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Abstract

Psilocybin therapy for depression has started to show promise, yet the underlying
causal mechanisms are not currently known. Here we leveraged the differential
outcome in responders and non-responders to psilocybin (10mg and 25mg, 7 days
apart) therapy for depression - to gain new insights into regions and networks
implicated in the restoration of healthy brain dynamics. We used whole-brain
modelling to fit the spatiotemporal brain dynamics at rest in both responders and non-
responders before treatment. Dynamic sensitivity analysis of systematic perturbation
of these models enabled us to identify specific brain regions implicated in a transition
from a depressive brain state to a heathy one. Binarizing the sample into treatment
responders (>50% reduction in depressive symptoms) versus non-responders enabled
us to identify a subset of regions implicated in this change. Interestingly, these regions
correlate with in vivo density maps of serotonin receptors 5-HT,, and 5-HT,,, which
psilocin, the active metabolite of psilocybin, has an appreciable affinity for, and where
it acts as a full-to-partial agonist. Serotonergic transmission has long been associated
with depression and our findings provide causal mechanistic evidence for the role of

brain regions in the recovery from depression via psilocybin.

Introduction

Behavioral differences between healthy and depressed individuals can sometimes be
conspicuous but identifying causal contributions from brain dynamics is more
challenging. Discrete global brain states, such as those that pertain to sleep, healthy
waking consciousness and the psychedelic state, have their own characteristic spatio-
temporal dynamics, involving large-scale spatial communities temporally evolving in

transient arrangements (Sadaghiani et al., 2015; Vidaurre et al., 2016; Deco et al., 2019;
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Kringelbach and Deco, 2020). With recent advancements in non-invasive
neuroimaging techniques, it has become possible to describe complex spatio-temporal
dynamics in terms of their spatial and temporal information. Still, one of the
challenges for systems neuroscience is to understand what the most appropriate
description of such dynamics is and how transition between one state to another is

made possible.

A common method for characterizing global brain function, involves assessing how
activity is temporally correlated across spatially separate brain areas over an entire
recording period, defining static and state-specific ‘functional connectomes’
(Bullmore and Sporns, 2009; Amico et al., 2017; Gutiérrez-Gémez et al., 2020).
However, the last decade has brought clear evidence that finer-grained, more dynamic
analysis of brain states, can deepen our understanding of their properties and
relationship to behavioural states (Hutchison et al., 2013; Allen et al., 2014; Calhoun et
al., 2014). There is a growing taxonomy of approaches to characterize the dynamics of
functional interactions (Preti, Bolton and Ville, 2016; Bolton et al., 2020; Kringelbach et
al., 2020), from data-driven heuristic clustering methods across time (Hutchison ef al.,
2013; Allen et al., 2014; Calhoun et al., 2014; Karahanoglu and Van De Ville, 2015),
dynamical systems informed phase-locking approaches (Cabral et al., 2017; Lord et al.,
2019; Vohryzek et al., 2020), Hidden Markov Models (Baker et al., 2014; Vidaurre,
Smith and Woolrich, 2017) to spatio-temporal networks (Griffa et al., 2017; Vohryzek

et al., 2019).

Efforts and methods are advancing for understanding response to
neuropharmacological interventions for depression. Understanding the therapeutic

actions of interventions promise - not only to shed light onto the mechanistic


https://doi.org/10.1101/2022.06.30.497950
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.30.497950; this version posted July 4, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

82  relationship between various brain states implicated in health and pathology - but also
83  to provide inspiration for the development of new, improved interventions. However,
84  there are considerable practical and ethical challenges for answering mechanistic
85 questions in humans, elevating the use of animal models (with sometimes
86  questionable translational validity) or small clinically relevant populations — where
87  mechanistic testing can interfere with therapeutic procedures (Arbabyazd et al., 2020;
88  Perl et al., 2020). One potential advance in this direction, is the use of whole-brain
89 modeling - as a tool for understanding pathological changes in neuropsychiatric
90 disorders, and, potentially, for clinical diagnosis and prediction (Kringelbach and
91 Deco, 2020). We are mindful, however, that the predictive power of any model
92  depends on how well it can describe and predict experimental data to which it is fitted
93 (Cabral et al., 2017).
94
95 The present paper focuses on whole-brain network models where region specific
96 stimulation or excitation can be tested in silico, and used to describe and predict
97 empirical-informed target states (Deco et al., 2019) — such the global brain state found
98 in people with intractable depression. These models link regional dynamics with the
99 neuroanatomical structure of the brain to describe the spatio-temporal activity of
100  functional data (Deco and Jirsa, 2012). This approach bypasses the ethical constrains
101  of human or non-human animal experimental settings, enabling many types of
102  stimulation to be tested, in order to evaluate the role of regions and their excitation on
103  transit between states — with relevance to empirical phenomena of interest. The
104  validity of this strategy has previously been demonstrated in the context of sleep and
105 awake states (Deco et al., 2019).

106
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107 Here, we build on this notion of dynamic sensitivity analysis to gain insight into
108 response to psilocybin therapy for treatment resistant depression. We define brain
109  states in terms of spatial subdivisions and their probability of occurrence across time,
110  characterised as Probabilistic Metastable Substates (PMS). These recurrent metastable
111  substates can be characterized by their probability of occurrence. Beyond the
112  quantitative description of brain states, we wish to understand which brain regions
113  play a prominent role in the recovery from depression after treatment with psilocybin
114  (Vohryzek et al., 2022).

115

116  Using data from a trial of psilocybin-therapy for treatment-resistant depression, the
117 sample was binarized into ‘responders’ and ‘non-responders’ to psilocybin therapy.
118 Empirical fMRI data was collected before and one-day after the second of two
119  psilocybin-therapy dosing sessions. Using parameters from the empirical data,
120 modeled brain states - and stimulation parameters therein, could then be used to
121  predict treatment response, defined as a >50% reduction in symptom severity from
122  baseline - determined at a key 5-week post-treatment endpoint (Carhart-Harris et al.,
123 2016).

124

125  Psychedelic medicine has shown a promising avenue for treating depression (Daws et
126  al., 2022). For depression treatment, one current hypothesis is that: via a psychedelic
127  drug x psychological intervention combination, there is an increase in global brain
128 flexibility, translating into a window of opportunity for breaking free of negative
129  cognitive biases and associated ruminations (Carhart-Harris and Goodwin, 2017).
130 Indeed, the current research on the acute effects of psychedelic drugs suggests an
131  increase in the repertoire of brain activity substates (Tagliazucchi et al., 2014; Atasoy

132 et al., 2017; Parker Singleton et al., 2021). From a neuropharmacological perspective,
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133 psilocybin — an active compound in magic mushrooms — binds with high affinity to
134  the serotonergic 5HT,, receptors but other serotonergic receptors are also implicated
135 (Calvey and Howells, 2018; Carhart-Harris, 2019). Psilocybin acts as an agonist
136  resulting in higher neuronal excitability, modulating the excitatory-inhibitory balance
137  (in favour of excitation) in the cortical brain regions with more 5HT,, receptors (Nutt,
138  King and Nichols, 2013). Recently, a whole-brain computational study focusing on the
139  human brain action of lysergic acid diethylamide (LSD) — which has a similar
140  pharmacology to psilocybin/psilocin — demonstrated, for the first time, the causal
141  impact of 5HT,, agonism-induced excitation on global brain dynamics (Deco, Cruzat,
142  etal., 2018).

143

144  Here, in empirical fMRI data, we identified recurrent brain substates in terms of the
145 PMS space across all the subjects in the pre- and post- treatment conditions.
146  Furthermore, we use a computational whole-brain model — where each brain area is
147  represented by a Hopf-bifurcation model (Deco, Kringelbach, et al., 2017) - to simulate
148  the brain network dynamics in patients before the treatment. Through dynamic
149  sensitivity analysis, we were able to identify brain regions responsible for treatment
150 response at a key 5-week endpoint (Deco, Cabral, et al., 2018; Deco et al., 2019). A priori,
151 we hypothesised that regions permitting transition to a healthy brain state (as
152  predicted by the 5-week endpoint) would relate to the distribution of the 5HT,, and
153  5HTj, receptors in the human brain, as determined by prior in vivo positron emission
154  tomography (PET) mapping (Beliveau ef al., 2017).

155
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Figure 1. Study Overview. A) Experimental Analysis. Probabilistic Metastable Substates were computed for
each condition using leading eigenvector dynamics analysis (LEiDA). Regional fMRI timeseries were first
converted to analytical signal, followed by computation of the leading eigenvector of the phase coherence matrix
at every timepoint. An unsupervised k-means algorithm was deployed to cluster the eigenvectors into a three
substate solution. The PMS is defined as the probability distribution of substates, obtained for each individual
scan and averaged within each condition. B) Model Fitting. Whole-brain model parameters were optimised to fit
the PMS before treatment separately for responders and non-responders. C) Dynamic Sensitivity Analysis. In
silico bilateral perturbations were performed to find the optimal protocol to transition to the PMS characteristic
of a healthy brain state (described by responders’ (as predicted by the 5-week QIDS endpoint) one-day post-
treatment brains). D) Dynamic Sensitivity Evaluation. Perturbations are applied separately in each pair of

bilateral brain regions by varying the intensity of oscillations as defined by the bifurcation parameter a.
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168
169 Results

170

171 In summary, a quantitative characterization of the spatio-temporal dynamics
172 recorded with fMRI was obtained using leading eigenvector dynamics analysis
173  (LEiDA), resulting in the definition of Probabilistic Metastable Substates (PMS),
174  whose probability of occurrence was compared across conditions (i.e., within-subjects
175  design - therefore, before versus after treatment). We then constructed two whole-
176  brain models representative of the pre-treatment brains to psilocybin therapy. This
177  was done by fitting their PMS descriptions to those obtained from the experimental
178  data. Finally, a dynamic sensitivity analysis was implemented to both responder and
179 non-responder pre-treatment models to identify the brain regions that permit a
180 transition to the healthy PMS (described by responders’ (as predicted by the 5-week
181 endpoint) one-day post treatment brains).

182

183  As described in the methods section, we computed the PMS pre- and post-treatment
184  with psilocybin (where ‘post’ = 1 day post psilocybin dosing session two), for both
185 responders and non-responders (determined 5 weeks hence). Here, we focused on a
186  three-substate solution — the lowest k-level with statistically significant differences
187 between the two groups as well as optimal quality measures across clustering
188  solutions (SI Figure 2). When contrasting responders versus non-responders, the
189  occurrence of substate 3 was significantly different pre- versus post-treatment (p =
190  0.0258, signed rank-sum test), as well as in the post-treatment data alone (p = 0.0141,
191 rank-sum test; Figure 2, A). Furthermore, we also computed the Global Brain
192  Connectivity (GBC), metastability and Functional Connectivity Dynamics (FCD)

193  measures (see SI Figure 2). These results clearly indicated the necessity of considering
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194  both spatial and temporal dimensions to differentiate between conditions as GBC,
195 synchrony and metastability show non-significant results. Conversely, the FCD
196  measure showed significant differences in the temporal similarities of spatial patterns
197 between pre- and post-treatment responders (p = 0.0163, signed rank-sum
198 permutation test), and pre- and post-treatment non-responders with post-treatment
199 responders respectively (p = 0.0183 and p = 0.0273, rank-sum permutation test),
200 further supporting the use of spatio-temporal measures to capture the alterations in
201  whole-brain dynamics across conditions.
202
A Experimental Analysis C Experimental and Simulated PMS
g :, @ 0.8
%Z g 0.6
B MOdel \/alidatioﬂ Substate 1 Substate2  Substate 3 Substate 1 Substate2  Substate 3 Substate 1 Substate2  Substate 3
Experimental Simulated Experimental
X Probabilistic Metastable Substate (PMS) i Non-Responders Before G =0.165, KL-div = 0.0187 Non-Responders After
» !N i ., =N =/
203 Giobal Coupling (G) o
204  Figure 2. A) Experimental Analysis. Probability of occurrence (or Fractional Occupancy) of each metastable
205  substate detected with LEiDA for the three-substate clustering solution. Significant differences were observed in
206  the substate 3 between responders before and after treatment (p = 0.0258, signed rank-sum permutation test),
207  responders and non-responders after treatment (p = 0.0141, rank-sum permutation test) and no significant
208  differences were found between responders and non-responders before treatment. B) Model Fitting of the
209  responder and non-responder models as a function of the global coupling parameter G, with optimal fits at G =
210  0.185 (Kullback-Liebler divergence = 0.0064) and G = 0.165 (KL-divergence = 0.0187) respectively. C)
211 Experimental and Simulated PMS. Experimental PMS for responders and non-responders before treatment
212 (left), their simulated counterparts at optimal G (middle), and experimental PMS for responders and non-
213 responders after treatment (right).
214
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215 To obtain whole-brain computational models representative of the two groups of
216  patients (responders and non-responders before treatment), we first defined a
217  generalized brain network model, where each of 90 cortical and subcortical brain
218  regions (defined using automated anatomical labelling (Tzourio-Mazoyer et al., 2002))
219  was described by a Stuart-Landau oscillator (see methods), and regions were coupled
220  according to realistic structural connectivity obtained from diffusion MRI

221  To adjust the model to each group of patients, first the intrinsic frequency of each brain
222  region was set to the peak frequency in fMRI signals averaged across patients in the
223  same group (see SI Figure 3). Subsequently, the global coupling parameter, G, was
224  tuned to optimize each model to its appropriate working point. This was achieved by
225 minimizing the divergence between the experimental and simulated PMS spaces - see
226  Figure 2 B. In SI Figure 4, we report optimisation curves for other observables such as
227  the static FC, metastability and FCD. For the responders and non-responders before
228  treatment, we found G = 0.185 (KL divergence = 0.0064) and G = 0.165 (KL divergence
229 = 0.0187) respectively to minimise the difference. Figure 2 C shows on the left, the
230  experimental results for both groups before treatment; in the middle, the optimal
231 simulated fits for both groups, and on the right the experimental results after
232 treatment (with the results of responders after treatment serving as the target PMS for
233 rebalancing).

234

235  Subsequently, we considered a dynamic sensitivity analysis to determine the optimal
236  perturbation strategies to rebalance the PMS distribution to the healthy state (as
237  defined by the PMS space of responders after one-day after treatment). Figure 3
238  illustrates the dynamic sensitivity analysis, whereby the bifurcation parameter a is
239  used to change the nodal dynamics in terms of its response to added noise, ranging

240 from a more noise-driven regime (the more a is negative) to an oscillatory regime

10
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241  (with larger amplitude the more a is positive). We focused on homological nodal
242 perturbation of the whole-brain model, meaning that bilateral regions were perturbed
243 equally, resulting in 45 pairs of regions perturbed at gradually varying values of a.
244 Figure 3, Left, shows the dynamic sensitivity analysis of driving a transition to the
245  healthy state for models of both responders and non-responders before treatment.
246  Again, an average of the KL divergence between either the perturbed pre-treatment
247  responders or non-responder models and the healthy PMS space was shown. In the
248  noise-driven regime (2 < 0), a deterioration of the fit was observed for both groups,
249  while in the oscillatory regime (2 > 0), an initial improvement across all 45 runs was
250 depicted, before subsequent deterioration away from the optimal fit for both groups.
251  Conversely, when replacing the target healthy state by the depressive state (i.e., by
252  comparing with the average PMS in non-responders after treatment), we found that
253  the KL divergence was minimal without perturbation (i.e., keeping a=0), showing a
254  worse fit for both groups when brain areas became more oscillatory and no effect of

255  the noisy perturbation (Figure 3, Right).
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257  Figure 3. Evaluation of Dynamic Sensitivity Analysis. A) Perturbation to induce a transition to a
258  healthy state. Each homological pair of brain regions was perturbed by varying the bifurcation parameter a,
259  which modulates the intrinsic oscillatory behavior of the dynamical units. The more a is positive, the larger the
260  amplitude of intrinsic oscillations, whereas for negative a the units decay to a fixed point equilibrium and the
261 local dynamics is dominated by noise. The performance of the perturbations is evaluated by computing the KL
262 divergence between the simulated PMS and the empirical PMS from patients who recovered after treatment with
263 psilocybin. Optimal intensity of a = 0.07 was achieved for the responder group (red rectangles). B) Perturbation
264 toinduce a transition to a depressive state. A transition to the depressive state showed worse or no effect at
265  wvarying values of the bifurcation parameter a. This is expected since the models were adjusted to patients in the

266 depressive state before treatment.

267

268  To evaluate which regions permitted transition to a healthy state, we first defined the
269  optimal perturbation strength as the minimum of the averaged KL divergence (across
270  the 45 runs) of the responder group to the treatment. This stimulation intensity was
271  found at a = 0.07. Then, we inspected the difference between the responders and non-
272 responders at that given value of a to assess what nodal perturbations were permitting

273 the transition to the healthy state in responders but not in non-responders (Figure 4).
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277  Figure 4. Subset of regions working in responders but not in non-responders. A) Rank ordered absolute
278  difference of KL divergence between perturbations of the responder and non-responder models before treatment at
279  a stimulation intensity of a = 0.07. Inset brain rendering of the ten brain regions with the highest difference:
280  Temporal Superior pole, Rolandic operculum, Fusiform gyrus, Supplementary Motor Area, Parietal Inferior
281  gyrus, Angular gyrus, Supramarginal gyrus, Frontal Inferior gyrus (opercular), Frontal Middle gyrus (orbital)
282 and the Parahippocampal Qyrus. B) Cortical rendering and flat maps showing the distribution of all KL

283 divergence differences.
284

285  Figure 4.A shows the rank ordered regional differences in KL divergence between
286  perturbations of the responder and non-responder models before treatment at a
287  stimulation intensity of a = 0.07. We highlighted the regions with the largest KL
288  divergence working in responders but not non-responders to promote a transition to
289  the healthy state. These regions are the Temporal Superior pole, Rolandic operculum,
290 Fusiform gyrus, Supplementary Motor Area, Parietal Inferior gyrus, Angular gyrus,
291  Supramarginal gyrus, Frontal Inferior gyrus (opercular), Frontal Middle gyrus
292  (orbital) and the Parahippocampal gyrus. Figure 4, Right, shows the cortical rendering
293  of these differences.

294

295  Correlation with Serotonin Receptor Maps

296

297 Given the unique neuropharmacology of the psychedelic-induced state through
298  serotonergic receptors, we assessed whether the regions working in responders but
299 not non-responders overlapped with the 5-HT density maps derived from PET
300 imaging data previously obtained by an independent research group (Beliveau et al.,
301  2017). Figure 5 A shows correlations between the 5-HT,, and 5-HT;, receptor density
302 maps and the KL divergence differences for the two groups at optimal a4 = 0.07
303 (Spearman p =0.227, p = 0.032 and Spearman p = 0.284, p = 0.007 respectively). Figure

304 5B, shows non-significant correlations to other 5-HT components — namely the 5-HT>,
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(Spearman p = 0.064, p = 0.055) and 5-HT, receptors (Spearman p = 0.055, p = 0.607)

plus the 5-HT transporter (5-HTT) (Spearman p = - 0.172, p = 0.106).

A 5HT,, B 5HT,,
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Figure 5 Ability to promote a transition relates to density of specific serotonin receptors: For each pair

of homological brain regions, the ability to promote a transition is plotted against the receptor map densities of:
A) 5-HT,, (Spearman correlation p = 0.227, p = 0.032). B) 5HT1, (p = 0.284, p = 0.007), and C) for other 5-HT
receptors with non-significant results: 5-HT» (p = 0.064, p = 0.055), 5-HT, (p = 0.055, p = 0.607) and the 5-

HTT (p =-0.172, p = 0.106).

Discussion
In this work, we employed a whole-brain modelling approach to evaluate potential
brain-change causes of response to psilocybin therapy for treatment-resistant

depression. Using a novel combination of empirical data and in silico modelling,
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319 systematic perturbations to brain regions modelled in silico, revealed a subset of
320 regions implicated in transition away from ‘depressed brain’ pathology and towards
321  the ‘healthy brain’ configurations of treatment responders. Notably, these regions
322  matched those with the highest density of 5HT,, and 5HT;, neuroreceptors. This
323  relationship is plausible given that psilocin (psilocybin’s active metabolite) is known
324  tohave an appreciable-to-high affinity for the 5-HT1A and 2A receptors, respectively,
325 where it acts as an agonist; in the case of the 5-HT2AR, potentially stimulating
326  plasticity-related signaling cascades relevant to an antidepressant action (Desouza et
327  al,2021; Liu et al., 2022).

328

329 A summary of complex spatio-temporal dynamics, in terms of brain substates and
330 their transitions, has drawn a lot of attention in systems neuroscience due to its utility
331 to evaluate the impact of pharmacological and electromagnetic interventions for
332 treating brain and behavioural disorders. Brain substates have been characterised in
333  different ways; by minimal energy (Gu et al., 2018) as attractor landscapes (Deco and
334  Jirsa, 2012; Vohryzek et al., 2020), and more heuristically, through sliding-window
335 analysis and unsupervised clustering (Hutchison et al., 2013; Allen et al., 2014).
336 However, it has been challenging to find a model that sufficiently simple and yet
337  accurate to account for temporally and spatially complex and non-stationary datasets.
338  Here, PMS are built on a description of the data in terms of a probabilistic "cloud" in
339  substate space and as such can be extended to different neuroimaging modalities with
340  higher temporal resolution, such as EEG and MEG, or potentially to more fine-grained
341  spatial resolutions (Deco et al., 2019; Kringelbach et al., 2020).

342

343  Cutting-edge non-invasive brain stimulation techniques such as Transcranial

344 Magnetic Stimulation (TMS) and Direct Electrical Stimulation (DES), and new
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345 neuropsychopharmacological drugs for treatment of psychiatric disorders have
346  heralded a new era of localized brain perturbations as medical interventions. For
347  example, TMS has been considered for treatment of many psychiatric disorders such
348  as depression, schizophrenia and addiction (Ridding and Rothwell, 2007), and classic
349  psychedelic (drug) therapy, which in part, targets a specific neuroreceptor (i.e.,
350  principally the 5-HT2A receptor) is showing efficacy in the treatment of a broad range
351  of conditions such as depressive, anxiety and addiction disorders (Carhart-Harris and
352  Goodwin, 2017). However, it seems highly likely that the mechanistic action of these
353 interventions lies - potentially well downstream of their initial action, and this action
354 may not be straightforward (Turkheimer ef al., 2021). For example, how Direct
355  Electrical Stimulation (DES) induced signal propagates within neuronal microcircuits
356 remains unclear and often paradoxical (Logothetis ef al., 2010), and motivates
357  theoretical neuroscience studies and in-silico perturbation protocols where system-
358  wide changes to localised external stimulation can be explored.

359

360 Beyond in-silico perturbations, the exhaustive stimulation protocol can also be used as
361 a dynamic sensitivity analysis tool from the complex systems perspective.
362 Traditionally, statistical differences in measures summarising spatio-temporal
363 dynamics are obtained using signal detection theory. Such approaches can be
364 enhanced by considering whole-brain models and their structural differences between
365 conditions, for example as described by the global coupling (G) parameter. Moreover,
366 rather than describing and assessing expressions of spatio-temporal dynamics, an
367 exhaustive protocol allows a shift of focus onto transitions to a target state and this
368 can be used to identify differences between groups, such as treatment responders
369  versus non-responders, as we have done here.

370
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371  Forcing transitions in large-scale brain networks has also been investigated through
372 the prism of control network theory. In such scenarios, control strategies are deployed
373  to navigate complex systems from a source (initial) state to a target (final) state
374  (Srivastava et al., 2020). This approach has obtained a lot of attention due to its wide-
375 ranging engineering applicability in technological, social and cyberphysical systems
376  across various experimental scenarios (Gu et al., 2015; Lynn et al., 2020). However, the
377  conceptual understanding of controlling neuronal signals from source to target might
378  be problematic as the brain operates in self-sustained and non-equilibrium state, and
379  the notion of well-defined pathway between them might be ill-posed (Tognoli and
380 Kelso, 2013). On the contrary, the approach considered in this work describes spatio-
381 temporal dynamics in terms of Probabilistic Metastable Substates and, through
382  systematic perturbation, rebalances the spatio-temporal dynamics between two PMS
383  spaces. Through this approach the brain is rebalanced to its healthy working point,
384  without specific instructions of what the relevant pathway might be.

385

386 To obtain a PMS approximation of the brain substate of interest, several
387 methodological choices are made which inevitably introduce several caveats. Firstly,
388 a regional parcellation must be chosen, which might introduce artificial spatial
389  boundaries especially when dealing with dynamics. Secondly, the choice of clustering
390 algorithm defines the type of substates that can be obtained. Here, we use the
391 unsupervised learning algorithm k-means clustering which has been shown to
392  adequately represent functionally meaningful brain substates (Vohryzek et al., 2020)-
393 However, alternative algorithms could be used for this purpose (e.g. k-medoids).
394  Related to the experimental data, the design is an uncontrolled open-label feasibility
395 pilot study, and as such has no placebo group and suffers from small sample size.

396  Hence, future replication studies are warranted to ensure robustness of the findings.
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397 Moreover, the healthy state is defined here in terms of the 1-day post-treatment scan
398 but the responders/non-responders’ assessment is done 5 weeks after. Lastly, the
399  whole-brain models constructed are based on group approximations of the functional
400  brain information and structural connectivity group template. For clinical relevance,
401  further research will be needed to create individual-based whole-brain models that
402 might allow for future in-silico assisted personalised psychiatry (Deco and
403  Kringelbach, 2014).

404

405

406 Material and methods

407  Experimental Data

408  Functional MRI

409 We carried out the analysis on previously published dataset of patients with
410 treatment-resistant depression undergoing treatment with psilocybin at Imperial
411  College London (Carhart-Harris et al., 2016). In brief, we investigated 15 patients
412 (without excessive movement and other artefacts from the original 19 patients) who
413  were diagnosed with treatment resistant major depression. The MRI scanning sessions
414  were completed pre-treatment with psilocybin and one-day post-treatment with the
415  treatment consisting of two oral doses of psilocybin (10mg and 25mg, 7 days apart).
416  The patients were split into responders and non-responders to the treatment based on
417  the Quick Inventory Symptomatology (QIDS) at 5-weeks post-treatment with 6 out of
418  the 15 patients meeting criteria for response (Carhart-Harris et al., 2017).

419

420  Structural Connectivity

421  In this study, white-matter (structural) connectivity of 90 AAL brain areas from a

422  previously obtained dataset was used for the whole-brain network model. In brief,
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423  the group consisted of 16 healthy young adults (5 females, mean SD age: 24.7 +

424  2.54). Diffusion Tensor Imaging (DTI) was applied following the methodology
425  described in (Cabral ef al., 2012). Undirected structural connectivity Cnp was

426  obtained were n and p are brain areas and the connectivity weights are defined as
427  the proportion of sampled fibers in all voxels in region n that reach any voxel in

428  region p. Finally, the individually structural connectomes were averaged across the
429 16 subjects to obtain a group-based template.

430

431  Probabilistic Metastable Substates

432  Firstly, we calculated the instantaneous phased relationship between individual brain
433 regions by expressing the demeaned regional fMRI signal x(t) as an analytical signal
434  ie. in terms of its time-varying phase 6(t) and amplitude A(t) as x(t) = A(t) *
435  cos (6(t)) (Glerean et al., 2012). We excluded the first and last three timepoints to
436  account for the boundary artefacts introduced by the Hilbert transform. Hence for
437  every time point t and pair of brain regions n and m, we obtain the phase coherence
438  matrix dPC as follows:

439

440 dPC(n,m,t) = cos(6(n,t) — 6(m,t)) (1)

441

442 By decomposing the signal in this way, we can look at when the brain regions n and
443  m are aligned with similar angles, cos (0) = 1, orthogonal to each other cos (1/2) =
444 1 and anti-aligned cos (r) = —1. As the phase coherence is a measure of undirected
445  connectivity, the phase coherence matrix dPC is symmetric and all the meaningful
446  information is captured in the upper-triangular matrix.

447
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448  For further analysis, we used only the 1xN leading eigenvector V;(t) of the dPC matrix
449  as described in the Leading Eigenvector Dynamics Analysis (Cabral et al., 2017). In
450 detail, at every timepoint t of the dPC(t), we performed the eigendecomposition
451  taking the first (most dominant) eigenvector to describe the dPC(t) pattern. The
452  dPC(t) is decomposed as dPC(t) = V(¢t)D(t)V~1(t) where D is the diagonal matrix
453  carrying the real-valued eigenvalues and V;(t) and V™1, (t) are the left and right
454  corresponding orthogonal eigenvectors respectively. The dominant connectivity
455 pattern can be simply reconstructed by the following matrix multiplication
456  V(OVL(b).

457

458  Tolook for and describe the discrete phase-locking states, we clustered all the leading
459  eigenvectors obtained from all the fMRI scans obtained from both responders and
460 non-responders. We used the unsupervised k-means algorithm, of varying cluster
461 number k from 2 to 10 clusters, to iteratively converge to a predefined number of
462  clusters with 20 random cluster initialisations to ensure stability in the clustering.
463  Again, by computing the matrix multiplication of the 1xN cluster centroids V., as
464 V.o (t)V.L (t) we obtain the dominant connectivity pattern of each cluster. In the current

465  analysis, we considered the cluster solution k = 3 as an optimal choice between the
466  quality measures - Dunns, Davies-Bouldin and Silhouette Score, Davies (SI Figure 2),
467  and the maximising of the statistical significance between patient groups (p-values).
468

469  After calculating the phase-locking states, we defined the probability of occurrence of
470  the individual substates by simply dividing their occurrence in each recording session
471 Dby the total number of time points recorded (same for all recordings).

472

473  Whole-brain Computational Model
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474  In order to simulate the ultra-slow fluctuations in fMRI signal detected during rest,
475  we used the Landau-Stuart oscillator canonical model, describing the transition from
476  anoisy to an oscillatory dynamics (Kuznetsov, 1996). The so-called supercritical Hopf-
477  bifurcation model was used locally at every brain region (node) to emulate the local
478  dynamics (Deco, Kringelbach, et al., 2017; Deco et al., 2019). To achieve a whole-brain
479  level description, the individual Hopf models were coupled in a structural
480  connectivity (SC) network, describing the large-scale white-matter map of the human
481  brain (Hagmann ef al.,, 2008; Deco, Kringelbach, et al., 2017). The emerging and
482  complex interactions in the whole-brain network of coupled Hopf models have been
483  shown to describe many aspects known from experimental recordings in MEG (Deco,
484  Cabral, et al., 2017) and fMRI (Kringelbach et al., 2015; Deco and Kringelbach, 2016;
485  Deco, Kringelbach, et al., 2017; Deco, Cabral, et al., 2018; Deco et al., 2019).

486

487  Formally, the normal form of the supercritical Hopf-bifurcation model for a single
488  uncoupled region of interest (n) in Cartesian coordinates is described by the following

489  set of coupled equations:

490
491 T = (an — X2 = Y20 — 0pYn + B1a(t) @
492
493 D = (ay = X2 = YE)Yn + Wiy + B () )
494

495  with Bn,(t) being the gaussian noise with standard deviation of g = 0.02. The
496  Dbifurcation parameter a positions the system at the supercritical bifurcation point
497  when a = 0, noise activity governed by 7, (t) in regime when a < 0, and stable limit

498  cycle with oscillatory behaviour of frequency defined by f, = w, /27 when a > 0. The
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499  values of the intrinsic frequency w were calculated from the experimental fMRI signals

500 in the 0.04 — 0.07 Hz band by taking the peak frequency of the gaussian-smoothed
501 power spectrum of each brain area.

502

503 To describe the coupled whole-brain computational model, we introduced the
504  coupling term (modelled as the common difference coupling i.e., describing the linear
505 term of a general coupling function) between the individual nodes weighted by the
506 corresponding values of the SC matrix. To be noted, we do not consider the next
507 nonlinear coupling term following Taylor expansion of the full coupling, in case the
508 linear coupling is non-existent (Kuramoto, 1984; Pikovsky et al., 2002). The equations

509 2 and 3 can be hence expanded as follows:

510
S = (= 3D~ 0k 6 G (8 — %) + D) @
512
>13 % = (@n = X7 = Yi)Vn + WnXn + G =1 Cop(Vp — Yn) + B () )
514
515

516  where C,, is the SC weight between node n and p, and G is the global coupling weight
517  with equal contribution between all the nodal pairs. The SC matrix was rescaled to
518 have the mean value < € > = 0.2 in order to be consistent with previous literature’s
519 range of parameters (Deco, Kringelbach, et al., 2017; Deco et al., 2019). The simulated
520 signal is described by the x,, equation for every node n. The variables G and a are the
521 control parameters used for the model fitting to the experimental data and the
522  stimulation protocol respectively (Deco, Kringelbach, et al., 2017; Deco et al., 2019).

523
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524  Objective Function

525 Inorder to validate the simulated signal different realisations of the experimental data
526  can be used (Cabral, Kringelbach and Deco, 2017). The most standard approach is
527  comparison of the simulated data with grand-averaged static functional connectivity
528 as computed by the Pearson correlation (Honey et al., 2009; Deco and Jirsa, 2012) or
529 metastability defined as the standard deviation of the Kuramoto Order Parameter (SI
530 Figure 4 - Metastability). To account for the temporally varying nature of the BOLD
531 signal, recent literature has focused on the comparison between the simulated and
532 empirical FCD spectrums (quantified by Kolmogorov-Smirnov distance) i.e. the
533  distributions of the cosine distance between the consecutive timepoints as described
534 by the leading eigenvector (Deco, Kringelbach, et al., 2017; Deco, Cruzat, et al., 2018)
535  (SI Figure 4 — Functional Connectivity Dynamics). As alluded to in the previous
536  section, the fMRI signals organise into spatially meaningful phase-locking states.
537 Here, we compare the simulated data to the probabilities of occurrence of the phase-
538 locking states found in the experimental recordings (Deco et al., 2019). We used the
539 symmetrised Kullback-Leibler Divergence (KL divergence) of the simulated and
540 empirical probabilities of occurrence as follows:

541

542 KL(Penps Peim) = 0.5 ((zl Pomp I 2220) + (3 Py (D In ‘”Slm“))) ©

Psim (i) Pemp()

543

544  with P,,,, and P, being the empirical and simulated probabilities of occurrence of
545  the same phase-locking states respectively.

546
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