

1 **IL-15 superagonist N-803 enhances IFN γ production and alters the trafficking of MAIT
2 cells in SIV+ macaques**

3
4 Amy L. Ellis-Connell¹, Alexis J. Balgeman¹, Nadean M. Kannal¹, Karigynn Hansen Chaimson¹,
5 Anna Batchenkova¹, Jeffrey T. Safrit², and Shelby L. O'Connor^{1,3,#}

6
7 ¹Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison,
8 Madison, WI 53711

9
10 ²ImmunityBio, Culver City, CA 90232

11
12 ³Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI
13 53711

14
15 [#]Address correspondence to Shelby L. O'Connor, s1feinberg@wisc.edu

16
17 Conflict of interest statement: Jeffrey T. Safrit is an employee of ImmunityBio, which supplied
18 the N-803 for this study.

19
20

21 **Abstract**

22

23 Mucosal Associated Invariant T cells (MAIT cells) are innate T cells that recognize bacterial
24 metabolites and secrete cytokines and cytolytic enzymes to destroy infected target cells. This
25 makes MAIT cells promising targets for immunotherapy to combat bacterial infections. Here, we
26 analyzed the effects of an immunotherapeutic agent, the IL-15 superagonist N-803, on MAIT
27 cell activation, trafficking, and cytolytic function in macaques. We found that N-803 could
28 activate MAIT cells *in vitro* and increase their ability to produce IFN γ in response to bacterial
29 stimulation. To expand upon this, we examined the phenotypes and function of MAIT cells
30 present in samples collected from PBMC, airways (BAL), and lymph nodes (LN) from rhesus
31 macaques that were treated *in vivo* with N-803. N-803 treatment led to a transient 6-7 fold
32 decrease in the total number of MAIT cells in the peripheral blood relative to pre N-803
33 timepoints. Concurrent with the decrease in cells in the peripheral blood, we observed a rapid
34 decline in the frequency of CXCR3 $+$ CCR6 $+$ MAITs. This corresponded with an increase in the
35 frequency of CCR6 $+$ MAITs in BAL, and higher frequencies of ki-67 $+$ and granzyme B $+$
36 MAITs in blood, LN, and BAL. Finally, N-803 improved the ability of MAIT cells collected
37 from PBMC and airways to produce IFN γ in response to bacterial stimulation. Overall, N-803
38 shows the potential to transiently alter the trafficking and enhance the antibacterial activity of
39 MAIT cells which could be combined with other strategies to combat bacterial infections.

40

41

42

43

44 **Introduction**

45 Mucosal Associated Invariant T cells (MAIT cells) are a specialized type of innate T cells whose
46 T cell receptor (TCR) can detect bacterial metabolites presented by the MHC-class I related
47 (MR1) molecules on antigen-presenting cells (1, 2, 3). Unlike conventional T cells, crosslinking
48 of the TCR on MAIT cells immediately activates them to perform effector functions, such as
49 secretion of cytokines and cytolytic enzymes (Reviewed in (4)).

50

51 Several studies have shown that MAIT cells can recognize bacterial metabolites that are
52 synthesized as part of the bacterial riboflavin biosynthetic pathway (5, 6). Several bacteria
53 produce these metabolites, including *Mycobacterium tuberculosis* (Mtb) (7). MAIT cells have
54 been championed as potentially attractive targets for immunotherapeutic interventions to combat
55 bacterial infections such as Mtb (8). Data supporting an effective role for MAIT cells to combat
56 infectious pathogens is unfortunately mixed. In humans, activated MAIT cells were detected
57 during Mtb infection, and they may be recruited to the lungs (9–11). However, macaque and
58 mouse models are less supportive. There is limited recruitment of MAIT cells to the lungs and
59 they are poorly activated during acute infection with Mtb (12–14). Prophylactic treatment of
60 mice with the riboflavin derivative 5-OP-RU expanded MAIT cells significantly *in vivo*, but
61 those cells did not prevent acute infection with Mtb (15, 16). However, therapeutic vaccination
62 with 5-OP-RU during chronic Mtb infection did reduce bacterial burden (16). Together, these
63 studies imply that MAITs are an intriguing population of cells, but their specific role in
64 antibacterial immunity needs to be more clearly defined.

65

66 MAIT cells can also be activated in a TCR-independent manner (17, 18). Cytokines such as IL-7,
67 IL-12, IL-18, and IL-15 can also activate MAIT cells (19–21), leading to increases in cytokine
68 and cytolytic granule production (19–21).

69
70 The IL-15 superagonist N-803 has recently gained enthusiasm as an immunotherapeutic agent
71 for combating several cancers and, possibly, HIV (22–26). N-803 contains a constitutively active
72 (N72D) IL-15 molecule and a human IgG Fc receptor that led to improved function and a longer
73 half-life, *in vivo* (27–30). This agent expands CD8 T cells and NK cells (28, 31), increases their
74 cytolytic functions, and improves their trafficking to sites of inflammation and infection (23, 32).
75 N-803 has been safe in Phase I trials in humans, and is already in use in clinical trials in cancer
76 patients (33, 34), as well as phase II clinical trials in HIV+ patients in Thailand and in the United
77 States (35) (<https://immunitybio.com/immunitybio-announces-launch-of-phase-2-trial-of-il-15-superagonist-anktiva-with-antiretroviral-therapy-to-inhibit-hiv-reservoirs/>;
78 <https://actgnetwork.org/studies/a5386-n-803-with-or-without-bnabs-for-hiv-1-control-in-participants-living-with-hiv-1-on-suppressive-art/>).

81
82 IL-15 can activate MAIT cells *in vitro* (19); however, no studies have been performed to
83 evaluate the effect of IL-15 or N-803 on MAIT cells *in vivo*. Furthermore, the impact of IL-15 or
84 N-803 treatment on the anti-mycobacterial function of MAIT cells is not known. We
85 hypothesized that N-803 could activate MAIT cells *in vitro*, as well as improve MAIT cell
86 activation, function, or trafficking to mucosal sites *in vivo*.

87

88 Macaques provide an ideal model system in which to characterize the effects of N-803 on MAIT
89 cell trafficking and cytolytic function, as macaque and human MAIT cells are phenotypically and
90 functionally similar (36, 37). To test our hypothesis, we first examined the *in vitro* effect of N-
91 803 on MAIT cells isolated from healthy and Simian Immunodeficiency Virus (SIV)-positive
92 macaques. Then, we examined MAIT cells from a previous study of SIV+, ART-naïve rhesus
93 macaques who were treated with N-803. (26)(Ellis-Connell et al; MS in prep). We examined the
94 effects of N-803 on MAIT cell phenotype and function in the PBMC, lymph nodes, airways, and
95 lung tissue *in vitro* and *in vivo*.

96

97 **Materials and Methods**

98

99 **Animals and reagents:**

100

101 Animals. The samples collected from SIV+, ART-naïve rhesus macaques treated *in vivo* with N-
102 803 are described in detail in (Ellis et al., manuscript submitted). All animals involved in this
103 study were cared for and housed at the Wisconsin National Primate Resource Center (WNPRC),
104 following practices that were approved by the University of Wisconsin Graduate School
105 Institutional Animals Care and Use Committee (IACUC; protocol number G005507). All
106 procedures, such as bronchoalveolar lavage, biopsies, blood draw collection, and N-803
107 administration were performed as written in the IACUC protocol, under anesthesia to minimize
108 suffering.

109

110 Frozen samples. Frozen PBMC from other SIV-naïve and SIV+ cynomolgus macaques were
111 collected as parts of previous studies (14, 38, 39) and utilized for *in vitro* assays described here.

112
113 Table 1 shows the animals from which samples were utilized for this study, the SIV strain(s)
114 they were challenged with, and which figures samples from that animal were used for.

115
116 N-803 reagent and administration. N-803 was provided by ImmunityBio (Culver City, CA), and
117 produced using methods previously described (27, 30, 31). Briefly, all macaques treated with N-
118 803 received three doses of 0.1mg/kg, delivered subcutaneously, separated by 14 days. For the
119 present study, the effects of N-803 on MAIT cell immunology are only described for the first
120 dose and 14 days following. This N-803 dose and route of administration were previously found
121 to be safe and efficacious in macaques (26, 31)

122
123 **Sample collection for use in *ex vivo* MAIT cell characterization following N-803
124 administration:**

125
126 PBMC and Lymph node (LN). Peripheral blood mononuclear cells (PBMC) from macaques from
127 the *in vivo* study were isolated from whole blood by ficoll density gradient centrifugation as
128 previously described (14, 26, 39). For all assays described in this manuscript, PBMC were frozen
129 in CryoStor CS5 Freezing media (BioLife Solutions, Inc; Bothell, WA) and stained for
130 phenotypic and functional characterization of MAIT cells. Lymph node biopsies were processed
131 by cutting them into small pieces and manually passing them through a 70 μ m filter. Then cells
132 were separated from the tissue by ficoll density gradient centrifugation as above. Cells were

133 frozen and stained for phenotypic characterization of MAIT cells in bulk assays (described
134 below).

135
136 Bronchoalveolar Lavage (BAL). BAL fluid was collected by primate center staff as previously
137 described (40). Briefly, 30mL of phosphate-buffered saline (PBS) solution was flushed into the
138 airways of macaques and aspirated fully. BAL fluid was then passed through a 70 μ m filter. Cells
139 were resuspended in RPMI media supplemented with 10% Fetal bovine serum (FBS) for use in
140 *ex vivo* assays (described below).

141
142 Lung. Lung tissues were collected at the time of necropsy by primate center staff. Tissue samples
143 were homogenized, then digested for 2 hours at 37 degrees celsius in a solution consisting of
144 RPMI supplemented with 10% FBS and 0.1mg/mL collagenase II (Sigma Aldrich; St. Louis,
145 MO). After digestion, homogenates were passed through a 70 μ m filter and resuspended in fresh
146 media containing 35% isotonic percoll. Cells were then layered over 60% isotonic percoll and
147 were isolated by percoll gradient centrifugation (1860 RCF for 30 minutes). Lymphocytes were
148 collected from the interphase between the 35% and 60% layers, resuspended in RPMI media
149 supplemented with 10% FBS, and used in *in vitro* assays described below.

150
151 **Flow cytometric analysis:**

152
153 MR1-5-OP-RU Tetramer reagents. The rhesus macaque MR1-5OPRU monomer was provided
154 by the NIH tetramer core facility. The MR1 tetramer technology was developed jointly by Dr.
155 James McCluskey, Dr. Jamie Rossjohn, and Dr. David Fairlie, and the material was produced by

156 the NIH Tetramer Core Facility as permitted to be distributed by the University of Melbourne.
157 The MR1-5-OP-RU monomer was then tetramerized with streptavidin-BV421 (0.1mg/mL; BD
158 biosciences) or streptavidin-APC (0.74mg/mL; Agilent technologies) at an 8:1 molar ratio of
159 monomer:streptavidin. Briefly, 1/10th volumes of streptavidin-BV421 or streptavidin-APC were
160 added to the monomer every 10 minutes and incubated in the dark at 4°C until the 8:1 molar ratio
161 was achieved.

162

163 *Staining methods.* For all flow cytometry panels (antibodies described in Tables 2-7), the order
164 of staining was as follows: surface staining with the MR1-5-OP-RU tetramer was performed
165 prior to other surface and intracellular staining. MR1 tetramer stains were performed at room
166 temperature in the dark for 45 minutes in RPMI media supplemented with 10% FBS and 50nM
167 dasatinib (Thermo Fisher Scientific, Waltham, MA). After 45 minutes, the cells were washed in
168 a solution of FACS buffer (2% FBS in a 1X PBS solution) containing 50nM dasatinib, and
169 surface stains were performed using the antibodies indicated in Tables 2-7 for 20 minutes at
170 room temperature in the dark. Cells were fixed in a 2% paraformaldehyde solution. Following a
171 20 minute incubation, samples were either run on a BD Symphony A3 or permeabilized and
172 stained for 20 minutes at room temperature in medium B (Thermo Fisher Scientific, Waltham,
173 MA) for intracellular markers. Flow cytometric analysis was performed on a BD Symphony A3
174 (Becton Dickinson, Franklin Lakes, NJ), and the data were analyzed using FlowJo software for
175 Macintosh (version 10.7.1).

176

177 ***In vitro* MAIT cell activation assays with N-803.**

178

179 MAIT cell isolation. MAIT cells were isolated from cryopreserved PBMC of SIV-naïve
180 macaques by adding 10 μ L of TCRV α 7.2-PE (clone 3C10, Biolegend; San Diego, CA) for every
181 5e6 cells, and incubating for 20 minutes at 4°C. Then, PE-labeled cells were isolated using a
182 MACS Miltenyi PE microbeads kit according to manufacturer's protocols (130-097-054; MACS
183 Miltenyi, Auburn CA). Following isolation, cells were used for *in vitro* N-803 activation assays
184 (described below).

185

186 N-803 administration and staining for activation markers on MAIT cells. Bulk cryopreserved
187 PBMC from SIV-naïve macaques or MAIT cells isolated using TCRV α 7.2-PE (described above)
188 from frozen PBMC were suspended in RPMI supplemented with 10% fetal bovine serum (FBS)
189 and 100units/mL penicillin/streptomycin (Thermo Fisher Scientific; Waltham, MA); and 2mM
190 L-glutamine (Thermo Fisher Scientific; Waltham, MA). The indicated concentrations of N-803,
191 or recombinant human IL-15 (rhIL15, Peprotech; Cranbury, NJ), were added to the media, then
192 incubated overnight at 37°C. The following day, the cells were collected and stained with the
193 antibodies indicated in the panel below (Table 5). Flow cytometry was performed as described
194 above.

195

196 ***In vitro* and *ex vivo* MAIT cell functional assays.**

197

198 *In vitro* MAIT cell functional assays. Functional assays were performed using cryopreserved
199 PBMC and LN from SIV-naïve and SIV+ macaques, and freshly isolated lymphocytes from the
200 lungs of SIV+ macaques. Cells were incubated overnight at 37°C in 96-well plates in RPMI
201 supplemented with 15% FBS, along with the indicated concentrations of N-803, recombinant IL-

202 7 (rhIL-7; Biolegend; San Diego, CA), or media control. The following day, the PBMC that were
203 incubated overnight in various cytokines or media control were counted, and functional assays
204 were performed. Briefly, fixed *E.coli* and *M.smegmatis* stimuli were prepared as described in
205 (14, 41), by fixing bacteria in 2% paraformaldehyde for 2-3 minutes, followed by three washes
206 with 1X phosphate buffered saline (PBS), then resuspension in RPMI media supplemented with
207 15% FBS. Ten colony-forming units (CFU) of fixed *E.coli* or *M.smegmatis* were added for every
208 one cell present per well. The cells were incubated with the bacteria for 90 minutes at 37°C, then
209 brefeldin A and monensin were added along with 5uL of CD107a-BV605. The cells were
210 incubated for another 6 hours, then staining was performed as indicated above, using the
211 antibodies listed in Table 6. Flow cytometry was performed as described above.

212

213 *Ex vivo MAIT cell functional assays performed with cryopreserved PBMC collected from N-803*
214 *treated macaques*. Cryopreserved PBMC originally collected from macaques treated with N-803
215 were thawed from the indicated time points pre- and post- N-803 treatment. Thawed cells were
216 rested for 4 hours. Then, 10 CFU of fixed *E.coli* or *M.smegmatis* were added for every one cell
217 present in the tube. Cells and bacteria were incubated together for 90 minutes at 37°C, and then
218 brefeldin A, monensin, and CD107a-BV605 were added. Cells were incubated overnight at 37°C.
219 The following day, cells were stained as indicated in Table 6, and flow cytometric analysis was
220 performed as described above.

221

222 *Ex vivo MAIT cell functional assays performed with freshly isolated BAL collected from N-803*
223 *treated macaques*. BAL fluid was collected and processed as indicated above. Then, 10 CFU of
224 either fixed *E.coli* or *M.smegmatis* were added for every one cell present to the appropriate tubes

225 as described above. Cells and bacteria were incubated for 90 minutes at 37°C, then brefeldin A,
226 monensin, and CD107a-APC were added. Cells were incubated for 6 hours at 37°C, then stained
227 as indicated in Table 7. Flow cytometry was performed as described above.

228

229 **Statistical analysis.**

230 For statistical analyses performed with the same individuals across multiple timepoints, repeated
231 measures ANOVA non-parametric tests were performed, with Dunnett's multiple comparisons
232 (Prism GraphPad). For individuals with missing timepoints, mixed-effects ANOVA tests were
233 performed using Geisser-Greenhouse correction.

234

235 For statistical analyses in which two timepoints were being compared to each other for the same
236 individuals, Wilcoxon matched pairs signed rank tests were performed.

237

238 **Results**

239

240 **N-803 can activate MAIT cells from macaque PBMC.**

241 We first wanted to determine if N-803 could activate MAIT cells, *in vitro*, at similar or greater
242 levels when compared to rhIL-15. RhIL-15 activates MAIT cells directly through the IL-15
243 receptor, and indirectly through the production of IL-18 by monocytes, which activates MAIT
244 cells via the IL-18 receptor (19). Therefore, to assess both the direct and indirect impact of N-
245 803 on MAIT cell activation, we used total PBMC from healthy cynomolgus macaques or
246 isolated the TCRV α 7.2+ cells (MAIT cells in these macaques are primarily TCRV α 7.2+ (14)).
247 Then, total PBMC or TCRV α 7.2+ cells were treated for 24 hours with increasing concentrations

248 of recombinant rhIL-15 or N-803 (Fig. 1A). We then measured the frequency of MAIT cells
249 expressing the activation markers CD69, CD25, and HLA-DR (Fig. 1B shows an example gating
250 schematic).

251

252 We found that the addition of rhIL-15 or N-803 to PBMC led to a dose-dependent increase in the
253 frequency of CD69+ MAIT cells (Fig. 1C). We did not observe any increases in the frequency of
254 MAIT cells expressing CD25 or HLA-DR (data not shown). When using isolated TCRV α 7.2+
255 cells, we found dose-dependent increases in the frequency of CD69+ (Fig. 1D, left graph) and
256 CD25+ (Fig. 1D, right graph) cells. These data suggest that like rhIL-15, N-803 has direct and
257 indirect impacts on activation of MAIT cells *in vitro*.

258

259 **N-803 improves IFN γ production of bacterial-stimulated MAIT cells derived from the
260 PBMC of SIV+ and SIV-naïve cynomolgus macaques.**

261 We wanted to determine if N-803 enhanced the production of IFN γ , TNF α , and CD107a by
262 MAIT cells stimulated *in vitro* with *E. coli* or *M. smegmatis*. We included PBMC from
263 cynomolgus macaques collected before infection with various strains of SIV, and then PBMC
264 collected from the same macaques at necropsy, after SIV infection (Table 1). PBMC were
265 incubated overnight in media alone, N-803, or recombinant IL-7. Recombinant IL-7 has been
266 shown increase the frequency of cytolytic MAIT cells when co-incubated with antigen (21). The
267 following day, 10 colony forming units (CFU) of either *E. coli* or *M. smegmatis* were then added
268 for every one cell and incubated together for another six hours. We measured the frequencies of
269 IFN γ , TNF α , and CD107a+ MAIT cells by flow cytometry. An example of the gating schematic

270 and typical cytokine and cytolytic enzyme production during bacterial stimulation can be found
271 in Supplementary Fig. 1.

272
273 We found that incubation with N-803 enhanced the frequency of MAIT cells producing IFN γ ,
274 TNF α , and CD107a after stimulation with *E.coli* in samples from SIV-naïve timepoints. Only the
275 frequencies of MAIT cells producing IFN γ + and TNF α + were improved with N-803 treatment
276 after stimulation with *M.smegmatis* (Fig. 2A). For PBMC collected after SIV infection, N-803
277 treatment enhanced IFN γ production from MAIT cells for both *E.coli* and *M.smegmatis* stimuli
278 but did not significantly enhance TNF α or CD107a production in a consistent manner (Fig. 2B).
279 Together, these data suggest that N-803 treatment improves the cytokine production of MAIT
280 cells incubated with microbial stimuli, albeit to a lesser extent in PBMC collected from SIV+
281 macaques.

282
283 **N-803 improves IFN γ production of bacterial-stimulated MAIT cells derived from the**
284 **PBMC and lung tissue, but not lymph nodes, of SIV+ rhesus macaques.**

285 MAIT cells located in lung tissue and lung-associated lymph nodes may not behave the same as
286 those derived from the PBMC (42, 43). We isolated lymphocytes from blood (PBMC), lung
287 tissue, and tracheobronchial lymph nodes collected at necropsy from 4 SIV-infected rhesus
288 macaques (Ellis-Connell et al, manuscript in progress; Fig. 3). Assays with lung lymphocytes
289 were performed using fresh samples, while cryopreserved PBMC and lymph node cells were
290 used.

291

292 Similar to the data from the SIV+ cynomolgus macaques (Fig. 2B), incubation of PBMC from
293 SIV+ rhesus macaque with N-803 led to statistically significant increases in the frequency of
294 MAIT cells producing IFN γ with both *E.coli* and *M.smegmatis* stimuli when compared to media
295 control (Fig. 3A). In the tissues, N-803 enhanced the frequency of IFN γ -producing bacterial-
296 stimulated MAIT cells from the lung, but not the thoracic lymph nodes (Fig. 3B & C). In
297 contrast, the frequency of MAIT cells producing TNF α or CD107a after microbial stimulation
298 was unaffected by N-803 or IL-7 treatment in any compartment.

299

300 **Administration of N-803 to SIV+ rhesus macaques transiently decreases the number of**
301 **peripheral MAIT cells.**

302 We wanted to determine how the administration of N-803 to macaques affected the frequency,
303 distribution, and function of MAIT cells *in vivo*. We administered N-803 subcutaneously to
304 ART-naïve, SIV+ rhesus macaques in a previous study (Fig. 4; Ellis et al., manuscript in
305 preparation). We assessed the phenotypes of MAIT cells from the blood, bronchoalveolar lavage
306 (BAL) fluid, and lymph nodes collected before and after receiving N-803 (Fig. 4). Due to the
307 COVID-19 pandemic, the pre N-803 timepoints were collected between 14 and 42 days prior to
308 N-803 treatment.

309

310 We defined MAIT cells as CD8+ MR1 tetramer+ cells (Fig. 5A). We found the frequencies of
311 CD8+MR1 tet+ cells significantly decreased one day after N-803 treatment, but otherwise
312 remained relatively stable relative to the average frequency prior to N-803 treatment (Fig 5B).
313 The absolute number of MAIT cells in the blood were significantly lower on both days one and
314 three post N-803 compared to the pre N-803 timepoints (Fig. 5C). We normalized the data

315 relative to the average values of the pre N-803 timepoints on a per-animal basis to calculate the
316 fold-change in frequency and absolute cell number (Figs. 5D and E). After normalization, we
317 observed similar decreases on days one and three post N-803 (Figs. 5D and E). MAIT cells
318 expanded in the blood on days 7 and 10 post N-803 treatment, but this was not statistically
319 significant (Figs. 5D and E).

320

321 **N-803 treatment increases the frequency of Granzyme B and ki-67+ MAIT memory cells in**
322 **the peripheral blood.**

323 Similar to the effects of N-803 on CD8 T cells and NK cells (23, 26, 31, 32), we expected that
324 treatment of macaques with N-803 could potentially improve MAIT cell function. To begin to
325 assess this, we measured the frequencies of MAIT cells expressing the degranulation marker
326 Granzyme B and the proliferation marker ki-67. We separately examined the frequencies of
327 MAIT cells expressing markers consistent with central memory (CM; CD28+CD95+) and
328 effector memory (EM; CD28-CD95+) because recombinant IL-15 can differentially affect these
329 two memory populations (44–49).

330

331 Similar to our previous study in cynomolgus macaques (14), peripheral MAIT cells from these
332 rhesus macaques had both central and effector memory phenotypes (Fig. 6A and B). The
333 frequencies of CM and EM MAITs did not change during N-803 treatment (Fig. 6A and B, left).
334 We next assessed the frequencies of CM and EM MAIT cells that were ki-67+ and Granzyme
335 B+ over the course of N-803 treatment. We found transient increases in the frequencies of ki-67+
336 (Fig. 6A and B, middle) and Granzyme B+ (Fig. 6A and B, right) CM and EM MAIT cells on
337 day 3 post N-803 treatment compared to pre N-803 timepoints. Overall, we concluded that N-

338 803 treatment led to an increase in the frequency of MAIT cells capable of proliferating and
339 degranulating.

340

341 ***In vivo* N-803 treatment leads to a decline in the frequency of peripheral CXCR3+CCR6+
342 MAIT cells.**

343 We hypothesized the decline in MAIT cells in the peripheral blood (Fig. 5) could be a
344 consequence of MAIT cells trafficking to lymph nodes. We measured the frequency of CXCR5+
345 MAIT cells, as CXCR5 expression is associated with homing to lymph node follicles, which is
346 similar to the traffic pattern of bulk CD3+CD8+ T cells observed in previous N-803 studies (23,
347 26, 31, 50-52). We also measured the frequency of MAIT cells expressing CXCR3 and CCR6,
348 which have been associated with homing to tissues such as lung, gut, or other sites of immune
349 activation (53-55). A representative gating schematic for the expression of these markers on
350 MAIT cells prior to and 3 days post N-803 treatment is shown (Fig 7A).

351

352 We did not observe any significant differences in the frequencies of CXCR5+ MAIT cells after
353 N-803 treatment compared to pretreatment timepoints (data not shown). We examined the
354 frequencies of CXCR3+, CXCR3+CCR6+, and CCR6+ MAIT cells during N-803 treatment. We
355 normalized the data for each animal relative to the pre N-803 average because there was wide
356 inter-animal variability (Fig. 7B). On days 1 and 3 post N-803 treatment, there was a statistically
357 significant decline in the fold change of CXCR3+CCR6+ MAITs (Fig. 7B, left). The decline in
358 CCR6+ MAIT cells on the same days was not statistically significant (Fig. 7B, middle). There
359 was a corresponding increase in the fold change in CXCR3+ cells on day 3 post N-803 (Fig. 7B,

360 right). Overall, we concluded that N-803 transiently disturbed the population of MAIT cells
361 expressing CXCR3 and CCR6 in the peripheral blood immediately after N-803 treatment.

362

363 **N-803 does not alter MAIT cell frequencies in the lymph nodes but increases their ki-67**
364 **and Granzyme B expression.**

365 N-803 treatment caused a decline in MAIT cells in the peripheral blood (Fig. 5), as well as
366 changes in the frequency of MAIT cells expressing chemokine receptors associated with
367 trafficking to sites of immune activation (Fig. 6). Therefore, we wanted to determine if MAIT
368 cells were trafficking from the peripheral blood to the lymph nodes or tissue sites after N-803
369 treatment. Lymph node samples were collected on days 1 and 7 post N-803 treatment (Fig 4).
370 MAIT cells were present at lower frequencies in the lymph nodes compared to MAIT cells in the
371 blood or BAL (Supplementary Fig. 2), which was similar to what has been observed in previous
372 studies in SIV-naïve macaques (36). We found that N-803 treatment did not affect MAIT
373 frequencies (Fig. 8A, left). MAIT cells in the lymph nodes had a predominant CM phenotype,
374 and N-803 treatment did not alter the frequencies of CM (Fig. 8A, middle) or EM MAIT cells
375 (Fig. 8A, right).

376

377 We also examined the frequency of CM MAIT cells in the lymph node expressing the
378 proliferation marker ki-67 and the degranulation marker granzyme B on days 1 and 7 after N-803
379 treatment. There were too few EM MAIT cells for accurate characterization (data not shown).
380 We observed significant increases in the frequencies of ki-67+ and Granzyme B+ CM MAIT
381 cells in the lymph nodes one day after N-803 treatment (Fig. 8B). Similar to the peripheral blood,
382 this effect was transient and returned to pre-treatment levels by 7 days post treatment.

383

384 **N-803 affects the phenotype of MAIT cells in the airways.**

385 We also assessed the frequency and phenotypes of MAIT cells in the airways during N-803
386 treatment. We collected BAL fluid prior to, and then 3 days after N-803 treatment (Fig. 4). We
387 found that N-803 treatment did not affect the frequency of MAIT cells (Fig. 9B). N-803 also did
388 not alter the frequencies of total CD3+ cells or conventional CD3+CD8+ T cells
389 (CD3+CD8+MR1 tetramer- cells) in the BAL for the timepoints we examined (Supplementary
390 Fig. 3).

391

392 We characterized the frequency of MAIT cells expressing activation markers CD69, HLA-DR,
393 and CD154, the proliferation marker ki-67, and the trafficking marker CCR6 in the BAL fluid.
394 An example of typical staining for MAIT cells, as well as ki-67 and CCR6, is shown for BAL
395 cells collected both before and after N-803 treatment in Fig. 9A. There were no changes in the
396 frequencies of CD69, HLA-DR, or CD154+ cells pre or post N-803 treatment (data not shown).
397 There were significant increases in the frequencies of ki-67+ and CCR6+ MAIT cells on day 3
398 post N-803, relative to the average of the pre N-803 time points (Fig. 9C). The increased
399 frequency of CCR6+ MAIT cells in the BAL was coincident with the decrease in
400 CXCR3+CCR6+ and CCR6+ cells in the peripheral blood on day 3 post N-803 treatment (Fig.
401 6B).

402

403 **MAIT cells from the blood and airways of N-803 treated macaques have increased IFN γ
404 production when stimulated with *E.coli* and *M.smegmatis*.**

405 N-803 has been shown in previous studies to increase the ability of NK and CD8 T cells to
406 produce cytokines and cytolytic enzymes, both *in vitro* and *ex vivo* (32, 56). Given that we
407 observed an increase in IFN γ production from MAIT cells pre-incubated with N-803 during
408 antigen stimulation in our *in vitro* functional assays (Figs. 2-3), we hypothesized that MAIT cells
409 from N-803 treated macaques could also have improved function *ex vivo*. We performed
410 functional assays with total cells collected from PBMC and BAL both before and after N-803
411 treatment. Too few MAIT cells were present in the LN to perform similar assays (data not
412 shown). Cells were incubated with 10 CFU of either *E.coli* or *M.smegmatis*. The frequencies of
413 IFN γ , TNF α , and CD107a+ MAITs were then determined (Fig. 10).

414

415 We found that the frequency of MAIT cells from the PBMC and BAL producing IFN γ after
416 stimulation with *E.coli* or *M.smegmatis* was higher when using cells collected from animals three
417 days after receiving N-803, when compared to the pre N-803 timepoints (Fig. 10A and B, top
418 panels). While the frequency of MAIT cells producing TNF α and CD107a trended higher on day
419 3 post N-803 relative to pre N-803 timepoints, results were inconsistent across tissue type and
420 bacterial stimulus (Fig. 10A and B, middle and lower panels). Overall, we concluded that *in vivo*
421 N-803 treatment could improve MAIT cell *ex vivo* function in assays with bacteria, including
422 mycobacteria.

423

424 **Discussion**

425 Here, we show for the first time that an IL-15 superagonist, N-803, can affect MAIT cell
426 trafficking, activation, and function *in vivo* in SIV-infected macaques. We found that N-803
427 could increase the frequencies of ki-67 and granzyme B+ MAIT cells in several compartments,

428 including the lymph nodes and airways (Figs. 6, 8-9). Finally, MAIT cells present in the PBMC
429 and airways from N-803 treated macaques had improved function *ex vivo* against both *E.coli* and
430 *M.smegmatis* stimuli (Fig. 10). Overall, our results establish that N-803 can improve MAIT cell
431 activity and function *in vivo*.

432

433 Like recombinant IL-15, N-803 was able to increase the ability of MAIT cells to produce IFN γ
434 in response to bacterial stimulus *in vitro* (Fig. 2) and *ex vivo* (Fig. 10). This data strengthens the
435 findings from other *in vitro* studies suggesting that MAIT cells can become activated and exhibit
436 improved anti-microbial function both directly and indirectly by IL-15 (19,57). Importantly, we
437 found this to be true for both *E.coli* and *M.smegmatis* (Figs. 2-3, 10), suggesting that N-803
438 could improve MAIT cell function both *in vitro* and *in vivo* across a broad spectrum of bacteria.
439 MAIT cells have been implicated in the antimicrobial response to *F. tularensis* (58), *S.*
440 *typhimurium* (59), *K. pneumoniae* (60), or *C.albicans* (61), for example. Therefore, it is possible
441 that N-803 could be utilized in the future to expand and activate MAIT cells *in vivo* to improve
442 their function against these bacteria.

443

444 More specifically, our findings could have implications for the use of N-803 in mycobacterial-
445 directed immunotherapies. Increased numbers of CXCR3+CCR6+ cells trafficking to the
446 airways have been shown to correlated with control of *Mycobacterium tuberculosis* (Mtb)
447 infection in animal models (62). CXCR3+CCR6+ cells are associated with a greater degree of
448 Mtb-specific cytokine production (62). We observed that there was a rapid decline in the
449 frequency of MAIT cells in the peripheral blood expressing CXCR3 and/or CCR6 3 days after
450 N-803 treatment (Fig. 7). This was coincident with an increase in the frequency of CCR6+ cells

451 in the airways (BAL; Fig. 9). In addition to this, N-803 improved both the *in vitro* (Figs. 2-3) and
452 *ex vivo* (Fig. 10) ability of MAIT cells to produce IFN γ in response to mycobacterial stimuli.
453 These findings, while very preliminary, are supported by the findings of others that mice treated
454 with a heterodimeric IL-15 superagonist exhibited decreased tumor growth and increased
455 trafficking of CD8 T cells and NK cells to tissue sites in a manner mediated by
456 CXCR3/CXCL9/10 in a colon carcinoma model (63). Overall, the potential for N-803 to drive
457 CXCR3+CCR6+ MAIT cells and other immune cells to the airways and tissue sites of immune
458 activation is intriguing, and future studies could explore this further.

459
460 Of great importance for future studies will be to test the effects of N-803 treatment on MAIT
461 cells in Mtb-infected macaques. The very transient nature of the *in vivo* effects of N-803 on
462 MAIT cells (Figs. 5-10) likely rules out the possibility that it could be used by itself in Mtb-
463 directed immunotherapy. However, future studies could investigate whether N-803 boosted
464 MAIT cells could have a positive impact on the outcome of Mtb challenge, most likely as an
465 adjuvant in combination with other MAIT-directed vaccines. For example, Sakai and colleagues
466 have shown that 5-OPRU expanded MAIT cells were able to reduce bacterial burden if expanded
467 during chronic Mtb infection (16). Therefore, one possibility would be to use N-803 as an
468 adjuvant during 5-OPRU mediated MAIT cell expansion to see if this could further reduce
469 bacterial burden. Another possibility would be to use N-803 in combination with BCG
470 vaccination, which is already used to prevent TB disease globally. BCG vaccination can activate
471 MAIT cells *in vivo* (36); therefore, BCG+N-803 treatment could further improve MAIT function
472 against mycobacteria.

473

474 The animals utilized for the *in vivo* portions of this study were SIV+ and ART-naïve at the time
475 of N-803 treatment, and most animals had very high viral loads ($>10^4$ gag copies/mL plasma
476 viral loads in 12/15 animals; Ellis-Connell et al., J.Immunol, under review). While we did
477 observe improved MAIT cell function during N-803 treatment in these SIV+ macaques (Figs. 6,
478 8-10), it remains a possibility that SIV infection could have adversely impaired MAIT cell
479 trafficking or function during N-803 treatment relative to what might have been observed in SIV-
480 naïve macaques. We found that in our *in vitro* studies, MAIT cells from both SIV-naïve and
481 SIV+ animals exhibited an N-803 mediated enhancement of IFN γ production. However, only the
482 MAIT cells from healthy animals exhibited improved TNF α production when treated with N-803
483 (Fig. 2). Whether this reflects differences between healthy and SIV+ animals, or if it is a
484 consequence of small group sizes, is unknown. It would not be surprising if MAIT cells present
485 in healthy versus SIV+ macaques respond differently to N-803. We previously observed a
486 functional impairment of MAIT cells during Mtb and SIV co-infection (14). In a recent study of
487 longitudinal HIV+ samples, MAIT cells exhibited a more innate-like phenotype over time (64).
488 Similar longitudinal SIV studies in pigtailed macaques found that MAIT cells lost expression of
489 T-bet, which can affect IFN γ production (37, 65). SIV+ macaques represent an important cohort
490 of individuals with regards to exploring the role of immunotherapeutic agents to combat Mtb
491 infection, as the immune cells of HIV/SIV+ individuals often have impaired function, resulting
492 in worse TB disease outcomes than healthy individuals (66, 67). Therefore, future studies could
493 focus on treating SIV-naïve animals with N-803 to determine if MAIT cells behave similarly
494 with regards to trafficking and function.

495

496 Our study here focused on the role of N-803 treatment on MAIT cell function, but IL-15 agonists
497 have effects on many other immune cell types *in vivo*. Recombinant IL-15 has been used *in vivo*
498 previously in mouse models of Mtb infection, where it was shown that IL-15 treatment protected
499 against Mtb challenge by expanding Mtb-specific T cells (68). N-803 has already been shown to
500 expand virus-specific cells *in vitro* and *in vivo* models of HIV/SIV infection (23); therefore, it is
501 probable that N-803 could improve the conventional T cell response to Mtb infection as well. IL-
502 15 has also been shown *in vitro* to expand dendritic cells and improve their ability to suppress
503 the growth of Mtb in infected macrophages (69). Overall, the use of N-803 as an adjuvant to
504 Mtb-directed immunotherapies could improve the function of several cell types and lead to
505 improved TB disease outcomes.

506

507 Overall, our findings here advance the knowledge of how *in vivo* treatment of macaques with N-
508 803 affects MAIT cell function. N-803 improved MAIT cell function against mycobacterial
509 stimuli, and also trafficked cells away from the peripheral blood during *in vivo* treatment. We
510 also present preliminary data that MAIT cells have altered phenotypes and improved function the
511 airways. There is a growing body of evidence that IL-15 agonists could improve the outcome to
512 Mtb infection. Our findings could have important implications for the use of N-803 in anti-Mtb
513 immunotherapy.

514

515 **Acknowledgements:**

516

517 We thank staff at the Wisconsin National Primate Resource Center (WNPRC) for excellent
518 veterinary care of the animals involved in this study.

519

520 This study was supported by funding supplied through the National Institute of Health (NIH R01
521 grant number AI108415).

522

523 This research was conducted at a facility constructed with support from Research Facilities
524 Improvement Program grant numbers RR15459-01 and RR020141-01. The Wisconsin National
525 Primate Research Center is also supported by grants P51RR000167 and P51OD011106.

526 **REFERENCES**

527

528

529

530

531

532 1. **Porcelli S, Yockey CE, Brenner MB, Balk SP.** 1993. Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4-8- alpha/beta T cells demonstrates preferential use of several V beta genes and an invariant TCR alpha chain. *J Exp Med* **178**:1–16.

533 2. **Tilloy F, Treiner E, Park SH, Garcia C, Lemonnier F, de la Salle H, Bendelac A, Bonneville M, Lantz O.** 1999. An invariant T cell receptor alpha chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted alpha/beta T cell subpopulation in mammals. *J Exp Med* **189**:1907–1921.

534 3. **Treiner E, Duban L, Bahram S, Radosavljevic M, Wanner V, Tilloy F, Affaticati P, Gilfillan S, Lantz O.** 2003. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. *Nature* **422**:164–169.

535 4. **Godfrey DI, Koay HF, McCluskey J, Gherardin NA.** 2019. The biology and functional importance of MAIT cells. *Nat Immunol* **20**:1110–1128.

536 5. **Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B, Liu L, Bhati M, Chen Z, Kostenko L, Reantragoon R, Williamson NA, Purcell AW, Dudek NL, McConville MJ, O'Hair RA, Khairallah GN, Godfrey DI, Fairlie DP, Rossjohn J, McCluskey J.** 2012. MR1 presents microbial vitamin B metabolites to MAIT cells. *Nature* **491**:717–723.

537 6. **Corbett AJ, Eckle SB, Birkinshaw RW, Liu L, Patel O, Mahony J, Chen Z, Reantragoon R, Meehan B, Cao H, Williamson NA, Strugnell RA, Van Sinderen D, Mak JY, Fairlie DP, Kjer-Nielsen L, Rossjohn J, McCluskey J.** 2014. T-cell activation by transitory neo-antigens derived from distinct microbial pathways. *Nature* **509**:361–365.

538 7. **Gold MC, Cerri S, Smyk-Pearson S, Cansler ME, Vogt TM, Delepine J, Winata E, Swarbrick GM, Chua WJ, Yu YY, Lantz O, Cook MS, Null MD, Jacoby DB, Harriff MJ, Lewinsohn DA, Hansen TH, Lewinsohn DM.** 2010. Human mucosal associated invariant T cells detect bacterially infected cells. *PLoS Biol* **8**:e1000407.

539 8. **Leeansyah E, Boulouis C, Kwa ALH, Sandberg JK.** 2021. Emerging Role for MAIT Cells in Control of Antimicrobial Resistance. *Trends Microbiol* **29**:504–516.

540 9. **Vorkas CK, Wipperman MF, Li K, Bean J, Bhattacharai SK, Adamow M, Wong P, Aubé J, Juste MAJ, Bucci V, Fitzgerald DW, Glickman MS.** 2018. Mucosal-associated invariant and $\gamma\delta$ T cell subsets respond to initial *Mycobacterium tuberculosis* infection. *JCI Insight* **3**

541 10. **Wong EB, Gold MC, Meermeier EW, Xulu BZ, Khuzwayo S, Sullivan ZA, Mahyari E, Rogers Z, Kløverpris H, Sharma PK, Worley AH, Laloo U, Baijnath P, Ambararam A, Naidoo L, Suleman M, Madansein R, McLaren JE, Ladell K, Miners KL, Price DA, Behar SM, Nielsen M, Kasprowicz VO, Leslie A, Bishai WR, Ndung'u T, Lewinsohn DM.** 2019. TRAV1-2 $^{+}$ CD8 $^{+}$ T-cells including oligoconal expansions of MAIT cells are enriched in the airways in human tuberculosis. *Commun Biol* **2**:203.

542 11. **Paquin-Proulx D, Costa PR, Terrassani Silveira CG, Marmorato MP, Cerqueira NB, Sutton MS, O'Connor SL, Carvalho KI, Nixon DF, Kallas EG.** 2018. Latent

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571 Mycobacterium tuberculosis Infection Is Associated With a Higher Frequency of Mucosal-
 572 Associated Invariant T and Invariant Natural Killer T Cells. *Front Immunol* **9**:1394.

573 12. **Kauffman KD, Sallin MA, Hoft SG, Sakai S, Moore R, Wilder-Kofie T, Moore IN, Sette A, Arlehamn CSL, Barber DL.** 2018. Limited Pulmonary Mucosal-Associated
 574 Invariant T Cell Accumulation and Activation during *Mycobacterium tuberculosis*
 575 Infection in Rhesus Macaques. *Infect Immun* **86**

576 13. **Bucsan AN, Rout N, Foreman TW, Khader SA, Rengarajan J, Kaushal D.** 2019.
 577 Mucosal-activated invariant T cells do not exhibit significant lung recruitment and
 578 proliferation profiles in macaques in response to infection with *Mycobacterium*
 579 tuberculosis CDC1551. *Tuberculosis (Edinb)* **116S**:S11–S18.

580 14. **Ellis AL, Balgeman AJ, Larson EC, Rodgers MA, Ameel C, Baranowski T, Kannal N, Maiello P, Juno JA, Scanga CA, O'Connor SL.** 2020. MAIT cells are functionally
 581 impaired in a Mauritian cynomolgus macaque model of SIV and Mtb co-infection. *PLoS*
 582 *Pathog* **16**:e1008585.

583 15. **Vorkas CK, Levy O, Skular M, Li K, Aubé J, Glickman MS.** 2020. Efficient 5-OP-RU-
 584 Induced Enrichment of Mucosa-Associated Invariant T Cells in the Murine Lung Does Not
 585 Enhance Control of Aerosol *Mycobacterium tuberculosis* Infection. *Infect Immun* **89**

586 16. **Sakai S, Kauffman KD, Oh S, Nelson CE, Barry CE, Barber DL.** 2021. MAIT cell-
 587 directed therapy of *Mycobacterium tuberculosis* infection. *Mucosal Immunol* **14**:199–208.

588 17. **Corbett AJ, Eckle SB, Birkinshaw RW, Liu L, Patel O, Mahony J, Chen Z, Reantragoon R, Meehan B, Cao H, Williamson NA, Strugnell RA, Van Sinderen D, Mak JY, Fairlie DP, Kjer-Nielsen L, Rossjohn J, McCluskey J.** 2014. T-cell activation
 589 by transitory neo-antigens derived from distinct microbial pathways. *Nature* **509**:361–365.

590 18. **Birkinshaw RW, Kjer-Nielsen L, Eckle SB, McCluskey J, Rossjohn J.** 2014. MAITs,
 591 MR1 and vitamin B metabolites. *Curr Opin Immunol* **26**:7–13.

592 19. **Sattler A, Dang-Heine C, Reinke P, Babel N.** 2015. IL-15 dependent induction of IL-18
 593 secretion as a feedback mechanism controlling human MAIT-cell effector functions. *Eur J*
 594 *Immunol* **45**:2286–2298.

595 20. **Ussher JE, Bilton M, Attwod E, Shadwell J, Richardson R, de Lara C, Mettke E, Kurioka A, Hansen TH, Klenerman P, Willberg CB.** 2014. CD161++ CD8+ T cells,
 596 including the MAIT cell subset, are specifically activated by IL-12+IL-18 in a TCR-
 597 independent manner. *Eur J Immunol* **44**:195–203.

598 21. **Leeansyah E, Svärd J, Dias J, Buggert M, Nyström J, Quigley MF, Moll M, Sönnnerborg A, Nowak P, Sandberg JK.** 2015. Arming of MAIT Cell Cytolytic
 599 Antimicrobial Activity Is Induced by IL-7 and Defective in HIV-1 Infection. *PLoS Pathog*
 600 **11**:e1005072.

601 22. **Jones RB, Mueller S, O'Connor R, Rimpel K, Sloan DD, Karel D, Wong HC, Jeng EK, Thomas AS, Whitney JB, Lim SY, Kovacs C, Benko E, Karandish S, Huang SH, Buzon MJ, Lichtenfeld M, Irrinki A, Murry JP, Tsai A, Yu H, Gelezunas R, Trocha A, Ostrowski MA, Irvine DJ, Walker BD.** 2016. A Subset of Latency-Reversing Agents
 602 Expose HIV-Infected Resting CD4+ T-Cells to Recognition by Cytotoxic T-Lymphocytes. *PLoS Pathog* **12**:e1005545.

603 23. **Webb GM, Li S, Mwakalundwa G, Folkvord JM, Greene JM, Reed JS, Stanton JJ, Legasse AW, Hobbs T, Martin LD, Park BS, Whitney JB, Jeng EK, Wong HC, Nixon DF, Jones RB, Connick E, Skinner PJ, Sacha JB.** 2018. The human IL-15 superagonist
 604 ALT-803 directs SIV-specific CD8+ T cells into B-cell follicles. *Blood Adv* **2**:76–84.

605

617 24. **McBrien JB, Mavigner M, Franchitti L, Smith SA, White E, Tharp GK, Walum H,**
618 **Busman-Sahay K, Aguilera-Sandoval CR, Thayer WO, Spagnuolo RA, Kovarova M,**
619 **Wahl A, Cervasi B, Margolis DM, Vanderford TH, Carnathan DG, Paiardini M,**
620 **Lifson JD, Lee JH, Safrit JT, Bosinger SE, Estes JD, Derdeyn CA, Garcia JV, Kulpa**
621 **DA, Chahroudi A, Silvestri G.** 2020. Robust and persistent reactivation of SIV and HIV
622 by N-803 and depletion of CD8⁺ cells. *Nature* **578**:154–159.

623 25. **McBrien JB, Wong AKH, White E, Carnathan DG, Lee JH, Safrit JT, Vanderford**
624 **TH, Paiardini M, Chahroudi A, Silvestri G.** 2020. Combination of CD8 β Depletion and
625 Interleukin-15 Superagonist N-803 Induces Virus Reactivation in Simian-Human
626 Immunodeficiency Virus-Infected, Long-Term ART-Treated Rhesus Macaques. *J Virol* **94**
627 26. **Ellis-Connell AL, Balgeman AJ, Zarbock KR, Barry G, Weiler A, Egan JO, Jeng EK,**
628 **Friedrich T, Miller JS, Haase AT, Schacker TW, Wong HC, Rakasz E, O'Connor SL.**
629 2018. ALT-803 Transiently Reduces Simian Immunodeficiency Virus Replication in the
630 Absence of Antiretroviral Treatment. *J Virol* **92**

631 27. **Han KP, Zhu X, Liu B, Jeng E, Kong L, Yovandich JL, Vyas VV, Marcus WD,**
632 **Chavaillaz PA, Romero CA, Rhode PR, Wong HC.** 2011. IL-15:IL-15 receptor alpha
633 superagonist complex: high-level co-expression in recombinant mammalian cells,
634 purification and characterization. *Cytokine* **56**:804–810.

635 28. **Wong HC, Jeng EK, Rhode PR.** 2013. The IL-15-based superagonist ALT-803 promotes
636 the antigen-independent conversion of memory CD8⁺ T cells into innate-like effector cells
637 with antitumor activity. *Oncoimmunology* **2**:e26442.

638 29. **Zhu X, Marcus WD, Xu W, Lee HI, Han K, Egan JO, Yovandich JL, Rhode PR,**
639 **Wong HC.** 2009. Novel human interleukin-15 agonists. *J Immunol* **183**:3598–3607.

640 30. **Xu W, Jones M, Liu B, Zhu X, Johnson CB, Edwards AC, Kong L, Jeng EK, Han K,**
641 **Marcus WD, Rubinstein MP, Rhode PR, Wong HC.** 2013. Efficacy and mechanism-of-
642 action of a novel superagonist interleukin-15: interleukin-15 receptor α Su/Fc fusion
643 complex in syngeneic murine models of multiple myeloma. *Cancer Res* **73**:3075–3086.

644 31. **Rhode PR, Egan JO, Xu W, Hong H, Webb GM, Chen X, Liu B, Zhu X, Wen J, You**
645 **L, Kong L, Edwards AC, Han K, Shi S, Alter S, Sacha JB, Jeng EK, Cai W, Wong**
646 **HC.** 2016. Comparison of the Superagonist Complex, ALT-803, to IL15 as Cancer
647 Immunotherapeutics in Animal Models. *Cancer Immunol Res* **4**:49–60.

648 32. **Rosario M, Liu B, Kong L, Collins LI, Schneider SE, Chen X, Han K, Jeng EK,**
649 **Rhode PR, Leong JW, Schappe T, Jewell BA, Keppel CR, Shah K, Hess B, Romee R,**
650 **Piwnica-Worms DR, Cashen AF, Bartlett NL, Wong HC, Fehniger TA.** 2016. The IL-
651 15-Based ALT-803 Complex Enhances Fc γ RIIIa-Triggered NK Cell Responses and In
652 Vivo Clearance of B Cell Lymphomas. *Clin Cancer Res* **22**:596–608.

653 33. **Margolin K, Morishima C, Velcheti V, Miller JS, Lee SM, Silk AW, Holtan SG,**
654 **Lacroix AM, Fling SP, Kaiser JC, Egan JO, Jones M, Rhode PR, Rock AD, Cheever**
655 **MA, Wong HC, Ernstooff MS.** 2018. Phase I Trial of ALT-803, A Novel Recombinant
656 IL15 Complex, in Patients with Advanced Solid Tumors. *Clin Cancer Res* **24**:5552–5561.

657 34. **Wrangle JM, Velcheti V, Patel MR, Garrett-Mayer E, Hill EG, Ravenel JG, Miller**
658 **JS, Farhad M, Anderton K, Lindsey K, Taffaro-Neskey M, Sherman C, Suriano S,**
659 **Swiderska-Syn M, Sion A, Harris J, Edwards AR, Rytlewski JA, Sanders CM, Yusko**
660 **EC, Robinson MD, Krieg C, Redmond WL, Egan JO, Rhode PR, Jeng EK, Rock AD,**
661 **Wong HC, Rubinstein MP.** 2018. ALT-803, an IL-15 superagonist, in combination with

662 nivolumab in patients with metastatic non-small cell lung cancer: a non-randomised, open-
663 label, phase 1b trial. *Lancet Oncol* **19**:694–704.

664 35. **Miller JS, Davis ZB, Helgeson E, Reilly C, Thorkelson A, Anderson J, Lima NS, Jorstad S, Hart GT, Lee JH, Safrit JT, Wong H, Cooley S, Gharu L, Chung H, Soon-Shiong P, Dobrowolski C, Fletcher CV, Karn J, Douek DC, Schacker TW.** 2022. Safety and virologic impact of the IL-15 superagonist N-803 in people living with HIV: a phase 1 trial. *Nat Med*

665 36. **Greene JM, Dash P, Roy S, McMurtrey C, Awad W, Reed JS, Hammond KB, Abdulhaqq S, Wu HL, Burwitz BJ, Roth BF, Morrow DW, Ford JC, Xu G, Bae JY, Crank H, Legasse AW, Dang TH, Greenaway HY, Kurniawan M, Gold MC, Harriff MJ, Lewinsohn DA, Park BS, Axthelm MK, Stanton JJ, Hansen SG, Picker LJ, Venturi V, Hildebrand W, Thomas PG, Lewinsohn DM, Adams EJ, Sacha JB.** 2017. MR1-restricted mucosal-associated invariant T (MAIT) cells respond to mycobacterial vaccination and infection in nonhuman primates. *Mucosal Immunol* **10**:802–813.

666 37. **Juno JA, Wragg KM, Amarasena T, Meehan BS, Mak JYW, Liu L, Fairlie DP, McCluskey J, Eckle SBG, Kent SJ.** 2019. MAIT Cells Upregulate $\alpha 4\beta 7$ in Response to Acute Simian Immunodeficiency Virus/Simian HIV Infection but Are Resistant to Peripheral Depletion in Pigtail Macaques. *J Immunol* **202**:2105–2120.

667 38. **Sutton MS, Burns CM, Weiler AM, Balgeman AJ, Braasch A, Lehrer-Brey G, Friedrich TC, O'Connor SL.** 2016. Vaccination with Live Attenuated Simian Immunodeficiency Virus (SIV) Protects from Mucosal, but Not Necessarily Intravenous, Challenge with a Minimally Heterologous SIV. *J Virol* **90**:5541–5548.

668 39. **Sutton MS, Ellis-Connell A, Balgeman AJ, Barry G, Weiler AM, Hetzel SJ, Zhou Y, Lau-Kilby AW, Mason RD, Biris KK, Mascola JR, Sullivan NJ, Roederer M, Friedrich TC, O'Connor SL.** 2019. CD8 β Depletion Does Not Prevent Control of Viral Replication or Protection from Challenge in Macaques Chronically Infected with a Live Attenuated Simian Immunodeficiency Virus. *J Virol* **93**

669 40. **Greene JM, Lhost JJ, Burwitz BJ, Budde ML, Macnair CE, Weiker MK, Gostick E, Friedrich TC, Broman KW, Price DA, O'Connor SL, O'Connor DH.** 2010. Extralymphoid CD8+ T cells resident in tissue from simian immunodeficiency virus SIVmac239{Delta}nef-vaccinated macaques suppress SIVmac239 replication ex vivo. *J Virol* **84**:3362–3372.

670 41. **Dias J, Sobkowiak MJ, Sandberg JK, Leeansyah E.** 2016. Human MAIT-cell responses to Escherichia coli: activation, cytokine production, proliferation, and cytotoxicity. *J Leukoc Biol* **100**:233–240.

671 42. **Khuzwayo S, Mthembu M, Meermeier EW, Prakadan SM, Kazer SW, Bassett T, Nyamande K, Khan DF, Maharaj P, Mitha M, Suleman M, Mhlane Z, Ramjit D, Karim F, Shalek AK, Lewinsohn DM, Ndung'u T, Wong EB.** 2021. MR1-Restricted MAIT Cells From The Human Lung Mucosal Surface Have Distinct Phenotypic, Functional, and Transcriptomic Features That Are Preserved in HIV Infection. *Front Immunol* **12**:631410.

672 43. **Voillet V, Buggert M, Slichter CK, Berkson JD, Mair F, Addison MM, Dori Y, Nadolski G, Itkin MG, Gottardo R, Betts MR, Prlic M.** 2018. Human MAIT cells exit peripheral tissues and recirculate via lymph in steady state conditions. *JCI Insight* **3**

673 44. **Daudt L, Maccario R, Locatelli F, Turin I, Silla L, Montini E, Percivalle E, Giugliani R, Avanzini MA, Moretta A, Montagna D.** 2008. Interleukin-15 favors the expansion of

708 central memory CD8+ T cells in ex vivo generated, antileukemia human cytotoxic T
709 lymphocyte lines. *J Immunother* **31**:385–393.

710 45. **Picker LJ, Reed-Inderbitzin EF, Hagen SI, Edgar JB, Hansen SG, Legasse A, Planer S, Piatak M, Lifson JD, Maino VC, Axthelm MK, Villinger F.** 2006. IL-15 induces CD4 effector memory T cell production and tissue emigration in nonhuman primates. *J Clin Invest* **116**:1514–1524.

711 46. **Lugli E, Goldman CK, Perera LP, Smedley J, Pung R, Yovandich JL, Creekmore SP, Waldmann TA, Roederer M.** 2010. Transient and persistent effects of IL-15 on lymphocyte homeostasis in nonhuman primates. *Blood* **116**:3238–3248.

712 47. **Mueller YM, Petrovas C, Bojczuk PM, Dimitriou ID, Beer B, Silvera P, Villinger F, Cairns JS, Gracely EJ, Lewis MG, Katsikis PD.** 2005. Interleukin-15 increases effector memory CD8+ t cells and NK Cells in simian immunodeficiency virus-infected macaques. *J Virol* **79**:4877–4885.

713 48. **Sneller MC, Kopp WC, Engelke KJ, Yovandich JL, Creekmore SP, Waldmann TA, Lane HC.** 2011. IL-15 administered by continuous infusion to rhesus macaques induces massive expansion of CD8+ T effector memory population in peripheral blood. *Blood* **118**:6845–6848.

714 49. **Mahnke YD, Brodie TM, Sallusto F, Roederer M, Lugli E.** 2013. The who's who of T-cell differentiation: human memory T-cell subsets. *Eur J Immunol* **43**:2797–2809.

715 50. **Webb GM, Molden J, Busman-Sahay K, Abdulhaqq S, Wu HL, Weber WC, Bateman KB, Reed JS, Northrup M, Maier N, Tanaka S, Gao L, Davey B, Carpenter BL, Axthelm MK, Stanton JJ, Smedley J, Greene JM, Safrit JT, Estes JD, Skinner PJ, Sacha JB.** 2020. The human IL-15 superagonist N-803 promotes migration of virus-specific CD8+ T and NK cells to B cell follicles but does not reverse latency in ART-suppressed, SHIV-infected macaques. *PLoS Pathog* **16**:e1008339.

716 51. **Leong YA, Chen Y, Ong HS, Wu D, Man K, Deleage C, Minnich M, Meckiff BJ, Wei Y, Hou Z, Zotos D, Fenix KA, Atnerkar A, Preston S, Chipman JG, Beilman GJ, Allison CC, Sun L, Wang P, Xu J, Toe JG, Lu HK, Tao Y, Palendira U, Dent AL, Landay AL, Pellegrini M, Comerford I, McColl SR, Schacker TW, Long HM, Estes JD, Busslinger M, Belz GT, Lewin SR, Kallies A, Yu D.** 2016. CXCR5(+) follicular cytotoxic T cells control viral infection in B cell follicles. *Nat Immunol* **17**:1187–1196.

717 52. **Ferrando-Martinez S, Moysi E, Pegu A, Andrews S, Nganou Makamdop K, Ambrozak D, McDermott AB, Palesch D, Paiardini M, Pavlakis GN, Brenchley JM, Douek D, Mascola JR, Petrovas C, Koup RA.** 2018. Accumulation of follicular CD8+ T cells in pathogenic SIV infection. *J Clin Invest* **128**:2089–2103.

718 53. **Jeyanathan M, Afkhami S, Khera A, Mandur T, Damjanovic D, Yao Y, Lai R, Haddadi S, Dvorkin-Gheva A, Jordana M, Kunkel SL, Xing Z.** 2017. CXCR3 Signaling Is Required for Restricted Homing of Parenteral Tuberculosis Vaccine-Induced T Cells to Both the Lung Parenchyma and Airway. *J Immunol* **199**:2555–2569.

719 54. **Slütter B, Pewe LL, Kaech SM, Harty JT.** 2013. Lung airway-surveilling CXCR3(hi) memory CD8(+) T cells are critical for protection against influenza A virus. *Immunity* **39**:939–948.

720 55. **Ito T, Carson WF, Cavassani KA, Connett JM, Kunkel SL.** 2011. CCR6 as a mediator of immunity in the lung and gut. *Exp Cell Res* **317**:613–619.

752 56. **Felices M, Chu S, Kodal B, Bendzick L, Ryan C, Lenvik AJ, Boylan KLM, Wong HC, Skubitz APN, Miller JS, Geller MA.** 2017. IL-15 super-agonist (ALT-803) enhances natural killer (NK) cell function against ovarian cancer. *Gynecol Oncol* **145**:453–461.

753 57. **Tao H, Pan Y, Chu S, Li L, Xie J, Wang P, Zhang S, Reddy S, Sleasman JW, Zhong XP.** 2021. Differential controls of MAIT cell effector polarization by mTORC1/mTORC2 via integrating cytokine and costimulatory signals. *Nat Commun* **12**:2029.

754 58. **Meierovics A, Yankelevich WJ, Cowley SC.** 2013. MAIT cells are critical for optimal mucosal immune responses during in vivo pulmonary bacterial infection. *Proc Natl Acad Sci U S A* **110**:E3119–28.

755 59. **Chen Z, Wang H, D’Souza C, Sun S, Kostenko L, Eckle SB, Meehan BS, Jackson DC, Strugnell RA, Cao H, Wang N, Fairlie DP, Liu L, Godfrey DI, Rossjohn J, McCluskey J, Corbett AJ.** 2017. Mucosal-associated invariant T-cell activation and accumulation after in vivo infection depends on microbial riboflavin synthesis and co-stimulatory signals. *Mucosal Immunol* **10**:58–68.

756 60. **Georgel P, Radosavljevic M, Macquin C, Bahram S.** 2011. The non-conventional MHC class I MR1 molecule controls infection by *Klebsiella pneumoniae* in mice. *Mol Immunol* **48**:769–775.

757 61. **Dias J, Leeansyah E, Sandberg JK.** 2017. Multiple layers of heterogeneity and subset diversity in human MAIT cell responses to distinct microorganisms and to innate cytokines. *Proc Natl Acad Sci U S A* **114**:E5434–E5443.

758 62. **Shanmugasundaram U, Bucsan AN, Ganatra SR, Ibegbu C, Quezada M, Blair RV, Alvarez X, Velu V, Kaushal D, Rengarajan J.** 2020. Pulmonary *Mycobacterium tuberculosis* control associates with CXCR3- and CCR6-expressing antigen-specific Th1 and Th17 cell recruitment. *JCI Insight* **5**

759 63. **Bergamaschi C, Pandit H, Nagy BA, Stellas D, Jensen SM, Bear J, Cam M, Valentini A, Fox BA, Felber BK, Pavlakis GN.** 2020. Heterodimeric IL-15 delays tumor growth and promotes intratumoral CTL and dendritic cell accumulation by a cytokine network involving XCL1, IFN- γ , CXCL9 and CXCL10. *J Immunother Cancer* **8**

760 64. **Lal KG, Kim D, Costanzo MC, Creegan M, Leeansyah E, Dias J, Paquin-Proulx D, Eller LA, Schuetz A, Phuang-Ngern Y, Krebs SJ, Slike BM, Kibuuka H, Maganga L, Nitayaphan S, Kosgei J, Sacdalan C, Ananworanich J, Bolton DL, Michael NL, Shacklett BL, Robb ML, Eller MA, Sandberg JK.** 2020. Dynamic MAIT cell response with progressively enhanced innateness during acute HIV-1 infection. *Nat Commun* **11**:272.

761 65. **Lugo-Villarino G, Maldonado-Lopez R, Possemato R, Penaranda C, Glimcher LH.** 2003. T-bet is required for optimal production of IFN-gamma and antigen-specific T cell activation by dendritic cells. *Proc Natl Acad Sci U S A* **100**:7749–7754.

762 66. **Walker NF, Meintjes G, Wilkinson RJ.** 2013. HIV-1 and the immune response to TB. *Future Virol* **8**:57–80.

763 67. **Shankar EM, Vignesh R, Ellegård R, Barathan M, Chong YK, Bador MK, Rukumani DV, Sabet NS, Kamarulzaman A, Velu V, Larsson M.** 2014. HIV-*Mycobacterium tuberculosis* co-infection: a ‘danger-couple model’ of disease pathogenesis. *Pathog Dis* **70**:110–118.

764 68. **Rausch A, Hessmann M, Hölscher A, Schreiber T, Bulfone-Paus S, Ehlers S, Hölscher C.** 2006. Interleukin-15 mediates protection against experimental tuberculosis: a role for NKG2D-dependent effector mechanisms of CD8+ T cells. *Eur J Immunol* **36**:1156–1167.

798 69. **Kwon KW, Kim SJ, Kim H, Kim WS, Kang SM, Choi E, Ha SJ, Yoon JH, Shin SJ.**
799 2019. IL-15 Generates IFN- γ -producing Cells Reciprocally Expressing Lymphoid-Myeloid
800 Markers during Dendritic Cell Differentiation. *Int J Biol Sci* **15**:464–480.

801
802
803

804 **Figure Legends.**

805

806 Fig. 1. IL-15 superagonist N-803 activates MAIT cells *in vitro*. A, Schematic of *in vitro*
807 experiments performed. Frozen PBMC from healthy macaques were incubated overnight with
808 the indicated concentrations of either recombinant IL-15 (rhIL-15) or N-803. Alternatively, the
809 TCRV α 7.2+ cells (MAIT cells, purple dots) were isolated from PBMC, and then incubated
810 overnight with the indicated concentrations of either rhIL-15 or N-803. Flow cytometry was
811 performed after incubation to assess activation. B, Gating schematic used for flow cytometry for
812 the experiments described in (A) to detect MAIT cells present in PBMC (top panels) or
813 TCRV α 7.2-isolated cells (bottom panels), and the frequencies of CD69+, CD25+, and HLA-
814 DR+ cells. C, Graphical analysis of the experiments described in (A) for MAIT cells present in
815 PBMC. The frequencies of MAIT cells expressing CD69 are shown for the indicated
816 concentrations of rhIL-15 (blue circles) or N-803 (red squares). D, Graphical analysis of the
817 experiments described in (A) for TCRV α 7.2-isolated MAIT cells. Graphs show the frequencies
818 of MAIT cells expressing either CD69 (left) or CD25 (right) for the indicated concentrations of
819 rhIL-15 (blue circles) or N-803 (red squares).

820

821 Fig. 2. N-803 increases IFN γ production from MAIT cells stimulated with either *E.coli* and
822 *M.smegmatis* from both SIV-naive and SIVmac239+ macaques. A, Frozen PBMC from healthy
823 cynomolgus macaques (n=5) were incubated overnight with 10ng/mL N-803, 50ng/mL IL-7, or

824 media control. The following day, functional assays were performed using 10 CFU bacteria/cell
825 of either *E.coli* or *M.smegmatis* as stimuli as described in the methods. Cells were incubated for
826 6 hours in the presence of bacteria and then flow cytometry was performed to determine the
827 frequencies of MAIT cells expressing IFN γ (top), TNF α (middle), or CD107a (bottom). ANOVA
828 tests with Dunnett's multiple comparisons were performed to determine statistical significance
829 between each treatment group (no stim, N-803, or IL-7) for each stimulus (*E.coli* or
830 *M.smegmatis*). p=ns; not significant, *; p \leq 0.05; **; p \leq 0.005. B, Frozen PBMC from the same
831 cynomolgus macaques (n=5) as in (A) were taken from necropsy timepoints, which occurred 6
832 months to 1 year after SIVmac239 infection. PBMC were incubated with 10ng/mL N-803,
833 50ng/mL IL-7, or media control as in (A). Functional assays were performed as described in (A)
834 to determine the frequencies of MAIT cells expressing IFN γ (top), TNF α (middle), or CD107a
835 (bottom). ANOVA tests with Dunnett's multiple comparisons were performed to determine
836 statistical significance between each treatment group (no stim, N-803, or IL-7) for each stimulus
837 (*E.coli* or *M.smegmatis*). p=ns; not significant, *; p \leq 0.05; **; p \leq 0.005.

838
839 Fig. 3. *In vitro* treatment of MAIT cells present in PBMC and lung tissue, but not lymph nodes,
840 with N-803 increases IFN γ production with *E.coli* and *M.smegmatis* bacterial stimuli.
841 SIVmac239+ rhesus macaques (n=4) were necropsied after greater than 8 months of infection,
842 and lymphocytes were isolated from blood, tracheobronchial lymph nodes, and lung tissue.
843 Frozen lymphocytes from PBMC (A), lymph nodes (B), and fresh lymphocytes from lung (C)
844 were incubated overnight with 10ng/mL N-803, 50ng/mL IL-7, or media control. The following
845 day, functional assays were performed using 10 CFU bacteria/cell of either *E.coli* or
846 *M.smegmatis* as stimuli as described in the methods. Flow cytometry was performed to

847 determine the frequencies of MAIT cells expressing IFN γ (top), TNF α (middle), or CD107a
848 (bottom). ANOVA tests with Dunnett's multiple comparisons were performed to determine
849 statistical significance between each treatment group (no stim, N-803, or IL-7) for each stimulus
850 (*E.coli* or *M.smegmatis*). p=ns; not significant, *; p \leq 0.05.

851
852 Fig. 4. Study outline for N-803 treatment and sample collection. SIV+ rhesus macaques were
853 given 0.1mg/kg N-803 subcutaneously. For the present study, samples that were collected prior
854 to and in the first 10 days after the first dose of N-803 were used for analysis.

855
856 Fig. 5. *In vivo* treatment of SIV+ macaques with N-803 alters MAIT cell frequencies in
857 peripheral blood. A, PBMC collected from the indicated timepoints pre and post N-803 treatment
858 were stained with the panel described in Table 3. Flow cytometry was performed as described in
859 the methods. Shown is a representative gating schematic for CD3+CD8+MR1 tetramer+ (MAIT)
860 cells. B, Flow cytometry was performed as described in (A) at the indicated time points post N-
861 803 to determine the frequency of MAIT cells. C, Complete white blood cell counts (CBC) were
862 used to quantify the absolute number of MAIT cells per μ L of blood. D, The frequencies of
863 MAIT cells from (B) were normalized to the pre N-803 averages for each animal, and the data
864 are presented as fold change in the frequency of MAIT cells. E, The absolute counts of MAIT
865 cells from (C) were normalized relative to the absolute cell counts of the pre N-803 averages for
866 each animal and the data are presented as fold change in cell counts. For all statistical analysis in
867 A-E, repeated measures ANOVA non-parametric tests were performed, with Dunnett's multiple
868 comparisons for individuals across multiple timepoints. For individuals for which samples from

869 timepoints were missing, mixed-effects ANOVA tests were performed using Geisser-
870 Greenhouse correction. *, $p \leq 0.05$; **, $p \leq 0.005$; ***, $p \leq 0.0005$; ****, $p \leq 0.0001$.

871

872 Fig. 6. *In vivo* treatment of SIV+ macaques with N-803 increases the frequency of ki-67+ and
873 Granzyme B+ MAIT cells in the peripheral blood. A and B, Frozen PBMC collected from the
874 indicated timepoints pre and post N-803 were thawed, and flow cytometry was performed with
875 the panel described in Table 2. The frequency of MAIT cells (CD8+MR1 tet+ cells) that were
876 (A) central memory (CM; CD28+CD95+, open circles, left panel) or (B) effector memory (EM;
877 CD28-CD95+, open triangles, left panel) are shown. The frequencies of CM and EM cells
878 expressing ki-67 (A and B, middle panels) and Granzyme B (A and B, right panels) cells were
879 determined. Repeated measures ANOVA non-parametric tests were performed, with Dunnett's
880 multiple comparisons for individuals across multiple timepoints. For individuals for which
881 samples from timepoints were missing, mixed-effects ANOVA tests were performed using
882 Geisser-Greenhouse correction. *, $p \leq 0.05$; **, $p \leq 0.005$.

883

884

885 Fig. 7. *In vivo* treatment of SIV+ macaques with N-803 decreases the frequency of
886 CXCR3+CCR6+ MAIT cells in the peripheral blood. A, Frozen PBMC collected from the
887 timepoints pre and post N-803 indicated on the axes in (B) were thawed and stained with the
888 panel described in Table 3. Flow cytometry was performed to determine the frequencies of
889 CD8+ MR1 tetramer+ (MAIT cells) expressing chemokine markers CXCR5, CXCR3, and
890 CCR6. Shown is a representative gating schematic for CXCR5, CXCR3, and CCR6 expression
891 on MAIT cells from a pre N-803 treatment timepoint, and 3 days post N-803. B, Cells from the

892 indicated timepoints were stained as described in (A), and the frequencies of MAIT cells that
893 were CXCR3+CCR6+, CCR6+, and CXCR3+ were determined for each timepoint. Then, the
894 frequencies of each subpopulation were normalized relative to the average of the pre N-803
895 timepoints and graphed as the fold-change in the frequencies of CXCR3+CCR6+ (left), CCR6+
896 (middle) and CXCR3+ (right) MAIT cells. Repeated measures ANOVA non-parametric tests
897 were performed, with Dunnett's multiple comparisons for individuals across multiple timepoints.
898 For individuals for which samples from timepoints were missing, mixed-effects ANOVA tests
899 were performed using Geisser-Greenhouse correction. $p=ns$; not significant; *, $p\leq 0.05$; ***,
900 $p\leq 0.0005$.

901

902 Fig. 8. N-803 treatment *in vivo* increases the frequency of ki-67 and Granzyme B+ MAIT cells
903 present in the lymph nodes one day after treatment. A, Frozen cells isolated from lymph node
904 samples that were collected at the indicated timepoints pre and post N-803 treatment were
905 thawed, and flow cytometry was performed with the panel described in Table 2. The frequency
906 of MAIT cells (CD8+ MR1 tet+ cells, left panel), as well as the frequencies of MAIT cells that
907 were central memory (CM; CD28+CD95+, open circles, middle panel) or effector memory (EM;
908 CD28-CD95+, open triangles, right panel) were determined for each timepoint. B, Central
909 memory (CM) MAIT cells in the lymph nodes from the indicated timepoints were stained as in
910 (A), and the frequencies of ki-67+ (left panel) and Granzyme B+ (right panel) cells were
911 determined. Repeated measures ANOVA non-parametric tests were performed, with Dunnett's
912 multiple comparisons for individuals across multiple timepoints. For individuals for which
913 samples from timepoints were missing, mixed-effects ANOVA tests were performed using
914 Geisser-Greenhouse correction. $p=ns$, not significant; *, $p\leq 0.05$.

915

916 Fig. 9. N-803 treatment *in vivo* increases the frequency of ki-67+ and CCR6+ MAIT cells
917 present in the airways. A, Cells isolated from freshly-obtained bronchoalveolar lavage (BAL)
918 from the indicated timepoints pre and post N-803 treatment were stained with the antibodies
919 indicated in Table 4 for flow cytometric analysis. Shown is a representative flow plot of MAIT
920 cells from one individual, as well as the ki-67 and CCR6 expression on those cells, from pre and
921 day 3 post N-803 timepoints. B, The frequencies of MAIT cells (CD8+ MR1 tet+ cells) was
922 determined for the indicated timepoints pre and post N-803 as described in (A). C, The
923 frequency of MAITs expressing ki-67 (left panel) and CCR6 (right panel) were determined as
924 described in (A). Wilcoxon matched pairs rank-signed tests were performed. p=ns, not
925 significant; *, p≤0.05.

926

927 Fig. 10. N-803 treatment *in vivo* increases the frequency of IFN γ production from MAIT cells
928 stimulated *ex vivo* with *E.coli* or *M.smegmatis*. A and B, Cells from either PBMC (A) or
929 bronchoalveolar lavage fluid (BAL, B) from pre and day 3 post N-803 timepoints were
930 stimulated either overnight (PBMC, A) or for 6 hours (BAL, B) with 10 colony forming units
931 (CFU)/cell of either *E.coli* or *M.smegmatis*. The frequencies of MAIT cells expressing IFN γ
932 (top), TNF α (middle), or CD107a (bottom) were determined for each timepoint. The data for
933 each stimulus (*E.coli*, left graphs, *M.smegmatis*, right graphs) are shown as the frequency of
934 IFN γ +, TNF α +, or CD107a+ after background subtraction. Wilcoxon matched-pairs Rank signed
935 tests were performed. p=ns, not significant; *, p≤0.05.

936

937

938 **SUPPLEMENTARY FIGURE LEGENDS.**

939

940 Supplementary Fig. 1. Functional assays were performed as indicated in Figs. 2-3, 10 and the
941 methods using PBMC and BAL samples collected prior to and after N-803 treatment. Flow
942 cytometry was performed using antibodies in Tables 6 (PBMC) and 7 (BAL) to measure the
943 frequency of MAIT cells expressing IFN γ , TNF α , or CD107a after stimulation. Shown is a
944 representative flow plot for the frequencies IFN γ , TNF α , or CD107a+ MAIT cells in PBMC
945 stimulated with media control (no stim) or 10 CFU of fixed *E.coli*.

946

947 Supplementary Fig. 2. A, Cells from BAL (left), PBMC (middle), and lymph node (LN; right)
948 were stained for flow cytometric analysis using panels described in Table 4 (BAL) and Table 2
949 (PBMC, LN). Shown are representative images of the frequency of CD8+MR1 tetramer+
950 (MAIT) cells for each tissue type. B, Cells from BAL (blue), PBMC (red), and LN (black) were
951 stained as described in (A). Shown are the average frequencies of CD8+MR1 tetramer+ cells
952 prior to N-803 treatment for all animals described in Fig. 4.

953

954 Supplementary Fig. 3. A, BAL collected from timepoints indicated in Fig. 4 were stained for
955 flow cytometric analysis using the panel described in Table 4. Shown is a representative gating
956 schematic. B, BAL samples collected from macaques prior to and 3 days after N-803 treatment
957 were stained for flow cytometric analysis as described in (A). The frequencies of CD3+ cells
958 (left) and CD3+CD8+ cells (right) are shown pre and post N-803. Wilcoxon matched-pairs Rank
959 signed tests were performed; p=ns, not significant.

960

961
962
963
964
965
966
967
968

TABLES.

Table 1. Animals and samples utilized in this study.

Animal	SIV strain(s) Challenged with	Study previously described in	Figure(s) samples were utilized in
Cy0899	SIVmac239	(14)	Fig 1
Cy0900	SIVmac239	(14)	Figs 1, 2
Cy0918	SIVmac239	(14)	Figs 1, 2
Cy0919	SIVmac239	(14)	Figs 1, 2
Cy0756	SIVmac239Δnef- 8X; SIVmac239	(39)	Fig 2
Cy0757	SIVmac239Δnef- 8X; SIVmac239	(39)	Fig 2
r15053	SIVmac239M	Ellis-Connell et al, 2022; submitted	Figs. 3-8; 10
r15090	SIVmac239M	Ellis-Connell et al, 2022; submitted	Figs. 3-8; 10
r03019	SIVmac239M	Ellis-Connell et al, 2022; submitted	Figs. 3-8; 10
rh2498	SIVmac239M	Ellis-Connell et al, 2022; submitted	Figs. 3-8; 10
rh2493	SIVmac239M	Ellis-Connell et al, 2022; submitted	Figs. 3-8; 10
rh2903	SIVmac239M	Ellis-Connell et al, 2022; submitted	Figs. 4-10
rh2906	SIVmac239M	Ellis-Connell et al, 2022; submitted	Figs. 4-10

rh2907	SIVmac239M	Ellis-Connell et al, 2022; submitted	Figs. 4-10
rh2909	SIVmac239M	Ellis-Connell et al, 2022; submitted	Figs. 4-10
rh2911	SIVmac239M	Ellis-Connell et al, 2022; submitted	Figs. 4-10
rh2920	SIVmac239M	Ellis-Connell et al, 2022; submitted	Figs. 4-10
rh2921	SIVmac239M	Ellis-Connell et al, 2022; submitted	Figs. 4-10
r05053	SIVmac239M	Ellis-Connell et al, 2022; submitted	Figs. 4-10
r10063	SIVmac239M	Ellis-Connell et al, 2022; submitted	Figs. 4-10

969
970
971

Table 2. Cytolytic granule/proliferation flow cytometry panel used for PBMC

Antibody	Clone	Tetramer/Surface/Intracellular
Gag ₁₈₁₋₁₈₉ CM9-PE	---	Tetramer***
Tat ₂₈₋₃₅ SL8-BV605	---	Tetramer***
MR1 5-OP-RU-BV421	---	Tetramer
CD3-AF700	SP34-2	Surface
CD4-BUV737	SK3	Surface
CD8-BUV395	RPA-T8	Surface
CD28-BV510	CD28.2	Surface
CD95-PE Cy7	DX2	Surface
CCR7-BV711	G043H7	Surface
LIVE/DEAD Near IR ARD	---	---
ki-67-AF488	B56	Intracellular
GranzymeB-PE CF594	GB11	Intracellular

Perforin-AF647	PF344	Intracellular
----------------	-------	---------------

972 ***The Gag₁₈₁₋₁₈₉CM9-PE and Tat₂₈₋₃₅SL8-BV605 tetramers were used to characterize SIV-
973 specific conventional T cells, which are described elsewhere (manuscript in progress).
974
975

976 Table 3. Chemokine/trafficking flow cytometry panel used for PBMC

Antibody	Clone	Tetramer/Surface
Gag ₁₈₁₋₁₈₉ CM9-PE	---	Tetramer***
Tat ₂₈₋₃₅ SL8-BV605	---	Tetramer***
MR1 5-OP-RU-APC	---	Tetramer
CD3-AF700	SP34-2	Surface
CD4-BUV737	SK3	Surface
CD8-BUV395	RPA-T8	Surface
CXCR3-BV650	G025H7	Surface
CCR6-PE Cy7	11A9	Surface
CXCR5-PerCP Efluor710	MU5UBEE	Surface
CD122-BV421	Mik-β3	Surface
CD132-BB515	AG184	Surface
LIVE/DEAD Near IR ARD	---	---

977 ***The Gag₁₈₁₋₁₈₉CM9-PE and Tat₂₈₋₃₅SL8-BV605 tetramers were used to characterize SIV-
978 specific conventional T cells, which are described elsewhere (manuscript in progress).
979
980

981 Table 4. MAIT BAL phenotype flow cytometry panel

Antibody	Clone	Tetramer/Surface/Intracellular
MR1 5-OP-RU-BV421	---	Tetramer
TCRVα7.2-BV605	3C10	Surface
CD3-AF700	SP34-2	Surface
CD4-BV510	L200	Surface
CD8-BV786	RPA-T8	Surface

ki-67-AF647	B56	Intracellular
CD154-PE	24-31	Surface
CD69-PE Texas Red	TP1.55.3	Surface
CCR6-PE Cy7	11A9	Surface
CCR7-FITC	150503	Surface
HLA-DR-BV650	G46-6	Surface
LIVE/DEAD Near IR ARD	---	---

982

983

984

Table 5. Antibodies used for *in vitro* MAIT activation assay

Antibody	Clone	Tetramer/Surface
MR1 5-OP-RU-BV421	-----	Tetramer
CD8-BUV563	RPA-T8	Surface
CD4-BUV737	SK3	Surface
CD3-BUV395	SP34-2	Surface
CD69-PE Texas Red	TP1.55.3	Surface
HLA-DR BV650	G46-6	Surface
CD25-APC	BC96	Surface
LIVE/DEAD Near IR ARD	-----	-----

985

986

987

Table 6. MAIT *in vitro* and *ex vivo* functional assays.

Antibody	Clone	Tetramer/Surface/Intracellular
MR1 5-OP-RU-BV421	-----	Tetramer
CD3-BUV396	SP34-2	Surface
CD4-BUV737	SK3	Surface
CD8-BUV563	RPA-T8	Surface
CD107a-BV605	H4A3	Surface

IFN γ -FITC	4S.B3	Intracellular
TNF α -AF700	Mab11	Intracellular
LIVE/DEAD Near IR ARD	-----	-----

988

989

990

Table 7. MAIT BAL functional assay

Antibody	Clone	Tetramer/Surface/Intracellular
MR1 5-OP-RU-BV421	-----	Tetramer
TCRV α 7.2-BV605	3C10	Surface
CD107a-APC	H4A3	Surface
CD3-AF700	SP34-2	Surface
CD4-BV510	L200	Surface
CD8-BV786	RPA-T8	Surface
CCR6-PE Cy7	11A9	Surface
IFN γ -FITC	4S.B3	Intracellular
TNF α -PerCP Cy5.5	Mab11	Intracellular
LIVE/DEAD Near IR ARD	-----	-----

991

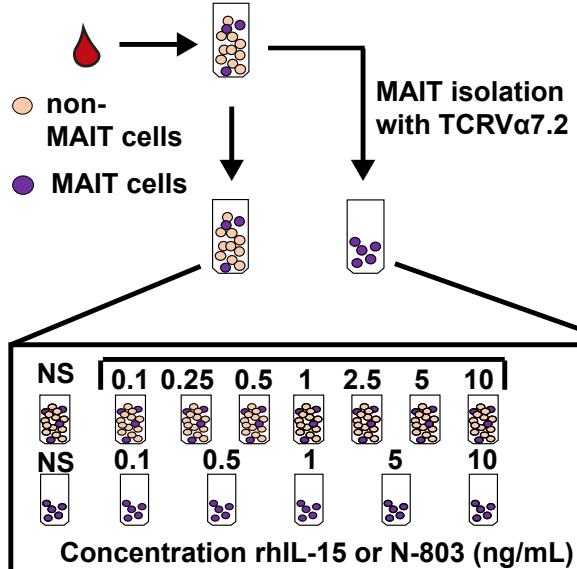
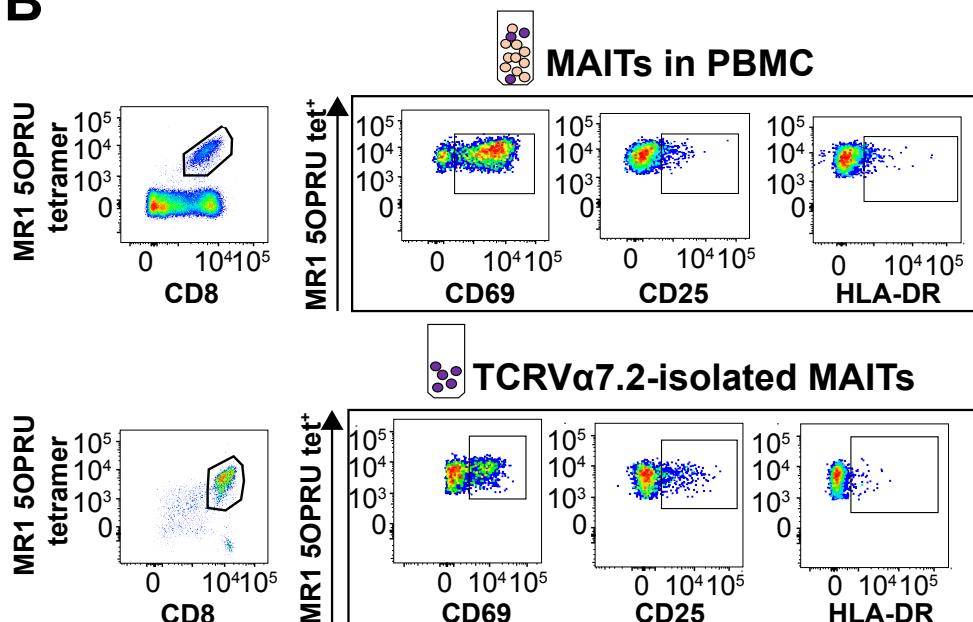
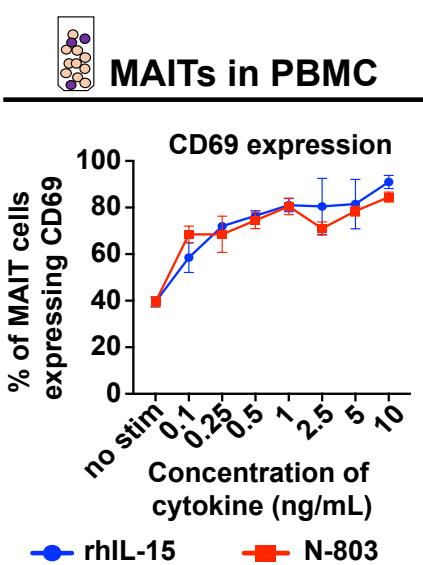
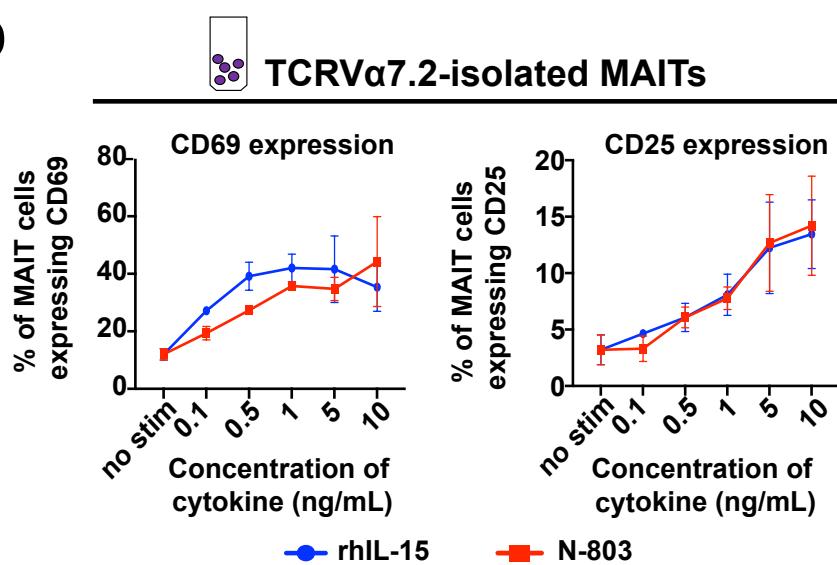
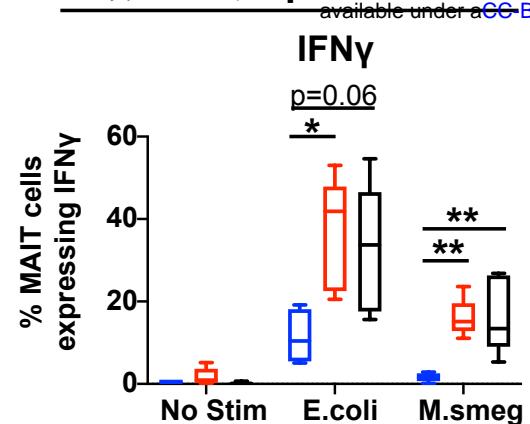
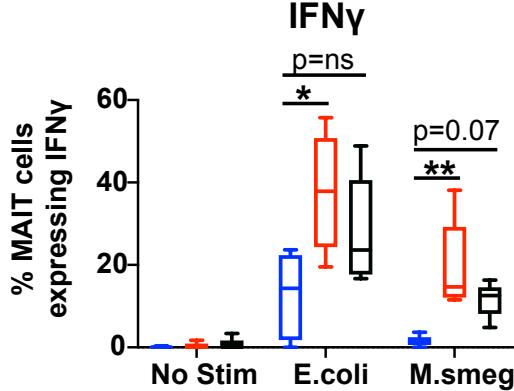






A**B****C****D**

Fig. 1. IL-15 superagonist N-803 activates MAIT cells *in vitro*. A, Schematic of *in vitro* experiments performed. Frozen PBMC from healthy macaques were incubated overnight with the indicated concentrations of either recombinant IL-15 (rhIL-15) or N-803. Alternatively, the TCRV α 7.2+ cells (MAIT cells, purple dots) were isolated from PBMC, and then incubated overnight with the indicated concentrations of either rhIL-15 or N-803. Flow cytometry was performed after incubation to assess activation. B, Gating schematic used for flow cytometry for the experiments described in (A) to detect MAIT cells present in PBMC (top panels) or TCRV α 7.2-isolated cells (bottom panels), and the frequencies of CD69+, CD25+, and HLA-DR+ cells. C, Graphical analysis of the experiments described in (A) for MAIT cells present in PBMC. The frequencies of MAIT cells expressing CD69 are shown for the indicated concentrations of rhIL-15 (blue circles) or N-803 (red squares). D, Graphical analysis of the experiments described in (A) for TCRV α 7.2-isolated MAIT cells. Graphs show the frequencies of MAIT cells expressing either CD69 (left) or CD25 (right) for the indicated concentrations of rhIL-15 (blue circles) or N-803 (red squares).

A PBMC pre-SIV

B PBMC post-SIV

IFNγ

$p=0.06$

*

**

IFNγ

$p=ns$

*

**

$p=0.07$

TNFα

$p=ns$

*

**

TNFα

$p=ns$

*

**

CD107a

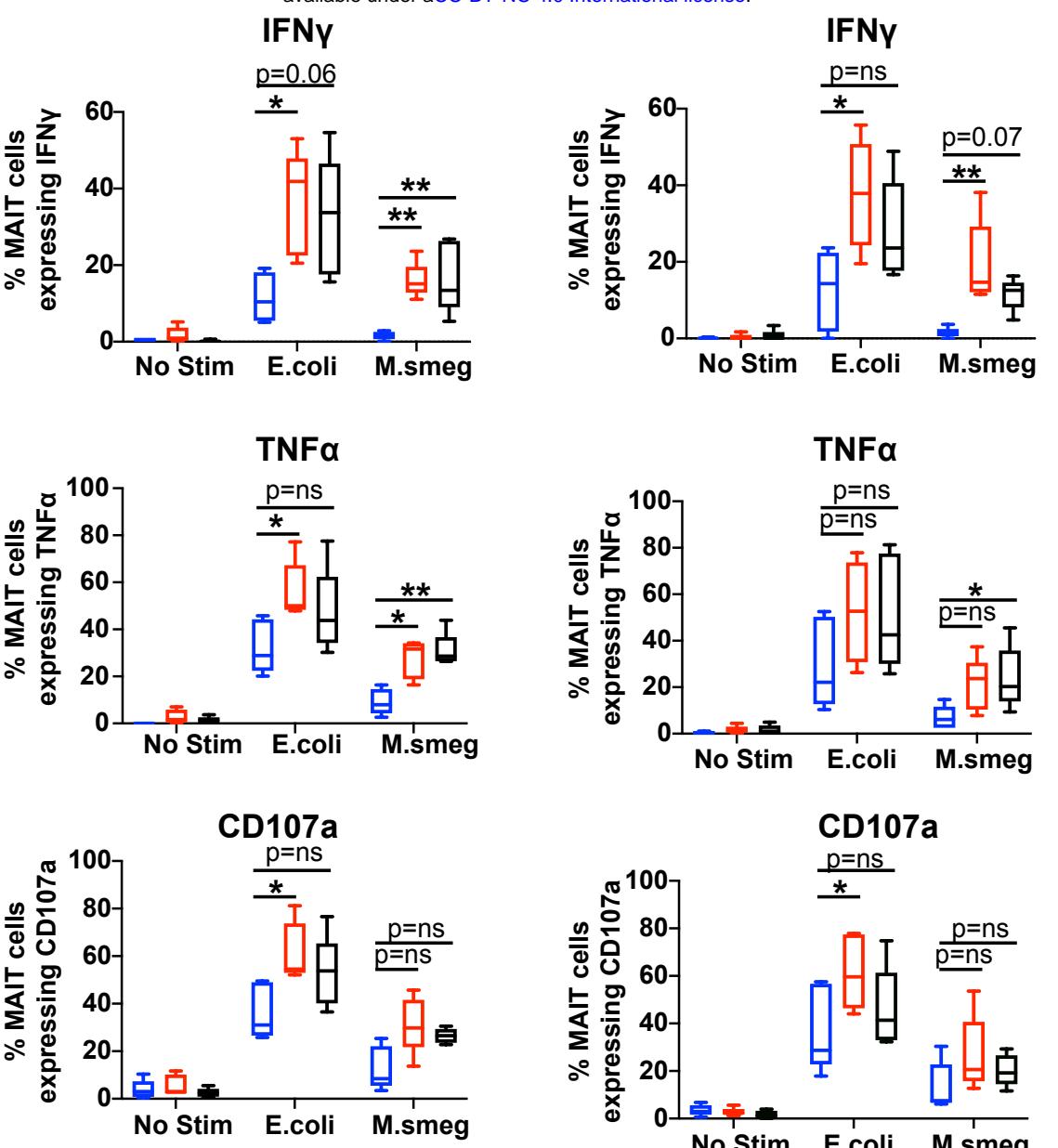
$p=ns$

*

**

CD107a

$p=ns$


*

**

$p=ns$

*

**

n=5 cynomolgus macaques

Cytokine added:

█ **No cytokine** █ **N-803 (10ng/mL)** █ **IL-7 (50ng/mL)**

Fig. 2. N-803 increases IFN γ production from MAIT cells stimulated with either *E.coli* and *M.smegmatis* from both SIV-naïve and SIVmac239+ macaques. A, Frozen PBMC from healthy cynomolgus macaques (n=5) were incubated overnight with 10ng/mL N-803, 50ng/mL IL-7, or media control. The following day, functional assays were performed using 10 CFU bacteria/cell of either *E.coli* or *M.smegmatis* as stimuli as described in the methods. Cells were incubated for 6 hours in the presence of bacteria and then flow cytometry was performed to determine the frequencies of MAIT cells expressing IFN γ (top), TNF α (middle), or CD107a (bottom). ANOVA tests with Dunnett's multiple comparisons were performed to determine statistical significance between each treatment group (no stim, N-803, or IL-7) for each stimulus (*E.coli* or *M.smegmatis*). p=ns; not significant, *; p≤0.05; **; p≤0.005. B, Frozen PBMC from the same cynomolgus macaques (n=5) as in (A) were taken from necropsy timepoints, which occurred 6 months to 1 year after SIVmac239 infection. PBMC were incubated with 10ng/mL N-803, 50ng/mL IL-7, or media control as in (A). Functional assays were performed as described in (A) to determine the frequencies of MAIT cells expressing IFN γ (top), TNF α (middle), or CD107a (bottom). ANOVA tests with Dunnett's multiple comparisons were performed to determine statistical significance between each treatment group (no stim, N-803, or IL-7) for each stimulus (*E.coli* or *M.smegmatis*). p=ns; not significant, *; p≤0.05; **; p≤0.005.

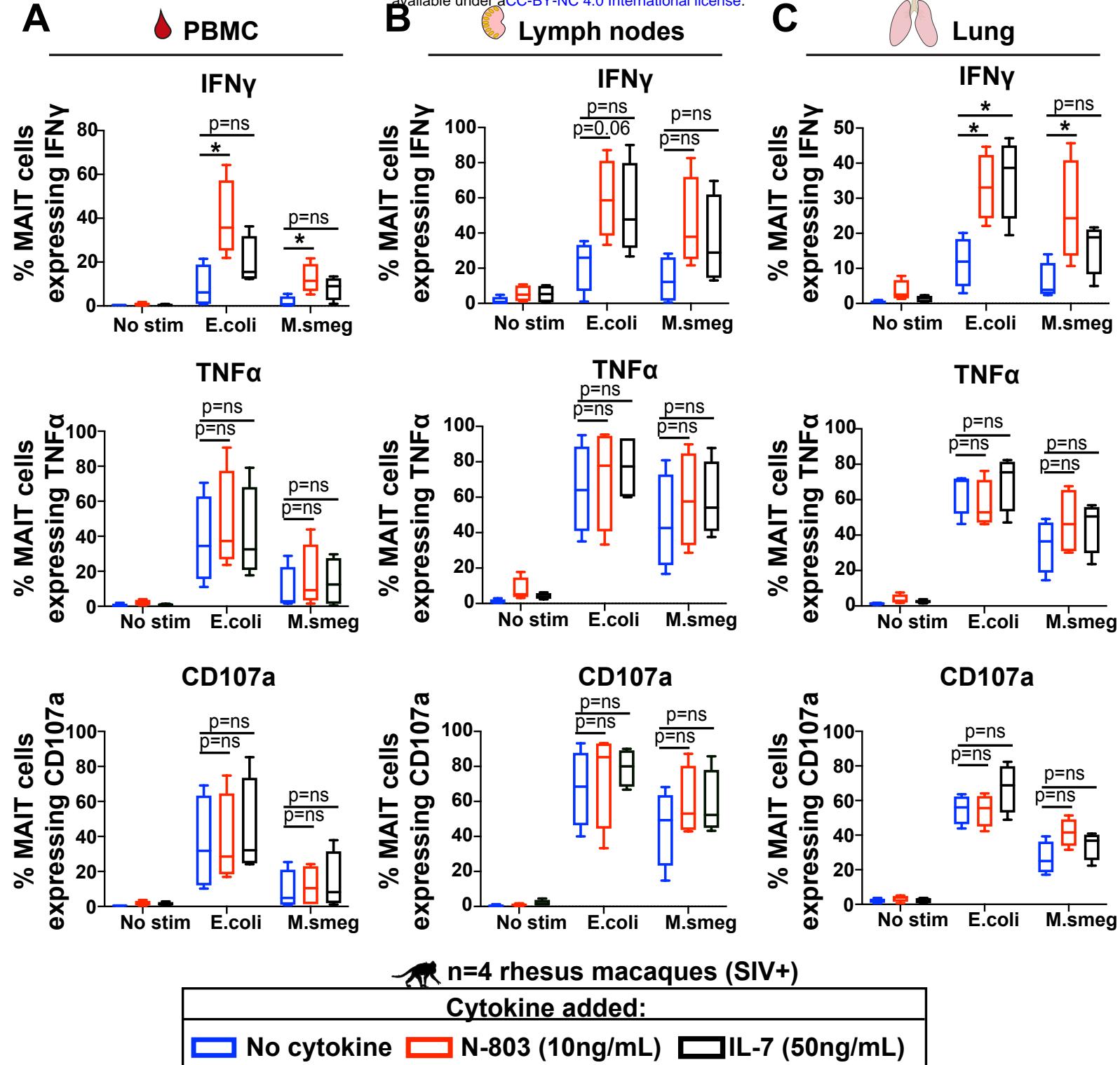


Fig. 3. *In vitro* treatment of MAIT cells present in PBMC and lung tissue, but not lymph nodes, with N-803 increases IFN γ production with *E.coli* and *M.smegmatis* bacterial stimuli. SIVmac239+ rhesus macaques (n=4) were necropsied after greater than 8 months of infection, and lymphocytes were isolated from blood, tracheo-bronchial lymph nodes, and lung tissue. Frozen lymphocytes from PBMC (A), lymph nodes (B), and fresh lymphocytes from lung (C) were incubated overnight with 10ng/mL N-803, 50ng/mL IL-7, or media control. The following day, functional assays were performed using 10 CFU bacteria/cell of either *E.coli* or *M.smegmatis* as stimuli as described in the methods. Flow cytometry was performed to determine the frequencies of MAIT cells expressing IFN γ (top), TNF α (middle), or CD107a (bottom). ANOVA tests with Dunnett's multiple comparisons were performed to determine statistical significance between each treatment group (no stim, N-803, or IL-7) for each stimulus (*E.coli* or *M.smegmatis*). p=ns; not significant, *; p≤0.05.

SIV+
rhesus macaques

N=15

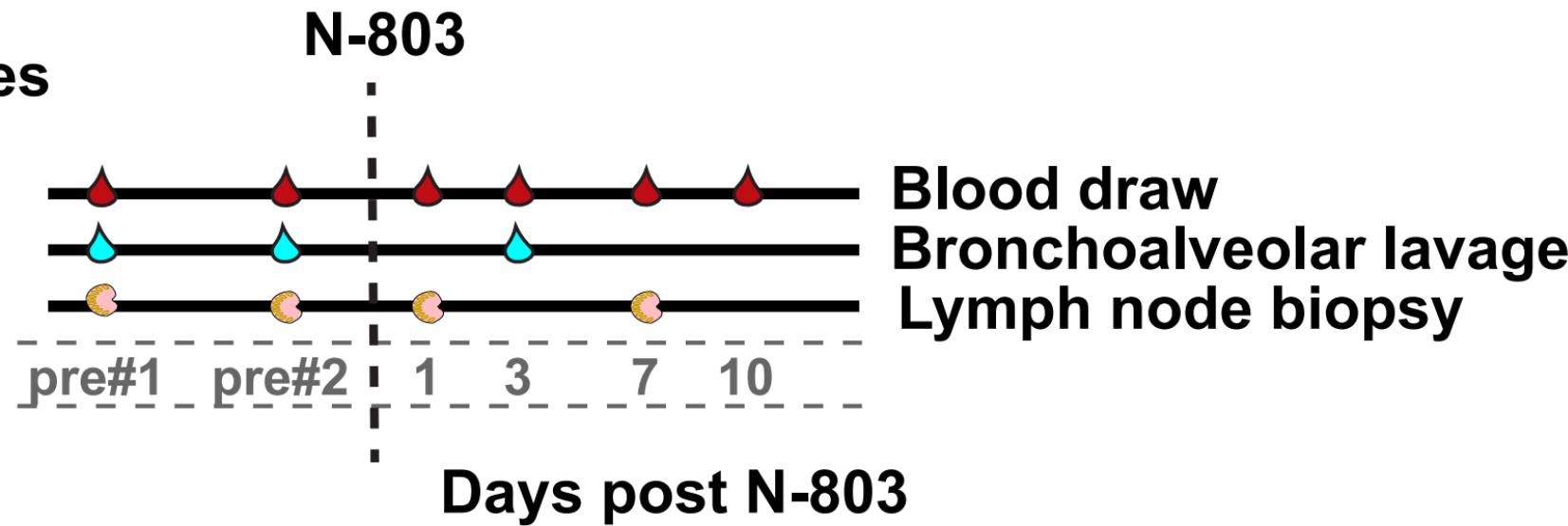
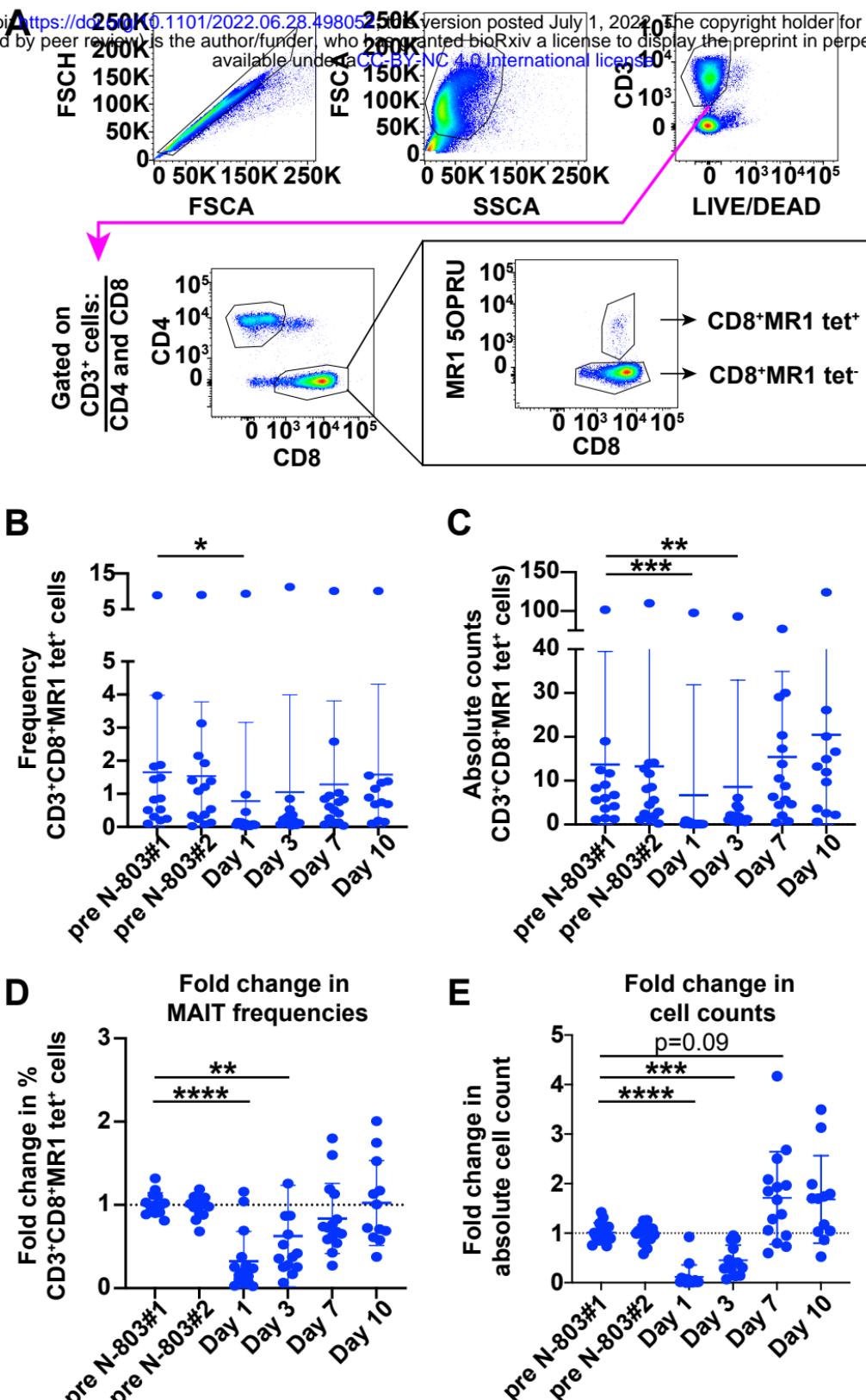



Fig. 4. Study outline for N-803 treatment and sample collection. SIV+ rhesus macaques were given 0.1mg/kg N-803 subcutaneously. For the present study, samples that were collected prior to and in the first 10 days after the first dose of N-803 were used for analysis.

Fig. 5. *In vivo* treatment of SIV+ macaques with N-803 alters MAIT cell frequencies in peripheral blood. **A**, PBMC collected from the indicated timepoints pre and post N-803 treatment were stained with the panel described in Table 3. Flow cytometry was performed as described in the methods. Shown is a representative gating schematic for CD3+CD8+MR1 tetramer+ (MAIT) cells. **B**, Flow cytometry was performed as described in (A) at the indicated time points post N-803 to determine the frequency of MAIT cells. **C**, Complete white blood cell counts (CBC) were used to quantify the absolute number of MAIT cells per μ L of blood. **D**, The frequencies of MAIT cells from (B) were normalized to the pre N-803 averages for each animal, and the data are presented as fold change in the frequency of MAIT cells. **E**, The absolute counts of MAIT cells from (C) were normalized relative to the absolute cell counts of the pre N-803 averages for each animal and the data are presented as fold change in cell counts. For all statistical analysis in A-E, repeated measures ANOVA non-parametric tests were performed, with Dunnett's multiple comparisons for individuals across multiple timepoints. For individuals for which samples from timepoints were missing, mixed-effects ANOVA tests were performed using Geisser-Greenhouse correction. *, $p \leq 0.05$; **, $p \leq 0.005$; ***, $p \leq 0.0005$; ****, $p \leq 0.0001$.

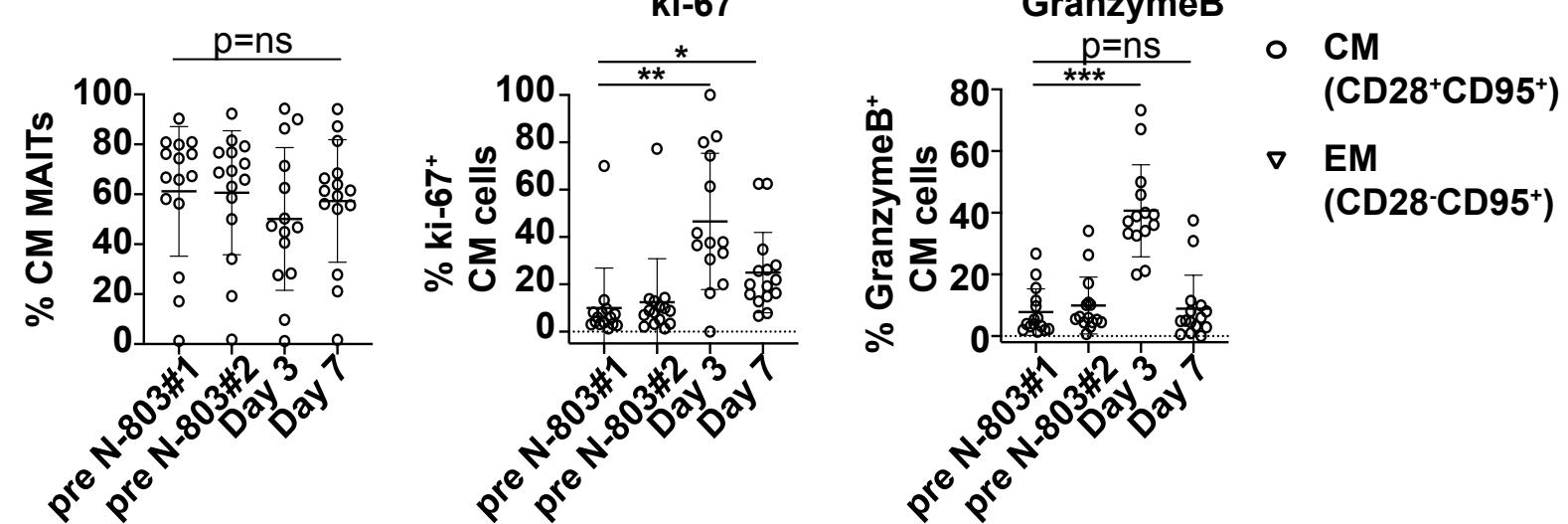
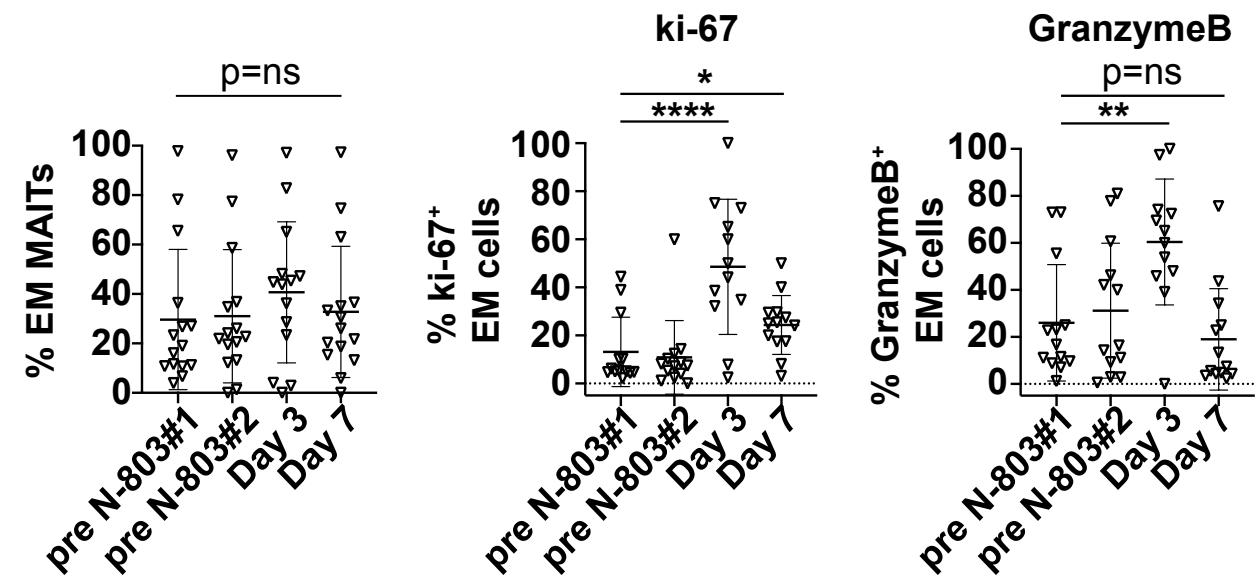
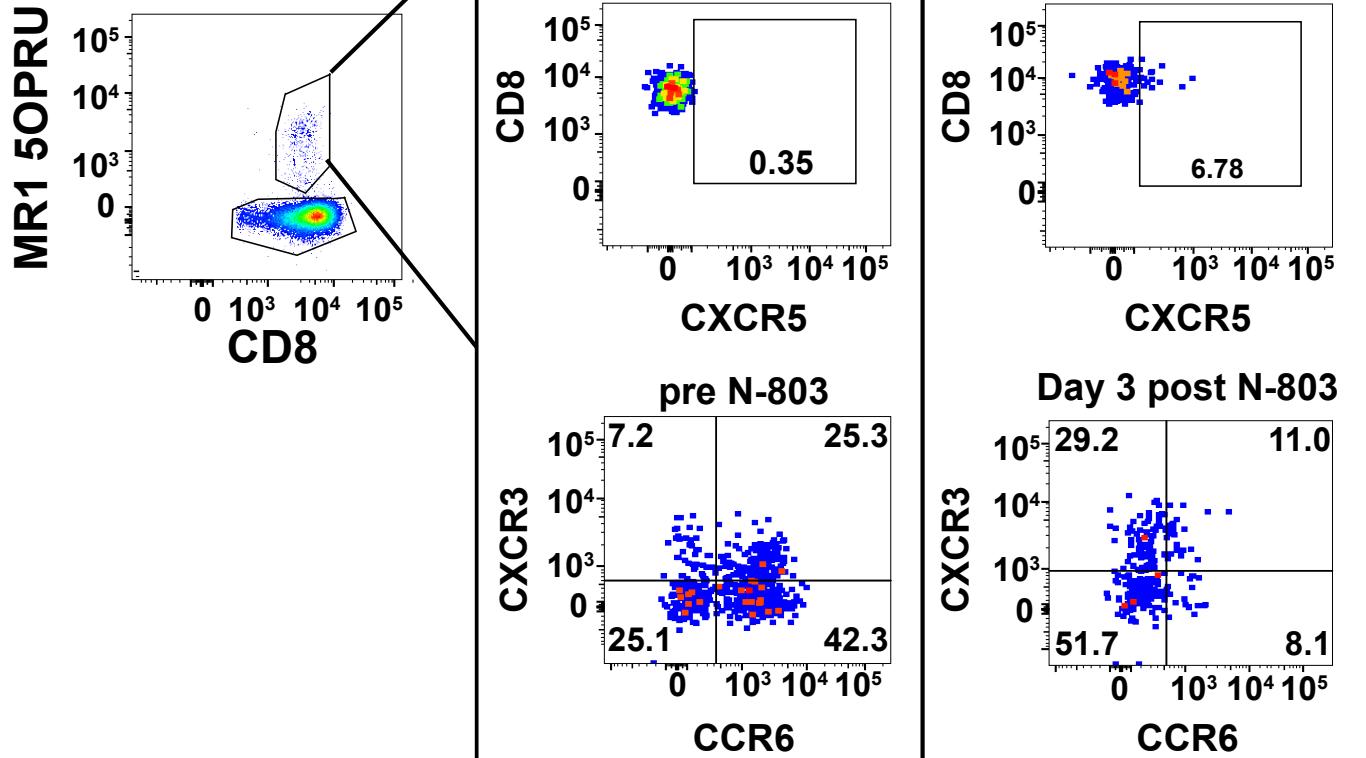



A**CM (CD28⁺CD95⁺) MAITs****B****EM (CD28⁻CD95⁺) MAITs**

Fig. 6. *In vivo* treatment of SIV+ macaques with N-803 increases the frequency of ki-67+ and Granzyme B+ MAIT cells in the peripheral blood. A and B, Frozen PBMC collected from the indicated timepoints pre and post N-803 were thawed, and flow cytometry was performed with the panel described in Table 2. The frequency of MAIT cells (CD8+MR1 tet+ cells) that were (A) central memory (CM; CD28⁺CD95⁺, open circles, left panel) or (B) effector memory (EM; CD28⁻CD95⁺, open triangles, left panel) are shown. The frequencies of CM and EM cells expressing ki-67 (A and B, middle panels) and Granzyme B (A and B, right panels) cells were determined. Repeated measures ANOVA non-parametric tests were performed, with Dunnett's multiple comparisons for individuals across multiple timepoints. For individuals for which samples from timepoints were missing, mixed-effects ANOVA tests were performed using Geisser-Greenhouse correction. *, p≤0.05; **, p≤0.005.

B

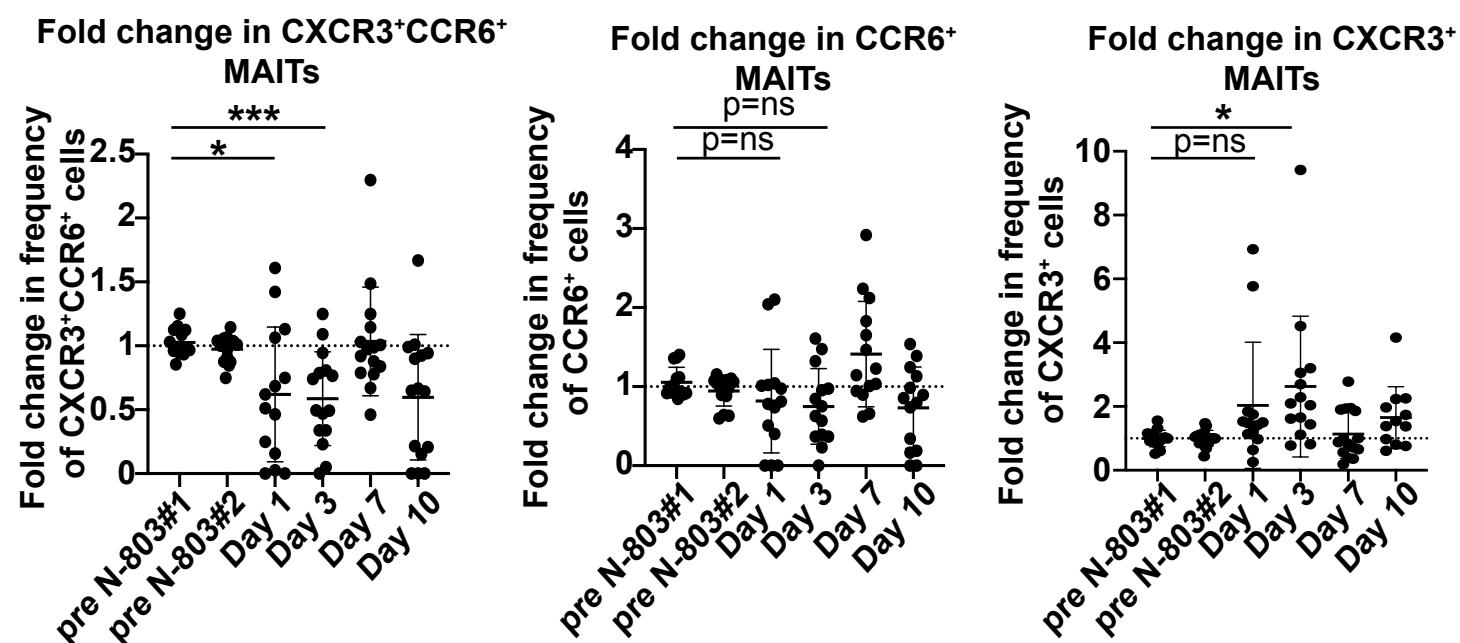


Fig. 7. *In vivo* treatment of SIV+ macaques with N-803 decreases the frequency of CXCR3+CCR6+ MAIT cells in the peripheral blood. A, Frozen PBMC collected from the timepoints pre and post N-803 indicated on the axes in (B) were thawed, and stained with the panel described in Table 3. Flow cytometry was performed to determine the frequencies of CD8+ MR1 tetramer+ (MAIT cells) expressing chemokine markers CXCR5, CXCR3, and CCR6. Shown is a representative gating schematic for CXCR5, CXCR3, and CCR6 expression on MAIT cells from a pre N-803 treatment timepoint, and 3 days post N-803. B, Cells from the indicated timepoints were stained as described in (A), and the frequencies of MAIT cells that were CXCR3+CCR6+, CCR6+, and CXCR3+ were determined for each timepoint. Then, the frequencies of each subpopulation were normalized relative to the average of the pre N-803 timepoints, and graphed as the fold-change in the frequencies of CXCR3+CCR6+ (left), CCR6+ (middle) and CXCR3+ (right) MAIT cells. Repeated measures ANOVA non-parametric tests were performed, with Dunnett's multiple comparisons for individuals across multiple timepoints. For individuals for which samples from timepoints were missing, mixed-effects ANOVA tests were performed using Geisser-Greenhouse correction. p=ns; not significant; *, p≤0.05; ***, p≤0.0005.

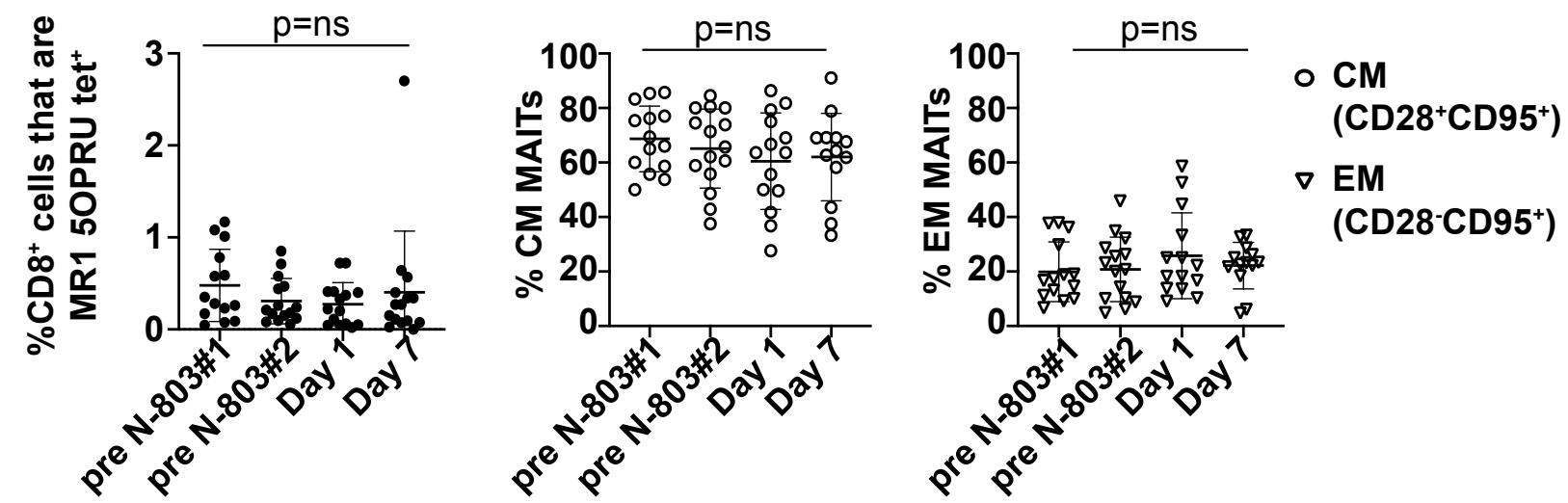
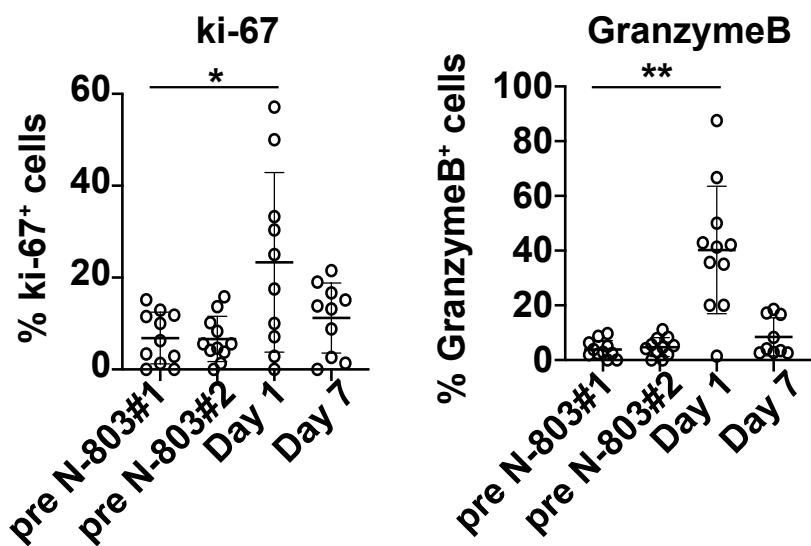


A**MAIT cells in LN****B****CM (CD28⁺CD95⁺) MAITs**

Fig. 8. N-803 treatment *in vivo* increases the frequency of ki-67 and Granzyme B⁺ MAIT cells present in the lymph nodes one day after treatment. A, Frozen cells isolated from lymph node samples that were collected at the indicated timepoints pre and post N-803 treatment were thawed, and flow cytometry was performed with the panel described in Table 2. The frequency of MAIT cells (CD8⁺ MR1 tet⁺ cells, left panel), as well as the frequencies of MAIT cells that were central memory (CM; CD28⁺CD95⁺, open circles, middle panel) or effector memory (EM; CD28⁻CD95⁺, open triangles, right panel) were determined for each timepoint. B, Central memory (CM) MAIT cells in the lymph nodes from the indicated timepoints were stained as in (A), and the frequencies of ki-67⁺ (left panel) and Granzyme B⁺ (right panel) cells were determined. Repeated measures ANOVA non-parametric tests were performed, with Dunnett's multiple comparisons for individuals across multiple timepoints. For individuals for which samples from timepoints were missing, mixed-effects ANOVA tests were performed using Geisser-Greenhouse correction. p=ns, not significant; *, p≤0.05.

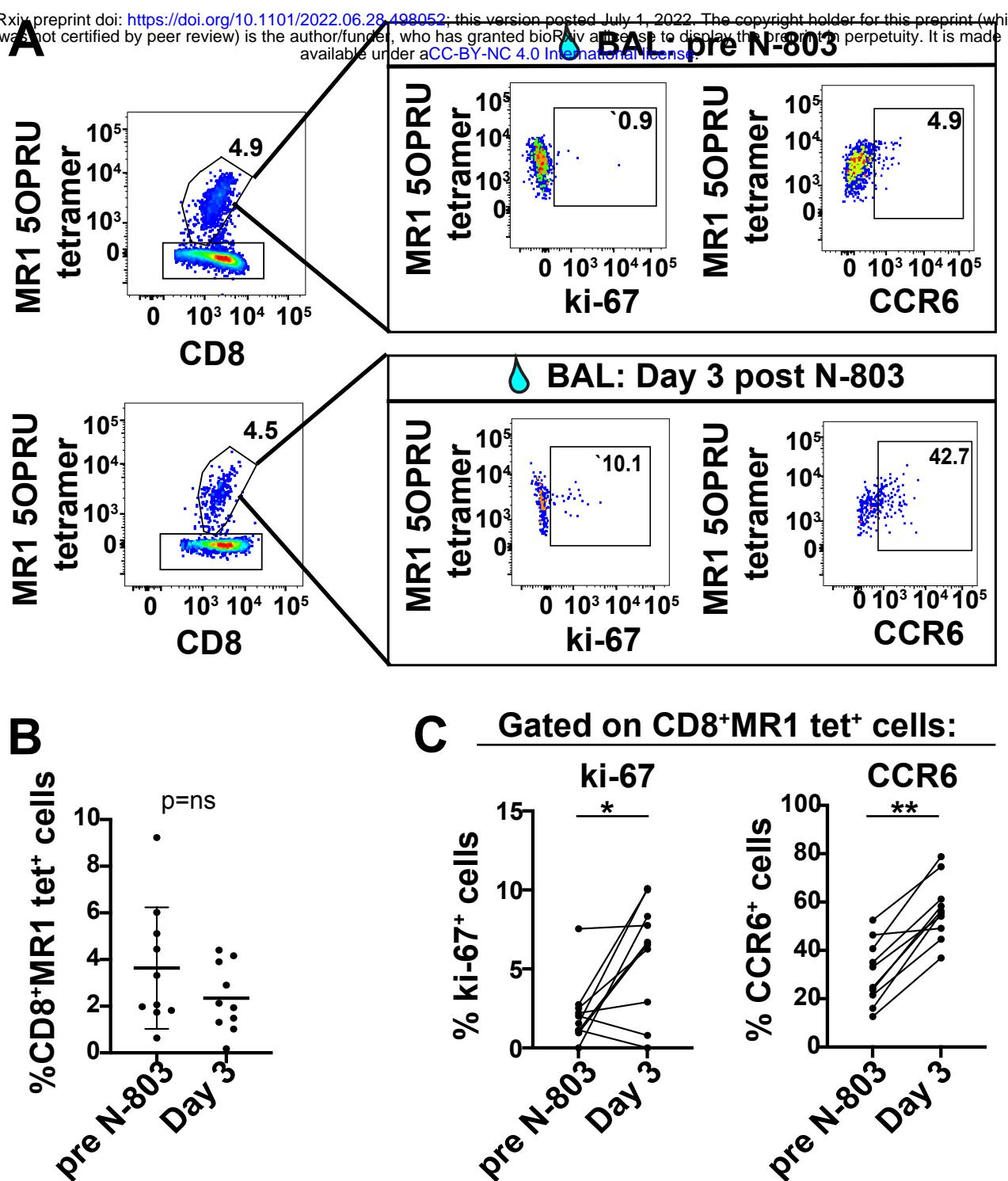


Fig. 9. N-803 treatment *in vivo* increases the frequency of ki-67+ and CCR6+ MAIT cells present in the airways. A, Cells isolated from freshly-obtained bronchoalveolar lavage (BAL) from the indicated timepoints pre and post N-803 treatment were stained with the antibodies indicated in Table 4 for flow cytometric analysis. Shown is a representative flow plot of MAIT cells from one individual, as well as the ki-67 and CCR6 expression on those cells, from pre and day 3 post N-803 timepoints. B, The frequencies of MAIT cells (CD8+ MR1 tet+ cells) was determined for the indicated timepoints pre and post N-803 as described in (A). C, The frequency of MAITs expressing ki-67 (left panel) and CCR6 (right panel) were determined as described in (A). Wilcoxon matched pairs rank-signed tests were performed. p=ns, not significant; *, p≤0.05.

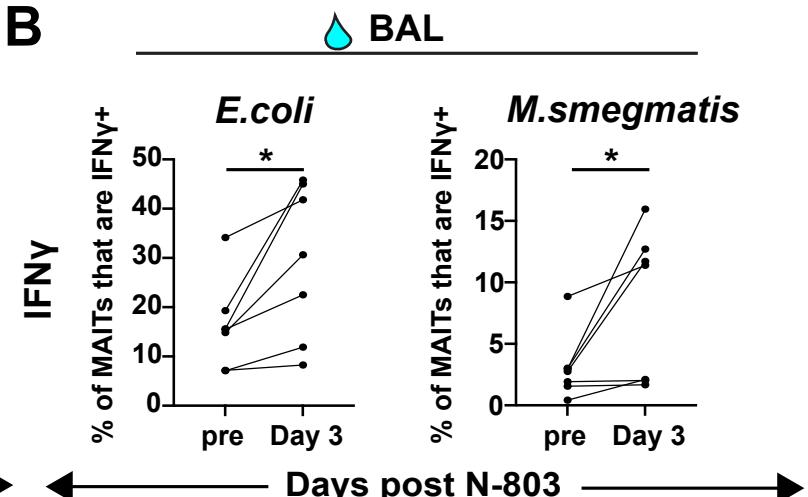
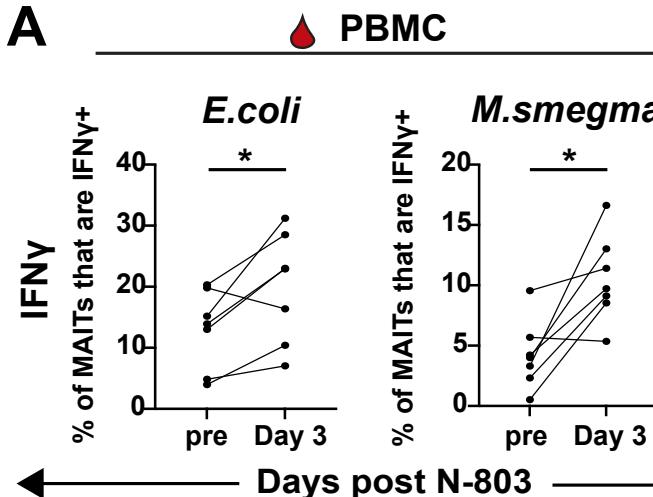



Fig. 10. N-803 treatment *in vivo* increases the frequency of IFNy production from MAIT cells stimulated ex vivo with *E. coli* or *M. smegmatis*. A and B, Cells from either PBMC (A) or bronchoalveolar lavage fluid (BAL, B) from pre and day 3 post N-803 timepoints were stimulated either overnight (PBMC, A) or for 6 hours (BAL, B) with 10 colony forming units (CFU)/cell of either *E. coli* or *M. smegmatis*. The frequencies of MAIT cells expressing IFNy (top), TNF α (middle), or CD107a (bottom) were determined for each timepoint. The data for each stimulus (*E. coli*, left graphs, *M. smegmatis*, right graphs) are shown as the frequency of IFNy+, TNF α +, or CD107a+ after background subtraction. Wilcoxon matched-pairs Rank signed tests were performed. p=ns, not significant; *, p \leq 0.05.