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Abstract:

Cryo-electron microscopy (cryo-EM) enables the determination of membrane protein
structures in native-like environments. Characterising how membrane proteins interact
with the surrounding membrane lipid environment is assisted by resolution of lipid-like
densities visible in cryo-EM maps. Nevertheless, establishing the molecular identity of
putative lipid and/or detergent densities remains challenging. Here we present
LipIDens, a pipeline for molecular dynamics (MD) simulation-assisted interpretation of
lipid and lipid-like densities in cryo-EM structures. The pipeline integrates the
implementation and analysis of multi-scale MD simulations for identification, ranking
and refinement of lipid binding poses which superpose onto cryo-EM map densities.
Thus, LipIDens enables direct integration of experimental and computational structural
approaches to facilitate the interpretation of lipid-like cryo-EM densities and to reveal
the molecular identities of protein-lipid interactions within a bilayer environment. The
LipIDens code is open-source and embedded within a notebook format to assist
automation and usability.
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Introduction:

Recent methodological advances in cryo-electron microscopy (cryo-EM) have
transformed our understanding of membrane protein structure and function?. As
these methods develop and enable determination of higher resolution membrane
protein structures®2, additional non-protein lipid-like densities are increasingly
resolved surrounding protein transmembrane domains (TMDs)%*1. These additional
densities are generally considered to correspond to bound lipid or detergent
molecules. However, determining the chemical identity of putative lipid/detergent
densities from cryo-EM maps is challenging*1:*2. As such, assignment and discussion
of lipid-like densities is often tentative, complicating subsequent interpretation of how
bound lipids and the bilayer environment may modulate membrane protein function.

Molecular dynamics (MD) simulations enable exploration of the lipid environment
surrounding membrane proteins and have been readily applied to characterise lipid
binding sites on diverse family members including G-protein coupled receptors, solute
transporters, and ion channels'3-17, In such simulations, the identity of a lipid bound at
a site is known precisely. However, accompanying experimental validation of the lipid
species at a predicted binding site in a native cell membrane is often absent or at best
difficult to obtain. Thorough exploration of the surrounding membrane environment
requires simulation timescales that are sufficient to sample multiple lipid
binding/unbinding events across the TMD#18, This is readily enabled through use of
coarse-grained (CG) and atomistic simulations which have been used to successfully
predict lipid binding sites subsequently validated via experimental structural and
biophysical methods'®*2!. Thus, there is a clear complementarity between MD
simulations and structure determination by cryo-EM for identification and
characterisation of protein-lipid interactions. However, automated and objective
protocols for exploiting this complementarity have yet to be made available.

Recent advances in software development have sought to standardise methods for
determining protein-lipid interactions from simulations??-24, We recently developed the
protein-lipid analysis toolkit, PyLipID?*, which uses a community analysis-based
approach to identify lipid binding sites and to characterise the kinetics of the binding
sites and their associated residues (see ?* for details). PyLipID is a powerful
standalone tool, however the interpretation of PyLipID outputs is dependent on a) the
setup of the input MD simulations and b) effective post-processing and assessment of
PyLipID outputs. Additional atomistic simulations may also be needed to refine
observed lipid interactions. This therefore prompted the development of LipIDens, an
integrated pipeline for assisted interpretation of lipid-like cryo-EM densities using
multi-scale MD simulations. Outputs of the pipeline include representative lipid binding
poses at sites where corresponding lipid-like densities are observed, including
guantitative assessment of how well these match using Q scores?®. Importantly,
LipIDens can be used to rank the binding site kinetics of different lipid species at a
binding site, and therefore aid identification of the most likely lipid accounting for
observed structural densities. These can be used to refine lipid binding poses during
model building in cryo-EM and assist structural interpretation. Thus, we provide a
formalised pipeline interlacing simulation methodologies with  structural
characterisation of lipid-like densities; a frequently encountered and nuanced
challenge in membrane protein structural biology.
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Results:
The LiplDens pipeline:

An overview of the LipIDens pipeline is shown in Fig. 1. The LiplDens pipeline can be
broken into multiple sections corresponding to: a) structure processing; b) setting up
and performing CG simulations; c) testing PyLipID cut-offs; d) selecting PyLipID input
parameters and running PyLipID analysis; e) screening PyLipID data; f) comparing
lipid poses with cryo-EM densities; g) ranking site lipids; and h) lipid pose refinement
using atomistic simulations. Pipeline steps are integrated into a computational
notebook to assist automation
(https://github.com/TBGAnNsell/LipIDens/blob/main/LiplDens.ipynb) and  detailed
within the accompanying procedure. A standalone python file also permits modular
implementation of LipIDens stages
(https://github.com/TBGAnNsell/LipIDens/blob/main/lipidens _master_run.py).

Applications:

The pipeline can be used to:

e Assess whether adjacent tail-like densities observed in a cryo-EM map are
likely to belong to the same or different binding sites.

e Assess how the properties of a site might favour preferential binding of one lipid
type over another by examining the relative residence times of distinct lipid
species binding to the same site. This can aid interpretation of structure-
function relationships.

e Obtain a more complete picture of lipid interactions within the context of a
native-like membrane. This may reveal transient lipid interaction sites which are
less likely to survive the purification strategies used in cryo-EM, as well as
highlight the importance of lipid-lipid interactions, such as cholesterol
stacking?®.

e Quantify the kinetics of lipid binding to different sites or of multiple lipids binding
to the same site. This can be used infer which sites may be more important in
a biological context.

e Assess differences in lipid binding properties compared with related detergent
densities.

e Check whether sterol derivates such as cholesterol-hemisuccinate, commonly
used as detergents in protein purification, bind in a similar location to
cholesterol in simulations. This can aid differentiation of sterol-like vs.
phospholipid-like densities.

e Assess the relative contribution of a lipid headgroup vs. hydrophobic acyl tail to
the interactions at a binding site.

e Enable iterative simulation and model building cycles in cryo-EM.

Pipeline implementation:

We applied the LiplDens pipeline to a recent ~2.7 A cryo-EM structure of the ER
resident enzyme, Hedgehog acyltransferase (HHAT)?’ (Fig. 1-4). The structure of
HHAT reveals several lipid-like densities, evenly distributed around the TMD, including
two densities which protrude into the enzyme core. LiplDens was used to establish
CG simulations of HHAT in a native-like bilayer environment. After performing CG
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simulations, we used LiplDens to screen dual cut-off interaction schemes for
subsequent PyLipID analysis, exemplified for phosphatidylinositol 4,5-bisphosphate
(PIP2) (Fig. 2a, Extended Data Fig. 1). During cut-off screening the minimum distances
of each interacting PIP2 to a residue are calculated (Fig. 2a, Extended Data Fig. 1a-d)
in addition to exhaustive screening of interactions over multiple cut-off pairs (Extended
Data Fig. 1e-g). The selected lower cut-off (0.475 nm) corresponds to the first peak in
the probability distribution plot (Fig. 2a) and the cut-off at which there is an increase in
interaction durations, computed binding sites and residues comprising each site
compared with smaller lower cut-off values (Extended Data Fig. 1e-g). The upper cut-
off captures the first interaction shell in the probability density distribution (0.7 nm),
corresponding approximately to the position of the minimum between the first and
second peaks (Fig. 2a).

Next, PyLipID implements this dual interaction distance cut-off (i.e. 0.475/0.7 nm) to
robustly capture lipid interactions and account for transient deviations in their position
due to Brownian motion?8. Input lipid atoms may also be tuned to match structural
densities (if required) i.e., by including only headgroup atoms or averaging over protein
subunits (Fig. 2b). Lipid interaction durations are used to obtain the normalised
survival time correlation function (hereafter survival function) of interactions. A
dissociation rate constant (koff) for lipid interactions with a residue is obtained by bi-
exponential curve fitting of the interaction survival function alongside bootstrapping to
the same data. PyLipID can also identify binding sites by grouping residues which
simultaneously interact with the same bound lipid molecule, based upon a community
analysis approach?®3°, as shown for PIP2 sites mapped onto the HHAT structure using
an automatically-generated PyMOL script (Fig. 2c). Kinetic parameters are then
obtained for each predicted binding site. Representative lipid binding poses at a site
are obtained by empirical scoring of lipid binding poses against the simulation-derived
lipid density within the site. Here the representative PIP2 pose at the site with longest
residence time (BS4) is shown (Fig. 2d). In addition, lipid interaction occupancies are
calculated as the percentage of frames where lipid is bound compared to the total
number of frames on a per residue or site basis (Fig. 2e). The methodological
underpinnings of PyLipID are described extensively elsewhere?* and have been
applied to a number of recent examples3-33,

After calculation of lipid binding sites and their kinetics, the LiplDens pipeline ranks
site outputs for inspection of site quality. Site occupancies, residence times and
surface areas are ranked from lowest to highest or closest to 0 for Akos (defined as the
difference between kot calculated by curve-fitting and via bootstrapping the same data)
(Fig. 3a). This plot can be used to inspect the quality of calculated binding sites.
Typically, a good site has a Akof between + 1 ys. For example, for HHAT, binding site
12 is ranked last by all metrics whereas binding site 4 (Fig 3a, Fig. 2c-d) has the
longest predicted residence time and occupancy and a small Akof indicating good
agreement between kosf values calculated from the survival function (Fig. 3b). Poorly
fitted sites, indicated by large Ak values and/or sparse interaction duration plots (Fig.
3c) should be excluded in subsequent stages of the pipeline. Thus, the LiplDens
pipeline employs automated steps to guide users through structure and simulation
processing and assess the quality of interaction outputs.

Comparing lipid poses with cryo-EM densities:
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Subsequent stages of the pipeline concern simulation-assisted interpretation of
structural lipid-like densities. For HHAT, we compared the top ranked CG lipid binding
poses with the position of cryo-EM densities and ranked the relative residence times
of all lipids binding to the same site (Fig. 4). These plots can be used to assess how
binding site properties may dictate binding of a particular lipid type and evaluate the
relative specificity of the site. For example, a site of lipid tail-insertion within HHAT
(Fig. 4a) shows equivalent preference for PC and PE lipids whereas a surface site
(Fig. 4d) preferentially binds anionic lipids. Refinement of lipid binding poses using
atomistic simulations revealed remarkably good overlap with densities, quantified by
Q scores? for the lipid poses (Qavg = ~0.4 compared to ~0.7 for structurally modelled
palmitate moieties and HHAT heavy atoms at 2.7 A) (Fig. 4, Extended Data Fig. 2).
This is particularly impressive considering lipid poses were derived ab initio from the
simulations and in the absence of any density guided restraints. We note that LipIDens
can be employed iteratively throughout the model building process, including for low-
resolution maps. We exemplify this for HHAT using a low-resolution map at ~5 A (Fig.
4a) whereby PyLipID was able to identify a lipid binding site corresponding to kinked
tail density which was subsequently revealed (among the other peripheral densities)
when the map resolution was improved to ~2.7 A (Fig. 4b-e), thus serving as a double-
blind test study.

Application to other membrane proteins:

We applied the pipeline to three different membrane proteins for which lipids have
been assigned to putative densities in recent structures; the eukaryotic proton channel
Otopetrinl (OTOP1)%*, the Escherichia coli pentameric ligand-gated ion channel
ELIC® and the mechanosensitive channel of small conductance (MscS), also from E.
coli®® (Fig. 5). These examples serve to demonstrate the diverse applicability of
LipIDens to assist interpretation of structure-function questions.

In the ELIC structure, authors observe an elongated density traversing both leaflets,
modelled as a highly unusual extended and tilted cardiolipin (CDL) molecule (Fig. 5a,
magenta)®. In simulations we also observe CDL binding to this site, constituting the
top ranked CDL site across the protein (Extended Data Fig. 3). We were unable to
replicate the unusual tilted modelled pose despite pose refinement with atomistic
simulations (Fig. 5a, teal). We observe a more conventional CDL binding pose
whereby the phosphate beads remain in close z axial proximity (Fig. 5b, Extended
Data Fig. 3), consistent with a large-scale analysis of CDL binding poses in E. coli®L.
Re-assessment of the proposed CDL density shows discontinuity at approximately the
position of the bilayer midplane (Fig. 5¢). Consistent with this we identified a second
lipid site in the inner leaflet which also preferentially bound CDL, albeit with a much
lower residence time (Fig. 5d-e). This raises the possibility that the density in fact
corresponds to two lipids in adjacent leaflets, for which additional experimental
analysis will be required to establish (Fig. 5d-e). The diffuse nature of densities in this
region may also be accounted for by tail promiscuity/dynamics across the two CDL
binding sites, a feature we also observed in atomistic simulations (Extended Data Fig.
3c). This highlights the highly non-trivial nature of interpreting lipid-like densities from
cryo-EM structures and the power of the pipeline to assist model building and density
interpretation.
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For OTOP1, assignment of the putative lipid densities was challenging, due to
resolution ranging 3.1-3.4 A around the TMD. The authors assigned three densities
per protein subunit as cholesterol-hemisuccinate (CHS), trapped between the dimer
interface and thus occluded from the bilayer accessible region. An additional density
between the N- and C- domain of each monomer was modelled as cholesterol®*,
Assignment of these densities was likely possible due to enclosure between the
transmembrane segments which may have stabilised the bound lipids/detergents.
Given these observations we used LiplDens to assess which of the remaining 17
densities per monomer may also correspond to cholesterol. Cholesterol binding poses
matched the location of 4/17 of the additional lipid-like densities (Fig. 5f, green), for
which cholesterol was one of the highest ranked lipids (Extended Data Fig. 4). We
were able to recapitulate exclusive binding of cholesterol at the N/C domain interface,
consistent with the modelling in the structure (Fig. 5g). Modelling of this density as
cholesterol is also ranked highly in the PDB ligand validation tool. In addition, we were
able to use the pipeline to suggest the mostly likely identity of lipid species at those
sites where cholesterol did not bind (Extended Data Fig. 4). We observed preferential
binding of lipids with anionic headgroups (PIP2/PS) to three of these sites (Fig. 5f, red,
Extended Data Fig. 4). This included one notable curved tail-like density at the edge
of the dimer interface which was also captured in the top ranked PIPz pose at this site
(Fig. 5h-i). These densities may therefore correspond to bound PIP2 and/or PS
molecules extracted from the native bilayer. There were 3 densities per monomer
which we could not assign to lipids based on the top ranked simulation poses (Fig. 5f,
dark blue, Extended Data Fig. 4). These densities were smaller and may result from
differences between the binding properties of detergents vs. lipids or from the limited
resolution of low occupancy binding events.

A high-resolution structure of MscS was solved to 2.3 A allowing for modelling of 8
detergent moieties per subunit (5x lauryl maltose neopentyl glycol (LMNG), 3x N-
dodecyl-B-maltoside (DDM)). The authors were also able to resolve a bound lipid,
assigned as PE, which was tilted by ~80° degrees with respect to the bilayer normal®.
We wished to assess whether a) PE preferentially bound to this site when MscS was
embedded in an E. coli inner membrane-like lipid composition (i.e. PE/PG/CDL) and
b) whether a tilted lipid conformation was also observed when the protein is embedded
within a lipid bilayer. In simulations, this site emerges as a prominent and prolonged
binding site for PE, PG and CDL with all lipid types binding with residence times of at
least 15 us (Fig. 5j). This is consistent with an experimental study suggesting the
pocket can be accessed by multiple lipid types, including CDL, in a manner that was
broadly independent of the headgroup type®’. Assessment of the top ranked lipid
binding poses revealed a tilted conformation for CDL with the tails inserting into a
groove between TM2 and TM3a and the phosphate headgroups coordinated by R46
and R74 (Fig. 5k, Extended Data Fig. 5). This also highlights the ability of simulations
to provide additional native context, given CDL was not added during determination of
the MscS structure. We did not observe lipid tilt amongst the top ranked poses of PE
or PG but tilted conformations were present in subsidiary pose clusters. The trapped
CDL tail between TM2 and TM3a is intriguing since the acyl-tail of DDM is observed
to occupy the same groove as the PE tails in the MscS structure (Fig. 5k, Extended
Data Fig. 5). Thus, DDM may aid stabilisation of the protein by mimicking the
behaviour of ‘bulkier’ lipid types with additional tails (such as CDL) in a detergent
context and/or by displacing tail binding from the groove during protein solubilisation.
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It is also possible that DDM may modify the hydrophobic volume of the groove
between TM2/TM3a to accommodate the tilted PE molecule.

Discussion:

In summary, we have developed the LipIDens pipeline for simulation-assisted
interpretation and refinement of lipid-like structural densities. We describe how
LipIDens can be applied to establish and analyse simulations and to assess the quality
of lipid interaction data (Fig. 1-3). We detail how the pipeline can be employed to
assess lipid site identity and specificity using HHAT as an example (Fig. 4). Finally,
we assess lipid-like densities across a range of other membrane proteins to illustrate
how LipIDens can be applied to:

1) Identify and refine lipid binding poses using a multiscale simulation approach
(Fig. 5a-e).

2) Suggest the most likely identity of lipid densities and rank the relative residence
times of different lipids binding at a site (Fig. 5d,e,g,h,j).

3) Differentiate between lipid-tail and sterol like densities (Fig. 5f).

4) Identify differences between structural densities and simulation derived lipid
poses (Fig. 5f).

5) Discriminate between binary lipid binding sites and those able to interact with a
range of lipid types (Fig. 5f-i).

6) Capture possible occurrences of detergent biomimicry as exemplified by
comparison of CDL poses with detergent/lipid stacking (Fig. 5k).

Cellular membranes contain hundreds of different lipid species, with highly diverse
headgroup and tail compositions dependant on e.g. subcellular localisation38-4°, Only
a subset of these lipid types are available for use in CG simulations, although topology
files for the most abundant lipid species are generally available*l. Consequently, the
goal of this pipeline is not to definitively identify exact molecular identity per se of a
bound lipid at a site but to guide the user towards the most likely identity of the lipid
within a given membrane composition. As such, selected membrane compositions
should mimic, at least to a first approximation, the native environment of the
membrane protein or experimental lipid conditions (such as the nanodisc
composition)*?=4°, In particular, if there is already data suggesting a biological role for
a specific lipid, it would of course be wise to include this in the bilayer component of
the simulation. In addition we note there is likely to be some bias in the initial density
map towards lipids with strong interactions which are able to survive membrane
protein purification, as has been suggested by previous affinity calculations?®.

One key feature of LiplDens is the ability to capture lipid binding sites and
representative poses a priori from unbiased (equilibrium) simulations whereby, unlike
in e.g. docking studies (where search space is restricted) sites are explored over the
whole membrane lipid accessible surface. LipIDens also automates processing and
validation steps to readily obtain meaningful results from these comprehensive data
sets. Ultimately, the LiplDens pipeline demonstrates how integrative structural biology
methods can be applied to facilitate the biologically relevant contextualisation of
membrane protein structures.
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Figure legends:

Figure 1: The LiplDens pipeline for characterising lipid densities using
simulations.

A workflow for LiplDens assisted interpretation of lipid densities using simulations,
applied to Hedgehog acyltransferase (HHAT, PDBid: 7Q1U)?’ enzyme as an example.
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Steps involving structure processing (grey), setup and performing MD simulations
(orange), analysis of lipid sites/densities (blue) and modelling (yellow) are indicated.
Optional steps are boxed by grey dashed lines. A protein structure is used as input
and, if required, missing peptide linkages and/or residue sidechains are amended in
the input structure. Superfluous protein components e.g. nanobodies/ligands are
removed. The protein is converted to coarse-grained (CG) resolution and embedded
in a selected membrane environment which is solvated using water and ions. CG
simulations are performed and analysed using the lipid interaction analysis toolkit
PyLipID?4. Lipid binding sites and poses identified by PyLipID are processed, ranked
and compared to densities in the cryo-EM map to assist interpretation of putative lipid
densities in the structure.

Figure 2: Analysing simulations using PyLipID.

a) The upper and lower distance cut-offs used to define lipid contacts with a protein
are selected from a probability distribution of the lipid of interest around the protein;
exemplified here for PIP2 binding to HHAT. b) The user can tune appropriate inputs
for the lipid interaction analysis using PyLipID?*. For example, if only headgroup
density is visible the user may limit the selection to lipid headgroup atoms. This is
exemplified for a PIP2 (red sticks) binding on the neurotensin receptor (NTSR1, white
cartoon). Density modelled as the PIP2 headgroup is shown as blue mesh (PDBid:
B6UP7)%. Alternatively if tail density is visible the user may choose to analyse the whole
lipid, as exemplified for densities (blue mesh) visible surrounding the Connexin-50 gap
junction channel (PDBid: 7JJP, white cartoon)®. Analysis can also be averaged over
homo-multimeric proteins to enhance sampling of lipid interactions. c-e) Example
outputs from PyLiplD analysis of PIP2 binding to HHAT from 10 x 15 ps CG
simulations. A 0.475/0.7 nm dual cut-off was used to analyse interactions with the
whole PIP2 lipid. ¢) PIP2 binding sites mapped onto the structure of HHAT. Binding
sites are coloured individually and residues comprising each site are shown as
spheres, scaled by residence time. The binding site (BS) with the longest residence
time (BS4) is boxed. d) CG representation of the highest ranked lipid binding pose for
PIP2 (red) at BS4. HHAT is shown in white and the top 5 residues with highest
residence times within BS4 are shown as yellow spheres. e) PIP:2 interactions
occupancies mapped onto the structure of HHAT, coloured from low (white) to high
(red).

Figure 3: Screening binding site data.

Metrics for discerning binding site quality during processing of PyLipID outputs. a)
Comparison of binding site Akot values (kott bootstrap — kot curve fit), residence times,
site occupancies and surface areas for PIP:z interactions with HHAT (10 x 15 pus CG
simulations). Binding sites are ranked either from lowest to highest (residence
times/occupancies/surface areas) or from worst agreement between calculated site
kot values (Akorr) to best (i.e., closest to 0). Arrows indicate sites corresponding to
those in b (green) and c (red). b-c) Example binding site plots for PIP2 binding to a b)
well sampled site (BS4) and c¢) an infrequently observed site (BS12) on HHAT. In each
case a sorted index of interaction durations within the simulations is shown on the left
panel. The right plot corresponds to the survival time correlation function of interaction
durations (blue dots). koff values are derived either via biexponential curve fitting to the
survival time correlation function (red line) or via bootstrapping (grey lines).

Figure 4: Comparison of cryo-EM densities with lipid poses from simulations.
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Identification of representative bound poses of lipid species to assist interpretation of
cryo-EM densities, exemplified for lipid interactions surrounding HHAT. Left: CG
binding poses for lipids bound to identified binding sites on HHAT. CG simulations
were initiated using a low-resolution structure derived from a preliminary cryo-EM map
(a, ~5 A) or a higher resolution map (b-e, ~2.7 A)?’ to illustrate how LipIDens can be
implemented throughout the model building process. HHAT was simulated for 10 x 15
Js in each case. Middle left: selected pose of a lipid bound to HHAT during atomistic
simulations initiated by back-mapping from CG simulations. Middle right: comparison
of cryo-EM densities (grey mesh) with the atomistic pose. Modelled palmitate moieties
in the HHAT structure are shown as grey sticks. Average Q scores? for the atomistic
lipid tail pose within the cryo-EM density are indicated. Right: binding site residence
times and R? values for each lipid which binds to the site, used to assess preferential
binding of a lipid species to specific sites. POPC is coloured dark blue, DOPC light
blue, POPE purple, DOPE pink, cholesterol green, PIP2 red, POPS coral and palmitate
(PAL) ochre throughouit.

Figure 5: Application of the pipeline to a range of example proteins.

The LiplDens pipeline as applied to assist interpretation of lipid-like densities within
structures of a-e) the E. coli pentameric ligand-gated ion channel (ELIC, PDBid
7L6Q)%, f-i) the proton channel Otopetrinl (OTOP1, PDBid 6NF4)3* and j-k) the E.
coli mechanosensitive ion channel (MscS, PDBid 7ONJ)%¢. Each protein was
simulated for 10 x 15 ps in a lipid composition designed to mimic the native
environment of the protein (Supplementary Table 2). a) Overlay of the structurally
modelled cardiolipin (CDL) pose on ELIC (magenta) with the pose at the end (t = 200
ns) of an atomistic simulation (teal) initiated from the top ranked CG CDL binding pose
identified by PyLiplD?*. Phosphate groups of each CDL molecule are shown as
spheres connected by a vector indicating the relative lipid tilt angle with respect to z.
b) Angle of the vector between CDL phosphate groups with respect to z across 3 x
200 ns atomistic simulations (teal). The magenta line indicates the structurally
modelled lipid tilt angle. c) Lipid-like densities at the proposed site indicating
discontinuous density at the bilayer midsection to form two distinct CDL binding sites
in the upper (teal) and lower (dark teal) leaflet. Site residence times and R? values for
PE, PG and CDL binding to the identified upper (d) and lower (e) sites. f) Lipid-like
densities surrounding OTOP1 coloured according to whether cholesterol (green) or
PIP2/PS (red) were identified as binding to the site among the highest lipid residence
times. Other lipid densities where sites were identified by PyLipID are shown in blue
(see Extended Data Fig. 4) and densities where lipid sites were not identified by
PyLipID are shown in dark blue. g) Exclusive binding of cholesterol between the N-
and C- domains of OTOP1, corresponding to the cholesterol site modelled in the
structure®*. h) Preferential binding of anionic lipids in proximity to a kinked lipid density
at the OTOP1 dimer interface. i) Top ranked PIP2 binding pose identified by PyLipID
from CG simulations, showing curved tail position which matches the lipid density at
this site. j) Prolonged interactions of PE, PG and CDL at the lipid site on MscS between
TM2 and TM3a. k) Comparison of the top ranked CDL binding pose from CG
simulations (left) with the modelled PE and DDM molecules in the MscS structure
(right) showing tail insertion/stacking between TM2 and TM3a and a tilted lipid binding
pose.
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Methods

Input data

Protein coordinate files in .pdb format and corresponding cryo-EM density map for the
protein (e,g. from the Electron Microscopy Data Bank (EMDB)
https://www.ebi.ac.uk/emdb/) are required. MARTINI (version 2.2 or 3.0) parameters
(http://cgmartini.nl/index.php/downloads) are used for CG simulations and
automatically obtained by LiplDens. For atomistic simulations, CG2AT provides a
choice of forcefields automatically*®. Molecular dynamics simulation parameter files
are automatically provided in the pipeline. The default linear constraint solver
(LINCS)# parameters (lincs_order=4, lincs_iter=1) are used in GROMACS mdp files
unless MARTINI-2.2 cholesterol with virtual sites® is included in the bilayer, in which
case lincs_order=12 and lincs_iter=2 are used instead, in line with recent findings®:.

Molecular dynamics simulations in the examples described used GROMACS 2019 (>
version 5 recommended) (https://www.gromacs.org/), with visualisation using VMD?®2
(https://www.ks.uiuc.edu/Research/vmd/) and PyMOL (https://PyMOL.org/2/). The
LipIDens pipeline was installed from the GitHub repository
(https://github.com/TBGAnNsell/LipIDens). LiplDens uses additional packages which

are  automatically installed: PyLipID (version  >=1.5)%4 (from
https://qgithub.com/wlsong/PyLipID) and Martinize2 (version >=0.7)
(https://github.com/marrink-lab/vermouth-martinize). Additionally, dssp
(https://swift.cmbi.umcn.nl/qv/dssp/); CG2AT
(https://github.com/owenvickery/cg2at)*®; and propKa

(https://github.com/jensengroup/propka)®® may be required.

LiplDens Pipeline

The LiplDens pipeline is composed of multiple stages, run using an interactive
standalone master python file (‘lipidens_master_run.py’) or by pre-defining variables,
as described in the jupyter (https://jupyter.org) notebook (‘LipIDens.ipynb’). A detailed
step-by-step guide to LiplDens usage is provided in the accompanying protocol XXX
(https://protocolexchange.researchsquare.com). The GROMACS 2019 MD simulation
software®* (https://www.gromacs.org/) was employed throughout. Additionally, the
MARTINI-2.2 forcefield was used for CG simulations*' due to its broad applicability
and ability to replicate experimentally observed lipid binding poses®®. The protocol can
also be used with MARTINI-3.0 if required.

Coarse-grained MD simulations:

Simulations of HHAT were initiated using coordinates derived from two cryo-EM maps
at ~2.7 A (PDBid: 7Q1U)?” and ~5 A resolution (unpublished). HHAT CG simulations
were set up as described in 2?7 and as detailed in the accompanying protocol for all
proteins. Coordinates for OTOP1 and ELIC were derived from the Protein Data Bank
(PDB) (PDBid: OTOP1 6NF4, ELIC 7L6Q)3*3°, The structure of MscS was kindly
provided by Dr. Tim Rasmussen, and is now also obtainable from the PDB (PDBid:
70NJ)36,
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Simulations were setup as described in detail in the accompanying protocol
(https://protocolexchange.researchsquare.com). The MARTINI-2.2 forcefield*! was
used to describe all components and simulations were performed using GROMACS
2019 (www.gromacs.org). Lipid compositions were selected to recapitulate the
native bilayer composition of each protein (as detailed in Supplementary Table 2).
Alternatively, LiplDens provides a number of default membrane compositions
(Supplementary Table 1). Energy minimisation, equilibration and production
simulations were run using the parameters detailed in the .mdp files within the GitHub
repository. Each system was simulated for a total of 10 x 15 ps.

Testing PyLipID cut-offs:

PyLipID analysis was used to test lower and upper cut-off values to define interactions
of a specific lipid with a protein. In general, it is recommended to exhaustively test a
range of upper and lower cut-off value pairs over a few different lipid types, particularly
those which are chemically diverse such as e.g. sterols vs. phospholipids. The output
from this analysis is provided as a plot of interaction duration times, number of
calculated binding sites and number of contacting residues for each dual cut-off
combination (Extended Data Fig. le-g). In addition, a probability distribution plot of
minimum lipid-residue distances is also generated by LipIDens (Fig. 2a, Extended
Data Fig. 1a-d).

Appropriate lower and upper cut-offs correspond approximately to the position of the
first solvation peak and the proceeding trough respectively (Fig. 2a). In addition, the
lower cut-off demarks the point at which there is a jump in calculated duration times,
binding site numbers and contacting residues when exhaustively testing cut-off pairs.
Choice of upper cut-off also depends on whether deviations are observed in the
exhaustive cut-off search when the upper cut-off is changed. Ideally the interaction
metrics should plateau when an appropriate upper cut-off value is reached (Extended
Data Fig. 1e-Q).

Selecting PyLipID input parameters and running PyLipID analysis:

The next step of the LipIDens pipeline relates to the computation of lipid binding sites
and associated interaction kinetics using PyLipID. The lipid atoms included in site
calculations can be tuned based on the putative lipid densities present in the
corresponding cryo-EM maps by for example, restricting to lipid headgroup atoms (Fig.
2b). The sites calculated here included all lipid atoms and implemented a 0.475/0.7
nm dual cut-off scheme for all proteins. In the case of protein oligomers, OTOP1
(dimer), ELIC (pentamer) and MscS (heptamer), lipid interactions were averaged over
protein sub-units. All other PyLipID input parameters were kept at default settings
(binding_site _size=4, n_top poses=3 and n_clusters=auto). PyLipID
outputs were automatically mapped onto protein structures provided in the input .pdb
file. Top ranked lipid poses, pose clusters, per residue and site kinetics and structural
coordinates with kinetics mapped to the B-factor column were generated by PyLipID.

Screening PyLipID data:

LipIDens ranks the lipid binding sites generated by PyLipID from lowest to highest (in
the case of e.g. Occupancy, Residence time or Surface area) or closest to 0 (for Akot
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where Akof is the difference between the kot calculated form the curve fit of the survival
function and the bootstrapped kot Of the same data) (Fig. 3a). Poorly defined sites with
large Akott values (generally > + 1 us) were excluded from future stages of the pipeline.
Site ranking was used to identify sites with long residence times and occupancies and
with Akort ~ 0 us which may be of biological relevance and/or for comparison with cryo-
EM densities. It is useful to inspect the mean survival time correlation function plots to
assess site sampling and quality of calculated binding sites (Fig. 3b-c). The interaction
durations plots should be well populated and the biexponential fit/bootstrapping curves
should approximate the underlying survival function data (Fig. 3b). Additional R?
values for predicted residence times are provided as a further metric for assessing the
quality of PyLipID outputs. If most of the sites are not well defined, this is usually an
indication you should increase the length of simulations to improve site sampling.

Comparing lipid poses with cryo-EM densities:

Bound lipid poses outputted by PyLipID were visualized using VMD, for both the top
ranked lipid binding poses (‘BSidX_rank’) and the clustered poses (‘BSidX_clusters’).
The identified binding poses (excluding poses from poorly defined sites as identified
previously) were compared with the position of densities in the cryo-EM maps.

Ranking lipid species at a site:

LipIDens generates plots to compare the residence times and R? values of different
lipids binding to the same site (Fig. 4, Extended Data Fig. 4). LipIDens automatically
calculates the closest matching binding sites for selected lipids based on similarity
between binding sites residues. Residues comprising binding sites are compared to
those of the reference lipid (i.e. the first lipid inputted when prompted). It is
recommended to use an abundant phospholipid (rather than e.g. a sterol) as the
reference lipid. These were further inspected manually to check predicted site
matches and remove poorly defined sites. By comparing the binding poses of the
reference lipid to the location of lipid-like densities in the cryo-EM map the plots can
be used to infer the most likely identity of the lipid species accounting for a given
density.

Lipid pose refinement using atomistic simulations:

The final stage of the LiplDens pipeline generates inputs for atomistic simulations
which can be used to refine the CG lipid poses. CG simulations frames (i.e. those from
which the top ranked CG lipid poses were derived) were back-mapped to atomistic
resolution using CG2AT*® which generates all inputs and parameters needed for
simulation with  GROMACS. Atomistic simulations of HHAT were performed as
described for the apo state (5 x 200 ns) in 2’ and detailed within the accompanying
protocol. Additional atomistic simulations (8 x 200 ns) were established via back-
mapping from different CG frames to refine the poses of different lipids. Setup of the
additional simulations was performed identically to previous replicates. For ELIC the
CG frame from which the top ranked cardiolipin binding pose was derived was
backmapped to atomistic resolution, energy minimised and equilibrated using
CG2AT*. The CHARMM-36 forcefield*® was used describe all components and
simulations were performed using GROMACS 2019 (www.gromacs.org). The ELIC
system was simulated for 3 x 200 ns. Parameters used in the production run are
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provided in .mdp files on the GitHub page (CG:
https://github.com/TBGAnNsell/LiplDens/tree/main/lipidens/simulation/mdp _files,
atomistic:
https://github.com/TBGAnNsell/LiplDens/tree/main/lipidens/simulation/mdp_files AT).

Once the atomistic simulations had finished running, refined lipid binding poses were
compared to the cryo-EM density. The match between a simulation derived lipid pose
and the cryo-EM density can be evaluated using Q scores?® within in UCSF Chimera
using the MapQ plugin?®. Average Q scores of lipid tails were calculated for HHAT in
regions overlaying the density (Fig. 4), along with corresponding per atoms values
(Extended Data Fig. 2). We note that low Q score values are calculated for lipid regions
outside densities, consistent with increased lipid fluctuation of these exposed regions
(Extended Data Fig. 2).

Reporting Summary

Data availability

Simulation parameter files compatible with GROMACS (*.mdp files) are embedded
within the LipIDens pipeline and accessible on the GitHub page (CG:
https://qgithub.com/TBGAnNsell/LiplDens/tree/main/lipidens/simulation/mdp files,
atomistic:
https://github.com/TBGAnNsell/LipIDens/tree/main/lipidens/simulation/mdp_files AT).
Forcefield parameters compatible with MARTINI are automatically obtained by
LipIDens from http://cgmartini.nl. Atomistic parameters are from CG2AT
(https://github.com/owenvickery/cg2at).

The accompanying LiplDens protocol is provided at XXX
(https://protocolexchange.researchsquare.com).

Code availability

The LiplDens pipeline and codes described within this work are available at
https://github.com/TBGAnsell/LipIDens. Notebook workflows (LipIDens.ipynb) and
python scripts (lipidens_master_run.py) to run LiplDens are found on the GitHub

page.
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Extended Data Fiqure Legends:

Extended Data Figure 1: Tuning PyLipID cut-off values: interactions of HHAT
with PIP2

Plotted outputs from PyLipID cut-off testing. a-d) Minimum distances between HHAT
residues a) K91 b) R131 c¢) P3 and d) T408 and a PIP2 molecule across one 15 us
CG simulation. The minimum distance was calculated between any bead of the
residue and any bead of the lipid. For clarity, only those interactions which came within
0.65 nm (distance_threshold) for at least 30 frames (contact_frames) of the
simulation are plotted. e-g) Exhaustive testing of a range of lower and upper cut-off
combinations for HHAT-PIP2 interactions (10 x 15 ys CG simulations). Plots show the
effect of the selected cut-offs on e) interaction duration times f) the number of
calculated binding sites and g) the number of interacting residues.

Extended Data Figure 2: Comparison of lipid fluctuation with the cryo-EM
density.

The per atom root mean square fluctuation (RMSF) of a POPE lipid bound to HHAT
(boxed) across 5 x 200 ns atomistic simulations. POPE atom spheres are scaled by
RMSF value and coloured from low (white) to high (red). The per atom Q score?® was
used to assess how well the simulation derived lipid pose matched the cryo-EM
density.

Extended Data Figure 3: Cardiolipin binding to ELIC.

a) Cardiolipin (CDL) binding sites ranked from worst to best Akost (Akoff = Koff from curve
fitting — bootstrapped kof) or lowest to highest residence time. The CDL binding site
with the longest residence time, Binding Site 1, is arrowed. b) Top ranked CG binding
pose for CDL at Binding Site 1. ¢) Snapshots of the CDL binding pose at the end of 3
x 200 ns atomistic simulations initiated using the CG CDL binding pose in b.

Extended Data Figure 4: Interpretation of lipid densities surrounding OTOP1.

a) Numbered lipid-like densities surrounding OTOP1. b) Residence time of lipids
bound at sites corresponding to each numbered density. Lipid binding sites and
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residence times were calculated using PyLipID and a 0.475/0.7 nm cut-off from 10 x
15 us CG simulations of OTOP1.

Extended Data Figure 5: Lipid/detergent tail protrusion between TM helices of
MscS.

a) Cardiolipin (CDL) binding pose from CG simulations of MscS (viewed from the
cytosolic membrane). The transmembrane helices of one monomer of MscS are
shown as white surface and the position of residues coordinating the CDL headgroup
are shown as yellow spheres. CDL tail protrusion between TM2/TM3a is arrowed. b)
Structure of MscS (PDBid 70ONJ) in cartoon representation. The position of bound
lipid (PE, purple) and detergent (DDM, grey) tails between TM2/TM3a is arrowed.
Headgroup coordinating residues are shown as yellow sticks.
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Supplementary Table 1: Predefined lipid compositions.

Predefined bilayer type | CG bilayer composition (insane.py format)?!

Simple -u POPC:70 -u CHOL:30 -1 POPC:70 -1 CHOL:30

Plasma membrane -u POPC:20 -u DOPC:20 -u POPE:5 -u DOPE:5 -u
DPSM:15 -u DPG3:10 -u CHOL:25 -1 POPC:5 -1
DOPC:5 -1 POPE:20 -1 DOPE:20 -1 POPS:8 -1
DOPS:7 -1 POP2:10 -1 CHOL:25

ER membrane -u POPC:37 -u DOPC:37 -u POPE:8 -u DOPE:8 -u
CHOL:10 -1 POPC:15 -1 DOPC:15 -1 POPE:20 -1
DOPE:20 -1 POPS:10 -1 POP2:10 -1 CHOL:10

Raft-like microdomain -u DPPC:27 -u DPPE:8 -u DPSM:15 -u DPG3:10 -u
CHOL:40 -1 DPPC:15 -1 DPPE:35 -1 DPPS:10 -I
CHOL:40

Gram neg. inner -u POPE:67 -u POPG:23 -u CDL2:10 -1 POPE:67 -1

membrane POPG:23 -1 CDL2:10

Gram neg. outer -u PGIN:100 -1 POPE:-90 -1 POPG:5 -1 CDL2:5

membrane

Supplementary Table 2: Lipid compositions used in CG simulations.

Protein | Native bilayer CG bilayer composition

HHAT Endoplasmic reticulum | Upper: POPC (35%), DOPC (35%), POPE
(8%), DOPE (7%), cholesterol (10%),
palmitate (PCN) (5%)

Lower: POPC (15%), DOPC (15%), POPE
(19%), DOPE (18%), POPS (8%), PIP2 (10%),
cholesterol (10%), palmitate (PCN) (5%)
OTOP1 | Plasma membrane Upper: POPC (15%), DOPC (15%), POPE
(2.5%), DOPE (2.5%), sphingomyelin (DPSM)
(22%), GM3 (10%), cholesterol (33%)

Lower: POPC (7.5%), DOPC (7.5%), POPE
(15%), DOPE (15%), POPS (7.5%), DOPS
(7.5%), PIP2 (7%), cholesterol (33%)

ELIC E. coli inner membrane | POPE (67%), POPG (23%), cardiolipin (CDL2)
(10%)

MscS E. coli inner membrane | POPE (67%), POPG (23%), cardiolipin (CDL2)
(10%)

References:
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Marrink, S. J. Computational Lipidomics with insane : A Versatile Tool for
Generating Custom Membranes for Molecular Simulations. J. Chem. Theory
Comput. 11, 2144-2155 (2015).
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Key words:

Simulation, lipid, molecular dynamics, cryo-EM, density, structure, membrane protein.
Abstract:

Interpretation of lipid and lipid-like densities surrounding membrane protein structures
solved by cryo-electron microscopy (cryo-EM) is challenging. We developed the
LipIDens pipeline for assisted structural interpretation of lipid densities using molecular
dynamics (MD) simulations. This protocol details how to establish coarse-grained
(CG) simulations of membrane proteins in biomimetic membranes, test lipid interaction
cut-offs, calculate lipid interactions and binding sites, assess the quality of derived
kinetics, rank site lipids and refine lipid poses using atomistic simulations. These data
provide a platform for identifying the most probable lipid accounting for a lipid-like
density, assisting the modelling and interpretation of membrane protein structures.
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Materials:
Expertise needed to implement the protocol:

To implement the protocol a user should be familiar with basic terminal commands
and navigation. Prior experience with setting up and running CG or atomistic MD
simulations using e.g. GROMACS (www.gromacs.orqg) is advisable, for which tutorials
are available elsewhere (http://www.mdtutorials.com/gmx/,
http://camartini.nl/index.php/tutorials).

Equipment:

Input data:

e Protein coordinate file in .pdb format as obtained either structurally or e.g. from
the PDB (https://www.rcsb.org/). Protein models are also permitted and may be
useful for switching to a different homologue (e.g. https://alphafold.ebi.ac.uk)?.

e Corresponding cryo-EM density map for the protein (locally determined or
downloaded from the Electron Microscopy Data Bank (EMDB)
(https://www.ebi.ac.uk/emdb/).

Optional input files:

e Topology files for the system. Coarse-grained MARTINI parameters
(http://cgmartini.nl/index.php/downloads) are automatically downloaded in the
protocol or alternative parameters can be provided by the user. For atomistic
simulations, CG2AT provides a choice of forcefields automatically?.

e Molecular dynamics parameter files. Simulation parameter files (e.g. mdp files
for use with GROMACS) are automatically provided in the pipeline but users
may wish to supply alternatives. The default linear constraint solver (LINCS)
parameters (lincs_order=4, lincs_iter=1) are used in mdp files unless
MARTINI-2.2 cholesterol with virtual sites® is included in the bilayer, whereby
lincs_order=12 and lincs_iter=2 are used instead, in line with recent
findings®.

Computational hardware:

e A computer or laptop with an operating system capable of running a terminal
(Linux or MacOS recommended). For running simulations, a desktop computer,
computational cluster or local high-performance computing facility is
recommended for improved running times. Alternatively, national/cloud
compute resources can also be used to run simulations.

Computational software:

e Molecular dynamics simulation software for example GROMACS (> version 5)
(https://www.gromacs.orgd/).

e Software for density map visualisation for example Coot® (https://www2.mrc-
Imb.cam.ac.uk/personal/pemsley/coot/), UCSF Chimera
(https://www.cgl.ucsf.edu/chimera/), ChimeraX®
(https://www.rbvi.ucsf.edu/chimerax/) or PyMOL (https://PyMOL.orq/2/).

e Software for trajectory visualisation (optional) e.g VMD’
(https://www.ks.uiuc.edu/Research/vmd/) or PyMOL (https://PyMOL.org/2/).
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e python 3 (https://www.python.org/downloads/) (version >=3.9 recommended).

e The LiplDens pipeline (https://github.com/TBGAnsell/LiplDens). LipIDens can
be installed by following the instructions of the GitHub repository. LipIDens uses
the following additional packages which are automatically installed (see
https://github.com/TBGAnsell/LipIDens/blob/main/requirements.txt for updated
list of package dependencies):

o PyLipID (version >=1.5)8 PyLipID is also available from
https://github.com/wlsong/PyLip|D and can be installed using pip
install pylipid or git clone
git://github.com/wlsong/PyLiplID.git. PyLipID also
implements the following additional packages (installed automatically):
kneebow, logomaker, matplotlib>=3.3.4, mdtraj, networkx, numpy, p-
tqdm, pandas, python-louvain, scikit-learn, scipy, seaborn, statsmodels,
tqdm.

0 Martinize2 (version >=0.7) (https://github.com/marrink-lab/vermouth-
martinize). Martinize2 can also be installed using pip install
vermouth or pip install
gitthttps://github.com/marrink-lab/vermouth-
martinize.git#vermouth.

e dssp (https://swift.cmbi.umcn.nl/gv/dssp/).
e CG2AT (optional) (https://github.com/owenvickery/cg2at)>.
e propKa (optional) (https://github.com/jensengroup/propka)®.

Procedure:

LipIDens may be run either using an interactive standalone master python file
(“lipidens_master_run.py”) or by pre-defining variables within the pipeline
jupyter (https://jupyter.orq) notebook (‘LiplDens.ipynb”). The pipeline is
composed of multiple stages, described under the subheadings below. When running
LipIDens using the master python script, users are prompted to enter a number of
variables. In the notebook, these are defined under the ‘USER DEFINED VARIABLES’
section, followed by the corresponding ‘CODE’ for each step.

Analysis stages of the protocol can be run independently if the user has pre-existing
CG simulations they wish to examine, however we recommend some familiarity with
all protocol steps.

The GROMACS 2019 MD simulation software® (https://www.gromacs.org/) was used
to run simulations. The MARTINI-2.2 forcefield was used for CG simulations!!. The
protocol could be adapted for use with other MD simulation software (e.g Amber,
NAMD) or CG forcefields (e.g. MARTINI-3, ESPResSo0%?, Fat SIRAH!3).

Structure processing:
TIMING: Steps 1-2, 5 mins, Step 3, 10-20 mins.

1. Load the input .pdb file in PyMOL and remove any superfluous components by
selecting only the protein of interest and saving as a new .pdb file.
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2. The input .pdb file should not have any residues with missing atoms but larger
missing segments (e.g. loops, TM helices etc) are permitted. Simulation
competent .pdb files of published membrane protein structures can be
downloaded from MemProtMD (http://memprotmd.bioch.ox.ac.uk)* or
adjusted using https://qgithub.com/pstansfeld/MemProtMD/blob/main/PDB-
fix.ipynb. Decide whether any additional changes to the .pdb are required such
as a) addition of missing atoms (required) or b) modelling of missing protein
segments (optional) (step 3). If none, proceed to step 4.

3. Model missing atoms/segments using a preferred modelling software
(MODELLER/Chimera-MODELLER?>, SWISS-MODEL!?S, trRosettal’,
AlphaFold2?, RoseTTAFold*®).

Setting up and performing coarse-grained simulations:
TIMING: Step 4, 2 mins, Steps 5-6, ~2-10 days (variable depending on available
compute resources, simulation system size and length)

4. Type python lipidens_master_run.py to initiate the LiplDens pipeline.
The user will be prompted to select the directory to store simulations/data
(save_dir) and the protocol stage (‘1a’). Default settings can be selected by
pressing the ENTER/RETURN key. Follow the prompts to set a number of
simulation variables described below. If using the jupyter notebook, define the
variables for the first section of the protocol by modifying the file:

i. Change save_dir to a directory name in which to build the system and
save analysis.

ii. Change protein_AT_full to the location of the input protein .pdb file.

iii.  Setnprot to the number of homomeric protein chains or use nprot =
1 for heteromers.

iv.  The variables protein_shift and protein_rotate can be used to
alter the alignment of the protein within the bilayer. To alter the z axial
position for protein insertion into the bilayer change the
protein_shift value (decimal, negative and positive numbers
accepted). Set the protein_rotate angle (in x y z) with respect to
alignment along the first principal axis (default ‘O 90 O’ i.e. rotate in y by
90°). The position of the bilayer in MemProtMD
(https://github.com/pstansfeld/MemProtMD/blob/main/MemProtMD_Sel
f_Assembly.ipynb) can be used to guide value selections®.
?TROUBLESHOOTING

v.  Set the simulation boxsize (hanometres in X y z).

vi. Set the CG forcefield to use in simulations (currently compatibility
with martini_v2.0, martini_v2.1, martini_v2.2 and martini_v3.0.0)%19,

vi. The membrane_composition can be defined using either a) a
predefined bilayer type or b) a custom bilayer composition. Current
predefined bilayer names (e.g. ‘Plasma membrane’) and corresponding
compositions are provided on the GitHub page. To build a custom bilayer
change the membrane_composition variable to the chosen
composition in the upper (-u) and lower (-1) leaflets using insane.py
syntax®°. For example, for a bilayer composed of 100% POPC in the

upper leaflet and 90% POPC plus 10% POPS in the lower leaflet then
membrane_composition="-u POPC:100 -1 POPC:90 -I
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5.

viii.

Xl.

POPS:10”. Note, currently only a subset of lipids are available for the
MARTINI-3 forcefield. Users should check whether the required lipids
are available for a specific forcefield.

Setmartini_maxwarn to the maximum number of warmings permitted
when running the martinize command (default 0).

Change the ring_Rlipids variable to ‘True’ to place lipids within the
protein when assembling the bilayer (default ‘False’).

Alter CG_simulation_time to the duration of each CG simulation in
Ms and set the number of replicates. It is recommended to run
simulations for at least 10 ys and to run multiple repeats (at least 8
recommended) however the time taken to reach convergence will be
system dependant and users should adjust accordingly. The ‘Screening
PyLipID data’ section details how the quality of binding site data can be
assessed using PyLiplD outputs and, if necessary, users should
consider extending the simulations.

Finally alter n_cores to the number of CPUs to be used by GROMACS
when setting up the CG simulations.

If using the notebook, run the code corresponding to CG simulation setup (up
to the stage marked ‘PAUSE POINT’ after the ‘run_CG() function). This will
happen automatically if using the master python script. The output of this step
is a GROMACS md. tpr file for each CG simulation replicates. An outline of
the commands automatically implemented within this section is given below:

Vi.

Convert the protein to CG resolution using martinize2?!
(https://github.com/marrink-lab/vermouth-martinize) with an EINeDyn
elastic network®? (for MARTINI-2) or Martini3001 forcefield (for
MARTINI-3). A spring force constant of 1000 kJ molt nm2, a lower cut-
off of 0.5 nm and an upper cut-off of 0.9 nm are applied. Users may alter
the default elastic network, force constant and cut-off values within the
lipidens/simulation/CG_simulation_setup.sh script using
the -ff, -ef, -el, -eu, -ea and -ep flags. For more information see
http://cgmatrtini.nl/index.php/tools2/proteins-and-bilayers/204-martinize.
Embed the CG protein into a bilayer (of composition provided with the
membrane_composition variable) and solvate with water using
insane.py?°. The position of the TMD within the bilayer is set using the
protein_shift and protein_rotate variables.
?TROUBLESHOOTING.

Neutralise the system by addition of ions using gmx grompp and gmx
genion. By default, the system is neutralised using ~0.15 M NaCl
however the cation and anion names and concentration can be altered
using the -pname, -nname and -conc  flags within
CG_simulation_setup.sh.

Make an index file (gmx make_ndx) which contains groups
corresponding to the Protein, Lipids and Solvent (water and ions).
Generate a .tpr file for energy minimisation using gmx grompp and run
the energy minimisation using gmx mdrun. ?TROUBLESHOOTING.
Equilibrate the system using gmx grompp and gmx mdrun. In the first
equilibration step restraints are applied to the protein backbone (BB)
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beads. In the second equilibration step restraint are not applied.
?TROUBLESHOOTING
vii.  Generate the .tpr file for the production run using gmx grompp.

6. Run the CG simulation using gmx mdrun. ?TROUBLESHOOTING. 1t is
recommended to offload this calculation to a cluster or high-performance
computing facility. mPAUSE POINT: wait until CG simulations have finished
running before proceeding.

Testing PyLipID cut-offs:
TIMING: Step 7, 5-15 mins, Step 8, 2 mins, Step 9, ~1 h per lipid species, Step 10, 5
mins

7. Once all the CG simulations have reached completion, trajectories can be
processed. Type python [lipidens_master_run.py and select the
protocol stage (‘1b’) when prompted, or run the corresponding notebook code.
The trjconv_CG() function makes molecules whole across the periodic
boundary and skips the number of frames provided with stride. Although not
technically required for subsequent analysis, trajectory processing can improve
the usability of outputted lipid binding poses from PyLipID and reduce PyLipID
running times.

i. Setstride tothe number of frames to skip during trajectory processing
and downstream analysis of protein-lipid interactions (recommended to
speed up processing).

8. Once the CG replicates are processed, PyLipID analysis can be performed.
A CRITICAL STEP: In this first step, PyLipID is used to test a range of lower
and upper cut-off values for lipid interactions with the protein. In general, users
should test cut-offs for several chemically diverse lipids such as e.g. sterols or
phospholipids. Run LiplDens and select the protocol stage (‘2’) when prompted.
Within the notebook/master script set the user defined variables for the second
section of the pipeline:

i. Setthe lipid_atoms variable to the CG bead names PyLipID will use
for cut-off testing. The default (l1pid_atoms=None) will use all CG
beads for each lipid.

ii. Inthe first stage of cut-off testing, the minimum distance of each lipid to
a residue is plotted, provided that the Ilipid comes within
distance_threshold of the residue for longer than the number of
contact frames. Set the distance threshold value to a
reasonably generous interaction distance (i.e. 0.65 nm for CG
simulations or 0.4 nm for atomistic simulations). Select a value for
contact_frames to screen interacting lipids.

iii. Inthe second stage of cut-off testing, a list of upper and lower cut-offs
are exhaustively screened in a pairwise fashion. Change the
lower_cutoff and upper_cutoff variables to lists of cut-off values
to test (in nm).

iv.  Change timeunit to the preferred axis unit on analysis plots.

9. Run the code corresponding to PyLipID cut-off screening (up until the next
segment of user defined variables) within the notebook. This will happen
automatically if using the python script. An outline of the steps implemented in
this section are described below:
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Calculate the minimum distances of each interacting lipid to a residue
over the length of the trajectory. Plots are provided in the
‘PyLipID_cutoff_test_Lipid/Figures’ subdirectory.

Plot the probability distribution of minimum distances between the lipid
and the protein.

Exhaustively test a range of upper and lower cut-off value pairs. The
output is a plot of interaction duration times, number of calculated
binding sites and number of contacting residues for each dual-cut-off
combination.

10.Using the distribution plot from step 9ii and the exhaustive cut-off testing in step
9||| select the lower and upper interaction cut-offs to use when running PyLipID.

The lower cut-off localises to the first solvation peak in the probability
distribution plot. Additionally, the lower cut-off corresponds to an
increase in interaction durations, computed binding sites and residues
comprising each site compared with smaller lower cut-off values.

The upper cut-off localises to the first trough between the first and
second interaction shells in the probability density distribution. The upper
cut-off is appropriate when interaction metrics plateau. If interaction
metrics increase further as upper cot-off is increased this is an indication
that the second solvation shell is being captured which should be
avoided.

Selecting PyLipID input parameters and running PyLipID analysis:
TIMING: Step 11, 5 mins, Step 12, ~15 mins per lipid species

11.Next, lipid interactions, kinetics and binding sites are calculated using PyLipID.
Run the LiplDens python script and select the appropriate stage (‘3’) when
prompted. In the next user defined variables section of the notebook/master
scrlpt set the following variables to run site analysis using PyLipID:

Set the cutoffs variable to the selected lower and upper cut-off (step
10). Additional information regarding cut-off selection is provided at
https://pylipid.readthedocs.io/en/master/tutorials.

Tune the lipid_atoms variable based on the putative lipid densities
present in the cryo-EM map. If only headgroup-like density is present the
lipid_atoms variable can be restricted to the CG headgroup beads to
speed up calculation times. If tail density is present it is recommended
to perform calculations on all lipid atoms however the search could be
restricted to beads comprising the tail if required. This can be useful for
assessing the relative contribution of different lipid segments to binding
site residence times.

If multiple, identical proteins and/or protein complexes are present, such
as in homo-oligomeric ion channels, set the nprot flag to the copy
number in the system. This will average calculated kinetic parameters
over repeat domains and improve protein-lipid contact sampling.

Set the binding_site_size valuable to the minimum number of
residues that can comprise an identified binding site (default 4). This is
recommended to avoid artefactual identification of very small ‘binding
sites’ due to non-specific interactions.

Select the number of top lipid binding poses to be outputted for each
binding site using the n_top_poses variable (default 3). At each site
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the specified number of representative lipid binding poses will be
calculated using an empirical scoring function to rank lipid binding sites
against the simulation derived lipid density at the site.

vi. Alter the n_clusters variable to calculate the number of distinct lipid
pose clusters to be calculated for each site. This can be useful for
assessing the conformational diversity of lipid binding poses at a site. If
n_clusters is set to auto (default) PyLipID will use a density-based
clustering algorithm to identify all possible clusters.

vi. ~Setsave_pose_ format to the coordinate file format for outputted lipid
poses.
vii. Set save_pose_traj to True to output lipid binding poses to a

trajectory format provided with save_pose_traj_format.

ix. Setthe timeunit to use in outputted data.

X. Alter the resi_offset to offset the residue index number in outputs.

xi.  The radii variable should be used to set the Van der Waals radius of
non-standard atoms in a trajectory. The Van der Waals radius of
common atoms are already accounted for, including CG beads in
MARTINI 2.0-2.2.

xii.  Setthe pdb_file_to_map variable to an atomistic protein coordinate
file (such as from step 4ii) onto which binding site information will be
mapped by PyLipID.

xiii. Set the fig_format variable to the preferred image output file
extension.

xiv. Change num_cpus to the number of CPUs to use during
multiprocessing steps of PyLipID.

12.Perform PyLipID analysis on lipids in the CG simulations by running the
corresponding section of code in the notebook. PyLipID runs automatically if
using the master script. It is worth noting that PyLipID is highly modular and
contains a number of functions that can be run independently to study other
biological phenomena. Please refer to hitps://pylipid.readthedocs.io/en/master/
for details on how to write custom analysis scripts and/or select only those
outputs of interest. PyLipID creates an ‘Interaction_Lipid’ directory containing
the outputs for each lipid. This includes a ‘Dataset_Lipid’ directory containing
data stored in pickle format and a summary of the kinetics associated with each

residue and binding site (Dataset.csv). This subdirectory also includes a

PyMOL script for automatically mapping binding site kinetics onto the atomistic

structure provided with pdb_fi1le_to_map. Other outputs include top ranked

and/or clustered binding poses for each binding site (within the

‘Bound_Poses_Lipid’ subdirectory) and .pdb files with kinetics mapped to the

B-factor column (within the ‘Coordinate_Lipid’ subdirectory).

Screening PyLipID data:
TIMING: Steps 13-16, 5 mins

13.The next stage of the pipeline involves inspecting and screening the PyLipID
outputs. Within the notebook/master python file run the next section of code
(‘4") to rank binding site kinetics.

14.Inspect the output plot (Site_stats_rank_compare.pdf) located within the
‘Interaction_Lipid’ directory. The script ranks lipid binding sites from lowest to
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highest Occupancy, Residence time or Surface area or Akos closest to O
(defined as the difference between the kot calculated form the curve fit of the
survival function and the bootstrapped kot of the same data). This plot can be
used to inspect the quality of calculated binding sites by e.g. comparing sites
which rank highly (in their Residence times/Occupancies) and are well
fitted/sampled. Typically, a good site has a Akot between + 1 ps. ACRITICAL
STEP: Always inspect the quality of the identified binding sites and remove any
poor sites from future analysis.

15.Review the binding site ko plots (BS_idX.pdf) located within the
‘Interaction_Lipid/Binding_Sites_koffs_Lipid’ directory. Well sampled binding
sites which rank highly should show good agreement between the bootstrapped
and bi-exponential curve fits to the survival function and sufficient sampling of
interaction durations. Poorly fitted sites are indicated by disagreement between
bootstrapped and bi-exponential curve fits and/or sites which an infrequently
observed as indicated by a sparse interaction duration plot. This serves as a
second method for assessing binding site quality in addition to the
Site_stats_rank_compare.pdf plot. Finally, R? values for the residence
times of each binding site are found within the Dataset.csv and
BindingSites_Info_Lipid.txt files. These can also be used to assess
whether CG simulations have been run for long enough to sufficiently sample
protein-lipid interactions and to yield reliable outputs from PyLipID.

16.Exclude any poor binding sites from future analysis.

Comparing lipid poses with cryo-EM densities:
TIMING: Steps 17-19, 30 mins

17.Visualise the bound lipid poses outputted by PyLipID within the
‘Interaction_Lipid/Bound_poses_Lipid’ directory using VMD. Top ranked lipid
binding poses (‘BSidX_rank’) and clustered poses (‘BSidX_clusters’) are
located within subsidiary directories for each binding site.

18.0pen software for visualisation of cryo-EM densities (e.g. Coot, Chimera,
PyMOL) and load the protein coordinate file and corresponding density map.

19.Compare the identified binding poses with the position of densities in the cryo-
EM structure. Itis also possible to run LiplDens iterativly as e.g. map resolutions
are improved and new sites become visible.

Ranking site lipids:
TIMING: Step 20, 1 min, Step 21, ~20 mins, Step 22, 1 min

20.In this stage of the protocol the residence times of different lipids binding to the
same site are compared. Run the LiplDens python script and select the
appropriate stage (‘5’). Binding site residues for different lipids are iteratively
compared to those of the reference lipid (first lipid inputted). Sites which match
most closely are selected across lipids species i.e. to compare different lipids
binding to similar site locations. Corresponding binding sites IDs are written out
in order and stored as a python dictionary BindingSite_ID_dict. Where
corresponding sites could not be identified these are marked by ‘X.
A CRITICAL STEP: Check predicted binding site matches by comparing the
lipid poses/binding sites from PyLiplD. The BindingSite_ID_dict may
need to be adjusted if a site was previously identified as poor (see ‘Screening

10
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PyLipID data’) or is assigned multiple times. If you are happy with predicted
sites, accept the BindingSite_ ID_dict, run the corresponding code and
proceed to step 22. If not, follow step 21.

21.Within the notebook/master python script change the BindingSite ID _dict
dictionary keys to the lipids to compare. Set the corresponding values for each
lipid to a list of binding site IDs for each corresponding site. For example, to
compare the residence time of POPC binding site 2 and POPE binding site 4
(assuming these correspond to similar locations on the protein) then
BindingSite ID dict={“POPC~”:[2], “POPE’:[4]}. If the lipid does
not bind to a site then set the site ID to ““X™.

22.Run the corresponding code to plot a comparison of residence times and R?
values for each site across lipid species. A ‘Lipid_compare’ directory containing
plots
(Lipid_compare_BSstats PyLipID_Site_i1dx X ref Lipid.pdf) for
each site are generated where X corresponds to the reference lipid binding site

ID number in BindingSite ID dict e.g.
BindingSite ID dict={“POPC”:[2, 3], “POPE’: [4, 5]} would
produce two plots numbered

Lipid_compare_BSstats PyLiplID_Site_idx 2 ref POPC.pdf
(comparing POPC site 2 with POPE site 4) and
Lipid_compare_BSstats PyLiplID_Site_idx 3 ref POPC.pdf
(comparing POPC site 3 with POPE site 5) respectively.
i.  The generated plots can be used to infer the most likely identity of a lipid
species accounting for a density within the cryo-EM map (step 19).

Lipid pose refinement using atomistic simulations:
TIMING: Steps 23-24, 30 mins, Step 25, ~4-10 days (variable depending on available
compute resources, simulation system size and length), Steps 26-27, 20 mins

23.The final section of the protocol is optional and relates to the refinement of CG
lipid poses using atomistic simulations. Run the master python script and select
the appropriate step (‘6’). Set the following user defined variables:

i. Set input_CG_frame to the CG simulation frame to use for back-
mapping to atomistic resolution. Specified CG frames can be written to
coordinate files using gmx trjconv with the —-dump flag. The replicate
and frame from which a lipid binding pose was obtained is noted within
the pose_info.txt file (within with ‘BSidX_rank/cluster
subdirectories).

i. Setprotein_AT_Tull to the atomistic structure used to establish CG
simulations during the first stage of the protocol. To use an alternative
input structure (e.g. including alternative protonation states or
conformations), redefine protein_AT_full within this section as the
modified input protein pdb file.

iii. Set model_type to either ‘de_novo” or “aligned” to select the
output model from CG2AT? to use for atomistic simulations. In the de
novo model the protein coordinates are mapped to their positions within
the CG frame. In the aligned model the protein coordinates are mapped
to those of the input atomistic pdb (protein_AT_full).

11
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iv.

V.

Change replicates AT to the number of atomistic simulation
replicates.
Change AT_simulation_time to the simulation time in nanoseconds.

24.Run the code corresponding to atomistic simulation setup (up to the stage
marked ‘PAUSE POINT’). This is done automatically in the master python
script. The output of this step is a GROMACS md . tpr file for each atomistic
simulation replicate. An outline of the commands implemented within this
section is given below:

Convert the protein-lipid system from CG to atomistic resolution using
CG2AT, details of which are provided in 2. The protein conformation is
backmapped either based on the coordinates in the CG frame
(model_type="de_novo~”) or those of the atomistic structure
(model_type=~aligned”). Lipid coordinates are backmapped to their
positions in the CG frame. Users may select an atomistic forcefield and
water model to build the system. The system is energy minimised and
equilibrated. ?TROUBLESHOOTING

Generate the .tpr file for the production run using gmx grompp.

25.Run the atomistic simulation using gmx mdrun. ?TROUBLESHOOTING. It is
recommended to offload this calculation to a cluster or high-performance
computing facility. mPAUSE POINT: wait until atomistic simulations have
finished running before proceeding.

26.0nce the atomistic simulations have finished running, compare the refined lipid
binding pose to the cryo-EM density by loading in a preferred visualisation
software.

27.Evaluate the match between the simulation derived lipid pose and the cryo-EM
density using Q scores?3. Details on implementation of this step in UCSF
Chimera are given below:

Align the simulation frame with the atomistic input structure to which the
density map corresponds. In PyMOL this can be done using the align or
cealign commands, selecting the protein Ca or backbone beads of each
structure (e.g. cealign structure _name and name CA,
simulation_frame_name and name CA). It is often easier to
remove superfluous components (i.e. everything except the protein and
lipid of interest) from the system and save as a new .pdb file.

Open UCSF Chimera and ensure the MapQ plugin?® is installed (for
details see https://github.com/gregdp/mapaq).

Load the aligned simulation frame and cryo-EM map.

Open the MapQ plugin using Tools > Volume Data > MapQ.

Enter the resolution of the cryo-EM map in the box marker ‘Res:’ and
click ‘Calc’ to calculate Q scores.

After the Q score calculation has finished. Select a protein sequence in
proximity to the lipid using Ctrl-D and click to show the per atom Q scores
on the structure. For further details see
https://github.com/gregdp/mapag/tree/master/tutorials. Q scores are also
mapped to the B-factor column of an output .pdb file from MapQ. It is
expected that low/ negative Q scores may be observed for lipid regions
outside of observed densities due to increased fluctuation of non-bound
lipid regions.

12
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Troubleshooting:

Troubleshooting advice can be found in Table 1.

Table 1: Troubleshooting table.

30-Jun-22

Equilibration failed

Step Problem Possible Reason Solution
5 Script does not GROMACS or step Step outputs are
produce required errors located within the
CG outputs ‘output_files’ directory
for each replicate.
These can be used to
diagnose setup failures.
Ensure correct paths to
Incorrect input file files defined
locations
Try using the -merge
Excess protein flag in the martinize
segments command
Add lipid to insane.py
insane.py does not | geript
include a particular
lipid
4iv, 5ii Protein embedded | Atomistic structure Change the
in membrane in incorrectly orientated protein_shift and
incorrect protein_rotate
orientation variables until satisfied
with the orientation
5v, 5vi, 6, | Simulation crashes | Minimisation failed Check atom resulting in
25 failed minimisation to

see if e.g. atom overlay
results from a trapped
water or lipid tail and
remove if possible

Alter force constant and
cut-off of the elastic
network in the
martinize command

Minimise atomistic
structure before
converting to CG
resolution

13
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Check .mdp file
parameters
24i CG2AT fails Lipid type notin Add the lipid to the

database database with
corresponding atoms to
map for the atomistic
forcefield

CG frame not aligned | Try extracting a CG

within the PBC of the frame from a centred

box resulting in trajectory or rotate the

incorrectly constructed | system using gmx

system such as, e.qg. editconft

water within the bilayer

region or lipids out of

the bilayer

Significant Minimise the CG frame

instability/clashes in or select a different

input CG frame frame for input

Time Taken:

Steps 1-3, Structure processing: ~20 mins
Steps 4-6, Setting up and performing coarse-grained simulations: ~1 week
Steps 7-10, Testing PyLipID cut-offs: ~4 h
Steps 11-12, Selecting PyLipID input parameters and running PyLipID analysis: ~3 h
Steps 13-16, Screening PyLipID data: 5 mins
Steps 17-19, Comparing lipid poses with cryo-EM densities: ~30 mins
Steps 20-22, Ranking site lipids: ~20 mins
Steps 23-27, Lipid pose refinement using atomistic simulations: ~1 week

Associated publications:

XXX — LiplDens manuscript DOI placeholder.
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