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Summary 

Congenital heart defects, the most common birth disorders, are the clinical manifestation 
of anomalies in fetal heart development - a complex process involving dynamic 
spatiotemporal coordination among various precursor cell lineages. This complexity 
underlies the incomplete understanding of the genetic architecture of congenital heart 
diseases (CHDs). To define the multi-cellular epigenomic and transcriptional landscape 
of cardiac cellular development, we generated single-cell chromatin accessibility maps of 
human fetal heart tissues. We identified eight major differentiation trajectories involving 
primary cardiac cell types, each associated with dynamic transcription factor (TF) activity 
signatures. We identified similarities and differences of regulatory landscapes of iPSC-
derived cardiac cell types and their in vivo counterparts. We interpreted deep learning 
models that predict cell-type resolved, base-resolution chromatin accessibility profiles 
from DNA sequence to decipher underlying TF motif lexicons and infer the regulatory 
impact of non-coding variants. De novo mutations predicted to affect chromatin 
accessibility in arterial endothelium were enriched in CHD cases versus controls. We 
used CRISPR-based perturbations to validate an enhancer harboring a nominated 
regulatory CHD mutation, linking it to effects on the expression of a known CHD gene 
JARID2. Together, this work defines the cell-type resolved cis-regulatory sequence 
determinants of heart development and identifies disruption of cell type-specific regulatory 
elements as a component of the genetic etiology of CHD. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 



 
 
 
Introduction  
 
Congenital heart disease (CHD) is the most common form of developmental birth defect, affecting 
1% of live childbirths every year (van der Linde et al. 2011). Approximately one-third of children 
with CHD have a linked genetic etiology accounting for the disorder. Only 8% of such cases are 
attributed to mutations in protein-coding gene regions (Zaidi et al. 2013; Homsy et al. 2015; 
Pediatric Cardiac Genomics Consortium et al. 2013; Jin et al. 2017), strongly suggesting that 
other causes, including disruption of gene regulation, substantially contribute to the etiology of 
CHD. However, heart development is a complex symphony of diverse and interacting cell types 
and phenotypic transformations, making identification of causal non-coding mutations and their 
impact on gene regulation in disease-relevant cell types challenging (Bruneau 2013). 

 
Organogenesis of the heart begins from two distinct mesodermal cellular progenitors that 
originate from the primary heart field (PHF) and secondary heart field (SHF). These two 
mesodermal lineages give rise to three subtypes of heart cells: myocardial cells, epicardial cells, 
and endocardial cells that later integrate with cells from the neural crest to form a functional human 
heart (Sylva, van den Hoff, and Moorman 2014; Meilhac and Buckingham 2018; Srivastava 2006). 
Prior studies that have profiled the single cell transcriptome of the developing human heart have 
greatly enhanced our understanding of cell types and genes important for cardiogenesis 
(Suryawanshi et al. 2020; Asp et al. 2019; Miao et al. 2020). However, a comprehensive resource 
of cell-type resolved cis and trans regulators of gene expression programs across differentiation 
trajectories in human cardiac development is lacking. This gap in our understanding raises several 
unresolved questions about transcriptional regulation of cardiogenesis and its dysregulation by 
non-coding mutations that may cause CHD: 1) What are the dynamic cis-regulatory elements 
(cREs) and target genes that define cell types and cell state transitions in cardiogenesis? 2) What 
is the combinatorial lexicon of transcription factor (TF) motifs encoded in these dynamic cREs? 
3) Are de novo non-coding CHD mutations enriched in cRE landscapes of specific fetal heart cell 
types? 4) What are the TF binding sites, cREs, and target genes impacted by putative causal 
non-coding CHD mutations? 5) Which in vitro differentiated cellular model systems demonstrably 
reproduce both the gene expression and chromatin landscape of the in vivo developing human 
heart, thereby enabling functional validation of the regulatory impact of mutations? 
 
Single-cell profiling of chromatin accessibility and gene expression have allowed many of these 
questions to be addressed in other organ systems, including human hippocampus (Zhong et al. 
2020), fetal embryogenesis (Domcke et al. 2020; Cao et al. 2020), human corticogenesis 
(Domcke et al. 2020; Trevino et al. 2021) and hematopoiesis (Buenrostro et al. 2018; Granja et 
al. 2019). Cell-type resolved maps of chromatin accessibility provide a window into the dynamic 
activity of cis- and trans-acting factors, and when combined with gene expression data, can be 
used to nominate specific TFs, cREs, and regulatory networks associated with cellular state 
changes. Further, deep learning models that predict chromatin accessibility from DNA sequence 
have been used to decode TF motif syntax of cREs and nominate putative causal regulatory 
variants (Avsec, Agarwal, et al. 2021; David R. Kelley, Snoek, and Rinn 2016; D. R. Kelley et al. 
2018; D. R. Kelley 2020; J. Zhou and Troyanskaya 2015; Richter et al. 2020; J. Zhou et al. 2018; 
Trevino et al. 2021). While others have applied such models to tissue-level, bulk cardiac functional 
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genomic data (Richter et al. 2020), the lack of cell-type resolution in these data makes it difficult 
to decipher cell-type specific effects of variants, especially in rare cell types.  
 
To address these questions, we derived a joint atlas of integrated single-cell data by generating 
and combining single cell ATAC-seq (scATAC-seq) experiments profiling chromatin landscapes 
of three primary human fetal heart samples spanning post conception week (PCW) 6, 8 and 19 
with published single-cell RNA-seq (scRNA-seq) data at similar developmental timepoints. We 
deconvolved 20 distinct cell types spanning three progenitor lineages along with neural crest cells 
and systematically characterized cell-type resolved repertoires of accessible cREs and their 
putative linked target genes. We trained convolutional neural networks (CNN) that predict cell-
type resolved, base-resolution chromatin accessibility profiles from DNA sequence to decipher 
the dynamic motif lexicon of combinatorial TF binding at all cREs in each cell context (Avsec, 
Weilert, et al. 2021; Trevino et al. 2021). We adapted an optimal transport algorithm to identify 8 
major differentiation trajectories, defining continuous progression of TF activities that promote the 
formation of primary cell types of the heart (Schiebinger et al. 2019). Using this atlas of cell states 
representing in vivo cardiac development, we compared accessible chromatin landscapes of 
common cellular model systems comprising major cardiac cell types derived from iPSCs in vitro. 
This comparison revealed substantial epigenomic and transcriptional differences between 
different model cell-types and their in vivo counterparts, except for in vitro derived cardiomyocytes 
and endothelial cells, which showed comparatively high concordance. Finally, we used our deep 
learning models to prioritize putative causal, non-coding mutations in CHD trios from the Pediatric 
Cardiac Genomics Consortium (PCGC) (Richter et al. 2020) based on their predicted impact on 
cell-type specific chromatin accessibility of putative cREs via disruption of TF binding sites. 
Predicted deleterious mutations in cREs in arterial endothelial cells were enriched (p-value = 
0.008, odds ratio = 1.7, Fisher’s Exact test) in cases versus healthy controls, thereby revealing 
one of the predominant cell-types of origin for congenital heart disorders that result from such 
regulatory mutations. We used CRISPR-based enhancer knockout experiments in in vitro 
differentiated endothelial cells to validate the regulatory impact of a putative cell-type specific 
enhancer predicted to harbor a deleterious CHD mutation on expression of JARID2, an important 
cell-type specific cardiogenesis gene. Together, these data and models define the cis- and trans- 
regulatory landscape of the developing human heart across mid-gestation developmental 
trajectories, elucidate the fidelity of diverse iPSC-to-lineage in vitro differentiations, and provide a 
deep learning framework capable of specifically nominating non-coding de novo mutations in 
candidate cREs predicted to disrupt TF binding, chromatin state and gene expression consistent 
with causality for CHD. 
 

Results 
 
Integrating single-cell ATAC and RNA sequencing data into a unified cell-type resolved 
regulatory atlas of the developing human heart 
 
To capture chromatin dynamics in different cell populations throughout fetal heart development, 
we used the Chromium 10X platform to generate scATAC-seq data (Satpathy et al. 2019) from 
three primary human fetal heart samples at 6-, 8-, and 19-weeks post-conception (PCW) (Figure 
1a). We obtained 30,426 high quality scATAC-seq cell barcodes post filtering and quality control 
(SFigure 1, Table S1, Methods). We applied iterative latent semantic indexing (LSI) on 
accessible chromatin regions to map the cells from all three time points into a multidimensional 
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principal component (PC) space and then to a 2-dimensional uniform manifold approximation and 
projection (UMAP) representation (Granja et al. 2021; Becht et al. 2018; McInnes et al. 2018). We 
used the Leiden clustering algorithm to discover and optimize clusters of cells that potentially 
correspond to distinct cell-types (Traag, Waltman, and van Eck 2019) (Figure 1b, 1c, SFigure 2, 
Table S2, Methods).  
 
We computed chromatin-derived gene accessibility scores by aggregating scATAC-seq reads in 
each cell weighted by distance from each gene within its cis-regulatory domain (Granja et al. 
2021). We deciphered each cluster’s likely cell-type identity based on cluster-specific gene 
accessibility scores of reference marker genes known to exhibit cell-type specific gene expression 
(SFigure 3, Table S3, Methods). We first defined four different broad precursor lineages - 
myocardium, epicardium, endocardium, and neural crest (Srivastava 2006) - consistent with the 
primary heart field (PHF) and secondary heart field (SHF) derived precursor cells in the fetal heart 
(Figure 1c), and then further annotated sub-clusters within these lineages.  
 
Within the myocardial lineage, we found that TNNT2, ACTN2, and NKX2-5 had high gene 
accessibility scores across the early cardiomyocytes (eCM), ventricular cardiomyocytes (vCM), 
and atrial cardiomyocyte (aCM) clusters (Miao et al. 2020; Cui et al. 2019; Asp et al. 2019; 
Suryawanshi et al. 2020). TTN and HAND1 activity specifically marked the eCM and vCM clusters 
while TBX10, NPPA, and MYL7 had higher activities in the aCM cluster. The eCM cluster mainly 
comprised early gestational cells (PCW6) compared to aCM and vCM clusters (Figure 1d, 
SFigure 3). 
 
We observed diverse cell types within the epicardial lineage, which showed varying compositions 
across different gestational time points. We discovered four cell types at PCW6: cardiac fibroblast 
progenitors (CFP) with high WT1, TBX18, and TCF21 gene accessibility scores, another set of 
similar cells with both TBX18 and TCF21 signal but lacking WT1 which we call fibroblast-like cells 
(FB1), and the outflow tract (OFT) like cells with high PRDM6 (Davis et al. 2006) and HOXA3 
gene accessibility scores (SFigure 3). These OFT cells had low TCF21 signal and were therefore 
unlikely to act as cardiac fibroblast progenitors (Acharya et al. 2012). We also found an 
undifferentiated epicardium cell cluster (EPC) with high TBX18 and WT1 signals but lacking 
TCF21 (Mikawa and Gourdie 1996; Cai et al. 2008) (SFigure 3). These four clusters appeared to 
act as progenitor populations for cells arising at later gestational timepoints in the epicardium. 
PCW8 cells labeled as pre-cardiac fibroblasts (preCF) had high gene accessibility scores for 
TCF21 but very low signals for DCN and LUM (Figure 1d, SFigure 3). A more mature cardiac 
fibroblast (CF) population mostly in PCW19 and some in PCW8 cells had high gene accessibility 
scores for major cardiac fibroblast markers including DCN, LUM, and TCF21 (Figure 1d, SFigure 
3) (Muhl et al. 2020). We defined a second cluster of fibroblast-like cells (FB2) that appeared in 
PCW8 and PCW19 and exhibited CNN1 and COL9A2 gene accessibility scores, but lacked 
signals for other standard cardiac fibroblast markers (SFigure 3). We hypothesize that this cell 
type, along with FB1, may be related to valvular fibroblasts, but further studies are required to 
establish this potential relationship. Finally, we defined a cluster of pre-smooth muscle cells 
(preSMC) with MYH11, PDGFRB, and TAGLN activity but lacking TCF21 activity (Dobnikar et al. 
2018), a cluster of smooth muscle cells (SMC) exhibiting stronger activity for MYH11 and 
PDGFRB with major contributions from PCW19 and minor contributions from PCW8, and a cluster 
of pericytes (PC) with activity of PDGFRB and ABCC9 (Figure 1d, SFigure 3) (Pham et al. 2021). 
We also defined a cluster of neural crest (NC) cells with high TFAP2A activity (Figure 1d, SFigure 
3) (W.-D. Wang et al. 2011). 
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The endocardial cell populations exhibited two distinct phenotypes: one with high CDH11 activity 
scores (Endo1) and a smaller population that resembled endocardial-like transitioning cell types 
(Endo2) (Aird 2007). Arterial endothelial cells (aEC) exhibited high UNC5B and GJA5 gene 
accessibility score activity. Capillary cells (Cap) were marked by high CA4, APLNR, and CD36 
gene accessibility scores (SFigure 3). Venous endothelial cells (vEC) were marked by high SELE 
and SELP gene accessibility score activity, amongst other markers (Kalucka et al. 2020; Vodyanik 
et al. 2010). In addition to these major endothelial cell types, we also found a sub-population of 
lymphatic endothelial cells (lEC) exhibiting LYVE1 gene accessibility score activity (SFigure 3) 
(Podgrabinska et al. 2002). Using these annotated clusters, we identified 215,163 putative cREs 
as scATAC-seq peak regions over all cell types and timepoints (Figure 1e). The clusters were 
enriched for expected gene ontology (GO) terms associated with cardiac development and cell-
type specific attributes (Bruneau 2013) (Figure 1e, Table S4).  
 
To understand the correspondence between the chromatin and gene expression landscapes of 
these cell-types, we analyzed previously published scRNA-seq data from developmental time 
points that closely match those sampled in our scATAC-seq atlas (Miao et al. 2020; Cui et al. 
2019; Asp et al. 2019; Suryawanshi et al. 2020) (Figure 1f, SFigure 4, Table S5-S6). Because 
of the different sources and methods of preparation of cells and scRNA libraries, we harmonized 
the scRNA-seq data across time points after correcting for batch effects using Harmony 
(Korsunsky et al. 2019), clustered cells using the Leiden community detection method, and 
mapped clusters to specific cell-types based on cell-type specific expression of known marker 
genes (SFigure 4a,b,c). Cells from our annotated scATAC-seq atlas were then matched with 
their nearest neighbor cells in the scRNA-seq atlas using canonical correlation analysis (CCA) 
(Cusanovich et al. 2018) (Figure 1f & SFigure 4d). We found high concordance (accuracy = 
74.76%) between the cluster assignments for cells from the scATAC-seq and scRNA-seq data, 
further supporting our cell type annotations based on chromatin accessibility derived gene 
accessibility scores (SFigure 4e). Examining a subset of cell-type specific marker genes, we 
found TNNT2 marking the ventricular cardiomyocytes, PECAM1 identifying endothelial cells, 
CDH11 identifying endocardium, MYH11 identifying SMC, and DCN identifying fibroblasts (Wolf 
et al. 2019; Ng, Wong, and Tsang 2010) (Figure 1d,g). We also observed a strong correlation 
(Table S7) between gene expression from the scRNA-seq data and the gene accessibility scores 
from the scATAC-seq data across matched nearest-neighbor cells from the two complementary 
atlases (Figure 1d,g), further supporting our annotations.  
 
Next, we used our integrated atlas to examine the complex relationship between the expression 
of well-known lineage-specific marker genes and chromatin dynamics of their putative cREs. For 
example, TNNT2, a well-known cardiomyocyte marker, exhibited the strongest chromatin 
accessibility at its promoter and putative distal enhancers, specifically in the three cardiomyocyte 
clusters (Figure 1h). The patterns of accessibility matched the specificity and similarity of 
expression of TNNT2 in the same clusters (SFigure 4c). In contrast, MYL2, a specific marker of 
ventricular cardiomyocytes, exhibited similar distal chromatin accessibility in the three myocardial 
lineage clusters, while the promoter was not accessible, and the gene was not expressed, in atrial 
cardiomyocyte clusters (Figure 1h, SFigure 4c), indicating that accessibility of these distal 
elements may not be sufficient to drive its expression. In the epicardial cell lineage, we observed 
increasing chromatin accessibility around the DCN marker gene through the cardiac fibroblast 
cell lineage specification (Figure 1h) concordant with its gene expression dynamics (Figure 1g). 
We observed analogous dynamics for PECAM1 in the endocardial lineage. We also observed 
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chromatin state changes consistent with promoter priming for genes in specific cell-types that do 
not express the associated gene. For instance, the promoter of the developmental gene TCF21 
was accessible in cardiac fibroblast and SMC cell lineages but the gene was expressed only in 
cardiac fibroblasts and not in SMC (Acharya et al. 2012; Nurnberg et al. 2015) (Figure 1h, 
SFigure 4c). Interestingly, TCF21 expression is known to be activated in SMC in adults in 
response to vascular stress (Wirka et al. 2019), promoting cell state changes such as proliferation 
and migration, consistent with a return to an embryonic-like phenotype for the SMC (Nurnberg et 
al. 2015). Thus, accessibility of the TSS at the TCF21 gene may represent adaptive promoter 
priming (Ma et al. 2020) that allows the gene to rapidly respond to disease-related stress or 
cellular activation.  

 
Deciphering cell-type resolved cis-regulatory sequence lexicons with deep learning 
models of base-resolution chromatin accessibility profiles 
 
To decipher the cis-regulatory sequence lexicon of TF binding sites in accessible cREs in each 
cell-type, we trained convolutional neural networks (called BPNet) to accurately map DNA 
sequence to base-resolution, pseudo-bulk chromatin accessibility profiles in 1 Kb windows around 
scATAC-seq peaks and in background regions (Avsec, Weilert, et al. 2021; Trevino et al. 2021) 
(Figure 2a). We used a 5-fold, chromosome hold-out cross-validation scheme to train, tune, and 
evaluate the predictive performance of the models (Trevino et al. 2021) (Table S8-S9). We 
obtained high and stable Spearman correlation between total predicted and observed Tn5 
insertion coverage in test regions across all folds and cell types (Figure 2b, Table S8). The 
observed and predicted base-resolution distributions of Tn5 insertions (shapes of the profiles) in 
test peak regions were also concordant across folds and cell-types (Figure 2b, Table S9). 
 
Next, we interrogated BPNet models of each cell-type to infer predictive sequence features in 
each accessible cRE by using the DeepLIFT algorithm which derives the contribution of each 
nucleotide in the cRE sequence to the predicted accessibility (Shrikumar, Greenside, and Kundaje 
2017; Lundberg and Lee 2017a). For example, DeepLIFT applied to the eCM BPNet model 
highlighted short, contiguous stretches of bases with high contribution scores, reminiscent of TF 
binding motifs, in the accessible promoter of TNNT2, a gene critical for sarcomere contractile 
function of the heart (Sehnert et al. 2002) (Figure 2c). Hence, we annotated predictive, active 
motif instances in all accessible cREs of each cell type by scanning their sequences with a non-
redundant compendium of known TF sequence motifs (Weirauch et al. 2014) and restricting to 
instances with high DeepLIFT contribution scores or motif mutagenesis scores derived from each 
cell-type specific BPNet model. Although the sequence of a cRE is the same in all cell-types, its 
DeepLIFT contribution score profile can vary across cell types, reflecting cell-type specific 
prediction of motif activity by BPNet models of different cell types. For example, the TNNT2 
promoter is highly and equally accessible in all 3 types of cardiomyocytes (early (eCM), atrial 
(aCM) and ventricular (vCM)) and drives expression of TNNT2 in all 3 cell types (Figure 2c). 
However, the DeepLIFT profiles derived from the eCM, aCM and vCM models for the same 
promoter sequence highlight distinct combinations of active TF motif instances predicted to 
regulate accessibility in the three cell types (Figure 2c,d). A TEAD1 motif is predicted to regulate 
promoter accessibility in all three cell-types. A nearby MEF2C motif is predicted to be uniquely 
active in aCM and vCM, while another upstream MEF2C motif active in eCM is predicted to be 
part of a GATA-MEF composite motif that is specifically active in aCM and vCM. A GATA motif, 
further upstream, is predicted to be active specifically in aCM and vCM. An SRF motif is predicted 
to be active only in vCM. The higher density of predicted active motifs in the TNNT2 promoter in 
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aCM and vCM compared to eCM is concordant with the higher expression of TNNT2 in the former 
two cell types (Figure 2d). This combinatorial, cell-type specific motif syntax of these 4 TFs at the 
TNNT2 promoter is consistent with the genome-wide co-occurrence statistics of their active motifs 
across all cREs in eCM, aCM and vCM (Figure 2e,f,g, Table S10).  
 
We expected the dynamic active motif instances with high contribution scores derived from cell-
type specific BPNet models to be more representative of context-specific TF occupancy than 
static motif instances identified by classical position weight matrix (PWM) motif scanning methods 
that only use sequence match scores. Indeed, we found that most TFs, including those belonging 
to the MEF2 family (adjusted p-value < 1e-500, Benjamini-Hochberg (BH) corrected 
hypergeometric test) and NFI family (adjusted p-value < 1e-150, BH corrected hypergeometric 
test) that are expected to be active in vCMs showed significantly stronger enrichment of active 
motif instances relative to PWM motif instances in differential, cell-type specific vCM peaks 
(Figure 2h). 
 
Next, we estimated the enrichment of active motif instances of TFs in accessible cREs of each 
cell-type to identify the TF regulators of cell-type resolved chromatin accessibility landscapes 
(Figure 2i, SFigure 5). We found that MEF2, TGIF1, NFI motif families were highly enriched in 
vCMs and TGIF and KLF families in aCMs. The eCMs had similar TF motifs as the vCMs and 
aCMs, albeit with weaker enrichments, suggesting this cluster is the progenitor population for later 
cardiomyocyte subtypes. The CFPs and CFs had similar motif enrichment for TCF21/TCF, 
MYOG, MSC, with CF gaining enrichment for TEAD and NFI families and implicating a second 
set of TFs that become active during CF maturation. The other fibroblast-like clusters (FB1 and 
FB2) had lower TCF21 enrichments than the cardiac fibroblast clusters, but stronger enrichment 
for JUN, FOS and JDP motif families. The OFT cells exhibited strong RFX and TEAD motif 
enrichments, while preSMC exhibited weaker enrichments for the RFX and KLF families and 
stronger enrichment for motifs associated with proliferation like SP and RBPJ. These enrichments 
became substantially stronger in the SMCs at PCW19, and with the gain of new TF enrichments 
such as the MEF2 family, indicating a continuum of TF motif activity promoting the SMC cell fate 
trajectory. The PCW6 endocardial cells (Endo1) had stronger TF activity for ETV and STAT 
families and weaker enrichments for the SOX family. The capillary (Cap) cells, which are thought 
to derive from the endocardium, were strongly enriched for SOX family motifs. The aEC clusters, 
similar to capillaries, exhibited enrichments for SOX, FOS and JUN motifs and also retained 
endocardium TF motifs like ELF and ETV, while vEC had a motif landscape similar to the 
capillaries, with the addition of a few motifs, such as STAT. The cell type specificity of globally 
predictive TFs identified by the BPNet models was further corroborated by high concordance 
(Table S11) between TF activity scores (chromVAR (Schep et al. 2017)) and the expression of 
the TFs in the scRNA-seq data across developmental timepoints (Figure 2j). Our analyses thus 
provide a comprehensive resource of cell-type resolved TF lexicons and annotations of predictive 
TF sequence motifs in cRE landscapes of human fetal heart development. 
 
Inferring dynamic regulatory control across major cellular differentiation trajectories in 
human cardiogenesis   

 

Next, we sought to identify major developmental trajectories involving cell state transitions across 
fetal heart development based on single-cell chromatin dynamics. We used the optimal transport 
algorithm (Schiebinger et al. 2019), previously developed to derive trajectories from single-cell 
gene expression data, to identify the most parsimonious transitions in global chromatin 
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accessibility between cells from PCW6 to PCW19 of fetal heart development (Figure 3a,b,c, 
SFigure 6, Table S12, Methods).  

 
Within the endocardium lineage, the endocardium-like cell clusters (Endo1/2) were predicted to 
give rise to the capillary cells (Cap) which in turn were predicted to transition into the venous 
endothelium (vEC) cluster in PCW19. The aEC cluster was derived from Endo1/2 clusters as well 
as the PCW8 Cap cluster, suggesting that some terminal cell states can originate from different 
developmental origins (Figure 3b). We also identified cells that appeared to have already 
committed to their developmental fates based on their expression of lineage specific genes. For 
example, at PCW6, cells from the epicardial lineage (EPC, OFT, CFP and FB1) that expressed 
TCF21 were predicted to transition into the cardiac fibroblasts at PCW8 (preCF) and PCW19 (CF) 
(Figure 3b). The OFT cluster which lacks TCF21 expression was predicted to transition into SMC 
and PC clusters through the preSMC cluster. These observations are highly concordant with 
results from studies with lineage tracing in TCF21 recombinase knock-in mice (Acharya et al. 
2012). Finally, the FB1 cluster was predicted to transition into the FB2 cluster. For the myocardium 
cells, the eCM cluster was predicted to differentiate into vCM and aCM clusters. Overall, we 
characterized 8 dominant trajectories for all the major cell types at PCW19 (Figure 3b,c, SFigure 
7, SFigure 8). 

 
We then characterized genome-wide and locus-specific regulatory dynamics associated with cell 
state transitions across these trajectories. Below, we present representative case studies 
contrasting regulation of the development trajectories leading to SMC and vEC cell fates. 
 
The SMC trajectory begins with the OFT cells at PCW6 that transition through an intermediate 
preSMC population in PCW8 to the SMCs at PCW19 (Davis et al. 2006) (Figure 3d). A continuous 
cascade of dynamically accessible cREs defines cell state transitions across the trajectory 
(Figure 3e). These dynamic cREs are proximal to genes enriched for temporally relevant vascular 
developmental processes including cell migration, angiogenesis, and muscle contraction at early, 
intermediate, and late time points, respectively (Figure 3e). Expression dynamics of several key 
lineage specifying TFs including HAND2, SNAI2, KLF6 and MEF2C were strongly correlated with 
their chromatin-based motif activity (chromVAR deviation scores) across this trajectory (Figure 
3f). Tracking the chromatin accessibility and gene expression of PDGFRB, one of the primary 
marker genes for the SMC population, we observed that initially, the promoter of PDGFRB 
accounts for the majority of accessibility at this locus while gene expression is low (Figure 3g) 
(Hellström et al. 1999; Levéen et al. 1994). The increase in expression of PDGFRB at later time 
points is associated with increased accessibility of putative intronic enhancers. We then used 
predictive motif instances derived from cell-type specific BPNet models to associate inferred TF 
binding dynamics at specific cREs in the PDGFRB locus with TF expression changes across the 
three timepoints (Figure 3h,i). BPNet models of OFT cells at the PCW6 time point revealed a 
predictive HAND2 binding motif (Figure 3i) in a downstream putative enhancer (cRE1 in Figure 
3h) that is highly accessible at this early time point. The predicted TF motif dynamics of HAND2 
at this enhancer was correlated with the expression dynamics of HAND2, which also peaks in 
PCW6 and decreases thereafter (Figure 3j). Another cRE (cRE2 in Figure 3h) proximal to the 
promoter of PDGFRB, which showed the highest accessibility in preSMC at the intermediate 
PCW8 time point, was predicted to be regulated by KLF6 whose motif showed high contribution 
scores specifically in the preSMC model (Figure 3i) and whose expression also peaked in 
preSMCs (Figure 3j). A distal cRE upstream of PDGFRB (cRE3 in Figure 3h) with highest 
accessibility in SMC in PCW19 was predicted to be regulated by MEF2C whose motif was 
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specifically predictive in SMC BPNet model (Figure 3i) and whose expression peaked in SMC 
(Figure 3j).  
 
In contrast, the vEC differentiation trajectory captured cell state transitions from the Endo1/2 
progenitor cells at PCW6 to vECs at PCW19 through the Cap cells in PCW8 (Figure 3k). Waves 
of TFs including GATA2/3/4/6, NFATC2, SOX4, SOX17 and MEOX1 with correlated expression 
and motif activity dynamics are predicted to regulate concordant cascades of dynamically 
accessible cREs targeting genes involved in different stages of angiogenesis (Figure 3l,m). We 
once again used cell-type specific BPNet models to decipher TFs that regulate dynamic cREs in 
the cis-regulatory domain of the APLNR gene, a primary marker of vECs (Sharma et al. 2017; 
Kang et al. 2013; Inui et al. 2006), which exhibited a coordinated and monotonic increase in gene 
expression, promoter accessibility and cumulative distal chromatin accessibility (gene 
accessibility scores) across the trajectory (Figure 3n). BPNet models trained on Endo1/2, Cap 
and vEC cells revealed GATA3, SOX17 and SP1 to specifically regulate three representative 
cREs in the APLNR locus with distinct temporal dynamics of chromatin accessibility based on 
cell-type specific predictive motif instances and concordant TF expression (Figure 3o,p,q). Our 
analysis framework thus provides a lens into the dynamic cis-regulatory code of developmental 
cellular trajectories in human cardiogenesis at unprecedented resolution. 
 
A systematic comparison of regulatory landscapes of in vitro differentiated cardiac cell 
types and their in vivo counterparts in human fetal heart development 
 
While in vivo characterization of the regulatory programs of cell types and trajectories is critical 
for understanding cardiovascular development and disease pathogenesis, faithful cellular models 
that recapitulate human developmental processes are equally important, especially since they 
provide convenient, scalable platforms for experimental validation. Several human induced 
pluripotent stem cell (iPSC) based in vitro cellular models have been developed, including 
cardiomyocyte (i-CM), endothelial (i-EC), epicardial (i-EPC), cardiac fibroblast (i-CF), and smooth 
muscle (i-SMC) cells (Burridge et al. 2014; Lian et al. 2012; Cheung et al. 2012; H. Zhang et al. 
2019). Our comprehensive, integrated single cell atlas of in vivo cardiac cell types from developing 
fetal hearts provides a unique opportunity to investigate the authenticity of these in vitro cellular 
models.  
 
To address this question, we generated iPSC-derived i-CM, i-EC, i-EPC, i-CF, and i-SMC cells 
through directed differentiation employing established protocols (Burridge et al. 2014; Lian et al. 
2012; Cheung et al. 2012; H. Zhang et al. 2019) (Figure 4a). There are three primary phases of 
in vitro differentiation of cardiac cell types: cardiac mesoderm induction from human iPSC, cardiac 
progenitor cell (i-CP) specification and proliferation, and i-CP differentiation directly to i-EC, i-EPC 
and primitive cardiomyocytes. i-EPCs were further differentiated into i-CFs and i-SMCs. Primitive 
cardiomyocytes (i-pCM) were differentiated into mature cardiomyocytes (i-CM) (Wamstad et al. 
2012; J. Lee et al. 2018) (Figure 4a). We generated scATAC-seq data from all these in vitro 
differentiated iPSC lines at multiple time points, using the Chromium (10X Genomics) platform 
(SFigure 9-10, Figure 4b, Table S13-S15). Integration and clustering of cells from these 
scATAC-seq datasets broadly identified nine different cell types, including day 0 iPSC, day 2 
mesodermal cells (i-Mes), day 5 i-CP, day 15 i-pCM, and day 30 i-CM, i-EPC, i-SMC, i-CF and i-
EC. Once again, the scATAC-seq derived gene accessibility scores of marker genes were found 
to be highly specific for the relevant cell types, confirming our cell type annotations (Paik et al. 
2018; Friedman et al. 2018; Churko et al. 2018) (Figure 4c, SFigure 11, Table S15). We also 
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identified accessible peak regions as putative cREs and annotated TF motif instances in these 
cREs for each of the in vitro cell types (SFigure 12). 

 
To evaluate the similarity between chromatin landscapes of the in vitro differentiated cell types 
and their in vivo counterparts, we first used the LSI method to project in vitro differentiated cells 
onto the scATAC-seq LSI subspace of all cells from the fetal heart samples (Granja et al. 2019) 
(Figure 4d). Majority of Day-15 primitive cardiomyocytes (i-pCM) projected into the PCW6 in vivo 
myocardium-derived cardiomyocytes (eCM). At day-30, in vitro cardiomyocytes (i-CM) projected 
primarily into the PCW8 in vivo ventricular cardiomyocytes (vCM) and in vivo early 
cardiomyocytes (eCM), while in vitro endothelial cells (i-EC) projected across the in vivo 
endocardial cells (Endo1, Endo2) and the PCW8 capillaries (Cap). In contrast, in vitro epicardium-
derived cells, including i-EPC, i-SMC and i-CF, were distributed across epicardial cell types of the 
fetal heart without a strong correspondence to their specific in vivo counterparts (EPC, SMC and 
CF). The day-5 in vitro cardiac progenitors (i-CP) were found to consist of four sub clusters that 
projected across all three distinct lineages of the fetal heart, the myocardium, epicardium and 
endocardium, supporting the likely origin of all major differentiated in vivo cardiac cell types from 
a precursor state similar to i-CPs (Figure 4d). 

To further corroborate the observed differences between in vitro cell types and their in vivo 
counterparts from the LSI co-projection, we identified scATAC-seq peaks with significant 
differential accessibility between matched in vitro and in vivo cell types (Figure 4e). As expected, 
in vitro i-pCMs, i-CMs, and i-ECs had the least number of differential peaks relative to their 
matched in vivo cell types (Figure 4e). Consistent with the co-projection analysis, comparison of 
matched in vitro epicardial cell types (i-EPC, i-SMC and i-CF) and their in vivo counterparts 
revealed more differential peaks relative to corresponding comparisons of cardiomyocytes and 
endothelial cells. To calibrate the magnitude of these differences, we also estimated differential 
peaks between two distant in vivo cell types, namely vCMs and excitatory neurons (Trevino et al. 
2021). Reassuringly, the differences between in vitro and in vivo epicardial cells were substantially 
smaller than differences between vCMs and neurons (Figure 4e). 

Next, to study the regulatory basis of the differences in chromatin landscapes between in vitro 
and in vivo cardiac cell types, we identified TF motifs enriched in the differentially accessible 
scATAC-seq peaks (Figure 4f). AP-1 (JUN-FOS, JDP2) motifs were strongly enriched in peaks 
upregulated in most in vitro cell types, except cardiomyocytes (Figure 4g). In contrast, 
downregulated peaks in in vitro cell types were most enriched for SP, KLF and WT1 motifs (Figure 
4h). Differentially upregulated peaks in in vitro cardiomyocytes (i-pCM, i-CM) were enriched for 
motifs of classical cardiac TFs including MEF2 and NKX, consistent with their role in 
cardiomyocyte differentiation (Vincentz et al. 2008). Motifs of FOX and CEBP TF families, which 
are involved in epithelial-to-mesenchymal transition (EMT), were enriched in peaks upregulated 
in in vitro epicardium-derived cell types compared to their post-EMT in vivo counterparts (Quijada, 
Trembley, and Small 2020; von Gise and Pu 2012; Risebro, Vieira, and Riley 2015; Lamouille, 
Xu, and Derynck 2014), suggesting that the in vitro epicardial cells may not represent a terminally 
differentiated state.    
 
Finally, to understand the differences in regulatory enhancer-gene networks between matched in 
vitro and in vivo cardiac types, we identified putative enhancer-gene links across in vivo cell 
cardiac types based on correlation of in vivo scATAC-seq signal at distal CREs with in vivo 
scRNA-seq expression of neighboring genes. We integrated our scATAC-seq data from the in 
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vitro differentiated cell types with previously published scRNA-seq data from similar in vitro 
differentiation experiments (Friedman et al. 2018) (SFigure 13, Table S16) in order to derive 
analogous enhancer-gene links across the in vitro cell types (Granja et al. 2019) (SFigure 14, 
Table S17, S18). In vitro and in vivo cardiomyocytes shared the highest proportion of enhancer-
gene links, followed by endothelial cells, consistent with the strong concordance of their chromatin 
landscapes (Figure 4i). These comparative analyses collectively suggest that in vitro 
cardiomyocytes and endothelial cells may serve as representative model systems for their in vivo 
counterparts in fetal heart development. 
 
Prioritizing putative causal non-coding genetic variants, TFs, target genes and cell types 
in cardiovascular disorders and congenital heart diseases 
 
Common genetic variants associated with complex traits and diseases have been previously 
found to be strongly enriched in cREs of disease-relevant cell types and tissues (Maurano et al. 
2012; Schaub et al. 2012; Finucane et al. 2015; Claussnitzer et al. 2020). Hence, we used 
stratified linkage disequilibrium (LD) score regression to estimate the proportion of heritability from 
GWAS summary statistics of cardiovascular and other control diseases and traits that can be 
attributed to the accessible cRE landscape of each in vivo cardiac cell type in our atlas (Bulik-
Sullivan et al. 2015; Nielsen et al. 2018) (SFigure 15a, Table S19,S20). Variants associated with 
atrial fibrillation were significantly enriched (enrichment = 33.215 , Bonferroni adjusted p-value = 
2.166e-6) in accessible cREs of all three types of in vivo cardiomyocytes with the strongest 
enrichment in atrial cardiomyocytes (aCM). aCM cREs were also significantly enriched 
(enrichment = 15.163, Bonferroni adjusted p-value = 0.01798) for GWAS loci associated with 
heart failure phenotypes. Coronary artery disease GWAS loci were significantly enriched 
(Bonferroni adjusted p-value < 0.05) in cREs of multiple cell types (vCM, preCF, CF, SMC, PC, 
Endo1/2, Cap, vEC and aEC) with the highest enrichment (enrichment = 20.753, p-value = 
8.987e-4) in arterial endothelial cells (aEC). GWAS signal from control phenotypes such as 
inflammatory bowel disease was not enriched in the regulatory landscape of any of our cell types, 
indicating specificity of these cell types for cardiac traits and disease. 
 
Next, we investigated the utility of our regulatory atlas of cardiogenesis to decipher causal single-
nucleotide, de novo, non-coding mutations in congenital heart disease (CHD) patients. We 
compiled a set of 54,126 de novo, non-coding point mutations from 763 CHD patients from the 
Pediatric Cardiac Genomics Consortium (Richter et al. 2020) (PCGC) (Table S21) and a control 
set of 110,055 de novo, non-coding point mutations from healthy controls from the Simons 
Simplex Collection (n=1902 trios) (Table S22). We tested the accessible cRE landscapes of each 
of the in vivo fetal heart cell types for enrichment of case versus control mutations. Surprisingly, 
only two cell types, Capillaries (Cap) and Endocardium (Endo1), were barely enriched (odds-ratio 
(OR) = 1.023 and 1.021 respectively) and all other cell types lacked enrichment (OR < 1) (SFigure 
15b). These results suggest that overlapping mutations with cell-type resolved cREs is not 
sufficient to prioritize potentially causal CHD mutations. 
 
Previous studies have successfully nominated functional non-coding disease variants by 
leveraging predictive sequence models of chromatin state in relevant cell types and tissues 
(Avsec, Agarwal, et al. 2021; David R. Kelley, Snoek, and Rinn 2016; D. R. Kelley et al. 2018; D. 
R. Kelley 2020; J. Zhou and Troyanskaya 2015; Richter et al. 2020; J. Zhou et al. 2018; Trevino 
et al. 2021). Hence, we hypothesized that cell-type specific mutation impact scores inferred from 
BPNet models of chromatin accessibility in fetal heart cell types might improve prioritization of 
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causal de novo, non-coding CHD mutations and their cell types of origin. For each cell type, we 
used the corresponding BPNet models to estimate mutation impact scores of candidate case and 
control mutations in accessible cREs as the log2 fold-change in the cumulative predicted scATAC-
seq profile probabilities for both alleles over a 100 bp window centered at each mutation (Figure 
5a). We observed striking variation of enrichment of mutations with high predicted mutation impact 
scores in cases versus controls across the cell types (Figure 5b). Mutations prioritized in several 
cell types showed weak to moderate enrichments including NC (OR = 1.016), lEC (OR = 1.033), 
EPC (OR = 1.042), Endo1 (OR = 1.106), vEC (OR = 1.092), vCM (OR = 1.119), Cap (OR = 1.205), 
OFT (OR = 1.22) and preSMC (OR = 1.307) (Figure 5b, Table S23,24). The highest enrichment 
(Cases n = 47; Control n = 56; OR = 1.707; p-value = 0.008, Fisher’s Exact test) was obtained for 
mutations prioritized in arterial endothelial cells (aECs) (Figure 5b,c,Table S23,24), which is 
consistent with the contribution of this endothelial cellular lineage to multiple cardiac structures. 
These patterns of cell-type specific enrichment were robust to different measures of mutation 
impact scores and thresholds for defining high impact mutations (SFigure 15c-f). These results 
suggest that mutation impact scores from BPNet models trained on cell-type resolved chromatin 
accessibility profiles are able to prioritize putative causal CHD variants in relevant cell types. 
 
In contrast, mutation impact scores derived from BPNet models trained on pseudobulk scATAC-
seq profiles agglomerated over all fetal heart cell types did not enrich for CHD mutations (OR = 
1.01), indicating that cell-type specificity of mutation impact scores is critical for prioritizing de 
novo CHD mutations (Figure 5c). To understand the benefits of quantitative, base-resolution 
profile BPNet models over conventional, peak-resolution, binary classification models for mutation 
impact prediction (Richter et al. 2020; J. Zhou and Troyanskaya 2015; David R. Kelley, Snoek, 
and Rinn 2016), we also estimated mutation impact scores from a neural network with the same 
base architecture as BPNet trained on binary, peak-resolution accessibility in the aEC cell type. 
Mutation impact scores from the binary aEC model showed weaker enrichments and statistical 
significance (OR = 1.448, p-value = 0.056) compared to those obtained from the base-resolution, 
profile BPNet aEC model (OR = 1.707; p-value = 0.008) (SFigure 15g-i, 16a). Mutation impact 
scores from our BPNet profile models also substantially outperformed scores derived from a 
previous peak-resolution, binary neural network model called HeartENN (Richter et al. 2020) 
which was trained on a large compendium of bulk chromatin data and used to score CHD 
mutations (SFigure 16a). These results suggest that cell-type resolved, chromatin accessibility 
profiles of the developing fetal heart as well as mutation impact scores inferred from base-
resolution profile BPNet models trained on these data are both critical for enhancing prioritization 
of non-coding CHD mutations and affected cell types. 

We further examined whether high impact mutations prioritized by BPNet in aECs occurred near 
genes previously associated with CHD based on genetic studies in human cohorts or mouse 
models obtained from (Richter et al. 2020) (744 total CHD-associated genes). We observed a 3-
fold enrichment (p-value = 0.0486, Fisher’s Exact test) of predicted high-impact aEC mutations 
proximal to previously implicated CHD genes in cases (n = 7 of 47) compared to controls (n = 4 
of 56) (Figure 5d).  

Next, we performed deeper investigations of the causal chain of TF binding sites, cREs and target 
genes potentially affected by a subset of high-impact CHD mutations prioritized in aECs that are 
in close proximity (< 200 bp) to summits of high coverage aEC scATAC-seq peaks (Table S25). 
We used the active motif annotations derived from the cell-type specific BPNet models and the 
corresponding allele-specific base-resolution contribution scores of cRE sequences harboring 
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these mutations to infer potentially disrupted TF binding sites (Figure 5e,f,g). A prioritized G-to-
A de-novo mutation was predicted to ablate an ELK/ETV TF motif in a cRE that is exclusively 
accessible in endothelial cells (aEC, Cap, vEC and lEC) and ~25 Kb upstream of a folate 
hydrolase gene FOLH1. FOLH1 is expressed in endothelial cells (SFigure 16b) and has been 
associated with loss of normal structural endothelial cell integrity (Eppig et al. 2015; Conway et 
al. 2006) (Figure 5e). Another G-to-A mutation was predicted to disrupt an ELK/ETV TF motif in 
an endothelial cRE in the intron of the PIP5K1C gene, an important developmental TF strongly 
expressed in endothelial cells (SFigure 16c) and implicated in cardinal vein and right ventricular 
development and CHD (Eppig et al. 2015; Y. Wang et al. 2007; Richter et al. 2020) (Figure 5f). 
Interestingly, several other prioritized mutations were also predicted to disrupt ELK/ETV binding 
sites in accessible aEC cREs proximal to the MGAT1, TIMP3, TBX3 and NEK3 genes (Table 
S25), all of which have been previously associated with CHD or cardiovascular defects in human 
genetic studies or mouse models (Richter et al. 2020; Yuan Zhang et al. 2020; Eppig et al. 2015; 
Fedak et al. 2004; Kawamoto et al. 2006; Mesbah et al. 2008). We also found a G-to-C mutation 
in an accessible cRE distal to the JARID2 gene predicted to disrupt a SOX TF motif in aEC and 
Cap cells (Figure 5g). JARID2 is an important endothelial TF (SFigure 16d) during early heart 
development, and coding mutations in JARID2 have been implicated in CHD by previous studies, 
especially for tetralogy of Fallot (Mysliwiec, Bresnick, and Lee 2011; Cho et al. 2018; Y. Lee et al. 
2000; Barth et al. 2010). In order to experimentally verify the functional impact of the cRE 
overlapping this prioritized mutation on JARID2 gene expression in endothelial cells, we used 
CRISPR/Cas9 to delete 352 bp around the mutation in iPSCs, selected single clones with bi-
allelic deletions of the targeted locus, differentiated these clones into endothelial cells and 
measured expression of JARID2 (Figure 5h, SFigure 17). We observed a significant decrease 
(1.3-fold, p-value < 0.001, two-sided t test) in JARID2 expression (Figure 5i) in edited iPSC-
derived ECs compared to the isogenic controls. This experiment demonstrates that this cRE 
harboring the prioritized CHD mutation modulates the expression of its putative causal gene in 
the nominated cell type. In principle, the change in expression of this and other critical genes 
could cause significant downstream transcriptional changes that in turn affect cellular phenotypes 
leading to CHD. Our analysis framework thus enabled us to prioritize putative causal, de-novo 
non-coding mutations, their putative target TF binding sites and genes as well as the relevant cell 
types within the developmental window that are likely to be affected by these mutations potentially 
causing CHD. 

Discussion 
 
In this study, we present a unique resource elucidating regulatory dynamics of human 
cardiogenesis at single cell resolution. By generating scATAC-seq experiments in fetal hearts at 
early and mid-gestational developmental time points and integrating these data with 
complementary scRNA-seq experiments from previous studies, we reveal the coordinated 
landscapes of dynamic cREs and genes that define major cell types, lineages and differentiation 
trajectories in the developing human heart. The single cell nature of our atlas allows identification 
of even subtle regulatory heterogeneity in progenitor populations that might represent lineage 
committed progenitors. A salient example of this is the observation of two distinct post EMT 
populations one of which has high TCF21 gene activity, and the other with low activity. Our 
trajectory analysis predicts this high activity subtype to be the progenitor of the fibroblast lineage, 
while the low TCF21 population is predicted to be progenitors of the vascular smooth muscle 
lineage (SFigure 3). The identification of these epigenetically distinct progenitor populations may 
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represent lineage specification events that are especially important for understanding disease 
causality. 

By training and interpreting deep learning models that accurately predict base-resolution profiles 
of cell-type resolved chromatin accessibility profiles from the underlying DNA sequence, we are 
able to decipher the cell-type specific sequence syntax of active TF binding sites in all cREs of 
major cardiac cell types at unprecedented resolution. These cell-type specific models of 
regulatory DNA do not simply identify all enriched TF motif instances in accessible chromatin, but 
rather learn and enable ab initio discovery of active TF motif instances and higher-order motif 
syntax predictive of the shape and strength of chromatin accessibility profiles at individual 
elements in each cell type. By coupling these dynamic TF motif activity maps with TF expression 
across the cell types, we define putative trans-factors that bind to TF motif syntax encoded in 
specific cREs and orchestrate dynamic gene expression programs that define differentiation 
trajectories of the major cardiac cell types. We identify diverse previously-validated TFs in mice 
that are important for cell fate determination of the terminally differentiated cell types. For 
example, we identified Sox17 to be a TF with predicted dynamic binding in the late capillary 
(SFigure 8c) and mid venous (Figure 3m) differentiation trajectory in open chromatin peaks near 
APLNR (Figure 3p). Consistent with these findings, SOX17 knockout in mice has been shown to 
retard differentiation of endocardial cells due to downregulation of the NOTCH signaling pathway 
and promote defective heart development (Saba et al. 2019). 

These observations demonstrate the temporal cell-restricted expression of the SOX17 
developmental TF, and implicate the NOTCH regulated APELIN-APLNR pathway (Helker et al. 
2020) in SOX17 directed endocardial development. Likewise, TCF21 has been shown to be a key 
developmental TF regulating the formation of cardiac fibroblast cells during cardiogenesis 
(Acharya et al. 2012), with a putative role in regulating chromatin accessibility at enhancers and 
enabling the binding of other related TFs along the complex trajectory of precursor cells in the 
early to middle stages of cardiac fibroblast differentiation (SFigure 7h-k). Consistent with these 
findings, we observe TCF21 to be an early to mid-regulator of the cardiac fibroblast trajectory. We 
also observe molecular signatures of activity for MEF2C (Desjardins and Naya 2016) in ventricular 
cardiomyocytes, GATA4 in atrial cardiomyocytes (Misra et al. 2012) and HAND2 in vascular 
smooth muscle cells (Barnes et al. 2011). Apart from revealing the precise timing of activity at 
cREs for these known master regulators, we also nominate putative novel regulatory TFs. For 
example, we observe SOX18 expression and chromatin activity in the mid to late temporal 
regulation of arterial endothelial cells. This activity pattern is consistent with other data implicating 
this factor, along with SOX17, in regulating vascular endothelium development in mouse retina 
(Y. Zhou et al. 2015) (SFigure 8g) and controlling the expression of MEOX2 (Douville et al. 2011) 

and CLDN5 -- downstream master regulators of arterial development (Fontijn et al. 2008) 
(SFigure 8c). We also identify other TFs that exhibit strong chromatin activity changes along 
developmental lineage trajectories (Figure 3f,m, SFigure 7, SFigure 8), implicating these factors 
as potentially important for lineage specification.  

In vitro differentiated cardiac cell types are commonly used as convenient, scalable experimental 
models of in vivo cardiac cell types. However, the molecular authenticity of these in vitro cellular 
models as surrogates for studying in vivo cardiac development has yet to be verified. By 
augmenting our cell-type resolved regulatory atlas of fetal heart development with scATAC-seq 
profiling of diverse in vitro differentiated cardiac cell types, we were able to perform a systematic 
analysis of the differences of regulatory landscapes between these in vitro differentiated cardiac 
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cell types and their in vivo counterparts. While the best in vitro-derived cellular proxies were 
cardiomyocytes and endothelial cells, we observed that epicardial derived lineages, including 
cardiac fibroblasts and SMC, exhibited much stronger EMT related TF activities than their in vivo 
counterparts (Figure 4g). The EMT program enables cells to acquire a non-terminally 
differentiated phenotype (Kalluri and Weinberg 2009), and in our data appears to drive substantial 
large-scale epigenetic differences in the in vitro derived epicardial lineage cells compared to their 
in vivo nearest neighbors. We hypothesize that inhibiting these EMT related TFs, for example by 
inhibiting the TGFβ pathway (Kalluri and Weinberg 2009), might improve the epicardial lineage 
differentiation protocols. Also, we believe that this single cell molecular “benchmarking” against 
in vivo derived data will become a useful computational tool in optimizing future variations of in 
vitro differentiation protocols.  
 
Finally, our study also showcases the power of integrating single cell regulatory maps of cardiac 
development with cell-type specific deep learning models of regulatory DNA sequence to provide 
new insights into the genetic, molecular and cellular basis of congenital heart disorders (CHD). 
By using the deep learning models as in-silico oracles, we predict the impact of candidate non-
coding variants and de novo mutations on cell-type specific chromatin accessibility profiles and 
infer the active TF binding sites disrupted by high impact mutations. We not only prioritize likely 
causal, high impact, de novo non-coding mutations in CHD patients but also identify likely causal 
cell types whose cREs are strongly enriched for prioritized CHD mutations. Crucially, we show 
that overlap of mutations with cell-type resolved cRE maps of fetal heart cell types is not sufficient 
to enrich CHD mutations, unless augmented by mutation impact scores from our cell-type specific 
deep learning models. Moreover, the cell-type specificity of our models as well as their ability to 
make base-resolution quantitative predictions of chromatin accessibility are both critical to the 
success of this approach. Mutation impact scores derived from models trained on a pseudo bulk 
aggregation of all our fetal heart cell types (a reasonable proxy for bulk tissue open chromatin 
data sets) or other bulk chromatin profiling datasets of cardiac tissue were unable to enrich for de 
novo mutations in CHD cases relative to healthy controls (Figure 5d). This observation strongly 
suggests that disruption of regulatory networks by de novo mutations is highly cell type specific, 
and inclusion of unaffected cell types leads to poorer prioritization of the predicted deleterious 
mutations. Our CRISPR/Cas9 validation experiments in in vitro differentiated endothelial cells 
ablating an endothelial lineage specific enhancer harboring a predicted high impact de novo CHD 
mutation provides evidence that prioritized mutations likely impact bona-fide enhancers. 
Importantly, our predictive framework for prioritizing CHD mutations has identified the arterial 
endothelial cell as harboring the greatest enrichment for CHD risk, suggesting that these cells 
play an important role in the structural specification of the heart. While previous studies have 
identified some putative arterial CHD causal variants and genes, they have not been able to 
assign the putative causal mutations and genes to specific cell lineages or developmental 
trajectories (Richter et al. 2020). Arterial endothelial cells provide the oxygen and nutrients 
necessary for heart morphogenesis, and thus disease related pathways may reflect a circulatory 
function, but paracrine signaling to other developmental cell types is also a possibility.  
 
However, our work does have some limitations and caveats. First, while most developmental 
trajectories exhibited no substantial “gaps” in cell density, obtaining samples both earlier and later 
in development might allow us to more fully populate the extremes of these trajectories, extending 
our understanding of these developmental trajectories. Second, our analysis of regulatory 
landscapes has largely focused on activators, as repressors are both more challenging to 
nominate using correlation-based analysis, and may have activity that is less correlated either 
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with increasing or decreasing accessibility. Third, we restrict our prioritization of de novo CHD 
mutations to those that fall in the immediate vicinity of observed scATAC-seq peaks in our fetal 
heart atlas and are likely to disrupt and decrease accessibility. While this strategy reduces the 
likelihood of false positives, it does bias our prioritization against mutations that might result in 
gain of accessibility. The reduced sensitivity of peak identification from scATAC-seq profiles in 
some rare cell types (e.g. neural crest cells) with sparse coverage may also result in a greater 
false negative rate and reduced enrichments for these cell types. We also hope to expand our 
analyses in the future to other types of mutations beyond point mutations. Finally, while we have 
directly validated the impact of one candidate enhancer harboring a specific de novo CHD 
mutation on expression of its predicted target gene, more extensive computational and 
experimental validation of the gene expression impact of prioritized mutations would further 
delineate the “hit rate” of our models, and also begin to characterize the distribution of the 
magnitude of gene expression effects these high-impact mutations might have.  

In summary, we present an integrative framework that couples scATAC-seq and scRNA-seq 
experiments in developing organ systems with cell-type resolved deep learning models of 
regulatory DNA to dissect dynamic, cis and trans regulatory programs at unprecented resolution, 
and to decipher the genetic, regulatory and cellular drivers of related developmental disorders. 
We have previously demonstrated the utility of this framework to dissect regulation of human 
corticogenesis and prioritize de novo non-coding mutations in autism (Trevino et al. 2021). Our 
current study showcases the generalizability of the same framework to study regulation of human 
cardiogenesis and successfully prioritize causal de novo non-coding drivers of CHD. In the future, 
given the availability of multi-omic measurements from the same nuclei (Ma et al. 2020), we 
expect further improvements to these predictive models enabling quantitative predictions of the 
effects of non-coding mutation on cell-type specific chromatin state and gene expression (Avsec, 
Agarwal, et al. 2021; J. Zhou et al. 2018; Karbalayghareh, Sahin, and Leslie 2021). Such 
advances will further illuminate the mechanisms by which de novo non-coding mutations might 
manifest CHD. 
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Figure legends 

Figure 1. A single-cell epigenomic atlas of the developing human heart.  

(a) Schematic of gestational sample time (post-conception week, PCW) and genome-wide 
profiling methods represented in this study.  

(b) Uniform Manifold Approximation and Projection (UMAP) of cells based on accessible 
chromatin regions (scATAC-seq). Cells are colored according to sample gestational time. 

(c) UMAP of cells based on accessible chromatin regions (scATAC-seq). Cells are colored 
according to cell types identified.  

(d) Single-cell gene accessibility scores (based on scATAC-seq) of TNNT2, PECAM1, MYH11, 
and DCN.  

(e) Heatmap of z-scores of log2(scATAC-seq read counts) in 215,163 cis-regulatory elements 
(cREs) across scATAC-seq cell-type clusters derived from (b). Representative genes with cluster-
specific differential gene accessibility scores are shown to the right. Gene ontology enrichments 
indicate the statistically significant (adjusted p-value < 0.005, Gprofiler Fisher’s exact test) cellular 
processes for genes with differential gene accessibility scores associated with the clusters of cell-
type specific cREs.  

(f) UMAPs of scRNA-seq and scATAC-seq cells colored by cluster assignment in their respective 
data modality, and UMAP of scATAC-seq cells highlighted by complementary scRNA-seq 
clusters. 

(g) Single-cell gene expression (scRNA-seq) of TNNT2, PECAM1, MYH11, and DCN.  

(h) Genome tracks of cell-type resolved aggregate scATAC-seq data around the TNNT2, MYL2, 
TCF21, DCN/LUM and PECAM1 gene loci (left to right). The scale of the tracks (from left to right) 
range from 0-0.28, 0-0.31, 0-0.18, 0-0.14 and 0-0.2 respectively, in units of fold-enrichment 
relative to the total number of reads in  TSSs per 10k. Highlights indicate the relevant cell type-
specific putative enhancers in each gene locus.  

 

Figure 2. Cell-type resolved predictive transcription factor motif syntax derived from deep 
learning models of base-resolution scATAC-seq profiles.  

(a) Schematic of the convolutional neural network (BPNet) trained to simultaneously predict base-
resolution probability distribution of reads and total read counts of cell-type resolved pseudobulk 
scATAC-seq profiles over each 1-kb accessible peak region from 2-kb underlying DNA 
sequences.  

(b) Performance evaluation of BPNet cluster-specific models, computed as the Spearman 
correlation between observed and predicted total counts (higher is better) across all peaks in each 
cluster (top) and mean Jenson-Shannon distance (lower is better) between the base-resolution 
observed and predicted profiles across all peaks in each cluster (bottom). Results are reported 
on test sets from a 5-fold cross-validation set up.  

(c) Top panel shows the genome tracks of aggregate pseudobulk scATAC-seq around the TNNT2 
locus for each of the cell-type clusters. The scale ranges from 0-0.34 in units of fold-enrichment 
relative to the total number of reads in TSSs per 10k. Bottom panel zooms into an accessible 
peak around the TNNT2 transcription start site and shows the observed (Obs)  base-resolution 
scATAC-seq read count profiles from the early (eCM), atrial (aCM) and ventricular 
cardiomyocytes (vCM) clusters, the predicted (Pred) profiles from the BPNet models of each of 
the three cell types and the corresponding DeepLIFT contribution score profiles (height of each 
base in the sequence is proportional to its contribution score).  



(d) Per-base DeepLIFT contribution scores of TEAD1, MEF2C, SRF, and GATA4 motif locations 
in the TNNT2 promoter from eCM, aCM and vCM (rows from top to bottom). Left-most column 
shows distribution of scRNA-seq expression (in units of log2(transcripts per 10K)) of TNNT2 
across cells from each of the three clusters.  

(e,f,g) Pairwise motif co-occurrence counts for TEAD1, MEF2C, SRF, and GATA4 motifs based 
on predicted active motifs across all accessible cREs in eCM, aCM and vCM respectively.  

(h) Comparison of statistical significance of overlap enrichment (-log p-value, Wilcoxon rank-sum 
test) of BPNet model-derived predictive motif instances (y-axis) vs. position weight matrix (PWM) 
based motif instances (x-axis) in vCM accessible peaks regions. Predictive motif instances show 
higher significance of enrichments.  

(i) Enrichments of BPNET model derived predictive motif instances of transcription factors (rows) 
in accessible peaks of different cell types (columns).  

(j) (left column) scRNA-seq gene expression (in units of log2(transcripts per 10K))  and (right 
column) scATAC-seq based ChromVAR motif deviation scores (in units of z-scores) for NKX2-5 
(scale for expr.: 0 to 6, motif dev.: -1 to 2), TBX5 (scale for expr.: 0 to 3, motif dev.: -1 to 2), TCF21 
(scale for expr.: 0 to 12, motif dev.: -1.5 to 3.5), SRF (scale for expr.: 0 to 0.4, motif dev.: -0.6 to 
0.8), SOX17 (scale for expr.: 0 to 1.8, motif dev.: -1 to 2 ) and MEOX1 (scale for expr.: 0 to 1, 
motif dev.: -0.4 to 0.8) shown in the scATAC-seq UMAP representations of all cells. 

 
Figure 3. Identifying developmental trajectories in human fetal heart development. 
(a) Schematic of the optimal transport method used to determine trajectories of cell state 
transitions using scATAC-seq peaks of all the cell-types identified in Figure 1b.  

(b) Cell state transition table of cell lineages identified in the major trajectories obtained through 
optimal transport. Rows correspond to the parent cell-types and columns correspond to the 
derivative cell types. The heatmap is colored by the fraction of parent cells identified to be 
ancestors of the derivative cells. (scale for transition table.: 0.01 to 0.30) 

(c) UMAP of scATAC-seq cells highlighting the dominant trajectories identified using optimal 
transport. The cell-types correspond to those in Figure 3b.  

(d) UMAPs of scATAC-seq cells in the vascular smooth muscle cell (SMC) trajectory colored by 
the gestational sample time.  

(e) Heatmap of scATAC-seq signal (z-score of log2(reads per 10K)) of variable peaks identified in 
the SMC pseudotime trajectory. The gene ontology enrichments are calculated using the genes 
nearest to the variable peaks listed.  

(f) Heatmaps showing z-score of ChromVAR motif deviation scores (left) and gene expression 
log2(transcripts per 10K), also applicable for all gene expression values plotted in this figure) 
(right) of TFs with correlated variable activity in cells identified to be in the SMC trajectory, as 
ordered by pseudotime. 

(g) Gene expression, promoter chromatin accessibility log2(reads per 10K) +/- 500bp TSS and 
chromatin-derived gene accessibility score ((log2(reads per 10K), applicable for all gene activity 
values in this figure) dynamics of the PDGFRB gene across pseudotime.  

(h) Genome tracks of aggregate scATAC-seq data around the PDGFRB locus in OFT, preSMC 
and SMC clusters. cRE1, cRE2 and cRE3 are three representative cREs with dynamic motif 
activity further explored in (i) and (j). The ATAC signal range is 0-0.64 in units of fold-enrichment 
relative to the total number of reads in TSSs.   

(i) Per-base contribution scores of motifs of HAND2, KLF6 and MEF2C in the 3 highlighted cREs 
in (h). Rows (top to bottom) are per-base contribution scores computed using BPNet models of 



OFT, preSMC, and SMC respectively. The columns (left to right) are the highlighted cREs from 
(h) that are active in OFT, preSMC, and SMC respectively.  

(j) Distribution of scRNA-seq gene expression of HAND2, KLF6 and MEF2C TFs (columns) 
across cells from OFT, preSMC, and SMC clusters (rows).  

(k) UMAPs of scATAC-seq cells in the venous endothelial cell (vEC) trajectory colored by the 
gestational sample time.  

(l) Heatmap of z-scores of variable peaks identified in the vEC pseudotime trajectory. The gene 
ontology enrichments are calculated using the genes nearest to the variable peaks listed.  

(m) Heatmaps showing z-score motif activity (left) and normalized expression (right) of TFs with 
correlated variable activity in cells identified to be in the vEC trajectory, as ordered by pseudotime.  

(n) Gene expression, promoter chromatin accessibility and chromatin-derived gene accessibility 
score dynamics of the APLNR gene across pseudotime.  

(o) Genome tracks of aggregate scATAC-seq data around the APLNR locus in Endo1, Cap and 
vEC clusters. cRE1, cRE2 and cRE3 are three representative cREs with dynamic motif activity 
further explored in (p) and (q).The ATAC signal range is 0-0.52 in units of fold-enrichment relative 
to the total number of reads in TSSs per 10k.  

(p) Per-base contribution scores of motifs of GATA3, SOX17 and SP1 in the 3 highlighted cREs 
in (o). Rows (top to bottom) are per-base contribution scores computed using BPNet models of 
Endo1, Cap, and vEC respectively. The columns (left to right) are the highlighted cREs from (o) 
that are active in Endo1, Cap, and vEC respectively.  

(q) Distribution of scRNA-seq gene expression of GATA3, SOX17 and SP1 TFs (columns) across 
cells from Endo1, Cap, and vEC clusters (rows).  

 

Figure 4:  Characterization of in vitro iPSC-derived cardiac cell types.  

(a) Schematic for derivation of human iPS cells, followed by their differentiation to major cardiac 
cell types and genome-wide scATAC-seq profiling.  

(b) scATAC-seq UMAP of all in vitro iPSC-derived cells colored according to cell-types identified 
during differentiation (iPSC: induced pluripotent stem cells, i-PSC-Mes: partially differentiated 
mesoderm-like cells, i-Mes: cardiac mesoderm cells, i-CP: cardiac progenitors, i-Mes-CP: partially 
differentiated cardiac progenitor-like cells, i-Mes-End: partially differentiated endoderm-like cells, 
i-MyoF-like: Myofibroblast-like cells, i-pCM: Day 15 iPSC-derived primitive cardiomyocytes, i-CM: 
Day 30 iPSC-derived mature cardiomyocytes, i-EC: iPSC-derived endothelial cells, i-EPC: iPSC-
derived epicardial cells, i-SMC: iPSC-derived smooth muscle cells & i-CF: iPSC-derived cardiac 
fibroblast cells).  

(c) Gene accessibility scores of marker genes NANOG, MESP1, ISL1, MYL2, MYL7, PECAM1, 
WT1, MYH11 and LUM projected on the scATAC-seq fetal heart UMAP.  

(d) Projection of cells from scATAC-seq experiments profiling in vitro iPSC-derived cardiac cell 
types into the scATAC-seq fetal heart UMAP. Central panel in the 3x3 grid shows the scATAC-
seq UMAP of all in vitro cardiac cell types. The other panels in the grid are projections of the i-CF 
(row 1, col 1), i-SMC (row 2, col 1), i-EPC (row 3, col 1), i-EC (row 3, col 2), i-CM (row 3, col 3) 
and i-pCM (row 2, col 3) cells into the scATAC-seq fetal heart UMAP. Panel in row 1, col 2 shows 
an scATAC-seq UMAP of 4 subclusters of cells from in vitro cardiac progenitors (i-CP1, i-CP2, i-
CP3, i-CP4 and i-CP5) which are projected into the scATAC-seq fetal heart UMAP (row 1, col 3).  

(e) Comparison of number of significantly (log2 fold-change > 0.5, FDR < 0.01 using two-sided t-
test) upregulated (in blue) and downregulated (in grey) scATAC-seq peaks in in vitro cardiac cell 
types relative to nearest in vivo fetal heart cell types. An analogous differential comparison 



between in vivo ventricular cardiomyocytes from fetal heart and in vivo glutamatergic neurons 
from fetal brain is shown as a reference (right-most bar).  

(f) Heatmap of z-score of differential scATAC-seq signal (log2 fold-change) of upregulated 
scATAC-seq peaks in in vitro cardiac types relative to nearest in vivo fetal heart cell types from 
panel (e).  

(g,h) Statistical significance (-log10(adjusted p-value), BH-adjusted hypergeometric test) of 
overlap enrichment of TF motifs in upregulated (g) and downregulated (h) scATAC-seq peaks in 
in vitro cardiac types relative to nearest in vivo fetal heart cell types from panel (e).  

(i) Number of peak-to-gene links in different in vivo fetal heart cell types that are also found 
(orange) in nearest in vitro cardiac cell types or exclusive (grey) to the in vivo cell types. 

 

Figure 5:  Prioritizing non-coding CHD mutations using deep learning models of scATAC-
seq profiles from fetal heart cell types.  

(a) Schematic of mutation prioritization pipeline that uses cell-type specific BPNet models to 
predict scATAC-seq profiles for sequences containing both alleles of candidate mutations and 
derive a mutation impact score. The models were used to score CHD-associated de-novo non-
coding mutations from the PCGC cohort and mutations from healthy controls from the SSC cohort.  

(b) Enrichment (log2(OR), Fisher’s Exact Test) of prioritized mutations from each cell-type specific 
BPNet model in CHD cases vs. controls plotted on the scATAC-seq UMAP of all fetal heart cells.  

(c) Enrichment of mutations in CHD cases vs. controls prioritized using different methods. 
Mutations prioritized by BPNet models trained on arterial endothelial (aEC) scATAC-seq profiles 
are significantly enriched in cases vs. controls (OR = 1.707, p-value = 0.008, Fisher’s exact test).  

(d) Enrichment of mutations prioritized by aEC BPNet model in cases vs. controls (grey bar) 
compared to enrichment of mutations prioritized by aEC BPNet model proximal to CHD 
associated genes (blue bar) in cases vs. controls.  

(e,f,g) Case studies of three prioritized de-novo CHD mutations in endothelial cREs in the FOLH1 
(e), PIP5K1C (f) and JARID2 (g) gene loci respectively. Top-most panel shows contribution scores 
derived from cell-type specific BPNet models (aEC for (e,f) and Cap for (g)) of each nucleotide in 
a 100 bp sequence window containing each allele of the mutation. The changes in contribution 
scores highlight disruption of active TF motifs (ELK/ETV motifs for (e,f) and SOX motif for (g)). 
The panel below shows corresponding predicted base-resolution scATAC-seq count profiles in a 
1 Kb window containing reference (blue) and alternate (red) allele of the mutation (the red tracks 
for the alternate alleles are inverted along the x-axis). These tracks highlight local disruption of 
predicted scATAC-seq profiles by the mutations. The last panel shows observed cell-type 
resolved pseudobulk scATAC-seq coverage profiles for all cell types at each locus. Scale of tracks 
is 2.0-6.0 (FOLH1), 2.0-20 (PIP5K1C) and 2.0-10.0 (JARID2) in units of Tn5 insertion counts 
observed in each cell type.  

(h) Schematic of in vitro differentiation of iPSCs to EC lineage, and comparison of JARID2 
expression in iPSC-derived EC with and without CRISPR-Cas9 deletion of cRE containing 
prioritized CHD mutation shown in (g).  

(i) CRISPR-Cas9 deletion of cRE containing the prioritized CHD mutation from (g) shows 
significant decrease (**p < 0.001, two-sided t test) in expression of JARID2 gene expression in 
knockout vs. wild-type iPSC-derived ECs.  



Experimental methods 

Patient recruitment 

Human subjects were enrolled in the study with informed consent approved by the Stanford 

Institutional Review Board and Stem Cell Research Oversight Committee. Human fetal heart 

tissues (day-42, day-56, and day-133 post conception) were obtained from de-identified aborted 

fetuses in collaboration with the Stanford Family Planning Research Team, Department of 

Obstetrics and Gynecology, Division of Family Planning Services and Research, Stanford 

University School of Medicine. Human iPSCs were obtained from the Stanford CVI iPSC Biobank. 

Generation and culture of human-induced pluripotent stem cells 

Peripheral blood mononuclear cells (PBMCs) were reprogrammed to hiPSCs using the 

CytoTune™-iPS 2.0 Sendai Reprogramming Kit (Thermo Fisher Scientific) according to the 

manufacturer’s instructions with modifications as previously described (Feyen et al. 2021). Stem 

cell-like colonies were manually picked about two weeks post-transduction and expanded in E8 

stem cell media (Life Technologies). All iPSCs used for the subsequent studies were within 

passages 22 to 30. The genome integrity was assessed by a single nucleotide polymorphism-

based karyotyping assay (Illumina, HumanOmniExpress-24 v1.1). The iPSCs were maintained in 

a defined E8 medium (Life Technologies) on cell culture plates coated with ESC-qualified Matrigel 

(BD Biosciences) in a hypoxic environment (8% O2, 5% CO2) at 37oC. For routine passaging, 

iPSCs were dissociated with Gentle Cell Dissociation Reagent (StemCell Technologies) and 

cultured on with E8 medium supplemented with 5 μM Y-27632 (SelleckChem). The iPSCs were 

tested to be mycoplasma negative using the Mycoalert Mycoplasma testing kits (LT07-318, 

Lonza). 

Cardiomyocyte differentiation 

Cardiomyocytes were differentiated using a monolayer method as previously described (Feyen 

et al. 2021). The iPSCs were seeded in 6-wells at a density of 1.2 × 105 cells per well and grown 

for four days prior to differentiation. Differentiation was initiated by replacing the E8 media with 

RPMI supplemented with B27 without insulin (A1895601, Life Technologies) and 6 µM CHIR-

99021 (CT99021, Selleckchem). Two days later the media was replaced with RPMI supplemented 

with B27 without insulin. Cultures were then treated with 3 µM IWR-1 (I0161, Sigma) in RPMI 

supplemented with B27 without insulin for two days. The cultures were then maintained in RPMI 

with B27 with insulin (17504-044, Life Technologies) and glucose starved for three days (using 

RPMI minus glucose). After glucose starvation, iPSC-CMs were maintained in RPMI with B27.  

Cells were collected at specific time points during differentiation,  day 0 (iPSC), day 2 (i-Mes), day 

5 (i-CP), day 15 (i-pCM), and day 30 (i-CM), The cells from three independent differentiation 

batches for each time point were collected and pooled for scATAC analysis. 

https://paperpile.com/c/RG8R7c/6OAAs
https://paperpile.com/c/RG8R7c/6OAAs
https://paperpile.com/c/RG8R7c/6OAAs


Endothelial cells differentiation 

The iPSCs were cultured as described above until reaching 80% confluence. The medium was 

switched to RPMI-B27 without insulin (Life Technologies) with 6 μM CHIR99021 for 2 days and 

then changed to 2 μM CHIR99021 for another 2 days. During differentiation, from days 4 to 12, 

the medium was changed to EGM2 (Lonza) supplemented with vascular endothelial growth factor 

(VEGF) (50 ng/ml) (PeproTech), bone morphogenetic protein 4 (BMP4) (20 ng/ml), and fibroblast 

growth factor 2 (FGF2) (20 ng/ml) (PeproTech). On day 12, cells were dissociated using TrypLE 

for 5 min and sorted using CD144-conjugated magnetic microbeads (Miltenyi Biotec) according 

to the manufacturer’s instructions. CD144-positive cells were seeded on 0.2% gelatin-coated 

plates and maintained in EGM2 medium supplemented with 10 μM transforming growth factor β 

(TGFβ) inhibitor (SB431542). (Selleckchem). After passage 2, iPSC-ECs were cultured in EGM2. 

The iPSC-ECs were analyzed at passage 3 post differentiation.  

Epicardium cells differentiation 

The iPSC-derived epicardial cells were differentiated in a chemically defined medium (CDM), 

which is composed of 50% IMDM, 50% Ham’s F-12 Nutrient Mix, 1% chemically defined lipid 

concentrate, 2 mM Glutamax, 1 mg/ml PVA, 15 μg/ml transferrin, and 450 μM monothioglycerol. 

When hiPSCs reached ~80% confluency they were dissociated with 1 ml of Accutase (Sigma) 

and replated a density of 1.5 x104 cells/cm2 in 6-well plates and cultured in iPS-Brew medium 

(Miltenyi Biotech) supplemented with 10 μM Y27632. The next day (day 1),  each well was washed 

with D-PBS, and epicardial cells differentiation was initiated by adding the mid-primitive streak 

induction medium (consisting of 10 ng/ml Activin A, 6 μM CHIR99021, 50 ng/ml BMP4, 20 ng/ml 

FGF2, and 2 μM LY294002 in CDM). On day 2, each well was refreshed with the lateral plate 

mesoderm induction medium (consisting of 1 μM A83-01, 30 ng/ml BMP4, and 1 μM C59 in CDM). 

On days 3-4, each well was refreshed with the splanchnic mesoderm induction medium 

(consisting of 1 μM A83-01, 30 ng/ml BMP4, 1 μM C59, 20 ng/ml FGF2, and 2 μM retinoic acid in 

CDM). On days 5-8, the media was refreshed with the septum transversum induction medium 

(consisting of 2 μM retinoic acid and 40 ng/ml BMP4 in CDM). On day 9, cells were dissociated 

using Accutase and sparsely seeded (104 cells/cm2) on gelatin-coated 6-well plates in the 

proepicardium induction medium (consisting of 100 μg/ml ascorbic acid, 2 μM of retinoic acid, and 

0.7 μg/ml insulin in CDM) for 2 days without medium change. Starting at day 11, each well was 

refreshed every other day with the epicardial cell induction/maintenance medium (consisting of 

100 μg/ml ascorbic acid, 10 μM SB431542, and 0.7 μg/ml insulin in CDM). The iPSC-derived 

epicardial cells can preserve their cell type-specific markers (e.g., TBX18, WT1, and TCF21) for 

at least 18 passages in the epicardial cell induction/maintenance medium. 

  



Cardiac fibroblast differentiation 

To generate cardiac-specific fibroblasts, hiPSC-derived epicardial cells were dissociated with 

Accutase and plated at a density of 104 cells/cm2 in 6-well plates and cultured in fibroblast growth 

medium (Lonza) supplemented with 20 ng/ml FGF2 and 10 μM SB431542. The medium was 

refreshed every other day for 6 days. When the fibroblasts reached ~90% confluency, they were 

dissociated and split at a 1:3 ratio in fibroblast growth medium supplemented with 10 μM 

SB431542 for long-term maintenance. The differentiated fibroblasts exhibit a quiescent 

phenotype with negligible (< 5%) α-SMA expression for at least five passages.  

Smooth muscle cell differentiation 

To generate cardiac-specific smooth muscle cells (SMCs), iPSC-derived epicardial cells were 

dissociated with Accutase and seeded at a density of 3×104 cells/cm2 were seeded in the nascent 

SMC induction medium (consisting of 100 μg/ml ascorbic acid, 0.7 μg/ml insulin, 10 ng/ml Activin 

A, and 10 ng/ml PDGF-BB in CDM) for 2 days. The medium was refreshed every other day with 

Medium 231 supplemented with SMGS (ThermoFisher) for at least 14 days to allow the 

expression of SMC-specific markers (e.g., TAGLN, CNN1, SMTNB, and MYH11). 

Single-cell ATAC-seq on iPSC-derived cardiac cells and human fetal heart 

The iPSC-derived cardiac cells were dissociated using Tryple Express and resuspended in the 

RPMI medium. The human fetal hearts were minced and digested using Liberase (Sigma) for 10 

min at 37oC, and resuspended in RPMI+B27 medium to stop the enzymatic reaction. The digested 

tissue was passed through a 70 μm filter before proceeding to single-nuclei sample preparation. 

Cells with viability > 90% were washed in ice-cold ATAC-seq resuspension buffer (RSB, 10 mM 

Tris pH 7.4, 10 mM NaCl, 3 mM MgCl2), spun down, and resuspended in 100 µL ATAC-seq lysis 

buffer (RSB plus 0.1% NP-40 and 0.1% Tween-20). Lysis was allowed to proceed on ice for 5 

minutes, then 900 µL RSB was added before spinning down again and resuspending in 50 µL 1X 

Nuclei Resuspension Buffer (10x Genomics). A sample of the nuclei was stained with Trypan 

Blue and inspected to confirm complete lysis. Nuclei were processed using a 10X chromium 

single-cell ATAC-seq kit (V1 version, 10X Genomics) at the Stanford Functional Genomics Facility 

(SFGF). All samples were sequenced using the Illumina HiSeq 4000 (150 bp paired-end). 

CRISPR–Cas9-mediated genome editing of iPSCs 

The genomic region (300-400bp) corresponding to JARID2 cRE was deleted using CRISPR-Cas9 

genome editing. Two guide RNAs (gRNAs) flanking the cRE upstream of JARID2 were designed 

using a web-based tool (Benchling) and chosen based on a high score for on-target binding and 

the lowest off-target score. For cRE deletion, iPSCs (3.5x105) were nucleofected (1200  V, 20 ms, 

1 pulse) with 60 pmoles sgRNA (Synthego) and 20 pmoles SpCas9 nuclease (Synthego) using 

the Neon Transfection System (ThermoFisher Scientific) and the 10 μl tip per the manufacturer's 

instructions.). After electroporation, iPSCs were plated in E8 medium supplemented with 5 μM Y-



27632 into a 12-well plate coated with Matrigel. After recovering (3 days post electroporation), the 

cells were dissociated with TrypLE Express and were plated in 6-well plates at a density of 2,000 

cells per well. About 10 days after transfection, colonies were picked into 96-well plates and a 

small proportion of cells from each colony were used for DNA extraction using Quick Extract 

solution (Epicenter) and direct PCR with Prime STAR® GXL DNA Polymerase (Clontech). PCR 

amplicons were sequenced by Sanger to verify the deletion (SFigure 17). 

 

Computational methods 

Fetal tissue - scATAC processing 

Raw sequencing data were converted to FASTQ format using ‘cellranger-atac mkfastq’ (10x 

Genomics, v.1.2.0). 150 bp paired-end (PE) scATAC-seq reads were aligned to the GRCh38 

(hg38) reference genome and quantified using ‘cellranger-atac count’ (10x Genomics, v.1.2.0).  

Fetal tissue - scATAC-seq quality control, dimensionality reduction, and filtering of cell 

types 

Mapped Tn5 insertion sites (fragments.tsv files) from cellranger were read into the ArchR (v0.9.4) 

R package (Granja et al. 2021). To ensure that each cell was both adequately sequenced and 

had a high signal-to-background ratio, we filtered cells with fewer than 1,000 unique fragments 

and enrichment at TSSs below 6. To calculate TSS enrichment, genome-wide Tn5-corrected 

insertions were aggregated ±2,000 bp relative (TSS-strand-corrected) to each unique TSS. This 

profile was normalized to the mean accessibility ±1,900–2,000 bp from the TSS, smoothed every 

51 bp and the maximum smoothed value was reported as TSS enrichment in R (SFigure 1). 

Latent Semantic Indexing (LSI) dimensionality reduction was computed (iterations = 4, res = 

c(0.2,0.2,0.6,0.8), variable features = 25000, dim = 30) for each specific time point (SFigure 

2a,b,c) and repeated the same steps by appending fragment files from all three timepoints 

together (SFigure 2d,e). We did not observe any significant batch effects after the fourth iteration 

of iterative LSI. We computed chromatin-derived gene accessibility scores by aggregating 

scATAC-seq reads in each cell weighted by distance from each gene within its cis-regulatory 

domain (Granja et al. 2021). A preliminary cell-type annotation was performed using these gene 

accessibility scores of known cell type markers (Figure 1c,d, SFigure 3, Table S3). 

We observed two populations of cell types identified to be macrophages (SFigure 2f) and immune 

cells (SFigure 2g). Even though these sets of cell types are of interest from a biological 

standpoint, they do not directly contribute to the cardiogenesis process and hence were dropped 

from subsequent analysis. The final UMAP used in all subsequent analyses was generated by 

repeating the above mentioned iterative LSI with the same parameters as above after removing 

barcodes corresponding to the macrophage and immune cell clusters (Figure 1c). Final cell-type 
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annotations for each cluster were assigned based on gene accessibility scores of marker genes 

of known cardiac cell types (Figure 1c,d, SFigure 3, Table S3). 

Fetal tissue - Peak calling in scATAC-seq datasets 

Single-cell chromatin accessibility data were used to generate pseudobulk group coverages 

based on high-resolution cluster identities of scATAC-seq datasets before peak calling with 

MACS2 v2.1.1.20160309 (Yong Zhang et al. 2008) using the addReproduciblePeakSet() in ArchR 

(Granja et al. 2021). A background peak set controlling for total accessibility and GC-content was 

generated using addBgdPeaks(). Overlapping peaks were handled using an iterative removal 

procedure as previously described in (Corces et al. 2018). First, the most significant (MACS2 q-

value) extended peak summit is kept and any peak that directly overlaps with that significant peak 

is removed. This process reiterates to the next most significant peak until all peaks have either 

been kept or removed owing to direct overlap with a more significant peak. The most significant 

extended peak summits for each cluster were then merged and the previous iterative removal 

procedure was used. Lastly, we removed any peaks whose nucleotide content had any ‘N’ 

nucleotides and any peaks mapping to chrY. 

Fetal tissue - scRNA processing 

Raw sequencing data from two previous studies (Miao et al. 2020; Cui et al. 2019) corresponding 

to post-conception week (PCW) 6, 8 and 12, were converted to FASTQ format using the command 

‘cellranger mkfastq’ (10x Genomics, v.3.1.0). scRNA-seq reads were aligned to the GRCh38 

(hg38) reference transcriptome (Ensembl 93) and quantified using ‘cellranger count’ (10x 

Genomics, v.3.1.0). The filtered matrices from cell ranger count were combined with the filtered 

matrices of other datasets from (Asp et al. 2019) and (Suryawanshi et al. 2020) corresponding to 

PCW6 and 19 to create the scRNA object. 

Count data were further processed using the ‘Seurat’ R package (v.3.1.4) (Stuart et al. 2019), 

using GENCODE v.27 for gene identification. We removed cells with less than 500 expressed 

(gene read counts > 0) genes, cells with less than 500 reads, and cells with more than 40% read 

count corresponding to mitochondrial genes. Genes not contained in the GENCODE annotation 

were excluded from further analysis. Gene level read count data was scaled to 10,000 (TP/10k) 

and log2 transformed. We performed Principal Component Analysis (PCA) restricting to the 2,000 

most variable genes as defined by Seurat. The top 50 principal components (PCs) were used for 

downstream clustering. Clusters were identified using Leiden clustering implemented in Seurat’s 

‘FindClusters()’ function (‘resolution=1’). 2-dimensional representations were generated using 

uniform manifold approximation and projection (UMAP) (McInnes et al., 2020) as implemented in 

Seurat and the ‘uwot’ R packages (v.0.1.8; parameter settings: ‘min.dist=0.8’, ‘n.neighbors=50’, 

‘cosine’ distance metric). We observed that the clustering was strongly influenced by sample of 

origin indicating significant batch effects (SFigure 4a). To correct these batch effects, we used 

Harmony (Korsunsky et al. 2019) with max_iters=5 and other parameters set to their default 

values. We then reran Leiden clustering with the top 30 components from Harmony and generated 
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a 2D UMAP for the corrected data with the same functions listed above. Post harmonization, 

clusters did not appear to be affected by the sample of origin (SFigure 4a). Cell-type annotations 

for each cluster were assigned based on the expression of known marker genes of cardiac cell 

types (SFigure 4b,c, Table S3). 

Fetal tissue - Matching cells from scRNA-seq and scATAC-seq data 

Canonical correlation analysis (CCA) as implemented in Seurat (Stuart et al. 2019) was used to 

align and match cells from the scRNA-seq and scATAC-seq experiments from each gestational 

time point individually. For this purpose, we computed log2-transformed gene accessibility scores 

as surrogates for gene expression in the cells profiled by scATAC-seq. As integration features, 

we used the union of the 2,000 most variable genes in each modality as input to Seurat’s 

‘FindTransferAnchors()’ function with reduction method ‘cca’ and parameter ‘k.anchor=10’. For 

each cell profiled by scRNA-seq, we identified the nearest neighbor cell in scATAC-seq by 

applying nearest-neighbor search in the joint CCA L2 space. Nearest neighbors were determined 

using the ‘FNN’ R package (https://rdrr.io/cran/FNN/) employing the ‘kd_tree’ algorithm with 

Euclidean distance. These nearest-neighbor-based cell matches from all gestational time points 

were concatenated to obtain dataset-wide cell matches across both modalities (SFigure 4d,e).  

BPNet deep learning models to predict base-resolution, cell-type resolved pseudo-bulk 
scATAC-seq profiles from DNA sequence    

BPNet is a sequence-to-profile convolutional neural network that uses one-hot-encoded DNA 

sequence (A=[1,0,0,0], C=[0,1,0,0], G=[0,0,1,0], T=[0,0,0,1]) as input to predict single nucleotide-

resolution read count profiles from assays of regulatory activity (Avsec, Weilert, et al. 2021; 

Trevino et al. 2021). The models take in a sequence context of 2,114 bp around the summit of 

each ATAC-seq peak and predict cluster-specific scATAC-seq pseudo-bulk Tn5 insertion counts 

at each base pair for the central 1,000 bp. The BPNet model also uses an input Tn5 bias track 

which is concatenated to the pre-final layer as explained below. Our BPNet model is a higher 

capacity version of the architecture introduced in (Avsec, Weilert, et al. 2021). The model 

architecture consists of 8 dilated residual convolution layers, with 500 filters in each layer. At each 

layer, the Keras Cropping 1D layer is used to clip out the two edges of the sequence, to match 

the inputs concatenated to the output of each convolution, which naturally trims the 2,114 bp 

sequence to a final 1,000 bp profile. Each dilated convolutional layer has a kernel width of 21 and 

the dilation rate is doubled for every convolutional layer starting at 1. The model predicts the base-

resolution 1,000 bp length Tn5 insertion count profile using two complementary outputs: (1) the 

total Tn5 insertion counts over the 1,000 bp region, and (2) a multinomial probability of Tn5 

insertion counts at each position in the 1,000 bp sequence. The predicted (expected) count at a 

specific position is a multiplication of the predicted total counts and the multinomial probability at 

that position. To predict the total counts in the 1,000 bp window, the output from the last dilated 

convolutional layer is passed through a GlobalAveragePooling1D layer in Keras. We estimate the 

“tn5 bias” for the input sequence using the TOBIAS method (Bentsen et al. 2020). This total bias 

is concatenated with the output of the pooling layer and passed through a Dense layer with 1 
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neuron to predict total counts. To predict the per-base logits of the multinomial probability profile 

output, the output from the last dilated residual convolution is appended with per base TOBIAS 

“tn5 bias” and passed through a final convolution layer with a single kernel and a kernel width of 

1 to predict the per-base logits. BPNet uses a composite loss function consisting of a linear 

combination of a mean squared error (MSE) loss on the log of the total counts and a multinomial 

negative log-likelihood loss (MNLL) for the profile probability output. We use a weight of [4.9, 4.3, 

18.5, 9.8, 8.9, 4.8, 4.6, 4.9, 12.4, 15.4, 4.3, 6.3, 1.4, 2.6, 7.6, 2.3, 16.3, 7.1 & 3.7] for the MSE 

loss for clusters c0–c20 (c15-c16 combined as one model), and a weight of 1 for the MNLL loss 

in the linear combination. The MSE loss weight is derived as the median of total counts across all 

peak regions for each cluster divided by a factor of 10 (Avsec, Weilert, et al. 2021). We used the 

ADAM optimizer with early stopping patience of 3 epochs.   

A separate BPNet model was trained on pseudobulk scATAC-seq profiles from each scATAC-

seq cluster. We used a 5-fold chromosome hold-out cross-validation framework for training, 

tuning, and test set performance evaluation. The training, evaluation, and test chromosomes used 

for each fold are as follows. Test chromosomes: fold 0: [chr1], fold 1: [chr19, chr2], fold 2: [chr3, 

chr20], fold 3: [chr13, chr6, chr22] & fold 4: [chr5, chr16]. Validation chromosomes: fold 0: [chr10, 

chr8], fold 1: [chr1], fold 2: [chr19, chr2], fold 3: [chr3, chr20] & fold 4: [chr13, chr6, chr22]. The 

model’s performance was evaluated using two different metrics for the two output tasks 

separately. For the total counts predicted for the 1,000 bp region, the model’s performance is 

computed with the Spearman correlation of predicted counts to actual counts. The profile 

prediction performance is evaluated using the Jensen-Shannon Distance, which computes the 

divergence between two probability distributions; in this case, the observed and predicted base-

resolution probability profile over each 1,000 bp region.  

For each cell type, BPNet models were trained, tuned, and evaluated on genomic windows 

consisting of 1 kb scATAC-seq profiles from (1) signal windows centered at summits of scATAC-

seq peaks from the cell type and (2) background windows randomly sampled across the genome 

such that the number of background windows was 10% of the number of signal windows. The 

selected signal and background windows were further augmented with upto 10 random jitters (+/- 

1000 bp). Code for training BPNet models are available at 

https://github.com/kundajelab/Cardiogenesis_Repo.   

BPNet model-derived DeepLIFT/DeepSHAP nucleotide contribution scores of accessible 

cRE sequences 

We used the DeepLIFT algorithm (Shrikumar, Greenside, and Kundaje 2017) to interrogate 

BPNet models and estimate the predictive contribution of each base in any query input sequence 

to the predicted total counts from the model. DeepLIFT backpropagates a score, analogous to 

gradients, which is based on comparing the activations of all the neurons in the network for the 

input sequence to those obtained from neutral ‘reference’ sequences. We use 20 dinucleotide-

shuffled versions of each input sequence as reference sequences. We used the DeepSHAP 

implementation of DeepLIFT 
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(https://github.com/slundberg/shap/blob/0.28.5/shap/explainers/deep/deep_tf.py) to obtain 

contribution scores for all observed bases in each sequence (Lundberg and Lee 2017b). For each 

cell type, we obtained consolidated DeepLIFT/DeepSHAP contribution scores for each sequence 

from each of 5 folds of cross-validation and then averaged the scores per position from the 5 

folds. 

Annotation of PWM-based transcription factor motif instances in accessible cREs 

We obtained position weight matrix (PWM) models of transcription factor (TF) sequence motifs 

from the ChromVAR motif catalog called ‘human_pwms_v1’ (Schep et al. 2017), which is collated 

from the Catalog of Inferred Sequence Binding Preferences (CIS-BP) (Weirauch et al. 2014).  

We then annotated PWM-based motif instances in all cRE sequences from all cell types by 

scanning, scoring, and thresholding (p-value < 5e-5) matches from all PWMs using the 

motifmatchr tool (https://github.com/GreenleafLab/motifmatchr) which uses the MOODSv.1.9.3 

library (Korhonen et al. 2009). 

Annotation of cell-type specific active TF motif instances in accessible CREs with high 

contribution scores and motif mutagenesis scores  

For each accessible cRE in each cell type, we defined active motif instances as a subset of PWM-

based motif instances that have high DeepLIFT contribution scores or high motif mutagenesis 

scores from the corresponding cell-type specific BPNet models relative to a null background 

distribution of corresponding scores. 

Motif instance contribution scores: We computed the contribution score of each PWM motif 

instance to accessibility in a specific cell type as the average of the consolidated DeepLIFT 

contribution scores from the cell-type specific BPNet models over all bases overlapping the motif 

instance.  

Motif instance mutagenesis scores: We also inferred mutagenesis scores (motif-ISM) for each 

PWM-motif instance in a cRE sequence with respect to accessibility in each cell type. To generate 

the motif-ISM scores for a PWM motif instance in a specific cell type,  

1. We first used the fold-0 BPNet model of the specific cell type to predict the total scATAC-

seq counts over a 1000 bp window (using a 2114 bp input sequence) centered at the motif 

instance.  

2. We then generated 3 shuffled versions of the input sequence containing the motif instance 

such that we maintain di-nucleotide frequencies (dinucleotide shuffling). 

3. We obtained 3 subsequences overlapping the positions of the original motif instance from 

the 3 shuffled dinucleotide shuffled sequences.  

4. We replaced the subsequence of the motif instance in the original reference sequence 

with each of the 3 shuffled subsequences.  
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5. We then use the fold-0 BPNet model to once again predict the total scATAC-seq counts 

for each of these 3 disrupted sequences containing the shuffled versions of the motif instance.  

6. We then computed the log2 ratio of the total predicted counts between the reference 

sequence from step 1. and each of the 3 disrupted sequences from step 5. 

7. The motif-ISM score of the instance was computed as the average of the log2 ratio score 

from step 6. over all 3 disrupted sequences. 

Empirical null distributions: We generated empirical null distributions of motif-instance 

contribution scores as follows.  

1. We constructed dinucleotide frequency preserving shuffled versions of all cREs from from 

chr4 and chr7. 

2. We used the cell-type specific BPNet models from each of the 5 folds to compute DeepLIFT 

contribution scores over all randomized sequences from step 1. For each sequence, the 

contribution scores at each base were averaged over all 5 folds.  

3. The contribution scores from all bases in all sequences from step 2. were used to derive an 

empirical null distribution of contribution scores. 

We generated empirical null distributions of motif-instance ISM scores as follows.  

1. We reused the predicted total scATAC-seq counts for each of these 3 disrupted sequences 

containing the shuffled versions of the motif instance from step 5. of the motif-ISM estimation 

process above. We computed the log2 ratio of the total predicted counts between each of the 

3 pairs of disrupted sequences.  

2. The empirical null distribution for motif-ISM scores was derived from the above computed 

scores over all motif instances in all cRE sequences in chr4 and chr7. 

Active motif instances: Finally, to identify active motif instances in each cell type, we select 

PWM-based motif instances that have motif-instance contribution scores or motif-ISM scores that 

are above the 95th percentile or below the 5th percentile of corresponding empirical null 

distribution scores of that cell type. All other PWM-based instances were labeled as “inactive”. 

Enrichment of active motif instances and all PWM-motif instances in differential, cell-type 

specific scATAC-seq peaks 

We identified differentially accessible, cell-type specific “marker peaks” for the ventricular 

cardiomyocyte cluster (vCM) relative to all other clusters using the getMarkerFeatures() function 

in ArchR (Granja et al. 2021), which uses the Wilcoxon Ranksum test to identify marker peaks 

while controlling for the TSS enrichment and log10(unique fragments) of cells when sampling the 

background set of cells.  

We then calculated the Fisher’s Exact test implemented in the peakAnnoEnrichment() function in 

ArchR to compute the enrichment of active motif instances of all TFs expressed in vCMs in vCM 

marker peaks relative to all vCM peaks. We compute analogous enrichments of all PWM-based 
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motif instances. We compare the statistical significance of enrichments of active and all PWM 

instances in Figure 2h,i and SFigure 5. 

ChromVAR motif deviation scores 

To compute ChromVAR motif deviation scores for any peak set, a background peak set controlling 

for total accessibility and GC-content was generated using addBgdPeaks() for each cluster in 

ArchR. Chromvar (Schep et al. 2017) was run with addDeviationsMatrix() using active TF motif 

instances in both peak sets to calculate enrichment of chromatin accessibility over all active motif 

instances of each TF at single-cell resolution. We then computed the GC-bias-corrected deviation 

scores using the chromVAR ‘deviationScores’ function used in the addDeviationsMatrix() function 

in ArchR. 

Defining cell transitions and trajectories from scATAC-seq data using optimal transport 

Computing gene signatures: We created a cell by gene score matrix that was used for 

computing the gene signatures associated with cell cycle and apoptosis for optimal transport 

analysis. We used the list of curated genes for cell cycle and apoptosis as suggested in the 

original optimal transport paper (Schiebinger et al. 2019). We scored cells based on their 

chromatin derived gene accessibility scores (Granja et al. 2021) of genes in the curated gene 

signatures. We used the same procedure as in the original manuscript. For each cell, we compute 

the z-score of the gene accessibility scores for each gene in the set. We then clip these z-scores 

in the range of -5 to 5. We define the signature score of the cell to be the mean z-score over all 

genes in the gene set (SFigure 6a and b). We estimated the initial growth rate with the same 

calculations as performed in the original method (Schiebinger et al. 2019) with the cell cycle and 

apoptosis signal computed from the gene score matrix (SFigure 6c).  

Using gene score matrix for Optimal transport calculation: We performed optimal transport-

based trajectory analysis by following the original codebase 

(https://broadinstitute.github.io/wot/tutorial/) (Schiebinger et al. 2019). The two changes between 

the original method and our implementation are the use of gene accessibility scores to compute 

the gene signatures and the use of the cell by gene-accessibility score matrix for inferring the 

optimal transport maps as compared to the cell by gene expression used in the original method. 

The cell by gene accessibility score matrix was scaled to read per 10K and log2-transformed. The 

top 2000 variable genes based on Seurat (FindVariableGenes() method=”vst”) were retained for 

further analysis. The coupling inference was obtained using parameters e = 0.05; l1 = 1; l2 = 50; 

growth_iters = 3 (Schiebinger et al. 2019). We first computed the transport matrices between 

successive timepoints, inferred long-range temporal couplings and then computed the fate 

matrices to obtain the transition table (Figure 3b).  

Chromatin and gene expression dynamics across trajectories: For all the dominant 

trajectories identified using optimal transport, we identified the clusters that are predicted to be in 

the trajectory using the transition table (Figure 3e,f,l,m, SFigure 7,8). We provided these sets of 
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cells to ArchR’s (Granja et al. 2021) addTrajectory() function and assigned cells pseudotime 

values. We then used a modified version of the plotTrajectory() function to plot the chromatin peak 

dynamics associated with the identified trajectory. We estimated correlation between TF gene 

expression from scRNA-seq projected into the scATAC-seq subspace and TF ChromVAR 

deviation scores using correlateMatrices() in ArchR (Granja et al. 2021). We defined correlated 

TFs for each trajectory as those who had correlation values > 0.5.  

iPSC derived in vitro cardiac cell types - scATAC-seq data processing, quality control, 

dimensionality reduction and motif annotations 

Raw sequencing data were converted to FASTQ format using ‘cellranger-atac mkfastq’ (10x 

Genomics, v.1.2.0). 150 bp paired-end (PE) scATAC-seq reads were aligned to the GRCh38 

(hg38) reference genome and quantified using ‘cellranger-atac count’ (10x Genomics, v.1.2.0). 

Barcode filtering, dimensionality reduction and identification of cell types, and peak calling were 

done similar to the fetal tissue scATAC-seq data processing (SFigure 9, 10, 11 & 12).  

PWM-based motif instances for CISBP motifs (Weirauch et al. 2014) were identified in all cell-

type resolved scATAC-seq peak regions using addMotifAnnotations() in ArchR(Granja et al. 2021) 

and chromVar (Schep et al. 2017) deviations were computed on this matrix using the 

addDeviationsMatrix() in ArchR (Granja et al. 2021). Differential peaks (SFigure 12a) and motif 

enrichment on the differentially accessible peaks (SFigure 12b) for in vitro data were obtained 

using similar methods outlined for the fetal tissue data. 

iPSC derived in vitro cardiac cell types - scRNA-seq processing, quality control, 

dimensionality reduction 

Filtered cell x gene matrices of scRNA-seq counts were obtained from (Friedman et al. 2018). 

The counts matrix was processed in a manner identical to fetal scRNA processing. All functions 

listed above in Seurat were used again for dimensionality reduction, clustering, and cell-type 

identification. We observed batch effects with the published scRNA data with cells clustering 

based on their timepoints instead of their cell types identified in the original manuscript (Friedman 

et al. 2018). To correct this batch effect, we ran Harmony to correct for time point of origin and 

obtained the corrected scRNA-seq data and corrected clusters and cell type annotations (SFigure 

13).  

iPSC derived in vitro cardiac cell types - Matching cells from scRNA-seq and scATAC-seq 

data 

CCA based matching of scATAC and scRNA data from the in vitro differentiation was done in the 

same manner as the fetal tissues and the nearest neighbor’s gene expression profile in scRNA 

was imputed to the scATAC ArchR object (Granja et al. 2021). 
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Projecting iPSC derived in vitro cardiac cells based on scATAC-seq into the the fetal heart 

scATAC-seq manifold 

We projected the iPSC derived in vitro cardiac cells based on the scATAC-seq profiles into the 

scATAC-seq LSI subspace of fetal heart cells following the procedure described previously 

(Granja et al. 2019). Briefly, when computing the TF-IDF transformation on the fetal samples, we 

stored the colSums, rowSums, and SVD. To project cells from additional samples into this 

subspace, we first zeroed out rows based on the initial TF-IDF rowSums. We next calculated the 

term frequency by dividing by the column sums and computed the inverse document frequency 

from the previous TF-IDF transformation. These were then used to compute the new TF-IDF. The 

resulting TF-IDF matrix was projected into the previously defined SVD of the fetal heart LSI.  

Identifying scATAC-seq peaks across all in vivo and in vitro cardiac cells 

To enable the comparison of epigenomic features between the in vivo and in vitro cells, we built 

a combined ArchR object of all post filtered cells from the three fetal heart samples and all the 

samples from the iPSC differentiation to major cardiac cell types. We performed peak calling on 

the combined data using ArchR frameworks, as described above. We used these peak calls from 

the combined object for all the downstream differential analyses between the in vivo and in vitro 

nearest cells identified by the projection analysis.  

Identifying differential scATAC-seq peaks and TF motif enrichments between matched in 

vivo and in vitro cardiac cell types 

To identify differential scATAC-seq peaks between each of the in vivo fetal heart cell types and 

their matched in vitro counterparts, we create a combined ArchR object of both the 3 fetal samples 

and all timepoints from the in vitro differentiation study. Peak calling was performed on this 

combined object as described above and PWM-based motif instances (Weirauch et al. 2014) 

were used to compute TF motif enrichments and ChromVar deviations as described above.  

Differential peaks between in vivo and in vitro cell types were identified within this integrated peak 

set. For each pair of match cell types, we obtained the integrated cell x peak matrix. We then 

computed row-wise two-sided t-tests for each peak and estimated the FDR using 

p.adjust(method = “fdr”). Peaks with absolute log2(fold changes) > 0.5 and FDR < 0.05 were 

labeled as differential. 

We next identified the TF motifs enriched in up or down regulated differential peaks relative to all 

peaks for each pairwise comparison using a Fisher’s Exact test.   

Identifying peak-to-gene links using in vivo and in vitro data 

We computed peak-to-gene links based on correlation between peak scATAC-seq and gene 

scRNA-seq signals separately for in vivo and in vitro cells. We used all cells from in vivo samples. 

https://paperpile.com/c/RG8R7c/yV7xZ
https://paperpile.com/c/RG8R7c/gAgZn


For in vitro samples, we restricted to cells from terminal cell types which had well-defined in vivo 

counterparts. First, we added the integrated scATAC-seq peaks across in vitro and in vivo cells 

to each of these objects using the addPeakSet() function in ArchR. Next, we restricted scRNA-

seq analysis to a subset of genes that are present in the filtered gene lists of both the in vivo and 

in vitro the scRNA-seq objects. We then used CCA as described above to match cells between 

the scRNA-seq and scATAC-seq experiments for the in vivo and in vitro samples separately. We 

identified correlation based peak-to-gene links using the addPeak2GeneLinks() function in ArchR 

(Granja et al. 2021) for the in vivo and in vitro cells separately. We used a correlation threshold 

of 0.45 to define linked peak-gene pairs. We compared peak-to-gene links from the in vivo and in 

vitro samples to identify peak-gene pairs that were shared and those that were exclusive to each 

set (SFigure 14). 

Enrichment of GWAS traits using stratified linkage disequilibrium score regression (S-

LDSC) 

We assessed the enrichment of heritability for several cardiovascular diseases and traits in 

accessible elements stratified linkage disequilibrium score regression (S-LDSC) (Finucane et al. 

2015). . We ran LD score regression using the baselineLD_v1.1 model using the 

1000G_EUR_Phase3_baseline file (downloaded from 

https://data.broadinstitute.org/alkesgroup/LDSCORE/; on each cell-type specific peaks, defined 

as variants in 1000 Genomes with minor allele count >5 in 379 European samples), comparing to 

summary statistics for atrial fibrillation (Roselli et al. 2018), coronary artery disease (van der Harst 

and Verweij 2018),   heart failure (Shah et al. 2020), and inflammatory bowel disease (Liu et al. 

2015).   Summary   statistics   were   located   using   the Cardiovascular Disease Knowledge 

Portal (https://cvd.hugeamp.org/, accessed August 2020) 

Predicting mutation impact scores of de novo non coding mutations from CHD cases and 

controls on cell-type resolved scATAC-seq profiles using neural network models   

We obtained de novo, non coding mutations from CHD patients from the Pediatric Cardiac 

Genomics Consortium (PCGC) and from healthy controls (unaffected siblings) from the Simons 

simplex collection (SSC) from (Richter et al. 2020). We restricted all analysis to single-nucleotide 

(point) mutations within these cohorts.  

For each cell type, we used cell-type specific BPNet models to predict the allelic impact of all 

mutations that were found within 1000 bp windows around summits of scATAC-seq peaks in that 

cell type. For each mutation, we used the BPNet model to predict the base-resolution read count 

profile corresponding to the input sequence (2,114 bp) containing the reference allele of the 

mutation at its center. We then used the model to predict the 1 kb base-resolution read count 

profile (which is decomposed into total predicted counts over 1 kb and base-resolution read 

probability profile)  corresponding to the input sequence (2,114 bp) containing the alternate allele 

of the mutation at its center. Using these predicted read probability profiles from the two alleles, 

we computed the impact score of the mutation as the log2 fold change in cumulative probability 

https://paperpile.com/c/RG8R7c/MsvP6
https://paperpile.com/c/RG8R7c/TK1rH
https://paperpile.com/c/RG8R7c/TK1rH
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between the reference allele and the alternate allele, over a 100 bp window around the mutation 

using the formula: 

𝑙𝑜𝑔2( ∑

𝑖+50

𝑗=𝑖−50

 (𝑃𝑟𝑒𝑓
𝑗
)  / ∑

𝑖+50

𝑗=𝑖−50

 (𝑃𝑎𝑙𝑡
𝑗
) ) 

 

where  

𝑖= position of mutation 

𝑃𝑟𝑒𝑓
𝑗 = predicted profile probability at position 𝑗 for sequence containing reference allele 

𝑃𝑎𝑙𝑡
𝑗 = predicted profile probability at position 𝑗 for sequence containing alternate allele 

For each mutation, the cell-type specific impact scores were computed and averaged over cluster-

specific BPNet models trained on each of 5 folds.  

We also computed an alternate mutation impact score based on the predicted cumulative read 

counts over the 100 bp window around the mutation, instead of the predicted cumulative read 

probability. 

𝑙𝑜𝑔2( ∑

𝑖+50

𝑗=𝑖−50

(𝑌𝑟𝑒𝑓
𝑗
) / ∑

𝑖+50

𝑗=𝑖−50

(𝑌𝑎𝑙𝑡
𝑗
)) 

where  

𝑖= position of mutation 

𝑌𝑟𝑒𝑓
𝑗 = predicted counts at position 𝑗 for sequence containing reference allele 

𝑌𝑎𝑙𝑡
𝑗 = predicted counts at position 𝑗 for sequence containing alternate allele 

We found high concordance of cell type specific enrichments of high impact mutations in cases 

vs. controls for both scores (SFigure 15c). 

Thresholding mutation impact scores to define high impact prioritized mutations 

Because we are investigating a cohort of children with CHD born to parents without CHD, our 

expectation is that the majority of these cases will be caused by de novo mutations. On average, 

each individual has approximately 70 such mutations (Richter et al. 2020), and because we 

assume mutations that lead to CHD are generally rare, we would expect just one would be a 

causal presentation and we would expect only a fraction of the cohort to have such causal 

mutations. Based on the expectation that a small proportion of mutations from CHD cases in cell 

type resolved scATAC-seq peaks will have a causal role, we prioritized high-impact mutations 

https://paperpile.com/c/RG8R7c/AqlE6


in each cell type, as those that have an impact score > 95th percentile of the distribution of cell-

type specific impact scores of all mutations from the CHD cohort that fall in 1kb scATAC-seq peak 

regions in that cell type. The same thresholds were used for mutation impact scores of control 

mutations as well to obtain enrichments as specified below. 

Selection of prioritized mutations in arteries for deeper investigation 

We further restricted deeper investigation into a subset of higher confidence CHD mutations 

prioritized by the arterial endothelial cells (aEC) BPNet model to those that were within 200 bp 

(+/- 100 bp) of summits of aEC scATAC-seq peaks that had > 75 reads in a +/- 250 bp window 

around mutation. For each of these selected mutations, we obtained predicted profiles for 

sequences centered at the mutation for both alleles as well as the corresponding DeepLIFT 

scores and active motif instances. The gene closest to the mutation in linear genomic sequence 

was assigned as the putative target gene of the mutation. 

Cell-type specific enrichment analysis of prioritized mutations in cases relative to controls 

To compute the enrichment of case vs. control mutations in scATAC-seq peaks (cREs) of each 

cell type in the fetal heart, we computed a 2 x 2 contingency table. The first axis splits all de novo 

mutations based on whether they were found in cases versus controls. The second axis splits all 

de novo mutations based on whether they overlap a cluster-specific peak. The enrichment p-

value and odds-ratio (OR) was computed using the Fisher’s Exact Test implemented in the SciPy 

package in Python.  

We used a similar procedure to estimate enrichment of de novo mutations prioritized by cell-type 

specific models from cases versus control. In this case, the first axis of the 2 x 2 contingency table 

splits all de novo mutations based on whether they were found in cases versus controls. The 

second axis splits all de novo mutations based on whether they are predicted to have a high 

impact score (> 95th percentile) or not using a cell-type specific BPNet model. High impact score 

mutations are pre-filtered to those in peak regions in the cell type. This analysis was performed 

for each cell type separately and for the pseudobulk of all cell types. 

Enrichments of case and control mutations using mutation impact scores from the 

HeartENN model 

We obtained mutation impact scores as computed by the authors of the HeartENN model for all 

non-coding de novo mutations in the PCGC case and SSC unaffected controls (Richter et al. 

2020). We retained the de novo mutations that overlap 1 kb scATAC-seq peak regions in any of 

the fetal heart cell types. Finally, we performed Fisher's exact test for enrichment of high impact 

(scores >= 0.1 as recommended in (Richter et al. 2020)) mutations in peaks in cases vs controls.  
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https://paperpile.com/c/RG8R7c/AqlE6
https://paperpile.com/c/RG8R7c/AqlE6


Number of Fragments = 40.26M

Fr
ac

tio
n 

%

Size of Fragments

Number of Fragments = 103.8M

Fr
ac

tio
n 

%

Size of Fragments

Number of Fragments = 176.3M

Fr
ac

tio
n 

%

Size of Fragments

a
Cells Pass Filter = 5,138

TS
S 

En
ric

hm
en

t

Log 10 ( Unique Fragments)

Cells Pass Filter = 13,275

TS
S 

En
ric

hm
en

t

Log 10 ( Unique Fragments)

Cells Pass Filter = 19,344

TS
S 

En
ric

hm
en

t

Log 10 ( Unique Fragments)

b c

d e f

PCW 6 PCW 8 PCW 19

Density
Min Max

Density
Min Max

Density
Min Max

SFigure 1



C1 C2 C3 C4 C5

U
M

AP
 D

im
en

si
on

1

UMAP Dimension 2

a
PCW 6

b

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

U
M

AP
 D

im
en

si
on

1

UMAP Dimension 2

PCW 8

c
PCW 19

U
M

AP
 D

im
en

si
on

1

UMAP Dimension 2

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

All timepoints combined UMAP

e Colored by clusters

f

UMAP Dimension 2

UM
AP

 D
im

en
sio

n1

Colored by CD19 gene score g

Min Max
Log2(ATAC reads + 1)

Colored by CD3D gene score

UM
AP

 D
im

en
sio

n1

UMAP Dimension 2

UMAP Dimension 1

UM
AP

 D
im

en
sio

n 
2

vCM

aCM

CFP/FB1

OFT

FB2

CF

EPC

preSMC

SMC/PC

Endo1

Endo2

aEC

Cap/vEC

T/B cells

Macrophages

Colored by timepoints

UMAP Dimension 1

UM
AP

 D
im

en
sio

n 
2 6 PCW

8 PCW

19 PCW

d

SFigure 2



MYL6 MYL7 ACTN2 HAND1

HAND2 TBX10 HEY1 SRF

TTN GATA4

1.;�ï� 7%;�

WT1 LUM TCF21 TBX18

PDGFRB TAGLN

SELE CA4

81&�% CD36 PECAM1 &'+� CDH11 *-$�

APLNR CAV1

Log2(NormCounts +1 )

Min Max

M
YO

CA
RD

IU
M

 C
EL

L 
M

AR
KE

RS
EP

IC
AR

DI
UM

 C
EL

L 
M

AR
KE

RS
EN

DO
CA

RD
IU

M
 C

EL
L 

M
AR

KE
RS

HOXA3 PRDM6 TFAP2A

COL9A2

CNN1

SELP LYVE1

ABCC9

SFigure 3



aEC

Cap
CF

FB1
Endo1
EPC
lEC

NC
OFT
PC
vEC

vCM SMC

a b
Colored By Timepoints

Colored by clusters

c

ed

ATAC RNA

Cap

CF

FB1

Endo1

OFT

SMC

CCA co-projection anaysis

0 3
     z score
fraction of cells

scATAC clusters

scRNA clusters

UM
AP

 D
im

en
sio

n 
2

UMAP Dimension 1
PCW 6-a

PCW 6-b

PCW 19PCW 8

PCW 12

UMAP Dimension 1

UM
AP

 D
im

en
sio

n 
2

UM
AP

 D
im

en
sio

n 
2

UMAP Dimension 1

Pre-Harmonized Harmonized 

vCM

C2C3 C4C7C9 C12C11 C14C13 C15 C17C20 C19C18

C1

C3

C2

C4

C5

C6

C8

C9

C12

C11

C10

C14

C13

C15

C17

C20

C19

C18

aEC

aCM

vEC

EPC

lEC

NC

PC

aCM

SFigure 4



SOX17RBPJ
EBF1

MAZ KLF5
SP2 MGA

TBX10 TGIF2
TBX4 TBX5

NHLH2 TCF24
TCF21 MSC

MYO ASCL1
TFAP4 ZBTB42

ZNF238ASCL2
FOSL1JUND
SMARCC1FOSL2
JDP2ATF7
JUNBFOS
JUNCREB5
HOXB6HOXC6
ARID3ARFX4
RFX3HOXB8
TEAD3HOXB7
TEAD1TEAD4
ETS2STAT6
ELF2SOX6
SOX5SOX3
SOX30SOX12
SOX11SOX9
SOX13SOX4
STAT1FOXA1
GATA2SPI1
ELF5FOXS1
FOXD3FOXA2
ETV2NFATC2
NFATC3STAT3
ETV7ESRRG
MEF2CNFIA
NFIBMEF2D
MEF2BAC0021266
MEF2ANFIX
SNAI3TGIF2LY
TGIF2LXTGIF1
NFIC

C1C3

C2C4

C5

C6

C7C8C9

C12

C11

C10C14 C13C15 C16

C17C20

C19

C18

0 100
Motif enrichment

SFigure 5



a b

c

Cell cycle signature Apoptosis signature

Growth rate

0.7

-0.8

0.5

-0.5

3.5

0

z-score

z-score

Doubling tim
e 

SFigure 6



vCM trajectory

aCM trajectory

CF trajectory

Pseudotime

Ex
pr

es
sio

n

MYL2 

0 100

0 100

Pseudotime

Ex
pr

es
sio

n

200

280

50

150

MYL7 

Ex
pr

es
sio

n

20

60

0 100
Pseudotime

DCN

UMAP Dimension 1

UMAP Dimension 1

UMAP Dimension 1

UM
AP

 D
im

en
sio

n 
2

UM
AP

 D
im

en
sio

n 
2

UM
AP

 D
im

en
sio

n 
2

Cells in CF trajectory

Cells in aCM trajectory

Cells in vCM trajectorya b c

d

e f g

h

i j k

l

Va
ria

bl
e 

pe
ak

s
Va

ria
bl

e 
pe

ak
s

Va
ria

bl
e 

pe
ak

s

6 PCW

8 PCW

19 PCW

6 PCW

8 PCW

19 PCW

6 PCW

8 PCW

19 PCW

Peak Accessibility
Row Z-Score

-1.5 1.5

SRF
MEF2C
SMAD4
NR4A1
NFYB
SMARCC2
DNMT1
NR2C2
KLF6
ETV1
STAT1
ZNF76
RFX5
RBPJ
E2F8
FOXM1
FUBP1
SIX5
BPTF
ATF4
ELF2
NFY
SMARCC1
ETV6
ELK3
MECP2
IRF3

NFIC

PBX2

ID2

EGR1

STAT3

USF2

YBX1

SRF

GATA4

TBX5

NFIA

GATA6

TEAD1

TCF4

ZEB1

KLF4

HIVEP3

TFDP2

STAT3

NFIC

SOX6

TCF12

TCF21

REST

ATOH8

BACH1

GATA4

TEAD3

Motif Deviation
Row Z-Score

Gene Expression
Row Z-Score

-1.5 1.5-1.5 1.5

Pseudotime PseudotimePseudotime

Pseudotime PseudotimePseudotime

Pseudotime PseudotimePseudotime

SFigure 7



Cap Trajectory

aEC Trajectory

FB2 cells Trajectory

Pseudotime

Ex
pr

es
sio

n

CD36

0 100

Pseudotime

Ex
pr

es
sio

n

1

5

0

7.5

UNC5B

Ex
pr

es
sio

n

5

20

0 100
Pseudotime

ACTA2

UMAP Dimension 1

UMAP Dimension 1

UMAP Dimension 1

UM
AP

 D
im

en
sio

n 
2

UM
AP

 D
im

en
sio

n 
2

UM
AP

 D
im

en
sio

n 
2

a b c

d

e f g

h

i j k

l

6 PCW

8 PCW

19 PCW

Va
ria

bl
e 

pe
ak

s
Va

ria
bl

e 
pe

ak
s

Va
ria

bl
e 

pe
ak

s

0 100

Motif Deviation
Row Z-Score

Gene Expression
Row Z-Score

Peak Accessibility
Row Z-Score

6 PCW

8 PCW

19 PCW

6 PCW

8 PCW

19 PCW

Cells in Cap trajectory

Cells in aEC trajectory

Cells in FB2 trajectory

-1.5 1.5 -1.5 1.5-1.5 1.5

ETS2
EPAS1
MEOX2
TCF15
WT1
:7�ï$6
5$5$ï$6�
MEOX1
RORA
RARB
FOXJ3
SP1
HMG20B
MEF2C
HLX
NR5A2
ZNF281
SOX4
SOX17
SOX11
SOX7
SOX18
TCF3
MAX
GATA5
GATA4
GATA6
GATA2
GAT$�ï$6�
GATA3

STAT3
ERF
SP1
RREB1
SNAI2
MEF2C
REL
NR3C1
MEF2A
SOX11
ETS2
EPAS1
SOX7
SOX5
SOX17
RORA
SOX13
MAX
SOX18
USF2
ID1
JUND
RELA
PBX2
EP300
GABPA
FOSL2
JUNB
SMARCC1
GATA6
GATA4
GATA2
GATA3

KLF2
NR3C1
KLF10
ETV6
IRF1
KLF11
HES4
PATZ1
ELF2
REL
MLX
KLF4
EGR1
ATF3
KLF6
MAZ
NFATC4
ERF
TFDP1
NFATC3
ATF4
NFIC
ATOH8
ID3
ID4
GATA3
SMAD4
TCF12

Pseudotime PseudotimePseudotime

Pseudotime PseudotimePseudotime

Pseudotime PseudotimePseudotime

SFigure 8



0.0

0.2

0.4

0.6

0.8

0 200 400 600
Size of Fragments (bp) 

Fr
ag

m
en

ts
 (%

)

iPSC
nFrags = 213.54 M
Fragment Size Distribution

0.00

0.25

0.50

0.75

0 200 400 600
Size of Fragments (bp) 

Fr
ag

m
en

ts
 (%

)

i-Mes
nFrags = 203.12 M
Fragment Size Distribution

0.00

0.25

0.50

0.75

1.00

0 200 400 600
Size of Fragments (bp) 

Fr
ag

m
en

ts
 (%

)

i-CP
nFrags = 206.52 M
Fragment Size Distribution

0.0

0.4

0.8

1.2

1.6

0 200 400 600
Size of Fragments (bp) 

Fr
ag

m
en

ts
 (%

)

i-pCM
nFrags = 121.77 M
Fragment Size Distribution

0.00

0.25

0.50

0.75

1.00

1.25

0 200 400 600
Size of Fragments (bp) 

Fr
ag

m
en

ts
 (%

)

i-CM
nFrags = 187.65 M
Fragment Size Distribution

0.0

0.1

0.2

0.3

0.4

0.5

0 200 400 600
Size of Fragments (bp) 

Fr
ag

m
en

ts
 (%

)

i-EC
nFrags = 199.36 M
Fragment Size Distribution

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600
Size of Fragments (bp) 

Fr
ag

m
en

ts
 (%

)

i-EPC
nFrags = 174.91 M
Fragment Size Distribution

0.0

0.2

0.4

0.6

0 200 400 600
Size of Fragments (bp) 

Fr
ag

m
en

ts
 (%

)

i-CF
nFrags = 222.1 M
Fragment Size Distribution

0.0

0.2

0.4

0.6

0 200 400 600
Size of Fragments (bp) 

Fr
ag

m
en

ts
 (%

)

i-SMC
nFrags = 184.7 M
Fragment Size Distribution

SFigure 9



0

10

20

2.5 3.0 3.5 4.0 4.5 5.0
Log 10 (Unique Fragments)

TS
S 

En
ric

hm
en

t

iPSC
nCells Pass Filter = 6909
Median Frags = 27171
Median TSS Enrichment = 10.007

0.05 0.10 0.15

density

0

10

20

30

2.5 3.0 3.5 4.0 4.5 5.0
Log 10 (Unique Fragments)

TS
S 

En
ric

hm
en

t

i-Mes
nCells Pass Filter = 6912
Median Frags = 25918
Median TSS Enrichment = 10.925

0.05 0.10 0.15

density

0

10

20

30

2.5 3.0 3.5 4.0 4.5 5.0
Log 10 (Unique Fragments)

TS
S 

En
ric

hm
en

t

i-CP
nCells Pass Filter = 8625
Median Frags = 15932
Median TSS Enrichment = 12.382

0.03 0.06 0.09 0.12

density

0

5

10

15

20

2.5 3.0 3.5 4.0 4.5 5.0
Log 10 (Unique Fragments)

TS
S 

En
ric

hm
en

t

i-pCM
nCells Pass Filter = 6100
Median Frags = 6427
Median TSS Enrichment = 6.973

0.1 0.2

density

0

10

20

30

2.5 3.0 3.5 4.0 4.5 5.0
Log 10 (Unique Fragments)

TS
S 

En
ric

hm
en

t

i-CM
nCells Pass Filter = 12177
Median Frags = 8051
Median TSS Enrichment = 12.647

0.025 0.050 0.075 0.100 0.125

density

0

10

20

30

40

50

2.5 3.0 3.5 4.0 4.5 5.0
Log 10 (Unique Fragments)

TS
S 

En
ric

hm
en

t

i-EC
nCells Pass Filter = 19152
Median Frags = 8238
Median TSS Enrichment = 10.217

0.05 0.10 0.15

density

0

10

20

30

2.5 3.0 3.5 4.0 4.5 5.0
Log 10 (Unique Fragments)

TS
S 

En
ric

hm
en

t

i-EPC
nCells Pass Filter = 16622
Median Frags = 8093.5
Median TSS Enrichment = 8.599

0.05 0.10 0.15 0.20 0.25

density

0

5

10

15

20

2.5 3.0 3.5 4.0 4.5 5.0
Log 10 (Unique Fragments)

TS
S 

En
ric

hm
en

t

i-SMC
nCells Pass Filter = 6637
Median Frags = 16325
Median TSS Enrichment = 8.438

0.05 0.10 0.15

density

0

10

20

30

2.5 3.0 3.5 4.0 4.5 5.0
Log 10 (Unique Fragments)

TS
S 

En
ric

hm
en

t

i-CF
nCells Pass Filter = 22145
Median Frags = 7438
Median TSS Enrichment = 10.355

0.05 0.10 0.15 0.20

density

SFigure 10



Log2(NormCounts+ 1)

Min Max

POU5F1 MESP2 HAND1 HAND2

TNNT2 TTN CDH5 CDH11

TCF21 TBX18 PDGFRB PDGFRA

UM
AP

 D
im

en
sio

n 
2

UM
AP

 D
im

en
sio

n 
2

UM
AP

 D
im

en
sio

n 
2

UMAP Dimension 1 UMAP Dimension 1 UMAP Dimension 1 UMAP Dimension 1

UMAP Dimension 1 UMAP Dimension 1 UMAP Dimension 1 UMAP Dimension 1

UMAP Dimension 1 UMAP Dimension 1 UMAP Dimension 1 UMAP Dimension 1

SFigure 11



i-S
M

C

iP
SC

�=ï6FRUHV

��
��
��
��
3H

DN
V�

ï� 2

D

ZNF263
PATZ1
MAZ
ZNF148
KLF5
SP2
SP1
SMAD5
SP3
SP6
KLF6
EGR1
KLF16
ZBTB7A
WT1
KLF
BX0885802
CR7598154
AL6628334
CR3882292
AL7735441
TCF4
POU5F1
CTCFL
FOXD1
FOXE3
FOXD4L2
FOXD4L4
FOXD4L6
FOXD4L5
FOXD4L3
FOXP3
FOXA2
FOXA1
NFIA
NFIB
NFIX
ETV2
SOX13
ELF2
MECOM
GATA6
GATA4
GATA3
GATA1
GATA5
GATA2
MEF2C
MEF2B
AC0021266
MEF2D
MEF2A
MEIS3
TGIF1
SNAI3
BACH2
FOSB
BACH1
JDP
JUND
JUN
FOSL2
JUNB
FOSL1
SMARCC1
FOS

b

L3
6&

�0
HV

L�0
HV

i-C
P

L�0
HV
�&
3

L�0
HV
�OL
NH

L�0
\R
)�
OLN
H

i-p
CM i-C

M

i-E
C

i-E
PCL�&
)

iP
SC

0 100
0RWLI�HQULFKPHQW��ORJ���S�DGM�

i-S
M

C

i-p
CM i-C

M

i-C
P

i-E
C

i-E
PC

L�0
HV
�&
3

L�0
\R
)�
OLN
H

L�&
)

L�0
HV
�OL
NH

L3
6&

�0
HV

L�0
HV

7)
�P
RW
LI�
HQ
ULF
KP

HQ
W�

6)LJXUH���



Day 0 Day 2 Day 5 Day 15 Day 30

UM
AP

 D
im

en
sio

n 
2

UMAP Dimension 1

Colored by timepoints
a

iPSC

i-CP

i-CM

iPSC-like 

i-CF

i-FB-like1

i-FB-like2

i-FB-like3

i-CP

i-Mes

i-Ecto

i-EPC

i-EC

i-EC-like

i-Mes-like

Colored by clusters

UM
AP

 D
im

en
sio

n 
2

UMAP Dimension 1

b

c

RNA

UMAP Dimension 1 UMAP Dimension 1

UM
AP

 D
im

en
sio

n 
2

UM
AP

 D
im

en
sio

n 
2

d e
CCA co-projection anaysis

Colored by scRNA clustersColored by assay

ATAC
iPSC

i-CP

i-CM

iPSC-like 

i-CF

i-FB-like1

i-FB-like2

i-FB-like3

i-CP

i-Mes

i-Ecto

i-EPC

i-EC

i-EC-like

i-Mes-like

NANOG MESP1 FOXA2 ISL1 HAND1

TNNT2 TCF21 DCN WT1 CDH5

UMAP2 UMAP2 UMAP2 UMAP2 UMAP2

UM
AP

1
UM

AP
1

SFigure 13



$7$&�=ï6FRUHV

ï� �

51$�=ï6FRUHV

ï� �

a b

F

3HDN�WR�JHQH�LQ�IHWDO�KHDUW� 3HDN�WR�JHQH�LQ�L36&�GHULYHG�FDUGLDF�FHOOV

3HDN�WR�JHQH�OLQNV�VKDUHG�EHWZHHQ�IHWDO�KHDUW�DQG�L36&�GHULYHG�FDUGLDF�FHOOV

,Q�YLYR�VF$7$&�VHT ,Q�YLYR�VF51$�VHT ,Q�YLWUR��VF$7$&�VHT ,Q�YLWUR�VF51$�VHT

��
��
��
�3
HD
N�
WR
�*
HQ
H�
/L
QN
V

,Q
�Y
LY
R�

��
��
��
�3
HD
N�
WR
�*
HQ
H�
/L
QN
V

,Q
�Y
LWU
R�

$7$&�=ï6FRUHV

ï� �

51$�=ï6FRUHV

ï� �

��
��
��
3H

DN
�WR
�*
HQ
H�
/L
QN
V

6K
DU
HG

$7$&�=ï6FRUHV

ï� �

51$�=ï6FRUHV

ï� �

H&0

Y&0

OFT

CFP 

SUH&)

CF 

SUH60&�

60&�

EPC 

(QGR�

(QGR�

O(&

aEC

Cap

H&0

Y&0

OFT

CFP

SUH&)

CF

SUH60&

60&

EPC

(QGR�

(QGR�

O(&

aEC

Cap

L�S&0

L�&0

L�60&

L�&)

L�(&

L�(3&

6KDUHG�VF$7$&�VHT 6KDUHG�VF51$�VHT

6)LJXUH���



Clusters

O
bs

er
ve

d 
m

ut
at

io
ns

 / 
Ex

pe
ct

ed
 m

ut
at

io
ns

Enrichment of PCGC CHD denovo mutations in cluster peaks

a

cb

0 34

LD Score regression of GWAS snps from various common diseases 

% heritability / % SNPs

Model P values Odds ratio Excess called mutationd e f
scATAC aEC Cluster BPNet Model

80th 90th 100th
Score Threshold

0.5

1.0

1.5

2.0

2.5

- l
og

10
 (p

-v
al

)

80th 90th 100th
Score Threshold

1.2

1.4

1.6

1.8

O
dd

s 
Ra

tio

80th 90th 100th

5

10

15

20

25

Ex
ce

ss

Atrial fibrillation

Heart failure

Type2 diabetes

Coronary artery disease

Inflamatory bowel disease

Ps
eu

do
bu

lk

0.0

0.5

1.0

1.5

C1 C3C4C6 C5 C7C8C9 C10C11C12C13 C14C15 C17C18 C19 C20C2

NC vECFB2
preSMCCap CFPCF EPCaCM

preCF FB1OFT vCMSMCeCM PC
Endo1 lECaEC

C1 C3 C4C6 C5 C7C8 C9 C10 C11 C12 C13C14 C15 C17C18C19 C20C2

NC vECFB2
preSMC CapCFP CF EPCaCM

preCF FB1 OFTvCM SMCeCM PC
Endo1 lECaEC

UMAP Dimension 1

UM
AP

 D
im

en
sio

n 
2

0.6 0.3 0.0 0.3

Ps
eu

do
bu

lk

Log2 (Odds ratio)

g h i

Score Threshold

Cell type enrichment of prioritized mutations in 
cases vs. controls

Log fold-change counts within 100 bp of ref. and alt.

Model P values Odds ratio Excess called mutation

scATAC aEC Cluster Classification Model

80th 90th 100th
Score Threshold

ï��

0

10

Ex
ce

ss

80th 90th 100th
Score Threshold

1

2

3

4

5

O
dd

s 
Ra

tio

80th 90th 100th
Score Threshold

0.0

0.5

1.0

1.5

2.0

2.5

- l
og

10
 (p

-v
al

)
SFigure 15



HeartENN Model

Cluster specific peaks

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

O
dd

s 
Ra

tio

Cl
as

sif
ica

tio
n

BP
Ne

t

!!!

C1

eCM
C3

vCM
C4

OFT
C6

CFP
C5

FB1
C7

FB2
C8

preCF
C9

CF
C10

preSMC
C11

SMC
C12

PC
C13

EPC
C14

NC
C15

Endo1
C17

lEC
C18

aEC
C19

Cap
C20

vEC
C2

aCM

sc
AT

AC
 cl

as
sif

ica
tio

n_
aE

C
sc

AT
AC

 B
PN

et_
aE

C

a

b c d

Ps
eu

do
bu

lk

UMAP Dimension 1

UM
AP

 D
im

en
sio

n 
2

JARID2

0.25 0.35 0.45 0.55

Log2(gene expression)
UMAP Dimension 1

UM
AP

 D
im

en
sio

n 
2

0.05 0.10 0.15

UMAP Dimension 1

UM
AP

 D
im

en
sio

n 
2

0.1 0.2 0.3 0.4

Log2(gene expression) Log2(gene expression)

FOLH1 PIP5K1C

SFigure 16



             271                                                                                                          382
chr6:1487... TTGGAGGGGATAAATGGAATCACAGGGCGAGTACAACAGGATACGGTGAGTCATTTCAACTTCCTGCTAAACATGAACCCTACAAAAGCTTGATGTGTCTCAGATTTTTTGC
WT           TTGGAGGGGATAAATGGAATCACAGGGCGAGTACAACAGGATACGGTGAGTCATTTCAACTTCCTGCTAAACATGAACCCTACAAAAGCTTGATGTGTCTCAGATTTTTTGC
JKO          TTGGAGGGGATAAATGGAATCACAGGGCGAGT--------------------------------------------------------------------------------
 
·····························································································································
 
             383                                                                                                          494
chr6:1487... TGGGGGTTTTCCTCCTCGATTCAACCTCGGGTTTCTATGGCTTGCTCCTTCCTTCTTTTTATTTCTTTCTATGCATCACATTTGTCCTAGATCCTTCTCGGTCTATAAATAA
WT           TGGGGGTTTTCCTCCTCGATTCAACCTCGGGTTTCTATGGCTTGCTCCTTCCTTCTTTTTATTTCTTTCTATGCATCACATTTGTCCTAGATCCTTCTCGGTCTATAAATAA
JKO          ----------------------------------------------------------------------------------------------------------------
 
·····························································································································
 
             495                                                                                                          606
chr6:1487... CATCATTGTGTCATGCTGGACACTGGGTTTTAAATGTCAGCATCCTGTGCGCAGCCTTACCCCATGAGATAATATGGTTTTTCTAACTGCATTCCTACAGCACTGAACTAAC
WT           CATCATTGTGTCATGCTGGACACTGGGTTTTAAATGTCAGCATCCTGTGCGCAGCCTTACCCCATGAGATAATATGGTTTTTCTAACTGCATTCCTACAGCACTGAACTAAC
JKO          ----------------------------------------------------------------------------------------------------------------
 
·····························································································································
 
             607                                                               675
chr6:1487... TGAGGTGTTCAGCTGCTAAAAATTTTCTTAAATGGTGACATTTTCATAACCCCAGGGTTAGGGGATGGG
WT           TGAGGTGTTCAGCTGCTAAAAATTTTCTTAAATGGTGACATTTTCATAACCCCAGGGTTAGGGGATGGG
JKO          ------------------------------------------------ACCCCAGGGTTAGGGGATGGG
 
·····························································································································
 

Chr. position. chr6:14876986-14877986
sgRNA1 cut site. chr6:14877290
sgRNA2 cut site. chr6:14877642

cRE

JA
RI

D2
_c

RE
 K

no
ck

ou
t

SFigure 17



Supplementary figure legends 
 
SFigure 1: Quality control for scATAC-seq data from fetal hearts at PCW 6 (left), PCW 8 
(middle) & PCW19 (right).  
(a,b,c) Shown are the number of unique ATAC-seq nuclear fragments in each single cell (each 
dot) compared to TSS enrichment of all fragments in that cell. Dashed lines represent the 
thresholds for filtering cells  (1,000 unique nuclear fragments and TSS score >= 6).  
(d, e & f) The fragment length distribution for PCW 6 (left), PCW 8 (middle) & PCW19 (right). 
   
SFigure 2: Clustering of cells from scATAC-seq data.  
(a, b, c) Uniform Manifold Approximation and Projection (UMAP) of cells based on open chromatin 
regions (scATAC-seq) of PCW 6 (left), PCQ 8 (middle), and PCW19 (right) samples. Cells are 
colored according to clusters.  
(d & e) UMAP of cells from three timepoints combined. Cells are colored according to (d) sample 
gestational time and (e) cluster membership. (f,g) scATAC-seq gene activity profiling of immune 
marker genes (f) CD19 and (g) CD3D. 
 
SFigure 3: Gene scores of representative cell-type specific marker genes in UMAP of cells 
based on scATAC-seq data.  
Units: log2(normalized ATAC gene-score). Scale: MYL6 (min=0.6,max=1), MYL7 
(min=0.25,max=1.4), ACTN2 (min=0.2,max=1.2), HAND1 (min=0.4,max=1.2),TTN 
(min=0.4,max=2.2),GATA4 (min=0.5,max=1.6), HAND2 (min=0.5,max=1.75),TBX10 
(min=0.2,max=0.8),HEY1 (min=0.8,max=1.4), SRF (min=1,max=1.3), NKX2-5 
(min=0.5,max=2),TBX5 (min=0.2,max=1), ABCC9 (min=0.15,max=0.7), WT1 
(min=0.4,max=1),LUM (min=0.05,max=0.3), COL9A2 (min=0.2,max=0.6), TCF21 
(min=0.2,max=1),TBX18 (min=0.2,max=0.9), CNN1 (min=0.2,max=0.6), PDGFRB 
(min=0.4,max=1.4),HOXA3 (min=0.2,max=0.8), PRDM6 (min=0.2,max=1), TAGLN 
(min=0.2,max=0.9),TFAP2 (min=0.25,max=0.7), UNC5B (min=0.9,max=1.4), CD34 
(min=0.4,max=1.2),PECAM1 (min=0.25,max=1.25), CDH5 (min=0.3,max=1.5), CDH11 
(min=0.3,max=1.5),GJA5 (min=0.2,max=1), APLNR (min=0.4,max=1.5), CAV1 
(min=0.2,max=0.8),SELE (min=0,max=0.45), CA4 (min=0.3,max=1.1), SELP 
(min=0,max=0.25),LYVE1 (min=0.1,max=0.6)  
 
SFigure 4: Integration of scRNA-seq & scATAC-seq data using canonical correlation 
analysis (CCA).  
(a) UMAP of cells from 5 scRNA-seq studies without (left) and with (right) batch effect correction 
and harmonization using Harmony (right). Cells are colored by the scRNA study of origin.   
(b) Harmonized UMAP of scRNA-seq analysis used for downstream analysis. Cells are colored 
by clusters.  
(c) Gene expression (Units: TP10K) of cell type specific and cluster specific markers in 
harmonized scRNA-seq UMAP.  
(d) UMAPs of matched cells from scATAC-seq and scRNA-seq data modalities using the CCA 
subspace. On the left, cells are colored by their assay type and on the right, cells are colored by 
clusters from scRNA-seq.  
(e) Heatmap showing the cluster – cluster mapping between scRNA-seq and scATAC-seq 
clusters after CCA matching. 
 



SFigure 5: Overlap motif enrichment 
Overlap enrichment of position-weight matrix based motif instances in cell-type specific marker 
scATAC-seq peaks of each cell type cluster from Figure 1e.  
 
SFigure 6: Estimated cell signature scores from optimal transport algorithm applied to 
gene activity scores from scATAC-seq data.  
(a, b, c) UMAP of cells from scATAC-seq data showing (a) cell cycle signature z-scores, (b) 
apoptosis signature z-scores, and (c) growth rate estimates  
 
SFigure 7: Optimal transport based developmental trajectories for vCM, aCM and CF cells 
using scATAC-seq.  
(a) UMAPs of scATAC-seq cells in the ventricular cardiomyocyte (vCM) trajectory colored by the 
gestational sample time.  
(b) Heatmap of scATAC-seq signal (z-score of log2(RP10K)) of variable peaks identified in the 
vCM trajectory.  
(c) Heatmaps showing z-score of ChromVAR motif deviation scores (left) and gene expression in 
units of log2(TP10K) (right) of TFs with correlated variable activity in cells identified to be in the 
vCM trajectory, as ordered by pseudotime.  
(d) Expression dynamics of MYL2, an important marker gene for the vCM cell type.  
(e, f, g, h) Trajectory analysis for atrial cardiomyocyte cluster (aCM), analysis as above. (i, j, k, l) 
Trajectory analysis for cardiac fibroblast cluster (CF), as above. 
 
SFigure 8: Optimal transport based developmental trajectories for Cap, aEC and FB2 cells 
using scATAC-seq.  
(a) UMAPs of scATAC-seq cells in the Capillary cells (Cap) trajectory colored by the gestational 
sample time.  
(b) Heatmap of scATAC-seq signal (z-score of log2(RP10K)) of variable peaks identified in the 
vCM trajectory.  
(c) Heatmaps showing z-score of ChromVAR motif deviation scores (left) and gene expression in 
units of log2(TP10K) (right) of TFs with correlated variable activity in cells identified to be in the 
vCM trajectory, as ordered by pseudotime.  
(d) Expression dynamics of CD36, an important marker gene for the Cap cell type. (e, f, g, h) 
Trajectory analysis for arterial endothelial cell cluster (aEC), analysis as above. (i, j, k, l) 
Trajectory analysis for Fibroblast like cells 2 (FB2), as above. 
 
SFigure 9: Quality control data for iPS derived cardiac cell types.  
(Left to Right, Top to Bottom) Representative scATAC-seq data quality control filters for Day 0, 
Day 2, Day 5, Day 15, Day 30 cardiomyocytes, Day 30 endothelial cells, Day 30 epicardial cells, 
Day 30 cardiac fibroblast cells & Day 30 smooth muscle cells (top to bottom, left to right). 
Shown are the fragment length distribution for the same samples as above. 
 
SFigure 10: Quality control data for iPS derived cardiac cell types.  
(Left to Right, Top to Bottom) Representative scATAC-seq data quality control filters for Day 0, 
Day 2, Day 5, Day 15, Day 30 cardiomyocytes, Day 30 endothelial cells, Day 30 epicardial cells, 
Day 30 cardiac fibroblast cells & Day 30 smooth muscle cells (top to bottom, left to right). 
Shown are the number of unique ATAC-seq nuclear fragments in each single cell (each dot) 
compared to TSS enrichment of all fragments in that cell. Dashed lines represent the filters for 



high-quality single-cell data (1,500 unique nuclear fragments and TSS score greater than or equal 
to 6). (g, h, i, j, k, l)  
 
SFigure 11: Gene scores of cell type specific markers in iPSC-derived cardiac cell type 
scATAC-seq data.  
(a) UMAP plots showing gene scores of cell type specific and cluster specific markers.Units: 
log2(normalized ATAC gene-score) . Scale: POU5F1 (min=0,max=0.7), MESP1 
(min=0.25,max=1.25), HAND1 (min=0.4,max=1.6), HAND2 (min=0.8,max=1.4), TNNT2 
(min=0.25,max=1.4), TTN (min=0,max=2), CDH5 (min=0.3,max=1.5), CDH11 
(min=0.4,max=1.2), TCF21 (min=0.2,max=0.9), TBX18 (min=0.4,max=1), PDGFRB 
(min=0.4,max=1.2) &  PDGFRA (min=1.4,max=2.2). 
 
SFigure 12: Landscape of variable chromatin accessible peaks and their enriched motifs 
in iPSC-derived cardiac cell types.  
(a) Heatmap of z-scores of log2(scATAC-seq read counts) in cREs across iPSC-derived cell type 
clusters.  
(b) Statistical significance (BH adjusted -log10(p-value), hypergeometric test) of overlap 
enrichment of position-weight matrix based motif instances in cell-type specific marker scATAC-
seq peaks of each cell type cluster in (a) . 
 
SFigure 13: Integration of scRNA-seq & scATAC-seq data from iPSC-derived cell types 
using canonical correlation analysis (CCA).  
(a,b) UMAP of cells from scRNA-seq in iPSC-derived cardiac cell types. Cells are colored by the 
differentiation time point (a) and cell-type label of clusters (b).  
(c) Gene expression (Units: log2(TP10K)) of cell type specific and cluster specific markers in 
harmonized scRNA-seq UMAP.  
(d,e) UMAPs of matched cells from scATAC-seq and scRNA-seq data modalities using the CCA 
subspace, colored by assay type (d) and cell type label of clusters (e). 
 
SFigure 14: Comparison of peak to gene links between in vivo and in vitro cardiac cell 
types.  
In each panel, the left heatmap shows scATAC-seq signal (z-scores of log2(scATAC-seq read 
counts)) of clustered peaks across cells. The right heatmap shows the corresponding expression 
(z-scores of (log2(TP10K) from CCA imputed scRNA-seq) of genes linked to peaks shown in the 
left panel. The peaks and genes shown are based on peak-to-gene links unique to in vivo fetal 
heart cell types (a), unique to fetal heart cell types (in vivo) (b), unique to iPSC-derived cardiac 
cell types (in vitro) (c) and shared between in vivo and in vitro cardiac cell types. 
 
 
SFigure 15: Prioritizing disease-associated non-coding variants using the cell-type 
resolved scATAC-seq and predictive sequence models.  
(a) Enrichment of proportion of heritability from GWAS summary statistics of cardiovascular 
diseases, traits and control diseases (rows) attributed to scATAC-seq derived cRE landscapes of 
in vivo and in vitro cardiac cell types (columns).  
(b) Enrichment of cases versus control mutations using naïve overlap with cluster-specific ATAC-
seq peaks, showing relevance of the deep learning model to capture pathogenic disruptions.  



(c)  Enrichment (log2(OR) counts within +/- 50 bp, Fisher’s Exact Test) of prioritized mutations 
from each cell-type specific BPNet model in CHD cases vs. controls plotted on the scATAC-seq 
UMAP of all fetal heart cells.   
(d, e & f) Evaluation of robustness in disease prioritization of aEC model across different threshold 
values. (d) the log (Fisher’s exact test p-value), (e) the Fisher’s exact test odds ratio and (f) excess 
number of causal mutations observed in cases compared to controls are plotted across all 
threshold values.  
(g, h, i) Similar metrics as (d,e,f) for a classification model with the same parameters as the BPNet 
model in aEC cluster.. 
 
SFigure 16: Comparison of model performance on denovo mutations:  
(a) Barplot indicating the Fisher’s exact test odds ratio of the HeartENN model (Richter et al.) 
subsetted to the denovo mutations in cases and controls overlapping cell type resolved peaksets 
(blue) scoring above 0.01 as recommended by (Richter et al) vs classification model in aEC 
cluster (light green) and BPNet model in aEC cluster (dark green). Stars indicate statistical 
significance. (* <0.05. ** =0.008).  
(b, c, d) Gene expression of FOLH1(a), PIP5K1C(b) & JARID2(c) genes in UMAP of cells based 
on scATAC-seq data. Units: log2(TP10K). 
 
SFigure 17: CRISPR/Cas9 deletion of JARID1 enhancer. 
Sanger sequencing confirms CRISPR/Cas9 targeted homozygous deletion in iPSC at the JARID2 
cRE (red line). 
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