

1 **Injury-related cell death and proteoglycan loss in articular cartilage:**
2 **Numerical model combining necrosis, reactive oxygen species, and**
3 **inflammatory cytokines**

4

5 Joonas P. Kosonen^{1*}, Atte S.A. Eskelinen¹, Gustavo A. Orozco^{1,2}, Petteri Nieminen³,
6 Donald D. Anderson⁴, Alan J. Grodzinsky⁵, Rami K. Korhonen¹ and Petri Tanska¹

7

8 ¹Department of Applied Physics, University of Eastern Finland, Kuopio, Finland

9

10 ²Department of Biomedical Engineering, Lund University, Lund, Sweden

11

12 ³Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland

13

14 ⁴Departments of Orthopedics & Rehabilitation and Biomedical Engineering, University of Iowa, Iowa,
15 United States of America

16

17 ⁵Departments of Biological Engineering, Electrical Engineering and Computer Science, and Mechanical
18 Engineering, Massachusetts Institute of Technology, Cambridge, United States of America

19

20

21 *Corresponding author:

22 Email: joonas.kosonen@uef.fi

23

24

25 **Abstract [word count: 267/300]**

26 Osteoarthritis (OA) is a common musculoskeletal disease that leads to deterioration of articular cartilage,
27 joint pain, and decreased quality of life. When OA develops after a joint injury, it is designated as post-
28 traumatic OA (PTOA). The etiology of PTOA remains poorly understood, but it is known that proteoglycan
29 (PG) loss, cell dysfunction, and cell death in cartilage are among the first signs of the disease. These
30 processes, influenced by biomechanical and inflammatory stimuli, disturb the normal cell-regulated balance
31 between tissue synthesis and degeneration. Previous computational mechanobiological models have not
32 explicitly incorporated the cell-mediated degradation mechanisms triggered by an injury that eventually can
33 lead to tissue-level compositional changes. Here, we developed a 2-D mechanobiological finite element
34 model to predict necrosis, apoptosis following excessive production of reactive oxygen species (ROS), and
35 inflammatory cytokine (interleukin-1)-driven apoptosis in cartilage explant. The resulting PG loss over 30
36 days was simulated. Biomechanically triggered PG degeneration, associated with cell necrosis, excessive
37 ROS production, and cell apoptosis, was predicted to be localized near a lesion, while interleukin-1
38 diffusion-driven PG degeneration was manifested more globally. The numerical predictions were supported
39 by several previous experimental findings. Furthermore, the ROS and inflammation mechanisms had
40 longer-lasting effects (over 3 days) on the PG content than localized necrosis. Interestingly, the model also
41 showed proteolytic activity and PG biosynthesis closer to the levels of healthy tissue when pro-inflammatory
42 cytokines were rapidly inhibited or cleared from the culture medium, leading to partial recovery of PG
43 content. The mechanobiological model presented here may serve as a numerical tool for assessing early
44 cartilage degeneration mechanisms and the efficacy of interventions to mitigate PTOA progression.

45

46

47 **Author summary [word count: 185/200]**

48
49 Osteoarthritis is one of the most common musculoskeletal diseases. When osteoarthritis develops after a
50 joint injury, it is designated as post-traumatic osteoarthritis. A defining feature of osteoarthritis is
51 degeneration of articular cartilage, which is partly driven by cartilage cells after joint injury, and further
52 accelerated by inflammation. The degeneration triggered by these biomechanical and biochemical
53 mechanisms is currently irreversible. Thus, early prevention/mitigation of disease progression is a key to
54 avoiding PTOA. Prior computational models have been developed to provide insights into the complex
55 mechanisms of cartilage degradation, but they rarely include cell-level cartilage degeneration mechanisms.
56 Here, we present a novel approach to simulate how the early post-traumatic biomechanical and
57 inflammatory effects on cartilage cells eventually influence tissue composition. Our model includes the key
58 regulators of early post-traumatic osteoarthritis: chondral lesions, cell death, reactive oxygen species , and
59 inflammatory cytokines. The model is supported by several experimental explant culture findings.
60 Interestingly, we found that when post-injury inflammation is mitigated, cartilage composition can partially
61 recover. We suggest that mechanobiological models including cell–tissue-level mechanisms can serve as
62 future tools for evaluating high-risk lesions and developing new intervention strategies.

63 1. Introduction

64 Joint injuries trigger cell biological signaling pathways implicated in articular cartilage degeneration [1–3].
65 Cartilage has a limited innate capacity for repair, so when joint injuries cause loss of chondrocyte (cartilage
66 cell) viability and extracellular matrix (ECM) components, it can be irreversible. Ultimately, these sequelae
67 of joint injury lead to post-traumatic osteoarthritis (PTOA), a disease marked by pain in the affected joint
68 [1,2]. The mechanisms of the onset and progression of PTOA are poorly understood, but several intertwined
69 factors have been identified: chondrocyte death [4,5], mitochondrial dysfunction and the subsequent
70 overproduction of reactive oxygen species (ROS) [6,7], increased proteolytic activity triggered by excessive
71 mechanical loading [8], and inflammation [2].

72 Mechanical loading is an important factor in chondrocyte-regulated cartilage homeostasis [9,10].
73 Injurious loading may initiate ECM degeneration [1,7,11] and cause cell death including apoptosis and
74 necrosis [10,12–15]. This degenerative pathway may be further promoted locally by dynamic loading, even
75 if compressive tissue-level mechanical strains remain within physiological limits [16]. Necrosis is an acute
76 form of cell death caused by direct mechanical damage to cells such as injurious single-impact loading or
77 high local strains and/or strain rates [10,12,13,17]. Necrosis is also suggested to result in the release of
78 damage-associated molecular patterns (DAMPs) and pro-inflammatory cytokines [18–20] and lead to ECM
79 degeneration caused by proteolytic enzymes [21]. In addition, near the injury site, excessive local strains
80 may alter cell function. For instance, associated changes in mitochondrial activity and physiology can
81 culminate in the excessive production of ROS [22,23]. Apoptosis, the controlled subacute form of cell death,
82 has also been associated with excessive production of ROS [14,24]. Excessive ROS production has been
83 suggested to promote ECM degeneration via decreased matrix biosynthesis [25], increased release of
84 proteolytic enzymes [26,27], and inhibition of tissue inhibitors of metalloproteinases (TIMPs) [25,28].

85 Inflammation is another important factor in cartilage homeostasis. During the early phases of PTOA,
86 the introduction of pro-inflammatory cytokines such as interleukin-1 (IL-1), IL-6, IL-18, and tumor necrosis
87 factor- α (TNF- α) predisposes cartilage to degeneration [2,29,30]. Catabolism and reduced biosynthesis in

88 the ECM is counter-balanced with anti-inflammatory cytokines (e.g., IL-4, IL-10, IL-13) [30], TIMPs [31],
89 and growth factors such as insulin-like growth factor-1 [29,30]. Prolonged inflammation may shift cartilage
90 homeostasis to the catabolic state, in which the ECM is degraded [2,32] via aggrecanases (e.g., disintegrin
91 and metalloproteinase with thrombospondin motifs-4,5; ADAMTS-4,5) and collagenases (e.g., matrix
92 metalloproteinases-1,3,13; MMP-1,3,13) [2,30,31].

93 The ability to predict cartilage degeneration via both biomechanical and inflammatory mechanisms is
94 critical to comprehending disease progression, evaluating the efficacy of medical treatments, and developing
95 new intervention strategies. Computational modeling has great potential in this regard while being cost-
96 efficient. Previous computational finite element models have introduced promising frameworks to simulate
97 the biomechanics- and inflammation-driven cartilage degeneration at joint, tissue, and cell levels in both a
98 spatial and temporal manner [16,33–36]. Previous biomechanics-driven computational models have targeted
99 primary cartilage injury mechanisms including necrosis, apoptosis, and pro-inflammatory cytokine and
100 DAMP-signaling without including the degeneration of different ECM components [35,37,38]. More
101 recently, strain/stress threshold-based modeling approaches have been developed to predict tissue-level
102 proteoglycan (PG) loss without explicitly modeling the underlying chondrocyte-regulated mechanisms
103 [33,39]. No previous computational approach has modeled the chondrocyte-driven biomechanical and
104 biochemical mechanisms triggered by injury and regulating spatial and temporal tissue-level degeneration.

105 In this study, we developed a new 2-D cell-and-tissue-level mechanobiological model of cartilage
106 degeneration [16,34,36] to predict injury-related cell responses after excessive biomechanical loading,
107 inflammation, and subsequent early-stage PTOA progression. We did not model the injurious loading *per*
108 *se*, but we instead concentrated on how cell death and compositional changes evolve in injured cartilage that
109 is possibly experiencing locally elevated strains post-injury. We hypothesized that i) injury-related catabolic
110 mechanisms (necrosis and apoptosis) and PG loss occur at early time-points in close proximity to lesions
111 while ii) inflammation-mediated PG loss occurs later and in more distant intact areas. To predict tissue-level
112 cell death and PG loss in an injured environment, we simulated three different cell-level mechanisms
113 separately and simultaneously. In the numerical model, excessive biomechanical shear strains trigger i)

114 necrosis and ii) apoptosis following cell damage (e.g., mitochondrial dysfunction) and ROS overproduction,
115 while IL-1 diffusing into the tissue trigger iii) inflammatory responses. We compared the simulated cell
116 death and PG content predictions with outcomes of *in vitro* experiments (15,40). To address the lack of
117 quantitative experimental data, we conducted a sensitivity analysis for the most relevant parameters in the
118 model, which were selected based on preliminary simulations (necrosis/cell damage rate, ROS production
119 rate, rate of spontaneous apoptosis, and decay rate of IL-1 concentration). Our approach is a novel step
120 towards modeling PTOA progression through chondrocyte-driven biological mechanisms triggered by both
121 locally excessive biomechanical loading and inflammation.

122 2. Materials and methods

123 A computational mechanobiological model, inspired by previous models [16,34,36,37], was developed to
124 simulate cartilage degeneration in experimental cartilage geometry after injurious unconfined compression
125 to explain biological tissue-level damage via cell-driven mechanisms [16,40]. The cartilage PG degeneration
126 was controlled with three different adaptive mechanisms (Fig. 1): shear strain-induced A) necrosis of a cell
127 population and B) ROS overproduction by remaining live cells, which further leads to cell apoptosis. These
128 injury-related mechanisms ultimately resulted in an increased aggrecanase release from regions containing
129 ROS-affected cells. The last mechanism is associated with the effects of IL-1, which can cause chondrocyte
130 apoptosis as well as upregulation of aggrecanase in the remaining live cells. All three mechanisms were
131 assumed to lead to decreased PG biosynthesis and were modeled separately and also simultaneously in a
132 combined model. We simulated the evolution of the viable cell and matrix PG content distributions for 12
133 days, while also providing extrapolated insights up to 30 days. Based on the simulated results, we
134 quantitatively analyzed near-lesion (0.1 mm from lesion edge) and bulk cell viability and PG loss at several
135 time-points. The simulated results in an injured cartilage explant model were also qualitatively compared
136 with previous explant culture experiments.

137

138 **Fig 1. Computational modeling framework and comparison against biological data.** Delineation of the
139 simulated mechanisms I-III in the proposed computational model to predict temporal and spatial changes
140 in cell viability and proteoglycan (PG) loss for 30 days. (A) Unconfined compression (15% axial strain, 1
141 Hz loading frequency) of injured cartilage was simulated to obtain maximum shear strain distributions. In
142 areas experiencing abnormal maximum shear strains, two biomechanically-induced degradation were
143 triggered; chondrocyte necrosis (mechanism I) and cell damage reactive oxygen species overproduction
144 followed by apoptosis (mechanism II). (B) Interleukin-1 (IL-1) diffusion (1ng/ml of IL-1 in the culture
145 medium) causing high spatially distributed IL-1 concentration in the cartilage caused inflammatory cell
146 stimulus. This led to chondrocyte apoptosis (mechanism III). Moreover, all the mechanisms I-III accelerated

147 the proteoglycan degradation by decreasing the PG biosynthesis and increasing the proteolysis of PGs. (C)
148 Finally, combined model was developed to simulate the synergistic effects of mechanisms I-III. (D)
149 Simulated cell viability and proteoglycan content were also generally compared against experimentally
150 measured cell viability and digital densitometry measurements (~proteoglycan content).

151

152 **2.1. Comparative biological data**

153 Predictions of our theoretical computational model were visually compared against histological changes
154 observed in the previous explant culture experiments (Fig. 2) [16,40]. We highlight that the exact
155 experimental protocol was not modeled, thus no quantitative comparison is provided. We find this visual
156 comparison feasible, since the goal in this study was to gain understanding of the possible underlying
157 mechanisms to explain experimental findings in PTOA-like conditions.

158

159 **Fig 2. Previous experiments.** In the previous experiments conducted by Orozco et al [16] and Eskelinen et
160 al. (40), the injured, dynamically loaded and IL-1 challenged cartilage samples were analyzed at several
161 time-points during 12-day culture. Cell viability and proteoglycan content (~optical density) were measured
162 with fluorescence microscopy and digital densitometry, respectively. (A) At day 0, proteoglycan loss in
163 cartilage was minor. At day 12, the results showed (B) substantial cell death and proteoglycan loss near
164 lesion after dynamic loading in the injured cartilage. Interleukin-1 challenge induced cell death and PG loss
165 also in the intact areas (C) with and (D) without dynamic loading post-injury. Red arrows highlight locally
166 decreased optical density and white arrows increased local cell death.

167

168 In the experiments (Fig. 2) [16,40], cylindrical articular cartilage samples (diameter 3 mm, thickness
169 1 mm) were prepared from patellofemoral grooves of freshly slaughtered 1-2-week-old calves. The samples
170 were subjected to injurious compression (50% strain, 100%/s strain rate) with 1) compressive cyclic loading
171 (15% strain amplitude, 1 Hz haversine waveform, 1 hour loading periods 4 times per day) 2) IL-1-challenge
172 (1 ng/ml), or 3) a combination of compressive cyclic loading and IL-1 challenge. Injurious compression

173 resulted in a physical cartilage lesion in all samples. A free-swelling control group was also included for
174 comparison. Cell viability and localized PG content were assessed at several timepoints up to 12 days with
175 fluorescence microscopy and digital densitometry.

176 The experiments [16,40] showed minor cell death and PG loss (decreased optical density) between
177 intact and injured sample regions on the day of injury (Fig. 2A, day 0). Qualitatively, the PG content in the
178 injured and dynamically loaded group decreased mostly near the lesion (Fig. 2B, day 12 vs. day 0, red
179 arrows). After injury and IL-1 treatment, PG content decreased noticeably near all edges of the cartilage
180 plug (Fig. 2C, red arrows). Dynamically loaded injured and inflamed plugs also experienced marked PG
181 loss both away and near the lesion (Fig 2D).

182

183 **2.2. Simulation of abnormal biomechanical shear strains promoting necrosis and cell damage**

184 A finite element model of injured cartilage was subjected to physiologically relevant dynamic loading as in
185 a previous study [16]. The injury (lesion) and simulated dynamic loading (two unconfined compressions)
186 were implemented based on the experiments [16]. Importantly, we did not model the injurious loading itself,
187 but rather the subsequent physiologically relevant dynamic loading of injured cartilage. The mechanical
188 behavior of cartilage was modeled using a fibril-reinforced porohyperelastic material with Donnan osmotic
189 swelling [41]. The material model input incorporated depth-dependent material properties including water
190 content, PG content, and collagen orientation and density [16] (Supplementary material section S1). This
191 material model has been shown to reliably capture cartilage mechanical behavior [41,42]. The model output
192 was maximum shear strain distribution, showing locally elevated shear strains near the lesions, even though
193 tissue-level loading remained within physiological limits [16,39] (Fig. 1A). The mechanical model was
194 constructed in ABAQUS (v. 2021, Dassault Systèmes, Providence, RI, USA), and solutions were obtained
195 using ‘soil consolidation’ analysis (transient analysis of partially or fully saturated fluid-filled porous media)
196 with the same model geometry and finite element mesh that was assured to converge in our previous work
197 (918 linear axisymmetric elements with pore pressure, element type: CPE4P) [16]. Boundary conditions
198 were assigned as in the previous model (Supplementary material section S2). Since excessive shear strains

199 cause cell death in cartilage [17], we used the maximum shear strain distribution as a driving parameter for
200 the locally triggered cell death and PG loss. As a preliminary test, we conducted simulations with higher
201 compressive strain amplitude to estimate areas experiencing cell necrosis/damage triggered after dynamic
202 high-strain tissue level compression (40% unconfined axial compressions, 1 Hz loading frequency). For
203 more detailed information readers are referred to Supplementary material section S3.

204

205 **2.3 Modeling cell death and PG loss**

206 **Diffusion of aggrecanases and decrease in PG biosynthesis.** Injury-related cell death and damage, as well
207 as diffusing inflammatory cytokines, may lead to release of aggrecanases [8,21]. In our model, mechanisms
208 I–III (see below) regulated the amount of released aggrecanases diffusing in cartilage and suppressed PG
209 biosynthesis after decreased cell viability, both leading to PG loss. Also, PGs may diffuse out of the tissue
210 passively through the cartilage–fluid-interface. These mechanisms were modeled with time-dependent
211 reaction–diffusion partial differential equations [36]

$$\frac{\partial C_i}{\partial t} = D_{e,i} \nabla^2 C_i + R_{i,syn} - R_{i,deg}, \quad (1)$$

212 where t is time, C_i is the concentration of the biochemical species i (aggrecanases, PGs, IL-1,
213 viable/necrotic/damaged cells), $D_{e,i}$ is the effective diffusivity (zero for cell populations, as we assumed no
214 cell migration), $R_{i,syn}$ is the source (synthesis) term, and $R_{i,deg}$ is the sink (degeneration) term of the species
215 i . The source/sink terms utilized Michaelis–Menten kinetics like the model by Kar et al. [36]. For example,
216 an increase in the aggrecanase concentration increases the PG sink term, whereas cell death decreases the
217 PG source term. The initial PG content was obtained from the previous experiments [36,43]. For more
218 detailed information, readers are referred to Supplementary Material section S4. Diffusion and reaction of
219 species i were modeled in COMSOL Multiphysics (version 5.6, Burlington, MA, USA) using a 2405-
220 element triangular mesh (Fig. S5 Supplementary Material section S5).

221 **Mechanism I. Necrosis.** First, regions presumed to experience early necrosis due to high
222 mechanical strain [13,17,44] were obtained from ABAQUS simulations using a custom-written

223 (Supplementary Material section S6) MATLAB script (R2018b, The MathWorks, Inc., Natick, MA, USA).

224 Based on earlier studies, we assumed that when the maximum shear strain in an element exceeded a
225 threshold of 50% [16], 40% of cells were assumed to become necrotic [45]. These live and necrotic cell
226 distributions were then imported into COMSOL.

227 The presence of necrotic cells was assumed to result in a rapid increase of local aggrecanase
228 concentration. The imported necrotic cell distribution then served as an initial condition for the enzymatic
229 (aggrecanase-induced) PG degradation. Acute necrosis-driven PG degeneration via aggrecanases is
230 supported by experimental findings reporting rapid cell death within hours after single-impact loading [45]
231 and studies suggesting necrosis-driven release or stimulation of proteolytic enzymes [21]. According to our
232 preliminary tests, this choice also showed similarities with experimentally observed early cell death and PG
233 loss near cartilage lesions [16,40]. In addition, it has been suggested that high local strains during repetitive
234 dynamic loading in injured cartilage could lead to accumulated cell death and possibly secondary necrosis
235 in the superficial zone [46,47], promoting the localized release of inflammatory factors [19–21] which could
236 increase the proteolytic activity associated with the surviving cells [30]. Thus, we assumed an acute
237 aggrecanase release (concentration $C_{\text{aga,init}}$) from necrotic cells $C_{\text{n,c}}$ at the beginning of the simulation:

$$C_{\text{aga,init}} = c_{\text{aga,n,c}} C_{\text{n,c}} = c_{\text{aga,n,c}} p_{\text{n,c}} C_{\text{h,c,0}}, \quad (2)$$

238 where $c_{\text{aga,n,c}}$ is a calibration constant for the released aggrecanase ($1.2 \cdot 10^{-19}$ mol) based on a visual
239 comparison of simulated PG concentration and histologically observed PG content findings [40], $p_{\text{n,c}}$
240 = 0.4 = 40% is the fraction of necrotic cells [45], and $C_{\text{h,c,0}} = 1.5 \cdot 10^{14} \frac{1}{\text{m}^3}$ is the initial concentration of
241 healthy cells [48].

242 **Mechanism II. Damaged cells, ROS release, and apoptosis.** Similarly as with necrosis, we
243 assumed that 40% of the cells experiencing the maximum shear strains > 50% will become ‘damaged cells’
244 $C_{\text{d,c}}$ (e.g., experiencing mitochondrial dysfunction) [16]:

$$C_{\text{d,c}} = p_{\text{d,c}} C_{\text{h,c,0}}, \quad (3)$$

245 where $p_{d,c} = 0.4 = 40\%$ is the fraction of damaged cells [49]. Based on observations of increased ROS
246 production in response to excessive mechanical loading [14,23,49], we assumed that the localized ROS
247 concentration C_{ROS} increases as a function of damaged cell concentration $C_{d,c}$ [37]:

$$\frac{\partial C_{ROS}}{\partial t} = s_{ROS}C_{d,c} - \delta_{ROS}C_{ROS}, \quad (4)$$

248 where $\delta_{ROS} = 6.9 \cdot 10^{-4} \frac{1}{s}$ is the ROS decay rate [37] and s_{ROS} is the ROS synthesis rate described as

$$s_{ROS} = 0.05 \cdot s_{max} = 0.05 \frac{10 \text{ nmol}}{1 \text{ h} \cdot 10^6} \approx 1.4 \cdot 10^{-19} \frac{\text{mol}}{\text{s}}, \quad (5)$$

249 where s_{max} is the estimated maximum oxygen consumption rate (5–21% oxygen tension) [37,50]. Moreover,
250 since the ROS production in healthy cartilage has been estimated to be 1–3% of the maximum oxygen
251 consumption [24,37,51], we assumed 5% ROS production in injured cartilage (overproduction). Moreover,
252 we assumed no diffusion of ROS since the approximate half-life of the mitochondrial ROS is relatively
253 short (< 1 ms) [52]. Excessive ROS production has been suggested to result in apoptosis and PG loss
254 [14,53,54]. The former phenomenon was incorporated as damaged cells $C_{d,c}$ turning apoptotic in an
255 exponential manner [55,56]:

$$\frac{\partial C_{d,c}}{\partial t} = P_{ROS} = -k_{d,c}e^{\tau_{ROS}C_{ROS}}C_{d,c}, \quad (6)$$

256 where P_{ROS} describes the rate of damaged cells turning apoptotic due to ROS, $k_{d,c} = 1.3 \cdot 10^{-6} \frac{1}{s}$ is cell death
257 rate for damaged cells [57], and τ_{ROS} a calibration coefficient for ROS-dependent cell death ($0.7 \cdot 10^2 \frac{\text{m}^3}{\text{mol}}$).
258 Furthermore, PG loss was affected by increased aggrecanase release due to ROS, modulated by a modified
259 stimulus equation originally introduced by Kar et al. [36] (Supplementary Material section S3). Finally, PG
260 degeneration was modeled based on Eq. (1).

261 **Mechanism III. Inflammation-induced apoptosis.** Pro-inflammatory cytokine-mediated
262 apoptosis was implemented with IL-1 in the following exponential equation [58]

$$\frac{\partial C_{l,c}}{\partial t} = P_{IL-1} = -k_1e^{\tau_{IL-1}C_{IL-1}}C_{l,c} \quad (7)$$

263 where $C_{l,c}$ is the concentration of live cells ($C_{l,c} = C_{h,c,0}$, if only inflammation is considered or $C_{l,c} = C_{h,c,0}$
264 ($1 - p_{n,c} - p_{d,c}$) if also necrosis and cell damage are considered in the cells experiencing over 50%
265 maximum shear strain), $k_1 = 7.5 \cdot 10^{-8} \frac{1}{s}$ is the rate of spontaneous apoptosis (11 % of cells are apoptotic
266 after 17 days under free-swelling conditions without exogenous cytokines) [29], $\tau_{IL-1} = 5.7 \cdot 10^7 \frac{m^3}{mol}$ is a
267 calibration coefficient for experimentally observed IL-1-induced depth-dependent apoptosis [29], and C_{IL-1}
268 is IL-1 concentration. The chosen IL-1 concentration was 1 ng/ml, implemented as a Dirichlet boundary
269 condition on all the edges except the bottom of the cartilage geometry [29,36]. Cytokine diffusion led to PG
270 loss after loss of cell viability and upregulation of aggrecanases via IL-1-mediated stimulus which were
271 simulated separately and simultaneously (See Supplementary Material section S4).

272

273 **Combining injury-related and inflammatory mechanisms.** In the combined model, cell death including
274 injury-related i) necrosis, ii) apoptosis via ROS overproduction in the damaged cells, and iii) IL-1-induced
275 apoptosis were all considered simultaneously. Here, the live cell concentration was affected as described in
276 Eq. (7). The damaged cells could turn apoptotic due to ROS overproduction (P_{ROS} , Eq (6)) and inflammation
277 (P_{IL-1} , Eq (7)).

278

279 **2.4 Sensitivity analysis for the computational model parameters.**

280 To address a lack of experimental data needed to calibrate some model parameters, we conducted a
281 computational sensitivity analysis for the essential parameters affecting cell death and PG loss. Based on
282 our preliminary tests during model development, the chosen parameters were necrosis fraction ($p_{n,c}$),
283 damaged cell fraction ($p_{d,c}$), ROS production rate (s_{ROS} , healthy and excessive levels), and rate of
284 spontaneous apoptosis (k_1 ; the IL-1-induced aggrecanase stimulus was turned off to perceive the effect of
285 altered PG biosynthesis due to cell death on PG loss; Table 1).

286

287

288 **Table 1. Parameters for sensitivity analysis.**

Parameters	Range	Description	References
$p_{n,c}$ [-]	0.20, 0.40 , 0.60	Necrosis fraction (Eq. (2))	[45]
$p_{d,c}$ [-]	0.20, 0.40 , 0.60	Damaged cell fraction (Eq. (3))	[49]
s_{ROS} [mol/s]	0.01 · s_{max} , 0.05 · s_{max} , 0.09 · s_{max} ^a	Reactive oxygen species production rate (Eq. (4))	[24,37,51]
k_1 [1/s]	0, 7.5 · 10⁻⁸ , 15 · 10 ⁻⁸	Rate of spontaneous apoptosis (Eq. (7))	[29]
μ [1/s]	1.2 · 10 ⁻⁶ , 0 , 5.8 · 10 ⁻⁶	Decay rate of the interleukin-1 concentration (Eq. (8))	[32]

289 Parameters and ranges chosen for the sensitivity analysis. Bolded values indicate reference values.

290 ^a $s_{max} \approx 2.8 \cdot 10^{-18} \frac{\text{mol}}{\text{s}}$ [37]

291

292 **Decreased IL-1 concentration.** Previous clinical and pre-clinical studies have suggested that
293 inflammation may play a major role in PTOA progression driven by inflammatory cytokines, but after acute
294 inflammation, the concentration of the pro-inflammatory cytokines can decrease exponentially [32,59].
295 Hence, to gain insights into the possible resolution of acute inflammation and tissue recovery, we simulated
296 time-dependent slow and fast exponential decreases of IL-1 concentration in the culture medium as

$$C_{IL-1b} = C_{IL-1,b,0} e^{-\mu t}, \quad (8)$$

297 where $C_{IL-1,b,0}$ is the initial boundary concentration of IL-1 (1 ng/ml) and μ is the decay rate of the IL-1
298 concentration.

299

300

301

302

303

304

305

306

307

308 **3. Results**

309 **3.1. Necrosis**

310 In the numerical simulations, necrotic cell death was localized near the cartilage injury (Fig. 1A). At day 5,
311 the computational reference model ($p_{n,c} = 0.4$) predicted that 10.8% of the viable cells would be necrotic
312 and 21.6% of PGs would be lost within 0.1 mm from the cartilage lesion compared to day 0 (Figs. 3A and
313 4, red line). The simulated PG content decreased rapidly and locally during the first day, followed by partial
314 recovery for the rest of the simulation. Sensitivity analysis revealed that, at day 5, a smaller number of
315 necrotic cells ($p_{n,c} = 0.2$; Fig. 4B, blue line) resulted in an average PG loss of 16.4% while a greater number
316 (Fig. 4C, blue line) of necrotic cells ($p_{n,c} = 0.6$; Fig. 4B, purple line) resulted in an average PG loss of 26.1%
317 (Fig. 4D, purple line).

318

319 **Fig 3. Simulated proteoglycan degeneration.** Comparison of the simulated spatial changes in proteoglycan
320 content after A) acute necrosis, B) cell damage, subsequent overproduction of reactive oxygen species and
321 apoptosis, C) inflammatory stimulus, and D) combined mechanisms I, II and III at days 1, 5 and 12 showed
322 different temporal changes in proteoglycan distribution. Percentual changes in the proximity of the
323 simulated lesion (0.1 mm from lesion edge) are computed relative to proteoglycan content at day 0.

324

325 **Fig 4. Sensitivity analysis of simulated necrosis rate $p_{n,c}$.** Comparison of temporal changes and spatial
326 changes at day 5 in (A)-(B) in cell viability and (C)-(D) in proteoglycan content. (C) Higher necrosis rate
327 led to fast proteoglycan degeneration at early time-points (days 0-1) and partial recovery proteoglycan
328 content (days 0-3) near the cartilage lesion. Red line in (A) and (C) and refers to the reference model ($p_{n,c} =$
329 0.40).

330

331

332

333 **3.2. Damaged cells, ROS release, and apoptosis**

334 Cell damage was observed also near the lesion (Fig. 1A). The computational reference model (moderate
335 ROS overproduction) showed average cell apoptosis of 6.5% and average PG loss of 21.2% near the lesion
336 at day 5 (Figs. 3B and 5, red line). An 80% decrease in ROS production rate (low, healthy levels; Fig. 5,
337 blue line) showed simulated apoptosis of 5.0% and PG loss of 13.0%, whereas increasing ROS production
338 (high ROS overproduction; Fig. 5, purple line) to excessive levels led to apoptosis of 7.5% and PG loss of
339 26.4%. Changes in the damaged cell fraction showed a similar effect on the apoptosis and PG content
340 compared to variations in the ROS production rate (Fig. 6).

341

342 **Fig 5. Sensitivity analysis of simulated reactive oxygen species (ROS) production rate s_{ROS} .**
343 Comparison of temporal changes and spatial changes at day 5 in (A)-(B) in cell viability and (C)-(D) in
344 proteoglycan content. (C) Higher simulated ROS production showed more intensive temporal proteoglycan
345 loss and (A) cell death near the cartilage lesion compared to moderate and low production rates. Red line
346 in (A) and (C) refers to the reference model ($s_{ROS} = 0.40$).

347

348 **Fig 6. Sensitivity analysis for simulated damaged cell rate $p_{d,c}$.** Comparison of temporal changes and
349 spatial changes at day 5 in (A)-(B) in cell viability and (C)-(D) in proteoglycan content. (A) Higher number
350 of damaged cells led to more cell death and (C) more intensive proteoglycan degeneration near the cartilage
351 lesion. Red line in (A) and (B) refers to the reference model ($p_{d,c} = 0.40$).

352

353 **3.3. Inflammation-induced apoptosis**

354 Diffusion of IL-1 resulted in extensive cell apoptosis and subsequent PG loss near the free surfaces (Figs.
355 3C and 7). The model where proteoglycan degeneration via aggrecanases and loss of biosynthesis (induced
356 by apoptosis) was considered showed PG loss of 50.4% near the cartilage lesion at day 5 (Fig. 3C). This
357 rapid degradation masks the effect of IL-1 on PG loss through changes in PG biosynthesis. Thus, in Fig. 7,
358 we present sensitivity analysis results with the effect of aggrecanases turned off in the model. At day 5, the

359 reference model ($k_1 = 7.5 \cdot 10^{-8} \frac{1}{s}$) had PG loss of 11.2% (apoptosis of 33.5%) compared to day 0 (Fig. 7,
360 red line). Corresponding models without apoptosis ($k_1 = 0$) exhibited PG loss of 10.2% (Fig. 7, blue line;
361 passive PG diffusion) and models with a higher apoptosis rate ($k_1 = 15 \cdot 10^{-8} \frac{1}{s}$, Fig. 7, purple line;
362 apoptosis of 54.2%) showed PG loss of 11.9% in the cartilage.

363

364 **Fig 7. Sensitivity analysis for the simulated pro-inflammatory cytokine-induced apoptosis rate k_1 .**
365 Comparison of temporal changes and spatial changes at day 5 in (A)-(B) in cell viability and (C)-(D) in
366 proteoglycan content. (A) Loss of viable cells and, thus, decrease of proteoglycan biosynthesis (aggrecanase
367 induced proteoglycan degeneration was not considered), had (C) a negligible effect on the simulated
368 proteoglycan content over 12 days. Red line in (A) and (B) refers to the reference model ($k_1 = 7.5 \cdot 10^{-8} 1/s$).
369

370 **3.4. Synergistic effect of necrosis, ROS, and inflammation**

371 Cartilage subjected simultaneously to the simulated effect of injury-related and inflammatory mechanisms
372 revealed vast cell death and PG loss near the free surfaces and lesion (Figs. 3D and 8A-D). In the
373 computational reference model (Fig 8A, red line), at day 5, near-lesion cell death was 46.8% (Fig 8C and
374 D, total (bulk) cell death of 11.0% in the whole geometry) and PG loss was 64.2% (total PG loss of 18.9%)
375 compared to day 0 (Fig 8E and F, red line). When the IL-1 concentration was decreased slowly in the
376 combined model ($\mu = 1.2 \cdot 10^{-6} \frac{1}{s}$, Fig. 8A, blue line), the simulated near-lesion cell death was 36.3% (Fig.
377 8C and D, blue line, total cell death of 8.1%) and PG loss was 62.0% (Fig. 8E and F, blue line, total PG loss
378 of 16.7%). Rapid decrease ($\mu = 5.8 \cdot 10^{-6} \frac{1}{s}$, Fig. 8A, purple line) of IL-1 concentration in the culture
379 medium led to near-lesion cell death of 25.6% (Fig. 8C and D, total cell death of 5.1% in the whole
380 geometry) and PG loss of 50.8% (Fig. 8E and F, total PG loss of 10.9%). Interestingly, notably less PG loss
381 was observed in 12-day simulations compared against the reference model (Fig. 8B).

382 **Partial recovery of the PG content in cartilage.** When the simulation was continued until day 30, we
383 observed that the greatest near-lesion PG loss of 98.5% and 58.2% occurred at day 17 and day 9 for the slow

384 and fast decrease of IL-1 concentration. Moreover, we observed that at day 30, the PG content had recovered
385 by 9.4% and 20.4% around the lesion (corresponding 4.0% and 3.9% bulk tissue recovery) for the slow and
386 fast decrease of IL-1 concentration when compared to the PG content at days 17 and 9 (Fig 8G).

387

388 **Fig 8. Simulated decrease of cytokine concentration in the combined model.** (A) Simulated time-
389 dependent exponential decrease of the interleukin-1 concentration in the culture medium and B) comparison
390 of changes in proteoglycan (PG) content with constant ($\mu = 0$ 1/s) and fast-decreasing cytokine
391 concentration ($\mu = 5.8 \cdot 10^{-6}$ 1/s). C) Temporal changes in cell viability in 30-day simulation near the
392 cartilage lesion (within 0.1 mm from the lesion) and D) spatial changes at day 5. D) Temporal changes PG
393 content near the cartilage lesion and (F) spatial changes in the whole cartilage geometry (total) at day 5.
394 Decreased exogenous cytokine concentration decreased cell death and PG loss substantially and (G) showed
395 partial recovery of the PG content (here, simulation continued until day 30). Red line in the figure refers to
396 the reference model ($k_l = 1.2 \cdot 10^{-6}$ 1/s).

397

398 4. Discussion

399 Previous computational models of early PTOA have not explicitly modeled physical lesions, loading, or the
400 underlying cell-regulated degradative mechanisms of cartilage. In this study, we bridged this knowledge
401 gap and presented a novel mechanobiological model considering physical cartilage lesion, injury- and
402 loading-related cell death, overproduction of ROS, and diffusion of pro-inflammatory cytokines. We
403 compared the model results against previously measured optical density maps from injured calf cartilage
404 samples and noticed matching predictions of the PG content: extensive and localized near the lesions, but
405 more widely spread when IL-1 was added to the medium. Predicted cell death followed the same pattern of
406 damage localization, observed also *in vitro*. The interesting computational findings are that 1) necrosis alone
407 affects PG content rapidly (0–3 days) in the vicinity of the lesion but its effect almost completely fades away
408 over 5 days, leading to partial recovery of PG content, 2) ROS overproduction and especially inflammation
409 have longer-term (over 5 days) effects on PG content, and 3) rapid decrease of IL-1 concentration (leading
410 to lower aggrecanase release and less suppression of PG biosynthesis) facilitates the recovery of PG content
411 even in injured cartilage.

412

413 4.1. Necrosis

414 Injurious loading may cause rapid (within hours to days) necrotic and apoptotic cell death [12,13,17,54].
415 The injury can also sensitize live cells to turn catabolic more easily by later mechanical and inflammatory
416 signals causing more extensive cell death if catabolic signals are not ceased [60,61]. Locally elevated shear
417 strains near lesions due to mechanical loading could be one such catabolic signal, assumed here to lead to
418 localized necrosis and PG loss [16,39]. The cell viability assay with propidium iodide and fluorescein acetate
419 as used by Orozco et al. [16] and Eskelinen et al. [40] does not discern between necrosis and apoptosis, but
420 other studies have shown that similar injurious loading may cause necrotic cell death [45]. Furthermore, the
421 assumption that necrotic cells would release DAMPs inducing inflammatory response (such as IL-1
422 production, which later causes aggrecanase release [19]) is supported by several studies [20,62].

423
424 On average, our model predicted necrotic cell death of 10.8% (40% local necrosis of the viable
425 cells in areas exceeding 50% maximum shear strain threshold, Fig. 4A) within 0.10 mm from the lesion
426 when collagen architecture was based on young bovine cartilage [16,45]. For comparison, Philips et al.
427 [45] reported a loss of cell viability around the superficial zone of mature bovine cartilage (0.15 ± 0.038
428 mm from the surface), especially in the vicinity of the surface fissures, 1 hour after impact-injury
429 (unconfined compression with ~ 25 MPa peak stress, 100%/s loading rate). Although we did not consider
430 necrosis caused by the initial impact injury, our model predicted locally similar cell death near the lesion
431 due to high strains resulting from dynamic loading of injured geometry, possibly causing rapid local
432 degeneration of the PG content in the vicinity of the lesion.

433 In our simulated necrosis model, aggrecanases were released only at day 0 in response to cell
434 necrosis near the lesion (Fig. 4A). We observed the substantial PG loss during the first 3 days near the lesion
435 (Fig. 4C) and, as expected, simulating increased necrosis fraction led to higher PG loss, a scenario that is
436 feasible with high impact loads [11,12,54]. Such an early local burst of enzymatic activity is supported by
437 the finding that aggrecanase and other proteolytic enzyme expressions (e.g. MMP-3) increase within 1 day
438 from experimental injury [8]. Moreover, studies about other arthropathies similar to osteoarthritis [21,63]
439 have suggested that the release of aggrecanases occurs in regions experiencing chondrocyte necrosis.
440 Predicted PG degeneration within hours and the PG recovery within the following 3 days is explained by
441 rapid outflux of aggrecanases from highly necrotic regions (change of aggrecanase concentration over time
442 is relative to the aggrecanase concentration gradient) and relatively small effect of highly localized necrosis
443 on total PG biosynthesis.

444 Interestingly, our results suggest that cartilage can recover its PG content partially and reach a
445 steady-state after 12 days. This implies that after acute PG degradation and loss, decay of aggrecanase
446 concentration and diffusion of synthesized PGs from deeper layers of the cartilage can promote PG recovery.
447 However, in previous experiments [16,40], PG degeneration was still observed near the lesion at day 12.
448 This indicates that in addition to immediate necrosis, further mechanisms associated with cell damage (e.g.

449 ROS overproduction) should be involved in the simulations to better catch the temporal changes in injured
450 cartilage.

451

452 **4.2. Cell damage, ROS, and apoptosis**

453 Since maximum shear strains were excessive near the lesion, the damaged cells producing large amounts of
454 ROS leading to apoptosis were located in the same areas as necrosis, with similarities to previous
455 experiments with biological cartilage, where the amount of ROS was proportional to the deformation of the
456 chondrocytes [49]. While the simulated necrosis indicated rapid early PG loss followed by partial PG
457 content recovery, damaged cells contributing to the overproduction of ROS led to decreasing PG content
458 over time. This suggests that necrosis might play an early short-term role in PG loss, but cell damage and
459 its downstream catabolic effects may last longer despite the short lifetime of ROS [23,54]. Thus, cell damage
460 and large amounts of ROS could undermine the partial recovery seen with the necrosis model and continue
461 cartilage degradation near the lesion even when tissue-level global loading is physiologically normal (15%
462 strain in our model).

463 Low ROS production in cartilage did not result in major cell death (5.0%), nor did the moderate
464 (6.5%) or severe (7.5%) ROS overproduction (Fig. 5B) near the lesion at day 5. Furthermore, low ROS
465 production did not result in a substantial PG loss (13.0%, 2.8% higher than passive PG diffusion) whereas
466 moderate and severe ROS overproduction resulted in higher PG loss, 21.2% and 26.4%, respectively. A
467 similar interplay between damaged cells and increased ROS production leading to cell death and PG loss
468 has been observed experimentally [23,49,53,54].

469

470 **4.3. Inflammation**

471 Simulated inflammation resulted in rapid and substantial cell death and PG loss near the free surfaces, in
472 good agreement with experimental findings [29,40]. At 1 ng/ml of IL-1, inflammation-driven degradation
473 mechanisms dwarfed those driven by biomechanics. The inflammation-related PG loss was mostly driven

474 by the aggrecanases; when the proteolytic effect of aggrecanases was turned off, the IL-1-induced apoptosis
475 (resulting in decreased PG biosynthesis) had only a minor effect on the PG loss (Fig. 7C and D).

476 Analysis of inflammation-related PG loss has been extensively included in computational and
477 experimental studies [29,34,36]. However, IL-1-induced cell death has rarely been included in
478 computational models. In experimental work conducted by Lopez-Armada et al. [64], ~50% bulk tissue cell
479 death was observed after 7-day culture with 5 ng/ml of IL-1 [64], and Li et al. [29] reported ~50% bulk cell
480 death after 17 days culture with 1 ng/ml of IL-1. Our model exhibited 15.1% and 34.8% bulk cell death on
481 days 7 and 17 with 1 ng/ml, respectively. Lower cell death in our simulated results could indicate that more
482 inflammatory mechanisms such as pro-inflammatory cytokine and DAMP release from catabolic
483 chondrocytes in cartilage [2,18] are promoting cell death also in deeper layers of the cartilage, but this
484 mechanism was omitted in our model.

485

486 **4.4. Combined model**

487 Simultaneously acting biomechanical and biochemical mechanisms resulted in marked cell death and PG
488 loss especially near the lesion during the first 5 days (Fig. 3D and 8). Later, the IL-1-driven degradation
489 dominated over the other mechanisms around the defect, in agreement with digital densitometry results [40].
490 Our model was able to capture the well-documented synergistic effect of biomechanics and inflammation
491 on PTOA progression [61,65].

492 Our reference model predicted locally extensive PG loss of 43.6% near the lesion at day 3 (Fig 8A
493 and B, red line; total PG loss of 9.0% in the whole cartilage geometry at day 3) and spread of PG loss also
494 to the intact areas at day 5 (Fig 8B and F; total PG loss of 18.9%). Eskelinen et al. [40] reported increased
495 PG degeneration in the intact regions of injured-and-inflamed cartilage at day 7 compared to day 3. These
496 experiments are in general consistent with our modeling results showing substantial near-lesion PG loss
497 caused by synergistic effect of inflammation and high shear strains after 3 days and inflammation-induced
498 PG loss also in the intact areas in the following time-points.

499 Interestingly, a simulated fast decrease of the IL-1 concentration in the culture medium resulted in
500 partial recovery of the near-lesion (20.4% at day 30 compared to day 9) and bulk PG contents (3.9%). This
501 finding highlights the major role of inflammation in the computational model; decreasing the cytokine
502 concentration temporally leads to partial recovery of the tissue, while the biomechanical mechanisms
503 contribute to tissue degradation around the lesions. The result of possible partial recovery suggests that
504 inhibition of cytokine activity or rapid cytokine clearance from culture medium/joint space could suppress
505 catabolic signals and bring cartilage closer to homeostasis.

506

507 **4.5. Limitations**

508 First, biomechanical loading and inflammation of cartilage include many complex cell-level mechanisms.
509 Although our approach represents a step toward elucidating the degradation mechanisms after injury, our
510 model has limitations that may partly explain the disagreement between the model and experiments.
511 Additional degenerative mechanisms to consider are the IL-1-induced ROS production [52], ROS-induced
512 necrotic cell death [15,66], the introduction of MMP-3-driven matrix degradation after injury [11,67], fluid
513 flow-dependent PG loss through lesion edges [16], injury-related PG loss due to microdamage and structural
514 changes instead of enzymatic degradation [60], and beneficial effects of moderate cyclic loading [68].
515 Furthermore, we used the simulated IL-1 concentration of 1 ng/ml, the same as used in previous
516 experimental in vitro studies [29,34,36]. After acute inflammation, physiological IL-1 concentration in the
517 inflamed knee joint is typically much lower than 1 ng/ml [32,69], but the model was calibrated previously
518 based on in vitro experiments, and the use of physiological concentrations would just result in slower
519 progress of the degeneration. Furthermore, we did not account for the degeneration of the collagen network
520 that would affect the biomechanical properties and cell responses in the cartilage [70]. This was justified as
521 structural and constitutional changes in the collagen network have been observed to occur later than those
522 of in the PG content [29,71]. Also, we did not explicitly consider the pericellular matrix or changes in its
523 properties during the degeneration. There is evidence that alterations in the pericellular matrix properties

524 and cell-matrix interactions may have substantial role in the OA initiation and progression of tissue
525 degeneration [72–74], thus, the function of the pericellular matrix should be accounted for in future studies.

526 Second, the biomechanical loading used in the computational model is a simplification of the
527 experiments. For instance, we did not simulate the initial impact-loading leading to cartilage defects in the
528 superficial zone or the full cyclic loading protocol used in previous experiments after the injury [16,40]. We
529 note that the compositional changes after impact-loading and during the continuous cyclic loading can
530 influence the shear strain distributions, leading to more severe cartilage degeneration than currently
531 predicted by the model [75].

532 Third, although some inflammation and material-related parameters have been well-calibrated
533 [16,36], model validity testing is hampered by the small amount of biomechanical and biochemical
534 experimental data, which are only available at a few time points. Therefore, the model has several
535 biochemical parameters that need to be better calibrated. For example, the parameters for ROS production,
536 necrotic/damaged cell fraction, and possible necrosis/apoptosis-related release of aggrecanases [4,21,63]
537 and matrix degradation require further experimental support. However, the presented predictions are already
538 generally in line with the current literature and despite the lack of extensive calibration, the current modeling
539 framework can offer insights into the mechanisms driving cell death and proteoglycan loss in PTOA-like
540 conditions.

541

542 **4.6. Future directions**

543 In the future, multiscale mechanobiological models may be a feasible pathway to produce patient-specific
544 predictions of early cartilage degeneration, open new avenues for high-level translational research and be a
545 tool to assess different intervention strategies to mitigate PTOA progression. However, extensive
546 experimental research is still needed to elucidate the injury-related mechanotransduction pathways, cell
547 death, and ROS kinetics, which could provide time-dependent quantitative data to calibrate and enhance
548 current models. Specifically, interesting future aims are to include the function of the pericellular matrix

549 and sensitization of near-lesion cells to further damage if biomechanical or inflammatory challenge is not
550 removed [61], and to model the effects of ROS-suppressing disease-modifying drugs [7,54]. Ultimately, the
551 calibrated mechanobiological cell-tissue-level models could be augmented to the joint level, which could
552 be used to produce cost-efficient optimized intervention strategies to mitigate early cartilage degeneration.

553 **5. Conclusions**

554 Cell death and enzymatic cartilage degeneration in response to injurious loading are important factors to
555 consider in computational models for predicting PTOA progression. We incorporated biological cell–tissue-
556 level responses including necrotic and apoptotic cell death, ROS overproduction, and inflammation of
557 injured cartilage into a finite element model of early-stage PTOA. Our novel mechanobiological model was
558 able to predict localized cell death and PG loss similar to previous biological experiments; biomechanically
559 induced necrosis and apoptosis and the following enzymatic degeneration of PGs were observed near the
560 cartilage lesion, while diffusing pro-inflammatory cytokines resulted in more widely spread damage. Based
561 on the computational model predictions, rapid inhibition or clearance of pro-inflammatory cytokines would
562 result in partial recovery of the PG content and could be a potential way to decelerate PTOA progression
563 even in injured tissue. In the future, the current computational framework could enhance previous models
564 by introducing new mechanisms, thus providing a better understanding of PTOA progression. Furthermore,
565 in the future, thoroughly calibrated multi-level mechanobiological models could be a valuable tool in
566 assessing patient-specific pharmacological treatments time-dependently and help in the planning of new
567 more efficient intervention strategies.

568

569 **Acknowledgements**

570 We acknowledge the support of University of Eastern Finland, Massachusetts Institute of Technology and
571 University of Iowa to conduct this research.

572

573

574

575

576 References

- 577 1. Anderson DD, Chubinskaya S, Guilak F, Martin JA, Oegema TR, Olson SA, et al. Post-Traumatic
578 Osteoarthritis : Improved Understanding and Opportunities for Early Intervention. 2011; 802–809.
579 doi:10.1002/jor.21359
- 580 2. Lieberthal J, Sambamurthy N, Scanzello CR. Inflammation in joint injury and post-traumatic
581 osteoarthritis. *Osteoarthr Cartil.* 2015;23: 1825–1834. doi:10.1016/j.joca.2015.08.015
- 582 3. Lee W, Guilak F, Liedtke W. Role of Piezo Channels in Joint Health and Injury. *Curr Top Membr.*
583 2017;79: 263–273. doi:10.1016/bs.ctm.2016.10.003
- 584 4. Kühn K, D'Lima DD, Hashimoto S, Lotz M. Cell death in cartilage. *Osteoarthr Cartil.* 2004;12: 1–
585 16. doi:10.1016/j.joca.2003.09.015
- 586 5. Hwang HS, Kim HA. Chondrocyte apoptosis in the pathogenesis of osteoarthritis. *Int J Mol Sci.*
587 2015;16: 26035–26054. doi:10.3390/ijms161125943
- 588 6. Tudorachi NB, Totu EE, Fifere A, Ardeleanu V, Mocanu V, Mircea C, et al. The implication of
589 reactive oxygen species and antioxidants in knee osteoarthritis. *Antioxidants.* 2021;10: 1–29.
590 doi:10.3390/antiox10060985
- 591 7. Coleman MC, Goetz JE, Brouillette MJ, Seol D, Willey MC, Petersen EB, et al. Targeting
592 mitochondrial responses to intra-articular fracture to prevent posttraumatic osteoarthritis. *Sci
593 Transl Med.* 2018;10: 1–32. doi:10.1126/scitranslmed.aan5372
- 594 8. Lee JH, Fitzgerald JB, DiMicco MA, Grodzinsky AJ. Mechanical injury of cartilage explants
595 causes specific time-dependent changes in chondrocyte gene expression. *Arthritis Rheum.*
596 2005;52: 2386–2395. doi:10.1002/art.21215
- 597 9. Zhao Z, Li Y, Wang M, Zhao S, Zhao Z, Fang J. Mechanotransduction pathways in the regulation
598 of cartilage chondrocyte homoeostasis. *J Cell Mol Med.* 2020;24: 5408–5419.
599 doi:10.1111/jcmm.15204
- 600 10. Natoli RM, Athanasiou KA. Traumatic loading of articular cartilage: Mechanical and biological

601 responses and post-injury treatment. *Biorheology*. 2009;46: 451–485. doi:10.3233/BIR-2009-0554

602 11. Patwari P, Cook MN, DiMicco MA, Blake SM, James IE, Kumar S, et al. Proteoglycan
603 degradation after injurious compression of bovine and human articular cartilage in vitro:
604 Interaction with exogenous cytokines. *Arthritis Rheum*. 2003;48: 1292–1301.
605 doi:10.1002/art.10892

606 12. Stolberg-Stolberg JA, Furman BD, William Garrigues N, Lee J, Pisetsky DS, Stearns NA, et al.
607 Effects of cartilage impact with and without fracture on chondrocyte viability and the release of
608 inflammatory markers. *J Orthop Res*. 2013;31: 1283–1292. doi:10.1002/jor.22348

609 13. Chen CT, Burton-Wurster N, Borden C, Hueffer K, Bloom SE, Lust G. Chondrocyte necrosis and
610 apoptosis in impact damaged articular cartilage. *J Orthop Res*. 2001;19: 703–711.
611 doi:10.1016/S0736-0266(00)00066-8

612 14. Beecher BR, Martin JA, Pedersen DR, Heiner AD, Buckwalter JA. Antioxidants block cyclic
613 loading induced chondrocyte death. *Iowa Orthop J*. 2007;27: 1–8.

614 15. Charlier E, Relic B, Deroyer C, Malaise O, Neuville S, Collée J, et al. Insights on molecular
615 mechanisms of chondrocytes death in osteoarthritis. *Int J Mol Sci*. 2016;17.
616 doi:10.3390/ijms17122146

617 16. Orozco GA, Tanska P, Florea C, Grodzinsky AJ, Korhonen RK. A novel mechanobiological model
618 can predict how physiologically relevant dynamic loading causes proteoglycan loss in
619 mechanically injured articular cartilage. *Sci Rep*. 2018;8: 1–16. doi:10.1038/s41598-018-33759-3

620 17. Bonnevie ED, Delco ML, Bartell LR, Jasty N, Cohen I, Fortier LA, et al. Microscale frictional
621 strains determine chondrocyte fate in loaded cartilage. *J Biomech*. 2018;74: 72–78.
622 doi:10.1016/j.jbiomech.2018.04.020

623 18. Rosenberg JH, Rai V, Dilisio MF, Agrawal DK. Damage-associated molecular patterns in the
624 pathogenesis of osteoarthritis: potentially novel therapeutic targets. *Mol Cell Biochem*. 2017;434:
625 171–179. doi:10.1007/s11010-017-3047-4

626 19. England H, Summersgill HR, Edye ME, Rothwell NJ, Brough D. Release of interleukin-1 α or

627 interleukin-1 β depends on mechanism of cell death. *J Biol Chem.* 2014;289: 15942–15950.

628 doi:10.1074/jbc.M114.557561

629 20. Vanden Berghe T, Kalai M, Denecker G, Meeus A, Saelens X, Vandenabeele P. Necrosis is
630 associated with IL-6 production but apoptosis is not. *Cell Signal.* 2006;18: 328–335.
631 doi:10.1016/j.cellsig.2005.05.003

632 21. Li S, Cao J, Caterson B, Hughes CE. Proteoglycan metabolism, cell death and Kashin-Beck
633 Disease. *Glycoconj J.* 2012;29: 241–248. doi:10.1007/s10719-012-9421-2

634 22. Bartell LR, Fortier LA, Bonassar LJ, Szeto HH, Cohen I, Delco ML. Mitoprotective therapy
635 prevents rapid, strain-dependent mitochondrial dysfunction after articular cartilage injury. *J Orthop
636 Res.* 2020;38: 1257–1267. doi:10.1002/jor.24567

637 23. Goodwin W, McCabe D, Sauter E, Reese E, Walter M, Buckwalter JA, et al. Rotenone prevents
638 impact-induced chondrocyte death. *J Orthop Res.* 2010;28: 1057–1063. doi:10.1002/jor.21091

639 24. Lepetsos P, Papavassiliou AG. ROS/oxidative stress signaling in osteoarthritis. *Biochim Biophys
640 Acta - Mol Basis Dis.* 2016;1862: 576–591. doi:10.1016/j.bbadi.2016.01.003

641 25. Lepetsos P, Papavassiliou KA, Papavassiliou AG. Redox and NF- κ B signaling in osteoarthritis.
642 *Free Radic Biol Med.* 2019;132: 90–100. doi:10.1016/j.freeradbiomed.2018.09.025

643 26. Ansari MY, Ahmad N, Voleti S, Wase SJ, Novak K, Haqqi TM. Mitochondrial dysfunction
644 triggers a catabolic response in chondrocytes via ROS-mediated activation of the JNK/AP1
645 pathway. *J Cell Sci.* 2020;133. doi:10.1242/jcs.247353

646 27. Reed KN, Wilson G, Pearsall A, Grishko VI. The role of mitochondrial reactive oxygen species in
647 cartilage matrix destruction. *Mol Cell Biochem.* 2014;397: 195–201. doi:10.1007/s11010-014-
648 2187-z

649 28. Shabani F, Mcneil J, Tippett L. The oxidative inactivation of tissue inhibitor of metalloproteinase-1
650 (TIMP-1) by hypochlorous acid (HOCl) is suppressed by anti-rheumatic drugs. *Free Radic Res.*
651 1998;28: 115–123. doi:10.3109/10715769809065797

652 29. Li Y, Wang Y, Chubinskaya S, Schoeberl B, Florine E, Kopesky P, et al. Effects of insulin-like

653 growth factor-1 and dexamethasone on cytokine-challenged cartilage: Relevance to post-traumatic
654 osteoarthritis. *Osteoarthr Cartil.* 2015;23: 266–274. doi:10.1016/j.joca.2014.11.006

655 30. Wojdasiewicz P, Poniatowski ŁA, Szukiewicz D. The role of inflammatory and anti-inflammatory
656 cytokines in the pathogenesis of osteoarthritis. *Mediators Inflamm.* 2014;2014.
657 doi:10.1155/2014/561459

658 31. Yamamoto K, Wilkinson D, Bou-Gharios G. Targeting Dysregulation of Metalloproteinase
659 Activity in Osteoarthritis. *Calcif Tissue Int.* 2021;109: 277–290. doi:10.1007/s00223-020-00739-7

660 32. Zhao R, Dong Z, Wei X, Gu X, Han P, Wu H. International Immunopharmacology Inflammatory
661 factors are crucial for the pathogenesis of post-traumatic osteoarthritis confirmed by a novel
662 porcine model : “ Idealized ” anterior cruciate ligament reconstruction ” and gait analysis. *Int*
663 *Immunopharmacol.* 2021;99: 107905. doi:10.1016/j.intimp.2021.107905

664 33. Orozco GA, Bolcos P, Mohammadi A, Tanaka MS, Yang M, Link TM, et al. Prediction of local
665 fixed charge density loss in cartilage following ACL injury and reconstruction: A computational
666 proof-of-concept study with MRI follow-up. *J Orthop Res.* 2020. doi:10.1002/jor.24797

667 34. Eskelinen ASA, Tanska P, Florea C, Orozco GA, Julkunen P, Grodzinsky AJ, et al.
668 Mechanobiological model for simulation of injured cartilage degradation via proinflammatory
669 cytokines and mechanical. *PLoS Comput Biol.* 2020;16: 1–25. doi:10.1371/journal.pcbi.1007998

670 35. Ayati BP, Kapitanov GI, Coleman MC, Anderson DD, Martin JA. Mathematics as a conduit for
671 translational research in post-traumatic osteoarthritis. *J Orthop Res.* 2017;35: 566–572.
672 doi:10.1002/jor.23439

673 36. Kar S, Smith DW, Gardiner BS, Li Y, Wang Y, Grodzinsky AJ. Modeling IL-1 induced
674 degradation of articular cartilage. *Arch Biochem Biophys.* 2016;594: 37–53.
675 doi:10.1016/j.abb.2016.02.008

676 37. Wang X, Ayati BP, Brouillette MJ, Graham JM, Ramakrishnan PS, Martin JA. Modeling and
677 simulation of the effects of cyclic loading on articular cartilage lesion formation. *Int j numer
678 method biomed eng.* 2014;30: 927–941. doi:10.1002/cnm.2636

679 38. Kapitanov GI, Wang X, Ayati BP, Brouillette MJ, Martin JA. Linking cellular and mechanical
680 processes in articular cartilage lesion formation: A mathematical model. *Front Bioeng Biotechnol.*
681 2016;4. doi:10.3389/fbioe.2016.00080

682 39. Eskelinen ASA, Mononen ME, Venäläinen MS, Korhonen RK, Tanska P. Maximum shear strain-
683 based algorithm can predict proteoglycan loss in damaged articular cartilage. *Biomech Model
684 Mechanobiol.* 2019;18: 753–778. doi:10.1007/s10237-018-01113-1

685 40. Eskelinen A, Florea C, Tanska P, Hung H, Frank E, Mikkonen S, et al. Cyclic loading regime
686 considered beneficial does not protect injured and interleukin-1-inflamed cartilage from post-
687 traumatic osteoarthritis. *J Biomech*, doi: 10.1016/j.jbiomech.2022.111181

688 41. Wilson W, Van Donkelaar CC, Van Rietbergen B, Huiskes R. A fibril-reinforced poroviscoelastic
689 swelling model for articular cartilage. *J Biomech.* 2005;38: 1195–1204.
690 doi:10.1016/j.jbiomech.2004.07.003

691 42. Wilson W, Van Donkelaar CC, Van Rietbergen B, Ito K, Huiskes R. Stresses in the local collagen
692 network of articular cartilage: A poroviscoelastic fibril-reinforced finite element study. *J Biomech.*
693 2004;37: 357–366. doi:10.1016/S0021-9290(03)00267-7

694 43. Klein TJ, Chaudhry M, Bae WC, Sah RL. Depth-dependent biomechanical and biochemical
695 properties of fetal, newborn, and tissue-engineered articular cartilage. *J Biomech.* 2007;40: 182–
696 190. doi:10.1016/j.jbiomech.2005.11.002

697 44. Bartell LR, Fortier LA, Bonassar LJ, Cohen I. Measuring microscale strain fields in articular
698 cartilage during rapid impact reveals thresholds for chondrocyte death and a protective role for the
699 superficial layer. *J Biomech.* 2015;48: 3440–3446. doi:10.1016/j.jbiomech.2015.05.035

700 45. Phillips DM, Haut RC. The use of a non-ionic surfactant (P188) to save chondrocytes from
701 necrosis following impact loading of chondral explants. *J Orthop Res.* 2004;22: 1135–1142.
702 doi:10.1016/j.orthres.2004.02.002

703 46. Chen CT, Bhargava M, Lin PM, Torzilli PA. Time, stress, and location dependent chondrocyte
704 death and collagen damage in cyclically loaded articular cartilage. *J Orthop Res.* 2003;21: 888–

705 898. doi:10.1016/S0736-0266(03)00050-0

706 47. Sachet M, Liang YY, Oehler R. The immune response to secondary necrotic cells. *Apoptosis*.
707 2017;22: 1189–1204. doi:10.1007/s10495-017-1413-z

708 48. Jadin KD, Wong BL, Bae WC, Li KW, Williamson AK, Schumacher BL, et al. Depth-varying
709 density and organization of chondrocytes in immature and mature bovine articular cartilage
710 assessed by 3D imaging and analysis. *J Histochem Cytochem*. 2005;53: 1109–1119.
711 doi:10.1369/jhc.4A6511.2005

712 49. Brouillette MJ, Ramakrishnan PS, Wagner VM, Sauter EE, Journot BJ, McKinley TO, et al.
713 Strain-dependent oxidant release in articular cartilage originates from mitochondria. *Biomech
714 Model Mechanobiol*. 2014;13: 565–572. doi:10.1007/s10237-013-0518-8

715 50. Zhou S, Cui Z, Urban JPG. Factors influencing the oxygen concentration gradient from the
716 synovial surface of articular cartilage to the cartilage-bone interface: A modeling study. *Arthritis
717 Rheum*. 2004;50: 3915–3924. doi:10.1002/art.20675

718 51. CHANCE B, WILLIAMS GR. Respiratory enzymes in oxidative phosphorylation. III. The steady
719 state. *J Biol Chem*. 1955;217: 409–427. doi:10.1016/S0021-9258(19)57189-7

720 52. Bolduc JA, Collins JA, Loeser RF. Reactive oxygen species, aging and articular cartilage
721 homeostasis. *Free Radic Biol Med*. 2019;132: 73–82. doi:10.1016/j.freeradbiomed.2018.08.038

722 53. Delco ML, Bonnevie ED, Szeto HS, Bonassar LJ, Fortier LA. Mitoprotective therapy preserves
723 chondrocyte viability and prevents cartilage degeneration in an ex vivo model of posttraumatic
724 osteoarthritis. *J Orthop Res*. 2018;36: 2147–2156. doi:10.1002/jor.23882

725 54. Martin JA, McCabe D, Walter M, Buckwalter JA, McKinley TO. N-acetylcysteine inhibits post-
726 impact chondrocyte death in osteochondral explants. *J Bone Jt Surg - Ser A*. 2009;91: 1890–1897.
727 doi:10.2106/JBJS.H.00545

728 55. Asada S, Fukuda K, Oh M, Hamanishi C, Tanaka S. Effect of hydrogen peroxide on the
729 metabolism of articular chondrocytes. *Inflamm Res*. 1999;48: 399–403.
730 doi:10.1007/s000110050478

731 56. Gao G, Ding H, Zhuang C, Fan W. Effects of hesperidin on H₂O₂-treated chondrocytes and
732 cartilage in a rat osteoarthritis model. *Med Sci Monit*. 2018;24: 9177–9186.
733 doi:10.12659/MSM.913726

734 57. Patwari P, Gaschen V, James IE, Berger E, Blake SM, Lark MW, et al. Ultrastructural
735 quantification of cell death after injurious compression of bovine calf articular cartilage. *Osteoarthr*
736 *Cartil*. 2004;12: 245–252. doi:10.1016/j.joca.2003.11.004

737 58. Schuerwagh AJ, Dombrecht EJ, Stevens WJ, Van Offel JF, Bridts CH, De Clerck LS. Influence of
738 pro-inflammatory (IL-1 α , IL-6, TNF- α , IFN- γ) and anti-inflammatory (IL-4) cytokines on
739 chondrocyte function. *Osteoarthr Cartil*. 2003;11: 681–687. doi:10.1016/S1063-4584(03)00156-0

740 59. Struglics A, Larsson S, Kumahashi N, Frobell R, Lohmander LS. Changes in cytokines and
741 aggrecan ARGs neoepitope in synovial fluid and serum and in C-terminal crosslinking telopeptide
742 of type II collagen and N-terminal crosslinking telopeptide of type I collagen in urine over five
743 years after anterior cruciate ligament. *Arthritis Rheumatol*. 2015;67: 1816–1825.
744 doi:10.1002/art.39146

745 60. Quinn TM, Maung AA, Grodzinsky AJ, Hunziker EB, Sandy JD. Physical and biological
746 regulation of proteoglycan turnover around chondrocytes in cartilage explants. Implications for
747 tissue degradation and repair. *Annals of the New York Academy of Sciences*. 1999. pp. 420–441.
748 doi:10.1111/j.1749-6632.1999.tb07700.x

749 61. Lee W, Nims RJ, Savadipour A, Zhang Q, Leddy HA, Liu F, et al. Inflammatory signaling
750 sensitizes Piezo1 mechanotransduction in articular chondrocytes as a pathogenic feed-forward
751 mechanism in osteoarthritis. *Proc Natl Acad Sci U S A*. 2021;118: 1–10.
752 doi:10.1073/pnas.2001611118

753 62. Kaczmarek A, Vandenebelle P, Krysko D V. Necroptosis: The Release of Damage-Associated
754 Molecular Patterns and Its Physiological Relevance. *Immunity*. 2013;38: 209–223.
755 doi:10.1016/j.jimmuni.2013.02.003

756 63. Cao J, Li S, Shi Z, Yue Y, Sun J, Chen J, et al. Articular cartilage metabolism in patients with

757 Kashin-Beck Disease: an endemic osteoarthropathy in China. *Osteoarthr Cartil.* 2008;16: 680–688.
758 doi:10.1016/j.joca.2007.09.002

759 64. López-Armada MJ, Caramés B, Lires-Deán M, Cillero-Pastor B, Ruiz-Romero C, Galdo F, et al.
760 Cytokines, tumor necrosis factor- α and interleukin-1 β , differentially regulate apoptosis in
761 osteoarthritis cultured human chondrocytes. *Osteoarthr Cartil.* 2006;14: 660–669.
762 doi:10.1016/j.joca.2006.01.005

763 65. Sui Y, Lee JH, DiMicco MA, Vanderploeg EJ, Blake SM, Hung HH, et al. Mechanical injury
764 potentiates proteoglycan catabolism induced by interleukin-6 with soluble interleukin-6 receptor
765 and tumor necrosis factor α in immature bovine and adult human articular cartilage. *Arthritis*
766 *Rheum.* 2009;60: 2985–2996. doi:10.1002/art.24857

767 66. Blanco FJ, Ochs RL, Schwarz H, Lotz M. Chondrocyte apoptosis induced by nitric oxide. *Am J*
768 *Pathol.* 1995;146: 75–85.

769 67. Lin PM, Chen CTC, Torzilli PA. Increased stromelysin-1 (MMP-3), proteoglycan degradation
770 (3B3- and 7D4) and collagen damage in cyclically load-injured articular cartilage. *Osteoarthr*
771 *Cartil.* 2004;12: 485–496. doi:10.1016/j.joca.2004.02.012

772 68. Li Y, Frank EH, Wang Y, Chubinskaya S, Huang HH, Grodzinsky AJ. Moderate dynamic
773 compression inhibits pro-catabolic response of cartilage to mechanical injury, tumor necrosis
774 factor- α and interleukin-6, but accentuates degradation above a strain threshold. *Osteoarthr Cartil.*
775 2013;21: 1933–1941. doi:10.1016/j.joca.2013.08.021

776 69. Amano K, Huebner JL, Stabler T V., Tanaka M, McCulloch CE, Lobach I, et al. Synovial Fluid
777 Profile at the Time of Anterior Cruciate Ligament Reconstruction and Its Association With
778 Cartilage Matrix Composition 3 Years After Surgery. *Am J Sports Med.* 2018;46: 890–899.
779 doi:10.1177/0363546517749834

780 70. Turunen SM, Lammi MJ, Saarakkala S, Han SK, Herzog W, Tanska P, et al. The effect of collagen
781 degradation on chondrocyte volume and morphology in bovine articular cartilage following a
782 hypotonic challenge. *Biomech Model Mechanobiol.* 2013;12: 417–429. doi:10.1007/s10237-012-

783 0409-4

784 71. Mäkelä JTA, Rezaeian ZS, Mikkonen S, Madden R, Han SK, Jurvelin JS, et al. Site-dependent
785 changes in structure and function of lapine articular cartilage 4 weeks after anterior cruciate
786 ligament transection. *Osteoarthr Cartil.* 2014;22: 869–878. doi:10.1016/j.joca.2014.04.010

787 72. Linus A, Ebrahimi M, Turunen MJ, Saarakkala S, Joukainen A, Kröger H, et al. High-resolution
788 infrared microspectroscopic characterization of cartilage cell microenvironment. *Acta Biomater.*
789 2021;134: 252–260. doi:10.1016/j.actbio.2021.08.001

790 73. Guilak F, Nims RJ, Dicks A, Wu CL, Meulenbelt I. Osteoarthritis as a disease of the cartilage
791 pericellular matrix. *Matrix Biol.* 2018;71–72: 40–50. doi:10.1016/j.matbio.2018.05.008

792 74. Chery DR, Han B, Li Q, Zhou Y, Heo SJ, Kwok B, et al. Early changes in cartilage pericellular
793 matrix micromechanobiology portend the onset of post-traumatic osteoarthritis. *Acta Biomater.*
794 2020;111: 267–278. doi:10.1016/j.actbio.2020.05.005

795 75. Tanska P, Julkunen P, Korhonen RK. A computational algorithm to simulate disorganization of
796 collagen network in injured articular cartilage. *Biomech Model Mechanobiol.* 2018;17: 689–699.
797 doi:10.1007/s10237-017-0986-3

798

799

800

801

802

803

804

805

806

807

808 **Supporting information captions**

809 **S1 Biomechanical material model.** The supplementary material providing more detailed information about
810 the biomechanical material model.

811

812 **S1 Table. Variables describing cartilage composition.** Normalized depth z is defined as $z = 0$ on the
813 injured surface and $z = 1$ on the bottom surface.

814

815 **S2 Boundary conditions and finite element mesh used in biomechanical simulations.** The
816 supplementary material providing more detailed information about the simulations and boundary conditions
817 of the biomechanical model.

818

819 **S2 Fig. Finite element mesh used in the biomechanical simulations.** Finite element mesh for the injured
820 cartilage geometry including 918 linear axisymmetric elements with pore pressure.

821

822 **S3 Higher axial strain amplitude to investigate the initial impact injury.** The supplementary material
823 providing additional analysis on the injurious loading used in the experiments.

824

825 **S3 Fig. Additional analysis of the higher axial strain to study injurious loading.** Finite element mesh
826 for the intact geometry and the maximum shear strain distributions after unconfined compression with 40%
827 axial strain amplitude.

828

829 **S4 Reaction–diffusion model: simulated changes in proteoglycan content.** The supplementary material
830 providing more detailed information about the biochemical reaction–diffusion model.

831

832 **S5 Mesh sensitivity.** The supplementary material providing more detailed information about the mesh
833 sensitivity analysis.

834 **S5 Fig. Mesh sensitivity analysis.** Mesh sensitivity analysis for the mechanobiological simulations
835 conducted with the combined model.

836

837 **S6 Data interpolation to Comsol.** The supplementary material providing more detailed information about
838 the data interpolation from the biomechanical simulations.

839

840

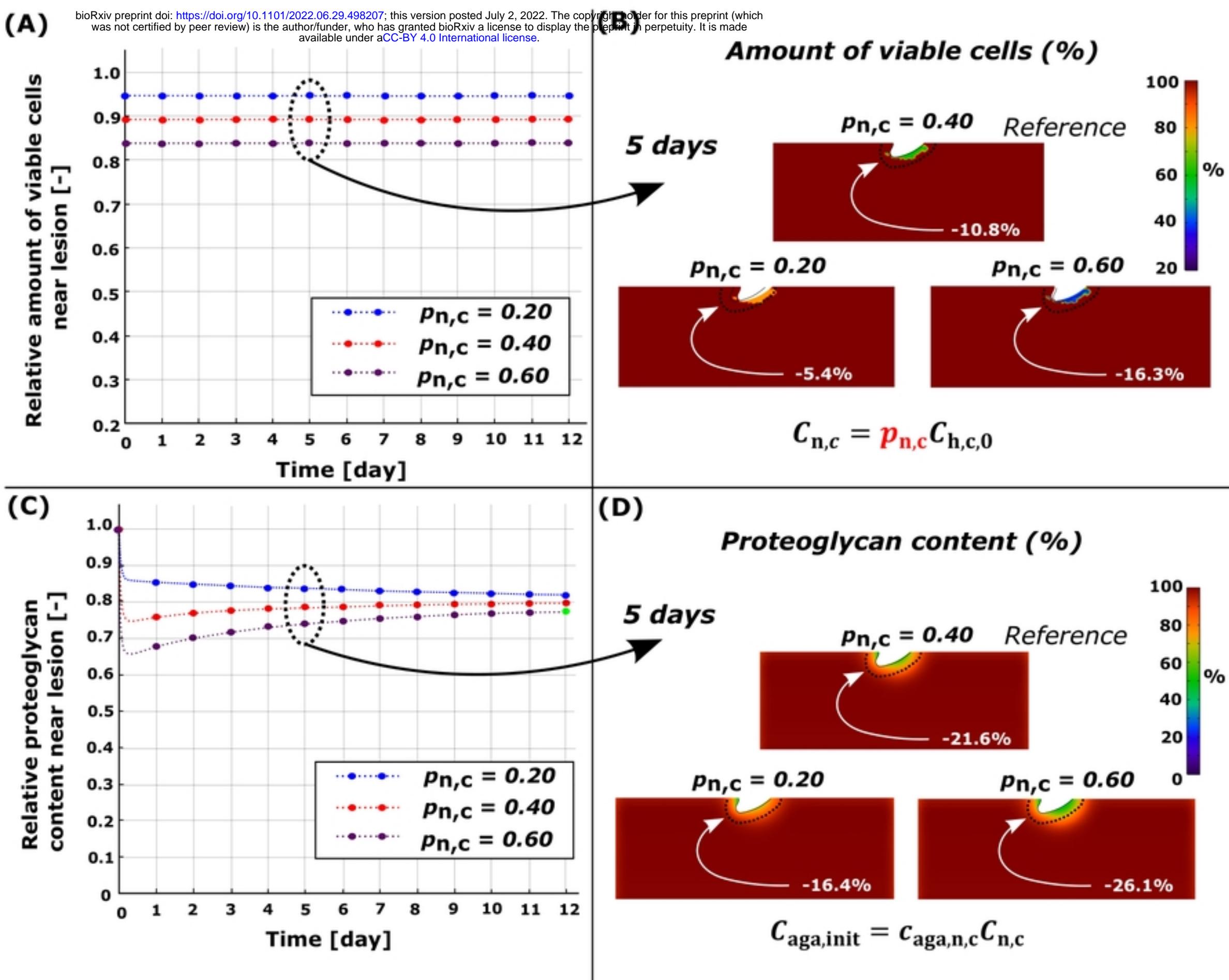


Figure 4

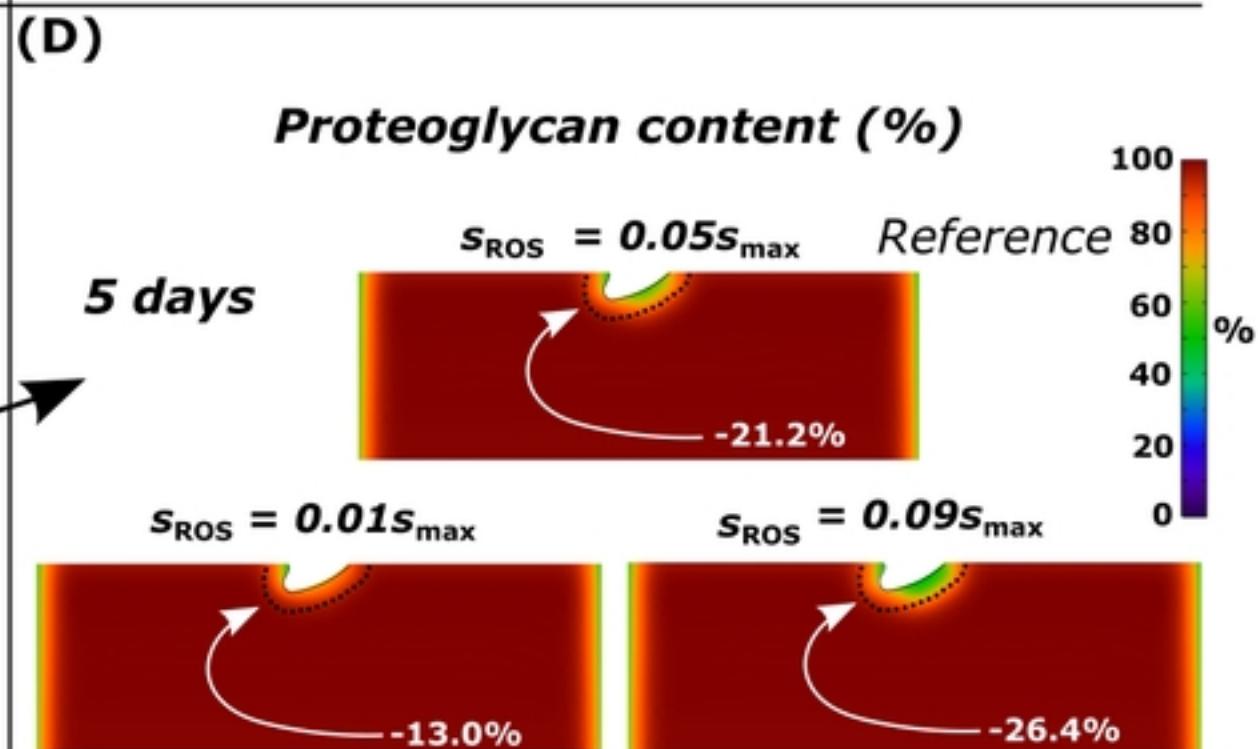
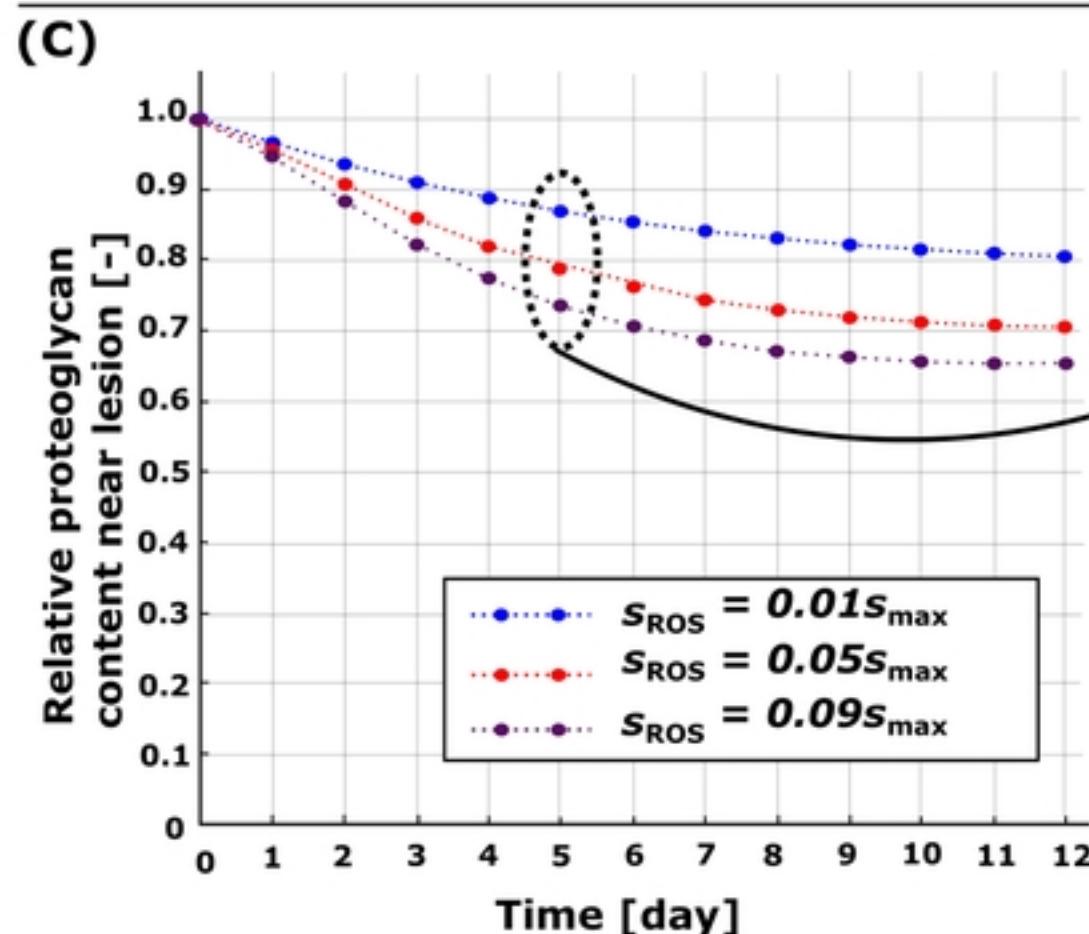
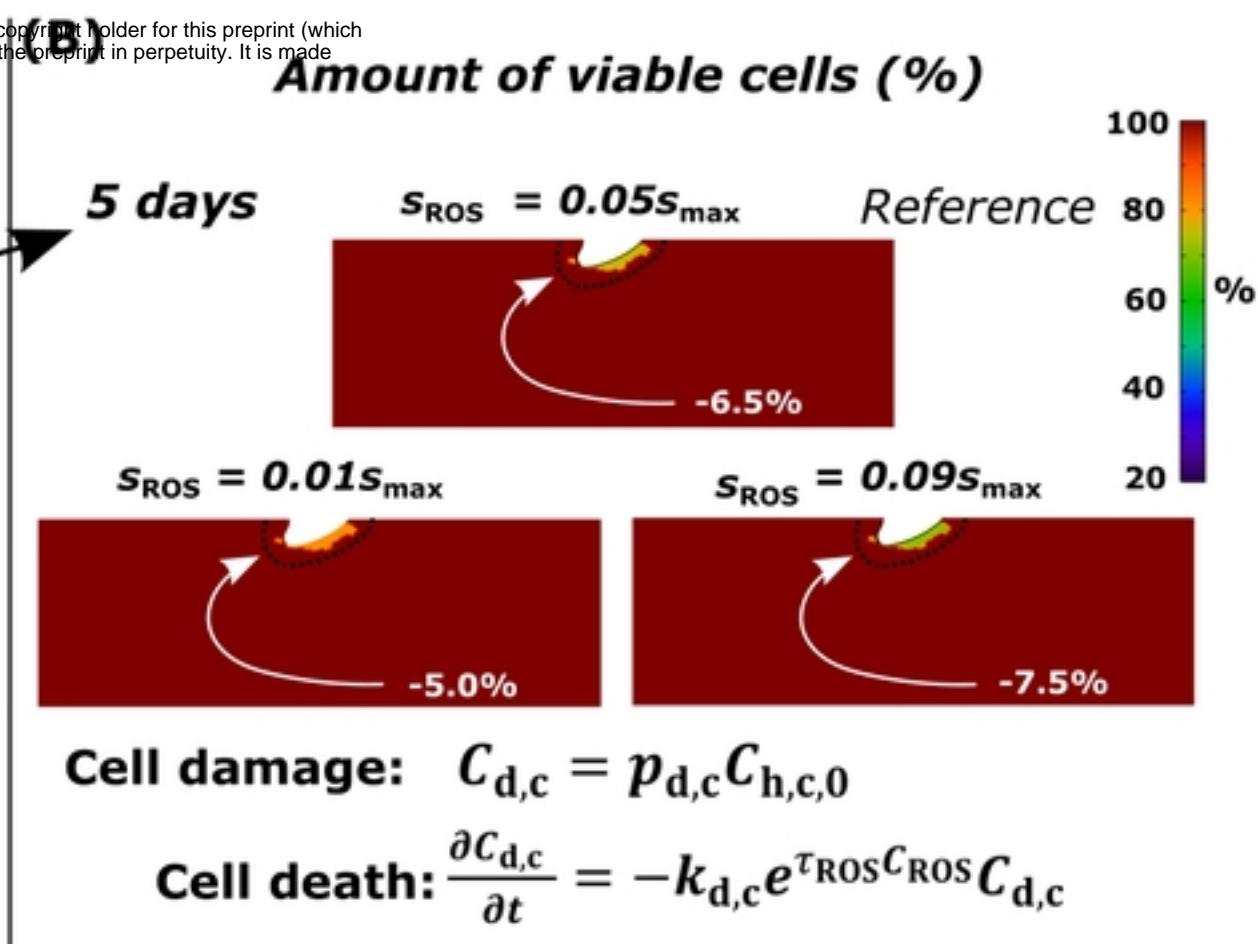
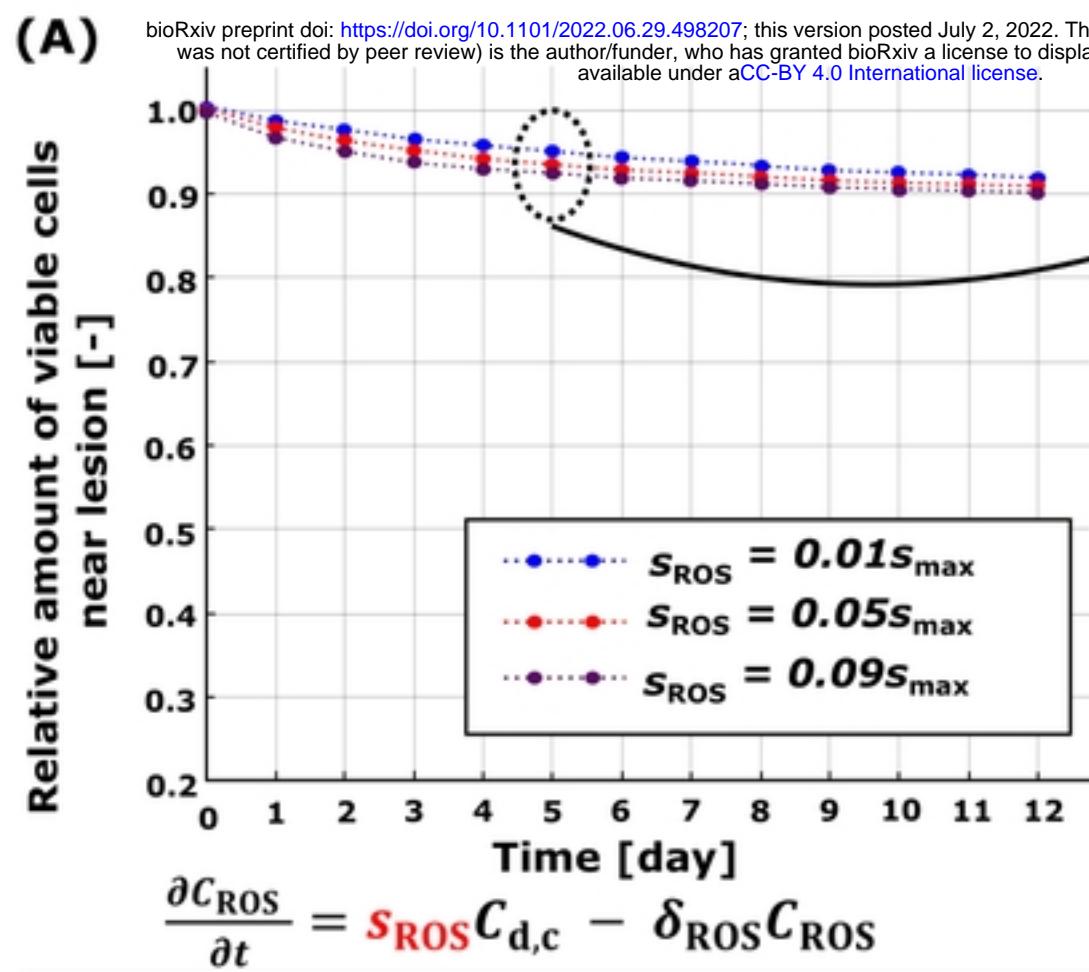





Figure 5

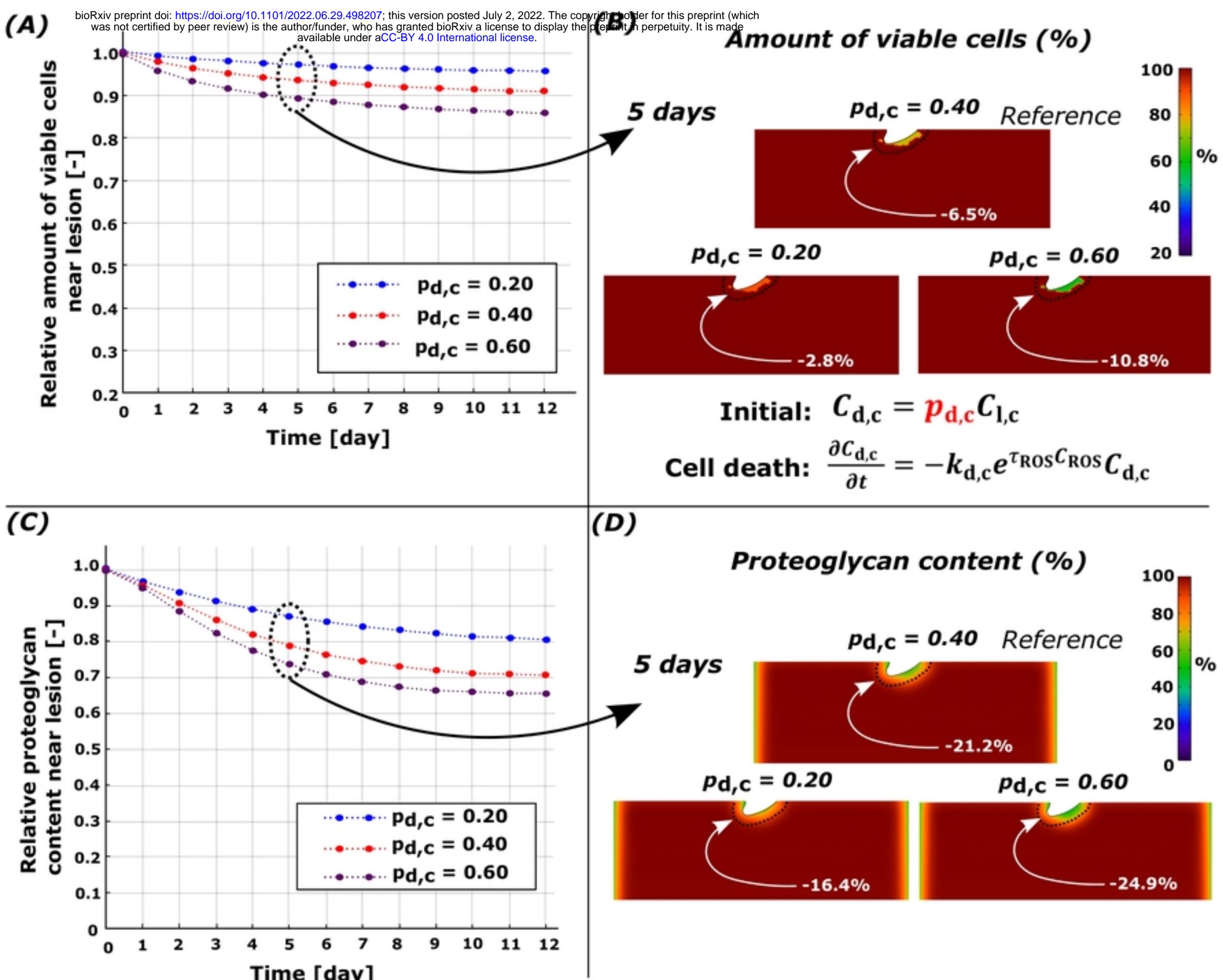
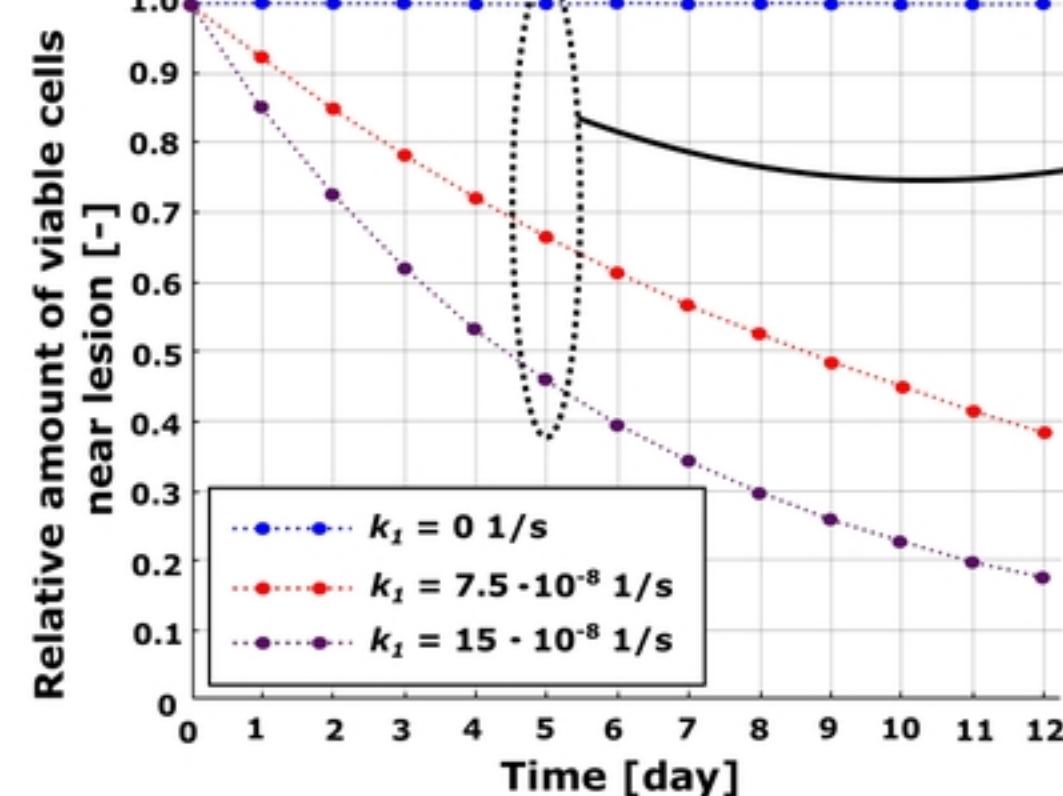
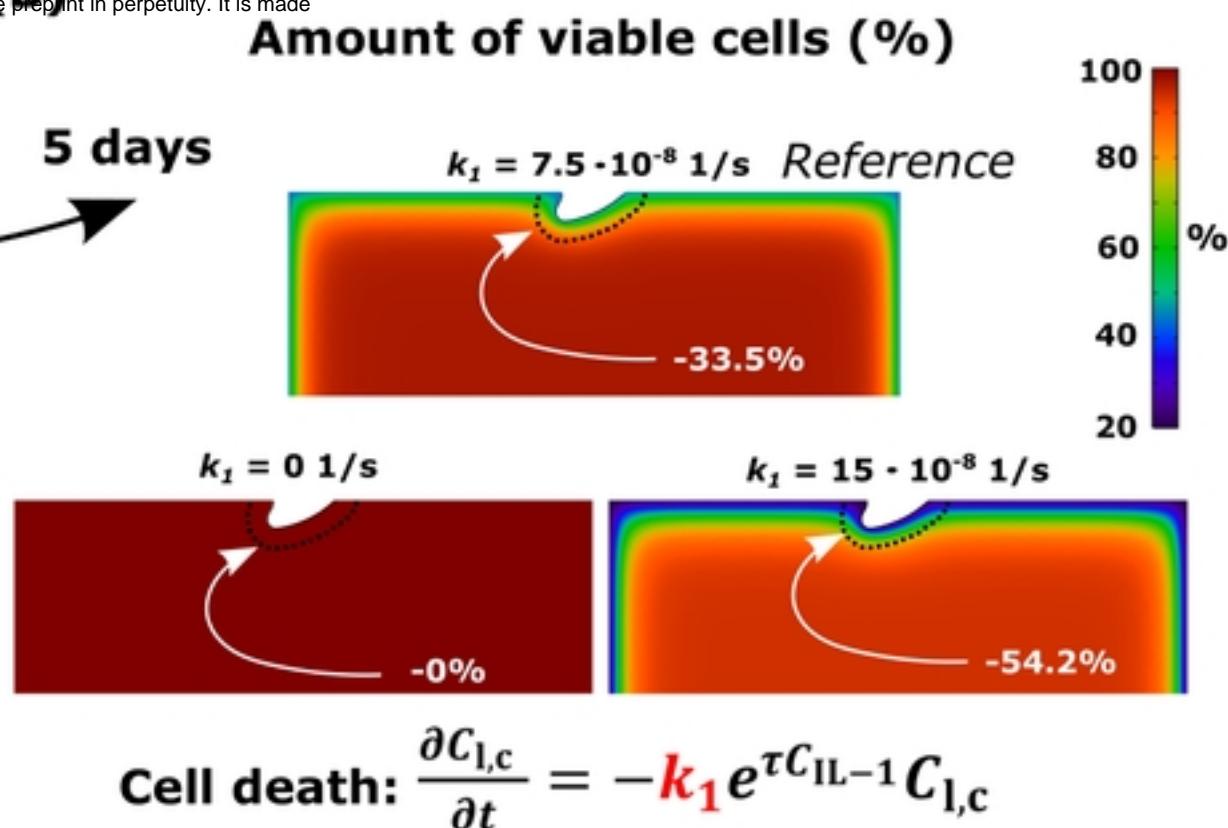
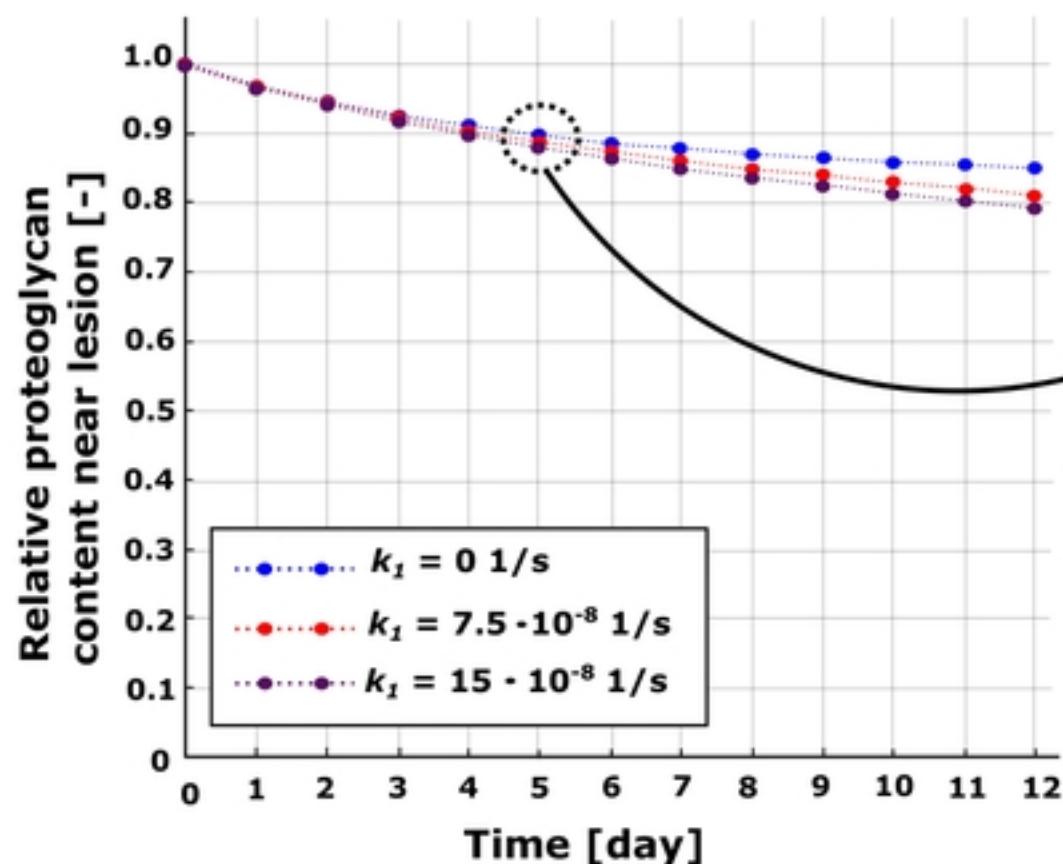
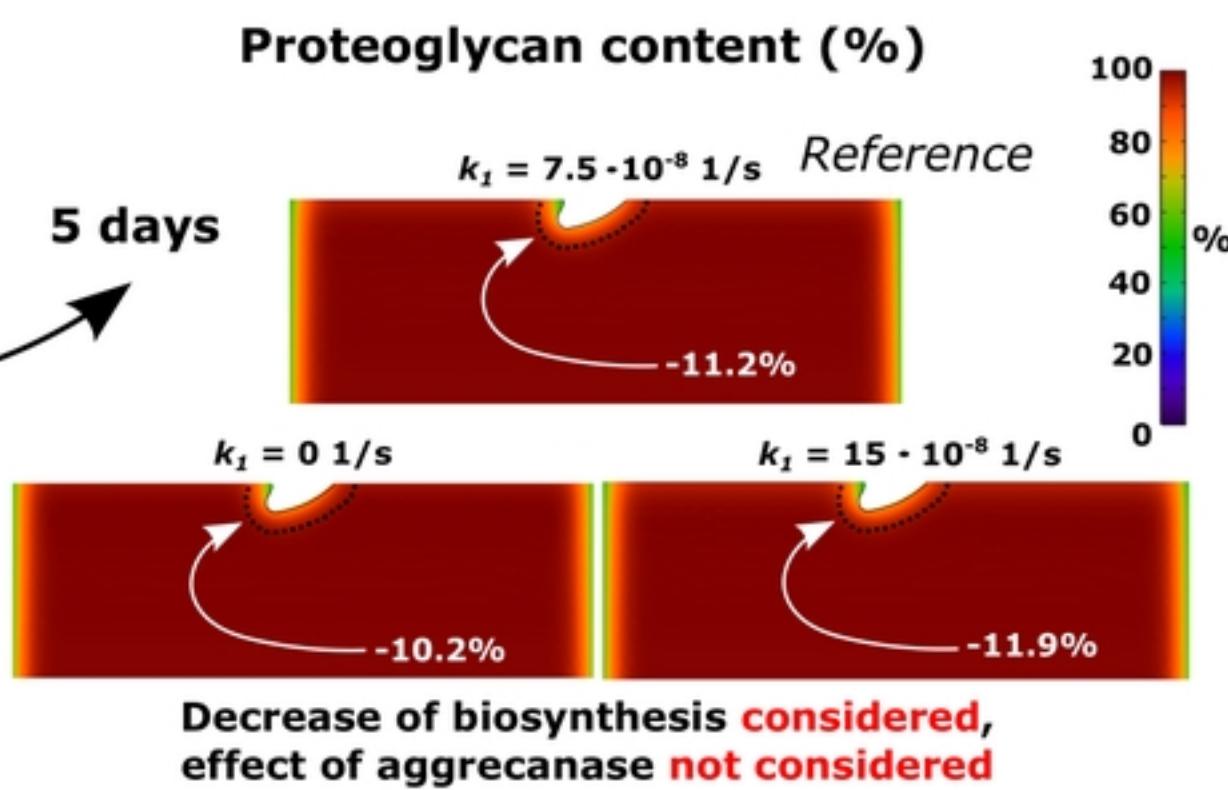






Figure 6

(A)

bioRxiv preprint doi: <https://doi.org/10.1101/2022.06.29.498207>; this version posted July 2, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

(B)**(C)****(D)****Figure 7**

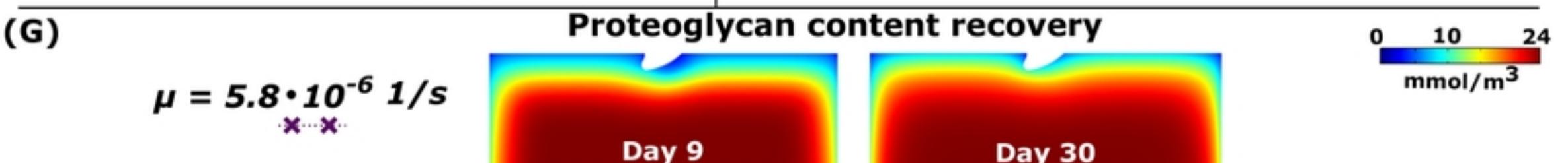
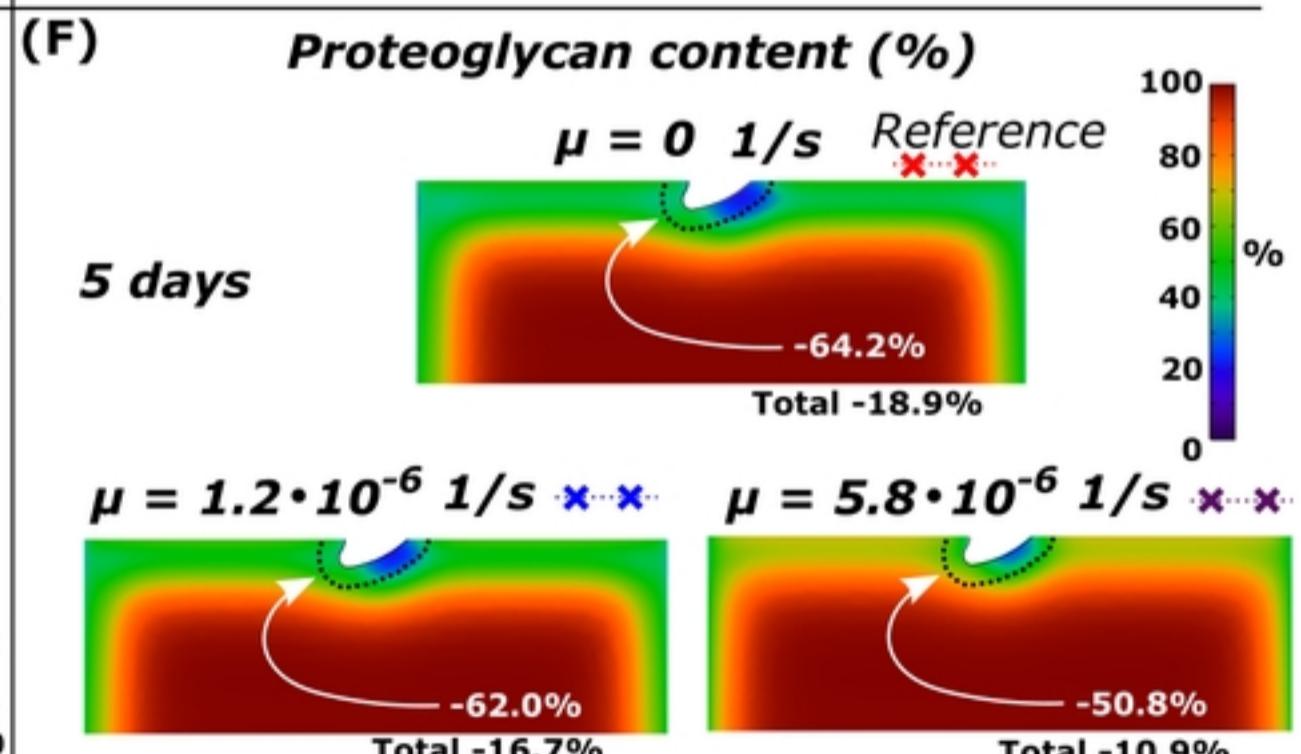
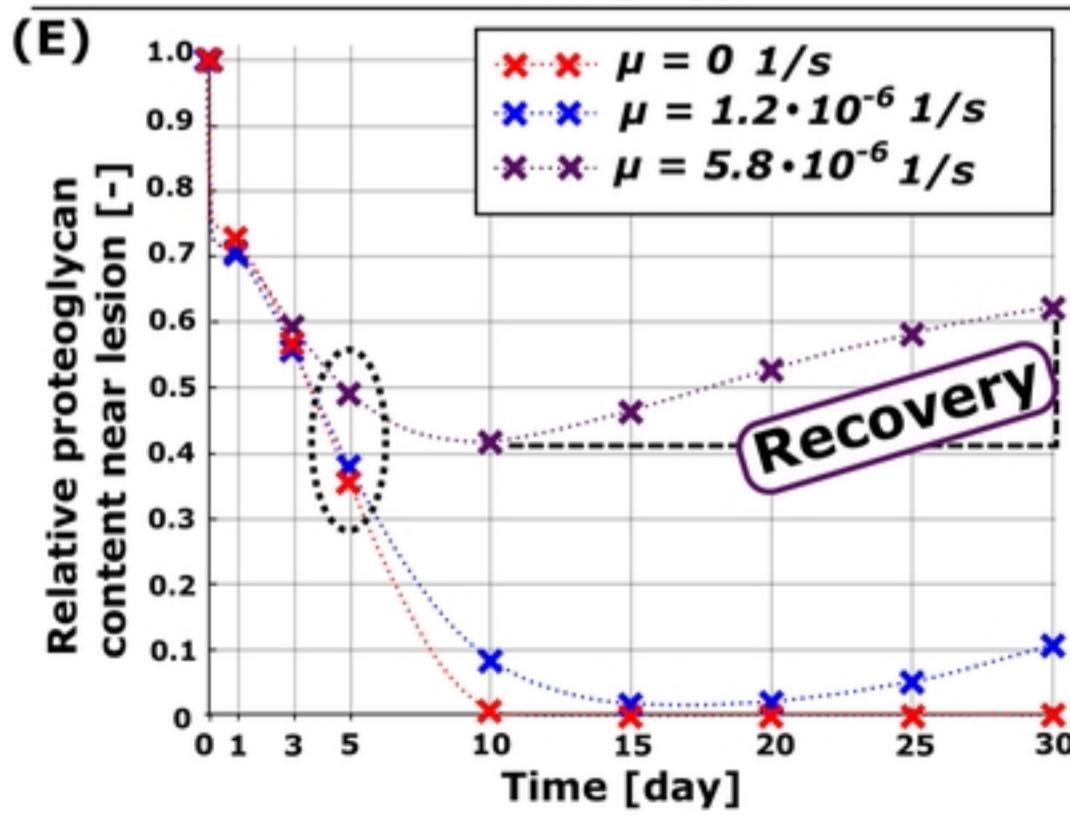
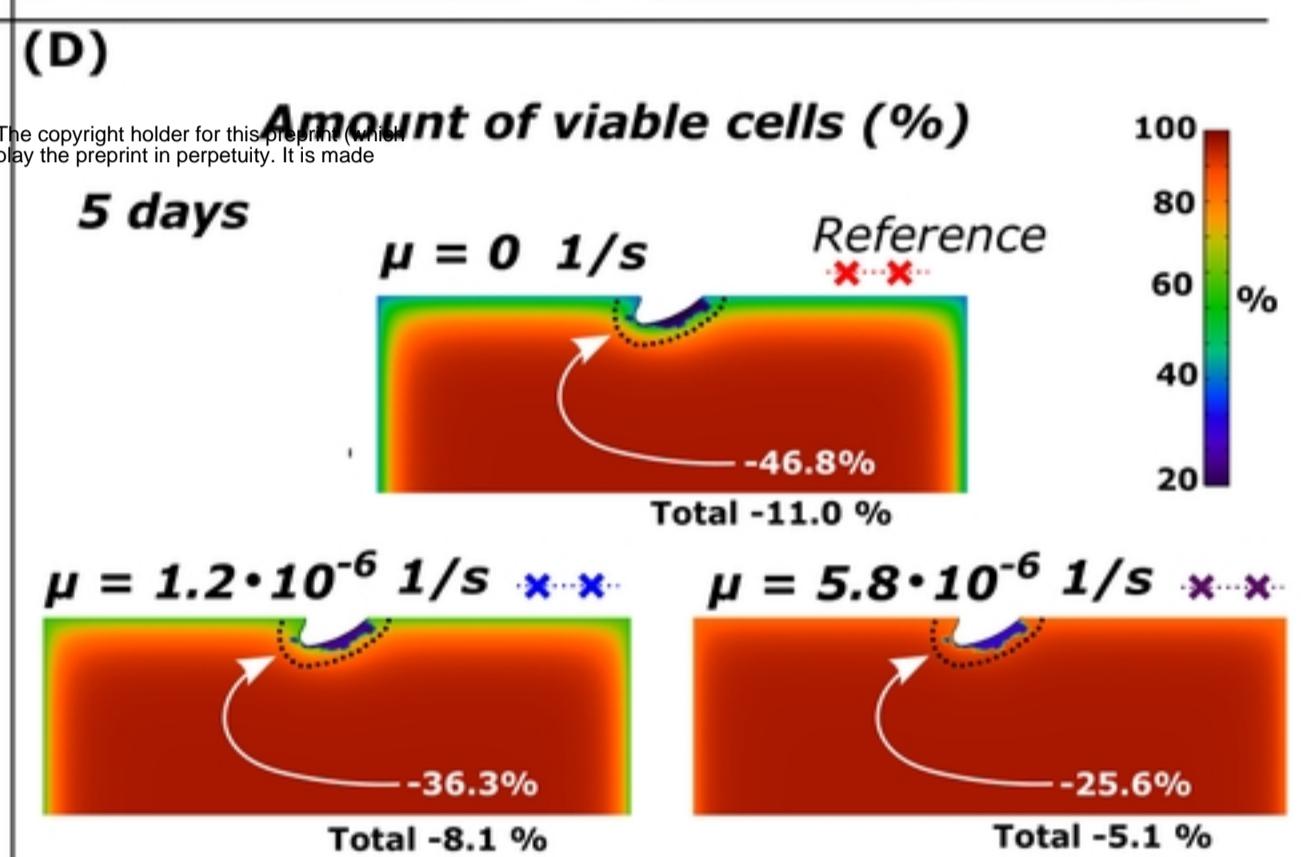
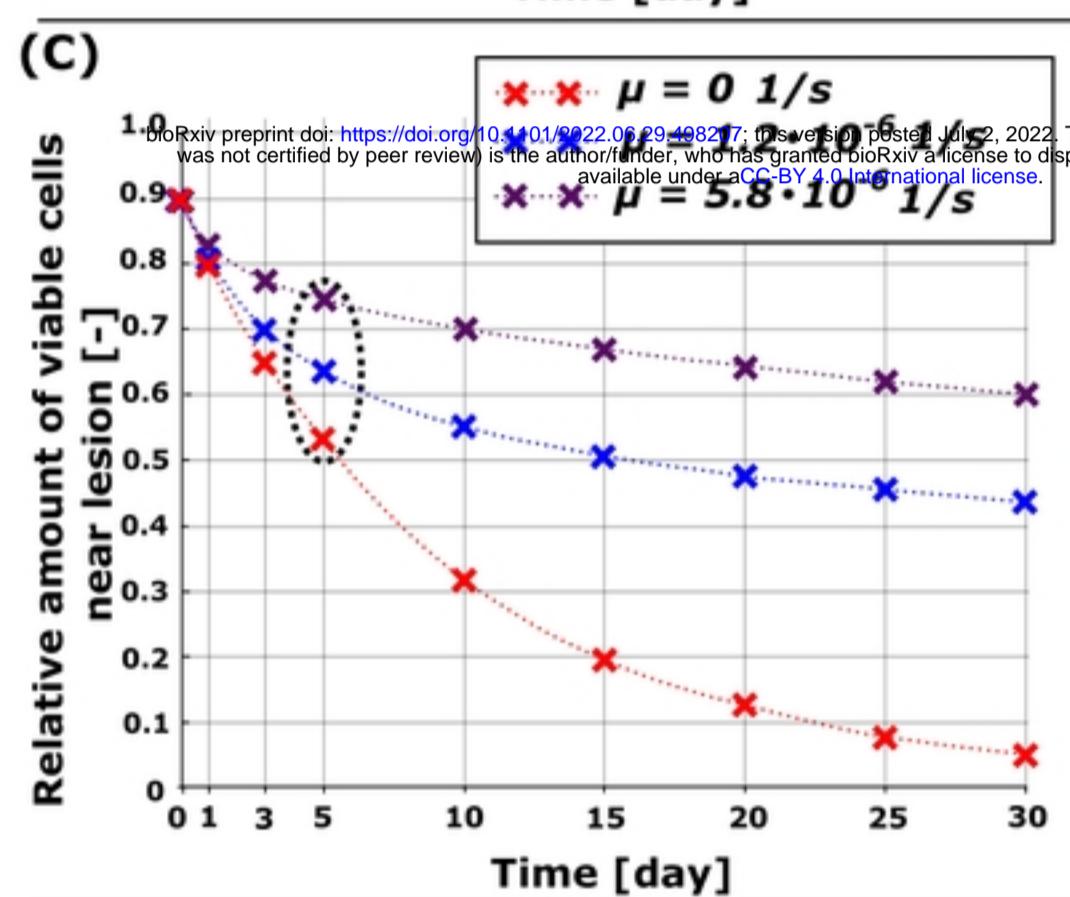
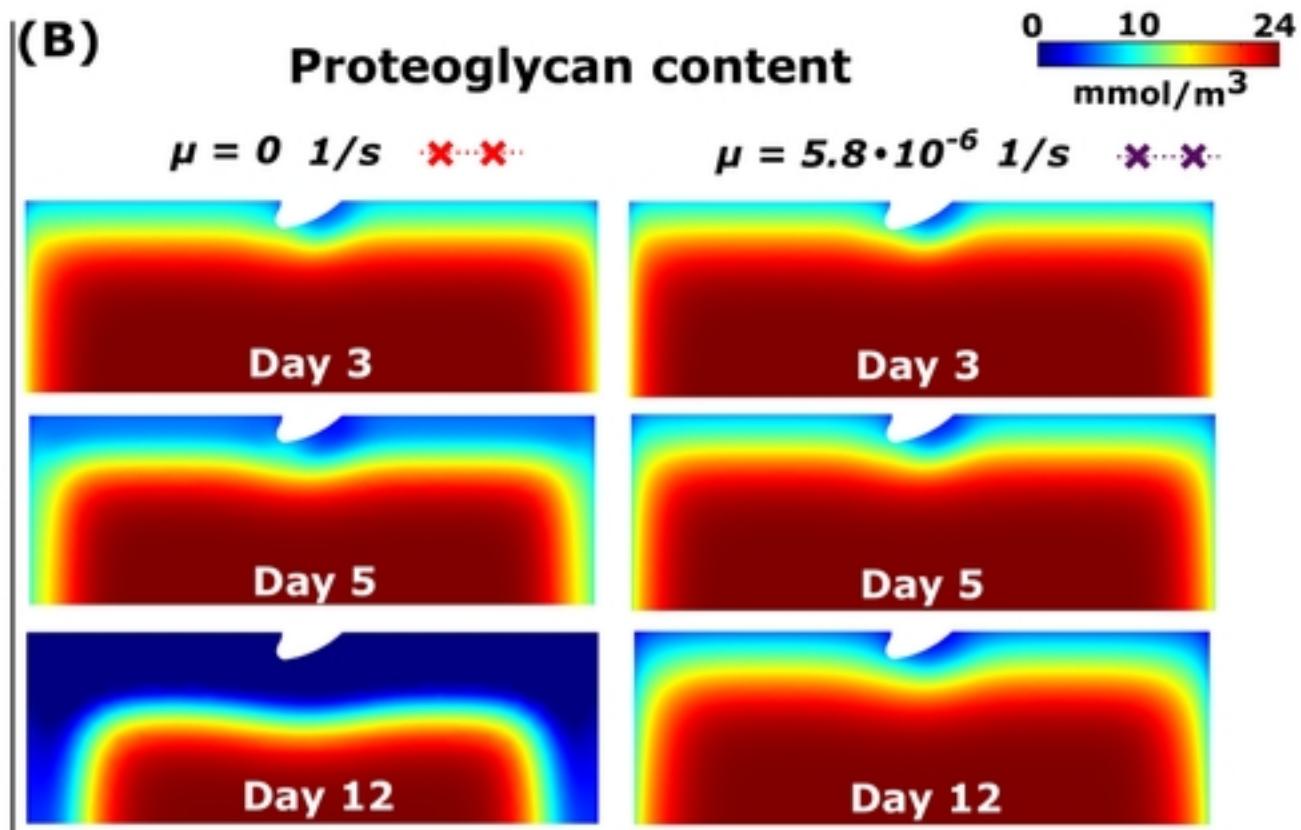
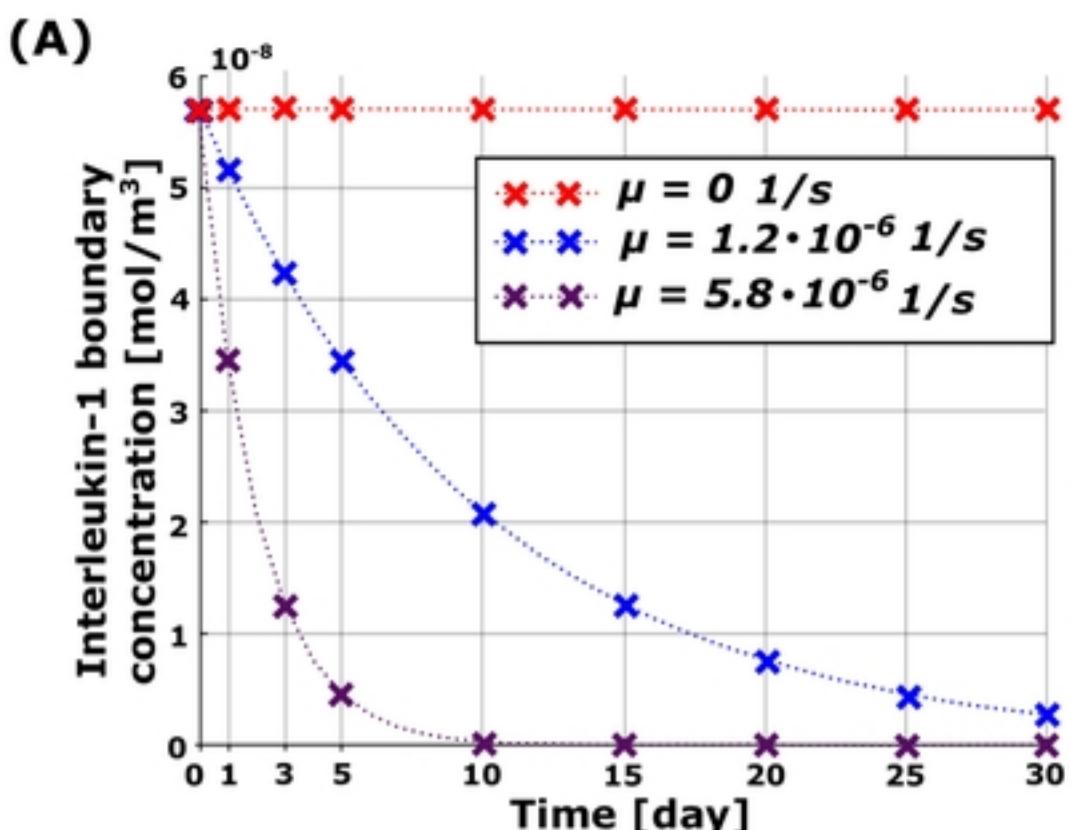
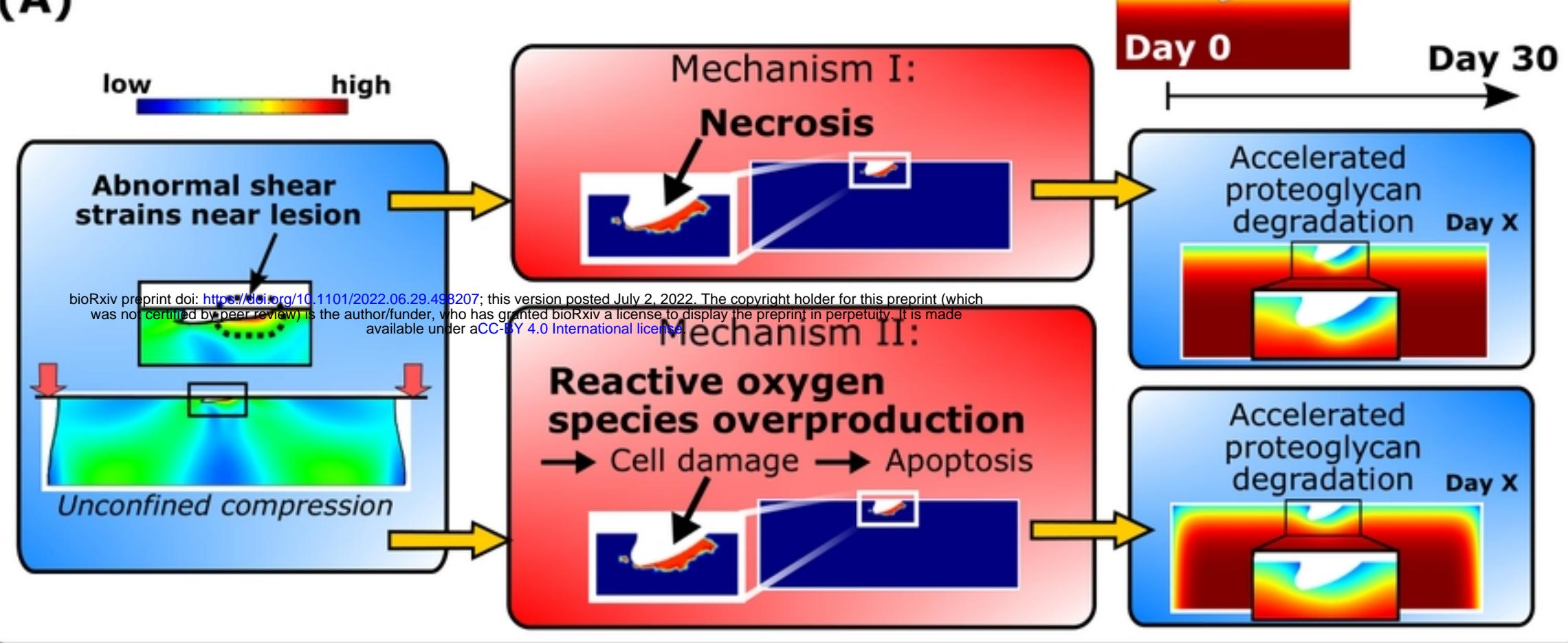
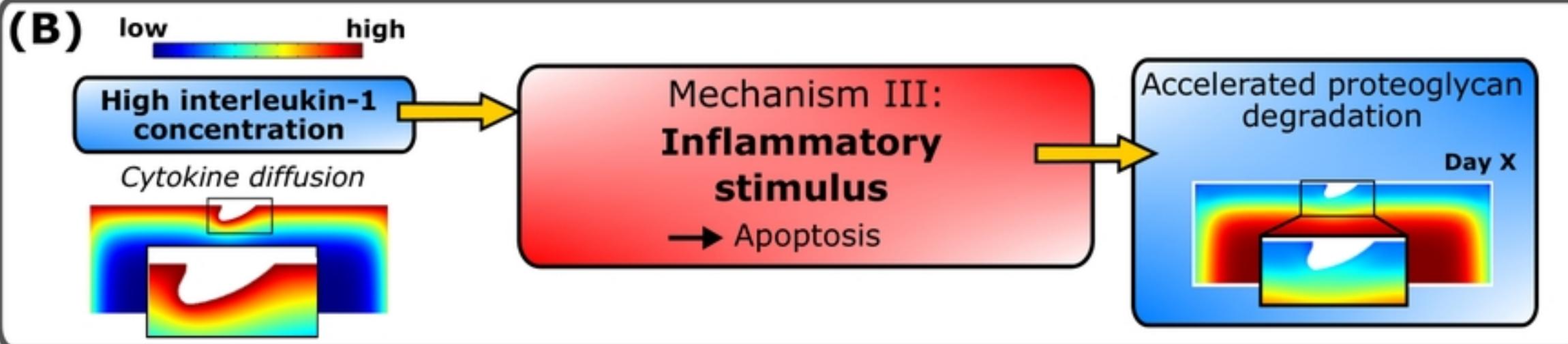
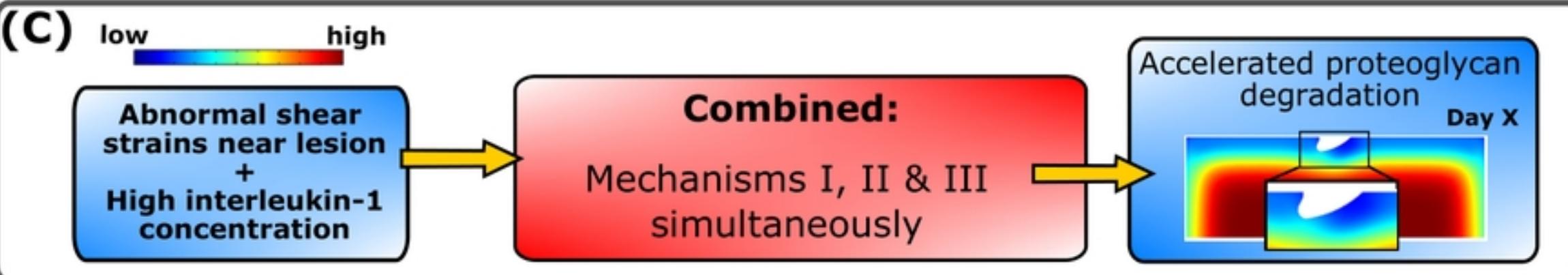
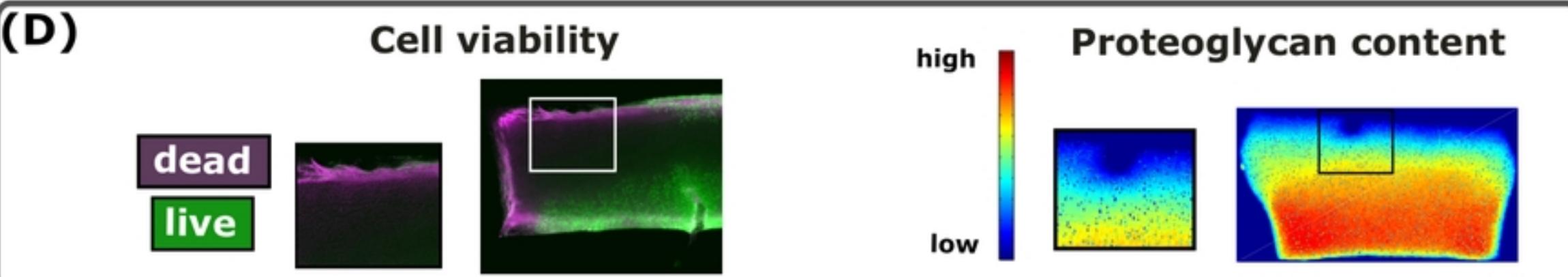
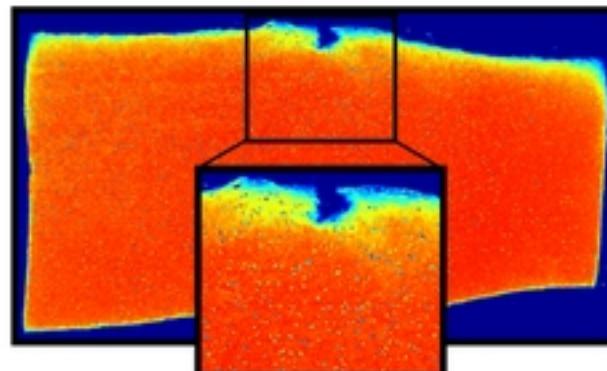
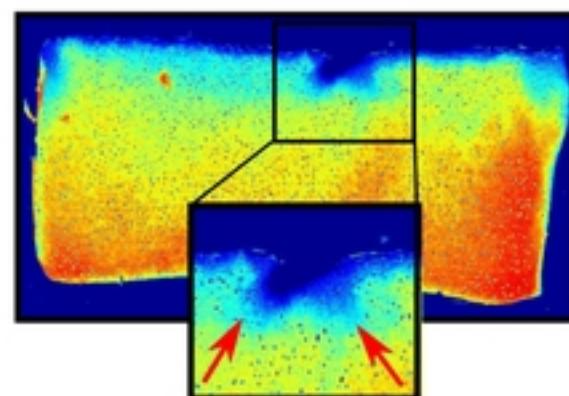
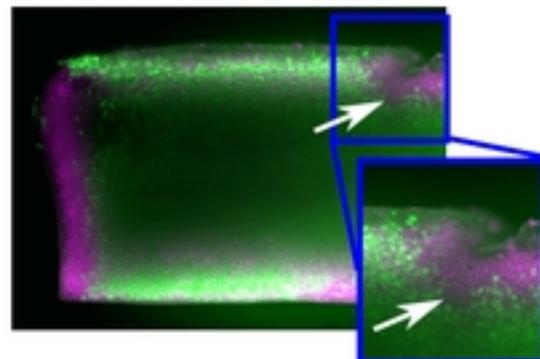
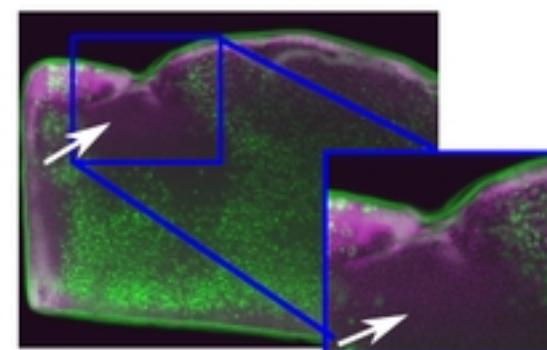
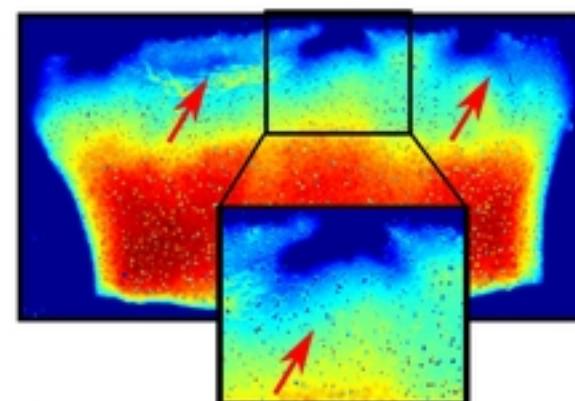
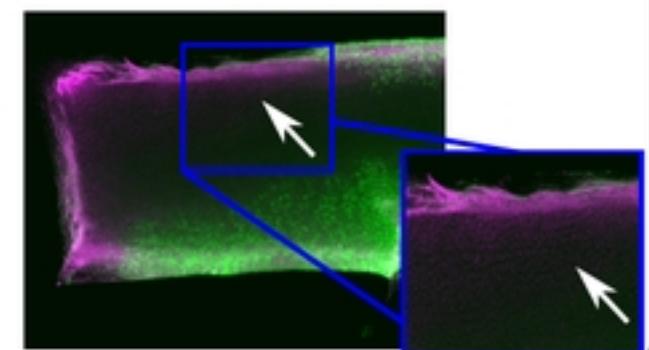
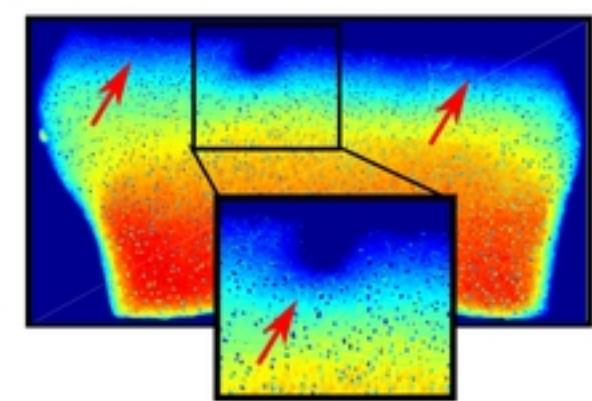



















Figure 8

(A)**(B)****(C)****(D)****Figure 1**

(A)**Proteoglycan content****Day 0****Proteoglycan content****low** **high****Cell viability****dead****live****(B)***Orozco et al.***Injury + dynamic loading****Day 12****Day 12****(C)***Eskelinen et al.***Injury + IL-1 α** **(D)***Eskelinen et al.***Injury + dynamic loading + IL-1 α** **Figure 2**

Proteoglycan content

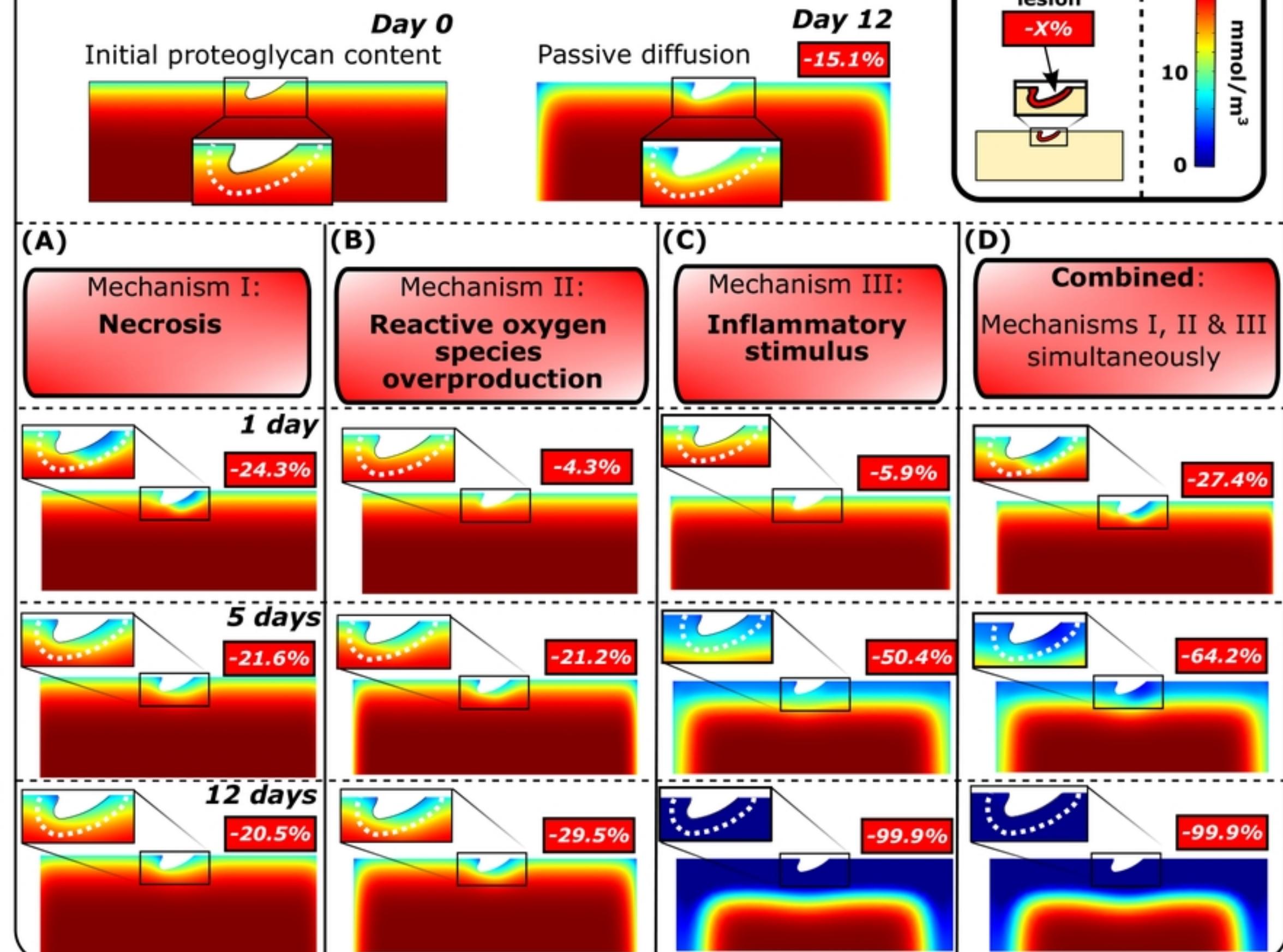


Figure 3