

Brain dynamics predictive of response to psilocybin for treatment-resistant depression

Jakub Vohryzek^{1,2,3}, Joana Cabral^{1,2,4,5}, Louis-David Lord^{1,2}, Henrique M Fernandes^{1,2}, Leor Roseman⁶, David J Nutt⁶, Robin L Carhart-Harris^{6,7}, Gustavo Deco^{3,8,9,10}, Morten L Kringelbach^{1,2,4}

1. Department of Psychiatry, University of Oxford, Oxford, United Kingdom
2. Center for Music in the Brain, Aarhus University, Aarhus, Denmark
3. Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.
4. Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
5. ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
6. Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, United Kingdom
7. Psychedelics Division, Neuroscape, Department of Neurology, University of California San Francisco, US
8. Institut Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
9. Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
10. School of Psychological Sciences, Monash University, Melbourne, Australia

Corresponding author:

Jakub Vohryzek, Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain

jakub.vohryzek@upf.edu

Keywords: Whole Brain Modelling, Psilocybin Treatment, Depression

Abstract

Psilocybin therapy for depression has started to show promise, yet the underlying causal mechanisms are not currently known. Here we leveraged the differential outcome in responders and non-responders to psilocybin (10mg and 25mg, 7 days apart) therapy for depression - to gain new insights into regions and networks implicated in the restoration of healthy brain dynamics. We used whole-brain modelling to fit the spatiotemporal brain dynamics at rest in both responders and non-responders before treatment. Dynamic sensitivity analysis of systematic perturbation of these models enabled us to identify specific brain regions implicated in a transition from a depressive brain state to a healthy one. Binarizing the sample into treatment responders (>50% reduction in depressive symptoms) versus non-responders enabled us to identify a subset of regions implicated in this change. Interestingly, these regions correlate with in vivo density maps of serotonin receptors 5-HT_{2A} and 5-HT_{1A} , which psilocin, the active metabolite of psilocybin, has an appreciable affinity for, and where it acts as a full-to-partial agonist. Serotonergic transmission has long been associated with depression and our findings provide causal mechanistic evidence for the role of brain regions in the recovery from depression via psilocybin.

Introduction

50 Behavioral differences between healthy and depressed individuals can sometimes be
51 conspicuous but identifying causal contributions from brain dynamics is more
52 challenging. Discrete global brain states, such as those that pertain to sleep, healthy
53 waking consciousness and the psychedelic state, have their own characteristic spatio-
54 temporal dynamics, involving large-scale spatial communities temporally evolving in
55 transient arrangements (Sadaghiani *et al.*, 2015; Vidaurre *et al.*, 2016; Deco *et al.*, 2019;

56 Kringelbach and Deco, 2020). With recent advancements in non-invasive
57 neuroimaging techniques, it has become possible to describe complex spatio-temporal
58 dynamics in terms of their spatial and temporal information. Still, one of the
59 challenges for systems neuroscience is to understand what the most appropriate
60 description of such dynamics is and how transition between one state to another is
61 made possible.

62

63 A common method for characterizing global brain function, involves assessing how
64 activity is temporally correlated across spatially separate brain areas over an entire
65 recording period, defining static and state-specific 'functional connectomes'
66 (Bullmore and Sporns, 2009; Amico *et al.*, 2017; Gutiérrez-Gómez *et al.*, 2020).
67 However, the last decade has brought clear evidence that finer-grained, more dynamic
68 analysis of brain states, can deepen our understanding of their properties and
69 relationship to behavioural states (Hutchison *et al.*, 2013; Allen *et al.*, 2014; Calhoun *et*
70 *al.*, 2014). There is a growing taxonomy of approaches to characterize the dynamics of
71 functional interactions (Preti, Bolton and Ville, 2016; Bolton *et al.*, 2020; Kringelbach *et*
72 *al.*, 2020), from data-driven heuristic clustering methods across time (Hutchison *et al.*,
73 2013; Allen *et al.*, 2014; Calhoun *et al.*, 2014; Karahanoglu and Van De Ville, 2015),
74 dynamical systems informed phase-locking approaches (Cabral *et al.*, 2017; Lord *et al.*,
75 2019; Vohryzek *et al.*, 2020), Hidden Markov Models (Baker *et al.*, 2014; Vidaurre,
76 Smith and Woolrich, 2017) to spatio-temporal networks (Griffa *et al.*, 2017; Vohryzek
77 *et al.*, 2019).

78

79 Efforts and methods are advancing for understanding response to
80 neuropharmacological interventions for depression. Understanding the therapeutic
81 actions of interventions promise - not only to shed light onto the mechanistic

82 relationship between various brain states implicated in health and pathology - but also
83 to provide inspiration for the development of new, improved interventions. However,
84 there are considerable practical and ethical challenges for answering mechanistic
85 questions in humans, elevating the use of animal models (with sometimes
86 questionable translational validity) or small clinically relevant populations – where
87 mechanistic testing can interfere with therapeutic procedures (Arbabyazd *et al.*, 2020;
88 Perl *et al.*, 2020). One potential advance in this direction, is the use of whole-brain
89 modeling - as a tool for understanding pathological changes in neuropsychiatric
90 disorders, and, potentially, for clinical diagnosis and prediction (Kringelbach and
91 Deco, 2020). We are mindful, however, that the predictive power of any model
92 depends on how well it can describe and predict experimental data to which it is fitted
93 (Cabral *et al.*, 2017).

94
95 The present paper focuses on whole-brain network models where region specific
96 stimulation or excitation can be tested in silico, and used to describe and predict
97 empirical-informed target states (Deco *et al.*, 2019) – such the global brain state found
98 in people with intractable depression. These models link regional dynamics with the
99 neuroanatomical structure of the brain to describe the spatio-temporal activity of
100 functional data (Deco and Jirsa, 2012). This approach bypasses the ethical constraints
101 of human or non-human animal experimental settings, enabling many types of
102 stimulation to be tested, in order to evaluate the role of regions and their excitation on
103 transit between states – with relevance to empirical phenomena of interest. The
104 validity of this strategy has previously been demonstrated in the context of sleep and
105 awake states (Deco *et al.*, 2019).

106

107 Here, we build on this notion of dynamic sensitivity analysis to gain insight into
108 response to psilocybin therapy for treatment resistant depression. We define brain
109 states in terms of spatial subdivisions and their probability of occurrence across time,
110 characterised as Probabilistic Metastable Substates (PMS). These recurrent metastable
111 substates can be characterized by their probability of occurrence. Beyond the
112 quantitative description of brain states, we wish to understand which brain regions
113 play a prominent role in the recovery from depression after treatment with psilocybin
114 (Vohryzek *et al.*, 2022).

115

116 Using data from a trial of psilocybin-therapy for treatment-resistant depression, the
117 sample was binarized into 'responders' and 'non-responders' to psilocybin therapy.
118 Empirical fMRI data was collected before and one-day after the second of two
119 psilocybin-therapy dosing sessions. Using parameters from the empirical data,
120 modeled brain states - and stimulation parameters therein, could then be used to
121 predict treatment response, defined as a >50% reduction in symptom severity from
122 baseline - determined at a key 5-week post-treatment endpoint (Carhart-Harris *et al.*,
123 2016).

124

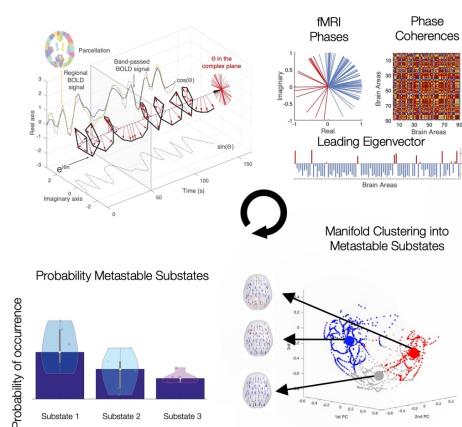
125 Psychedelic medicine has shown a promising avenue for treating depression (Daws *et*
126 *al.*, 2022). For depression treatment, one current hypothesis is that: via a psychedelic
127 drug x psychological intervention combination, there is an increase in global brain
128 flexibility, translating into a window of opportunity for breaking free of negative
129 cognitive biases and associated ruminations (Carhart-Harris and Goodwin, 2017).
130 Indeed, the current research on the acute effects of psychedelic drugs suggests an
131 increase in the repertoire of brain activity substates (Tagliazucchi *et al.*, 2014; Atasoy
132 *et al.*, 2017; Parker Singleton *et al.*, 2021). From a neuropharmacological perspective,

133 psilocybin – an active compound in magic mushrooms – binds with high affinity to
134 the serotonergic 5HT_{2a} receptors but other serotonergic receptors are also implicated
135 (Calvey and Howells, 2018; Carhart-Harris, 2019). Psilocybin acts as an agonist
136 resulting in higher neuronal excitability, modulating the excitatory-inhibitory balance
137 (in favour of excitation) in the cortical brain regions with more 5HT_{2a} receptors (Nutt,
138 King and Nichols, 2013). Recently, a whole-brain computational study focusing on the
139 human brain action of lysergic acid diethylamide (LSD) – which has a similar
140 pharmacology to psilocybin/psilocin – demonstrated, for the first time, the causal
141 impact of 5HT_{2a} agonism-induced excitation on global brain dynamics (Deco, Cruzat,
142 *et al.*, 2018).

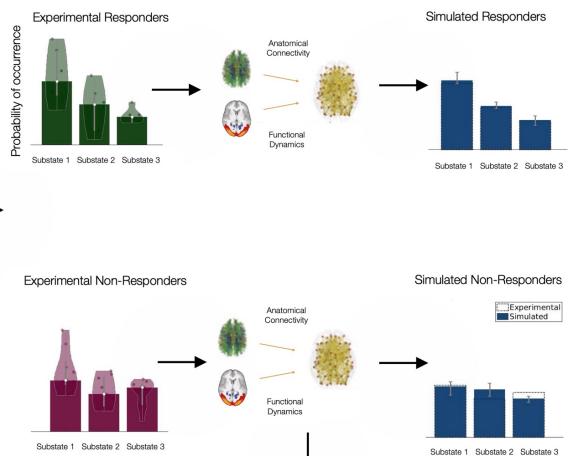
143
144 Here, in empirical fMRI data, we identified recurrent brain substates in terms of the
145 PMS space across all the subjects in the pre- and post- treatment conditions.
146 Furthermore, we use a computational whole-brain model – where each brain area is
147 represented by a Hopf-bifurcation model (Deco, Kringelbach, *et al.*, 2017) - to simulate
148 the brain network dynamics in patients before the treatment. Through dynamic
149 sensitivity analysis, we were able to identify brain regions responsible for treatment
150 response at a key 5-week endpoint (Deco, Cabral, *et al.*, 2018; Deco *et al.*, 2019). A priori,
151 we hypothesised that regions permitting transition to a healthy brain state (as
152 predicted by the 5-week endpoint) would relate to the distribution of the 5HT_{2a} and
153 5HT_{1a} receptors in the human brain, as determined by prior in vivo positron emission
154 tomography (PET) mapping (Beliveau *et al.*, 2017).

155

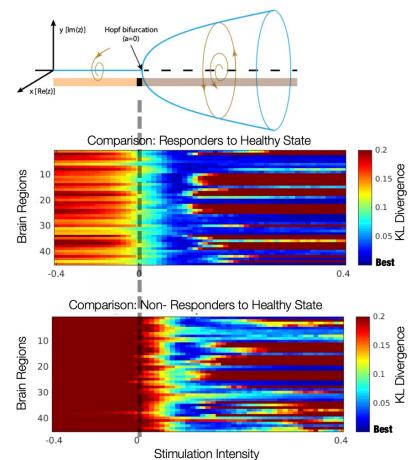
A Experimental Analysis



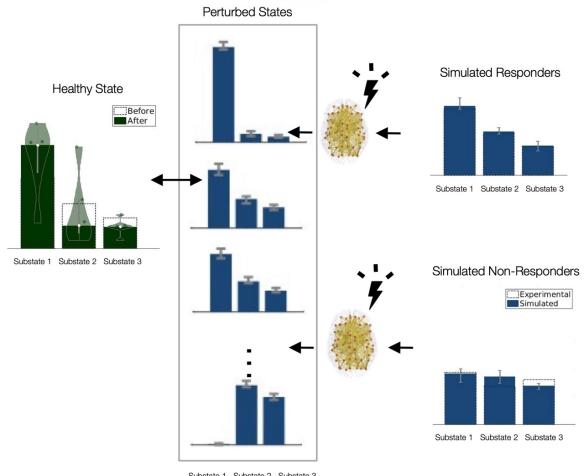
B Model Fitting



D Dynamic Sensitivity Evaluation



C Dynamic Sensitivity Analysis



156

157 **Figure 1. Study Overview.** **A) Experimental Analysis.** Probabilistic Metastable Substates were computed for
 158 each condition using leading eigenvector dynamics analysis (LEiDA). Regional fMRI timeseries were first
 159 converted to analytical signal, followed by computation of the leading eigenvector of the phase coherence matrix
 160 at every timepoint. An unsupervised k-means algorithm was deployed to cluster the eigenvectors into a three
 161 substate solution. The PMS is defined as the probability distribution of substates, obtained for each individual
 162 scan and averaged within each condition. **B) Model Fitting.** Whole-brain model parameters were optimised to fit
 163 the PMS before treatment separately for responders and non-responders. **C) Dynamic Sensitivity Analysis.** In
 164 silico bilateral perturbations were performed to find the optimal protocol to transition to the PMS characteristic
 165 of a healthy brain state (described by responders' (as predicted by the 5-week QIDS endpoint) one-day post-
 166 treatment brains). **D) Dynamic Sensitivity Evaluation.** Perturbations are applied separately in each pair of
 167 bilateral brain regions by varying the intensity of oscillations as defined by the bifurcation parameter a .

168

169 **Results**

170

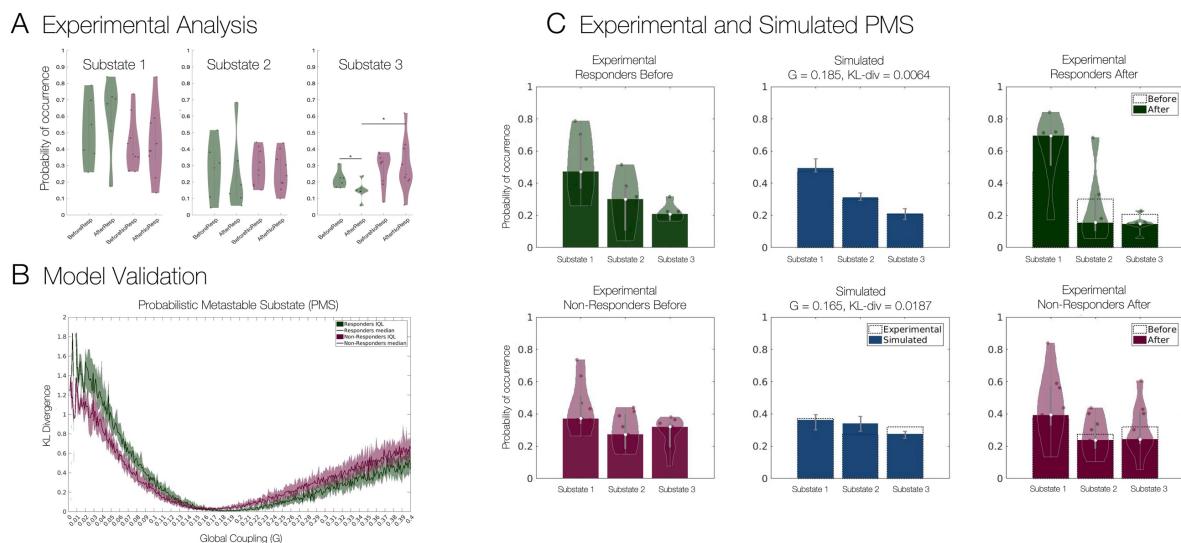
171 In summary, a quantitative characterization of the spatio-temporal dynamics
172 recorded with fMRI was obtained using leading eigenvector dynamics analysis
173 (LEiDA), resulting in the definition of Probabilistic Metastable Substates (PMS),
174 whose probability of occurrence was compared across conditions (i.e., within-subjects
175 design – therefore, before versus after treatment). We then constructed two whole-
176 brain models representative of the pre-treatment brains to psilocybin therapy. This
177 was done by fitting their PMS descriptions to those obtained from the experimental
178 data. Finally, a dynamic sensitivity analysis was implemented to both responder and
179 non-responder pre-treatment models to identify the brain regions that permit a
180 transition to the healthy PMS (described by responders' (as predicted by the 5-week
181 endpoint) one-day post treatment brains).

182

183 As described in the methods section, we computed the PMS pre- and post-treatment
184 with psilocybin (where 'post' = 1 day post psilocybin dosing session two), for both
185 responders and non-responders (determined 5 weeks hence). Here, we focused on a
186 three-substate solution – the lowest k-level with statistically significant differences
187 between the two groups as well as optimal quality measures across clustering
188 solutions (SI Figure 2). When contrasting responders versus non-responders, the
189 occurrence of substate 3 was significantly different pre- versus post-treatment ($p =$
190 0.0258, signed rank-sum test), as well as in the post-treatment data alone ($p = 0.0141$,
191 rank-sum test; Figure 2, A). Furthermore, we also computed the Global Brain
192 Connectivity (GBC), metastability and Functional Connectivity Dynamics (FCD)
193 measures (see SI Figure 2). These results clearly indicated the necessity of considering

194 both spatial and temporal dimensions to differentiate between conditions as GBC,
195 synchrony and metastability show non-significant results. Conversely, the FCD
196 measure showed significant differences in the temporal similarities of spatial patterns
197 between pre- and post-treatment responders ($p = 0.0163$, signed rank-sum
198 permutation test), and pre- and post-treatment non-responders with post-treatment
199 responders respectively ($p = 0.0183$ and $p = 0.0273$, rank-sum permutation test),
200 further supporting the use of spatio-temporal measures to capture the alterations in
201 whole-brain dynamics across conditions.

202



203

204 **Figure 2. A) Experimental Analysis.** Probability of occurrence (or Fractional Occupancy) of each metastable
205 substate detected with LEiDA for the three-substate clustering solution. Significant differences were observed in
206 the substate 3 between responders before and after treatment ($p = 0.0258$, signed rank-sum permutation test),
207 responders and non-responders after treatment ($p = 0.0141$, rank-sum permutation test) and no significant
208 differences were found between responders and non-responders before treatment. **B) Model Fitting** of the
209 responder and non-responder models as a function of the global coupling parameter G , with optimal fits at $G =$
210 0.185 (Kullback-Liebler divergence = 0.0064) and $G = 0.165$ (KL-divergence = 0.0187) respectively. **C)**
211 **Experimental and Simulated PMS.** Experimental PMS for responders and non-responders before treatment
212 (left), their simulated counterparts at optimal G (middle), and experimental PMS for responders and non-
213 responders after treatment (right).

214

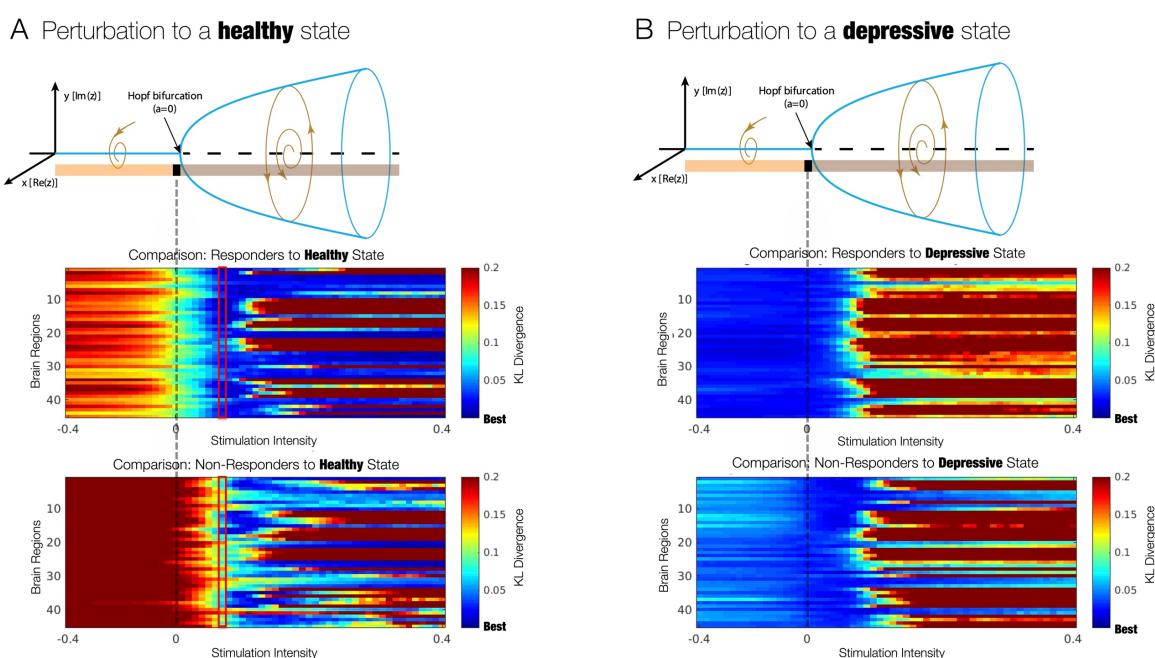
215 To obtain whole-brain computational models representative of the two groups of
216 patients (responders and non-responders before treatment), we first defined a
217 generalized brain network model, where each of 90 cortical and subcortical brain
218 regions (defined using automated anatomical labelling (Tzourio-Mazoyer *et al.*, 2002))
219 was described by a Stuart-Landau oscillator (see methods), and regions were coupled
220 according to realistic structural connectivity obtained from diffusion MRI.

221 To adjust the model to each group of patients, first the intrinsic frequency of each brain
222 region was set to the peak frequency in fMRI signals averaged across patients in the
223 same group (see SI Figure 3). Subsequently, the global coupling parameter, G , was
224 tuned to optimize each model to its appropriate working point. This was achieved by
225 minimizing the divergence between the experimental and simulated PMS spaces - see
226 Figure 2 B. In SI Figure 4, we report optimisation curves for other observables such as
227 the static FC, metastability and FCD. For the responders and non-responders before
228 treatment, we found $G = 0.185$ (KL divergence = 0.0064) and $G = 0.165$ (KL divergence
229 = 0.0187) respectively to minimise the difference. Figure 2 C shows on the left, the
230 experimental results for both groups before treatment; in the middle, the optimal
231 simulated fits for both groups, and on the right the experimental results after
232 treatment (with the results of responders after treatment serving as the target PMS for
233 rebalancing).

234

235 Subsequently, we considered a dynamic sensitivity analysis to determine the optimal
236 perturbation strategies to rebalance the PMS distribution to the healthy state (as
237 defined by the PMS space of responders after one-day after treatment). Figure 3
238 illustrates the dynamic sensitivity analysis, whereby the bifurcation parameter a is
239 used to change the nodal dynamics in terms of its response to added noise, ranging
240 from a more noise-driven regime (the more a is negative) to an oscillatory regime

241 (with larger amplitude the more a is positive). We focused on homological nodal
 242 perturbation of the whole-brain model, meaning that bilateral regions were perturbed
 243 equally, resulting in 45 pairs of regions perturbed at gradually varying values of a .
 244 Figure 3, Left, shows the dynamic sensitivity analysis of driving a transition to the
 245 healthy state for models of both responders and non-responders before treatment.
 246 Again, an average of the KL divergence between either the perturbed pre-treatment
 247 responders or non-responder models and the healthy PMS space was shown. In the
 248 noise-driven regime ($a < 0$), a deterioration of the fit was observed for both groups,
 249 while in the oscillatory regime ($a > 0$), an initial improvement across all 45 runs was
 250 depicted, before subsequent deterioration away from the optimal fit for both groups.
 251 Conversely, when replacing the target healthy state by the depressive state (i.e., by
 252 comparing with the average PMS in non-responders after treatment), we found that
 253 the KL divergence was minimal without perturbation (i.e., keeping $a=0$), showing a
 254 worse fit for both groups when brain areas became more oscillatory and no effect of
 255 the noisy perturbation (Figure 3, Right).



256

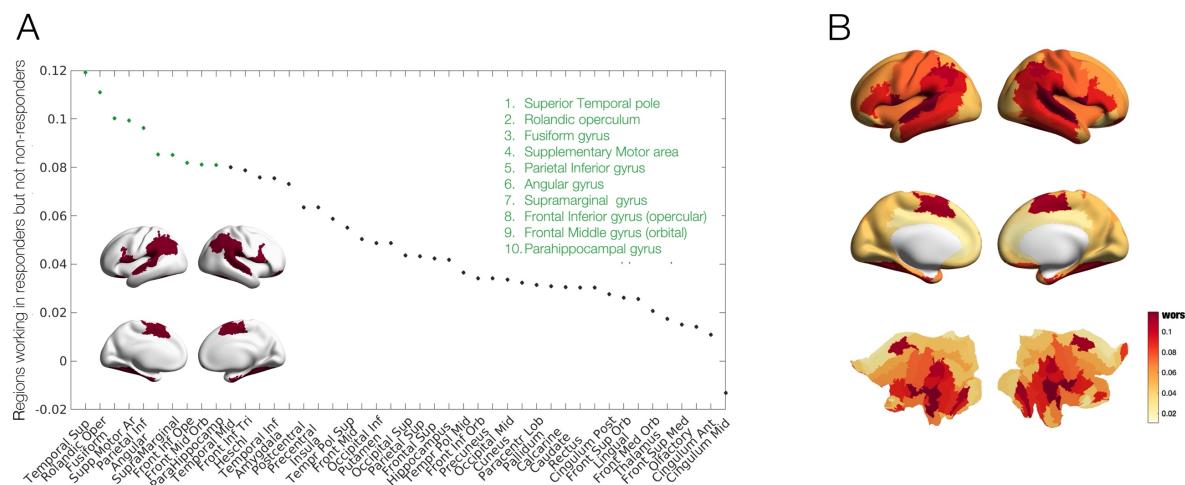
257 **Figure 3. Evaluation of Dynamic Sensitivity Analysis. A) Perturbation to induce a transition to a**
 258 **healthy state.** Each homologous pair of brain regions was perturbed by varying the bifurcation parameter a ,
 259 which modulates the intrinsic oscillatory behavior of the dynamical units. The more a is positive, the larger the
 260 amplitude of intrinsic oscillations, whereas for negative a the units decay to a fixed point equilibrium and the
 261 local dynamics is dominated by noise. The performance of the perturbations is evaluated by computing the KL
 262 divergence between the simulated PMS and the empirical PMS from patients who recovered after treatment with
 263 psilocybin. Optimal intensity of $a = 0.07$ was achieved for the responder group (red rectangles). **B) Perturbation**
 264 **to induce a transition to a depressive state.** A transition to the depressive state showed worse or no effect at
 265 varying values of the bifurcation parameter a . This is expected since the models were adjusted to patients in the
 266 depressive state before treatment.

267

268 To evaluate which regions permitted transition to a healthy state, we first defined the
269 optimal perturbation strength as the minimum of the averaged KL divergence (across
270 the 45 runs) of the responder group to the treatment. This stimulation intensity was
271 found at $\alpha = 0.07$. Then, we inspected the difference between the responders and non-
272 responders at that given value of α to assess what nodal perturbations were permitting
273 the transition to the healthy state in responders but not in non-responders (Figure 4).

274

Subset of regions working in responders but not non-responders



275

276

277 *Figure 4. Subset of regions working in responders but not in non-responders. A) Rank ordered absolute*
278 *difference of KL divergence between perturbations of the responder and non-responder models before treatment at*
279 *a stimulation intensity of $\alpha = 0.07$. Inset brain rendering of the ten brain regions with the highest difference:*
280 *Temporal Superior pole, Rolandic operculum, Fusiform gyrus, Supplementary Motor Area, Parietal Inferior*
281 *gyrus, Angular gyrus, Supramarginal gyrus, Frontal Inferior gyrus (opercular), Frontal Middle gyrus (orbital)*
282 *and the Parahippocampal gyrus. B) Cortical rendering and flat maps showing the distribution of all KL*
283 *divergence differences.*

284

285 Figure 4.A shows the rank ordered regional differences in KL divergence between
286 perturbations of the responder and non-responder models before treatment at a
287 stimulation intensity of $\alpha = 0.07$. We highlighted the regions with the largest KL
288 divergence working in responders but not non-responders to promote a transition to
289 the healthy state. These regions are the Temporal Superior pole, Rolandic operculum,
290 Fusiform gyrus, Supplementary Motor Area, Parietal Inferior gyrus, Angular gyrus,
291 Supramarginal gyrus, Frontal Inferior gyrus (opercular), Frontal Middle gyrus
292 (orbital) and the Parahippocampal gyrus. Figure 4, Right, shows the cortical rendering
293 of these differences.

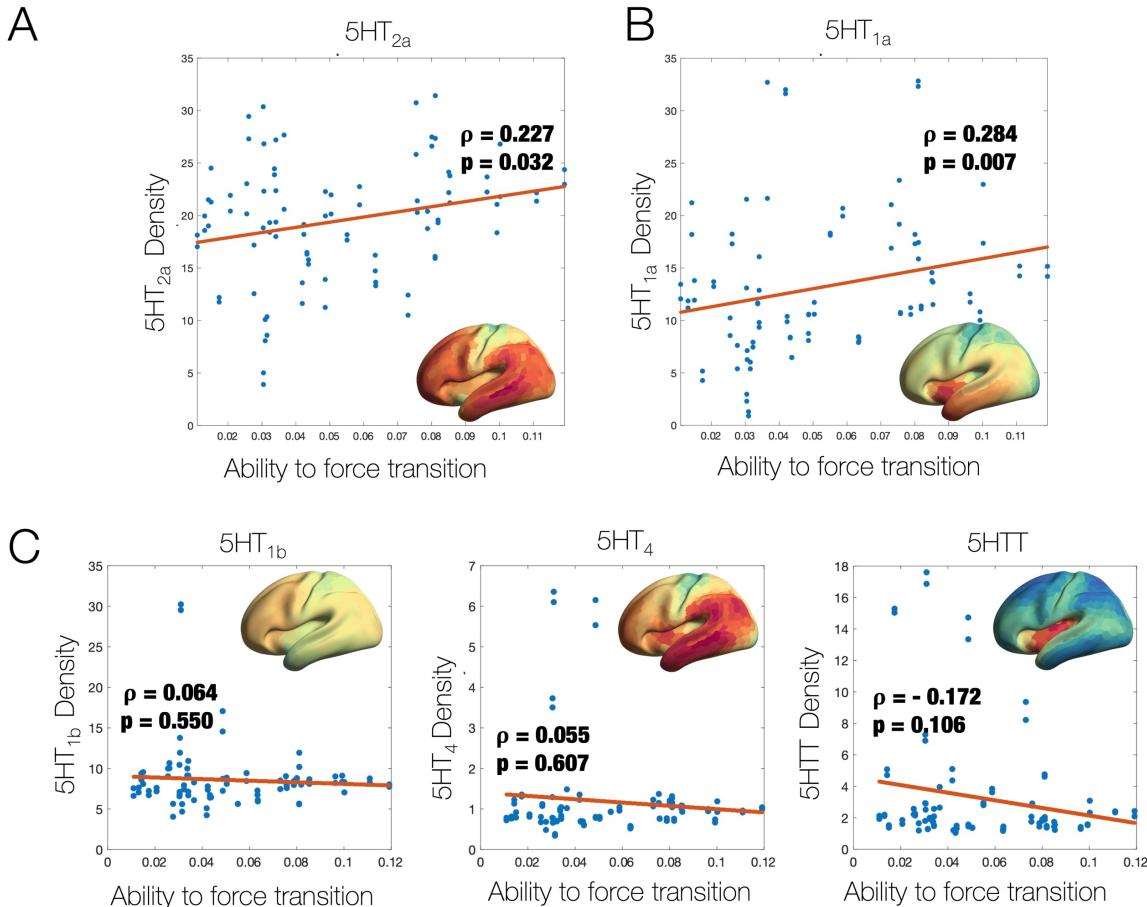
294

295 **Correlation with Serotonin Receptor Maps**

296

297 Given the unique neuropharmacology of the psychedelic-induced state through
298 serotonergic receptors, we assessed whether the regions working in responders but
299 not non-responders overlapped with the 5-HT density maps derived from PET
300 imaging data previously obtained by an independent research group (Beliveau *et al.*,
301 2017). Figure 5 A shows correlations between the $5-HT_{2a}$ and $5-HT_{1a}$ receptor density
302 maps and the KL divergence differences for the two groups at optimal $\alpha = 0.07$
303 (Spearman $\rho = 0.227$, $p = 0.032$ and Spearman $\rho = 0.284$, $p = 0.007$ respectively). Figure
304 5 B, shows non-significant correlations to other 5-HT components – namely the $5-HT_{2b}$

305 (Spearman $\rho = 0.064$, $p = 0.055$) and 5-HT₄ receptors (Spearman $\rho = 0.055$, $p = 0.607$)
306 plus the 5-HT transporter (5-HTT) (Spearman $\rho = -0.172$, $p = 0.106$).
307



308
309 **Figure 5 Ability to promote a transition relates to density of specific serotonin receptors:** For each pair
310 of homologous brain regions, the ability to promote a transition is plotted against the receptor map densities of:
311 **A)** 5-HT_{2a} (Spearman correlation $\rho = 0.227$, $p = 0.032$). **B)** 5HT_{1a} ($\rho = 0.284$, $p = 0.007$), and **C)** for other 5-HT
312 receptors with non-significant results: 5-HT_{2b} ($\rho = 0.064$, $p = 0.550$), 5-HT₄ ($\rho = 0.055$, $p = 0.607$) and the 5-
313 HTT ($\rho = -0.172$, $p = 0.106$).
314

315 Discussion

316 In this work, we employed a whole-brain modelling approach to evaluate potential
317 brain-change causes of response to psilocybin therapy for treatment-resistant
318 depression. Using a novel combination of empirical data and in silico modelling,

319 systematic perturbations to brain regions modelled in silico, revealed a subset of
320 regions implicated in transition away from 'depressed brain' pathology and towards
321 the 'healthy brain' configurations of treatment responders. Notably, these regions
322 matched those with the highest density of $5HT_{2a}$ and $5HT_{1a}$ neuroreceptors. This
323 relationship is plausible given that psilocin (psilocybin's active metabolite) is known
324 to have an appreciable-to-high affinity for the 5-HT1A and 2A receptors, respectively,
325 where it acts as an agonist; in the case of the 5-HT2AR, potentially stimulating
326 plasticity-related signaling cascades relevant to an antidepressant action (Desouza *et*
327 *al.*, 2021; Liu *et al.*, 2022).

328

329 A summary of complex spatio-temporal dynamics, in terms of brain substates and
330 their transitions, has drawn a lot of attention in systems neuroscience due to its utility
331 to evaluate the impact of pharmacological and electromagnetic interventions for
332 treating brain and behavioural disorders. Brain substates have been characterised in
333 different ways; by minimal energy (Gu *et al.*, 2018) as attractor landscapes (Deco and
334 Jirsa, 2012; Vohryzek *et al.*, 2020), and more heuristically, through sliding-window
335 analysis and unsupervised clustering (Hutchison *et al.*, 2013; Allen *et al.*, 2014).
336 However, it has been challenging to find a model that sufficiently simple and yet
337 accurate to account for temporally and spatially complex and non-stationary datasets.
338 Here, PMS are built on a description of the data in terms of a probabilistic "cloud" in
339 substate space and as such can be extended to different neuroimaging modalities with
340 higher temporal resolution, such as EEG and MEG, or potentially to more fine-grained
341 spatial resolutions (Deco *et al.*, 2019; Kringelbach *et al.*, 2020).

342

343 Cutting-edge non-invasive brain stimulation techniques such as Transcranial
344 Magnetic Stimulation (TMS) and Direct Electrical Stimulation (DES), and new

345 neuropsychopharmacological drugs for treatment of psychiatric disorders have
346 heralded a new era of localized brain perturbations as medical interventions. For
347 example, TMS has been considered for treatment of many psychiatric disorders such
348 as depression, schizophrenia and addiction (Ridding and Rothwell, 2007), and classic
349 psychedelic (drug) therapy, which in part, targets a specific neuroreceptor (i.e.,
350 principally the 5-HT2A receptor) is showing efficacy in the treatment of a broad range
351 of conditions such as depressive, anxiety and addiction disorders (Carhart-Harris and
352 Goodwin, 2017). However, it seems highly likely that the mechanistic action of these
353 interventions lies - potentially well downstream of their initial action, and this action
354 may not be straightforward (Turkheimer *et al.*, 2021). For example, how Direct
355 Electrical Stimulation (DES) induced signal propagates within neuronal microcircuits
356 remains unclear and often paradoxical (Logothetis *et al.*, 2010), and motivates
357 theoretical neuroscience studies and *in-silico* perturbation protocols where system-
358 wide changes to localised external stimulation can be explored.

359
360 Beyond *in-silico* perturbations, the exhaustive stimulation protocol can also be used as
361 a dynamic sensitivity analysis tool from the complex systems perspective.
362 Traditionally, statistical differences in measures summarising spatio-temporal
363 dynamics are obtained using signal detection theory. Such approaches can be
364 enhanced by considering whole-brain models and their structural differences between
365 conditions, for example as described by the global coupling (G) parameter. Moreover,
366 rather than describing and assessing expressions of spatio-temporal dynamics, an
367 exhaustive protocol allows a shift of focus onto transitions to a target state and this
368 can be used to identify differences between groups, such as treatment responders
369 versus non-responders, as we have done here.

370

371 Forcing transitions in large-scale brain networks has also been investigated through
372 the prism of control network theory. In such scenarios, control strategies are deployed
373 to navigate complex systems from a source (initial) state to a target (final) state
374 (Srivastava *et al.*, 2020). This approach has obtained a lot of attention due to its wide-
375 ranging engineering applicability in technological, social and cyberphysical systems
376 across various experimental scenarios (Gu *et al.*, 2015; Lynn *et al.*, 2020). However, the
377 conceptual understanding of controlling neuronal signals from source to target might
378 be problematic as the brain operates in self-sustained and non-equilibrium state, and
379 the notion of well-defined pathway between them might be ill-posed (Tognoli and
380 Kelso, 2013). On the contrary, the approach considered in this work describes spatio-
381 temporal dynamics in terms of Probabilistic Metastable Substates and, through
382 systematic perturbation, rebalances the spatio-temporal dynamics between two PMS
383 spaces. Through this approach the brain is rebalanced to its healthy working point,
384 without specific instructions of what the relevant pathway might be.

385
386 To obtain a PMS approximation of the brain substate of interest, several
387 methodological choices are made which inevitably introduce several caveats. Firstly,
388 a regional parcellation must be chosen, which might introduce artificial spatial
389 boundaries especially when dealing with dynamics. Secondly, the choice of clustering
390 algorithm defines the type of substates that can be obtained. Here, we use the
391 unsupervised learning algorithm *k-means* clustering which has been shown to
392 adequately represent functionally meaningful brain substates (Vohryzek *et al.*, 2020)-
393 However, alternative algorithms could be used for this purpose (e.g. k-medoids).
394 Related to the experimental data, the design is an uncontrolled open-label feasibility
395 pilot study, and as such has no placebo group and suffers from small sample size.
396 Hence, future replication studies are warranted to ensure robustness of the findings.

397 Moreover, the healthy state is defined here in terms of the 1-day post-treatment scan
398 but the responders/non-responders' assessment is done 5 weeks after. Lastly, the
399 whole-brain models constructed are based on group approximations of the functional
400 brain information and structural connectivity group template. For clinical relevance,
401 further research will be needed to create individual-based whole-brain models that
402 might allow for future in-silico assisted personalised psychiatry (Deco and
403 Kringelbach, 2014).

404

405

406 **Material and methods**

407 **Experimental Data**

408 **Functional MRI**

409 We carried out the analysis on previously published dataset of patients with
410 treatment-resistant depression undergoing treatment with psilocybin at Imperial
411 College London (Carhart-Harris *et al.*, 2016). In brief, we investigated 15 patients
412 (without excessive movement and other artefacts from the original 19 patients) who
413 were diagnosed with treatment resistant major depression. The MRI scanning sessions
414 were completed pre-treatment with psilocybin and one-day post-treatment with the
415 treatment consisting of two oral doses of psilocybin (10mg and 25mg, 7 days apart).
416 The patients were split into responders and non-responders to the treatment based on
417 the Quick Inventory Symptomatology (QIDS) at 5-weeks post-treatment with 6 out of
418 the 15 patients meeting criteria for response (Carhart-Harris *et al.*, 2017).

419

420 **Structural Connectivity**

421 In this study, white-matter (structural) connectivity of 90 AAL brain areas from a
422 previously obtained dataset was used for the whole-brain network model. In brief,

423 the group consisted of 16 healthy young adults (5 females, mean SD age: $24.7 \pm$
424 2.54). Diffusion Tensor Imaging (DTI) was applied following the methodology
425 described in (Cabral *et al.*, 2012). Undirected structural connectivity C_{np} was
426 obtained where n and p are brain areas and the connectivity weights are defined as
427 the proportion of sampled fibers in all voxels in region n that reach any voxel in
428 region p . Finally, the individually structural connectomes were averaged across the
429 16 subjects to obtain a group-based template.

430

431 **Probabilistic Metastable Substates**

432 Firstly, we calculated the instantaneous phased relationship between individual brain
433 regions by expressing the demeaned regional fMRI signal $x(t)$ as an analytical signal
434 i.e. in terms of its time-varying phase $\theta(t)$ and amplitude $A(t)$ as $x(t) = A(t) *$
435 $\cos(\theta(t))$ (Glerean *et al.*, 2012). We excluded the first and last three timepoints to
436 account for the boundary artefacts introduced by the Hilbert transform. Hence for
437 every time point t and pair of brain regions n and m , we obtain the phase coherence
438 matrix dPC as follows:

439

$$440 \quad dPC(n, m, t) = \cos(\theta(n, t) - \theta(m, t)) \quad (1)$$

441

442 By decomposing the signal in this way, we can look at when the brain regions n and
443 m are aligned with similar angles, $\cos(0) = 1$, orthogonal to each other $\cos(\pi/2) =$
444 1 and anti-aligned $\cos(\pi) = -1$. As the phase coherence is a measure of undirected
445 connectivity, the phase coherence matrix dPC is symmetric and all the meaningful
446 information is captured in the upper-triangular matrix.

447

448 For further analysis, we used only the $1 \times N$ leading eigenvector $V_1(t)$ of the dPC matrix
449 as described in the Leading Eigenvector Dynamics Analysis (Cabral *et al.*, 2017). In
450 detail, at every timepoint t of the $dPC(t)$, we performed the eigendecomposition
451 taking the first (most dominant) eigenvector to describe the $dPC(t)$ pattern. The
452 $dPC(t)$ is decomposed as $dPC(t) = V(t)D(t)V^{-1}(t)$ where D is the diagonal matrix
453 carrying the real-valued eigenvalues and $V_1(t)$ and $V^{-1}_1(t)$ are the left and right
454 corresponding orthogonal eigenvectors respectively. The dominant connectivity
455 pattern can be simply reconstructed by the following matrix multiplication
456 $V(t)V^{-1}(t)$.

457
458 To look for and describe the discrete phase-locking states, we clustered all the leading
459 eigenvectors obtained from all the fMRI scans obtained from both responders and
460 non-responders. We used the unsupervised k-means algorithm, of varying cluster
461 number k from 2 to 10 clusters, to iteratively converge to a predefined number of
462 clusters with 20 random cluster initialisations to ensure stability in the clustering.
463 Again, by computing the matrix multiplication of the $1 \times N$ cluster centroids $V_{c\alpha}$ as
464 $V_{c\alpha}(t)V_{c\alpha}^T(t)$ we obtain the dominant connectivity pattern of each cluster. In the current
465 analysis, we considered the cluster solution $k = 3$ as an optimal choice between the
466 quality measures - Dunns, Davies-Bouldin and Silhouette Score, Davies (SI Figure 2),
467 and the maximising of the statistical significance between patient groups (p-values).

468
469 After calculating the phase-locking states, we defined the probability of occurrence of
470 the individual substates by simply dividing their occurrence in each recording session
471 by the total number of time points recorded (same for all recordings).

472

473 **Whole-brain Computational Model**

474 In order to simulate the ultra-slow fluctuations in fMRI signal detected during rest,
475 we used the Landau-Stuart oscillator canonical model, describing the transition from
476 a noisy to an oscillatory dynamics (Kuznetsov, 1996). The so-called supercritical Hopf-
477 bifurcation model was used locally at every brain region (node) to emulate the local
478 dynamics (Deco, Kringelbach, *et al.*, 2017; Deco *et al.*, 2019). To achieve a whole-brain
479 level description, the individual Hopf models were coupled in a structural
480 connectivity (SC) network, describing the large-scale white-matter map of the human
481 brain (Hagmann *et al.*, 2008; Deco, Kringelbach, *et al.*, 2017). The emerging and
482 complex interactions in the whole-brain network of coupled Hopf models have been
483 shown to describe many aspects known from experimental recordings in MEG (Deco,
484 Cabral, *et al.*, 2017) and fMRI (Kringelbach *et al.*, 2015; Deco and Kringelbach, 2016;
485 Deco, Kringelbach, *et al.*, 2017; Deco, Cabral, *et al.*, 2018; Deco *et al.*, 2019).

486

487 Formally, the normal form of the supercritical Hopf-bifurcation model for a single
488 uncoupled region of interest (n) in Cartesian coordinates is described by the following
489 set of coupled equations:

490

$$491 \frac{dx_n}{dt} = (a_n - x_n^2 - y_n^2)x_n - \omega_n y_n + \beta \eta_n(t) \quad (2)$$

492

$$493 \frac{dy_n}{dt} = (a_n - x_n^2 - y_n^2)y_n + \omega_n x_n + \beta \eta_n(t) \quad (3)$$

494

495 with $\beta \eta_n(t)$ being the gaussian noise with standard deviation of $\beta = 0.02$. The
496 bifurcation parameter a positions the system at the supercritical bifurcation point
497 when $a = 0$, noise activity governed by $\beta \eta_n(t)$ in regime when $a < 0$, and stable limit
498 cycle with oscillatory behaviour of frequency defined by $f_n = \omega_n/2\pi$ when $a > 0$. The

499 values of the intrinsic frequency ω were calculated from the experimental fMRI signals
500 in the 0.04 – 0.07 Hz band by taking the peak frequency of the gaussian-smoothed
501 power spectrum of each brain area.

502
503 To describe the coupled whole-brain computational model, we introduced the
504 coupling term (modelled as the common difference coupling i.e., describing the linear
505 term of a general coupling function) between the individual nodes weighted by the
506 corresponding values of the SC matrix. To be noted, we do not consider the next
507 nonlinear coupling term following Taylor expansion of the full coupling, in case the
508 linear coupling is non-existent (Kuramoto, 1984; Pikovsky *et al.*, 2002). The equations
509 2 and 3 can be hence expanded as follows:

510

511
$$\frac{dx_n}{dt} = (a_n - x_n^2 - y_n^2)x_n - \omega_n y_n + G \sum_{p=1}^N C_{np}(x_p - x_n) + \beta \eta_n(t) \quad (4)$$

512

513
$$\frac{dy_n}{dt} = (a_n - x_n^2 - y_n^2)y_n + \omega_n x_n + G \sum_{p=1}^N C_{np}(y_p - y_n) + \beta \eta_n(t) \quad (5)$$

514
515
516 where C_{np} is the SC weight between node n and p , and G is the global coupling weight
517 with equal contribution between all the nodal pairs. The SC matrix was rescaled to
518 have the mean value $\langle C \rangle = 0.2$ in order to be consistent with previous literature's
519 range of parameters (Deco, Kringelbach, *et al.*, 2017; Deco *et al.*, 2019). The simulated
520 signal is described by the x_n equation for every node n . The variables G and a are the
521 control parameters used for the model fitting to the experimental data and the
522 stimulation protocol respectively (Deco, Kringelbach, *et al.*, 2017; Deco *et al.*, 2019).

523

524 **Objective Function**

525 In order to validate the simulated signal different realisations of the experimental data
526 can be used (Cabral, Kringelbach and Deco, 2017). The most standard approach is
527 comparison of the simulated data with grand-averaged static functional connectivity
528 as computed by the Pearson correlation (Honey *et al.*, 2009; Deco and Jirsa, 2012) or
529 metastability defined as the standard deviation of the Kuramoto Order Parameter (SI
530 Figure 4 - Metastability). To account for the temporally varying nature of the BOLD
531 signal, recent literature has focused on the comparison between the simulated and
532 empirical FCD spectrums (quantified by Kolmogorov-Smirnov distance) i.e. the
533 distributions of the cosine distance between the consecutive timepoints as described
534 by the leading eigenvector (Deco, Kringelbach, *et al.*, 2017; Deco, Cruzat, *et al.*, 2018)
535 (SI Figure 4 – Functional Connectivity Dynamics). As alluded to in the previous
536 section, the fMRI signals organise into spatially meaningful phase-locking states.
537 Here, we compare the simulated data to the probabilities of occurrence of the phase-
538 locking states found in the experimental recordings (Deco *et al.*, 2019). We used the
539 symmetrised Kullback-Leibler Divergence (KL divergence) of the simulated and
540 empirical probabilities of occurrence as follows:

541

$$542 KL(P_{emp}, P_{sim}) = 0.5 \left(\left(\sum_i P_{emp}(i) \ln \frac{P_{emp}(i)}{P_{sim}(i)} \right) + \left(\sum_i P_{sim}(i) \ln \frac{P_{sim}(i)}{P_{emp}(i)} \right) \right) \quad (6)$$

543

544 with P_{emp} and P_{sim} being the empirical and simulated probabilities of occurrence of
545 the same phase-locking states respectively.

546

547 **References**

548 Allen, E. A. *et al.* (2014) 'Tracking whole-brain connectivity dynamics in the resting

549 state', *Cerebral Cortex*, 24(3), pp. 663–676. doi: 10.1093/cercor/bhs352.

550 Amico, E. *et al.* (2017) 'Mapping the functional connectome traits of levels of
551 consciousness', *NeuroImage*. Academic Press Inc., 148, pp. 201–211. doi:
552 10.1016/j.neuroimage.2017.01.020.

553 Arbab Yazd, D. M. *et al.* (2020) 'Completion and augmentation of connectomic datasets
554 in dementia and Alzheimer's Disease using Virtual Patient Cohorts'. doi:
555 10.1101/2020.01.18.911248.

556 Atasoy, S. *et al.* (2017) 'Connectome-harmonic decomposition of human brain activity
557 reveals dynamical repertoire re-organization under LSD', *Scientific Reports*. Springer
558 US, 7(1), p. 17661. doi: 10.1038/s41598-017-17546-0.

559 Baker, A. P. *et al.* (2014) 'Fast transient networks in spontaneous human brain activity',
560 *eLife*, 2014(3), pp. 1–18. doi: 10.7554/eLife.01867.

561 Beliveau, V. *et al.* (2017) 'A high-resolution in vivo atlas of the human brain's serotonin
562 system', *Journal of Neuroscience*, 37(1), pp. 120–128. doi: 10.1523/JNEUROSCI.2830-
563 16.2016.

564 Bolton, T. A. W. *et al.* (2020) 'Tapping into Multi-Faceted Human Behavior and
565 Psychopathology Using fMRI Brain Dynamics', *Trends in Neurosciences*. Elsevier Ltd,
566 pp. 667–680. doi: 10.1016/j.tins.2020.06.005.

567 Bullmore, E. and Sporns, O. (2009) 'Complex brain networks: graph theoretical
568 analysis of structural and functional systems', *Nature Reviews Neuroscience*, 10(3), pp.
569 186–198. doi: 10.1038/nrn2575.

570 Cabral, J. *et al.* (2012) 'Modeling the outcome of structural disconnection on resting-
571 state functional connectivity', *NeuroImage*. Elsevier Inc., 62(3), pp. 1342–1353. doi:
572 10.1016/j.neuroimage.2012.06.007.

573 Cabral, J. *et al.* (2017) 'Cognitive performance in healthy older adults relates to
574 spontaneous switching between states of functional connectivity during rest',

575 *Scientific Reports*, 7(1), p. 5135. doi: 10.1038/s41598-017-05425-7.

576 Cabral, J., Kringelbach, M. L. and Deco, G. (2017) 'Functional connectivity
577 dynamically evolves on multiple time-scales over a static structural connectome:
578 Models and mechanisms', *NeuroImage*. Elsevier, 160(March), pp. 84–96. doi:
579 10.1016/j.neuroimage.2017.03.045.

580 Calhoun, V. D. *et al.* (2014) 'The Chronnectome: Time-Varying Connectivity Networks
581 as the Next Frontier in fMRI Data Discovery', *Neuron*, pp. 262–274. doi:
582 10.1016/j.neuron.2014.10.015.

583 Calvey, T. and Howells, F. M. (2018) 'An introduction to psychedelic neuroscience', in
584 *Progress in Brain Research*. Elsevier B.V., pp. 1–23. doi: 10.1016/bs.pbr.2018.09.013.

585 Carhart-Harris, R. L. *et al.* (2016) 'Psilocybin with psychological support for treatment-
586 resistant depression: an open-label feasibility study', *The Lancet Psychiatry*. Carhart-
587 Harris *et al.* Open Access article distributed under the terms of CC BY, 3(7), pp. 619–
588 627. doi: 10.1016/S2215-0366(16)30065-7.

589 Carhart-Harris, R. L. *et al.* (2017) 'Psilocybin for treatment-resistant depression: FMRI-
590 measured brain mechanisms', *Scientific Reports*. Springer US, 7(1), pp. 1–11. doi:
591 10.1038/s41598-017-13282-7.

592 Carhart-Harris, R. L. (2019) 'How do psychedelics work?', *Current opinion in psychiatry*,
593 32(1), pp. 16–21. doi: 10.1097/YCO.0000000000000467.

594 Carhart-Harris, R. L. and Goodwin, G. M. (2017) 'The Therapeutic Potential of
595 Psychedelic Drugs: Past, Present, and Future', *Neuropsychopharmacology*. Nature
596 Publishing Group, 42(11), pp. 2105–2113. doi: 10.1038/npp.2017.84.

597 Daws, R. E. *et al.* (2022) 'Increased global integration in the brain after psilocybin
598 therapy for depression', *Nature Medicine*. Nature Publishing Group, 28(4), pp. 844–851.
599 doi: 10.1038/s41591-022-01744-z.

600 Deco, G., Cabral, J., *et al.* (2017) 'Single or multiple frequency generators in on-going

601 brain activity: A mechanistic whole-brain model of empirical MEG data', *NeuroImage*.
602 Elsevier, 152(November 2016), pp. 538–550. doi: 10.1016/j.neuroimage.2017.03.023.

603 Deco, G., Kringelbach, M. L., *et al.* (2017) 'The dynamics of resting fluctuations in the
604 brain: Metastability and its dynamical cortical core', *Scientific Reports*. Springer US,
605 7(1), pp. 1–14. doi: 10.1038/s41598-017-03073-5.

606 Deco, G., Cabral, J., *et al.* (2018) 'Perturbation of whole-brain dynamics in silico reveals
607 mechanistic differences between brain states', *NeuroImage*. Elsevier Ltd,
608 169(November 2017), pp. 46–56. doi: 10.1016/j.neuroimage.2017.12.009.

609 Deco, G., Cruzat, J., *et al.* (2018) 'Whole-Brain Multimodal Neuroimaging Model Using
610 Serotonin Receptor Maps Explains Non-linear Functional Effects of LSD', *Current
611 Biology*. Elsevier Ltd., 28(19), pp. 3065-3074.e6. doi: 10.1016/j.cub.2018.07.083.

612 Deco, G. *et al.* (2019) 'Awakening: Predicting external stimulation to force transitions
613 between different brain states', *Proceedings of the National Academy of Sciences*, p.
614 201905534. doi: 10.1073/pnas.1905534116.

615 Deco, G. and Jirsa, V. K. (2012) 'Ongoing cortical activity at rest: Criticality,
616 multistability, and ghost attractors.', *J Neurosci*, 32(10), pp. 3366–3375. doi:
617 10.1523/JNEUROSCI.2523-11.2012.

618 Deco, G. and Kringelbach, M. L. (2014) 'Great expectations: Using whole-brain
619 computational connectomics for understanding neuropsychiatric disorders', *Neuron*,
620 pp. 892–905. doi: 10.1016/j.neuron.2014.08.034.

621 Deco, G. and Kringelbach, M. L. (2016) 'Metastability and Coherence: Extending the
622 Communication through Coherence Hypothesis Using A Whole-Brain Computational
623 Perspective', *Trends in Neurosciences*, pp. 125–135. doi: 10.1016/j.tins.2016.01.001.

624 Desouza, L. A. *et al.* (2021) 'The Hallucinogenic Serotonin2A Receptor Agonist, 2,5-
625 Dimethoxy-4-Iodoamphetamine, Promotes cAMP Response Element Binding Protein-
626 Dependent Gene Expression of Specific Plasticity-Associated Genes in the Rodent

627 Neocortex', *Frontiers in Molecular Neuroscience*, 14(December), pp. 1–15. doi:
628 10.3389/fnmol.2021.790213.

629 Glerean, E. *et al.* (2012) 'Functional Magnetic Resonance Imaging Phase
630 Synchronization as a Measure of Dynamic Functional Connectivity', *Brain
631 Connectivity*, 2(2), pp. 91–101. doi: 10.1089/brain.2011.0068.

632 Griffa, A. *et al.* (2017) 'Transient networks of spatio-temporal connectivity map
633 communication pathways in brain functional systems', *NeuroImage*. Elsevier,
634 155(April), pp. 490–502. doi: 10.1016/j.neuroimage.2017.04.015.

635 Gu, S. *et al.* (2015) 'Controllability of structural brain networks', *Nature
636 Communications*. Nature Publishing Group, 6, pp. 1–10. doi: 10.1038/ncomms9414.

637 Gu, S. *et al.* (2018) 'The Energy Landscape of Neurophysiological Activity Implicit in
638 Brain Network Structure', *Scientific Reports*. Nature Publishing Group, 8(1), p. 2507.
639 doi: 10.1038/s41598-018-20123-8.

640 Gutiérrez-Gómez, L. *et al.* (2020) 'Stable biomarker identification for predicting
641 schizophrenia in the human connectome', *NeuroImage: Clinical*. Elsevier, 27, p. 102316.
642 doi: 10.1016/j.nicl.2020.102316.

643 Hagmann, P. *et al.* (2008) 'Mapping the structural core of human cerebral cortex', *PLoS
644 Biology*, 6(7), pp. 1479–1493. doi: 10.1371/journal.pbio.0060159.

645 Honey, C. J. *et al.* (2009) 'Predicting human resting-state functional connectivity from
646 structural connectivity.', *Proceedings of the National Academy of Sciences of the United
647 States of America*, 106(6), pp. 2035–40. doi: 10.1073/pnas.0811168106.

648 Hutchison, R. M. *et al.* (2013) 'Dynamic functional connectivity: Promise, issues, and
649 interpretations', *NeuroImage*. NIH Public Access, 80, pp. 360–378. doi:
650 10.1016/j.neuroimage.2013.05.079.

651 Karahanoglu, F. I. and Van De Ville, D. (2015) 'Transient brain activity disentangles
652 fMRI resting-state dynamics in terms of spatially and temporally overlapping

653 networks', *Nature Communications*. Nature Publishing Group, 6, p. 7751. doi:
654 10.1038/ncomms8751.

655 Kringelbach, M. L. *et al.* (2015) 'The Rediscovery of Slowness: Exploring the Timing of
656 Cognition', *Trends in Cognitive Sciences*, pp. 616–628. doi: 10.1016/j.tics.2015.07.011.

657 Kringelbach, M. L. *et al.* (2020) 'Dynamic coupling of whole-brain neuronal and
658 neurotransmitter systems', *Proceedings of the National Academy of Sciences of the United
659 States of America*, 117(17), pp. 9566–9576. doi: 10.1073/pnas.1921475117.

660 Kringelbach, M. L. and Deco, G. (2020) 'Brain States and Transitions: Insights from
661 Computational Neuroscience', *Cell Reports*. doi: 10.1016/j.celrep.2020.108128.

662 Kuramoto, Y. (1984) 'Chemical oscillations, waves, and turbulence', *Springer Science &
663 Business Media*, 19.

664 Kuznetsov, Y. a (1996) 'Elements of applied bifurcation theory', *Choice Reviews Online*,
665 33(06), pp. 33-3370-33–3370. doi: 10.5860/choice.33-3370.

666 Liu, X. *et al.* (2022) 'Gs signaling pathway distinguishes hallucinogenic and
667 nonhallucinogenic 5-HT2AR agonists induced head twitch response in mice',
668 *Biochemical and Biophysical Research Communications*. Elsevier Inc., 598, pp. 20–25. doi:
669 10.1016/j.bbrc.2022.01.113.

670 Logothetis, N. K. *et al.* (2010) 'The effects of electrical microstimulation on cortical
671 signal propagation', *Nature Neuroscience*. Nature Publishing Group, 13(10), pp. 1283–
672 1291. doi: 10.1038/nn.2631.

673 Lord, L.-D. *et al.* (2019) 'Dynamical exploration of the repertoire of brain networks at
674 rest is modulated by psilocybin', *NeuroImage*, 199, pp. 127–142. doi:
675 10.1016/j.neuroimage.2019.05.060.

676 Lynn, C. W. *et al.* (2020) 'Broken detailed balance and entropy production in the
677 human brain'. Available at: <http://arxiv.org/abs/2005.02526> (Accessed: 15 April
678 2021).

679 Nutt, D. J., King, L. a and Nichols, D. E. (2013) 'Effects of Schedule I drug laws on
680 neuroscience research and treatment innovation', *Nature Reviews Neuroscience*,
681 14(August), pp. 577–585. doi: 10.1038/nrn3530.

682 Parker Singleton, S. A. *et al.* (2021) 'Psychedelics flatten the brain's energy landscape:
683 evidence from receptor-informed network control theory', *bioRxiv*, p.
684 2021.05.14.444193. Available at: <https://www.biorxiv.org/content/10.1101/2021.05.14.444193v3%0Ahttps://www.biorxiv.org/content/10.1101/2021.05.14.444193v3.abstract>.

687 Perl, Y. S. *et al.* (2020) 'Data augmentation based on dynamical systems for the
688 classification of brain states', *Chaos, Solitons and Fractals*, 139, pp. 1–22. doi:
689 10.1016/j.chaos.2020.110069.

690 Pikovsky, A. *et al.* (2002) 'Synchronization: A Universal Concept in Nonlinear Science',
691 *American Journal of Physics*, 70(6), pp. 655–655. doi: 10.1119/1.1475332.

692 Preti, M. G., Bolton, T. A. and Ville, D. Van De (2016) 'The dynamic functional
693 connectome: State-of-the-art and perspectives', *NeuroImage*. doi:
694 10.1016/j.neuroimage.2016.12.061.

695 Ridding, M. C. and Rothwell, J. C. (2007) 'Is there a future for therapeutic use of
696 transcranial magnetic stimulation?', *Nature Reviews Neuroscience*. Nature Publishing
697 Group, pp. 559–567. doi: 10.1038/nrn2169.

698 Sadaghiani, S. *et al.* (2015) 'Ongoing dynamics in large-scale functional connectivity
699 predict perception', *Proceedings of the National Academy of Sciences of the United States of
700 America*. National Academy of Sciences, 112(27), pp. 8463–8468. doi:
701 10.1073/PNAS.1420687112/SUPPL_FILE/PNAS.201420687SI.PDF.

702 Srivastava, P. *et al.* (2020) 'Models of communication and control for brain networks:
703 Distinctions, convergence, and future outlook', *Network Neuroscience*, 4(4), pp. 1122–
704 1159. doi: 10.1162/netn_a_00158.

705 Tagliazucchi, E. *et al.* (2014) 'Enhanced repertoire of brain dynamical states during the
706 psychedelic experience', *Human Brain Mapping*, 35(11), pp. 5442–5456. doi:
707 10.1002/hbm.22562.

708 Tognoli, E. and Kelso, J. A. S. (2013) 'On the Brain's Dynamical Complexity: Coupling
709 and Causal Influences Across Spatiotemporal Scales', *Advances in Cognitive
710 Neurodynamics (III)*, pp. 259–265. doi: 10.1007/978-94-007-4792-0_35.

711 Turkheimer, F. E. *et al.* (2021) 'A Complex Systems Perspective on Neuroimaging
712 Studies of Behavior and Its Disorders', *Neuroscientist*. doi: 10.1177/1073858421994784.

713 Tzourio-Mazoyer, N. *et al.* (2002) 'Automated anatomical labeling of activations in
714 SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject
715 brain', *NeuroImage*, 15(1), pp. 273–289. doi: 10.1006/nimg.2001.0978.

716 Vidaurre, D. *et al.* (2016) 'Spectrally resolved fast transient brain states in
717 electrophysiological data', *NeuroImage*. The Authors, 126, pp. 81–95. doi:
718 10.1016/j.neuroimage.2015.11.047.

719 Vidaurre, D., Smith, S. M. and Woolrich, M. W. (2017) 'Brain network dynamics are
720 hierarchically organized in time', *Proceedings of the National Academy of Sciences*,
721 114(48), p. 201705120. doi: 10.1073/pnas.1705120114.

722 Vohryzek, J. *et al.* (2019) 'Dynamic spatio-temporal patterns of brain connectivity
723 reorganize across development', *Network Neuroscience*, pp. 1–39. doi:
724 10.1162/netn_a_00111.

725 Vohryzek, J. *et al.* (2020) 'Ghost Attractors in Spontaneous Brain Activity: Recurrent
726 Excursions Into Functionally-Relevant BOLD Phase-Locking States', *Frontiers in
727 Systems Neuroscience*, 14(April), pp. 1–15. doi: 10.3389/fnsys.2020.00020.

728 Vohryzek, J. *et al.* (2022) 'Understanding brain states across spacetime informed by
729 whole-brain modelling', *Philosophical Transactions of the Royal Society A: Mathematical,
730 Physical and Engineering Sciences*, 380(2227). doi: 10.1098/rsta.2021.0247.

731

732 **Acknowledgements**

733 M.L.K. is supported by the European Research Council Consolidator Grant:
734 CAREGIVING (615539), Pettit Foundation, Carlsberg Foundation and Center for
735 Music in the Brain, funded by the Danish National Research Foundation (DNRF117).
736 Joana Cabral is supported by Portuguese Foundation for Science and Technology
737 CEECIND/03325/2017, UIDB/50026/2020 and UIDP/50026/2020, Portugal.
738 Gustavo Deco is supported by the Spanish Research Project PSI2016-75688-P (Agencia
739 Estatal de Investigación/Fondo Europeo de Desarrollo Regional, European Union);
740 by the European Union's Horizon 2020 Research and Innovation Programme under
741 Grant Agreements 720270 (Human Brain Project [HBP] SGA1) and 785907 (HBP
742 SGA2); and by the Catalan Agency for Management of University and Research
743 Grants Programme 2017 SGR 1545.

744

745