

1 **Diversity and Evolution of Computationally Predicted T Cell Epitopes against**

2 **Human Respiratory Syncytial Virus**

3 Short Title: Sequence-based characterization of RSV T-cell immune landscape

4

5 Jiani Chen [1][2][3][4], Swan Tan [1][3][4][5], Vasanthi Avadhanula [6], Leonard Moise [3][7], Pedro A
6 Piedra [6], Anne S De Groot [3][7], Justin Bahl [1][2][3][4][5][8] *

7 [1] Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA

8 [2] Institute of Bioinformatics, University of Georgia, Athens, GA, USA

9 [3] Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA

10 [4] Center for Influenza Disease and Emergence Response, University of Georgia, Athens, GA,
11 USA

12 [5] Department of Infectious Diseases, University of Georgia, Athens, GA, USA

13 [6] Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston,
14 TX, USA

15 [7] EpiVax Inc., Providence, RI, USA

16 [8] Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, USA

17 * Corresponding author email: justin.bahl@uga.edu

18 **Abstract**

19 Human respiratory syncytial virus (RSV) is a major cause of lower respiratory infection. Despite
20 more than 60 years of research, there is no licensed vaccine. While B cell response is a major
21 focus for vaccine design, the T cell epitope profile of RSV is also important for vaccine
22 development. Here, we computationally predicted putative T cell epitopes in the Fusion protein
23 (F) and Glycoprotein (G) of RSV wild circulating strains by predicting Major Histocompatibility
24 Complex (MHC) class I and class II binding affinity. We limited our inferences to conserved
25 epitopes in both F and G proteins that have been experimentally validated. We applied
26 multidimensional scaling (MDS) to construct T cell epitope landscapes to investigate the
27 diversity and evolution of T cell profiles across different RSV strains. We find the RSV strains
28 are clustered into three RSV-A groups and two RSV-B groups on this T epitope landscape.
29 These clusters represent divergent RSV strains with potentially different immunogenic profiles.
30 In addition, our results show a greater proportion of F protein T cell epitope content conservation
31 among recent epidemic strains, whereas the G protein T cell epitope content was decreased.
32 Importantly, our results suggest that RSV-A and RSV-B have different patterns of epitope drift
33 and replacement and that RSV-B vaccines may need more frequent updates. Our study provides
34 a novel framework to study RSV T cell epitope evolution. Understanding the patterns of T cell
35 epitope conservation and change may be valuable for vaccine design and assessment.

36 **Author Summary**

37 Lower respiratory infections caused by human respiratory syncytial virus (RSV) is a global
38 health challenge. B cell epitope immune response has been the major focus of RSV vaccine and
39 therapeutic development. However, T cell epitope induced immunity plays an important role in
40 the resolution of RSV infection. While RSV genetic diversity has been widely reported, few
41 studies focus on RSV T epitope diversity, which can influence vaccine effectiveness. Here, we
42 use computationally predicted T cell epitope profiles of circulating strains to characterize the
43 diversity and evolution of the T cell epitope of RSV A and B. We systematically evaluate the T
44 epitope profile of RSV F and G proteins. We provide a T cell epitope landscape visualization
45 that shows co-circulation of three RSV-A groups and two RSV-B groups, suggesting potentially
46 distinct T cell immunity. Furthermore, our study shows different levels of F and G protein T cell
47 epitope content conservation, which may be important to correlate with duration of vaccine
48 protection. This study provides a novel framework to study RSV T cell epitope evolution, infer
49 RSV T cell immunity at population levels and monitor RSV vaccine effectiveness.

50 **Introduction**

51 Human respiratory syncytial virus (RSV) is a negative-strand RNA virus that is classified in
52 the *Orthopneumovirus* genus of the family *Pneumoviridae*. It is a major cause of lower
53 respiratory disease in young infants, immunocompromised individuals, and elderly people,
54 resulting in annual epidemics worldwide [1]. The single-stranded RNA genome of RSV is
55 approximate 15.2 kb and encodes 11 viral proteins [2]. The Fusion (F) and Glycoprotein (G)
56 proteins are the two major surface proteins [3]. F protein is generally thought to be conserved
57 and therefore it is the focus of most current RSV vaccine designs. Although G protein is highly
58 variable, its contribution to disease pathogenesis and its role in the biology of infection suggest it
59 can also be an effective RSV vaccine antigen [4]. Despite the significant burden of RSV
60 infection worldwide, there is no licensed vaccine. The only approved intervention is passive
61 immuno-prophylaxis with palivizumab, which is achieved by administering the monoclonal
62 antibody (mAb) to a highly restricted group of infants under the age of 24 months and treatment
63 must be repeated monthly during the RSV season due to the relatively short half-life of the
64 antibody[5], [6]. Due to the high cost of monoclonal antibody treatments, this intervention is
65 limited to high-risk infants and is generally unavailable in developing countries. An RSV vaccine
66 is an urgent global healthcare priority, and it is likely that different strategies are needed for the
67 various high-risk groups.

68

69 A number of research teams have worked on the development of RSV vaccine since its isolation
70 and characterization in 1956 [7], [8]. However, vaccination with the formalin-inactivated, alum
71 precipitated RSV (FI-RSV) vaccine in RSV-naïve infants and young children, led to the
72 development of vaccine enhanced disease (VED) that hampered vaccine development for

73 decades to follow [9]. Many studies have been conducted to explain this undesirable outcome. It
74 is likely that formalin fixation led to a vaccine that mostly presented the post-fusion
75 conformation of RSV F protein, leading to an excess of non-neutralizing antibodies and immune
76 complex formation [10] [11] [12]. Other studies indicated that an impaired T cell response with
77 Th2 skewing [13], [14], as well as complement deposition in the lungs, contributed to enhanced
78 neutrophil recruitment [12]. Due to the recent breakthrough to structural constrain the F protein
79 in the pre-fusion conformation and the development of RSV rodent models, there has been a
80 surge in the number of RSV vaccine candidates undergoing clinical evaluation.

81

82 While most current RSV vaccination strategies focus on a B-cell-induced neutralization immune
83 response, T cell immunity also plays a major role in the resolution of virus infection and is
84 essential for RSV vaccine development [15], [16]. Once RSV infection of the lower airways is
85 established, CD8 T cells play an important part in viral clearance and CD4 helper T cells can
86 orchestrate cellular immune responses and stimulate B cells to produce antibodies. However,
87 Th2-biased responses have been associated with animal models of RSV VED, and measurement
88 of Th1 and Th2 responses are considered important to predict the safety of vaccine candidates
89 [12]. Therefore, induction of a balanced cell-mediated immune response through vaccination
90 would promote RSV clearance, but caution must be taken to avoid the potential for
91 immunopathology. Taken together, a closer examination of T cell immunity and the virus
92 sequences that induce T cell responses are needed for RSV vaccine development.

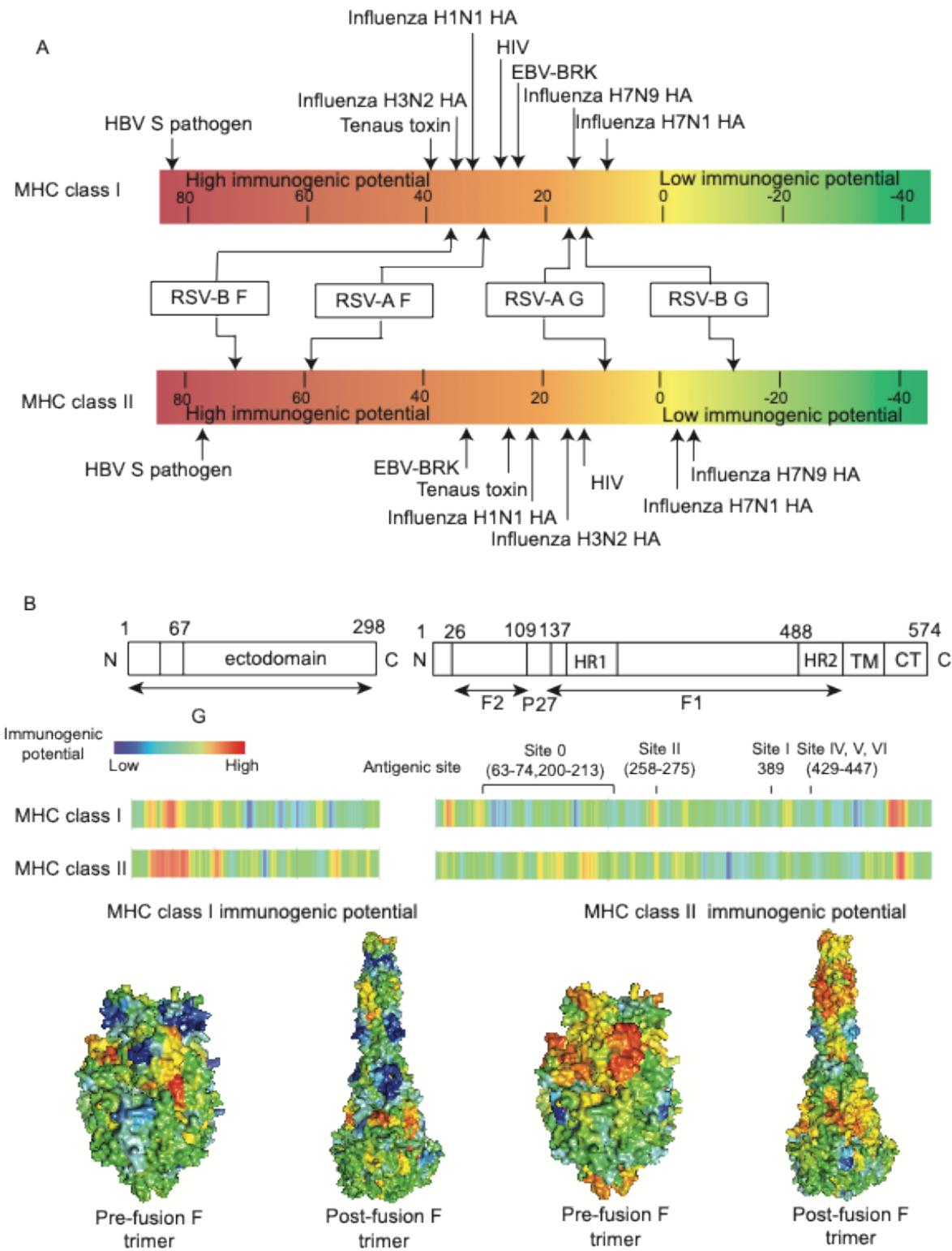
93

94 Human respiratory syncytial virus has a complex circulation pattern in the human population.
95 Within two antigenic groups, RSV-A and RSV-B, different genotypes can co-circulate within the

96 same community, while novel RSV genotypes with high genomic diversity may arise and
97 potentially replace the previously dominant genotypes [17]. In recent years, several unique
98 genetic modifications in RSV have been identified, including a 72-nucleotide (nt) duplication
99 (ON genotype) in RSV-A G gene and another with a 60-nt duplication (BA genotype) in RSV-B
100 at a similar region [18]. The observed RSV genetic diversity has raised a question about whether
101 it is necessary for an RSV vaccine to include several different strains to be effective. Most
102 current RSV vaccine developments are based on an RSV A2 laboratory strain, which is a
103 chimeric strain that belongs to subtype A [19]. While these treatments hold promise, there is the
104 possibility of viral strains developing escape mutations. For example, palivizumab-resistant
105 strains have been isolated from both RSV rodent models and human [20][16]. Monoclonal
106 antibody tests have demonstrated additional antigenic variability within RSV-A /B antigenic
107 groups and suggest that it may play a role in the ability of RSV to escape immune response and
108 established infections [21]. In addition, amino-acid variation at the T cell epitope level and the
109 emergence of novel T cell epitopes have been reported [22], but further studies are needed to
110 illustrate the effect of these variations on T cell recognition. T cell epitopes are sometimes cross-
111 reactive, which is defined as the recognition of two or more epitope peptide-MHC complexes by
112 the same T cell receptor and these cross-reactive epitopes are predicted to be cross-conserved
113 [23]. Prediction of cross-conservation is important for vaccine design because it would be useful
114 to predict protection against a pathogen with different lineages and identify escape variants.
115 Hence, characterizing T cell epitope profiles across different strains can be crucial for RSV
116 vaccine development.

117

118 In this study, we utilize immunoinformatic approaches that are implemented in the iVAX toolkit
119 [24] to predict T cell epitopes in RSV across different strains with a focus on the two major
120 surface proteins F and G. With the analysis of a comprehensive dataset, we evaluate the lineage-
121 specific T cell epitope profile of RSV. We also create sequence-based T cell epitope landscapes
122 based on epitope content comparison across different strains and further correlate RSV T cell
123 immunity change with virus evolution. The proportion of cross conserved T cell epitope content
124 between vaccine candidate strains that developed earlier and RSV circulating strains with
125 different isolated years and locations were also calculated. These analyses may aid in
126 understanding RSV T cell immunity across different strains and contribute to current vaccine
127 design efforts.


128

129 **Results:**

130 **Distribution of T cell epitopes in RSV surface proteins**

131 We evaluated the T cell immunogenic potential across RSV surface proteins by scanning 9
132 residue regions to predict the binding probability to MHC class I and class II molecules (Figure
133 1). The epitope density of RSV surface proteins was evaluated using a normalized epitope
134 density score. F protein has an epitope density score greater than +20 for both the class I and
135 class II immunogenicity scale analysis, indicating significant immunogenic potential [24]. This
136 contrasts with lower G protein class I and class II epitope density protein scores for both
137 subtypes. The class I epitope density score of G protein was greater than +10 in both subtypes
138 but the class II density was lower than random expectation in the analysis of RSV-B (Figure 1A).
139 This result suggests that RSV surface proteins are likely to have the potential to stimulate T cells
140 that are required for protective immunity. We then investigated the distribution of T cell

141 immunogenicity across the proteins and found that there are regions with relatively high T cell
142 immunogenic potential (Figure 1B). The distribution of T cell immunogenicity of F protein was
143 mapped onto its protein structure and overlap between protein sequence regions with high T cell
144 immunity potential and the antibody neutralizing targets was observed at antigenic site Φ and
145 site II.

147 **Figure 1: T cell immunogenic potential for RSV surface proteins based on MHC binding**
148 **prediction.** (A) T cell immunogenic potential of RSV major surface proteins. T cell epitope
149 density scores for RSV major surface proteins and other pathogen proteins are labeled on a scale
150 bar. Low-scoring proteins are known to engender little to no immunogenicity while higher-
151 scoring proteins are known immunogens. Proteins scoring above +20 on this scale are considered
152 to have significant immunogenic potential. (B) Distribution of RSV T cell immunogenic
153 potential across F and G protein in RSV reference strain A2. Prefusion or post-fusion F protein
154 surface was colored by the relative immunogenetic potential at each location. Analyses are based
155 on the RSV-A reference sequence.

156

157 **Lineage specific T cell epitope profiles**

158 We then extended T cell epitope predictions from RSV representative strains to multiple wild-
159 circulating strains. The distribution and diversity of T cell epitopes across different strains are
160 illustrated in heatmaps with the corresponding time-scaled phylogenies (Supplementary Figure 1
161 and Supplementary Figure 2). Both F and G proteins contain epitopes that were conserved across
162 all RSV strains in almost 100% of sampled isolates, suggesting that they could serve as high-
163 quality T cell epitope candidates for vaccine design. In contrast, some epitopes were mutated in
164 selected strains, and those epitopes that only occurred in certain clades within the phylogeny
165 could be interpreted as clade-specific “fingerprints”.

166

167 The G gene duplication events in RSV, which are unique gene signatures, can either shift the
168 position of epitopes or cause the emergence of novel epitopes. Two novel class I epitopes, (no.
169 31 and no. 40 in Supplementary Figure 2A), were found in RSV-A strains that contain G gene

170 duplication. In addition, an emergent class II epitope (no. 25 in Supplementary Figure 2A) was
171 identified in RSV-A sequences that contain G gene duplication, which was a shift from an
172 epitope (no. 24) that has been observed in other strains. From RSV-B strains that contain the G
173 gene duplication event, we also observed multiple lineage specific class I T cell epitopes, which
174 are caused by a 2-aa deletion (aa157 and aa158) in these strains instead of directly due to the 60-
175 nt duplication event. RSV-B G proteins that have the duplication event contain multiple novel
176 epitopes (no. 22, 23, 26, 28, 30, 37) but do not contain several epitopes (no. 24, 25, 27, 29, 31,
177 38) that are identified in other strains (Supplementary Figure 2B).

178

179 To further determine whether the T cell epitopes defined using EpiMatrix might be
180 immunogenic, we utilized the JanusMatrix [25] algorithm to identify the T cell epitopes that are
181 likely to be cross-conserved with human epitopes and thereby tolerated by the immune system.
182 Based on this analysis, 6.45% of putative class I epitopes and 1.12 % of putative class II epitopes
183 of RSV major surface proteins are cross-conserved with human proteome-derived epitopes at
184 TCR facing residues. As these peptides have similar HLA binding preferences that are contained
185 in human proteins (Supplementary Figure 3), they were therefore assumed not to be
186 immunogenic. After excluding the high-JanusMatrix score epitopes identified above, we were
187 able to identify T cell epitopes that were conserved in more than 60% of currently circulating
188 RSV strains. We searched the IEDB epitope database to determine if these epitopes were related
189 to experimentally validated RSV T cell epitopes or HLA ligands. The conserved RSV T cell
190 epitope sequences that may be important for future vaccine development are shown in Table 1
191 and Table 2.

192 **Table 1: Experimentally validated conserved MHC class I epitopes peptides in RSV major**
 193 **surface proteins ^a**

194

Subgroup	Protein	Epitope address	Epitope sequence ^b	Binding HLAs ^c	Conservation ^d	Number of human matches ^e	Epitope id in IEDB
RSV-A & RSV-B	F	45-53	LSALRTGKY	A0101	99.55%(A) & 74.24%(B)	1	158982
		140-148	FLLGVGSAI	A0201	99.59%(A) & 97.98%(B)	0	156869
		250-258	YMLTNSELL	A0201, A2402	99.59%(A) & 99.33%(B)	0	156979
		272-280	KLMSSNVQI	A0201	66.64%(A) & 96.08%(B)	3	156902
		273-281	LMSNSNVQIV	A0201	66.56%(A) & 96.08%(B)	1	156915
		449-457	TVSVGNTLY	A0101	99.75%(A) & 99.33%(B)	0	97017
RSV-A	F	10-18	AITTILAAV	A0201	84.69%	3	156844
		111-119	LPRFMNYTL	B0702	91.18%	0	158975
		170-178	ALLSTNKAV	A0201	99.67%	2	156847
		383-391	NIDIFNPKY	A0101	95.86%	0	159045
	G	25-33	FISSCLYKL	A0201	99.26%	0	158759
		61-69	FIASANHKV	A0201	82.08%	0	158751
RSV-B	F	525-533	IMITAIIIV	A0201	89.25%	0	156892
		540-548	SLIAIGLLL	A0201	97.65%	5	156960
	G	25-33	VISSCLYKL	A0201	90.91%	0	158759
		61-69	FIISANHKV	A0201	99.02%	0	158751

195

196 a. This table contains putative MHC class I epitopes that have already been experimentally
 197 validated in publications.
 198 b. Epitopes sequences that are conserved in both RSV-A and RSV-B are in bold.
 199 c. HLAs that have the top 1% binder scores in EpiMatrix for epitope sequence.
 200 d. The conservation is evaluated by the presence of epitope peptides across all RSV-A or
 201 RSV-B sequences that are publicly available (only epitope sequences with at least 60%
 202 conservation are shown in the table).
 203 e. Count of human epitopes found in the search database. JanusMatrix was used to search
 204 human epitopes that are predicted to bind to the same allele as the RSV epitope and share
 205 TCR facing contacts with the RSV epitope.

206

207 **Table 2: Experimentally validated conserved MHC class II epitopes peptides in RSV major**
 208 **surface proteins ^a**

Subtype	Protein	Epitope address	Epitope sequence ^b	Conservation ^c	Number of human matches ^d	Epitope id in IEDB
RSV-A	F	29 - 44	TEEFY <u>QSTCSAVS</u> KGY	98.53%	3	956680
		50 - 70	TGW <u>YTSVITIELSNIK</u> ENKCN	97.75%	1	153700
		167 - 192	IKSALLSTNKAVV <u>SLNSNGV</u> SLTSKV	93.14%	4	545502
		218 - 234	ETVIE <u>FQQKNR</u> LEIT	98.86%	3	1087566
		247 - 268	VSTY <u>MLTNSELLS</u> LINDMPITN	98.98%	8	99471
		288 - 310	IMSIIKEV <u>LAYV</u> VLQLPLYGVID	98.57%	5	99334
		399 - 418	KTDVSSSV <u>ITSLGAI</u> VS ^c YG	99.14%	0	545603
		453 - 470	GNTLYY <u>VNKQ</u> EGKSLYVK	98.37%	1	99691
		492 - 510	ISQVNEKIN <u>QSLAFIR</u> KSD	80.32%	1	153713
		543 - 560	AVG <u>LLYCKAR</u> STPV <u>TLS</u>	79.26%	6	153641
	G	19 - 43	TLNH <u>LLFISSCLY</u> KLNLKSIAQITL	93.13%	8	1087567
RSV-B	F	29 - 44	TEEFY <u>QSTCSAVS</u> RGY	99.78%	3	956680
		50 - 70	TGW <u>YTSVITIELSNIK</u> ETKCN	93.95%	1	153700
		192 - 218	VLD <u>LNKYINNQL</u> PIVN <u>QOSCRIS</u> NIE	83.43%	4	153636
		247 - 268	LSTY <u>MLTNSELLS</u> LINDMPITN	98.54%	8	99471
		399 - 418	KTDI <u>SSSVITSLGAI</u> VS ^c YG	98.88%	0	545603
		453 - 470	GNTLYY <u>VNKLEG</u> KNLYVK	98.77%	0	99691
		492 - 510	ISQVNEKIN <u>QSLAFIR</u> RSD	97.42%	1	153713
		543 - 560	AIG <u>LLYCKAKNTPV</u> TLS	94.96%	4	153641
	G	51 - 74	STS <u>LIIAAIFI</u> ISANHKV <u>TLTTV</u>	94.66%	8	158751

209

210

a. This table contains putative MHC class II epitopes which share the identical binding

211

groove sequence of the RSV class II epitopes that have already been experimentally

212

validated in publications.

213

b. Underlined sequences represent the nine-mer frames with the greatest potential to bind

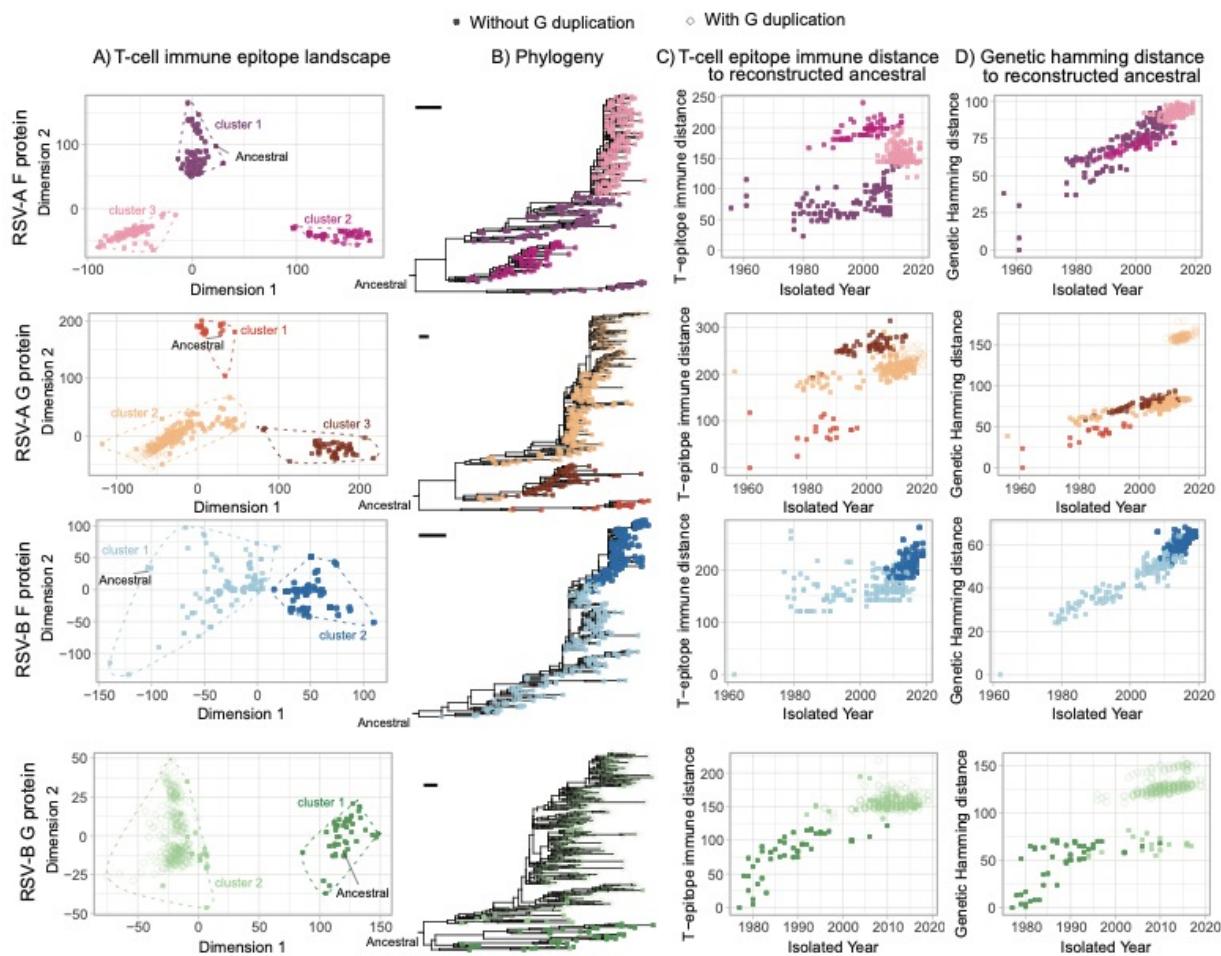
214

class II HLA. Epitope sequences that are in bold indicate sequences are predicted to bind

215

class II HLA and are conserved in both RSV-A and RSV-B.

216 c. Conservation is evaluated by the presence of epitope peptides across all RSV-A or RSV-
217 B sequences that are publicly available (Only epitope sequences with at least 60%
218 conservation are shown in the table).
219 d. Count of human epitopes found in the search database. JanusMatrix was used to search
220 human epitopes that are predicted to bind to the same allele as the RSV epitope and share
221 TCR facing contacts with the RSV epitope.
222

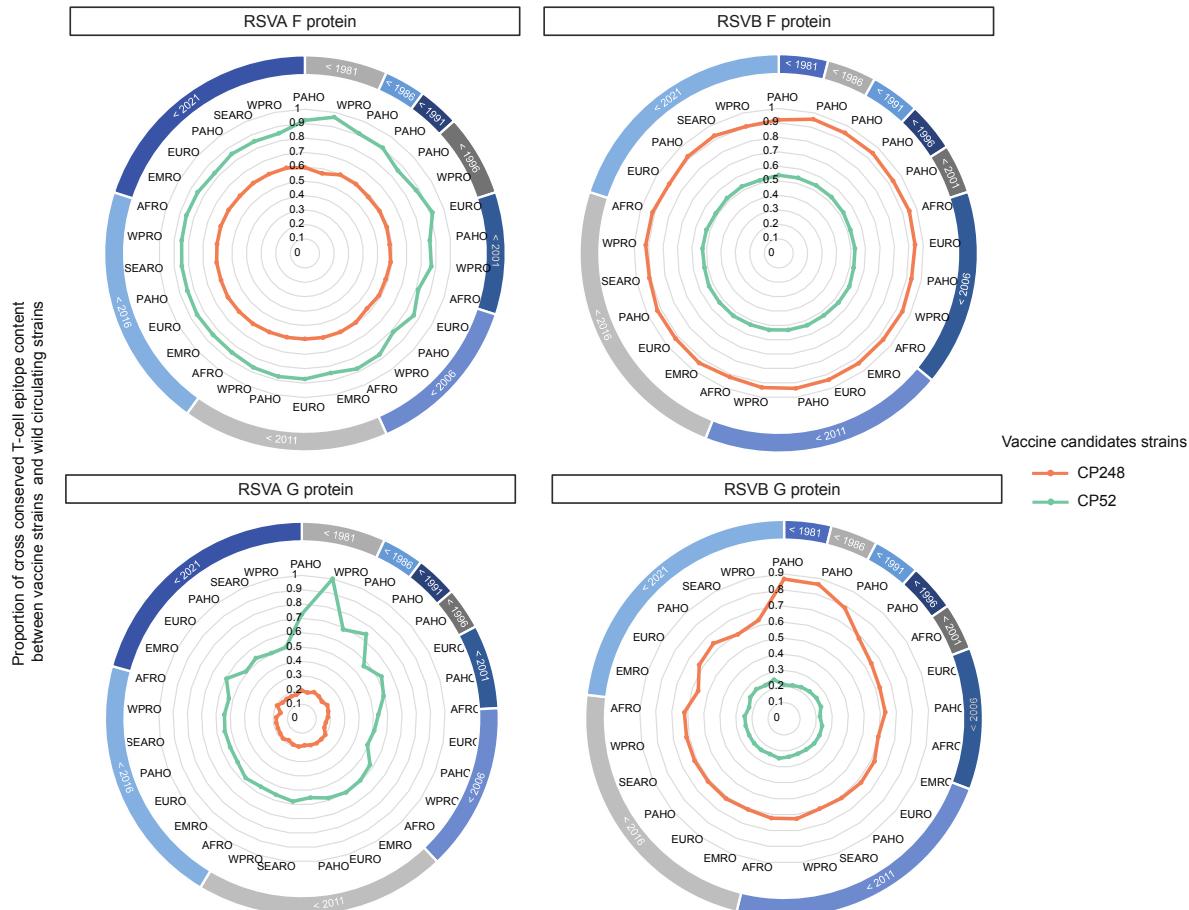

223 **Predicted RSV T cell epitope landscapes**

224 To investigate the evolution of RSV on T cell immunity profiles, we develop a new approach to
225 visualize the T immunity profile of multiple RSV strains on a landscape. We performed a T cell
226 epitope content pairwise comparison between RSV strains, and T cell epitope distances between
227 pair of RSV strains were then calculated using a T epitope distance algorithm. We then applied a
228 multidimensional scaling (MDS) approach using these estimated pair-wise T epitope distances to
229 map RSV strains to a landscape to characterize their T-cell immunity profile. We found both
230 Class I and Class II T cell immunity profiles of F and G proteins of different RSV strains were
231 clustered into groups on this T cell epitope landscapes (Supplementary Figure 4). Combining the
232 Class I and Class II T-cell epitope bidding profiles, RSV-A major surface protein isolates can be
233 divided into three clusters and RSV-B major surface protein isolates can be divided into two
234 clusters (Figure 2, Supplementary Figure 5). We observe that the G gene sequence isolates that
235 contain 72-nt (RSV-A) or 60-nt (RSV-B) duplications clustered together with other sequences
236 instead of forming isolated groups. To further investigate the T cell epitope diversity, we
237 correlated this clustering pattern with the phylogenetic histories (Figure 2B). The phylogenetic
238 tree topologies of the RSV-A F gene and G gene are similar. The F gene cluster 1 is paraphyletic,
239 while cluster 2 and 3 are monophyletic. Cluster 1 is the closest to the ancestral sequence and
240 mapping this group onto the phylogeny show that this cluster has a basal relationship with
241 clusters 2 and 3 indicating that the phylogenetic divergence occurred prior to epitope drift. The
242 RSV-B F and G gene genealogies are very different. In particular, the RSV-B F gene topologies
243 is indicative of strong immune selection, similar to observed human influenza A virus or within
244 host HIV phylogenies [26]. In contrast, the RSV-B G gene phylogeny shows the co-circulation
245 of multiple lineages, though this could reflect the sequencing bias of G genes (Figure 2B). We

246 then calculated the T-cell epitope immune distance of each strain from a reconstructed ancestral
247 sequence (Figure 2C). These distances were then plotted against the year of isolation and colored
248 according to the cluster identified in Figure 2A. RSV-A shows that multiple predicted immune
249 phenotypes co-circulate and persist for long periods (>2 decades). Analysis of RSV-B shows a
250 turnover of the predicted immune phenotypes with short periods of co-circulation (<5 years) for
251 F and G protein T cell epitopes. The limited periods of co-circulation is again consistent with
252 phenotype patterns observed for viruses under strong immune selection (e.g H3N2 influenza A
253 virus) [27], [28]. In contrast, genetic distances from the reconstructed ancestral sequence plotted
254 against year of isolation show patterns typical of gradual genetic drift, except in the G gene
255 where a 72-nt and 60-nt insertion is present (Figure 2D). Taken together, these results suggest
256 that genetic and predicted T-cell epitope immune diversity are different and may be an important
257 factor to consider when evaluating RSV vaccine efficacy.

258
259 There are multiple methods available to predict T cell epitopes [29], which may result in
260 different reconstructed landscapes if there is a systematic bias in the prediction method. We used
261 the NetMHCpan method [30] to predict T cell epitopes and perform the same landscape
262 reconstruction using MHC class I binding predictions for RSV-A F protein. Our analysis showed
263 a consistent clustered pattern of RSV T epitope profile on the landscape regardless of T cell
264 epitope prediction method (Supplementary Figure 6).

265



266

267 **Figure 2: Predicted T cell epitope landscapes and genetic evolution of RSV surface**
268 **proteins.** Epitope landscapes of RSV major surface proteins are built with MHC class I and class
269 II epitope content comparison across different strains. Filled circles indicate F protein isolates or
270 G protein isolates without duplication. Diamonds indicate G protein isolates with gene
271 duplication. T cell immunity clusters are determined with *k-means* method and are used to color
272 the sequenced isolates in the following panels. The corresponding Maximum Likelihood (ML)
273 phylogenies are reconstructed and are rooted by mid-point. Scale bars indicate 0.005 nucleotide
274 substitution per site. T cell epitope immune distance and genetic hamming distance from the
275 estimated TMRCA are plotted against the isolated time of each sequence.

276 **Assessment of vaccine candidate strains with T cell epitope content**

277 To quantitatively evaluate whether it might be necessary to include multiple RSV strains to
278 prepare an effective vaccine, two live attenuated RSV strains that are previously considered as
279 vaccine candidates, CP248, a recombinant virus that belongs to subtype A, and CP52, which is a
280 recombinant RSV-B strain, were included in our analysis and compared to wild-type strains
281 using EpiCC. We calculated the average proportion of cross-conserved T cell epitope content
282 between the selected vaccine strains and wild-circulating strains from different isolation years
283 and WHO regional groups (Figure 3, Supplementary Figure 7). Different proportions of cross-
284 conserved T cell epitope content against isolates from two different subtypes, A and B, were
285 observed in both the F and G protein analyses. In the comparison of the vaccine strains and wild
286 strains belonging to the same subtype, the proportion of cross-conserved T cell epitope in RSV F
287 protein is relatively stable in different groups, all are higher than 78% for RSV-A and higher
288 than 85% for RSV-B. In contrast, changes in the proportion of cross-conserved T cell epitopes
289 were detected among groups within the same RSV subtype, especially in different temporal
290 groups in the G protein analysis (Figure 3). Vaccine strain CP248 appears to have a relatively
291 higher proportion of cross conserved T cell epitopes within G protein when compared to the
292 RSV-A strains that were isolated before 1991 ($> 70\%$) and a relatively lower degree of
293 conservation against recently isolated strains. A similar decrease in T cell epitope conservation
294 with time was identified for vaccine strain CP52 among circulating RSV-B strains.

295

296 **Figure 3: Evaluation of previously used RSV vaccine candidate strains with T cell epitope**
297 **content of circulating strains.** RSV-A and RSV-B major surface protein sequences are
298 subsampled and then grouped by isolation year and 6 isolated WHO regions. African Region
299 (AFRO), Region of the Americas (PAHO), South-East Asia Region (SEARO), European Region
300 (EURO), Eastern Mediterranean Region (EMRO) and Western Pacific Region (WPRO). The
301 proportion of cross-conserved T cell epitope content between live attenuated strains (CP248 or
302 CP52) and wild circulating strains are displayed as radar plots.

303

304 **Discussion**

305 Although both CD4 and CD8 T cells contribute to protection against RSV-induced disease
306 following primary infection [16][31], T cell epitopes have received limited attention in the RSV
307 research effort. We demonstrate RSV surface proteins appear to have significant potential to
308 drive T cell immunity using a computational approach, based on their T cell epitope density
309 scores as determined by MHC molecular binding prediction. The relatively high putative T-cell
310 epitope density might make F protein a good target for RSV vaccine. In addition to the analysis
311 of T cell epitope density and distribution in RSV major surface proteins, we also demonstrated
312 lineage-specific variations in T cell epitope content. Even though RSV F protein is believed to be
313 well conserved and G protein is reported to be highly variable, epitope mutations are observed
314 across different lineages within the F protein, and potential conserved T cell epitopes can still be
315 found in the highly variable G protein, suggesting that studying the lineage-specific T cell
316 epitopes in RSV can provide insight into the impact of immune selection on viral diversity and
317 persistence. While experimental validation is needed, this analysis highlights the importance of
318 understanding population-level epitope conservation as it may provide important insight into the
319 development of T cell epitope-driven vaccines against RSV infection.

320

321 A major focus of our work is the development of a sequence-based method to map the evolution
322 of T cell immunity across different stains. Following a previously pivotal work that used MDS
323 method to map the evolutionary adaptation of influenza A virus-induced by CD8 T cell using the
324 presence and absence of MHC class I epitopes [32], we constructed RSV T cell immunity
325 landscapes using immune distances that were generated by T cell epitope cross-conservation
326 analyses, which allows for easy visualization and intuitive understanding of the potential for T
327 cell immunity relationships among different strains. When comparing across strains, we found

328 that the T cell epitope content of RSV surface proteins from different strains can be clustered, as
329 has been observed for the antigenic relationship reported in other pathogens [49][50]. Our results
330 also demonstrate the correspondence between RSV T cell immunity clusters and their
331 corresponding phylogeny, with sequences in the same clade generally belonging to the same T
332 cell immune cluster. Importantly, we also observe different patterns of T-cell epitope evolution
333 of RSV wild strains compared with their genetic evolution, which highlights the importance of
334 characterizing T cell epitope changes in RSV.

335

336 We identified highly conserved RSV T cell epitopes in this study, some of which have already
337 been experimentally validated and published in the IEDB database. However, we also identified
338 several other conserved T cell epitopes that have not been previously described. These may be
339 valuable for vaccine design, although experimental validation will be needed. Furthermore, the
340 homology of selected RSV epitopes to human epitopes suggests that some predicted RSV T cell
341 epitopes might be tolerated by the human immune system, or could induce a harmful cross-
342 reactive immune response against human proteins when administered with an adjuvant [25].
343 Certain aspects of immunity to RSV were not addressed by this study. For example, neutralizing
344 antibody responses are currently considered to be the most important correlate of immunity.
345 While neutralizing antibodies would not directly be elicited by a T cell epitope-driven vaccine,
346 helper (CD4) T cell epitopes are required to generate high affinity, high specificity antibodies.
347 We also note that we have limited our focus on the two major RSV surface proteins in our
348 current analysis, but other RSV proteins like N, M, or M2-2 proteins might also contribute to
349 vaccine efficacy [36].

350

351 An effective vaccine against variable viruses should contain T cell epitopes that are highly
352 conserved among circulating strains [37]. Vaccine efficacy can be diminished if T cell epitopes
353 in a vaccine strain do not match when new strains of pathogens emerge. In this study, we used an
354 immunoinformatic-based approach to estimate cross-conserved T cell epitope contents between
355 two live attenuated vaccine candidate strains and RSV circulating wild strains. We found that
356 there was a low proportion of cross-conserved T cell epitope content with vaccine strains that
357 belonged to different antigenic groups, which indicates the risk of using a single-subtype strain
358 in RSV vaccines. In addition, we observed a lower proportion of cross-conserved G-protein T
359 cell epitope content between vaccine strains and recent circulating strains in the same antigenic
360 group, which suggests that including T cell epitopes from different strains in the same antigenic
361 group might also be important for RSV vaccine development. Although we did not observe a
362 significant change in cross-conserved T cell epitope content in F protein, we cannot rule out the
363 probability that variation of F protein in the future could render a single-strain-based vaccine
364 less effective. Our current analysis is based on reduced datasets due to the heavy computational
365 capacity required to perform epitope content comparison. We constructed these representative
366 datasets by randomly subsampling the complete datasets according to geographical regions and
367 isolated years. Our findings may reflect the T cell epitope diversity of publicly available RSV
368 strains, however, additional RSV surveillance efforts may be required to get a full picture of the
369 T cell epitope variability of RSV.

370

371 The lack of experimental data might cause problems in epitope identification. Computational-
372 based T cell epitope landscapes have the potential for bias. But the observed clustered T cell

373 evolutionary pattern in RSV surface proteins provide valuable insights into virus evolution in the
374 aspects of T cell immunity and strain selection for vaccine design.

375
376 Overall, this study provides a focused analysis of T cell epitopes in RSV major surface proteins
377 using computational tools. We performed a comprehensive T cell epitope prediction for RSV
378 showing the immunological relationship of T cell epitopes in RSV surface proteins. This study
379 demonstrates that T cell epitope evolution may differ from genetic variation and provides a
380 framework for developing an integrated epitope-based RSV vaccine and evaluation methods that
381 could be used to optimize vaccination strategies.

382

383 **Materials and Methods**

384 **Dataset**

385 RSV GenBank records files were retrieved from NCBI's GenBank nucleotide database using the
386 search term "HRSVA" or "HRSVB" on June 22, 2020. F and G gene nucleotide sequences and
387 metadata including country of isolation and collection date were extracted using customized
388 python scripts. Genotype assignments were made with the program "LABEL", using a
389 customized RSV module [38] [39]. Countries of isolation were grouped into 6 WHO regions:
390 African Region, Region of the Americas, South-East Asia Region, European Region, Eastern
391 Mediterranean Region, and Western Pacific Region [40]. The following inclusion and exclusion
392 criteria were applied: (i) each sequence needed to have a known isolated geographic location and
393 isolated year, (ii) each sequence had to be at least 80% of the complete gene sequence in length,
394 (iii) identical sequences with the same isolate country were removed, and (iv) vaccine derivative
395 and recombinant sequences were removed. Using these criteria, comprehensive datasets of RSV

396 F and G genes were defined (RSV-A F gene = 1010, RSV-B F gene = 894, RSV-A G gene =
397 1488, RSV-B G gene = 1120). Nucleotide sequences from each dataset were aligned using
398 MAFFT.v7 [41] and were translated into amino acids using EMBOSS.v6.6.0 [42] for
399 immunoinformatic analyses. In addition, two artificial sequences, CP248 and CP52 (cold passage
400 live RSV strains that were previously evaluated as vaccine candidates, Accession No: U63644,
401 AF0132551 respectively) were downloaded from the NCBI's GenBank nucleotide database
402 [43].

403

404 **Phylogenetic inference**

405 The nucleotide sequences of RSV major surface proteins were used to reconstruct the
406 maximum-likelihood (ML) phylogeny of RSV using RAxML.v8 with GTR+GAMMA
407 substitution model [44]. The best-scoring ML tree was automatically generated from five runs by
408 RAxML. Time-scaled phylogenies were further reconstructed with the best scoring ML trees
409 using the program “Timetree” [45]. The phylogenies are visualized in the R package “ggtree”
410 [46].

411

412 **T cell epitope prediction**

413 RSV major surface protein sequences were scored for binding potential against a globally
414 representative panel of Human Leukocyte Antigen (HLA) class I and class II alleles using the
415 EpiMatrix algorithm. This algorithm as well as the ClustiMer, JanusMatrix, and EpiCC
416 algorithms discussed below are part of the iVAX toolkit developed by EpiVax, which is
417 available for use under a license or through academic collaborations [24].

418

419 Evaluation of class I epitopes was made based on predictions for four HLA-A and two HLA-B
420 supertype alleles: A*01:01, A*02:01, A*03:01, A*24:02, B*07:02, B*44:03. Class II epitopes
421 were identified for nine HLA-DR supertype alleles: DRB1*01:01, DRB1*03:01, DRB1*04:01,
422 DRB1*07:01, DRB1*08:01, DRB1*09:01, DRB1*11:01, DRB1*13:01, and DRB1*15:01.
423 EpiMatrix parsed 9-mer sequence frames (each one overlapping the previous one by one amino
424 acid) from the antigen sequence and assigned a score for each nine-mer/allele pair on a
425 normalized Z distribution. Nine-mer sequences that had Z-scores of at least 1.64 are considered
426 to be in the top 5% of any randomly generated set of 9-mer sequences and to have a high
427 likelihood of binding to HLA molecules and being presented to T cells. Sequences that score
428 above 2.32 on the Z-scale (top 1%) are extremely likely to bind to a particular HLA allele and to
429 be immunogenic. For this analysis, HLA-class I restricted 9-mer sequences that had top 1%
430 binder scores to at least one HLA class I supertype allele were considered to be putative class I
431 epitopes [24].
432 To identify putative class II epitopes, we used an algorithm called ClustiMer [24] to screen
433 EpiMatrix scoring results for the nine class II alleles. ClustiMer identifies contiguous regions of
434 15–30 amino acids that have a high density of MHC class II binding potential. Epitope density
435 within a cluster is reported as an EpiMatrix Cluster Score, where scores of 10 and above are
436 likely to be recognized in the context of multiple class II alleles and to be high-quality class II
437 epitopes.
438 We also applied analysis of human homology to this study. The JanusMatrix algorithm was used
439 to assess the potential cross-conservation of T cell epitopes with epitopes restricted by the same
440 HLA alleles in the human proteome [25]. Briefly, JanusMatrix scans each identified epitope and
441 examines the shared T cell receptor (TCR) contacts with class II epitopes present in the human

442 proteome, to compute a JanusMatrix Human Homology Score. As defined in retrospective
443 studies, foreign class I epitopes that score greater than 2 and class II epitopes that score greater
444 than 5 may be less immunogenic due to T cell tolerance.

445

446 **Protein-level T cell immunogenic potential evaluation**

447 RSV reference sequences (RSV-A: NC_038235, RSV-B: NC_001781) were downloaded from
448 the NCBI RefSeq database and were used to evaluate the protein-level immunogenic potential of
449 RSV major surface proteins. The protein-level immunogenic potential as represented by the
450 EpiMatrix-defined T cell epitope density score was computed by summing the top 5% binder
451 scores across HLA alleles and normalizing for a 1000-amino acid protein length. Zero on this
452 scale is set to indicate the average number of top 5% binders that would be observed in 10,000
453 random protein sequences with natural amino acid frequencies. Proteins scoring above +20 have
454 been observed to have the significant immunogenic potential [47]. Fully human proteins
455 generally score lower than zero on the EpiMatrix immunogenicity scale.

456 To investigate the distribution of T cell immunogenic potential across RSV protein sequence
457 regions, we summed up the binding scores of HLA alleles for each nine-mer frame, to get a
458 frame-specific immunogenic potential score and standardized this score to a relative scale. The
459 relative immunogenic potential across protein structure was represented by a color scale and the
460 visualization of F protein structure was built with PyMOL Molecular Graphics System, Version
461 2.0 (Schrödinger, LLC). Protein data bank (PDB) files 5UDE [48] and 3RRR [49] were used for
462 the pre-fusion and post-fusion forms.

463

464 **Subsampling strategy**

465 Considering the heavy computational load that would be required to evaluate all available RSV
466 sequences and to correct the overrepresentation of recently sampled strains, the comparative
467 analysis for T cell epitope content was conducted with datasets in which overrepresented groups
468 were reduced. A maximum of five sequences of each isolation year from different WHO region
469 groups were subsampled randomly from the original datasets (RSV-A F gene = 402, RSV-B F
470 gene = 319, RSV-A G gene = 390, RSV-B G gene = 359).

471

472 **T cell epitope content comparison**

473 The Epitope Content Comparison (EpiCC) algorithm, which is implemented in iVAX was used
474 to evaluate pairwise T cell epitope cross-conservation potential within each subsampled dataset
475 [50]. Briefly, T cell epitope cross-conservation was evaluated by the binding likelihood of
476 epitopes from different antigens with identical T cell receptor-facing residues (TCRf), which are
477 predicted to bind to the same MHC allele. Two epitope sequences are assumed to be potentially
478 cross-conserved if they have identical TCRf (position 4, 5, 6, 7, 8 for class I epitopes binding
479 core and 2, 3, 5, 7, 8 for class II epitopes binding core) regardless of differences on their
480 MHC-facing amino acids. To simplify the analysis, the binding of 9-mer epitopes within protein
481 sequences are assumed to be mutually exclusive and uniform.

482

483 Therefore, T cell epitope immune distance (D) between two wild circulating strains (w_1 and w_2)
484 can be defined as the sum of Z-scaled binding probabilities of paired epitopes that are unable to
485 induce cross-reactivity (non-cross conserved epitopes) within two protein sequences using
486 equations (1.1 and 1.2). d is the T cell immunity distance between a pair of epitopes, i and j are

487 the non-cross conserved T cell epitopes from two protein sequences, a is a class I or class II
488 allele, p is the predicted binding probability against allele a , A is a set of alleles.

489

$$d(i,j) = p(i)a + p(j)a \#(1.1)$$

490

$$D(w_1, w_2) = \sum_{i \in w_1} \sum_{j \in w_2} d(i,j) \#(1.2)$$

491

492 To evaluate the T cell epitope immune distance generated by the EpiCC algorithm, we further
493 adapt the equations (1.1 and 1.2) to re-calculate T cell epitope immune distance with customized
494 Python scripts using MHC binding prediction results that are generated from publicly available
495 T cell epitope prediction tool, netMHCpan EL 4.1 methods in the Immune Epitope Database
496 (IEDB) [51]. Eigenvalues of each sequence that were calculated from the pairwise distance
497 matrix with “RSpectra” package were used to statistically examine the correlation of the epitope
498 distances that are computed from the two methods, and Pearson correlation test was used to test
499 the correlation hypothesis.

500

501 The cross-conservation of vaccine strains against circulating RSV can be evaluated by the cross-
502 conservation of the epitopes within vaccine strains (v) and wild circulating strains (w). T cell
503 cross-conservation between two epitopes can be represented by a joint probability estimation and
504 therefore T cell cross-conservation between two sequences can be represented by summing T
505 cell cross-conservation of the paired T-epitopes within two protein sequences. The proportion of
506 T cell cross-conservation between the vaccine and circulating strains (P) with a set of alleles (A)
507 can be represented as the equations (2.1 and 2.2), where p is the predicted binding probability in
508 EpiMatrix, i and j are the cross conserved T cell epitopes, a is a class I or class II allele.

509

$$S(i,j) = p(i)a * p(j)a \#(2.1)$$

510
$$P(v,w) = \frac{\sum_{i \in v, j \in w} \sum_{a \in A} S(i,j)}{\sum_{i \in v, j \in v} \sum_{a \in A} S(i,j)} \#(2.2)$$

511

512 **Dimension reduction**

513 The equation to calculate T cell epitope immune distance was applied iteratively to the
514 subsampled dataset and therefore the pairwise T cell epitope immune distances are structured
515 into an $n \times n$ square-distance matrix. Given that each protein is described by a relative distance to
516 the rest of $n-1$ proteins, the data must be dimensionally reduced to be graphed. Classic (metric)
517 multidimensional scaling (MDS) can be used to preserve the distances between a set of
518 observations in a way that allows the distances to be represented in a two-dimensional space.
519 MDS was performed as previously described by Gower [52]. The MDS method first constructs
520 an n -dimensional Euclidean space using the distance matrix in which all distances are conserved,
521 and then principal component analysis is performed. MDS and Goodness-of-fit (GOF) [53] were
522 carried out using the *cmdscale* package in R [52]. K-means clustering was performed using
523 the *kmeans* function in base R. Due to the lack of previous characterizations of RSV T cell
524 immunity clusters, the number of T cell immunity groups was determined using the optimized
525 within-cluster sum of square (wss) with Elbows method [54].

526

527 **Calculation of genetic hamming distance**

528 Genetic hamming distance, which is defined as the number of bases by which two nucleotide
529 sequences differ, was calculated by comparing the number of different bases between each
530 sequence in the subsampled datasets. The reconstructed most recent common ancestor (TMRCA)
531 sequences for each dataset (subsampled F and G protein sequences of subtype A and subtype B,

532 respectively) were estimated using the program “Treetime” and were used as root in our analysis
533 [45].

534

535 **Acknowledgments:**

536 **Funding:** This work was supported by the National Institute of Allergy and Infectious Diseases,
537 a component of the NIH, Department of Health and Human Services, under contract
538 75N93019C00052 (J.C. and J.B.) and Contract No. 75N93021C00018 (NIAID Centers of
539 Excellence for Influenza Research and Response, CEIRR) (J.B.). J.B and S.T. are funded in part
540 from the Centers for Disease Control under Contract No. 75D30119C06826 and
541 75D30121C11990.

542

543 **Competing interests:** A.S.DeG. and L.M are both paid employees of EpiVax. Some of the
544 epitope prediction tools used in this study were developed by EpiVax.

545

546 **Data and materials availability:** Accession number to RSV sequence in the paper are available
547 in supplementary materials. Code to generate T epitope landscapes are deposited in GitHub
548 https://github.com/JianiC/RSV_Epitope.

549

550 **References**

551 [1] J. E. Crowe Jr and J. V Williams, “Paramyxoviruses: Respiratory Syncytial Virus and
552 Human Metapneumovirus,” *Viral Infect. Humans Epidemiol. Control*, pp. 601–627, Feb.
553 2014, doi: 10.1007/978-1-4899-7448-8_26.

554 [2] W.-J. Lee, Y. Kim, D.-W. Kim, H. S. Lee, H. Y. Lee, and K. Kim, “Complete Genome

555 Sequence of Human Respiratory Syncytial Virus Genotype A with a 72-Nucleotide
556 Duplication in the Attachment Protein G Gene,” *J. Virol.*, vol. 86, no. 24, pp. 13810 LP –
557 13811, Dec. 2012, doi: 10.1128/JVI.02571-12.

558 [3] J. S. McLellan, W. C. Ray, and M. E. Peeples, “Structure and function of respiratory
559 syncytial virus surface glycoproteins,” *Curr. Top. Microbiol. Immunol.*, vol. 372, pp. 83–
560 104, 2013, doi: 10.1007/978-3-642-38919-1_4.

561 [4] J. Lee, L. Klenow, E. M. Coyle, H. Golding, and S. Khurana, “Protective antigenic sites in
562 respiratory syncytial virus G attachment protein outside the central conserved and cysteine
563 noose domains,” *PLoS Pathog.*, vol. 14, no. 8, pp. e1007262–e1007262, Aug. 2018, doi:
564 10.1371/journal.ppat.1007262.

565 [5] “Updated guidance for palivizumab prophylaxis among infants and young children at
566 increased risk of hospitalization for respiratory syncytial virus infection.,” *Pediatrics*, vol.
567 134, no. 2, pp. 415–420, Aug. 2014, doi: 10.1542/peds.2014-1665.

568 [6] “Palivizumab, a humanized respiratory syncytial virus monoclonal antibody, reduces
569 hospitalization from respiratory syncytial virus infection in high-risk infants. The IMPact-
570 RSV Study Group.,” *Pediatrics*, vol. 102, no. 3 Pt 1, pp. 531–537, Sep. 1998.

571 [7] T. F. Schwarz *et al.*, “Three dose levels of a maternal respiratory syncytial virus vaccine
572 candidate are well tolerated and immunogenic in a randomized trial in non-pregnant
573 women.,” *J. Infect. Dis.*, Jun. 2021, doi: 10.1093/infdis/jiab317.

574 [8] C. Biagi *et al.*, “Current State and Challenges in Developing Respiratory Syncytial Virus
575 Vaccines,” *Vaccines*, vol. 8, no. 4, p. 672, Nov. 2020, doi: 10.3390/vaccines8040672.

576 [9] H. W. Kim *et al.*, “Respiratory syncytial virus disease in infants despite prior
577 administration of antigenic inactivated vaccine.,” *Am. J. Epidemiol.*, vol. 89, no. 4, pp.

578 422–434, Apr. 1969, doi: 10.1093/oxfordjournals.aje.a120955.

579 [10] B. R. Murphy, A. V Sotnikov, L. A. Lawrence, S. M. Banks, and G. A. Prince, “Enhanced
580 pulmonary histopathology is observed in cotton rats immunized with formalin-inactivated
581 respiratory syncytial virus (RSV) or purified F glycoprotein and challenged with RSV 3-6
582 months after immunization.,” *Vaccine*, vol. 8, no. 5, pp. 497–502, Oct. 1990, doi:
583 10.1016/0264-410x(90)90253-i.

584 [11] A. M. Killikelly, M. Kanekiyo, and B. S. Graham, “Pre-fusion F is absent on the surface
585 of formalin-inactivated respiratory syncytial virus,” *Sci. Rep.*, vol. 6, p. 34108, Sep. 2016,
586 doi: 10.1038/srep34108.

587 [12] F. P. Polack *et al.*, “A role for immune complexes in enhanced respiratory syncytial virus
588 disease.,” *J. Exp. Med.*, vol. 196, no. 6, pp. 859–865, Sep. 2002, doi:
589 10.1084/jem.20020781.

590 [13] M. Connors, N. A. Giese, A. B. Kulkarni, C. Y. Firestone, H. C. 3rd Morse, and B. R.
591 Murphy, “Enhanced pulmonary histopathology induced by respiratory syncytial virus
592 (RSV) challenge of formalin-inactivated RSV-immunized BALB/c mice is abrogated by
593 depletion of interleukin-4 (IL-4) and IL-10.,” *J. Virol.*, vol. 68, no. 8, pp. 5321–5325, Aug.
594 1994, doi: 10.1128/JVI.68.8.5321-5325.1994.

595 [14] M. E. Waris, C. Tsou, D. D. Erdman, S. R. Zaki, and L. J. Anderson, “Respiratory syncytial
596 virus infection in BALB/c mice previously immunized with formalin-inactivated virus
597 induces enhanced pulmonary inflammatory response with a predominant Th2-like
598 cytokine pattern.,” *J. Virol.*, vol. 70, no. 5, pp. 2852–2860, May 1996, doi:
599 10.1128/JVI.70.5.2852-2860.1996.

600 [15] N. I. Mazur *et al.*, “The respiratory syncytial virus vaccine landscape: lessons from the

601 graveyard and promising candidates.,” *Lancet. Infect. Dis.*, vol. 18, no. 10, pp. e295–
602 e311, Oct. 2018, doi: 10.1016/S1473-3099(18)30292-5.

603 [16] B. N. Blunck, W. Rezende, and P. A. Piedra, “Profile of respiratory syncytial virus
604 prefusogenic fusion protein nanoparticle vaccine.,” *Expert Rev. Vaccines*, vol. 20, no. 4,
605 pp. 351–364, Apr. 2021, doi: 10.1080/14760584.2021.1903877.

606 [17] X. Liang *et al.*, “Gradual replacement of all previously circulating respiratory syncytial
607 virus A strain with the novel ON1 genotype in Lanzhou from 2010 to 2017,” *Medicine*
608 (*Baltimore*), vol. 98, no. 19, 2019.

609 [18] A. Ahmed *et al.*, “Co-Circulation of 72bp Duplication Group A and 60bp Duplication
610 Group B Respiratory Syncytial Virus (RSV) Strains in Riyadh, Saudi Arabia during
611 2014,” *PLoS One*, vol. 11, no. 11, pp. e0166145–e0166145, Nov. 2016, doi:
612 10.1371/journal.pone.0166145.

613 [19] D. Tian *et al.*, “Structural basis of respiratory syncytial virus subtype-dependent
614 neutralization by an antibody targeting the fusion glycoprotein,” *Nat. Commun.*, vol. 8, no.
615 1, p. 1877, 2017, doi: 10.1038/s41467-017-01858-w.

616 [20] K. Hashimoto and M. Hosoya, “Neutralizing epitopes of RSV and palivizumab resistance
617 in Japan,” *Fukushima J. Med. Sci.*, vol. 63, no. 3, pp. 127–134, Dec. 2017, doi:
618 10.5387/fms.2017-09.

619 [21] W. M. Sullender, “Respiratory syncytial virus genetic and antigenic diversity,” *Clin.
620 Microbiol. Rev.*, vol. 13, no. 1, pp. 1–15, Jan. 2000, doi: 10.1128/CMR.13.1.1.

621 [22] X. Chen *et al.*, “Genetic variations in the fusion protein of respiratory syncytial virus
622 isolated from children hospitalized with community-acquired pneumonia in China,” *Sci.
623 Rep.*, vol. 8, no. 1, p. 4491, 2018, doi: 10.1038/s41598-018-22826-4.

624 [23] G. Petrova, A. Ferrante, and J. Gorski, “Cross-reactivity of T cells and its role in the
625 immune system,” *Crit. Rev. Immunol.*, vol. 32, no. 4, pp. 349–372, 2012, doi:
626 10.1615/critrevimmunol.v32.i4.50.

627 [24] A. S. De Groot *et al.*, “Better Epitope Discovery, Precision Immune Engineering, and
628 Accelerated Vaccine Design Using Immunoinformatics Tools ,” *Frontiers in*
629 *Immunology* , vol. 11. p. 442, 2020.

630 [25] L. He, A. S. De Groot, A. H. Gutierrez, W. D. Martin, L. Moise, and C. Bailey-Kellogg,
631 “Integrated assessment of predicted MHC binding and cross-conservation with self
632 reveals patterns of viral camouflage.,” *BMC Bioinformatics*, vol. 15 Suppl 4, no. Suppl 4,
633 p. S1, 2014, doi: 10.1186/1471-2105-15-S4-S1.

634 [26] B. T. Grenfell, “Unifying the Epidemiological and Evolutionary Dynamics of Pathogens,”
635 *Science (80-.).*, vol. 303, no. 5656, pp. 327–332, Jan. 2004, doi:
636 10.1126/science.1090727.

637 [27] S. D. J. *et al.*, “Mapping the Antigenic and Genetic Evolution of Influenza Virus,” *Science*
638 *(80-.).*, vol. 305, no. 5682, pp. 371–376, Jul. 2004, doi: 10.1126/science.1097211.

639 [28] T. Bedford *et al.*, “Integrating influenza antigenic dynamics with molecular evolution,”
640 *Elife*, vol. 3, Feb. 2014, doi: 10.7554/eLife.01914.

641 [29] B. Korber, M. LaButé, and K. Yusim, “Immunoinformatics comes of age,” *PLoS Comput.*
642 *Biol.*, vol. 2, no. 6, pp. e71–e71, Jun. 2006, doi: 10.1371/journal.pcbi.0020071.

643 [30] B. Reynisson, B. Alvarez, S. Paul, B. Peters, and M. Nielsen, “NetMHCpan-4.1 and
644 NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent
645 motif deconvolution and integration of MS MHC eluted ligand data,” *Nucleic Acids Res.*,
646 vol. 48, no. W1, pp. W449–W454, Jul. 2020, doi: 10.1093/nar/gkaa379.

647 [31] C. D. Russell, S. A. Unger, M. Walton, and J. Schwarze, “The Human Immune Response
648 to Respiratory Syncytial Virus Infection.,” *Clin. Microbiol. Rev.*, vol. 30, no. 2, pp. 481–
649 502, Apr. 2017, doi: 10.1128/CMR.00090-16.

650 [32] R. G. Woolthuis, C. H. van Dorp, C. Keşmir, R. J. de Boer, and M. van Boven, “Long-
651 term adaptation of the influenza A virus by escaping cytotoxic T-cell recognition,” *Sci.
652 Rep.*, vol. 6, no. 1, p. 33334, 2016, doi: 10.1038/srep33334.

653 [33] L. C. Katzelnick *et al.*, “Dengue viruses cluster antigenically but not as discrete
654 serotypes,” *Science*, vol. 349, no. 6254, pp. 1338–1343, Sep. 2015, doi:
655 10.1126/science.aac5017.

656 [34] “Correction: Antigenic cartography of immune responses to *Plasmodium falciparum*
657 erythrocyte membrane protein 1 (PfEMP1),” *PLOS Pathog.*, vol. 15, no. 8, p. e1008018,
658 Aug. 2019.

659 [35] D. J. Smith *et al.*, “Mapping the antigenic and genetic evolution of influenza virus,”
660 *Science (80-.)*, vol. 305, no. 5682, pp. 371–376, Jul. 2004, doi: 10.1126/science.1097211.

661 [36] J. Liu, T. J. Ruckwardt, M. Chen, T. R. Johnson, and B. S. Graham, “Characterization of
662 respiratory syncytial virus M- and M2-specific CD4 T cells in a murine model,” *J. Virol.*,
663 vol. 83, no. 10, pp. 4934–4941, May 2009, doi: 10.1128/JVI.02140-08.

664 [37] C. Viboud *et al.*, “Beyond clinical trials: Evolutionary and epidemiological considerations
665 for development of a universal influenza vaccine,” *PLOS Pathog.*, vol. 16, no. 9, p.
666 e1008583, Sep. 2020.

667 [38] J. Chen *et al.*, “Novel and extendable genotyping system for Human Respiratory Syncytial
668 Virus based on whole-genome sequence analysis,” *Authorea Prepr.*, Jun. 2021, doi:
669 10.22541/AU.162251650.01202619/V1.

670 [39] S. S. Shepard, C. T. Davis, J. Bahl, P. Rivailler, I. A. York, and R. O. Donis, “LABEL:
671 Fast and Accurate Lineage Assignment with Assessment of H5N1 and H9N2 Influenza A
672 Hemagglutinins,” *PLoS One*, vol. 9, no. 1, p. e86921, Jan. 2014.

673 [40] “WHO | World Health Statistics 2011,” *WHO*, 2011.

674 [41] J. Rozewicki, S. Li, K. M. Amada, D. M. Standley, and K. Katoh, “MAFFT-DASH:
675 integrated protein sequence and structural alignment,” *Nucleic Acids Res.*, vol. 47, no.
676 W1, pp. W5–W10, Jul. 2019, doi: 10.1093/nar/gkz342.

677 [42] P. Rice, I. Longden, and A. Bleasby, “EMBOSS: The European Molecular Biology Open
678 Software Suite,” *Trends Genet.*, vol. 16, no. 6, pp. 276–277, Jun. 2000, doi:
679 10.1016/S0168-9525(00)02024-2.

680 [43] S. S. Whitehead *et al.*, “Replacement of the F and G Proteins of Respiratory Syncytial
681 Virus (RSV) Subgroup A with Those of Subgroup B Generates Chimeric Live Attenuated
682 RSV Subgroup B Vaccine Candidates,” *J. Virol.*, vol. 73, no. 12, pp. 9773 LP – 9780,
683 Dec. 1999, doi: 10.1128/JVI.73.12.9773-9780.1999.

684 [44] A. Stamatakis, “RAxML version 8: a tool for phylogenetic analysis and post-analysis of
685 large phylogenies,” *Bioinforma. Appl.*, vol. 30, no. 9, pp. 1312–1313, 2014, doi:
686 10.1093/bioinformatics/btu033.

687 [45] P. Sagulenko, V. Puller, and R. A. Neher, “TreeTime: Maximum-likelihood
688 phylogenetic analysis,” *Virus Evol.*, vol. 4, no. 1, Jan. 2018, doi: 10.1093/VE/VEX042.

689 [46] G. Yu, D. K. Smith, H. Zhu, Y. Guan, and T. T. Y. Lam, “ggtree: an r package for
690 visualization and annotation of phylogenetic trees with their covariates and other
691 associated data,” *Methods Ecol. Evol.*, vol. 8, no. 1, pp. 28–36, Jan. 2017, doi:
692 10.1111/2041-210X.12628.

693 [47] L. Moise *et al.*, “iVAX: An integrated toolkit for the selection and optimization of
694 antigens and the design of epitope-driven vaccines,” *Hum. Vaccin. Immunother.*, vol. 11,
695 no. 9, pp. 2312–2321, 2015, doi: 10.1080/21645515.2015.1061159.

696 [48] Q. Zhu *et al.*, “A highly potent extended half-life antibody as a potential RSV vaccine
697 surrogate for all infants,” *Sci. Transl. Med.*, vol. 9, no. 388, p. eaaj1928, May 2017, doi:
698 10.1126/scitranslmed.aaj1928.

699 [49] J. S. McLellan, Y. Yang, B. S. Graham, and P. D. Kwong, “Structure of respiratory
700 syncytial virus fusion glycoprotein in the postfusion conformation reveals preservation of
701 neutralizing epitopes,” *J. Virol.*, vol. 85, no. 15, pp. 7788–7796, Aug. 2011, doi:
702 10.1128/JVI.00555-11.

703 [50] A. H. Gutiérrez *et al.*, “T-cell epitope content comparison (EpiCC) of swine H1 influenza
704 A virus hemagglutinin,” *Influenza Other Respi. Viruses*, vol. 11, no. 6, pp. 531–542, Nov.
705 2017, doi: 10.1111/irv.12513.

706 [51] E. Karosiene, C. Lundsgaard, O. Lund, and M. Nielsen, “NetMHCCons: a consensus
707 method for the major histocompatibility complex class I predictions,” *Immunogenetics*,
708 vol. 64, no. 3, pp. 177–186, 2012, doi: 10.1007/s00251-011-0579-8.

709 [52] J. C. GOWER, “Some distance properties of latent root and vector methods used in
710 multivariate analysis,” *Biometrika*, vol. 53, no. 3–4, pp. 325–338, Dec. 1966, doi:
711 10.1093/biomet/53.3-4.325.

712 [53] J. Sánchez, “MARDIA, K. V., J. T. KENT, J. M. BIBBY: Multivariate Analysis.
713 Academic Press, London-New York-Toronto-Sydney-San Francisco 1979. xv, 518 pp., \$
714 61.00,” *Biometrical J.*, vol. 24, no. 5, p. 502, Jan. 1982, doi:
715 <https://doi.org/10.1002/bimj.4710240520>.

716 [54] M. Charrad, N. Ghazzali, V. Boiteau, and A. Niknafs, “NbClust: An R Package for
717 Determining the Relevant Number of Clusters in a Data Set,” *J. Stat. Software; Vol 1,*
718 *Issue 6* , 2014, doi: 10.18637/jss.v061.i06.

719

720 **Supporting information**

721 **S1 Fig. Distribution and diversity of T cell epitopes in RSV F protein.** The tree panel on the
722 left is a time-scaled phylogeny build with RSV-A (**A**) or RSV-B (**B**) F gene nucleotide
723 sequences using the ML approach. Determined genotypes are labeled on the right with black
724 bars. Each color column on the right side represents the presence of an MHC class I or class II
725 epitope. Only the epitopes that are present in more than 1% of sampled isolates are displayed.
726 The column color indicates different numbers of epitope sequences at the same location.

727

728 **S2 Fig. Distribution and diversity of T cell epitopes in RSV G protein.** The tree panel on the
729 left is a time-scaled phylogeny build with RSV-A (**A**) or RSV-B (**B**) G gene nucleotide
730 sequences using the ML approach. The clades that contain novel 72-nt or 60-nt duplication at the
731 second hypervariable region of G gene were highlighted in red. Determined genotypes are
732 labeled on the right with black bars. Each color column on the right side represents the presence
733 of an MHC class I or class II epitope. Only the epitopes that are present in more than 1% of
734 sampled isolates were displayed. The column color indicates different numbers of epitope
735 sequences at the same location.

736

737 **S3 Fig. Distribution of JanusMatrix Human Homology score for putative RSV MHC class I**
738 **and class II epitopes.** The cross-reactive potential of identified putative T cell epitopes and

739 human host was represented with a JanusMatrix Human Homology score. 6.45% identified
740 putative class I epitopes and 1.12% class II epitopes are cross-conserved on the TCR face with
741 human epitopes.

742

743 **S4 Fig. Predicted T cell epitope landscapes of RSV surface proteins.** RSV T cell epitope
744 landscapes were built with sequenced-based MHC class I epitope binding prediction (left), MHC
745 class II epitope binding prediction (middle) or combining class I and class II epitope biding
746 prediction (right). Sequences are colored by the epitope cluster determined by epitope landscapes
747 built with combining Class I and Class II epitope prediction

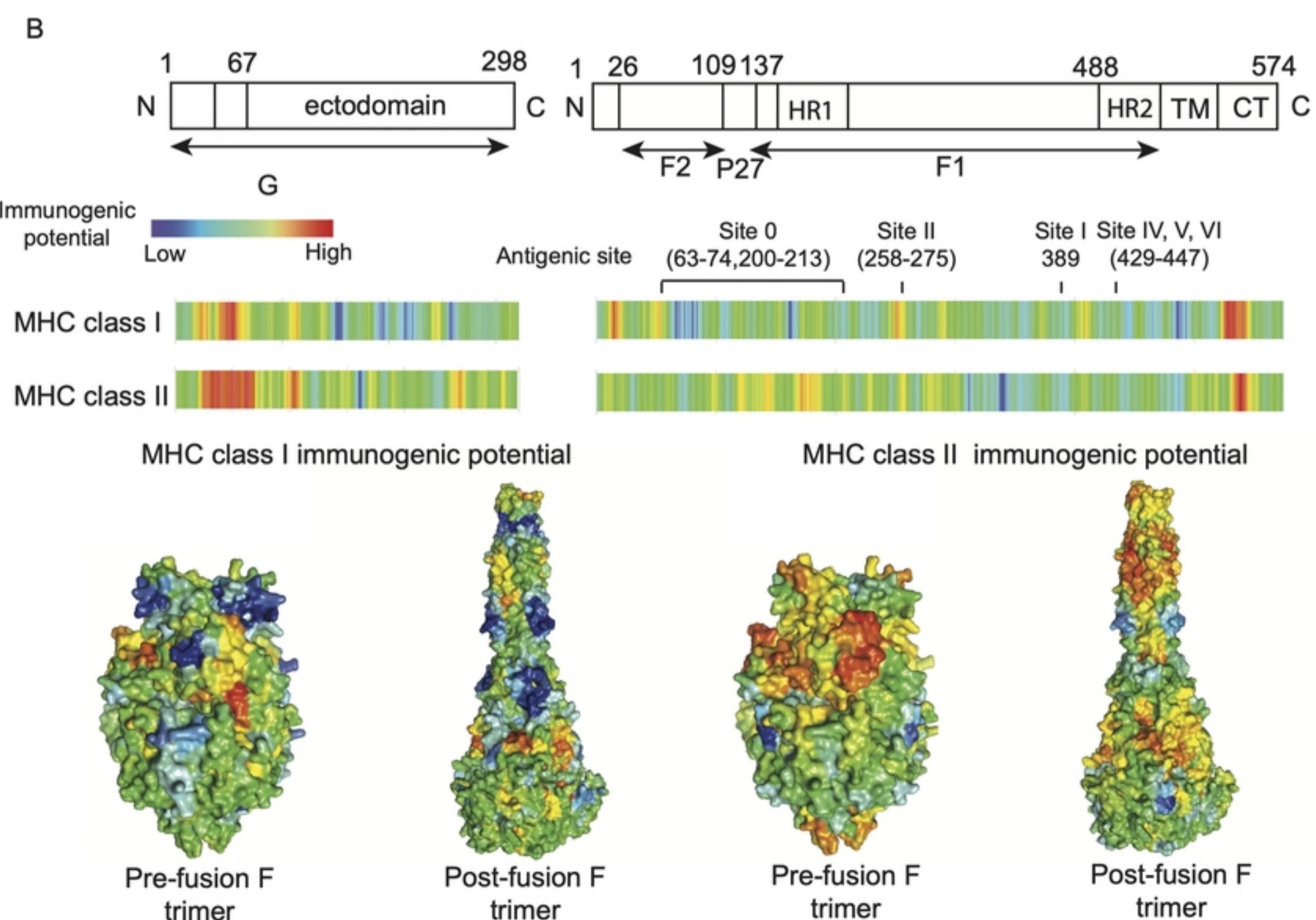
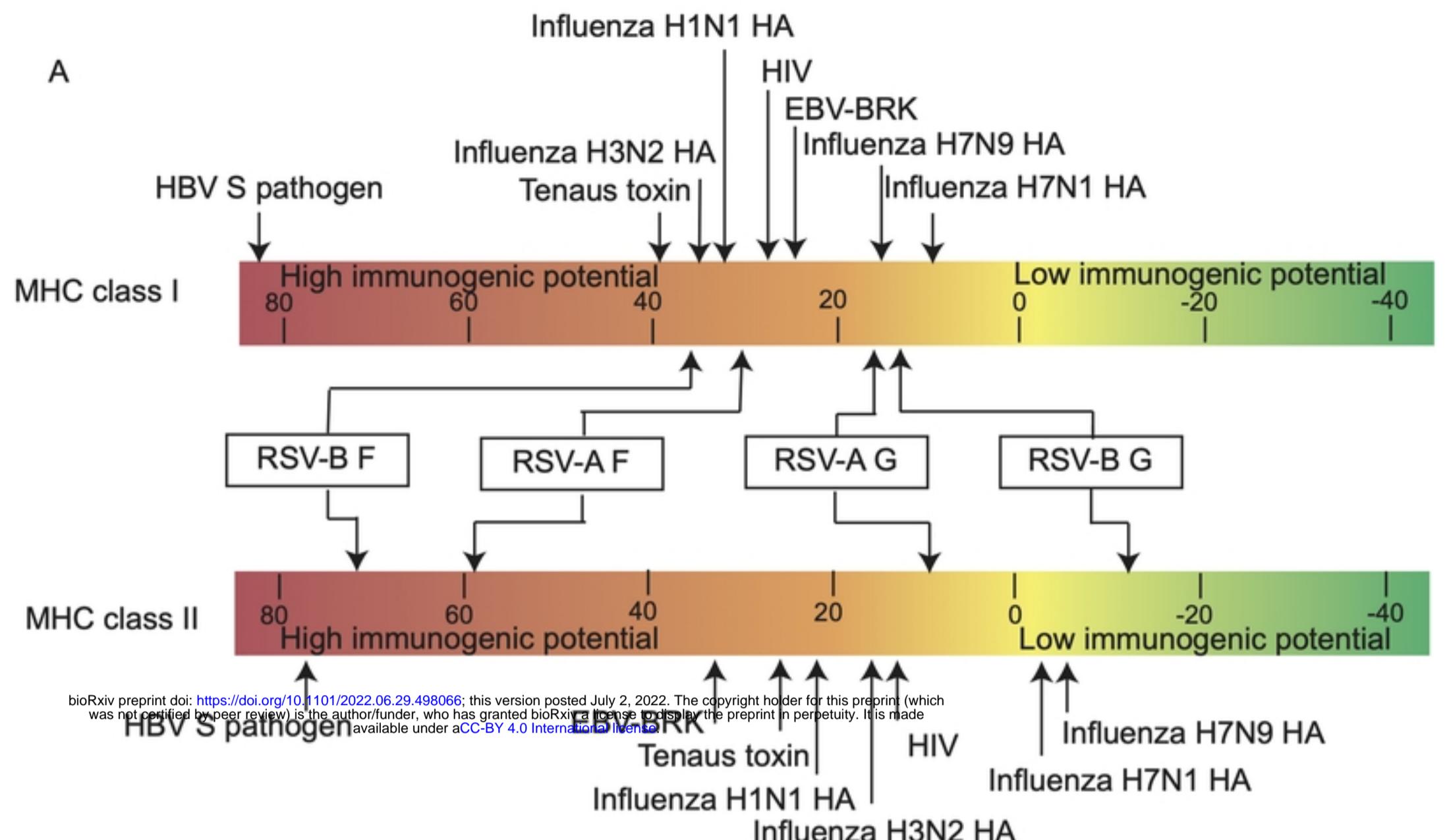
748

749 **S5 Fig. Total within sum of squares (wss) using *k-means* algorithm.** Totals within sum of
750 squares in epitope topographies were calculated after clustering into k (from 1 to 10) groups with
751 *k-means*. The optimal number of clusters is determined to be 3 in the analysis of RSV-A F and G
752 proteins and is determined to be 2 in the analysis of RSV-B F and G proteins using the Elbow
753 method.

754

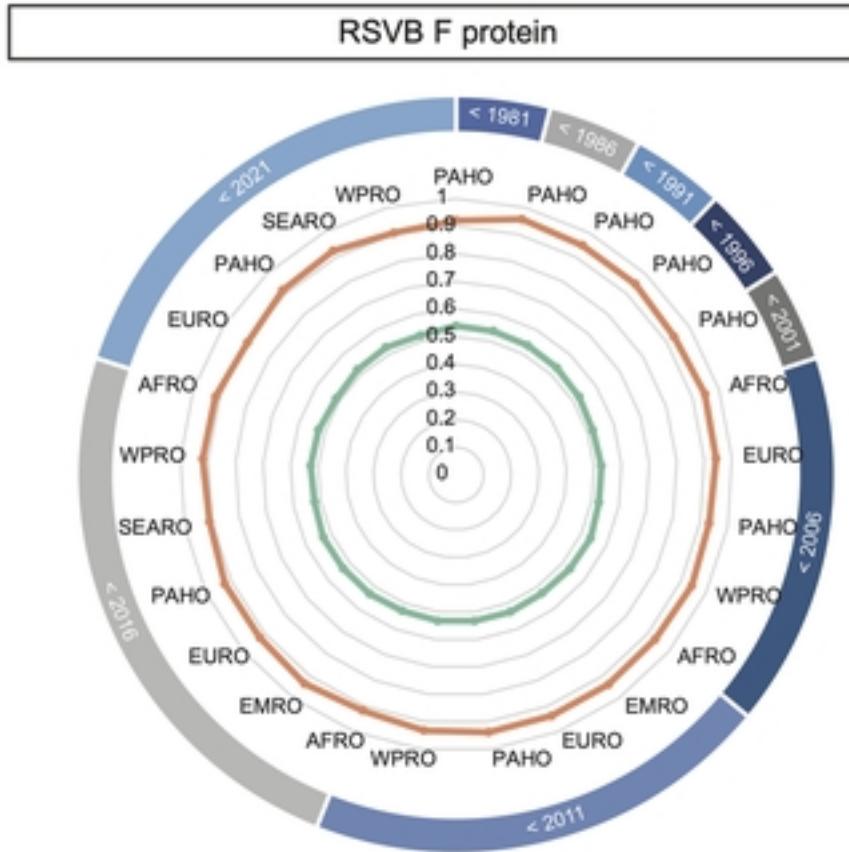
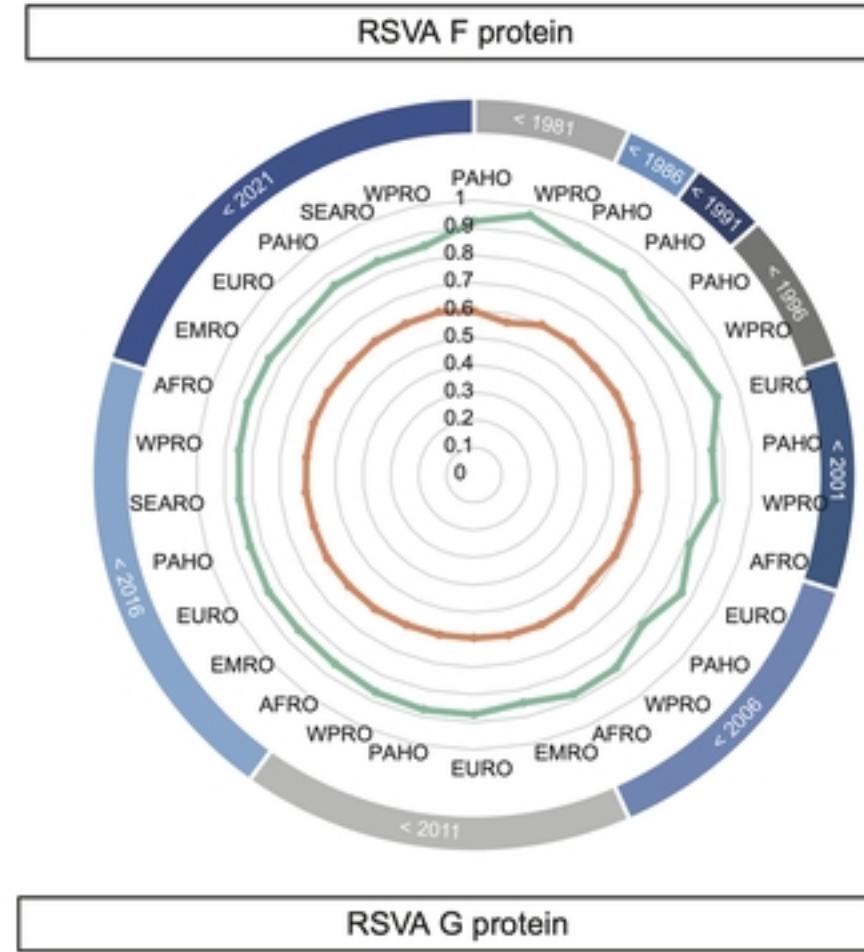
755 **S6 Fig. Validation of T cell epitope distance estimation using the IEDB analysis resource.**

756 Validation is performed with MHC class I epitope binding prediction of RSV-A F protein. **(A)**
757 Heatmaps for pairwise MHC class I epitope distance estimated in iVAX toolkits or calculated
758 with custom python scripts using MHC class I molecule binding prediction that is implemented
759 in IEDB. **(B)** Eigenvalues for each sequence are calculated from pairwise distance matrices using
760 “RSpectra” package in R. The Pearson correlation test significantly supports a non-zero
761 correlation between T cell epitope distance estimated with EpiCC and T cell epitope distance



762 estimated with IEDB. **(C)** T cell epitope topographies are built with pairwise epitope distances
763 estimated from EpiCC or IEDB. Both methods resulted in a similar cluster pattern for the CD8 T
764 cell epitope profile of RSV-A F protein.

765

766 **S7 Fig. Evaluation of RSV vaccine candidate strains with T cell epitope content in different**
767 **WHO regions.** RSV-A and RSV-B major surface protein sequences were grouped by isolation
768 year and 6 isolated WHO regions, African Region (AFRO), Region of the Americas (PAHO),
769 South-East Asia Region (SEARO), European Region (EURO), Eastern Mediterranean Region
770 (EMRO) and Western Pacific Region (WPRO). Each year group was labeled by the latest
771 isolated year of sequences after the previous group label. The proportion of cross-conserved T
772 cell epitope content between vaccine strains (CP248 or CP52) and wild circulating strains in
773 different year groups was represented by bar graphs.



774

775 **S1 File. Accession number to RSV sequence that are used in this study.**

Figure 1

Proportion of cross conserved T-cell epitope content
between vaccine strains and wild circulating strains

Vaccine candidates strains

- CP248 (red)
- CP52 (green)

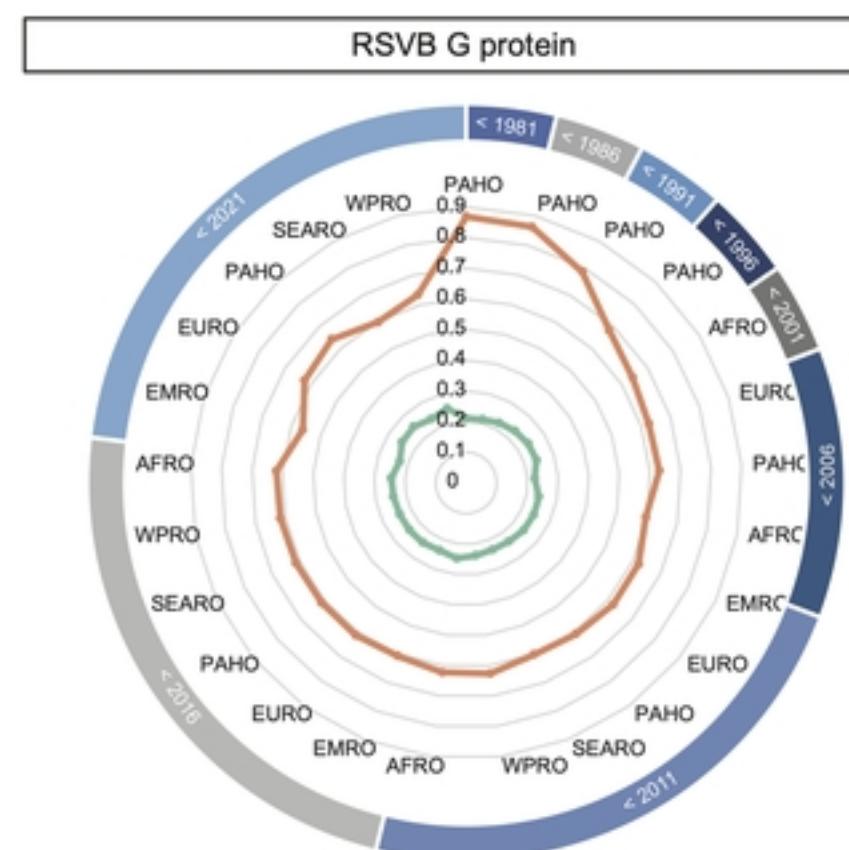


Figure3



Figure 2