

1 **Nanocontainer derived from silkworm carotenoprotein for carotenoid extraction and**
2 **presentation in biotechnology and biomedical applications**

3 Nikolai N. Sluchanko 1*b, Yury B. Slonimskiy 1b, Nikita A. Egorkin 1, Larisa A. Varfolomeeva
4 1, Sergey Yu. Kleymenov 1, Mikhail E. Minyaev 2, Anastasia M. Moysenovich 3, Evgenia
5 Yu. Parshina 3, Thomas Friedrich 4, Eugene G. Maksimov 3, Konstantin M. Boyko 1,
6 Vladimir O. Popov 1

7

8 1 A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the
9 Russian Academy of Sciences, 119071 Moscow, Russian Federation

10 2 N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky
11 prosp., Moscow, 119991, Russian Federation

12 3 M.V. Lomonosov Moscow State University, Faculty of Biology, 119991 Moscow, Russian
13 Federation

14 4 Technical University of Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, D-
15 10623 Berlin, Germany

16

17 b - equal contribution, *-corresponding author:

18 Nikolai N. Sluchanko
19 A.N. Bach Institute of biochemistry
20 Federal Research Center of Biotechnology of the Russian Academy of Sciences
21 Leninsky prospect 33, building 1
22 119071 Moscow, Russian Federation
23 Tel.: +74956603430
24 Email: nikolai.sluchanko@mail.ru

25

26 **Short title:** Proteinaceous monomeric carotenoid nanocarrier

27 **Abstract**

28 Found in many organisms, soluble carotenoproteins are considered as antioxidant
29 nanocarriers for biomedical applications, although the structural basis for their carotenoid
30 transfer function, a prerequisite for rational bioengineering, is largely unknown. We report
31 crystal structures of the Carotenoid-Binding Protein from *Bombyx mori* (BmCBP) in apo- and
32 zeaxanthin (ZEA)-bound forms. We use spectroscopy and calorimetry to characterize how
33 ZEA and BmCBP mutually affect each other in the complex, identify key carotenoid-binding
34 residues, confirm their roles by crystallography and carotenoid-binding capacity of BmCBP
35 mutants and reconstitute BmCBP complexes with biomedically-relevant xanthophylls lutein,
36 zeaxanthin, canthaxanthin and astaxanthin. By cost-effectively and scalably solubilizing
37 xanthophylls from various crude herbal extracts, His-tagged BmCBP remains monomeric
38 and forms a dynamic nanocontainer delivering carotenoids to liposomes and to other
39 carotenoid-binding proteins, which in particular makes the Orange Carotenoid Protein, a
40 promising optogenetic tool, photoactive. Furthermore, BmCBP(ZEA) administration
41 stimulates fibroblast growth, which paves the way for its biomedical applications.

42

43

44

45

46

47 **Keywords:**

48 Carotenoprotein, antioxidant, oligomeric state, secondary structure, SEC-MALS, carotenoid
49 transfer, liposome

50 **Abbreviations used:**

51 AL - actinic light, β Car - β -carotene, ASESC - analytical size-exclusion
52 spectrochromatography, AstaP - astaxanthin-binding protein, AXT - astaxanthin, CAN -
53 canthaxanthin, CD - circular dichroism, CTDH - C-terminal domain homolog, DA - dark-
54 adapted, ECN - echinenone, HOOP - hydrogen-out-of-plane, IMAC - immobilized metal-
55 affinity chromatography, IPTG - isopropyl- β -thiogalactoside, LA - light-adapted, LED - light-
56 emitting diode, MEF - mouse embryonic fibroblasts, OCP - orange carotenoid protein, SAXS
57 - small-angle X-ray scattering, SDS-PAGE - sodium dodecyl sulfate-polyacrylamide gel
58 electrophoresis, SEC - size-exclusion chromatography, SEC-MALS - size-exclusion
59 chromatography coupled to multi-angle light scattering, START - steroidogenic acute
60 regulatory lipid transfer protein, TRITC - Tetramethylrhodamine isothiocyanate, ZEA -
61 zeaxanthin.

62

63

64 **Main**
65

66 Carotenoids are colored hydrophobic substances with profound antioxidant properties which
67 in many organisms perform various biological functions from coloration to photoprotection
68 and direct reactive oxygen species (ROS)-scavenging activity. Notwithstanding the great
69 potential of carotenoids for multiple biomedical applications, their current use is limited by
70 insolubility and poor bioavailability. Hence, natural water-soluble carotenoid-binding proteins
71 are very promising, but so far none of them meets all necessary criteria for bioengineering
72 and biotechnological use: i) an established spatial structure for the complex with
73 carotenoids, ii) confirmed carotenoid transfer function and iii) a broad carotenoid-binding
74 repertoire including carotenoids valuable to human health.

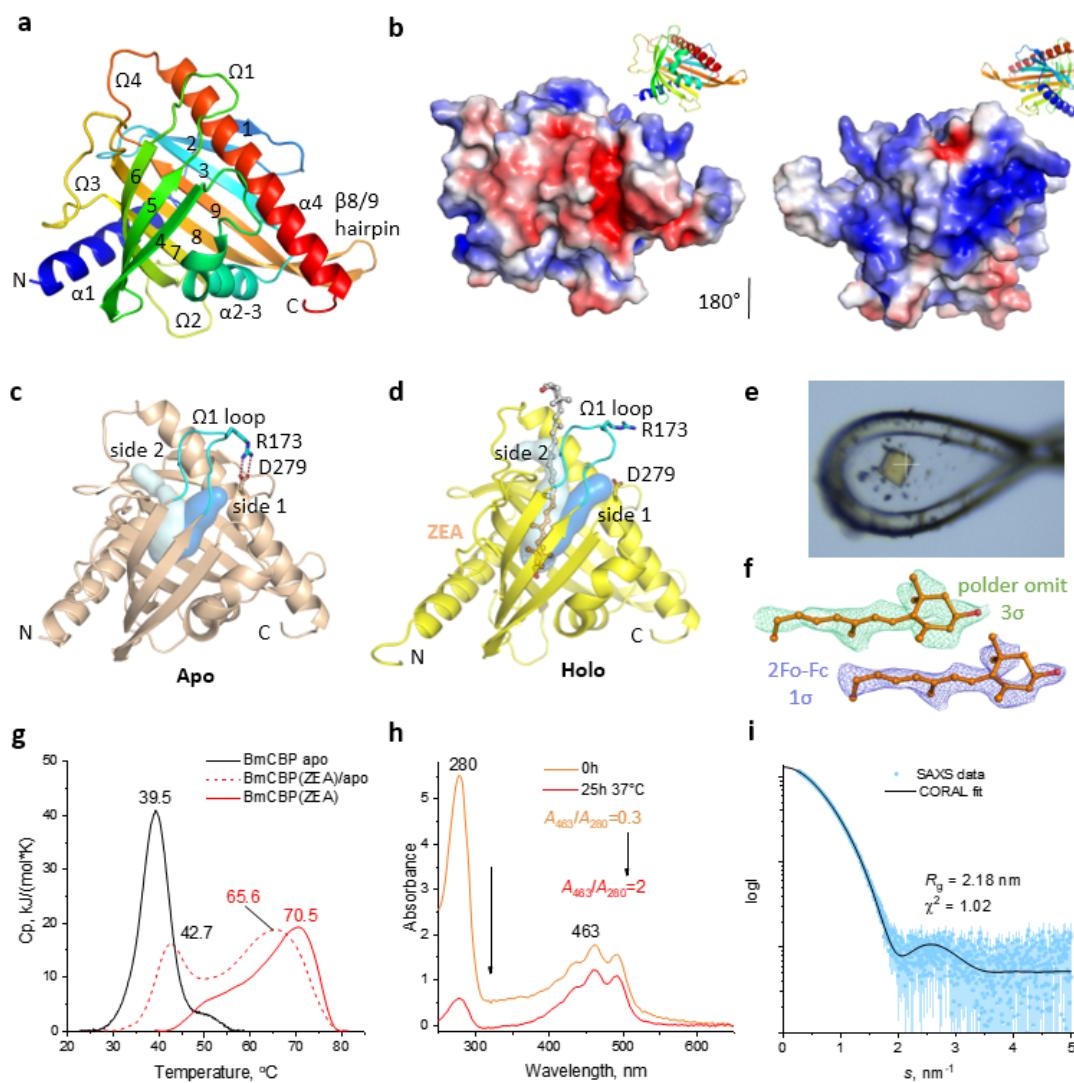
75 β -Crustacyanin became one of the first carotenoproteins with its crystal structure established
76 ¹. It forms heterodimers binding two molecules of astaxanthin (AXT) and determines the
77 coloration of lobster carapace ^{1,2}. AXT is a valuable marine carotenoid used in food
78 supplements, medicines and cosmetics and its binding by crustacyanin was proposed to
79 facilitate AXT concentration in biotechnology processes ³. However, it is not known whether
80 crustacyanin can bind and transfer other carotenoids.

81 The recently discovered AXT-binding protein AstaP from eukaryotic microalgae is a stress-
82 inducible protein conferring passive photoprotection by accumulating AXT in the cell
83 periphery to absorb excessive sunlight ⁴. The structure and carotenoid-binding mechanism
84 of AstaP remains to be studied, but we have recently shown that this protein can
85 accommodate a range of different carotenoids, which makes it especially promising for
86 carotenoid solubilization and delivery ⁵.

87 Perhaps the most thoroughly studied is the Orange Carotenoid Protein (OCP), a remarkable
88 photoswitch playing a central role in cyanobacterial photoprotection ⁶. A single bound
89 ketocarotenoid molecule, such as echinenone (ECN) and canthaxanthin (CAN), makes OCP
90 photoactive ⁷. Upon absorption of blue-green light, it undergoes a structural transformation
91 from the basal orange OCP^O form to the light-adapted red OCP^R form, which is capable of
92 quenching cyanobacterial light-harvesting complexes ⁶. In addition, OCP is a good ROS
93 quencher *in vitro* ⁸. OCP is composed of an N-terminal (NTD) and a C-terminal domain
94 (CTD) sharing the carotenoid and being connected by an unstructured linker ⁹. Studies on
95 separate NTD and CTD as individual proteins allowed us to discover in 2017 a unique
96 protein-to-protein carotenoid transfer mechanism ^{10,11}. Both NTD and CTD of OCP have
97 natural homologs encoding independent carotenoproteins with confirmed roles in carotenoid
98 transfer ¹²⁻¹⁴. We have shown that a CTD homolog (CTDH) can temporarily arrest the
99 ketocarotenoid of OCP upon photoactivation of the latter, which served as proof-of-principle
100 that water-soluble carotenoproteins can be used for the light-controlled carotenoid release ¹³.
101 Furthermore, we demonstrated that CTDH is a potent carotenoid solubilizer and delivery
102 module transferring carotenoids to other proteins and to membranes, which in particular
103 alleviated oxidative stress challenge in mammalian cells ¹⁵. However, CTDH forms dimers, is
104 very specific in binding ketocarotenoids and can only deliver ECN ¹⁵, which is not reportedly
105 present in humans and possibly presents limited practical value. In addition, CTDH could be
106 crystallized and structurally studied only in the apoform ¹⁶, which leaves its carotenoid-
107 binding mechanism enigmatic so far.

108 Carotenoid-binding proteins were also found among eukaryotic proteins of the steroidogenic
109 acute regulatory lipid transfer (START) family ¹⁷. A START member dubbed STARD3 was
110 identified as the major lutein-binding protein in the human retina, where it promotes the
111 accumulation of carotenoids (up to 1 mM) in the macula lutea ¹⁸. The macular carotenoids ¹⁹,
112 primarily lutein (LUT) and zeaxanthin (ZEA), play a role as blue light filter and as
113 antioxidants, decreasing the risk of age-related macular degeneration, which is one of the
114 leading causes of blindness in the world ²⁰. Despite comprehensive efforts, human STARD3
115 could be crystallized only in the apoform ^{21,22}, which left the question of the carotenoid-
116 binding mechanism by START domains unresolved.

117 Interestingly, the carotenoid-binding function of STARD3 was proposed in 2011 ¹⁸ based on
118 its homology with the Carotenoid-Binding Protein from silkworm *Bombyx mori* (BmCBP)


119 identified in 2002²³. Based on 29% sequence identity to human STARD3, BmCBP was
120 ascribed to the START protein family²³. BmCBP binds and transports LUT in the midgut and
121 silk gland of silkworm larvae, which confers yellow color to the cocoons used in sericulture
122 for thousands of years²⁴. Transposon-associated BmCBP gene inactivation or silencing
123 yielded white cocoons and colorless hemolymph, whereas transformation of the BmCBP
124 gene into the colorless *B. mori* strain turns cocoons and hemolymph back to yellow²⁴.
125 BmCBP binds LUT *in vitro* and *in vivo*²³. Nevertheless, the structure, carotenoid-binding
126 mechanism, ligand specificity and other properties of BmCBP remained unknown.
127 Here, we present high-resolution crystal structures of BmCBP in its apo- and ZEA-bound
128 forms and describe the ZEA binding mechanism to BmCBP. We reconstitute BmCBP
129 complexes with keto- and hydroxy-carotenoids valuable to human health and show cost-
130 effective and scalable carotenoid enrichment by BmCBP apoprotein from various crude
131 extracts. We define structure-activity relationships for BmCBP by crystallizing a set of its
132 mutants and interrogating their carotenoid-binding capacity and demonstrate proof-of-
133 principle for BmCBP applicability as antioxidant nanocarrier in different model systems.
134
135

136 Results and discussion

137 1. Crystal structure of the BmCBP apoform

140 For our study, we engineered naïve BmCBP (297 a.a.) by removing first 67 residues to leave
141 only its tentative ligand-binding domain and adding a cleavable His-tag on its new N-
142 terminus to facilitate handling²⁵. The BmCBP apoform crystal structure (Supplementary
143 Table 1 and 2) revealed in the asymmetric unit a single START-like domain at a near atomic
144 resolution (Fig. 1a, Supplementary Fig. 1, 2a), containing unusually long Ω2-loop and β8/9
145 hairpin. The 12-residue long ligand-exchange Ω1-loop²⁶⁻²⁸ forms a lid attached to the
146 longest α-helix, α4, by a hydrophobic interface (Supplementary Fig. 2a). This lid covering the
147 hydrophobic ligand-binding cavity is composed of two sides, one flexible (TAGGGR¹⁷³G) and
148 another rather rigid and hydrophobic (IITPR¹⁷⁹). While the latter faces hydrophobic residues
149 of the α4 helix and Ω4-loop, the flexible side of the loop is uniquely fixed by a salt bridge
150 between its Arg173 and Asp279 of the α4 helix (Supplementary Fig. 2a,b). The electron
151 density for Trp232 inside the unoccupied cavity is substantially dispersed, suggesting a
152 continuum of conformations (Supplementary Fig. 2c). The deepest part of the cavity features
153 a polar side chain of Ser206 and a salt bridge between Arg185 and Asp162 (Supplementary
154 Fig. 2c).

155 The BmCBP exterior has a remarkable distribution of opposite electrostatic surface
156 potentials grouped on two sides of the globule (Fig. 1b), which may be related to the protein
157 function. According to CAVER²⁹, BmCBP has two major tunnels potentially suitable for the
158 ligand entry into the cavity with the “gates” located at two sides of the Ω1-loop (side 1 and 2,
159 Fig. 1c). While side 2 is more hydrophobic and thus more complementary to the lipidic
160 ligands, side 1 features the Arg173-Asp279 salt bridge, a potential obstacle for ligand entry.
161 On side 2, at the base of the Ω1-loop resides the gatekeeper Arg179 (Supplementary Fig.
162 2b), which H-bonds to Thr177 and the carbonyl backbone of the Ω1-loop. While in our
163 structure it is diverted, when unleashed, the Arg179 side chain may control access to the
164 ligand-binding cavity.
165

166
167

Fig. 1. Apo and zeaxanthin-bound BmCBP. a. Overall view showing BmCBP apoprotein as a ribbon diagram colored by a gradient from the N (blue) to C terminus (red). α 1- α 4 helices and Ω 1- Ω 4-loops are labeled, β -strands are numbered 1-9. b. Opposite sides of the BmCBP surface reveal distinct patterns of the electrostatic potential colored by a gradient from red (-3 kT/e) to blue (+3 kT/e). For clarity the views are doubled as ribbon diagrams (color gradient from N to C terminus) in the top right corners. 1.45- \AA crystal structure of the apoform (c) and 2.0- \AA crystal structure of ZEA-bound BmCBP (d) showing by cyan and blue semi-transparent surfaces tentative carotenoid-binding tunnels computed by CAVER ²⁹ (a 1.1- \AA minimum probe radius). For the holoform, ZEA was removed from the model before computation. e. A microphotograph showing the yellow BmCBP(ZEA) crystal during X-ray data collection. The white cross has a 30- μm size. f. The ZEA portion supported by the polder omit ³⁰ and 2Fo-Fc maps. Contour levels are indicated. g. DSC thermograms for the BmCBP apoform, holoform, and an apo-holo- mixture heated at a 1 $^{\circ}\text{C}/\text{min}$ rate. T_m values for the peaks are shown in $^{\circ}\text{C}$. h. Effect of selective melting of BmCBP apoform on the absorbance spectrum of the apo/hoxo mixture. i. The fit of the SAXS data in solution by the crystal structure of BmCBP(ZEA) supplied with the missing N-terminal residues.

184
185
186

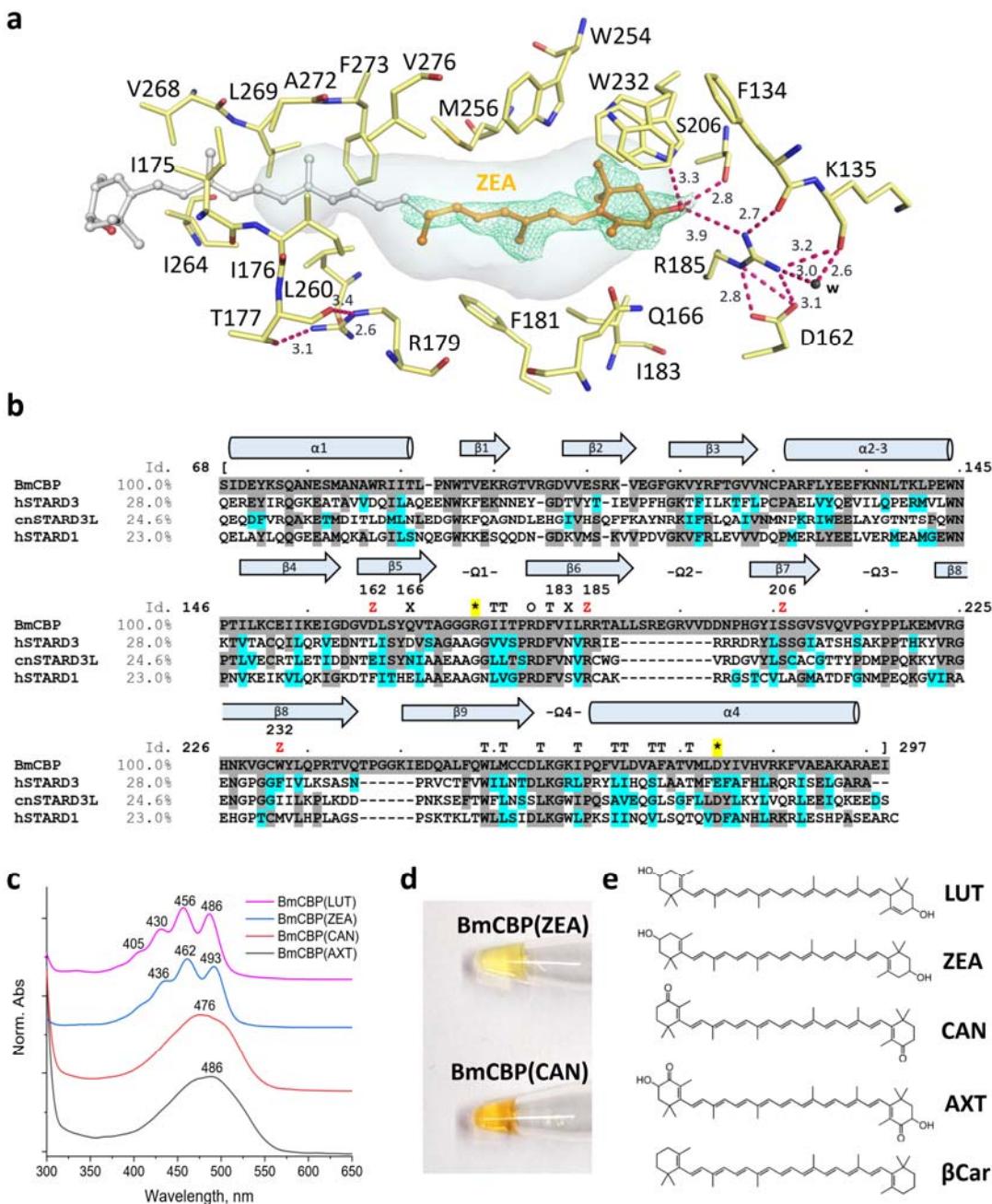
187 2. Structural insights into carotenoid binding by BmCBP
188

189 Further, we solved the crystal structure of BmCBP holoprotein reconstituted in a ZEA-
190 synthesizing *E.coli* strain ²⁵ (Fig. 1d and Supplementary Tables 1, 2). The presence of ZEA
191 in BmCBP was strictly verified by spectrochromatograms (see below) and the intense yellow
192 color of the crystals (Fig. 1e). Scrupulous refinement of the protein and solvent modeling
193 were required to reveal a rather weak but continuous electron density inside the BmCBP
194 cavity attributable to parts of a ZEA molecule. This was sufficient to build 20 atoms of ZEA
195 including its β -ring and part of the polyene chain into the density for further structure
196 refinement. While the final refined structure still had density only for a part of the carotenoid
197 (Fig. 1f), the position of the inner β -ring and the direction of the polyene chain allowed
198 extending the carotenoid model beyond the region supported by electron density (Fig. 1d).
199 According to such modeling, a ~30 Å long ZEA molecule inevitably protrudes from the cavity,
200 exiting at side 2 of the Ω 1-loop. In our model, the carotenoid occupies the rather straight
201 tunnel decorated by hydrophobic side chains (Fig. 1d), whereas exit at side 1 would likely
202 require *trans/cis* isomerization beyond the region supported by electron density. Such a
203 configuration would yield a clear near-UV absorbance peak at 330-350 nm ^{31,32}; however,
204 such a band is not observed in the absorbance spectra of BmCBP-carotenoid complexes
205 (see below).

206 The BmCBP(ZEA) structure reveals a rearrangement of the Ω 1-loop at side 1 involving a
207 disruption of the salt bridge between R173 and D279, which became >8 Å apart (Fig. 1d).
208 Such an Ω 1-loop rearrangement can result from the carotenoid pushing the loop from the
209 hydrophobic side 2 (C α atoms of I175 and I176 are displaced by 0.7 and 0.5 Å, respectively,
210 relative to their positions in the apoform) and thereby deforming the flexible side 1 (C α atoms
211 of R173, G172 and G171 are displaced by 2.1, 6.2 and 1.5 Å, respectively). Upon
212 embedment in the tunnel, ZEA likely undergoes different bending distortions, which
213 disperses the electron density for the carotenoid in the outer region.

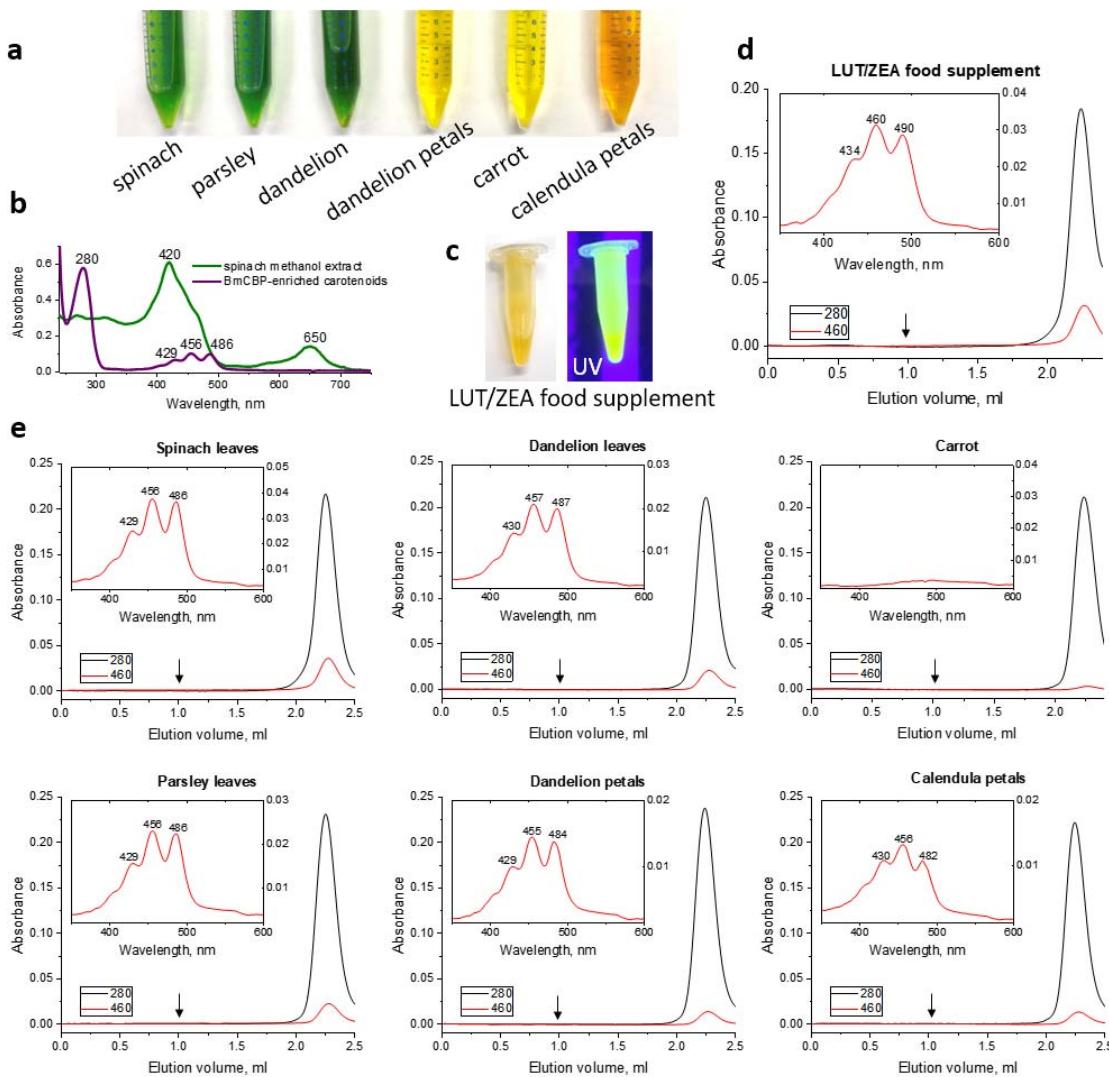
214 Overall, the BmCBP backbone did not change much upon ZEA binding (C α RMSD=0.32 Å
215 for 204 out of 238 aligned atoms, Supplementary Fig. 1). Nevertheless, differential scanning
216 calorimetry indicated that ZEA binding dramatically (by ~30 °C) stabilizes BmCBP (T_m
217 increases from 39.5 to 70.5 °C; Fig. 1g). The denaturation profile of a BmCBP(ZEA)
218 preparation having a A_{462}/A_{280} ratio of ~1.3 and containing ~50% of the apoform, showed two
219 incompletely resolved peaks (T_m = 42.7 °C and 65.6 °C, respectively) (Fig. 1g). While the
220 first peak had a ~3 °C higher T_m , its shape and position were similar to that of the individual
221 apoform. The second, broad peak with the higher T_m is missing from the thermogram of the
222 apoform and mostly represents melting of the BmCBP(ZEA) complex, yet its T_m is lower than
223 that for the pure BmCBP(ZEA) (65.6 vs 70.5 °C). These observations likely reflect transient
224 nature of BmCBP-carotenoid complexes between which carotenoids are constantly
225 exchanged by the excess of BmCBP molecules during heating, which apparently stabilizes
226 the apoform proportion and destabilizes its holoform counterpart. In the ligand absence,
227 BmCBP is a rather unstable protein whose thermal transition starts already at 30 °C. Based
228 on this finding, we demonstrated the possibility of selectively melting the apoprotein via
229 continuous incubation at 37 °C, which after centrifugation made BmCBP holoprotein very
230 pure (Fig. 1h). We propose that this simple procedure could be used to make clean BmCBP
231 holoprotein preparations in large scale.

232 The protrusion of the BmCBP-embedded carotenoid (Fig. 1d) likely provides a lever for
233 carotenoid release to other proteins but is insufficient for a second BmCBP monomer to form
234 a carotenoid-stabilized homodimer, like in cyanobacterial CTDH carotenoproteins ¹³. In
235 agreement, small-angle X-ray scattering (SAXS) confirmed that the crystal structure of a
236 single BmCBP(ZEA) molecule adequately describes the conformation in solution (Fig. 1i).
237 First, the SAXS-derived M_w values directly confirmed the monomeric status of the protein
238 (Supplementary Table S3). Second, the CORAL-derived ³³ model (R_g =2.18 nm,
239 experimental R_g =2.12 nm, D_{max} =8.5 nm) provided an exceptionally good approximation of
240 the experimental SAXS profile (χ^2 =1.02). Thus, BmCBP forms a unique carotenoid-
241 embedding nanocontainer not requiring dimerization to accommodate its ligand.


242 In the crystal structure, ZEA lies within the hydrophobic tunnel so that the hydroxyl group at
243 the inner β -ring forms polar contacts with Ser206 (2.6 Å) and one of the alternative
244 conformations of Trp232 (3.5 Å) (Fig. 2a). The distance from the hydroxyl oxygen of the
245 carotenoid to the side chain nitrogen of Arg185 is likely too large to form a stable polar
246 contact (4.0 Å). The side chain of this arginine, although rather flexible on its own, in the
247 BmCBP structure is firmly kept out of reach of the carotenoid ring by several H-bonding
248 interactions with the backbone carbonyls of residues Phe134 and Lys135, and the Asp162
249 side chain (Fig. 2a). The inner β -ring stacks with both Trp232 rotamers located in a plane at
250 ~4 Å distance from the plane of the carotenoid ring. One Trp232 rotamer places the indolyl
251 nitrogen at a distance sufficient for a weak H-bond with the carotenoid hydroxyl (3.5 Å),
252 albeit at a suboptimal angle. The polder omit density map ³⁰ for the ligand directs the
253 polyene chain along the hydrophobic tunnel (Fig. 2a), but the embedded carotenoid
254 conformation likely differs from a straight line.

255 Many residues in the carotenoid-binding tunnel of BmCBP are identical or similar in human
256 STARD3, another recently reported carotenoid-binding STARD3-like protein from golden
257 scallop *Chlamys nobilis* (cnSTARD3L) ³⁴, and human STARD1 (Fig. 2b). Ser206
258 coordinating the carotenoid hydroxyl in BmCBP is also present in hSTARD3 and cnSTARD3,
259 all of which are reported carotenoid binders ^{18,23,34}, but is replaced by Leu199 in hSTARD1,
260 for which carotenoid binding is not documented. Therefore, this serine likely plays a role in
261 coordinating hydroxylated carotenoids. While Arg185 is invariably present in all homologs
262 analyzed (Fig. 2b), its neighbor Asp162 becomes either Leu328 in hSTARD3 or Phe165 in
263 hSTARD1, and only in cnSTARD3L is replaced by a synonymous Glu. One can expect that
264 elimination of the negative charge at this position would unleash conformational mobility of
265 conserved Arg185, potentially affecting ligand binding. The roles of other variable residues in
266 positions 166, 183 and 232 of BmCBP are less obvious.

267 We have reconstituted BmCBP complexes with ZEA and its isomer LUT, which differs by the
268 position of one double bond in its ϵ -ring ²⁵. Based on our structural data, we suggested that
269 the ligand specificity of BmCBP is rather broad and reconstituted its holoforms with a range
270 of carotenoids (Fig. 2c,d). In principle, not only 3,3'-hydroxylated xanthophylls ZEA and LUT,
271 but also those containing either only 4,4'-ketogroups (CAN) or simultaneously 4,4'-
272 ketogroups and 3,3'-hydroxyl groups (AXT) could be embedded into BmCBP, each
273 producing distinct spectral signatures (Fig. 2c). All our attempts to reconstitute BmCBP
274 complexes with β Car were unsuccessful, possibly because this carotenoid lacks polar
275 groups, which may be critical for the carotenoid uptake. The principle ability of BmCBP to
276 bind LUT, ZEA, CAN and AXT (Fig. 2e), all having chemically different carotenoid rings,
277 suggested that the hydrophobic tunnel provides BmCBP with the unique ability to
278 accommodate various lipophilic antioxidants.


279 We next analyzed BmCBP ability to capture carotenoids from various natural sources
280 differing by the carotenoid content (Fig. 3a). Interestingly, BmCBP apoprotein exhibited
281 strong ability to enrich carotenoids from crude spinach methanolic extracts that initially
282 contained numerous pigments (Fig. 3b). This was further confirmed by
283 spectrochromatography. As a reference, BmCBP apoprotein efficiently extracted ZEA and
284 LUT present in commercial food supplements (Fig. 3c), yielding the absorbance spectrum
285 with the maxima positions intermediate between those for LUT or ZEA individual spectra
286 (Fig. 3d and 2c). Likewise, BmCBP efficiently extracted carotenoids from spinach, dandelion,
287 parsley and calendula extracts, all containing xanthophylls (their different relative content is
288 reflected in different spectral shifts and shapes, Fig. 3e), but not from the carrot extract,
289 where a prevalent carotenoid is known to be β Car. This agrees with our data on
290 reconstitution of BmCBP complexes with individual carotenoids (Fig. 2). Thus, BmCBP
291 apoprotein can be loaded with natural xanthophylls present in crude extracts, and this cost-
292 effective one-step procedure enables the pronounced carotenoid enrichment compatible with
293 biotechnological scale-up.

294

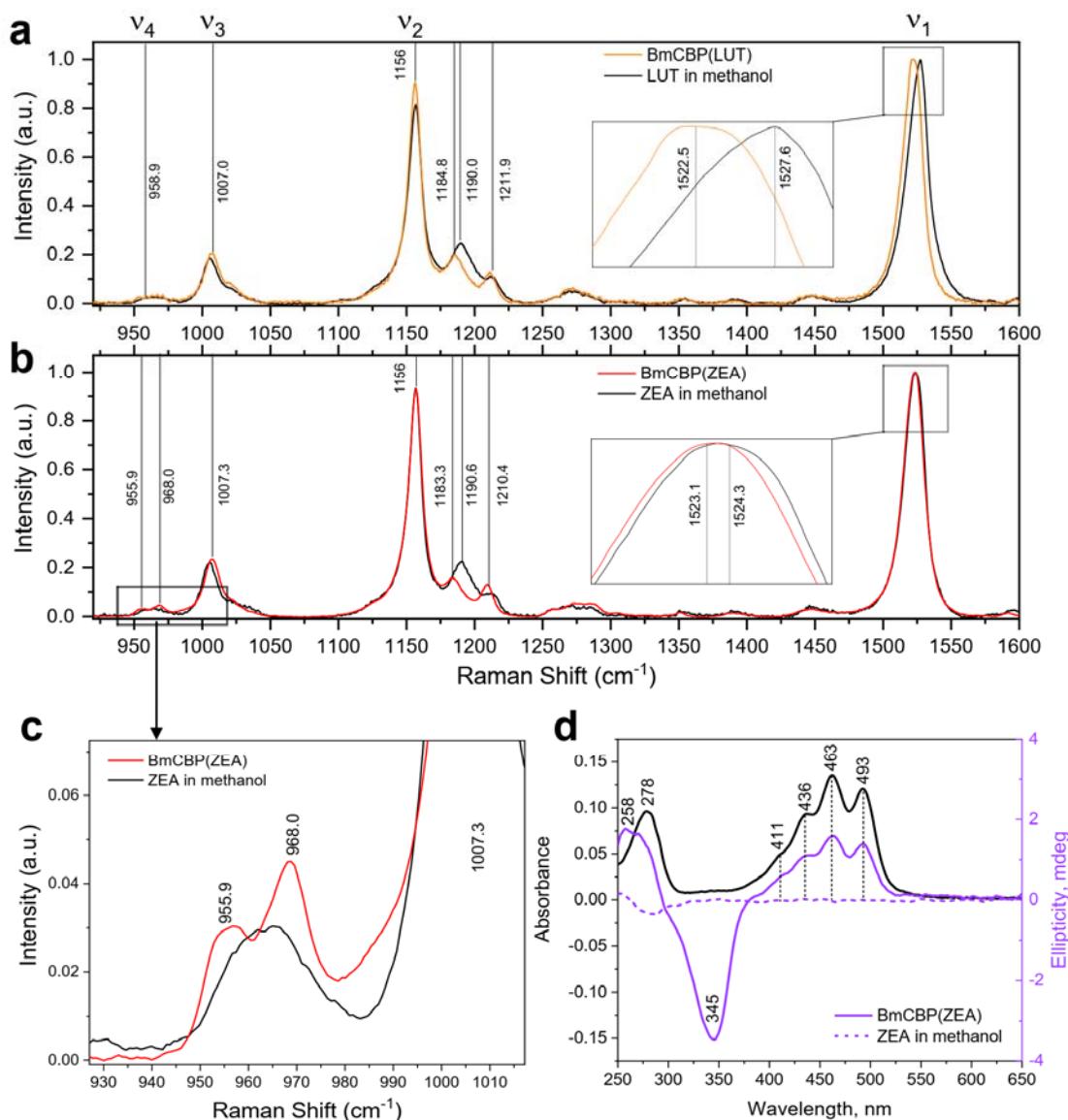
Fig. 2. Structural determinants of carotenoid binding by BmCBP's START domain. a. Close-up view of the ligand-binding cavity of BmCBP in the crystal structure of the holoform showing the position of ZEA and pigment-protein interactions. The semi-transparent grey surface shows the tunnel computed by CAVER²⁹. A green mesh shows a polder omit map³⁰ for the ZEA fragment contoured at 3σ . Key residues involved in carotenoid binding and forming the carotenoid-binding tunnel, as well as several characteristic distances (in Å) are indicated. b. Aligned START domains of BmCBP (Uniprot Q8MYA9), hSTARD3 (Uniprot Q14849), hSTARD1 (Uniprot P49675) and cnSTARD3L (Uniprot A0A0C5B5I7). Residues identical to those in BmCBP are highlighted by grey, similar residues are highlighted by cyan according to the five similarity groups: D,E / W,Y,F / R,K,H / N,Q / M,V,I,L,A / G,C,P,S,T. Secondary structures and key loops corresponding to those in the BmCBP crystal structure are depicted above the alignment. “T” indicates residues forming the carotenoid tunnel, “Z”

308 indicates residues surrounding or contacting the carotenoid ring in the crystal structure. "O" 309 marks the conserved gatekeeper arginine at the base of the Ω 1-loop. Asterisks highlighted in 310 yellow denote the Arg173-Asp279 salt bridge immobilizing the Ω 1 loop on the α 4-helix. c. 311 Normalized absorbance spectra of BmCBP complexes with different carotenoid types as 312 recorded by spectrochromatography. d. Color of the purified BmCBP holoforms with ZEA 313 and CAN reconstituted in the corresponding carotenoid-producing *E.coli* cells. e. Structural 314 formulae of lutein (LUT), zeaxanthin (ZEA), canthaxanthin (CAN), astaxanthin (AXT) and β - 315 carotene (β Car). 316

317
318
319 **Fig. 3. BmCBP apoprotein extracts carotenoids from natural sources.** a, Tubes with 320
321
322
323
324
325
326
327
328
herbal methanolic extracts. b, Extraction and enrichment of the carotenoid fraction from 329
spinach using BmCBP apoprotein. c, An Eppendorf tube with the methanolic extract of 330
Ocuvit® food supplement containing LUT and ZEA and used as a reference. d,e. Analysis 331
of BmCBP-mediated carotenoid extraction from different sources by SEC with full-spectrum 332
detection. SEC profiles are shown with the absorbance spectra in the inserts. Arrows 333
indicate column void volume. d, Reference BmCBP-mediated extraction of xanthophylls from 334
a LUT/ZEA-containing food supplement. e, BmCBP-mediated extraction of carotenoids from 335
herbs shown on panel a. The main absorbance maxima are indicated in nm.

329

330


331 3. BmCBP binding changes optical characteristics of the carotenoid

332

333 Spectral properties of carotenoids are highly sensitive to their conformation and
334 microenvironment. The shape of the carotenoid absorption spectrum is determined by a
335 combination of electronic and vibrational transitions, which may give a pronounced fine
336 structure. The effective size of the conjugated π -electron system depends on the number of
337 double bonds in plane and determines the position of the absorption maximum and the
338 Raman shifts, which are interrelated³⁵. The maximum possible effective conjugation length
339 of ZEA is one double bond longer than that of LUT because of the arrangement of double
340 bonds in ϵ and β -ionone rings (Fig. 3e). This explains the blue-shifted absorption and a
341 greater Raman shift of the C=C double bond oscillation (ν_1) of LUT than of ZEA in methanol
342 (Fig. 4a,b). The equilibrium carotenoid conformation in methanol has a ~40-50° dihedral
343 angle between the ionone ring and polyene³⁶, which does not allow it to reach the maximum
344 effective conjugation length. However, carotenoid embedment in BmCBP produces a
345 bathochromic absorption shift and lowers the ν_1 frequency (Fig. 4a,b), therefore, the effective
346 conjugation length increases; this indicates an altered carotenoid conformation and partial
347 immobilization of the carotenoid ring. Since the double bond of the ϵ -ring of LUT is not
348 conjugated with the polyene chain, we assume that it is the β -ring that forms contacts with
349 the protein, which increases the conjugated length. In ZEA, both rings are chemically
350 equivalent and have no apparent preferences for entering the BmCBP cavity. Similar ν_1
351 frequencies for LUT and ZEA in BmCBP may indicate their binding conformation is similar, in
352 which a β -ring is specifically oriented in the protein while the second ring (either ϵ or β)
353 protrudes to the solvent.

354 The appearance of the peak at 968 cm⁻¹ accompanying ZEA binding to BmCBP (Fig. 4c),
355 associated with the so-called hydrogen-out-of-plane (HOOP) wagging mode^{37,38}, strongly
356 indicates torsional bending of the ZEA polyene. Such anisotropy is further supported by the
357 induced circular dichroism: unlike the strictly symmetric ZEA in methanol, ZEA embedded in
358 BmCBP has a pronounced chirality (Fig. 4d). Therefore, BmCBP binding not only limits the
359 conformational mobility of the carotenoid, as indicated by the fine structure of the
360 absorbance spectrum, but also forces polyene bending. Since upon ZEA binding to BmCBP
361 the peak at 968 cm⁻¹ reaches only ~20% of the ν_3 peak intensity (Fig. 4b), the ZEA bending
362 curvature in BmCBP is likely less pronounced than in the case of the ketocarotenoid in OCP,
363 for which the amplitude of the HOOP peak reaches ~80% of the ν_3 peak³⁷, and the curvature
364 has a 28 Å radius and ~16° deviation from all-trans conformation (180°)⁹. This is in line with
365 our structural data.

366

367

368

369

370

371

372

373

374

375

376

377

378

379

Fig. 4. BmCBP changes spectral properties of the bound carotenoid. a. Raman spectra of LUT in BmCBP and in methanol. A magnified view of the ν_1 band is shown as an insert. b. Raman spectra of ZEA in BmCBP and in methanol. A magnified view of the ν_1 band is shown as an insert. c. A magnified view of the ν_4 region of the spectrum presented in panel b showing the HOOP peak at 968 cm^{-1} . d. Visible CD (magenta) and absorbance (black) spectra of ZEA in BmCBP-bound form. Vis-CD spectrum of ZEA in methanol (dashed magenta) is shown for comparison.

380

381

382

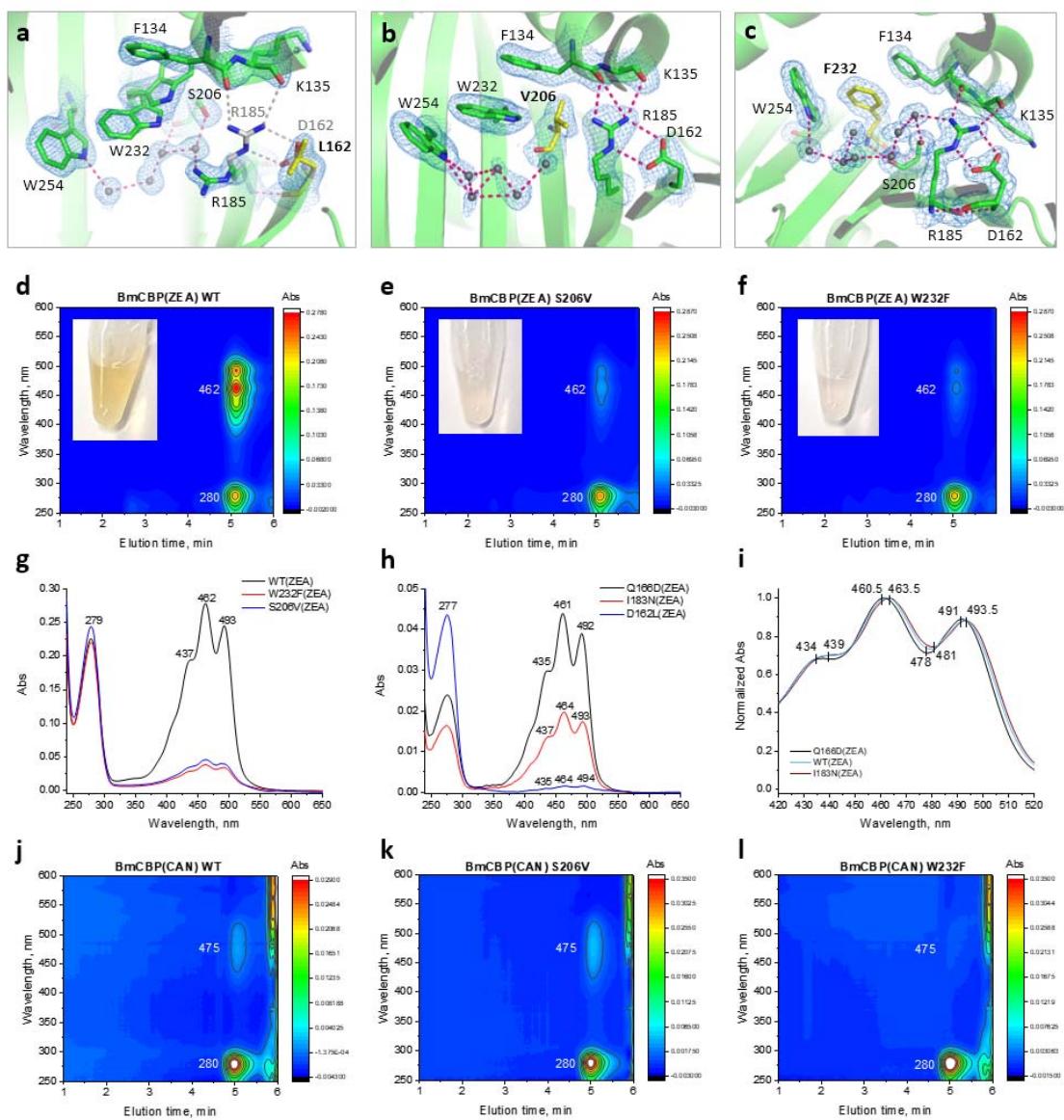
383

384

4. Structure-activity relationships in BmCBP with the mutated carotenoid-binding site

Although hSTARD3 was reported to bind several carotenoids including ZEA *in vitro*¹⁸, all our attempts to reconstitute its complexes with any carotenoid were not successful (see Supplementary Fig. 3). Focusing on the detected differences in the organization of the tentative carotenoid-binding site between the two proteins (see Supplementary Fig. 3), we engineered single BmCBP mutants where BmCBP residues were replaced by those of

385 hSTARD3, i.e. D162L, W232F, Q166D and I183N. Since the semi-conserved Ser206 directly
386 contacts the hydroxyl of the carotenoid in BmCBP (Fig. 2a), we also designed the S206V
387 mutant as a control. We determined crystal structures of D162L, W232F and S206V
388 apoproteins (Supplementary Tables 1,2 and Supplementary Fig. 4) and used all above-
389 mentioned mutants to assess their carotenoid-binding capacity (Fig. 5).


390 Similarity of new crystal structures ($\text{Ca RMSD} < 0.45 \text{ \AA}$ when superimposed with the BmCBP
391 WT apoprotein structure, Supplementary Fig. 4a), indicating unaltered protein folding. In all
392 structures, the mutated residues were clearly supported by the electron density (Fig. 5a-c).
393 In S206V and W232F structures, we did not find other substantial changes, whereas in the
394 D162L structure, the mutation disrupted the salt bridge with Arg185, as expected. As a
395 result, H-bonds with the backbone carbonyls of Phe134 and Lys135 also broke, which
396 displaced the Arg185 side chain to the ligand-binding cavity, much like Arg351 in hSTARD3
397 (Supplementary Fig. 3d).

398 After confirming the expected modifications of the carotenoid-binding site of BmCBP by
399 crystallography, we assessed the ability of all designed BmCBP mutants to form complexes
400 with ZEA upon expression in ZEA-synthesizing *E. coli* cells, with the wild-type BmCBP used
401 as a positive control (Fig. 5d). Despite similar expression levels of all mutants
402 (Supplementary Fig. 4b), only the WT, W232F and S206V variants could be purified in large
403 amounts and analyzed by spectrochromatography directly after IMAC (Fig. 5d-g). For
404 Q166D, I183N and especially D162L, a low yield of the soluble protein required additional
405 purification by SEC and concentration prior to spectrochromatography (Fig. 5h). For all
406 BmCBP variants, we compared the absorbance spectra from their peaks on
407 spectrochromatograms (Fig. 5g,h). In a striking contrast with WT, the S206V and W232F
408 mutants displayed substantially reduced Vis/UV absorbance ratios and hence carotenoid-
409 binding capacities (Fig. 5g). While the D162L mutant was expressed at a low yield, its
410 absorbance spectrum contained only minor peak characteristic for ZEA compared with the
411 UV peak (Fig. 5h), which indicated low stability of this protein and its poor carotenoid-binding
412 capacity. These data strongly supported the functional relevance of Ser206, Trp232 and
413 Asp162 residues in ZEA binding. Notably, hSTARD1, despite having a similar fold (PDB
414 3P0L, $\text{Ca RMSD}=1.02 \text{ \AA}$ when superposed with the BmCBP apo structure), has Leu199
415 instead of Ser206 in BmCBP, Met225 instead of Trp232 in BmCBP and Phe165 instead of
416 Asp162 in BmCBP. Our data predict the inability of hSTARD1 to bind ZEA.

417 Despite their low yield, comparable to that of the D162L mutant, the Q166D and I183N
418 mutants could still be obtained in the holoform and showed large Vis/UV absorbance ratios
419 indicating their principle ability to bind ZEA (Fig. 5h). This indicates that, in contrast to the
420 inhibitory effects of the S206V, W232F and D162L substitutions, the neutral effects of the
421 Q166D and I183N substitutions suggest that residues in these positions are probably not
422 essential for carotenoid binding. Yet, the Q166D and I183N mutations caused subtle shifts of
423 the absorbance in the visible region (Fig. 5i), in line with the close proximity of these
424 residues to the carotenoid-binding site in BmCBP. This illustrates how sensitive to its
425 microenvironment the spectral properties of the carotenoid are.

426 Noteworthily, we found that CAN binding efficiency is comparable for BmCBP WT and the
427 S206V mutant (Fig. 5j,k), in which the key Ser206 side chain coordinating the ZEA hydroxyl
428 (Fig. 2a) is replaced by the hydrophobic group of valine lacking this ability. Given that CAN
429 has 4,4'-ketogroups instead of 3,3'-hydroxygroups of ZEA, this observation is in line with the
430 structure of the BmCBP(ZEA) complex and is likely explained by the fact that the CAN
431 ketogroup in BmCBP S206V points away from the 206 residue and thus does not experience
432 an effect of the S206V substitution. Such orientation of the carotenoid ring in the BmCBP
433 cavity is further supported by the relatively low efficiency of BmCBP WT binding to CAN than
434 to ZEA (Fig. 5d and j), because only the ZEA hydroxyl can form contacts with Ser206. In
435 contrast, under the same conditions, CAN binding to the W232F mutant was insignificant
436 (Fig. 5l), which confirms the importance of the indolyl group of the 232 residue.

437

438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456

Fig. 5. Crystal structures and carotenoid-binding capacity of the engineered BmCBP mutants. a-c. Magnified views of the carotenoid-binding site of the S206V (b), W232F (c) and D162L (d) mutants validating the mutations introduced (in yellow). In a, grey sticks show the position of the R185 and D162 residues forming the salt bridge in BmCBP WT. The mutation led to the disruption of the salt bridge and R185 displacement towards the ligand-binding cavity. The 2Fo-Fc electron density maps contoured at 1σ are demonstrated. d-l. The His-tagged proteins were expressed in ZEA-producing *E.coli* cells, purified by IMAC and subjected to spectrochromatography (Superdex 200 Increase 5/150, 0.45 ml/min). d-f. Spectrochromatograms showing the purity and typical UV-Vis absorbance of the WT (d), S206V (e) or W232F (f) variants. The inserts show the color of the samples loaded on the column. Unlike yellow WT, the mutants have dramatically reduced Vis absorbance. g. Absorbance spectra of the BmCBP variants presented in d-f. h. Absorbance spectra of the other three BmCBP variants obtained at reduced yields and additionally concentrated prior to spectrochromatography. i. A magnified view showing slight spectral differences in the carotenoid absorbance of the selected BmCBP variants. j-l. Spectrochromatograms of BmCBP holoforms with CAN for WT (j), S206V (k) and W232F (l). Note that while WT and S206V bind CAN comparably, W232F shows no absorbance in the visible region and hence no CAN binding.

457

458 5. BmCBP is a dynamic carotenoid shuttle

459

460 After dissecting the carotenoid-binding mechanism of BmCBP, we asked if this nm-sized
461 protein could be used for carotenoid delivery to biological membrane models and other
462 proteins. When mixed with liposomes and then analyzed by spectrochromatography,
463 BmCBP(ZEA) displayed an efficient carotenoid transfer accompanied by a depletion of the
464 carotenoid-specific absorbance in the protein fraction and a concomitant appearance of the
465 carotenoid absorbance in the liposome fraction (Fig. 6a and Supplementary Fig. 5a). After
466 Rayleigh scattering subtraction, ZEA absorbance in liposomes revealed a much less
467 pronounced vibronic structure than in BmCBP (Fig. 6b), reflecting a distinct chemical
468 environment and thus physical migration of the carotenoid.

469 Noteworthily, fusion of BmCBP to the C terminus of the maltose-binding protein (MBP-
470 BmCBP) did not abolish the ability of BmCBP to bind and transfer ZEA (Supplementary Fig.
471 5b,c), which is beneficial for constructing modular antioxidant delivery systems based on
472 BmCBP in the future.

473 Unlike reported for the microalgal AstaP carotenoprotein ⁵, BmCBP did not display tight
474 physical association in the holo- (Fig. 6c) and apoform (Fig. 6d) with lipid membranes as no
475 protein was detected in the liposome fraction by SDS-PAGE. Therefore, BmCBP only
476 transiently approaches membranes to deliver its carotenoid, which may be favored by the
477 peculiar distribution of charges on the BmCBP surface (Fig. 1b). Assuming BmCBP is a
478 dynamic carotenoid shuttle, we tested if carotenoids are exchanged between BmCBP
479 molecules by mixing BmCBP(ZEA) as a donor (28 kDa) and an MBP-tagged BmCBP
480 apoprotein (68 kDa) as an acceptor of the carotenoid. As expected, the SEC profile of such
481 a mixture revealed two peaks with the carotenoid-specific absorbance representing MBP-
482 BmCBP and BmCBP, respectively (Fig. 6e,f), indicating carotenoid repartitioning between
483 the BmCBP molecules, not precluded by the MBP-tag.

484 Seeking for a good reporter of the successful carotenoid transfer, we used cyanobacterial
485 OCP apoprotein as a carotenoid acceptor from BmCBP. Upon binding ketocarotenoids, the
486 OCP apoform undergoes compaction and acquires the characteristic absorbance spectrum
487 in the dark-adapted state, while experiencing a dramatic spectral shift upon transition to the
488 light-adapted state, with a photocycle that can be followed by changes of absorbance at 550-
489 570 nm ^{10,11}. For this experiment, the BmCBP complex with the ketocarotenoid
490 canthaxanthin (CAN) was used. Upon mixing it with the *Synechocystis* OCP apoform,
491 lacking any absorbance in the visible spectral region, we observed a relatively slow (~40
492 min) transformation of the absorbance spectrum into the one typical for the dark-adapted
493 OCP ¹⁰ (Fig. 6g). Upon completion of CAN transfer, the sample could be reversibly
494 photoactivated by a 445-nm light-emitting diode and the typical OCP(CAN) photocycle could
495 be recorded (Fig. 6h,i).

496 This confirms that BmCBP can transfer carotenoids to other proteins; the time-course of this
497 process (minutes) is suitable for the controlled release of antioxidants by BmCBP. Our
498 recently described genetically encoded OCP-based fluorescent thermometer ³⁹ is among
499 devices that can significantly benefit from the targeted CAN delivery from BmCBP.

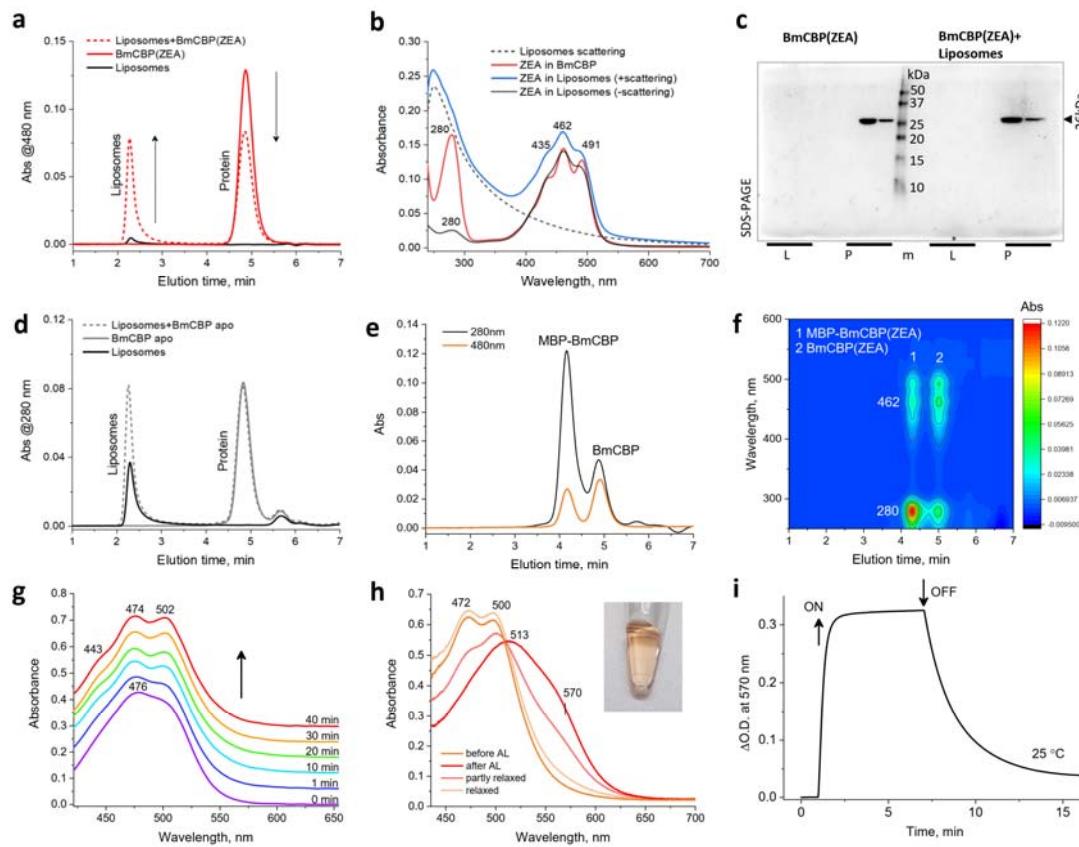
500

501 6. BmCBP delivers zeaxanthin to fibroblasts promoting their growth

502

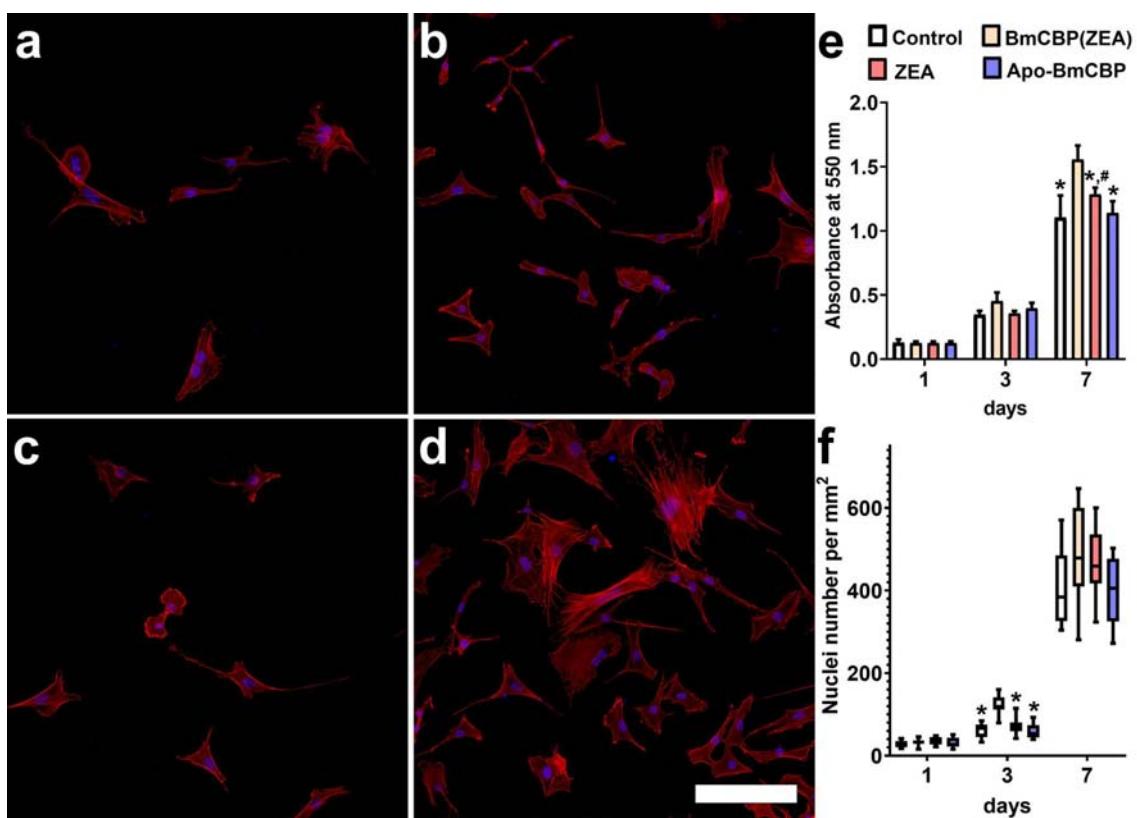
503 After establishing that BmCBP is capable of transferring carotenoids into model liposome
504 membranes, enriching them with antioxidant molecules, we tested this reaction in a cell
505 model. Being useful for studying cytotoxicity ⁴⁰, primary mouse embryonic fibroblasts (MEF)
506 were used to determine BmCBP biocompatibility *in vitro*. For this purpose, 0.5 μ M
507 BmCBP(ZEA) (per carotenoid) was added to cells, and similar concentrations of the
508 apoprotein, ZEA in DMSO, or DMSO, were used as controls (Fig. 7). Apparently,
509 BmCBP(ZEA) stimulated growth of MEFs (Fig. 7a-d). The results of the MTT-test show that
510 cell metabolic activity remained high throughout the cultivation time, moreover, on day 7, the
511 amount of formazan crystals significantly increased in the group of cells incubated with

512 BmCBP(ZEA) compared to the other groups (Fig. 7e). Statistically significant differences
513 were also found for the ZEA/control pair, which confirmed the protective function of
514 BmCBP(ZEA) and ZEA under conditions of increased cell density and deficiency of oxygen
515 and nutrient resources in monolayer cultures. The number of cells detected on day 7 of
516 cultivation was similar for all groups tested, however, on day 3, the difference was significant
517 for the BmCBP(ZEA) group and the rest of the samples (Fig. 7f). This effect is likely
518 associated with the increased bioavailability of ZEA complexed with BmCBP and is
519 multifaceted. Carotenoids can not only neutralize free radicals but also modulate the activity
520 of retinoic acid receptors ⁴¹, which in turn play a critical role in the function of various
521 mammalian tissues, including skin ⁴², nerve ⁴³ and cardiac tissue ⁴⁴. Given the high stability
522 of carotenoids in water-soluble carotenoproteins and better bioavailability compared to
523 liposomes, we assume that this method of carotenoid delivery may be in demand for various
524 biomedical applications.


525

526 **Conclusions**

527


528 We present here BmCBP as a universal proteinaceous nanocontainer for carotenoids and
529 solve its crystal structure to explain the carotenoid-binding mechanism. We demonstrate that
530 BmCBP efficiently takes up and shuttles different carotenoid types to the lipid membranes
531 and photoactive carotenoprotein OCP – a promising optogenetic tool ⁴⁵ and intracellular
532 thermosensor ³⁹. The carotenoids transferred by BmCBP are of paramount importance to
533 human health ⁴⁶, and the BmCBP-carotenoid complexes show the potential for stimulating
534 growth of model fibroblasts. Cost-effective and easily scalable enrichment by recombinant
535 BmCBP apoprotein of the carotenoid fraction from various crude herbal extracts is attractive
536 for biotechnological processes. In addition, BmCBP retains its activity in modular systems
537 (e.g., as fusion constructs) tailored for targeted delivery of lipophilic antioxidants, and thus
538 expands the toolkit of useful water-soluble carotenoproteins. The crystal structures of
539 BmCBP pave the way for its further bioengineering. Our complex study will serve as a
540 blueprint for studying other START domain homologs and carotenoid-binding proteins to
541 provide for a bigger picture.

542

543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561

Fig. 6. BmCBP is a dynamic carotenoid shuttle. a. ZEA transfer from BmCBP to liposomes studied by spectrochromatography (Superdex 200 Increase 5/150, 0.45 ml/min). Arrows indicate the changes of the carotenoid absorbance. b. Absorbance spectra of ZEA in BmCBP and in liposome fractions. c. Interaction of the BmCBP(ZEA) with liposomes assessed by SEC followed by SDS-PAGE of the liposome (L) and protein (P) fractions. Mass markers are shown in kDa (lane “m”). Note that BmCBP does not migrate into the liposome fraction, suggesting no stable association with the membranes. d. The BmCBP apoform does not interact with liposomes. e,f. ZEA is dynamically repartitioned between BmCBP and MBP-BmCBP as revealed by SEC profiles (e) with continuous absorbance spectrum detection (f). g. CAN transfer from BmCBP to the apoform of *Synechocystis* OCP followed by changes of absorbance. The arrow shows the time course, time after mixing is indicated. Note the evolution of BmCBP(CAN) spectral signatures into the signatures of OCP(CAN). h. The photoactivity of OCP(CAN) species formed after CAN transfer from BmCBP followed by absorbance changes upon illumination by a blue LED (445 nm). The insert shows the orange color of the sample after CAN transfer to OCP. AL, actinic light. i. The OCP photocycle in a kinetic regime monitored by absorbance at 570 nm upon switching the LED on and off (see arrows).

562

563 **Fig. 7. BmCBP(ZEA) stimulates mouse embryonic fibroblasts growth.** a, b, c and d –
564 3D reconstructions made from a series of optical sections of MEFs on 1st and 3rd day of
565 cultivation without (a, b) and with the addition of 0.5 μ M BmCBP(ZEA) (c, d). The nuclei were
566 visualized with Hoechst 33342 (blue); actin filaments were stained with TRITC-phalloidin
567 (red). A scale bar equals 100 μ m. e. The results of the MTT-test (mean \pm SD; n=9). f.
568 Number of cells per mm² on the 1st, 3rd and 7th day of cultivation (mean \pm SD; n=13). *-
569 difference between the cells cultured with BmCBP(ZEA) and other groups. # - difference
570 between control and other groups. p<0.05.

571 **Methods**

572

573 **Materials.** All-trans-astaxanthin and β -carotene (CAS Numbers: 472-61-7 and 7235-40-7) were purchased from Sigma-Aldrich (USA). Lutein was HPLC-purified from a commercial lutein preparation purchased from RealCaps, Russia, as before ⁴⁷. Zeaxanthin and canthaxanthin were extracted by acetone from either carotenoid-bound proteins or *E. coli* membranes as described earlier ^{5,48}. Absorbance spectra of carotenoids in organic solvents were registered on a Nanophotometer NP80 (Implen, Germany) using the following molar extinction coefficients: 121,300 M⁻¹ cm⁻¹ for β Car at 466 nm in DMSO ⁴⁹, 90,000 M⁻¹ cm⁻¹ for CAN at 472 nm in ethanol ⁵⁰, 125,000 M⁻¹ cm⁻¹ for AXT at 482 nm in DMSO ⁵¹, 145,000 M⁻¹ cm⁻¹ for ZEA at 450 nm in methanol ⁵². TRITC-conjugated phalloidin and Hoechst 33342 were purchased from Thermo Fisher (USA).

583 Liposomes were prepared ⁵³ from L- α -lecithin (20 mg) isolated from soybeans containing 584 17% phosphatidylcholine on a 1 ml of 50 mM KH₂PO₄ buffer containing 2 mM MgSO₄, pH 585 7.5. The resulting mixture was homogenized in a glass homogenizer and placed in an 586 Eppendorf tube for further sonication during 40 min on an UZDN-2T ultrasonic disintegrator 587 (Ukrrospribor, Ukraine) at a 22 kHz frequency until the suspension became absolutely clear. 588 Liposomes were stored at 4 °C and used within three days. Chemicals were of the highest 589 quality and purity available.

590

591 **Cloning, protein expression and purification.** cDNA corresponding to BmCBP residues 592 68-297 (Uniprot Q8MYA9) was codon-optimized for expression in *E. coli*, synthesized by 593 Integrated DNA Technologies (Coralville, Iowa, USA) and cloned into the pET28b-His-3C 594 vector (kanamycin resistance) using the *Nde*I and *Xba*I restriction sites ²⁵. BmCBP mutants 595 W232F, S206V, D162L, Q166D and I183N were obtained by the megaprimer method using 596 Q5 (NEB) polymerase, mutagenic primers listed in Supplementary Table S3 and the WT 597 plasmid as template. To make the design consistent, human STARD3 (residues 216-444 of 598 Uniprot Q14849) was cloned into the same vector as BmCBP by moving from the RSFduet 599 plasmid ⁵⁴. The resulting constructs were verified by DNA sequencing in Evrogen (Moscow, 600 Russia).

601 The wild-type BmCBP, its mutant constructs, hSTARD3 or *Synechocystis* OCP were 602 transformed into C41(DE3) *E. coli* cells for expression of the apoforms. For reconstructing 603 carotenoid-protein complexes, the desired plasmids were used to transform C41(DE3) cells 604 already carrying the pACCAR25ΔcrtX plasmid (chloramphenicol resistance), which harbors 605 the gene cluster including crtY, crtI, crtB, crtZ and crtE sequences from *Erwinia uredovora* 606 for ZEA expression ^{5,48}. Alternatively, for reconstitution of BmCBP complexes with CAN, co- 607 expression with the ketolase crtW was used ⁵. Protein expression induced by 0.1 mM IPTG 608 lasted overnight at 25 °C. The apo and holoforms of proteins were purified according to the 609 unified scheme consisting of immobilized metal-affinity and size-exclusion chromatography. 610 To improve the yield of the BmCBP holoform with ZEA, we added BSA during cell lysis and 611 additionally used chromatography on a hydroxyapatite column. Carotenoid content of the 612 BmCBP holoforms was verified by acetone extraction and thin-layer chromatography ^{5,13}. 613 Purified proteins were stored frozen at -80 °C.

614

615 **Circular dichroism in the visible region.** His-tagged BmCBP(ZEA) (0.5 mg/ml, Vis/UV 616 absorbance ratio of 1.4) was dialyzed overnight against 20 mM Na-phosphate buffer pH 7.1 617 and centrifuged for 10 min at 4 °C and 14,200g before measurements. Visible-CD spectra 618 were recorded at 20 °C in the range of 250-650 nm at a rate of 0.4 nm/s with 1.0 nm steps in 619 0.1 cm quartz cuvette on a Chirascan circular dichroism spectrometer (Applied 620 Photophysics) equipped with a temperature controller, and then buffer-subtracted. As a 621 control, free ZEA (10 μ M) in methanol was measured. ZEA concentration in methanol was 622 determined spectrophotometrically.

623

624 **Raman spectroscopy.** Raman spectroscopy was used to study the conformation of 625 carotenoids in proteins and organic solvent. The Ntegra Spectra confocal microscope

626 (NTMDT, Russia) equipped with a CCD spectrometer was used for examination of both
627 liquid and solid samples. Linearly polarized light from the 532-nm laser was focused on the
628 object using 20X (NA=0.4) or 50X (NA=0.8) Olympus (Japan) lenses. Liquid samples were
629 placed under a microscope in quartz capillaries. The average laser power at the lens exit
630 was about 0.5 mW. The accumulation time of single spectra varied from 10 s to 2 min
631 depending on the type of measurements and the strength of the signal.
632

633 **Differential scanning calorimetry.** The apoform or two ZEA-bound forms differing by the
634 relative amount of the apoform (Vis/UV absorbance ratios of ~1.3 and ~1.5) of the His-
635 tagged BmCBP (1.5 mg/ml) were dialyzed overnight against a 50 mM Na-phosphate buffer
636 (pH 7.45), 150 mM NaCl and subjected to DSC on a VP-capillary DSC (Malvern) at a
637 heating rate of 1 °C/min. Thermograms were processed using Origin Pro 8.0 and transition
638 temperature (T_m) was determined from the maximum of the thermal transition.
639

640 **Spectrochromatography.** SEC with diode-array detection was used to analyze protein
641 holoforms and products of carotenoid transfer. Samples (50 μ l) were loaded on a Superdex
642 200 Increase column (GE Healthcare, Chicago, Illinois, USA) pre-equilibrated with a 20 mM
643 Tris-HCl buffer, pH 7.6, containing 150 mM NaCl and operated using a Varian ProStar 335
644 system (Varian Inc., Melbourne, Australia). Flow rates and column sizes are specified in
645 figure legends. During the runs, absorbance in the 240-900 nm range was recorded with 1-
646 nm steps (4 nm slit width) and a 2.5 Hz frequency. Diode-array data were converted into .csv
647 files using a custom-built Python script and processed into contour plots using Origin 9.0
648 (Originlab, Northampton, MA, USA).
649

650 **Carotenoid extraction by BmCBP apoprotein.** Herbal extracts were prepared by mixing 1
651 g of each herb with 0.5 g of Na_2SO_4 and 0.5 g Na_2CO_3 , followed by consecutive methanolic
652 extraction cycles (5 ml 100% methanol) alternated by rounds of centrifugation, and the first
653 supernatant was discarded. 2 μ l out of 13 ml of each total extract were then mixed with 53 μ l
654 of 1 mg/ml His-tagged BmCBP apoprotein, incubated for 30 min at room temperature. After
655 centrifugation, 50 μ l of each sample thus obtained were subjected to IMAC and then
656 analyzed by spectrochromatography with diode array detection. As a reference, we used a
657 methanolic extract prepared from one tablet of the commercial food supplement Ocuvite
658 (Lot. 2939FT139; Bausch and Lomb) containing 10 mg LUT, 2 mg ZEA and 300 μ g
659 lycopene, vitamins and microelements.
660

661 **Carotenoid transfer.** Reconstitution of BmCBP holoforms with astaxanthin (AXT) and β -
662 carotene (β Car) was accomplished by mixing 20 μ l of 20 μ M BmCBP apoprotein with either
663 2 μ l buffer (negative control) or 2 μ l of carotenoid solutions in DMSO (β Car 60 μ M, CAN 62
664 μ M, AXT 530 μ M). CAN-bound BmCBP was obtained by adding CAN extract in DMSO,
665 similar to that in the case of AXT and β Car, or by expression in CAN-producing *E. coli* cells
666⁵.

667 Physical migration of carotenoids between proteins and membranes was studied by
668 spectrochromatography. To this end, 10 μ l of 24 μ M (calculated by protein) carotenoprotein
669 (BmCBP(ZEA) or MBP-BmCBP(ZEA)) were mixed with either 10 μ l of SEC buffer (negative
670 control) or 10 μ l of 3.6 mg/ml liposomes in SEC buffer. Another control did not contain
671 protein and only contained liposomes. Mixtures of liposomes and proteins were incubated at
672 25 °C for 15 min. Eighteen μ l were loaded on a Superdex 200 Increase 5/150 column and
673 analyzed by spectrochromatography. For SDS-PAGE analysis of the SEC fractions, the
674 loading was increased 2.8 times.

675 CAN transfer between BmCBP and the apoform of *Synechocystis* OCP was followed by the
676 absorbance changes in a low-binding 384-well plate with a transparent flat bottom using a
677 Clariostar Plus plate reader (BMG, Germany) equipped with thermostat and absorbance
678 spectrometer (200-1000 nm). Twenty μ l of the His-tagged BmCBP(CAN) was mixed with 2 μ l
679 of 337 μ M OCP(apo) and measured at 25 °C during 40 min with spectral measurements
680 each 2 min. The product of carotenoid transfer was diluted to 100 μ l by SEC buffer and

681 transferred to a 1 cm quartz cuvette. For its photoconversion, a blue light-emitting diode
682 (M455L3, Thorlabs, USA) with a maximum emission at 445 nm was used, while the steady-
683 state absorbance spectrum was continuously registered. The temperature of the sample was
684 stabilized by a Peltier-controlled cuvette holder Qpod 2e (Quantum Northwest, USA). Each
685 experiment was repeated at least three times, and the most typical results are presented.

686 **Cell cultures and fluorescent microscopy.** Primary mouse embryonic fibroblasts (MEF)
687 were obtained as previously described ⁵⁵. To determine the number of cells, MEF were
688 plated onto coverslips in 35-mm Petri dishes (2×10^4 cells in 2 ml of culture medium per
689 coverslip). Then, the dishes were randomly distributed among the groups and 0.5 μ M
690 BmCBP(ZEA) (per carotenoid), ZEA in DMSO, Apo-BmCBP (per protein), and DMSO was
691 used as control. After 1, 3 and 7 days of culture, the cells were fixed with 4%
692 paraformaldehyde in phosphate-buffered saline (PBS), pH 7.4, for 30 min, washed three
693 times with PBS, permeabilized in 0.1% Triton X-100/0.1% fetal bovine serum (FBS) solution
694 in PBS for 30 min at 4°C, and washed twice with PBS/0.1% FBS. To identify actin
695 microfilaments and nuclei, the cells were incubated with TRITC-conjugated phalloidin and
696 Hoechst 33342 (both from Thermo Fisher Scientific, USA), respectively, and washed three
697 times with PBS. The images were captured using an Eclipse Ti-E microscope with an A1
698 confocal module (Nikon Corporation, Japan) and a CFI Plan Apo VC 20 \times /0.75 objective.

699 **MTT-assay for cell metabolic activity.** Cells were placed in 96-well plates (1500 cells per
700 well). After 1, 3 and 7 days, 20 μ l of 3-(4,5-dimethylthiazole-2-yl)-2,5-
701 diphenyltetrazoliumbromide (MTT) solution (5 mg/ml in PBS) were added and incubated at
702 37 °C for 4 h. The formed formazan crystals were dissolved in DMSO and assessed
703 colorimetrically at 550 nm.

704 **SEC-MALS.** Size-exclusion chromatography coupled to multi-angle light scattering (SEC-
705 MALS) was carried out using a Superdex 200 Increase 10/300 column (GE Healthcare) and
706 a combination of a UV-Vis Prostar 335 (Varian, Australia) and a miniDAWN (Wyatt
707 Technology, USA) detectors connected sequentially. The His-tagged BmCBP(ZEA) (4 mg/ml
708 in 40 μ l) or hSTARD3 (3.4 mg/ml in 25 μ l) were loaded on the column equilibrated with
709 filtered (0.1 μ m) and degassed 20 mM Tris-HCl buffer, pH 7.6, containing 150 mM NaCl.
710 Flow rate was 0.8 ml/min. Data were analyzed in ASTRA 8.0 (Wyatt Technology, USA) using
711 $dn/dc = 0.185$ and protein extinction coefficients $\epsilon(0.1\%)$ at 280 nm equal to 1.54
712 (BmCBP(ZEA)) and 0.97 (hSTARD3 apo).

713 **Crystallization of BmCBP.** An initial crystallization screening of His-tagged BmCBP (WT
714 apo), BmCBP(ZEA) and the W232F mutant was performed with a robotic crystallization
715 system (Oryx4, Douglas Instruments, UK) and commercially available crystallization screens
716 (Hampton Research, USA) using sitting drop vapor diffusion at 15 °C. The protein
717 concentrations were 6.5 mg/ml in 20 mM Tris-HCl buffer pH 7.6 containing either 50 mM
718 NaCl (WT) or 150 mM NaCl (W232F). The drop volume was 0.4 μ l with a 50:50 and a 75:25
719 protein-to-precipitant ratio. Optimization of the initial conditions was made by hanging drop
720 vapor diffusion in a 24-well plate with a 2 μ l drop volume (50:50 ratio). Best crystals were
721 obtained at 15 °C using crystallization conditions listed in Supplementary Table 2. The
722 conditions optimized for the W232F mutant were used to crystallize the S206V and D162L
723 mutants.

724 **Data collection, structure determination and refinement.** BmCBP crystals were briefly
725 soaked in a mother liquor containing either 1.4 M sodium citrate tribasic dihydrate (WT ZEA,
726 S206V and W232F) or 20% glycerol (WT apo, D162L) immediately prior to diffraction data
727 collection and flash-frozen in liquid nitrogen. The data were collected at 100 K at ID30-A3,
728 ID23-2 beamlines (ESRF, France) and Rigaku OD XtaLAB Synergy-S diffractometer (IOC
729 RAS, Moscow, Russia). Indexing, integration and scaling were done using XDS ⁵⁶ and Dials
730 ⁵⁷.

733 The WT apo structure was solved by molecular replacement using MOLREP ⁵⁸ and the
734 hSTARD3 structure (PDB ID 5I9J) with removed loop regions as an initial model. For WT
735 ZEA and mutant forms of the protein, structures were solved using WT apo as a starting
736 model. The refinement was carried out using REFMAC5 ⁵⁹ and BUSTER ⁶⁰. The anisotropic
737 or isotropic individual atom B-factors were used during the refinement for WT apo or all other
738 structures, respectively. In all cases, hydrogens in riding positions as well as TLS were used
739 during the refinement. The visual inspection of electron density maps and manual model
740 rebuilding were carried out in COOT ⁶¹.

741 For representing surface electrostatic potentials, we used Adaptive Poisson-Boltzmann
742 Solver (APBS) tools plug-in for PyMol and the default parameters (37 °C, 150 mM
743 concentrations of negatively and positively charged ions with radii of 1.8 Å and 2.0 Å,
744 respectively).

745

746 **Small-angle X-ray scattering.** His-tagged BmCBP(ZEA) (60 µl, 13 mg/ml) was loaded onto
747 a Superdex 200 Increase 3.2/300 column (Cytiva) and eluted at a 0.075 ml/min flow rate
748 while the SAXS data (I(s) versus s, where $s = 4\pi\sin\theta/\lambda$, 2θ is the scattering angle and $\lambda =$
749 0.96787 Å) were measured at the BM29 beam line (ESRF, Grenoble, France) using a
750 Pilatus 2M detector (data collection rate 0.5 frame/s; experiment session data DOI
751 10.15151/ESRF-ES-642726753). The buffer contained 20 mM Tris-HCl, pH 7.6, and 150
752 mM NaCl. SAXS frames recorded along the SEC profile were processed in CHROMIXS ⁶² to
753 get an average SAXS curve corresponding to the BmCBP peak. The obtained SAXS profile
754 was further used for modeling using the CORAL component of the ATSAS 2.8 package ³³
755 whereby the crystallographic monomer was supplemented with 18 N-terminal residues while
756 minimizing the discrepancy between the calculated scattering profile and the experimental
757 data. This fitting procedure showed high convergence (χ^2 values for ten CORAL-derived
758 models were in the range 1.02-1.04 on the whole range of scattering vectors).

759 **Data availability.** The refined models and structure factors have been deposited in the
760 Protein Data Bank under the accession codes 7ZTQ, 7ZVR, 7ZVQ, 7ZTR, 7ZTU. All
761 materials are available from the corresponding author upon reasonable request.

762 Acknowledgements

763 The authors thank Ilia Chetviorkin for the Python script for processing the diode-array data,
764 Alexandr Ashikhmin for lutein preparation and Anton Popov for help with SAXS data
765 collection at the BM29 beam line (ESRF, Grenoble, France; experiment session data DOI
766 10.15151/ESRF-ES-642726753). The study was supported by the Ministry of Science and
767 Higher education of the Russian Federation in the framework of the Agreement no. 075-15-
768 2021-1354 (07.10.2021). Carotenoprotein expression and purification was partly supported
769 by the Russian Foundation for Basic Research and the German Research Foundation joint
770 grant (no. 20-54-12018 and no. FR1276/6-1). CD measurements were done at the Shared-
771 Access Equipment Centre "Industrial Biotechnology" of the Federal Research Center
772 "Fundamentals of Biotechnology" of the Russian Academy of Sciences. SYK was supported
773 by the Program of the Ministry of Science and Higher Education of Russia (0088-2021-
774 0009).

775 **Conflict of interests.** The authors declare that they have no conflicts of interest.

776 Author contributions

777 NNS – designed experiments and initiated the study; YBS, NAE, NNS – expressed and
778 purified proteins; LAV - crystallized proteins; YBS, NAE, AMM, SYK, NNS – performed
779 experiments; EYP - prepared and characterized liposomes; SYK - performed DSC
780 experiments; MEM, NNS, KMB - collected X-ray data; NNS, KMB - solved crystal structures;
781 NNS - performed SAXS data analysis; YBS, EGM, TF, NNS, KMB – analyzed data and

782 discussed the results; VOP - supervised the study and acquired funding; NNS wrote the
783 paper.

784

785 **References**

- 786 1. Cianci, M. *et al.* The molecular basis of the coloration mechanism in lobster shell: beta-
787 crustacyanin at 3.2-A resolution. *Proc Natl Acad Sci U A* **99**, 9795–800 (2002).
- 788 2. Chayen, N. E. *et al.* Unravelling the structural chemistry of the colouration mechanism in
789 lobster shell. *Acta Crystallogr Biol Crystallogr* **59**, 2072–82 (2003).
- 790 3. Hara, K. Y., Yagi, S., Hirono-Hara, Y. & Kikukawa, H. A Method of Solubilizing and
791 Concentrating Astaxanthin and Other Carotenoids. *Mar. Drugs* **19**, 462 (2021).
- 792 4. Kawasaki, S., Mizuguchi, K., Sato, M., Kono, T. & Shimizu, H. A novel astaxanthin-
793 binding photooxidative stress-inducible aqueous carotenoprotein from a eukaryotic
794 microalga isolated from asphalt in midsummer. *Plant Cell Physiol* **54**, 1027–40 (2013).
- 795 5. Slonimskiy, Y. B., Egorkin, N. A., Friedrich, T., Maksimov, E. G. & Sluchanko, N. N.
796 Microalgal protein AstaP is a potent carotenoid solubilizer and delivery module with a
797 broad carotenoid binding repertoire. *FEBS J.* **289**, 999–1022 (2022).
- 798 6. Muzzopappa, F. & Kirilovsky, D. Changing Color for Photoprotection: The Orange
799 Carotenoid Protein. *Trends Plant Sci* (2019) doi:10.1016/j.tplants.2019.09.013.
- 800 7. Wilson, A. *et al.* A photoactive carotenoid protein acting as light intensity sensor. *Proc
801 Natl Acad Sci U A* **105**, 12075–80 (2008).
- 802 8. Sedoud, A. *et al.* The Cyanobacterial Photoactive Orange Carotenoid Protein Is an
803 Excellent Singlet Oxygen Quencher. *Plant Cell* **26**, 1781–1791 (2014).
- 804 9. Kerfeld, C. A. *et al.* The crystal structure of a cyanobacterial water-soluble carotenoid
805 binding protein. *Structure* **11**, 55–65 (2003).
- 806 10. Maksimov, E. G. *et al.* The Unique Protein-to-Protein Carotenoid Transfer Mechanism.
807 *Biophys J* **113**, 402–414 (2017).

808 11. Moldenhauer, M. *et al.* Assembly of photoactive orange carotenoid protein from its
809 domains unravels a carotenoid shuttle mechanism. *Photosynth Res* **133**, 327–341
810 (2017).

811 12. Melnicki, M. R. *et al.* Structure, Diversity, and Evolution of a New Family of Soluble
812 Carotenoid-Binding Proteins in Cyanobacteria. *Mol Plant* **9**, 1379–1394 (2016).

813 13. Slonimskiy, Y. B. *et al.* Light-controlled carotenoid transfer between water-soluble
814 proteins related to cyanobacterial photoprotection. *FEBS J* **286**, 1908–1924 (2019).

815 14. Muzzopappa, F. *et al.* Paralogs of the C-Terminal Domain of the Cyanobacterial Orange
816 Carotenoid Protein Are Carotenoid Donors to Helical Carotenoid Proteins. *Plant Physiol*
817 **175**, 1283–1303 (2017).

818 15. Maksimov, E. G. *et al.* Soluble Cyanobacterial Carotenoprotein as a Robust Antioxidant
819 Nanocarrier and Delivery Module. *Antioxid. Basel* **9**, (2020).

820 16. Harris, D. *et al.* Structural rearrangements in the C-terminal domain homolog of Orange
821 Carotenoid Protein are crucial for carotenoid transfer. *Commun Biol* **1**, 125 (2018).

822 17. Alpy, F. & Tomasetto, C. Give lipids a START: the StAR-related lipid transfer (START)
823 domain in mammals. *J Cell Sci* **118**, 2791–801 (2005).

824 18. Li, B., Vachali, P., Frederick, J. M. & Bernstein, P. S. Identification of StARD3 as a lutein-
825 binding protein in the macula of the primate retina. *Biochemistry* **50**, 2541–9 (2011).

826 19. Arunkumar, R., Gorupudi, A. & Bernstein, P. S. The macular carotenoids: A
827 biochemical overview. *Biochim. Biophys. Acta BBA - Mol. Cell Biol. Lipids* **1865**, 158617
828 (2020).

829 20. Moeller, S. M., Jacques, P. F. & Blumberg, J. B. The Potential Role of Dietary
830 Xanthophylls in Cataract and Age-Related Macular Degeneration. *J. Am. Coll. Nutr.* **19**,
831 522S-527S (2000).

832 21. Horvath, M. P. *et al.* Structure of the lutein-binding domain of human StARD3 at 1.74 Å
833 resolution and model of a complex with lutein. *Acta Crystallogr F Struct Biol Commun* **72**,
834 609–18 (2016).

835 22. Tsujishita, Y. & Hurley, J. H. Structure and lipid transport mechanism of a StAR-related
836 domain. *Nat Struct Biol* **7**, 408–14 (2000).

837 23. Tabunoki, H. *et al.* Isolation, characterization, and cDNA sequence of a carotenoid
838 binding protein from the silk gland of *Bombyx mori* larvae. *J Biol Chem* **277**, 32133–40
839 (2002).

840 24. Sakudoh, T. *et al.* Carotenoid silk coloration is controlled by a carotenoid-binding protein,
841 a product of the Yellow blood gene. *Proc. Natl. Acad. Sci.* **104**, 8941–8946 (2007).

842 25. Slonimskiy, Y. B. *et al.* Reconstitution of the functional carotenoid-binding protein from
843 silkworm in *E. coli*. *Int. J. Biol. Macromol.* (2022) doi:10.1016/j.ijbiomac.2022.06.135.

844 26. Murcia, M., Faraldo-Gomez, J. D., Maxfield, F. R. & Roux, B. Modeling the structure of
845 the StART domains of MLN64 and StAR proteins in complex with cholesterol. *J Lipid*
846 *Res* **47**, 2614–30 (2006).

847 27. Letourneau, D. *et al.* STARD6 on steroids: solution structure, multiple timescale
848 backbone dynamics and ligand binding mechanism. *Sci Rep* **6**, 28486 (2016).

849 28. Sluchanko, N. N., Tugaeva, K. V. & Maksimov, E. G. Solution structure of human
850 steroidogenic acute regulatory protein STARD1 studied by small-angle X-ray scattering.
851 *Biochem Biophys Res Commun* **489**, 445–450 (2017).

852 29. Chovancova, E. *et al.* CAVER 3.0: A Tool for the Analysis of Transport Pathways in
853 Dynamic Protein Structures. *PLOS Comput. Biol.* **8**, e1002708 (2012).

854 30. Liebschner, D. *et al.* Polder maps: improving OMIT maps by excluding bulk solvent. *Acta*
855 *Crystallogr. Sect. Struct. Biol.* **73**, 148–157 (2017).

856 31. *Carotenoids, Volume 1B: Spectroscopy*.

857 32. de Faria, A. F., de Rosso, V. V. & Mercadante, A. Z. Carotenoid Composition of Jackfruit
858 (*Artocarpus heterophyllus*), Determined by HPLC-PDA-MS/MS. *Plant Foods Hum. Nutr.*
859 **64**, 108–115 (2009).

860 33. Petoukhov, M. V. *et al.* New developments in the ATSAS program package for small-
861 angle scattering data analysis. *J Appl Cryst* **45**, 342–350 (2012).

862 34. Xue, Y. *et al.* Identification of a key gene StAR-like-3 responsible for carotenoids
863 accumulation in the noble scallop *Chlamys nobilis*. *Food Chem. Mol. Sci.* **4**, 100072
864 (2022).

865 35. Pishchalnikov, R. Y. *et al.* Structural peculiarities of keto-carotenoids in water-soluble
866 proteins revealed by simulation of linear absorption. *Phys Chem Chem Phys* **21**, 25707–
867 25719 (2019).

868 36. Maksimov, E. G. *et al.* The Signaling State of Orange Carotenoid Protein. *Biophys J* **109**,
869 595–607 (2015).

870 37. Leverenz, R. L. *et al.* Structural and functional modularity of the orange carotenoid
871 protein: distinct roles for the N- and C-terminal domains in cyanobacterial
872 photoprotection. *Plant Cell* **26**, 426–37 (2014).

873 38. Dudek, M. *et al.* Chiral Amplification in Nature: Studying Cell-Extracted Chiral Carotenoid
874 Microcrystals via the Resonance Raman Optical Activity of Model Systems. *Angew.*
875 *Chem. Int. Ed.* **58**, 8383–8388 (2019).

876 39. Maksimov, E. G. *et al.* A genetically encoded fluorescent temperature sensor derived
877 from the photoactive Orange Carotenoid Protein. *Sci Rep* **9**, 8937 (2019).

878 40. Gurunathan, S. *et al.* Cytotoxicity and Transcriptomic Analysis of Silver Nanoparticles in
879 Mouse Embryonic Fibroblast Cells. *Int. J. Mol. Sci.* **19**, 3618 (2018).

880 41. Harrison, E. H. Carotenoids, β -Apocarotenoids, and Retinoids: The Long and the Short
881 of It. *Nutrients* **14**, 1411 (2022).

882 42. Szymański, Ł. *et al.* Retinoic Acid and Its Derivatives in Skin. *Cells* **9**, 2660 (2020).

883 43. Lenz, M. *et al.* All-trans retinoic acid induces synaptic plasticity in human cortical
884 neurons. *eLife* **10**, e63026 (2021).

885 44. Tang, X.-H. *et al.* A Retinoic Acid Receptor β 2 Agonist Improves Cardiac Function in a
886 Heart Failure Model. *J. Pharmacol. Exp. Ther.* (2021) doi:10.1124/jpet.121.000806.

887 45. Piccinini, L. *et al.* A synthetic switch based on orange carotenoid protein to control blue–
888 green light responses in chloroplasts. *Plant Physiol.* kiac122 (2022)
889 doi:10.1093/plphys/kiac122.

890 46. Mrowicka, M., Mrowicki, J., Kucharska, E. & Majsterek, I. Lutein and Zeaxanthin and
891 Their Roles in Age-Related Macular Degeneration—Neurodegenerative Disease.
892 *Nutrients* **14**, 827 (2022).

893 47. Ashikhmin, A., Makhneva, Z., Bolshakov, M. & Moskalenko, A. Incorporation of
894 spheroidene and spheroidenone into light-harvesting complexes from purple sulfur
895 bacteria. *J. Photochem. Photobiol. B* **170**, 99–107 (2017).

896 48. Maksimov, E. G. *et al.* A comparative study of three signaling forms of the orange
897 carotenoid protein. *Photosynth Res* **130**, 389–401 (2016).

898 49. Craft, N. E. & Soares, J. H. Relative solubility, stability, and absorptivity of lutein and
899 .beta.-carotene in organic solvents. *J. Agric. Food Chem.* **40**, 431–434 (1992).

900 50. Krajewska, M., Szymczak-Żyła, M. & Kowalewska, G. Carotenoid determination in recent
901 marine sediments - practical problems during sample preparation and HPLC analysis.
902 *Curr. Chem. Lett.* 91–104 (2017) doi:10.5267/j.ccl.2017.4.003.

903 51. Régnier, P. *et al.* Astaxanthin from Haematococcus pluvialis Prevents Oxidative Stress
904 on Human Endothelial Cells without Toxicity. *Mar. Drugs* **13**, 2857–2874 (2015).

905 52. Zang, L.-Y., Sommerburg, O. & van Kuijk, F. J. G. M. Absorbance Changes of
906 Carotenoids in Different Solvents. *Free Radic. Biol. Med.* **23**, 1086–1089 (1997).

907 53. Racker, E. A new procedure for the reconstitution of biologically active phospholipid
908 vesicles. *Biochem Biophys Res Commun* **55**, 224–30 (1973).

909 54. Tugaeva, K. V. *et al.* Molecular basis for the recognition of steroidogenic acute
910 regulatory protein by the 14-3-3 protein family. *FEBS J* **287**, 3944–3966 (2020).

911 55. Conner, D. A. Mouse Embryo Fibroblast (MEF) Feeder Cell Preparation. *Curr. Protoc.*
912 *Mol. Biol.* **51**, 23.2.1-23.2.7 (2000).

913 56. Kabsch, W. XDS. *Acta Crystallogr. D Biol. Crystallogr.* **66**, 125–132 (2010).

914 57. Winter, G. *et al.* DIALS: implementation and evaluation of a new integration package.
915 *Acta Crystallogr. Sect. Struct. Biol.* **74**, 85–97 (2018).

916 58. Vagin, A. & Teplyakov, A. Molecular replacement with MOLREP. *Acta Crystallogr Biol*
917 *Crystallogr* **66**, 22–5 (2010).

918 59. Murshudov, G. N. *et al.* REFMAC5 for the refinement of macromolecular crystal
919 structures. *Acta Crystallogr. D Biol. Crystallogr.* **67**, 355–367 (2011).

920 60. Blanc, E. *et al.* Refinement of severely incomplete structures with maximum likelihood in
921 BUSTER-TNT. *Acta Crystallogr Biol Crystallogr* **60**, 2210–21 (2004).

922 61. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. *Acta
923 Crystallogr Biol Crystallogr* **60**, 2126–32 (2004).

924 62. Panjikovich, A. & Svergun, D. I. CHROMIXS: automatic and interactive analysis of
925 chromatography-coupled small-angle X-ray scattering data. *Bioinformatics* **34**, 1944–
926 1946 (2018).

927 63. Eisenberg, D., Schwarz, E., Komaromy, M. & Wall, R. Analysis of membrane and
928 surface protein sequences with the hydrophobic moment plot. *J Mol Biol* **179**, 125–42
929 (1984).

930
931

932

Supplementary information

933

Sluchanko et al.

935

936 **Table S1.** The optimized crystallization conditions for BmCBP

937 **Table S2.** SAXS-derived structural parameters of His-tagged BmCBP(ZEA).

938 **Table S3.** Primers used in this study.

939

940 **Fig. S1.** BmCBP has a START-like fold.

941 **Fig. S2.** Crystal structure of BmCBP apoprotein.

942 **Fig. S3.** Unlike BmCBP, hSTARD3 does not bind ZEA.

943 **Fig. S4.** BmCBP point mutants.

944 **Fig. S5.** ZEA transfer from BmCBP to liposomes analyzed by spectrochromatography.

945 **Supplementary Tables**

946

947 **Table S1.** Diffraction data collection and refinement statistics for BmCBP variants.

948

Protein	WT apo	WT ZEA	S206V	W232F	D162L
Data collection					
Diffraction source	ID23-2, ESRF	IOC RAS	IOC RAS	IOC RAS	ID30-A3, ESRF
Wavelength, (Å)	0.87	1.54	1.54	1.54	0.98
Crystal-to-detector distance (mm)	185	36	45	36	130
Rotation range per image (°)	0.1	0.3	0.3	0.25	0.15
Total rotation range (°)	180	360	240	360	120
Space group	C 2 2 2 ₁	C 2 2 2 ₁	C 2 2 2 ₁	C 2 2 2 ₁	C 2 2 2 ₁
a,b,c, (Å)	65.91, 67.33, 121.64	62.69, 66.53, 120.52	61.99, 65.33, 118.98	62.03, 66.77, 120.50	63.17, 67.11, 121.12
Resolution range (Å)	47.10-1.45 (1.48-1.45)*	60.26-2.00 (2.05-2.0)	21.03-2.50 (2.60-2.50)	60.25 - 1.75 (1.78 - 1.75)	46.00 - 1.90 (1.94 - 1.90)
Unique reflections	47986 (2219)	17115 (1207)	8648 (946)	25252 (1143)	19947 (1268)
Completeness (%)	99.7 (94.8)	98.0 (95.5)	99.8 (99.9)	98.5 (84.8)	97.3 (97.2)
Average redundancy	6.3 (4.6)	10.6 (10.3)	8.2 (8.8)	11.5 (4.8)	4.5 (4.5)
I/sigma	20.7 (1.3)	15.0 (2.0)	8.6 (1.9)	20.8 (1.8)	8.6 (1.4)
CC _{1/2} (%)	100.0 (49.7)	83.4 (65.7)	99.4 (84.2)	97.9 (60.9)	96.7 (74.3)
R _{free} (%)	1.7 (56.9)	4.3 (37.1)	6.0 (32.2)	2.7 (41.8)	9.2 (79.9)
Refinement					
Reflections in refinement	47946	16731	8609	25215	19937
R _{work} (%)	14.3	23.5	19.8	18.1	20.6
R _{free} (%)	19.3	28.4	25.4	23.2	25.1
RMS bonds (Å)	0.02	0.01	0.01	0.02	0.02

RMS angles (Å)	2.20	1.63	1.63	2.09	2.16
Ramachandran plot					
Ramachandran favored (%)	98.7	98.3	96.5	97.4	97.8
Ramachandran allowed (%)	1.3	1.3	3.5	1.8	2.2
Number of atoms					
Protein	1945	1893	1788	1839	1837
Ligands	6	20	-	-	-
Solvent	215	136	47	179	132
Average B-factors (Å ²)					
Protein	29.08	41.60	40.90	25.47	37.22
Ligands	42.33	32.90	-	-	-
Solvent	41.55	42.10	35.40	31.36	39.51
MolProbity	1.45	1.69	1.80	1.39	1.44
PDB ID	7ZTQ	7ZVR	7ZVQ	7ZTR	7ZTU

949

*Statistics for the highest-resolution shell is shown in parentheses.

950 **Table S2.** The optimized crystallization conditions for BmCBP (WT apo), BmCBP with ZEA
951 (WT ZEA) and mutant apoproteins: W232F, S206V and D162L.
952

	WT apo	WT ZEA	W232F	S206V	D162L
Crystallization condition	5% v/v Tacsimate, pH 7.0, 0.1 M HEPES, pH 7.0, 10% w/v Polyethylene glycol monomethyl ether 5000	0.7 M Sodium citrate tribasic dihydrate, 0.1 M BIS- TRIS propane, pH 7.0	0.5 M Sodium citrate tribasic dihydrate, 0.1 M BIS- TRIS propane, pH 7.0	0.5 M Sodium citrate tribasic dihydrate, 0.1 M BIS- TRIS propane, pH 7.0	0.7 M Sodium citrate tribasic dihydrate, 0.1 M BIS- TRIS propane, pH 7.0
Cryoprotectant	20% glycerol	1.4 M sodium citrate tribasic dihydrate	1.4 M sodium citrate tribasic dihydrate	1.4 M sodium citrate tribasic dihydrate	20% glycerol

953

954

955 **Table S3.** SAXS-derived structural parameters of His-tagged BmCBP(ZEA).

956

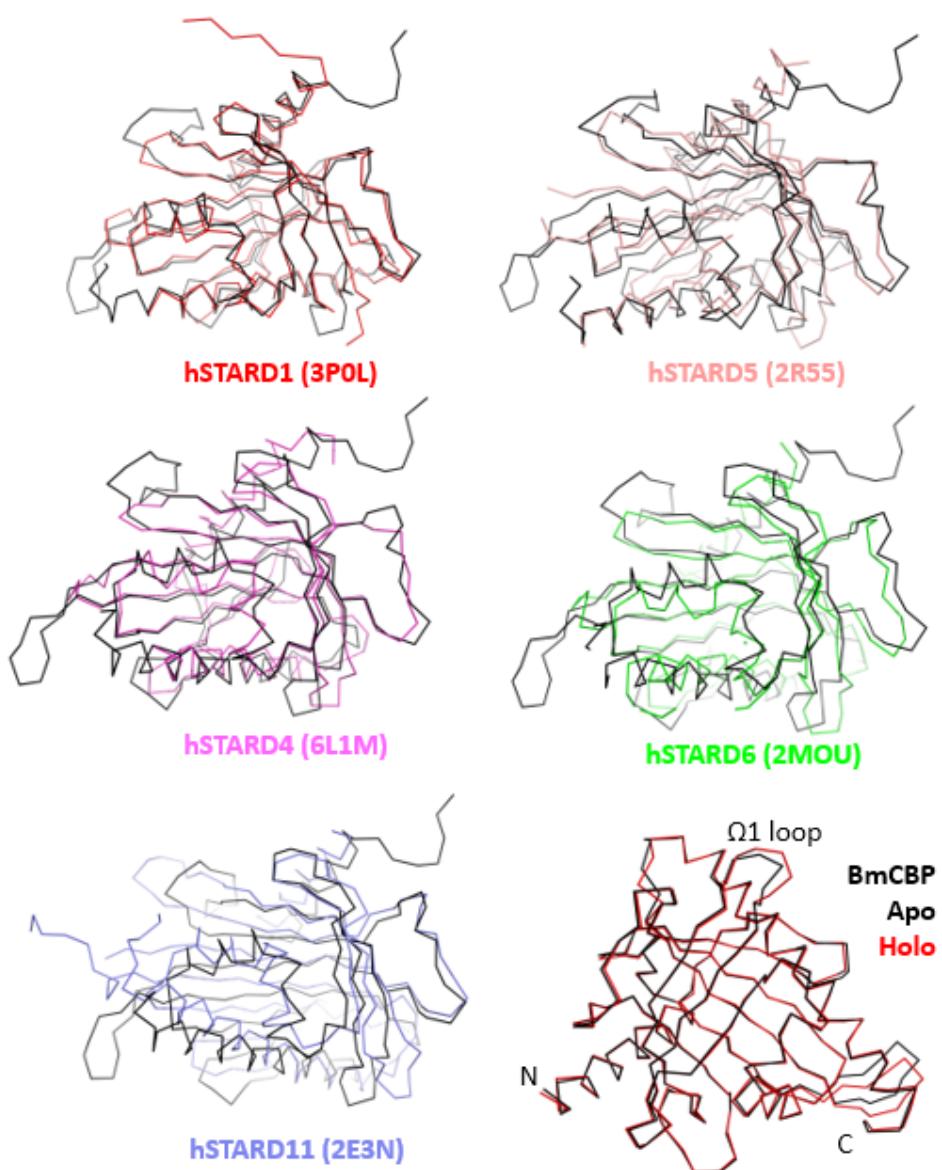
Parameter	Value
Mw calculated from sequence	28.5 kDa
Number of residues	253
Protein concentration	13.1 mg/ml 60 μ l loaded on a Superdex 200 Increase 3.2/300 column
R_g (Guinier)	2.12 ± 0.01 nm*
sR_g limits	0.59-1.30
R_g (reverse)	2.19 ± 0.03 nm
D_{max}	8.5 nm
Porod volume	51,057 nm ³
M_w Porod	31.9 kDa
M_w MoW	31.2 kDa
M_w Vc	27.6 kDa
Kratky plot	bell-shaped (folded)

957 *All SAXS-derived parameters were calculated using the ATSAS 2.8 software package³⁸.

958

959

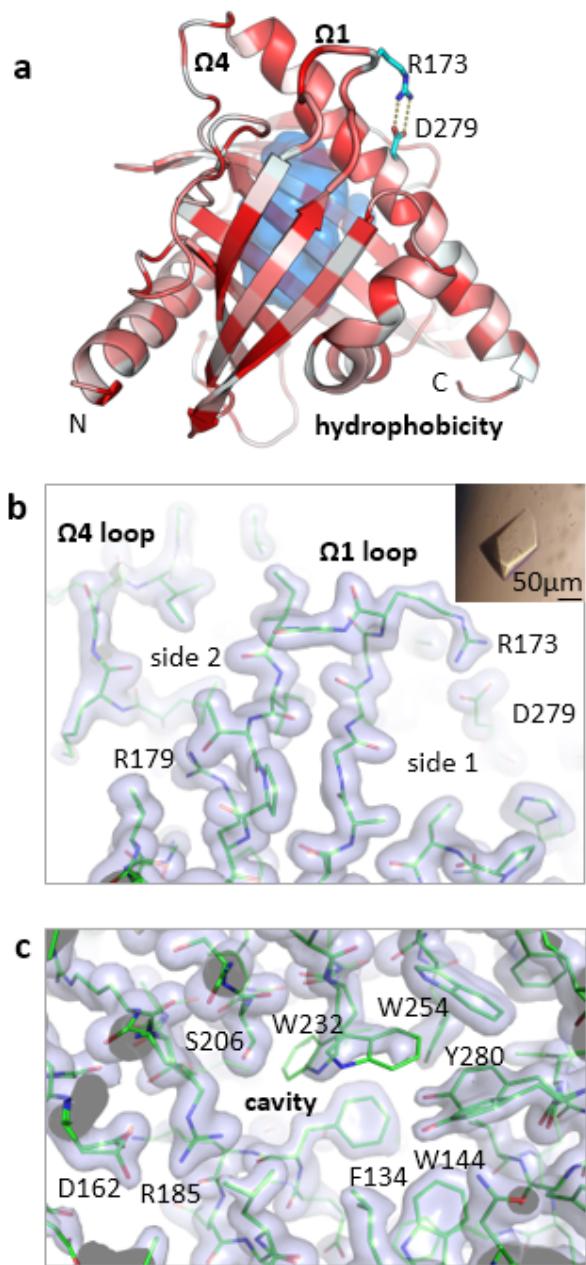
960 **Table S4.** Primers used in this study.

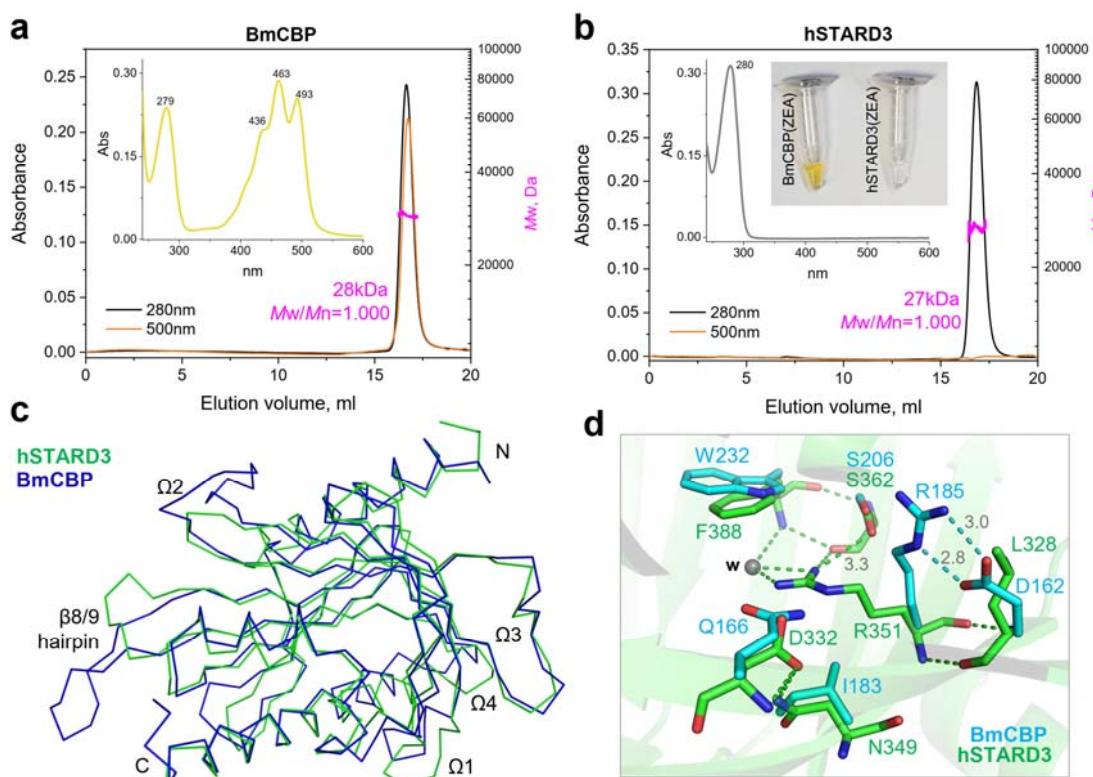

Primer	Sequence
STARD3_Ndel_forw	ATATACATATGGGTTCCGATAACGAAAG
STARD3_Xhol_rev	ATAATCTCGAGTTAACGTGCACCCAG
CBP_W232F_forw	AGTCGGGTGTTTTACCTTCAGC
CBP_D162L_forw	GAGATGGTGTACTGCTGAGTTACCAAGG
CBP_Q166D_forw	GATCTGAGTTACGATGTTACAGCAGGC
CBP_I183N_forw	GACTTGTCAACCTGCGTCGCA
CBP_S206V_forw	CACGGATAACATCGTGTCTGGGGTTTC

961

962 **Supplementary figures**

963

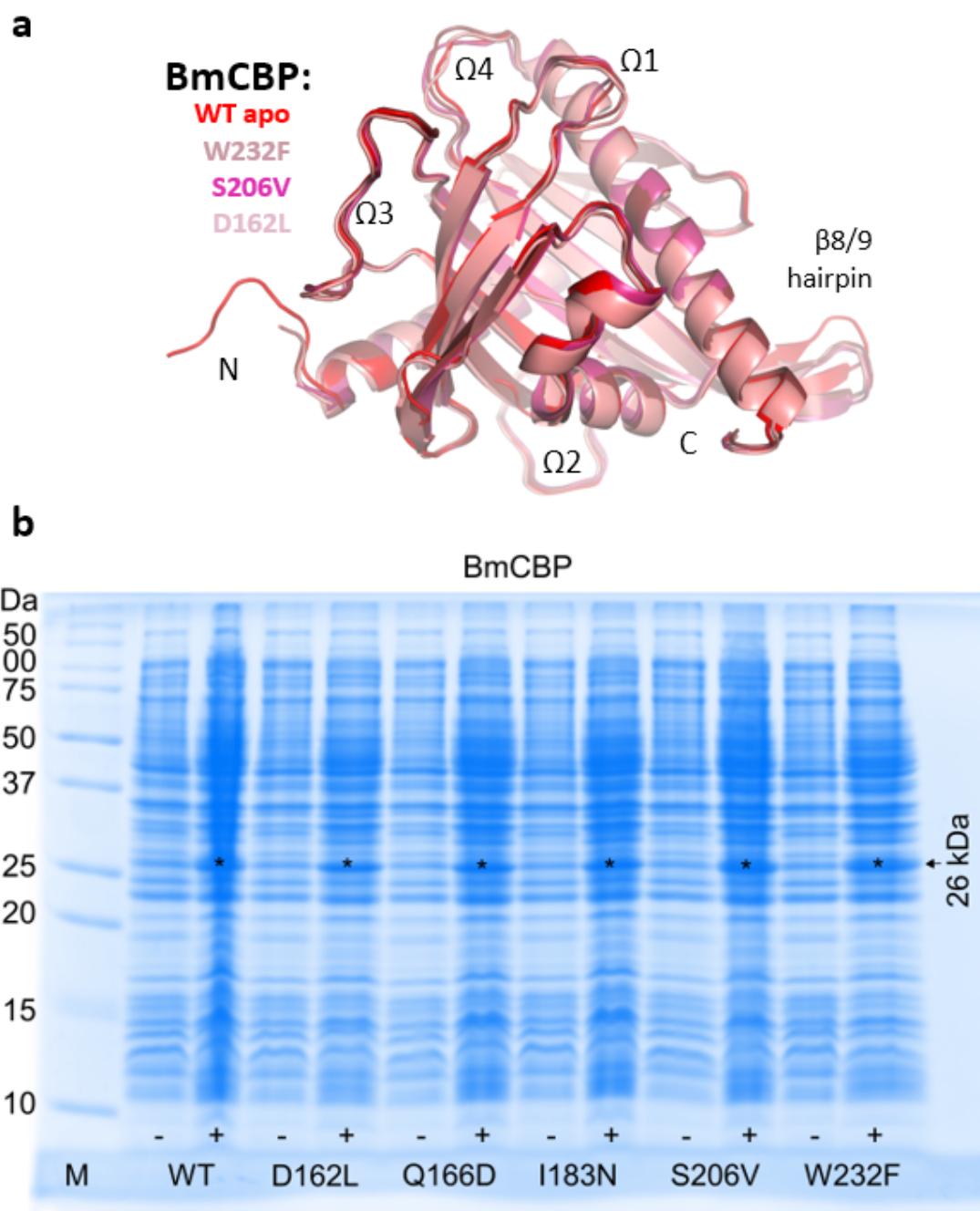

964


965

966

967 **Fig. S1. BmCBP has a START-like fold.** Superposition of various human START protein
968 domains with that of BmCBP shown as ribbon diagrams. Human STARD1, STARD4,
969 STARD5, STARD6 and STARD11 are shown by different colors as indicated, along with
970 their corresponding PDB IDs. BmCBP is shown in black ribbon for clarity. Bottom right
971 corner, superimposition of the apo and ZEA-bound BmCBP structures solved in this work.
972

985


986

987

988 **Fig. S3. Unlike BmCBP, hSTARD3 does not bind ZEA.** a, b. Analysis of BmCBP (a) or
 989 hSTARD3 (b) ability to mature into holoforms upon expression in ZEA-synthesizing *E.coli*
 990 cells. The His-tagged proteins were purified by IMAC and then analyzed by
 991 spectrochromatography (Superdex 200 Increase 10/300, 0.8 ml/min) coupled to MALS. The
 992 inserts show absorbance spectra corresponding to the peaks on the elution profiles and the
 993 color of the samples obtained. Note the successful formation of the holoform in the case of
 994 BmCBP only. M_w distributions across the chromatography peaks are shown along with the
 995 average M_w values and polydispersity indices (M_w/M_n). c. Overlaid backbones of BmCBP
 996 (apo) and hSTARD3 (apo; PDB 5I9J) shown as ribbon diagrams. d. Superposition of the
 997 tentative carotenoid-binding sites of BmCBP and hSTARD3 showing key differences.
 998 Relevant distances are indicated in Å.
 999

1000 Having the markedly different carotenoid-binding capacity, BmCBP and hSTARD3 differ by
 1001 the length and/or conformation of their Ω 1, Ω 2 and Ω 4-loops, and the β 8/9 hairpin. However,
 1002 the inability of hSTARD3 to yield holoforms was likely due to differences in the carotenoid-
 1003 binding site. Both proteins have in place the serine (206/362) and arginine (185/351)
 1004 residues that face the carotenoid ring in the BmCBP(ZEA) structure, whereas their other
 1005 proximal residues are different (and also vary among the homologs, see main text): Trp232
 1006 in BmCBP is replaced by Phe388 in hSTARD3, Asp162 is replaced by Leu328, Gln166 is
 1007 replaced by Asp332, and Ile183 is replaced by Asn349. In addition, we noticed that the
 1008 conserved arginine (185/351) adopts different conformations in BmCBP and in hSTARD3. In
 1009 BmCBP, Arg185 forms the salt bridge with Asp162, whereas in hSTARD3 the
 1010 Asp162/Leu328 substitution releases the Arg351's fall into the ligand-binding cavity, which is
 1011 favored by H-bonding interactions with Ser362.

1012

1013

1014

1015 **Fig. S4. BmCBP point mutants.** a, Superimposition of crystal structures of BmCBP
1016 apoproteins: WT, W232F, S206V and D162L, with the main structural elements labeled. b,
1017 SDS-PAGE analysis of expression of BmCBP WT and its mutants in ZEA-producing *E.coli*
1018 cells.

1019

1020

1021

1022

1023

1024

1025

Fig. S5. ZEA transfer from BmCBP to liposomes analyzed by spectrochromatography.

1026 a, Spectrochromatograms of BmCBP(ZEA), liposomes, or their mixture. Main absorbance
1027 maxima are indicated in nm. The samples were analyzed after completion of the ZEA
1028 transfer process. b, BmCBP retains the ability to load and transfer ZEA to liposomes even
1029 when fused to a bigger maltose-binding protein (MBP). A spectrochromatogram showing the
1030 result of the transfer (b, raw data) and ZEA redistribution between the liposome and protein
1031 fractions (c). 1 and 2 fractions are named in the legend.

1032

1033