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2 

Abstract 
30 

Psilocybin therapy for depression has started to show promise, yet the underlying 
31 

causal mechanisms are not currently known. Here we leveraged the differential 
32 

outcome in responders and non-responders to psilocybin (10mg and 25mg, 7 days 
33 

apart) therapy for depression - to gain new insights into regions and networks 
34 

implicated in the restoration of healthy brain dynamics. We used whole-brain 
35 

modelling to fit the spatiotemporal brain dynamics at rest in both responders and non-
36 

responders before treatment. Dynamic sensitivity analysis of systematic perturbation 
37 

of these models enabled us to identify specific brain regions implicated in a transition 
38 

from a depressive brain state to a heathy one. Binarizing the sample into treatment 
39 

responders (>50% reduction in depressive symptoms) versus non-responders enabled 
40 

us to identify a subset of regions implicated in this change. Interestingly, these regions 
41 

correlate with in vivo density maps of serotonin receptors 5-HT2A and 5-HT1A, which 
42 

psilocin, the active metabolite of psilocybin, has an appreciable affinity for, and where 
43 

it acts as a full-to-partial agonist. Serotonergic transmission has long been associated 
44 

with depression and our findings provide causal mechanistic evidence for the role of 
45 

brain regions in the recovery from depression via psilocybin.  
46 

 
47 

Introduction 
48 

 
49 

Behavioral differences between healthy and depressed individuals can sometimes be 50 

conspicuous but identifying causal contributions from brain dynamics is more 51 

challenging. Discrete global brain states, such as those that pertain to sleep, healthy 52 

waking consciousness and the psychedelic state, have their own characteristic spatio-53 

temporal dynamics, involving large-scale spatial communities temporally evolving in 54 

transient arrangements (Sadaghiani et al., 2015; Vidaurre et al., 2016; Deco et al., 2019; 55 
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Kringelbach and Deco, 2020).  With recent advancements in non-invasive 56 

neuroimaging techniques, it has become possible to describe complex spatio-temporal 57 

dynamics in terms of their spatial and temporal information. Still, one of the 58 

challenges for systems neuroscience is to understand what the most appropriate 59 

description of such dynamics is and how transition between one state to another is 60 

made possible. 61 

 62 

A common method for characterizing global brain function, involves assessing how 63 

activity is temporally correlated across spatially separate brain areas over an entire 64 

recording period, defining static and state-specific ‘functional connectomes’ 65 

(Bullmore and Sporns, 2009; Amico et al., 2017; Gutiérrez-Gómez et al., 2020).  66 

However, the last decade has brought clear evidence that finer-grained, more dynamic 67 

analysis of brain states, can deepen our understanding of their properties and 68 

relationship to behavioural states (Hutchison et al., 2013; Allen et al., 2014; Calhoun et 69 

al., 2014). There is a growing taxonomy of approaches to characterize the dynamics of 70 

functional interactions (Preti, Bolton and Ville, 2016; Bolton et al., 2020; Kringelbach et 71 

al., 2020), from data-driven heuristic clustering methods across time (Hutchison et al., 72 

2013; Allen et al., 2014; Calhoun et al., 2014; Karahanoğlu and Van De Ville, 2015), 73 

dynamical systems informed phase-locking approaches (Cabral et al., 2017; Lord et al., 74 

2019; Vohryzek et al., 2020), Hidden Markov Models (Baker et al., 2014; Vidaurre, 75 

Smith and Woolrich, 2017) to spatio-temporal networks (Griffa et al., 2017; Vohryzek 76 

et al., 2019). 77 

 78 

Efforts and methods are advancing for understanding response to 79 

neuropharmacological interventions for depression. Understanding the therapeutic 80 

actions of interventions promise - not only to shed light onto the mechanistic 81 
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relationship between various brain states implicated in health and pathology - but also 82 

to provide inspiration for the development of new, improved interventions. However, 83 

there are considerable practical and ethical challenges for answering mechanistic 84 

questions in humans, elevating the use of animal models (with sometimes 85 

questionable translational validity) or small clinically relevant populations – where 86 

mechanistic testing can interfere with therapeutic procedures (Arbabyazd et al., 2020; 87 

Perl et al., 2020). One potential advance in this direction, is the use of whole-brain 88 

modeling - as a tool for understanding pathological changes in neuropsychiatric 89 

disorders, and, potentially, for clinical diagnosis and prediction (Kringelbach and 90 

Deco, 2020). We are mindful, however, that the predictive power of any model 91 

depends on how well it can describe and predict experimental data to which it is fitted 92 

(Cabral et al., 2017). 93 

 94 

The present paper focuses on whole-brain network models where region specific 95 

stimulation or excitation can be tested in silico, and used to describe and predict 96 

empirical-informed target states (Deco et al., 2019) – such the global brain state found 97 

in people with intractable depression. These models link regional dynamics with the 98 

neuroanatomical structure of the brain to describe the spatio-temporal activity of 99 

functional data (Deco and Jirsa, 2012). This approach bypasses the ethical constrains 100 

of human or non-human animal experimental settings, enabling many types of 101 

stimulation to be tested, in order to evaluate the role of regions and their excitation on 102 

transit between states – with relevance to empirical phenomena of interest. The 103 

validity of this strategy has previously been demonstrated in the context of sleep and 104 

awake states (Deco et al., 2019). 105 

 106 
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Here, we build on this notion of dynamic sensitivity analysis to gain insight into 107 

response to psilocybin therapy for treatment resistant depression. We define brain 108 

states in terms of spatial subdivisions and their probability of occurrence across time, 109 

characterised as Probabilistic Metastable Substates (PMS). These recurrent metastable 110 

substates can be characterized by their probability of occurrence. Beyond the 111 

quantitative description of brain states, we wish to understand which brain regions 112 

play a prominent role in the recovery from depression after treatment with psilocybin 113 

(Vohryzek et al., 2022).  114 

 115 

Using data from a trial of psilocybin-therapy for treatment-resistant depression, the 116 

sample was binarized into ‘responders’ and ‘non-responders’ to psilocybin therapy. 117 

Empirical fMRI data was collected before and one-day after the second of two 118 

psilocybin-therapy dosing sessions. Using parameters from the empirical data, 119 

modeled brain states - and stimulation parameters therein, could then be used to 120 

predict treatment response, defined as a >50% reduction in symptom severity from 121 

baseline - determined at a key 5-week post-treatment endpoint (Carhart-Harris et al., 122 

2016).  123 

 124 

Psychedelic medicine has shown a promising avenue for treating depression (Daws et 125 

al., 2022). For depression treatment, one current hypothesis is that: via a psychedelic 126 

drug x psychological intervention combination, there is an increase in global brain 127 

flexibility, translating into a window of opportunity for breaking free of negative 128 

cognitive biases and associated ruminations (Carhart-Harris and Goodwin, 2017). 129 

Indeed, the current research on the acute effects of psychedelic drugs suggests an 130 

increase in the repertoire of brain activity substates (Tagliazucchi et al., 2014; Atasoy 131 

et al., 2017; Parker Singleton et al., 2021). From a neuropharmacological perspective, 132 
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psilocybin – an active compound in magic mushrooms – binds with high affinity to 133 

the serotonergic 5HT2a receptors but other serotonergic receptors are also implicated 134 

(Calvey and Howells, 2018; Carhart-Harris, 2019). Psilocybin acts as an agonist 135 

resulting in higher neuronal excitability, modulating the excitatory-inhibitory balance 136 

(in favour of excitation) in the cortical brain regions with more 5HT2a receptors (Nutt, 137 

King and Nichols, 2013). Recently, a whole-brain computational study focusing on the 138 

human brain action of lysergic acid diethylamide (LSD) – which has a similar 139 

pharmacology to psilocybin/psilocin – demonstrated, for the first time, the causal 140 

impact of 5HT2a agonism-induced excitation on global brain dynamics (Deco, Cruzat, 141 

et al., 2018).  142 

 143 

Here, in empirical fMRI data, we identified recurrent brain substates in terms of the 144 

PMS space across all the subjects in the pre- and post- treatment conditions. 145 

Furthermore, we use a computational whole-brain model – where each brain area is 146 

represented by a Hopf-bifurcation model (Deco, Kringelbach, et al., 2017) - to simulate 147 

the brain network dynamics in patients before the treatment. Through dynamic 148 

sensitivity analysis, we were able to identify brain regions responsible for treatment 149 

response at a key 5-week endpoint (Deco, Cabral, et al., 2018; Deco et al., 2019). A priori, 150 

we hypothesised that regions permitting transition to a healthy brain state (as 151 

predicted by the 5-week endpoint) would relate to the distribution of the 5HT2a and 152 

5HT1a receptors in the human brain, as determined by prior in vivo positron emission 153 

tomography (PET) mapping (Beliveau et al., 2017). 154 

 155 
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 156 

Figure 1. Study Overview. A) Experimental Analysis. Probabilistic Metastable Substates were computed for 157 

each condition using leading eigenvector dynamics analysis (LEiDA). Regional fMRI timeseries were first 158 

converted to analytical signal, followed by computation of the leading eigenvector of the phase coherence matrix 159 

at every timepoint. An unsupervised k-means algorithm was deployed to cluster the eigenvectors into a three 160 

substate solution. The PMS is defined as the probability distribution of substates, obtained for each individual 161 

scan and averaged within each condition. B) Model Fitting. Whole-brain model parameters were optimised to fit 162 

the PMS before treatment separately for responders and non-responders. C) Dynamic Sensitivity Analysis. In 163 

silico bilateral perturbations were performed to find the optimal protocol to transition to the PMS characteristic 164 

of a healthy brain state (described by responders’ (as predicted by the 5-week QIDS endpoint) one-day post-165 

treatment brains). D) Dynamic Sensitivity Evaluation. Perturbations are applied separately in each pair of 166 

bilateral brain regions by varying the intensity of oscillations as defined by the bifurcation parameter a. 167 
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 168 

Results 169 

 170 

In summary, a quantitative characterization of the spatio-temporal dynamics 171 

recorded with fMRI was obtained using leading eigenvector dynamics analysis 172 

(LEiDA), resulting in the definition of Probabilistic Metastable Substates (PMS), 173 

whose probability of occurrence was compared across conditions (i.e., within-subjects 174 

design – therefore, before versus after treatment). We then constructed two whole-175 

brain models representative of the pre-treatment brains to psilocybin therapy. This 176 

was done by fitting their PMS descriptions to those obtained from the experimental 177 

data. Finally, a dynamic sensitivity analysis was implemented to both responder and 178 

non-responder pre-treatment models to identify the brain regions that permit a 179 

transition to the healthy PMS (described by responders’ (as predicted by the 5-week 180 

endpoint) one-day post treatment brains). 181 

 182 

As described in the methods section, we computed the PMS pre- and post-treatment 183 

with psilocybin (where ‘post’ = 1 day post psilocybin dosing session two), for both 184 

responders and non-responders (determined 5 weeks hence). Here, we focused on a 185 

three-substate solution – the lowest k-level with statistically significant differences 186 

between the two groups as well as optimal quality measures across clustering 187 

solutions (SI Figure 2). When contrasting responders versus non-responders, the 188 

occurrence of substate 3 was significantly different pre- versus post-treatment (p = 189 

0.0258, signed rank-sum test), as well as in the post-treatment data alone (p = 0.0141, 190 

rank-sum test; Figure 2, A). Furthermore, we also computed the Global Brain 191 

Connectivity (GBC), metastability and Functional Connectivity Dynamics (FCD) 192 

measures (see SI Figure 2). These results clearly indicated the necessity of considering 193 
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both spatial and temporal dimensions to differentiate between conditions as GBC, 194 

synchrony and metastability show non-significant results. Conversely, the FCD 195 

measure showed significant differences in the temporal similarities of spatial patterns 196 

between pre- and post-treatment responders (p = 0.0163, signed rank-sum 197 

permutation test), and pre- and post-treatment non-responders with post-treatment 198 

responders respectively (p = 0.0183 and p = 0.0273, rank-sum permutation test), 199 

further supporting the use of spatio-temporal measures to capture the alterations in 200 

whole-brain dynamics across conditions. 201 

 202 

 203 

Figure 2. A) Experimental Analysis. Probability of occurrence (or Fractional Occupancy) of each metastable 204 

substate detected with LEiDA for the three-substate clustering solution. Significant differences were observed in 205 

the substate 3 between responders before and after treatment (p = 0.0258, signed rank-sum permutation test), 206 

responders and non-responders after treatment (p = 0.0141, rank-sum permutation test) and no significant 207 

differences were found between responders and non-responders before treatment. B) Model Fitting of the 208 

responder and non-responder models as a function of the global coupling parameter G, with optimal fits at G = 209 

0.185 (Kullback-Liebler divergence = 0.0064) and G = 0.165 (KL-divergence = 0.0187) respectively. C)  210 

Experimental and Simulated PMS. Experimental PMS for responders and non-responders before treatment 211 

(left), their simulated counterparts at optimal G (middle), and experimental PMS for responders and non-212 

responders after treatment (right). 213 

 214 
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To obtain whole-brain computational models representative of the two groups of 215 

patients (responders and non-responders before treatment), we first defined a 216 

generalized brain network model, where each of 90 cortical and subcortical brain 217 

regions (defined using automated anatomical labelling (Tzourio-Mazoyer et al., 2002)) 218 

was described by a Stuart-Landau oscillator (see methods), and regions were coupled 219 

according to realistic structural connectivity obtained from diffusion MRI. 220 

To adjust the model to each group of patients, first the intrinsic frequency of each brain 221 

region was set to the peak frequency in fMRI signals averaged across patients in the 222 

same group (see SI Figure 3). Subsequently, the global coupling parameter, G, was 223 

tuned to optimize each model to its appropriate working point. This was achieved by 224 

minimizing the divergence between the experimental and simulated PMS spaces - see 225 

Figure 2 B. In SI Figure 4, we report optimisation curves for other observables such as 226 

the static FC, metastability and FCD. For the responders and non-responders before 227 

treatment, we found G = 0.185 (KL divergence = 0.0064) and G = 0.165 (KL divergence 228 

= 0.0187) respectively to minimise the difference. Figure 2 C shows on the left, the 229 

experimental results for both groups before treatment; in the middle, the optimal 230 

simulated fits for both groups, and on the right the experimental results after 231 

treatment (with the results of responders after treatment serving as the target PMS for 232 

rebalancing). 233 

 234 

Subsequently, we considered a dynamic sensitivity analysis to determine the optimal 235 

perturbation strategies to rebalance the PMS distribution to the healthy state (as 236 

defined by the PMS space of responders after one-day after treatment). Figure 3 237 

illustrates the dynamic sensitivity analysis, whereby the bifurcation parameter a is 238 

used to change the nodal dynamics in terms of its response to added noise, ranging 239 

from a more noise-driven regime (the more a is negative) to an oscillatory regime 240 
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(with larger amplitude the more a is positive). We focused on homological nodal 241 

perturbation of the whole-brain model, meaning that bilateral regions were perturbed 242 

equally, resulting in 45 pairs of regions perturbed at gradually varying values of a. 243 

Figure 3, Left, shows the dynamic sensitivity analysis of driving a transition to the 244 

healthy state for models of both responders and non-responders before treatment. 245 

Again, an average of the KL divergence between either the perturbed pre-treatment 246 

responders or non-responder models and the healthy PMS space was shown. In the 247 

noise-driven regime (a < 0), a deterioration of the fit was observed for both groups, 248 

while in the oscillatory regime (a > 0), an initial improvement across all 45 runs was 249 

depicted, before subsequent deterioration away from the optimal fit for both groups. 250 

Conversely, when replacing the target healthy state by the depressive state (i.e., by 251 

comparing with the average PMS in non-responders after treatment), we found that 252 

the KL divergence was minimal without perturbation (i.e., keeping a=0), showing a 253 

worse fit for both groups when brain areas became more oscillatory and no effect of 254 

the noisy perturbation (Figure 3, Right).  255 

 256 
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Figure 3. Evaluation of Dynamic Sensitivity Analysis. A) Perturbation to induce a transition to a 257 

healthy state. Each homological pair of brain regions was perturbed by varying the bifurcation parameter a, 258 

which modulates the intrinsic oscillatory behavior of the dynamical units. The more a is positive, the larger the 259 

amplitude of intrinsic oscillations, whereas for negative a the units decay to a fixed point equilibrium and the 260 

local dynamics is dominated by noise. The performance of the perturbations is evaluated by computing the KL 261 

divergence between the simulated PMS and the empirical PMS from patients who recovered after treatment with 262 

psilocybin. Optimal intensity of a = 0.07 was achieved for the responder group (red rectangles). B) Perturbation 263 

to induce a transition to a depressive state. A transition to the depressive state showed worse or no effect at 264 

varying values of the bifurcation parameter a. This is expected since the models were adjusted to patients in the 265 

depressive state before treatment. 266 

 267 

To evaluate which regions permitted transition to a healthy state, we first defined the 268 

optimal perturbation strength as the minimum of the averaged KL divergence (across 269 

the 45 runs) of the responder group to the treatment. This stimulation intensity was 270 

found at a = 0.07. Then, we inspected the difference between the responders and non-271 

responders at that given value of a to assess what nodal perturbations were permitting 272 

the transition to the healthy state in responders but not in non-responders (Figure 4). 273 

 274 

 275 

 276 
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Figure 4. Subset of regions working in responders but not in non-responders. A) Rank ordered absolute 277 

difference of KL divergence between perturbations of the responder and non-responder models before treatment at 278 

a stimulation intensity of a = 0.07. Inset brain rendering of the ten brain regions with the highest difference: 279 

Temporal Superior pole, Rolandic operculum, Fusiform gyrus, Supplementary Motor Area, Parietal Inferior 280 

gyrus, Angular gyrus, Supramarginal gyrus, Frontal Inferior gyrus (opercular), Frontal Middle gyrus (orbital) 281 

and the Parahippocampal gyrus. B)  Cortical rendering and flat maps showing the distribution of all KL 282 

divergence differences. 283 

 284 

Figure 4.A shows the rank ordered regional differences in KL divergence between 285 

perturbations of the responder and non-responder models before treatment at a 286 

stimulation intensity of a = 0.07. We highlighted the regions with the largest KL 287 

divergence working in responders but not non-responders to promote a transition to 288 

the healthy state. These regions are the Temporal Superior pole, Rolandic operculum, 289 

Fusiform gyrus, Supplementary Motor Area, Parietal Inferior gyrus, Angular gyrus, 290 

Supramarginal gyrus, Frontal Inferior gyrus (opercular), Frontal Middle gyrus 291 

(orbital) and the Parahippocampal gyrus. Figure 4, Right, shows the cortical rendering 292 

of these differences. 293 

 294 

Correlation with Serotonin Receptor Maps 295 

 296 

Given the unique neuropharmacology of the psychedelic-induced state through 297 

serotonergic receptors, we assessed whether the regions working in responders but 298 

not non-responders overlapped with the 5-HT density maps derived from PET 299 

imaging data previously obtained by an independent research group (Beliveau et al., 300 

2017). Figure 5 A shows correlations between the 5-HT2a and 5-HT1a receptor density 301 

maps and the KL divergence differences for the two groups at optimal a = 0.07 302 

(Spearman 𝜌 = 0.227, p = 0.032 and Spearman 𝜌 = 0.284, p = 0.007 respectively). Figure 303 

5 B, shows non-significant correlations to other 5-HT components – namely the 5-HT2b 304 
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(Spearman 𝜌 = 0.064, p = 0.055) and 5-HT4 receptors (Spearman 𝜌 = 0.055, p = 0.607) 305 

plus the 5-HT transporter (5-HTT) (Spearman 𝜌 = - 0.172, p = 0.106). 306 

 307 

 308 

Figure 5 Ability to promote a transition relates to density of specific serotonin receptors: For each pair 309 

of homological brain regions, the ability to promote a transition is plotted against the receptor map densities of: 310 

A) 5-HT2a (Spearman correlation 𝜌 = 0.227, p = 0.032). B) 5HT1a (𝜌 = 0.284, p = 0.007), and C) for other 5-HT 311 

receptors with non-significant results: 5-HT2b (𝜌 = 0.064, p = 0.055), 5-HT4 (𝜌 = 0.055, p = 0.607) and the 5-312 

HTT (𝜌 = -0.172, p = 0.106). 313 

 314 

Discussion 315 

In this work, we employed a whole-brain modelling approach to evaluate potential 316 

brain-change causes of response to psilocybin therapy for treatment-resistant 317 

depression. Using a novel combination of empirical data and in silico modelling, 318 
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systematic perturbations to brain regions modelled in silico, revealed a subset of 319 

regions implicated in transition away from ‘depressed brain’ pathology and towards 320 

the ‘healthy brain’ configurations of treatment responders. Notably, these regions 321 

matched those with the highest density of 5HT2a and 5HT1a neuroreceptors. This 322 

relationship is plausible given that psilocin (psilocybin’s active metabolite) is known 323 

to have an appreciable-to-high affinity for the 5-HT1A and 2A receptors, respectively, 324 

where it acts as an agonist; in the case of the 5-HT2AR, potentially stimulating 325 

plasticity-related signaling cascades relevant to an antidepressant action (Desouza et 326 

al., 2021; Liu et al., 2022).   327 

 328 

A summary of complex spatio-temporal dynamics, in terms of brain substates and 329 

their transitions, has drawn a lot of attention in systems neuroscience due to its utility 330 

to evaluate the impact of pharmacological and electromagnetic interventions for 331 

treating brain and behavioural disorders. Brain substates have been characterised in 332 

different ways; by minimal energy (Gu et al., 2018) as attractor landscapes (Deco and 333 

Jirsa, 2012; Vohryzek et al., 2020), and more heuristically, through sliding-window 334 

analysis and unsupervised clustering (Hutchison et al., 2013; Allen et al., 2014). 335 

However, it has been challenging to find a model that sufficiently simple and yet 336 

accurate to account for temporally and spatially complex and non-stationary datasets. 337 

Here, PMS are built on a description of the data in terms of a probabilistic "cloud" in 338 

substate space and as such can be extended to different neuroimaging modalities with 339 

higher temporal resolution, such as EEG and MEG, or potentially to more fine-grained 340 

spatial resolutions (Deco et al., 2019; Kringelbach et al., 2020). 341 

 342 

Cutting-edge non-invasive brain stimulation techniques such as Transcranial 343 

Magnetic Stimulation (TMS) and Direct Electrical Stimulation (DES), and new 344 
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neuropsychopharmacological drugs for treatment of psychiatric disorders have 345 

heralded a new era of localized brain perturbations as medical interventions. For 346 

example, TMS has been considered for treatment of many psychiatric disorders such 347 

as depression, schizophrenia and addiction (Ridding and Rothwell, 2007), and classic 348 

psychedelic (drug) therapy, which in part, targets a specific neuroreceptor (i.e., 349 

principally the 5-HT2A receptor) is showing efficacy in the treatment of  a broad range 350 

of conditions such as depressive, anxiety and addiction disorders (Carhart-Harris and 351 

Goodwin, 2017). However, it seems highly likely that the mechanistic action of these 352 

interventions lies  - potentially well downstream of their initial action, and this action 353 

may not be straightforward (Turkheimer et al., 2021). For example, how Direct 354 

Electrical Stimulation (DES) induced signal propagates within neuronal microcircuits 355 

remains unclear and often paradoxical (Logothetis et al., 2010), and motivates 356 

theoretical neuroscience studies and in-silico perturbation protocols where system-357 

wide changes to localised external stimulation can be explored. 358 

 359 

Beyond in-silico perturbations, the exhaustive stimulation protocol can also be used as 360 

a dynamic sensitivity analysis tool from the complex systems perspective. 361 

Traditionally, statistical differences in measures summarising spatio-temporal 362 

dynamics are obtained using signal detection theory. Such approaches can be 363 

enhanced by considering whole-brain models and their structural differences between 364 

conditions, for example as described by the global coupling (G) parameter. Moreover, 365 

rather than describing and assessing expressions of spatio-temporal dynamics, an 366 

exhaustive protocol allows a shift of focus onto transitions to a target state and this 367 

can be used to identify differences between groups, such as treatment responders 368 

versus non-responders, as we have done here.  369 

 370 
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Forcing transitions in large-scale brain networks has also been investigated through 371 

the prism of control network theory. In such scenarios, control strategies are deployed 372 

to navigate complex systems from a source (initial) state to a target (final) state 373 

(Srivastava et al., 2020). This approach has obtained a lot of attention due to its wide-374 

ranging engineering applicability in technological, social and cyberphysical systems 375 

across various experimental scenarios (Gu et al., 2015; Lynn et al., 2020). However, the 376 

conceptual understanding of controlling neuronal signals from source to target might 377 

be problematic as the brain operates in self-sustained and non-equilibrium state, and 378 

the notion of well-defined pathway between them might be ill-posed (Tognoli and 379 

Kelso, 2013). On the contrary, the approach considered in this work describes spatio-380 

temporal dynamics in terms of Probabilistic Metastable Substates and, through 381 

systematic perturbation, rebalances the spatio-temporal dynamics between two PMS 382 

spaces. Through this approach the brain is rebalanced to its healthy working point, 383 

without specific instructions of what the relevant pathway might be. 384 

 385 

To obtain a PMS approximation of the brain substate of interest, several 386 

methodological choices are made which inevitably introduce several caveats. Firstly, 387 

a regional parcellation must be chosen, which might introduce artificial spatial 388 

boundaries especially when dealing with dynamics. Secondly, the choice of clustering 389 

algorithm defines the type of substates that can be obtained. Here, we use the 390 

unsupervised learning algorithm k-means clustering which has been shown to 391 

adequately represent functionally meaningful brain substates (Vohryzek et al., 2020)- 392 

However, alternative algorithms could be used for this purpose (e.g. k-medoids). 393 

Related to the experimental data, the design is an uncontrolled open-label feasibility 394 

pilot study, and as such has no placebo group and suffers from small sample size. 395 

Hence, future replication studies are warranted to ensure robustness of the findings.  396 
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Moreover, the healthy state is defined here in terms of the 1-day post-treatment scan 397 

but the responders/non-responders’ assessment is done 5 weeks after. Lastly, the 398 

whole-brain models constructed are based on group approximations of the functional 399 

brain information and structural connectivity group template. For clinical relevance, 400 

further research will be needed to create individual-based whole-brain models that 401 

might allow for future in-silico assisted personalised psychiatry (Deco and 402 

Kringelbach, 2014). 403 

 404 

 405 

Material and methods 406 

Experimental Data 407 

Functional MRI 408 

We carried out the analysis on previously published dataset of patients with 409 

treatment-resistant depression undergoing treatment with psilocybin at Imperial 410 

College London (Carhart-Harris et al., 2016). In brief, we investigated 15 patients 411 

(without excessive movement and other artefacts from the original 19 patients) who 412 

were diagnosed with treatment resistant major depression. The MRI scanning sessions 413 

were completed pre-treatment with psilocybin and one-day post-treatment with the 414 

treatment consisting of two oral doses of psilocybin (10mg and 25mg, 7 days apart). 415 

The patients were split into responders and non-responders to the treatment based on 416 

the Quick Inventory Symptomatology (QIDS) at 5-weeks post-treatment with 6 out of 417 

the 15 patients meeting criteria for response (Carhart-Harris et al., 2017).  418 

 419 

Structural Connectivity 420 

In this study, white-matter (structural) connectivity of 90 AAL brain areas from a 421 

previously obtained dataset was used for the whole-brain network model. In brief, 422 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 4, 2022. ; https://doi.org/10.1101/2022.06.30.497950doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.30.497950
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
19 

the group consisted of 16 healthy young adults (5 females, mean SD age: 24.7 ± 423 

2.54).  Diffusion Tensor Imaging (DTI) was applied following the methodology 424 

described in (Cabral et al., 2012). Undirected structural connectivity 𝐶"# was 425 

obtained were n and p are brain areas and the connectivity weights are defined as 426 

the proportion of sampled fibers in all voxels in region n that reach any voxel in 427 

region p. Finally, the individually structural connectomes were averaged across the 428 

16 subjects to obtain a group-based template. 429 

 430 

Probabilistic Metastable Substates 431 

Firstly, we calculated the instantaneous phased relationship between individual brain 432 

regions by expressing the demeaned regional fMRI signal 𝑥(𝑡) as an analytical signal 433 

i.e. in terms of its time-varying phase 𝜃(𝑡) and amplitude	𝐴(𝑡) as 𝑥(𝑡) = 𝐴(𝑡) ∗434 

cos	(𝜃(𝑡)) (Glerean et al., 2012). We excluded the first and last three timepoints to 435 

account for the boundary artefacts introduced by the Hilbert transform. Hence for 436 

every time point 𝑡 and pair of brain regions 𝑛 and 𝑚, we obtain the phase coherence 437 

matrix dPC as follows: 438 

 439 

𝑑𝑃𝐶(𝑛,𝑚, 𝑡) = 𝑐𝑜𝑠(𝜃(𝑛, 𝑡) − 𝜃(𝑚, 𝑡))  (1) 440 

 441 

By decomposing the signal in this way, we can look at when the brain regions 𝑛 and 442 

𝑚 are aligned with similar angles, 𝑐𝑜𝑠	(0) 	= 1, orthogonal to each other 𝑐𝑜𝑠	(𝜋/2) 	=443 

1 and anti-aligned 𝑐𝑜𝑠	(𝜋) 	= −1. As the phase coherence is a measure of undirected 444 

connectivity, the phase coherence matrix dPC is symmetric and all the meaningful 445 

information is captured in the upper-triangular matrix. 446 

 447 
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For further analysis, we used only the 1xN leading eigenvector  𝑉!(𝑡) of the dPC matrix 448 

as described in the Leading Eigenvector Dynamics Analysis (Cabral et al., 2017). In 449 

detail, at every timepoint 𝑡 of the 𝑑𝑃𝐶(𝑡), we performed the eigendecomposition 450 

taking the first (most dominant) eigenvector to describe the 𝑑𝑃𝐶(𝑡) pattern. The  451 

𝑑𝑃𝐶(𝑡) is decomposed as 𝑑𝑃𝐶(𝑡) 	= 	𝑉(𝑡)𝐷(𝑡)𝑉"!(𝑡) where D is the diagonal matrix 452 

carrying the real-valued eigenvalues and 	𝑉!(𝑡) and	𝑉"!!(𝑡) are the left and right 453 

corresponding orthogonal eigenvectors respectively. The dominant connectivity 454 

pattern can be simply reconstructed by the following matrix multiplication 455 

	𝑉(𝑡)𝑉"!(𝑡). 456 

 457 

To look for and describe the discrete phase-locking states, we clustered all the leading 458 

eigenvectors obtained from all the fMRI scans obtained from both responders and 459 

non-responders. We used the unsupervised k-means algorithm, of varying cluster 460 

number 𝑘 from 2 to 10 clusters, to iteratively converge to a predefined number of 461 

clusters with 20 random cluster initialisations to ensure stability in the clustering. 462 

Again, by computing the matrix multiplication of the 1xN cluster centroids 𝑉#$ as 463 

𝑉#$(𝑡)𝑉#$% (𝑡) we obtain the dominant connectivity pattern of each cluster. In the current 464 

analysis, we considered the cluster solution 𝑘 = 3 as an optimal choice between the 465 

quality measures - Dunns, Davies-Bouldin and Silhouette Score, Davies (SI Figure 2), 466 

and the maximising of the statistical significance between patient groups (p-values). 467 

 468 

After calculating the phase-locking states, we defined the probability of occurrence of 469 

the individual substates by simply dividing their occurrence in each recording session 470 

by the total number of time points recorded (same for all recordings). 471 

 472 

Whole-brain Computational Model 473 
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In order to simulate the ultra-slow fluctuations in fMRI signal detected during rest, 474 

we used the Landau-Stuart oscillator canonical model, describing the transition from 475 

a noisy to an oscillatory dynamics (Kuznetsov, 1996). The so-called supercritical Hopf-476 

bifurcation model was used locally at every brain region (node) to emulate the local 477 

dynamics (Deco, Kringelbach, et al., 2017; Deco et al., 2019). To achieve a whole-brain 478 

level description, the individual Hopf models were coupled in a structural 479 

connectivity (SC) network, describing the large-scale white-matter map of the human 480 

brain (Hagmann et al., 2008; Deco, Kringelbach, et al., 2017). The emerging and 481 

complex interactions in the whole-brain network of coupled Hopf models have been 482 

shown to describe many aspects known from experimental recordings in MEG (Deco, 483 

Cabral, et al., 2017) and fMRI (Kringelbach et al., 2015; Deco and Kringelbach, 2016; 484 

Deco, Kringelbach, et al., 2017; Deco, Cabral, et al., 2018; Deco et al., 2019). 485 

 486 

Formally, the normal form of the supercritical Hopf-bifurcation model for a single 487 

uncoupled region of interest (𝑛) in Cartesian coordinates is described by the following 488 

set of coupled equations: 489 

 490 

$%!
$&

= (𝑎" − 𝑥"' − 𝑦"')𝑥" − 𝜔"𝑦" + 𝛽𝜂"(𝑡)  (2) 491 

 492 

$(!
$&

= (𝑎" − 𝑥"' − 𝑦"')𝑦" + 𝜔"𝑥" + 𝛽𝜂"(𝑡)  (3) 493 

 494 

with 𝛽𝜂&(𝑡) being the gaussian noise with standard deviation of 𝛽 = 0.02. The 495 

bifurcation parameter 𝒂 positions the system at the supercritical bifurcation point 496 

when 𝒂 = 0,  noise activity governed by 𝛽𝜂&(𝑡) in regime when 𝒂 < 0, and stable limit 497 

cycle with oscillatory behaviour of frequency defined by 𝑓& = 𝜔&/2𝜋 when 𝒂 > 0. The 498 
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values of the intrinsic frequency 𝜔 were calculated from the experimental fMRI signals 499 

in the 0.04 − 0.07	𝐻𝑧 band by taking the peak frequency of the gaussian-smoothed 500 

power spectrum of each brain area. 501 

 502 

To describe the coupled whole-brain computational model, we introduced the 503 

coupling term (modelled as the common difference coupling i.e., describing the linear 504 

term of a general coupling function) between the individual nodes weighted by the 505 

corresponding values of the SC matrix. To be noted, we do not consider the next 506 

nonlinear coupling term following Taylor expansion of the full coupling, in case the 507 

linear coupling is non-existent (Kuramoto, 1984; Pikovsky et al., 2002). The equations 508 

2 and 3 can be hence expanded as follows: 509 

 510 

$%!
$&

= (𝑎" − 𝑥"' − 𝑦"')𝑥" − 𝜔"𝑦" + 𝐺 ∑ 𝐶"#(𝑥# − 𝑥"))
#*+ + 𝛽𝜂"(𝑡)  (4) 511 

 512 

$(!
$&

= (𝑎" − 𝑥"' − 𝑦"')𝑦" + 𝜔"𝑥" + 𝐺 ∑ 𝐶"#(𝑦# − 𝑦"))
#*+ + 𝛽𝜂"(𝑡)  (5) 513 

 514 

 515 

where  𝐶&' is the SC weight between node 𝑛 and 𝑝, and 𝐺 is the global coupling weight 516 

with equal contribution between all the nodal pairs. The SC matrix was rescaled to 517 

have the mean value < 𝐶 >	= 0.2 in order to be consistent with previous literature’s 518 

range of parameters (Deco, Kringelbach, et al., 2017; Deco et al., 2019). The simulated 519 

signal is described by the 𝑥& equation for every node 𝑛. The variables 𝐺 and 𝑎 are the 520 

control parameters used for the model fitting to the experimental data and the 521 

stimulation protocol respectively (Deco, Kringelbach, et al., 2017; Deco et al., 2019). 522 

 523 
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Objective Function 524 

In order to validate the simulated signal different realisations of the experimental data 525 

can be used (Cabral, Kringelbach and Deco, 2017). The most standard approach is 526 

comparison of the simulated data with grand-averaged static functional connectivity 527 

as computed by the Pearson correlation (Honey et al., 2009; Deco and Jirsa, 2012) or 528 

metastability defined as the standard deviation of the Kuramoto Order Parameter (SI 529 

Figure 4 - Metastability). To account for the temporally varying nature of the BOLD 530 

signal, recent literature has focused on the comparison between the simulated and 531 

empirical FCD spectrums (quantified by Kolmogorov-Smirnov distance) i.e. the 532 

distributions of the cosine distance between the consecutive timepoints as described 533 

by the leading eigenvector (Deco, Kringelbach, et al., 2017; Deco, Cruzat, et al., 2018) 534 

(SI Figure 4 – Functional Connectivity Dynamics). As alluded to in the previous 535 

section, the fMRI signals organise into spatially meaningful phase-locking states. 536 

Here, we compare the simulated data to the probabilities of occurrence of the phase-537 

locking states found in the experimental recordings (Deco et al., 2019). We used the 538 

symmetrised Kullback-Leibler Divergence (KL divergence) of the simulated and 539 

empirical probabilities of occurrence as follows: 540 

 541 

𝐾𝐿2𝑃,-#, 𝑃./-5 = 0.5 9:∑ 𝑃,-#/ (𝑖) ln 0"#$(/)
0%&#(/)

> + ?∑ 𝑃./-/ (𝑖) ln 0%&#(/)
0"#$(/)

@A  (6) 542 

 543 

with 𝑃()' and 𝑃*+) being the empirical and simulated probabilities of occurrence of 544 

the same phase-locking states respectively. 545 

 546 
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