cultures were used to inoculate a 150 mL culture grown at 37°C and 250 rpm until an 732 

OD600 of 0.7 was reached. Induction and biotinylation was achieved by using a final concentration of 30 733 

µM IPTG and 50 µM D-biotin (dissolved in 10 mM bicine buffer, pH 8.3). Protein induction proceeded for 734 

6 hours before bacteria were pelleted. 735 

Bacterial pellets were re-suspended in 15 mL lysis buffer (50 mM Trizma base, 120 mM NaCl, 0.5% NP-736 

40) containing cOmplete Mini protease inhibitor cocktail (Roche) and DNAseI (Roche) before sonication 737 

on ice to release proteins. The lysate was pelleted at 20,000 g at 4°C for 15 minutes, and the cleared 738 

lysate was passed through 0.45 and 0.22 µm sterile filters. His8-tagged proteins were affinity purified on 739 

a 1 mL nickel agarose column (HIS-Select) using gravity flow. The lysate volume was passed 2x through 740 
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the column then washed 1x with 6 column volumes of medium salt equilibration buffer (300 mM NaCl, 741 

50 mM NaH2PO4, 10 mM imidazole, pH 8.0), then 1x with low-salt buffer (same with 100 mM NaCl), 1x 742 

with medium-salt buffer (300 mM NaCl), 1x with high-salt buffer (same with 500 mM NaCl), then 2x with 743 

medium-salt buffer (300 mM NaCl). Proteins were eluted in 4 mL elution buffer (equilibration buffer 744 

containing 250 mM imidazole) and dialysed in storage buffer (150 mM NaCl, 50 mM NaH2PO4, pH 7.5) 745 

using dialysis tubing. Dialysed protein was centrifuged at 60,000 g to remove any aggregated products, 746 

and the concentration was determined using absorption at 280 nm using a Nanodrop 747 

spectrophotometer with predicted protein molecular weight and extinction coefficient values 748 

determined using ProtParam online software (ProtParam, Swissprot, 749 

https://web.expasy.org/protparam/). Protein biotinylation was assessed using a streptavidin shift assay 750 

and stored at -80°C.  751 

 752 

Anti-gephyrin DARPin selection and screening 753 

To generate DARPin binders, biotinylated gephyrin S268E/S270E was immobilized alternately on either 754 

MyOne T1 streptavidin-coated beads (Pierce) or Sera-Mag neutravidin-coated beads (GE), depending on 755 

the particular selection round. Ribosome display selections were performed essentially as described 756 

(Dreier & Plückthun, 2012), using a semi-automatic KingFisher Flex MTP96 well platform. The library 757 

includes N3C-DARPins with stabilized C-terminal caps (Kramer et al., 2010). This library is a mixture of 758 

DARPins with randomised and non-randomised N- and C- terminal caps respectively (Plückthun, 2015; 759 

Schilling et al., 2014), and successively enriched pools were cloned as intermediates in a ribosome display 760 

specific vector (Schilling et al., 2014). Selections were performed over four rounds with decreasing target 761 
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concentration and increasing washing steps to enrich for binders with high affinities. The first round 762 

included the initial selection against gephyrin S268E/S270E at low stringency. The second round included 763 

pre-panning with the opposite phospho-null (gephyrin S268A/S270A) variant immobilized on magnetic 764 

beads, with the supernatant transferred to immobilized target of the same variant. The 3rd round 765 

included this pre-panning of the opposite variant and the addition of the (non-biotinylated) same variant 766 

to enrich for binders with slow off rate kinetics. The 4th and final round included only the pre-panning 767 

step and selection was performed with low stringency. 768 

The final enriched pool was cloned as fusion construct into a bacterial pQE30 derivative vector with a N-769 

terminal MRGS(H)8 tag (His8) and C-terminal FLAG tag via unique BamHI x HindIII sites containing lacIq 770 

for expression control. After transformation of E. coli XL1-blue, 380 single DARPin clones for each target 771 

protein were expressed in 96 well format and lysed by addition of a (concentrated Tris-HCL based HT-772 

Lysis buffer containing octylthioglucoside (OTG), lysozyme and nuclease or B-Per Direct detergent plus 773 

lysozyme and nuclease, Pierce). These bacterial crude extracts of single DARPin clones were 774 

subsequently used in a Homogeneous Time Resolved Fluorescence (HTRF)-based screen to identify 775 

potential binders. Binding of the FLAG-tagged DARPins to streptavidin-immobilized biotinylated 776 

Gephyrin variants was measured using FRET (donor: streptavidin-Tb, acceptor: anti-FLAG-d2, Cisbio). 777 

Further HTRF measurement against ‘No Target’ allowed for discrimination of Gephyrin-specific hits. 778 

From the identified binders, 32 were sequenced and 25 unique clones were identified. The DARPins were 779 

expressed in small scale, lysed with Cell-Lytic B(SIGMA) and purified using a 96 well IMAC column 780 

(HisPurTM Cobalt plates, Thermo Scientific). DARPins after IMAC purification were analyzed at a 781 

concentration of 10 µM on a Superdex 75 5/150 GL column (GE Healthcare) using an Aekta Micro system 782 

(GE Healthcare) with PBS containing 400 nM NaCl as the running buffer to identify monomeric DARPin 783 
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binders. Final hit validation of specificity was performed by ELISA using small scale IMAC-purified 784 

DARPins. Binding of the FLAG-tagged DARPins to streptavidin-immobilized biotinylated gephyrin variants 785 

was measured using a mouse-anti-FLAG-M2 antibody (Sigma) as 1st and goat-anti-mouse-alkaline 786 

phosphatase conjugated antibody (Sigma) as 2nd antibody. Further ELISA measurement against ‘No 787 

Target’ allowed for discrimination of Gephyrin-specific hits. The best binders did not descrimination 788 

between phospho-mimetic states, suggesting that other epitopes were favoured. 789 

 790 

Cloning and recombinant expression of anti-gephyrin DARPins  791 

Bacterial expression and purification of FLAG-tagged DARPins was performed as for His-tagged gephyrin 792 

constructs. Purification was validated using SDS-PAGE and Coomassie staining of acrylamide gels. Sub-793 

cloning of select DARPins into a vector containing an N-terminal HSA leader sequence and C-terminal 794 

human Fc fragment (hFc) region using BamHI and HindIII restriction sites was performed for mammalian 795 

cell production. Test rounds of DARPin-hFc fusion expression were performed in adherent HEK293T cells 796 

where the supernatant was collected to confirm DARPin hFc expression. Medium-scale production of 797 

DARPin-hFc fusion constructs was performed with assistance from the Protein Production and Structure 798 

core facility (PTPSP Lausanne) by transfecting plasmids for clones 27B3-hFc, 27F3-hFc, and 27G2-hFc as 799 

well as control DARPin E3_5-hFc into non-adherent HEK cells and grown in 400 mL cultures. DARPin-hFc 800 

recombinant protein was affinity-purified using Protein A resin after overnight incubation with rotation 801 

at 4°C, and captured on a 15 mL column Protein A Sepharose resin (Genscript), beads were washed with 802 

50 column volumes of PBS and eluted with glycine buffer pH 3.0 into 1.5 M Tris-HCl pH 8.0 before 803 
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overnight dialysis into PBS pH 7.5. Concentration was determined using a Nanodrop spectrophotometer 804 

using the A280 extinction coefficient. 805 

 806 

Gephyin binding fluorescence assay in HEK293T cells 807 

An in-cell fluorescence-based assay was developed to characterize the relative binding of anti-gephyrin 808 

DARPin clones to eGFP-tagged gephyrin variants in order to assess binding and to validate the DARPin 809 

screening ELISA results in cells. HEK293T cells were maintained in DMEM with 10% FCS at 37°C in a 5% 810 

CO2 jacketed incubator. Cells were seeded onto glass coverslips and grown to 50% confluency before 811 

transfecting plasmids (using standard PEI-based transfection at a ratio of 1 µg plasmid to 4 µg PEI). eGFP-812 

tagged gephyrin P1 variant, as well as those containing serine-to-alanine or -glutamate mutations at 813 

S268 and S270 (S268A/S270A, S268E/S270E) have been previously described (Tyagarajan et al., 2013). 814 

eGFP-tagged gephyrin E domain or GC domains (Lardi-Studler et al., 2007) as well as variants containing 815 

the C3 or C4a splice cassettes (Lardi-Studler et al., 2007) have been described previously. Cells grown on 816 

coverslips were washed briefly in PBS and fixed in 4% PFA for 15 minutes. Coverslips were washed in 817 

PBS, then treated with 1:2000 (1mg/ml stock) dilution of DARPin-FLAG clones or a control clone (non-818 

binding DARPin E3_5-FLAG) in 10% normal goat serum (NGS) for 90 minutes. Coverslips were washed 819 

and then treated with a 1:1000 dilution of mouse anti-FLAG antibody (clone M2, Sigma) for 60 minutes 820 

then washed 3x in PBS. Coverslips were incubated with an Alexa 647-conjugated goat anti-mouse 821 

secondary antibody and DAPI for 30 minutes prior to washing 3x with PBS and drying before mounting 822 

with DAKO mounting medium onto glass slides. 823 
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Coverslips were imaged using an LSM700 microscope (Zeiss) with 40x (1.4 NA) objectives. Images were 824 

acquired using Zen software (Zeiss). Laser intensity and gain settings were set to maximize signals in all 825 

channels/conditions without bleed-through or signal saturation, and acquisition settings were kept 826 

consistent for comparative analyses. eGFP-gephyrin-positive HEK cells were imaged at random locations 827 

on the coverslip, and fluorescent signals were acquired at 8 bits in the 488 and 647 channels to capture 828 

the eGFP-gephyrin and FLAG signal, respectively. eGFP-gephyrin presents as a diffuse signal in the soma 829 

with occasional cytoplasmic aggregates. For intensity analysis, ROIs were manually drawn within the 830 

cytosol to avoid inclusion of these aggregates in the quantification. Fluorescence intensity was quantified 831 

using ImageJ. The slope of the relationship between the eGFP-gephyrin signal and the FLAG signal was 832 

used to compare relative binding of DARPins to their target.  833 

Animals 834 

All procedures fulfilled the ARRIVE guidelines on experimental design, animal allocation to different 835 

experimental groups, blinding of samples to data analysis and reporting of animal experiments. We 836 

conducted a sample size calculation based on previous experiments for synaptic analysis with effect 837 

size of 0.2, a power of 0.8, and a significance level of 0.05. The data in our study included 5-6 animals 838 

per genotype, which exceeded the sample size calculation. Randomization of experimental cohorts is 839 

achieved by separating the age matched animals into male and female sexes to ensure that both 840 

genders are equally represented in the experimental groups. The experimenter is blinded to the 841 

experiments by another student assigning numbers and allocating animals to different groups at the 842 

start. https://www.isogenic.info/html/7__randomisation.html#methods 843 

 844 
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C56Bl/6J mice were purchased from Charles River (Germany) and timed-pregnant Wistar rats (for E17 845 

embryo collection for neuron culture) were purchased from Envigo (Netherlands). The S268A/S270A 846 

phospho-null mouse was previously generated using CRISPR-Cas9 editing to mutate residues at the 847 

endogenous locus (Cramer et al., 2022). The collection of embryonic and adult tissue was performed in 848 

accordance with the European Community Council Directives of November 24th 1986 (86/609/EEC). 849 

Tissue collection was performed under license ZH011/19 approved by the Cantonal Veterinary office of 850 

Zurich. 851 

Synaptic staining, imaging, and analysis 852 

Hippocampal cell cultures derived from E17 Wistar rat embryos were prepared as previously described 853 

(Tyagarajan et al., 2013) containing a mixture of excitatory/inhibitory neurons and glia grown on poly-L-854 

lysine-coated glass coverslips. Cultures were maintained for 15 days in vitro (DIV) before use to allow for 855 

synapse formation. Neurons were prepared for DARPin-FLAG or DARPin-hFc staining and 856 

immunostaining as with HEK293T cultures, with the exception that endogenous gephyrin was analysed 857 

using the anti-gephyrin antibody clone Ab7a (Sysy 147 011) or clone 3B11 (Sysy 147 111). Guinea pig 858 

anti-VGAT antibody (Sysy 131 004) and mouse anti-Ankyrin G (Neuromab, MABN466) were used to 859 

identify inhibitory presynapses and the axon initial segment, respectively. Homemade affinity purified 860 

guinea pig anti-GABRA2 was used to detect post-synaptic sites in tissue. Optimal concentrations of anti-861 

gephyrin DARPins for staining were determined for each clone, 1:2000 dilution from 1 mg/mL stock was 862 

determined to be best for DARPin-FLAG, 1:4000 dilution performed best for DARPin-hFc.  863 

For brain tissue staining, animals were anesthetised with intraperitoneal injections of pentobarbital 864 

before trans-cardial perfusion with oxygenated, ice cold artificial cerebrospinal fluid (ACSF: 125 mM 865 
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NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4, 26 mM NaHCO3, 25 mM D-glucose, 2.5 mM CaCl2, and 2 mM 866 

MgCl2). Perfused brains were dissected and post-fixed in 150 mM phosphate-buffered saline (PBS) 867 

containing 4% paraformaldehyde (PFA) (pH 7.4) for 90 minutes at 4 °C. Tissue was cryoprotected 868 

overnight in PBS containing 30% sucrose 4 °C, then cut into 40 µm thick sections using a sliding 869 

microtome. Sections were stored at -20 °C in antifreeze solution (50 mM sodium phosphate buffer with 870 

15% glucose, 30% ethylene glycol at pH 7.4) until use. For immunofluorescence experiments, sections 871 

were washed 3 x 10 minutes under gentle agitation in TBST (50 mM Tris, 150 mM NaCl, 1% Tween, pH 872 

7.5) before overnight incubation in primary antibody solution (with or without DARPin inclusion) (TBST 873 

containing 0.2% Triton X-100 and 2% NGS). For DARPin-hFc 27G2, a concentration of 1:4000 was used 874 

(from 1 mg/mL stock). Sections were then washed 3 x 10 minutes and incubated for 30 minutes at room 875 

temperature with secondary antibodies in TBST solution with 2% normal goat serum NGS (Jackson). 876 

Sections were washed again 3 x 10 minutes in TBST before transfer to PBS and mounting onto gelatine-877 

coated slides, then covered using DAKO mounting medium. For all tissue morphological analysis, image 878 

acquisition, processing, and analysis was acquired/performed blind to condition using identical imaging 879 

parameters. Images used for synapse quantification experiments were acquired on a Zeiss LSM 800 laser 880 

scanning confocal microscope operating Zen image acquisition software (Zen 2011) using 63x oil 881 

immersion objectives (N.A. 1.4). Identical imaging settings were used when comparing between groups 882 

in a given experiment. Relative Ab7a/DARPin-hFc 27G2 fluorescent intensity cluster analysis was 883 

performed using the Analyse Particles functionality of FIJI after thresholding. Synaptic colocalisation 884 

analysis was performed using a custom ImageJ macro previously described (Panzanelli et al., 2017). 885 

 886 
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Precipitation of gephyrin complexes for LC-MS/MS interactome determination 887 

Tissue lysates were prepared from acutely isolated cortexes and hippocampi of 4 male and 4 female 888 

C57BL/6J mice (Charles River) on ice and immediately homogenized in cold EBC lysis buffer (50 mM Tris-889 

HCl, 120 mM NaCl, 0.5% NP-40, and 5 mM EDTA with cOmplete mini protease inhibitors (Roche) and 890 

phosphatase inhibitor cocktails 2 and 3 (Sigma)) and incubated on ice for 60 minutes. Lysates were 891 

cleared by centrifugation at 20,000 g for 20 minutes and the supernatant protein concentration 892 

measured using a BCA assay. Gephyrin complexes were captured by incubating protein lysate (total 6 893 

mg of protein per reaction) with DARPin-hFc binders or the control DARPin clone E3_5 or, control IgG, 894 

or 3B11 mouse-anti-gephyrin antibody for 3 hours at 4° C with rotation. In order to precipitate similar 895 

amounts of gephyrin protein, 4 µg of 3B11 antibody, or approximately 2 µg of anti-gephyrin DARPin-hFc 896 

(adjusted for equimolar concentration) were used per reaction (1.5 mL volume total). Complexes were 897 

precipitated using 20 µg of Protein G magnetic beads (30 minutes incubation with rotation), and washed 898 

6x in 600 µl of EBC buffer. The supernatant was removed and replaced with 25 µl of PBS and immediately 899 

submitted for LC-MS/MS sample preparation.  900 

 901 

Immunoblotting 902 

For immunoblotting experiments, input and precipitated samples were prepared in 5x SDS buffer 903 

containing beta-mercaptoethanol (Bio-Rad) and boiled for 5 minutes at 90° C. Protein concentration 904 

determination was performed using a BCA assay (Pierce). Acrylamide gels were either stained with 905 

Coomassie dye or transferred to PVDF membranes. Gephyrin was detected using a mouse anti-gephyrin 906 

antibody (clone 3B11, 1:1,000), and DARPin-hFc was detected using an anti-hFc (HRP conjugated, 907 
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1:40,000) antibody overnight and detected using anti-mouse IR 680 dye (LI-COR) on a LI-COR imager, or 908 

an HRP detection kit using a Fuji imager. 909 

 910 

On bead digestion  911 

Captured immunocomplexes were processed immediately after precipitation. Beads were washed once 912 

in 100 µL digestion buffer (10 mM Tris + 2 mM CaCl2, pH 8.2). After resuspension in 45 µl digestion buffer, 913 

proteins were reduced and alkylated with 2 mM TCEP and 20 mM chloroacetamide, respectively, for 30 914 

min at 60 °C in the dark. Five µL of Sequencing Grade Trypsin (100 ng/µl in 10 mM HCl, Promega) were 915 

added to the beads and the digestion was carried out in a microwave instrument (Discover System, CEM) 916 

for 30 min at 5 W and 60 °C. The supernatants were transferred into new tubes and the beads were 917 

washed with 150 µl 0.1% TFA then pooled with the previous supernatant. The samples were dried and 918 

re-solubilized with 20 µl of 3% acetonitrile, 0.1% formic acid for MS analysis. Prior to MS analysis, the 919 

peptides were diluted to an absorption (A280) of 0.2. 920 

Liquid chromatography-mass spectrometry analysis 921 

Mass spectrometry analysis was performed on an Orbitrap Fusion Lumos (Thermo Scientific) equipped 922 

with a Digital PicoView source (New Objective) and coupled to a M-Class UPLC (Waters). Solvent 923 

composition at the two channels was 0.1% formic acid for channel A and 0.1% formic acid, 99.9% 924 

acetonitrile for channel B. For each sample 1 μL of diluted peptides were loaded on a commercial MZ 925 

Symmetry C18 Trap Column (100 Å, 5 µm, 180 µm x 20 mm, Waters) followed by nanoEase MZ C18 HSS 926 

T3 Column (100 Å, 1.8 µm, 75 µm x 250 mm, Waters). The peptides were eluted at a flow rate of 300 927 

nL/min using a gradient from 5 to 22% B in 80 min, 32% B in 10 min and 95% B for 10 min. The mass 928 
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spectrometer was operated in data-dependent mode (DDA) acquiring a full-scan MS spectra (300−1,500 929 

m/z) at a resolution of 120,000 at 200 m/z after accumulation to a target value of 500,000. Data-930 

dependent MS/MS spectra were recorded in the linear ion trap using quadrupole isolation with a 931 

window of 0.8 Da and HCD fragmentation with 35% fragmentation energy. The ion trap was operated in 932 

rapid scan mode with a target value of 10,000 and a maximum injection time of 50 ms. Only precursors 933 

with intensity above 5,000 were selected for MS/MS and the maximum cycle time was set to 3 s. Charge 934 

state screening was enabled. Singly, unassigned, and charge states higher than seven were rejected. 935 

Precursor masses previously selected for MS/MS measurement were excluded from further selection for 936 

20 s, and the exclusion mass tolerance was set to 10 ppm. The samples were acquired using internal lock 937 

mass calibration on m/z 371.1012 and 445.1200. The mass spectrometry proteomics data were handled 938 

using the local laboratory information management system (LIMS) (Türker et al., 2010).  939 

 940 

Protein identification and label-free protein quantification 941 

The acquired raw MS data were processed by MaxQuant (version 2.0.1.0), followed by protein 942 

identification using the integrated Andromeda search engine (Cox & Mann, 2008). Spectra were 943 

searched against a Uniprot Mus musculus reference proteome (taxonomy 10090, version from 2019-07-944 

09), concatenated to its reversed decoyed FASTA database and common protein contaminants. 945 

Carbamidomethylation of cysteine was set as fixed modification, while methionine oxidation, STY 946 

phosphorylation and N-terminal protein acetylation were set as variable. Enzyme specificity was set to 947 

trypsin/P allowing a minimal peptide length of 7 amino acids and a maximum of two missed cleavages. 948 

The maximum false discovery rate (FDR) was set to 0.01 for peptides and 0.05 for proteins. Label-free 949 
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quantification was enabled and a 2-minute window for match between runs was applied. In the 950 

MaxQuant experimental design template, each file is kept separate in the experimental design to obtain 951 

individual quantitative values. Protein fold changes were computed based on Intensity values reported 952 

in the proteinGroups.txt file. A set of functions implemented in the R package SRMService (W. Wolski, J. 953 

Grossmann, C. Panse. 2018. SRMService - R-Package to Report Quantitative Mass Spectrometry Data. 954 

http://github.com/protViz/SRMService) was used to filter for proteins with 2 or more peptides allowing 955 

for a maximum of 3 missing values, and to compute p-values using the t-test with pooled variance. If all 956 

measurements of a protein are missing in one of the conditions, a pseudo fold change was computed, 957 

replacing the missing group average by the mean of the 10% smallest protein intensities in that 958 

condition. To determine DARPin and GEPH isoform coverage in the individual pulldown conditions, the 959 

data were processed and searched with Proteome Discoverer 2.5 using Sequest and Percolator with 960 

Protein Grouping deactivated and only unique peptides were used for quantification.  961 

 962 

Interactome analysis 963 

Proteins were considered present when detected using at least 2 unique peptide signatures in all 964 

replicates of a given binder. Interactors were considered part of gephyrin complexes when either 1) not 965 

present in the control condition, or 2) enriched by a log2 fold-change in abundance of at least 2.5 in the 966 

binder condition with an FDR cut-off of 0.05. These thresholds allowed for complete coverage of known 967 

gephyrin interactors. Binders common to multiple interactomes were identified using Microsoft Excel 968 

for comparison of ontology and abundances. Venn diagrams were visualized using InteractiVenn 969 

(http://www.interactivenn.net/). Protein ontology was identified and grouped, and enrichment 970 
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determined using WebGestalt over-representation analysis (http://www.webgestalt.org/), Gene 971 

Ontology Resource identification (http://geneontology.org/), and Uniprot (https://www.uniprot.org/). 972 

Interaction networks were generated using STRING version 11.5 and imported to Cystoscape version 973 

3.8.2 for visualisation. Network map edges represent putative relationships between protein nodes as 974 

identified by STRING. Node size is colored based on functional ontology, and size based on abundance 975 

relative to gephyrin in each experiment. Canonical gephyrin interactors include Collybistin (ARGH9), 976 

GABAAR subunits (GBRA1, 2,3, GABG2, GBRB2, 3), glycine receptor subunits (GLRB, GLRA), dynein light 977 

chain (DYL1, 2), IQSEC3 (IQEC3), Dystrobrevin alpha (DNTA), Ena VASP-like (EVL), MENA (ENAH), the 978 

proline cis-trans isomerase PIN1, profilins 1 and 2 (PROF1, 2), neuroligin 2 (NLGN2), reviewed in 979 

(Groeneweg et al., 2018). Protein names used for display are the official Uniprot protein ID designation. 980 

Uniprot protein IDs were used for cross-experiment comparison and ontology searches. 981 

 982 

Statistical tests 983 

Statistical tests and significance are reported in the figure captions. Statistical analysis was performed 984 

using Microsoft Excel and Graph Pad Prism 8.0. Normality tests were performed on data to evaluate 985 

correct application of parametric or non-parametric analysis, with the exception of experiments using 986 

small sample sizes (n<4) where parametric comparisons were used. 987 

 988 

Visual representation 989 
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Data plots were generated using Microsoft Excel or GraphPad Prism 8. Images were visualized and 990 

processed in FIJI (1.53q). Images brightness was enhanced for display by adjusting the brightness and 991 

contrast for display purposes, but when comparing between experimental conditions, all images were 992 

enhanced with the same settings to preserve apparent differences in morphology and intensity. 993 

Diagrams and figures were arranged in InkScape (version 1.0), and text and tables were arranged using 994 

the Microsoft Office Suite. Sequence alignment was performed using ClustalW and visualized using 995 

JalView. Heat map generation and hiearchical clustering was performed with Morpheus 996 

(https://software.broadinstitute.org/morpheus). 997 

 998 

Material availability: 999 

The use of the anti-gephyrin DARPin constructs presented in this manuscript will be made available 1000 

following an academic use MTA agreement. 1001 

 1002 

Data availability: 1003 

All relevant mass spectrometry data has been deposited to the ProteomeXchange Consortium via the 1004 

PRIDE (http://www.ebi.ac.uk/pride) partner repository. 1005 

Project Name: Gephyrin interactome from mouse brain lysates using anti-gephyrin antibody and anti-1006 

gephyrin DARPins 1007 

Project accession: PXD033641 1008 

Project DOI: 10.6019/PXD033641 1009 
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 1010 

Key resources tables 1011 

Table 1. List of plasmids used in this study. RRIDs given where available. NA: not applicable. 1012 

Reagent type 
(species or 
resource) 

Designation Source or 
reference 

Identifiers Additional information 

Plasmid 
backbone 

GST within 3' 6x His Tag  Provided by the 
UZH High 
Throughput 
Binder Selection 
platform 

pET20b-A(H6)-GST Used for subcloning recombinant gephyrin constructs for 
recombinant bacterial expression for use in the ribosome 
display selection. 

Plasmid 
backbone 

GST within 3' 6x His Tag 
and Avi tag  

Provided by the 
UZH High 
Throughput 
Binder Selection 
platform 

pET20b-A(H6)-
AviTag 

Used for subcloning recombinant gephyrin constructs for 
recombinant bacterial expression for use in the ribosome 
display selection. 

Plasmid  BirA enzyme Provided by the 
UZH High 
Throughput 
Binder Selection 
platform 

pBirAcm Encodes the AVI-tag specific biotin ligase BirA for biotin-
tagging of recombinant gephyrin constructs for use in the 
ribosome display selection. 

Plasmid 
backbone 

N-terminal 8xHis tag and 
C-terminal FLAG tag 
bacterial expression 
vector 

Provided by the 
UZH High 
Throughput 
Binder Selection 
platform 

pQIq_MRGS_HIS8_( 
DARPin)_FLAG 

Used as the backbone for inserting DARPins using HindIII 
and BamHI restriction sites for recombinant bacterial 
expression of FLAG tagged DARPins. 

Plasmid 
backbone 

N-terminal HSA leader 
sequence and C-terminal 
hFc tag for mammalian 
expression 

Provided by the 
UZH High 
Throughput 
Binder Selection 
platform 

pcDNA3.1_SacB_hFc Used as the backbone for inserting DARPins using HindIII 
and BamHI restriction sites for recombinant mammalian 
expression of hFc tagged DARPins. 

Plasmid N-terminal His-tagged 
P1-gephyrin S268/270A 

This article pET20b-A(H6)- P1-
gephyrin S268/270A 

Subcloned from pEGFPC2-gephyrin S268/270A 
(Tyagarajan et al., 2013) using added Kpn1 and EcoRI 
sites into pET20b-A(H6)-GST for use in DARPin ribosome 
display selection. 

Plasmid N-terminal His-tagged 
P1-gephyrin S268/270E 

This article pET20b-A(H6)- P1-
gephyrin S268/270E 

Subcloned from pEGFPC2-gephyrin S268/270E 
(Tyagarajan et al., 2013) using added Kpn1 and EcoRI 
sites into pET20b-A(H6)-GST for use in DARPin ribosome 
display selection. 

Plasmid N-terminal His-tagged 
P1-gephyrin  

This article pET20b-A(H6)- P1-
gephyrin  

Subcloned from pEGFPC2-gephyrin P1 (Tyagarajan et al., 
2013) using added Kpn1 and EcoRI sites into pET20b-
A(H6)-GST for use in DARPin ribosome display selection. 

Plasmid N-terminal HisAvi-tagged 
P1-gephyrin S268/270A 

This article pET20b-A(H6)- P1-
gephyrin S268/270A 
AviTag 

Subcloned from pEGFPC2-gephyrin S268/270A 
(Tyagarajan et al., 2013) using added Kpn1 and EcoRI 
sites into pET20b-A(H6)-AviTag for use in DARPin 
ribosome display selection. 

Plasmid N-terminal HisAvi-tagged 
P1-gephyrin S268/270E 

This article pET20b-A(H6)- P1-
gephyrin S268/270E 
AviTag 

Subcloned from pEGFPC2-gephyrin S268/270E 
(Tyagarajan et al., 2013) using added Kpn1 and EcoRI 
sites into pET20b-A(H6)-AviTag for use in DARPin 
ribosome display selection. 

Plasmid N-terminal eGFP-tagged 
P1-gephyrin S268/270A 

(Tyagarajan et al., 
2013) 

pEGFPC2-gephyrin 
S268/270A 

Used for subcloning for recombinant bacterial expression 
as well as the in-cell fluorescence assays. 

Plasmid N-terminal eGFP-tagged 
P1-gephyrin S268/270E 

(Tyagarajan et al., 
2013) 

pEGFPC2-gephyrin 
S268/270E 

Used for subcloning for recombinant bacterial expression 
as well as the in-cell fluorescence assays. 

Plasmid N-terminal eGFP-tagged 
P1-gephyrin  

(Tyagarajan et al., 
2013) 

pEGFPC2-gephyrin 
P1  

Used for subcloning for recombinant bacterial expression 
as well as the in-cell fluorescence assays. 

Plasmid N-terminal eGFP-tagged  
gephyrin GC domain 

(Lardi-Studler et 
al., 2007) 

EGFPC2-Gephyrin 
GC 

Used for in cell fluorescence assays to assess relative 
binding of DARPins to the GC domain of gephyrin. 
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Plasmid N-terminal eGFP-tagged  
gephyrin E domain 

(Lardi-Studler et 
al., 2007) 

EGFPC2-Gephyrin E Used for in cell fluorescence assays to assess relative 
binding of DARPins to the E domain of gephyrin. 

Plasmid N-terminal eGFP-tagged  
gephyrin containing the 
C3 cassette 

(Smolinsky et al., 
2008) 

pEGFPC2 Gephyrin 
C3 

Used for in cell fluorescence assays to assess relative 
binding of DARPins to the C3 cassette containing 
gephyrin variants. 

Plasmid N-terminal eGFP-tagged  
gephyrin containing the 
C4a cassette 

(Smolinsky et al., 
2008) 

pEGFPC2 Gephyrin 
C4a 

Used for in cell fluorescence assays to assess relative 
binding of DARPins to the C4a cassette containing 
gephyrin variants. 

Plasmid DARPin-FLAG E3_5 
(control) 

This article pQIq_MRGS_HIS8_( 
E3_5)_FLAG 

Created by subcloning DARPin E3_5 into 
pQIq_MRGS_HIS8_(DARPin)_FLAG using BamHI and 
HindIII sites. 

Plasmid DARPin-FLAG 27B3 This article pQIq_MRGS_HIS8_(
27B3)_FLAG 

Created by subcloning DARPin 27B3 into 
pQIq_MRGS_HIS8_(DARPin)_FLAG using BamHI and 
HindIII sites. 

Plasmid DARPin-FLAG 27D3 This article pQIq_MRGS_HIS8_(
27D3)_FLAG 

Created by subcloning DARPin 27D3 into 
pQIq_MRGS_HIS8_(DARPin)_FLAG using BamHI and 
HindIII sites. 

Plasmid DARPin-FLAG 27F3 This article pQIq_MRGS_HIS8_(
27F3)_FLAG 

Created by subcloning DARPin 27F3 into 
pQIq_MRGS_HIS8_(DARPin)_FLAG using BamHI and 
HindIII sites. 

Plasmid DARPin-FLAG 27B5 This article pQIq_MRGS_HIS8_(
27B5)_FLAG 

Created by subcloning DARPin 27B5 into 
pQIq_MRGS_HIS8_(DARPin)_FLAG using BamHI and 
HindIII sites. 

Plasmid DARPin-FLAG 27D5 This article pQIq_MRGS_HIS8_(
27D5)_FLAG 

Created by subcloning DARPin 27D5 into 
pQIq_MRGS_HIS8_(DARPin)_FLAG using BamHI and 
HindIII sites. 

Plasmid DARPin-FLAG 27G2 This article pQIq_MRGS_HIS8_(
27G2)_FLAG 

Created by subcloning DARPin 27G2 into 
pQIq_MRGS_HIS8_(DARPin)_FLAG using BamHI and 
HindIII sites. 

Plasmid DARPin-FLAG 27H2 This article pQIq_MRGS_HIS8_(
27H2)_FLAG 

Created by subcloning DARPin 27H2 into 
pQIq_MRGS_HIS8_(DARPin)_FLAG using BamHI and 
HindIII sites. 

Plasmid DARPin-FLAG 27G4 This article pQIq_MRGS_HIS8_(
27G4)_FLAG 

Created by subcloning DARPin 27G4 into 
pQIq_MRGS_HIS8_(DARPin)_FLAG using BamHI and 
HindIII sites. 

Plasmid DARPin-hFc E3_5 
(control) 

This article pcDNA3.1_ E3_5 
_hFc 

Created by subcloning DARPin E3_5 into pcDNA3.1_ SacB 
_hFc using BamHI and HindIII sites. 

Plasmid DARPin-hFc 27B3 This article pcDNA3.1_27B3_hF
c 

Created by subcloning DARPin 27B3into pcDNA3.1_ SacB 
_hFc using BamHI and HindIII sites. 

Plasmid DARPin-hFc 27F3 This article pcDNA3.1_27F3_hF
c 

Created by subcloning DARPin 27F3into pcDNA3.1_ SacB 
_hFc using BamHI and HindIII sites. 

Plasmid DARPin-hFc 27G2 This article pcDNA3.1_27G2_hF
c 

Created by subcloning DARPin 27G2 into pcDNA3.1_ SacB 
_hFc using BamHI and HindIII sites. 

 1013 

Table 2. List of primers.  1014 

Reagent type 
(species or 
resource) 

Designation Source or 
reference 

Identifiers Additional information 

Primer His/His-AVI 
F 

Microsynth 5’- A TAT GGT ACC 
CAC CAC CAC CAC CAC 
CAC TGA G-3’ 

Forward primer used to amplify 
gephyrin and gephyrin S268A/S270A 
or E mutants for insertion into 
recombinant expression vectors (His 
and His-AVI plasmids). 

Primer His-AVI R Microsynth 5’- T ATA GAA TTC 
TGA AGA GCC TCC 
TGA AGA GCC TCC TTC 
ATG CCA TTC -3’ 

Reverse primer used to amplify 
gephyrin and gephyrin S268/270A or E 
mutants for insertion into 
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recombinant expression vectors (HIS-
AVI plasmids). 

Primer His-R Microsynth 5’- T ATA GAA TTC 
TGA AGA GCC TCC 
TGA AGA GCC TCC 
GTG ATG GTG ATG 
GT-3’ 

Reverse primer used to amplify 
gephyrin and gephyrin S268A/S270A 
or E mutants for insertion into 
recombinant expression vectors (His- 
plasmids). 

 1015 

Table 3. List of antibodies/ protein binders and concentrations used. Dilution values correspond to manufacturer 1016 

recommended reconstitution concentrations. Unless otherwise stated, stocks are 1 mg/ mL. RRIDs given where 1017 

available. NA: not applicable. 1018 

Reagent type 
(species or 
resource) 

Designation Source or reference Identifiers Additional 
information 

Primary antibody Mouse anti-Ankyrin 
G (AnkG) 

Neuromab MABN466, RRID 
AB_274980 

IF/ICC used at 
1:1000 

Primary antibody Goat anti-mouse AP Sigma-Aldrich (Merck) A3562, AB_258091 Used for ELISA 
screen 

Primary antibody Mouse anti-FLAG 
M2 

Sigma-Aldrich (Merck) F3165, RRID 
AB_259529 

IF/ICC used at 
1:1000  

Primary antibody Mouse anti-FLAG D2 Cisbio 61FG2DLB Used for HTRF 
screen. 

Primary antibody Guinea pig anti-
GABRA2 

In house (J. -M Fritschy 
& Möhler, 1995) 

- IF/ICC used at 
1:2000 

Primary antibody Mouse anti-
gephyrin 3B11 

Synaptic Systems Cat #: 147111, 
RRID: AB_887719 

IF/ICC used at 
1:1000  

Primary antibody Rabbit anti-gephyrin 
Ab7a 

Synaptic Systems 147 008, RRID 
AB_2619834 

IF/ICC used at 
1:2000  

Primary antibody Guinea pig anti-
VGAT 

Synaptic Systems 131308, 
AB_2832243 

IF/ICC used at 
1:2000  

Secondary 
antibody 

Goat anti-mouse 
Alexa Cy3 

Jackson 
ImmunoResearch Labs 

JAC 115-165-166, 
RRID AB_2338692 

IF/ICC used at 
1:500 

Secondary 
antibody 

Goat anti-rabbit  
Alexa 488 

Jackson 
ImmunoResearch Labs 

JAC 111-545-144, 
RRID AB_2338052 

IF/ICC used at 
1:500 

Secondary 
antibody 

Goat anti-Guinea pig 
Alexa 647 

Jackson 
ImmunoResearch Labs 

JAC 106-605-003, 
RRID  AB_2337446 

IF/ICC used at 
1:500 

Secondary 
antibody 

Goat anti-human 
Cy3 

Jackson 
ImmunoResearch Labs 

JAC 109-165-170, 
AB_2810895 

IF/ICC used at 
1:500 

Streptavidin 
conjugate 

Streptavidin-Tb 
cryptate  

Cisbio 610SATLB Used for HTRF 
screen. 

Secondary 
antibody 

IRDye 680RD 
Donkey anti-Mouse 
IgG 

LI-COR Biosciences LIC925-68072 WB 1:20000 
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HRP conjugate Anti-human Fc HRP CalBiochem 401455 WB 1:40000 

 1019 

Table 4. List of animal strains. RRIDs given where available. NA: not applicable. 1020 

Reagent type 
(species or 
resource) 

Designation Source or 
reference 

Identifiers Additional 
information 

Rattus 
norvegicus 

Wister rat (RccHan:WIST) Envigo 
(Netherlands) 

Order code: 168 E17 embryos 
were collected 
from time 
mated dams. 

Mus musculus C57BL/6JCrl Charles River 
Laboratories 
(Germany) 

RRID 
IMSR_JAX:000664,  

Used for 
synapse analysis 
and proteomic 
analysis. 

Mus musculus C57Bl6/JCrl GphnS268A/S270A (Cramer et al., 
2022) 

NA Used for 
synapse analysis 
only. 

 1021 

Table 5. List of cell lines used in this study. RRIDs given where available. NA: not applicable. 1022 

Reagent type 
(species or resource) 

Designation Source or 
reference 

Identifiers Additional information 

Cell line BL21 DE3 
Gold 

BioRad Cat #: 161-
0156 

Used for recombinant bacterial 
gephyrin and DARPin expression. 

Cell line E.coli XL1-
blue 

Agilent 200249 Used for DARPin ribosome display 
screening. 

Cell line HEK293T ATCC CRL 11268 Used for in cell DARPin binding 
screen. 

 1023 

Table 6. List of validated DARPin sequences. 1024 

Clone DNA Sequence AA Sequence DARPin ID DARPin 
type 

27 G2 ATGAGAGGATCGCATCACCATCACCATCACCATCACGGATCCGACCTGGGTAAGAAACTGCTGGAAGC
TGCTCGTGCTGGTCAGGACGACGAAGTTCGTATCCTGATGGCAAACGGTGCTGACGTTAACGCTATGG
ACTTCACTGGTTACACTCCGCTGCACCTGGCTGCTAAAGAAGGTCACCTGGAAATCGTTGAAGTTCTGC
TGAAAACCGGTGCTGACGTTAACGCTATCGACAAACGTGGTAACACTCCGCTGCACCTGGCTGCTTGG
CGTGGTCACCTGGAAATCGTTGAAGTTCTGCTGAAGCACGGCGCCGACGTTAACGCTCAGGACGTTTA
CGGTACTACTCCGTTCGACCTGGCTGCTTGGGCTGGTAACGAGGACATCGCTGAAGTTCTGCAGAAAG
CTGCTAAGCTTAATGACTACAAGGATGACGACGACAAG 

MRGSHHHHHHHHGSDLGKKLLEAAR
AGQDDEVRILMANGADVNAMDFTGY
TPLHLAAKEGHLEIVEVLLKTGADVNAI
DKRGNTPLHLAAWRGHLEIVEVLLKHG
ADVNAQDVYGTTPFDLAAWAGNEDI
AEVLQKAAKLNDYKDDDDK 

008-855-2308-A9 N2C 

27 H2 ATGAGAGGATCGCATCACCATCACCATCACCATCACGGATCCGACCTGGGTAAGAAACTGCTGGAAGC
TGCTCGTGCCGGTCAGGACGACGAAGTTCGTATCCTGATGGCAAACGGTGCTGACGTTAACGCTTGG
GACAAACATGGTCATACTCCGCTGCACCTGGCTGCTGCTTGGGGTCACCTGGAAATCGTTGAAGTTCT
GTTGAAAACCGGTGCTGACGTTAACGCTCAGGACCAGATGGGTTACACTCCGCTGCACCTGGCTGCTT
GGTACGGTCATCTGGAAATCGTTGAAGTTCTGCTGAAGCATGGCGCCGACGTTAACGCTCAGGACAAA
TTCGGTAAGACTCCGTTCGACCTGGCTGCTATGGCTGGTAACGAGGACATCGCTGAAGTTCTGCAGAA
AGCTGCTAAGCTTAATGACTACAAGGATGACGACGACAAG 

MRGSHHHHHHHHGSDLGKKLLEAAR
AGQDDEVRILMANGADVNAWDKHG
HTPLHLAAAWGHLEIVEVLLKTGADVN
AQDQMGYTPLHLAAWYGHLEIVEVLL
KHGADVNAQDKFGKTPFDLAAMAGN
EDIAEVLQKAAKLNDYKDDDDK 

008-855-2308-B9 N2C 

27 B3 ATGAGAGGATCGCATCACCATCACCATCACCATCACGGATCCGACCTGGGTAAGAAACTGCTGGAAGC
TGCTATCCATGGTCAGCTGGACGAAGTTCGTATCCTGATGGCAAACGGTGCTGACGTTAACGCTACTG
ACCTGCAGGGTCATACTCCGCTGCACCTGGCTGCTAAATGGGGTCACCTGGAAATCGTTGAAGTTCTG
CTGAAAACCGGTGCTGACGTTAACGCTGAAGACGTTCGTGGTTACACTCCGCTGCACCTGGCTGCTCT

MRGSHHHHHHHHGSDLGKKLLEAAIH
GQLDEVRILMANGADVNATDLQGHT
PLHLAAKWGHLEIVEVLLKTGADVNAE
DVRGYTPLHLAALWGHLEIVEVLLKHG

008-855-2308-C11 N2C 
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GTGGGGTCACCTGGAAATCGTTGAAGTTCTGCTGAAGCACGGCGCCGACGTTAACGCTCAGGACCGTT
GGGGTGAAACTCCGTTCGACCTGGCTGCTTGGTTCGGTAACGAGGACATCGCTGAAGTTCTGCAGAAA
GCTGCTAAGCTTAATGACTACAAGGATGACGACGACAAG 

ADVNAQDRWGETPFDLAAWFGNEDI
AEVLQKAAKLNDYKDDDDK 

27 D3 ATGAGAGGATCGCATCACCATCACCATCACCATCACGGATCCGACCTGGGTAAGAAACTGCTGGAAGC
TGCTCGTGCTGGTCAGGACGACGAAGTTCGTATCCTGATGGCAAACGGTGCTGACGTTAACGCTGTTG
ACACTTTCGGTTGGACTCCGCTGCACCTGGCTGCTGCTAACGGTCACCTGGAAATCGTTGAAGTTCTGC
TGAAAACCGGTGCTGACGTTAACGCTAACGACCAGCGTGGTAACACTCCGCTGCACCTGGCTGCTTGG
GACGGTCACCTGGAAATCGTTGAAGTTCTGCTGAAGCACGGCGCCGACGTTAACGCTCAGGACAACTT
CGGTATCACTCCGTTCGACCTGGCTGCTTACCGTGGTAACGAGGACATCGCTGAAGTTCTGCAGAAAG
CTGCTAAGCTTAATGACTACAAGGATGACGACGACAAG 

MRGSHHHHHHHHGSDLGKKLLEAAR
AGQDDEVRILMANGADVNAVDTFGW
TPLHLAAANGHLEIVEVLLKTGADVNA
NDQRGNTPLHLAAWDGHLEIVEVLLK
HGADVNAQDNFGITPFDLAAYRGNED
IAEVLQKAAKLNDYKDDDDK 

008-855-2309-A6 N2C 

27 F3 ATGAGAGGATCGCATCACCATCACCATCACCATCACGGATCCGACCTGGGTAAGAAACTGCTGGAAGC
TGCTCGTGCTGGTCAGGACGACGAAGTTCGTATCCTGATGGCAAACGGTGCTGACGTTAACGCTTCTG
ACGTTGTTGGTCAGACTCCGCTGCACCTGGCTGCTTGGTCTGGTCACCTGGAAATCGTTGAAGTTCTGC
TGAAAACCGGTGCTGACGTTAACGCTGAAGACATGGTTGGTAACACTCCGCTGCACCTGGCTGCTTAC
GTTGGTCACCTGGAAATCGTTGAAGTTCTGCTGAAGGCCGGCGCTGACGTTAACGCTGACGACTTCCG
TGGTCGTACTCCGCTGCACCTGGCTGCTTACTACGGTCACCTGGAAATTGTTGAAGTTCTGCTGAAGCA
CGGCGCCGACGTTAACGCTCAGGACAAATTCGGTAAGACTCCGTTCGACCTGGCTATCGACAACGGTA
ACGAGGACATCGCTGAAGTTCTGCAGAAAGCTGCTAAGCTTAATGACTACAAGGATGACGACGACAA
G 

MRGSHHHHHHHHGSDLGKKLLEAAR
AGQDDEVRILMANGADVNASDVVGQ
TPLHLAAWSGHLEIVEVLLKTGADVNA
EDMVGNTPLHLAAYVGHLEIVEVLLKA
GADVNADDFRGRTPLHLAAYYGHLEIV
EVLLKHGADVNAQDKFGKTPFDLAIDN
GNEDIAEVLQKAAKLNDYKDDDDK 

008-855-2309-D7 N3C 

27 G4 ATGAGAGGATCGCATCACCATCACCATCACCATCACGGATCCGACCTGGGTAAGAAACTGCTGGAAGC
TGCTCGTGCTGGTCAGGACGACGAAGTTCGTATCCTGATGGCAAACGGTGCTGACGTTAACGCTGAAG
ACGCTAAAGGTCATACTCCGCTACACCTGGCTGCTTACCTGGGTCACCTGGAAATCGTTGAAGTTCTGC
TGAAAACCGGTGCTGACGTTAACGCTTACGACAAACATGGTCATACTCCGCTGCACCTGGCTGCTTCTT
GGGGTCACCTGGAAATCGTTGAAGTTCTGCTGAAGGCCGGCGCTGACGTTAACGCTTCTGACCATACT
GGTCGTACTCCGCTGCACCTGGCTGCTTGGTACGGTCACCTGGAAATCGTTGAAGTTCTGCTGAAGGC
CGGCGCTGACGTTAACGCTCAGGACAAATTCGGTAAGACTCCGTTCGACCTGGCTATCGACAACGGTA
ACGAGGACATCGCTGAAGTTCTGCAGAAAGCTGCTAAGCTTAATGACTACAAGGATGACGACGACAA
G 

MRGSHHHHHHHHGSDLGKKLLEAAR
AGQDDEVRILMANGADVNAEDAKGH
TPLHLAAYLGHLEIVEVLLKTGADVNAY
DKHGHTPLHLAASWGHLEIVEVLLKAG
ADVNASDHTGRTPLHLAAWYGHLEIV
EVLLKAGADVNAQDKFGKTPFDLAIDN
GNEDIAEVLQKAAKLNDYKDDDDK 

008-855-2310-G12 N3C 

27 B5 ATGAGAGGATCGCATCACCATCACCATCACCATCACGGATCCGACCTGGGTAAGAAACTGCTGGAAGC
TGCTTTCATGGGTCAGCACGACGAAGTTCGTATCCTGATGGCAAACGGTGCTGACGTTAACGCTCAGG
ACAAAGCTGGTCATACTCCGCTGCACCTGGCTGCTCAGATGGGTCACCTGGAAATCGTTGAAGTTCTG
CTGAAAACCGGTGCTGACGTTAACGCTTCTGACTGGTACGGTATCACTCCGCTGCACCTGGCTGCTTG
GAACGGTCACCTGGAAATCGTTGAAGTTCTGCTGAAGCACGGCGCCGACGTTAACGCTCAGGACTGG
GACGGTAACACTCCGTTCGACCTGGCTGCTATGGTTGGTAACGAGGACATCGCTGAAGTTCTGCAGAA
AGCTGCTAAGCTTAATGACTACAAGGATGACGACGACAAG 

MRGSHHHHHHHHGSDLGKKLLEAAF
MGQHDEVRILMANGADVNAQDKAG
HTPLHLAAQMGHLEIVEVLLKTGADVN
ASDWYGITPLHLAAWNGHLEIVEVLLK
HGADVNAQDWDGNTPFDLAAMVGN
EDIAEVLQKAAKLNDYKDDDDK 

008-855-2311-B9 N2C 

27 D5 ATGAGAGGATCGCATCACCATCACCATCACCATCACGGATCCGACCTGGGTAAGAACCTGCTGGAAGC
TGCTGTTCAGGGTCAGGACGACGAAGTTCGTATCCTGATGGCAAACGGTGCTGACGTTAACGCTGAA
GACTTCCATGGTCTGACTCCGCTGCACCTGGCTGCTTGGCATGGTCACCTGGAAATCGTTGAAGTTCTG
CTGAAAACCGGTGCTGACGTTAACGCTCATGACATGATCGGTTGGACTCCGCTGCACCTGGCTGCTCG
TGTTGGTCACCTGGAAATCGTTGAAGTTCTGCTGAAGGCCGGCGCTGACGTTAACGCTTGGGACACTC
GTGGTCGTACTCCGCTGCACCTGGCTGCTTGGGCTGGTCACCTGGAAATCGTTGAAGTTCTGCTGAAG
CACGGCGCCGACGTTAACGCTCAGGACAAATTCGGTAAGACTCCGTTCGACCTGGCTATCGACAACGG
TAACGAGGACATCGCTGAAGTTCTGCAGAAAGCTGCTAAGCTTAATGACTACAAGGATGACGACGAC
AAG 

MRGSHHHHHHHHGSDLGKNLLEAAV
QGQDDEVRILMANGADVNAEDFHGL
TPLHLAAWHGHLEIVEVLLKTGADVNA
HDMIGWTPLHLAARVGHLEIVEVLLKA
GADVNAWDTRGRTPLHLAAWAGHLE
IVEVLLKHGADVNAQDKFGKTPFDLAI
DNGNEDIAEVLQKAAKLNDYKDDDDK 

008-855-2311-D10 N3C 

 
E3_5 ATGAGAGGATCGCATCACCATCACCATCACCATCACGGATCCGACCTGGGTAAGAAACTGCTGGAAGC

TGCTCGTGCTGGTCAGGACGACGAAGTTCGTATCCTGATGGCTAACGGTGCTGACGTTAACGCTACTG
ACAATGATGGTTATACTCCGCTGCACCTGGCTGCTTCTAATGGTCACCTGGAAATCGTTGAAGTTCTGC
TGAAGAACGGTGCTGACGTTAACGCTTCTGACCTTACTGGTATTACTCCGCTGCACCTGGCTGCTGCTA
CTGGTCACCTGGAAATCGTTGAAGTTCTGCTGAAGCACGGTGCTGACGTTAACGCTTATGACAATGAT
GGTCATACTCCGCTGCACCTGGCTGCTAAGTATGGTCACCTGGAAATCGTTGAAGTTCTGCTGAAGCA
CGGTGCTGACGTTAACGCTCAGGACAAATTCGGTAAGACCGCTTTCGACATCTCCATCGACAACGGTA
ACGAGGACCTGGCTGAAATCCTGCAAAAGCTTAATGACTACAAGGATGACGACGACAAG 

MRGSHHHHHHHHGSDLGKKLLEAAR
AGQDDEVRILMANGADVNATDNDGY
TPLHLAASNGHLEIVEVLLKNGADVNA
SDLTGITPLHLAAATGHLEIVEVLLKHG
ADVNAYDNDGHTPLHLAAKYGHLEIVE
VLLKHGADVNAQDKFGKTAFDISIDNG
NEDLAEILQKLNDYKDDDDK 

E3_5 N3C 

 1025 
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