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Abstract

Several bat species act as asymptomatic reservoirs for many viruses that are instead highly
pathogenic in other mammals. Here, we have characterized the functional diversification of
the Protein kinase R (PKR), a major antiviral innate defense system. Our data indicate that
PKR has evolved under positive selection and has undergone repeated genomic duplications
in bats, in contrast to all studied mammals that possess a single copy of the gene. Functional
testing of the relationship between PKR and poxvirus antagonists revealed how an
evolutionary conflict with ancient pathogenic poxviruses has shaped a specific bat host-virus
interface. More importantly, we determined that duplicated PKRs of the Myotis species have

undergone functional diversification allowing them to collectively escape from and enhance
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control of DNA and RNA viruses. These findings suggest that viral-driven adaptations in

PKR contribute to modern virus-bat interactions and may account for bat specific immunity.
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Introduction

The present architecture of host innate immunity is the result of long-standing conflicts of
ancient pathogenic viruses that continually adapted, and counter-adapted, to defeat or evade
the antiviral defense of their host. Hallmarks of these virus-host conflicts are the
disproportionate accumulation of non-synonymous mutations and genetic novelties over
evolutionary times at the interface of host antiviral effectors and viruses. While being the
result of past viral pressure, these adaptations may explain why hosts are susceptible — or
resistant — to modern-day viruses, and may also enlighten the functional diversity of host
antiviral defenses!?. Therefore, comparative functional genomics of hosts and viruses are of
utmost importance to better understand what drives the specificity of virus-host interactions,

particularly in wild host reservoirs of zoonotic viral pathogens®.

As the second most diverse and geographically widespread mammalian order, bats are
outstanding among mammals because of their unique capability of powered flight and their
propensity to a significant viral richness*®. Several bat species are natural reservoirs for
viruses that are highly virulent in other mammals, such as Marburg virus, Nipah virus, and
SARS coronaviruses, without themselves showing symptoms®. These differences between
bats and other mammals, in particular humans and non-human primates, have recently
gathered considerable efforts to characterize the antiviral mechanisms of these flying
mammals®. Bats may have evolved unique adaptations in their inflammasome components
and signaling factors (e.g. PYHIN’, STINGS, IRF3°, RIPK1%°) that mitigate flight’s
detrimental effects and dampen excessive inflammation, thereby presumably increasing viral
tolerance. Furthermore, with more than 1,200 species and approximately 60 million years of
divergence!!, bats have co-evolved with a large diversity of viral pathogens. As a result,
specific adaptive changes may also enable bats to efficiently control viral infections?. For
example, a handful of bat antiviral factors bear signatures of strong positive selection and
gene duplications*>®3, including key restriction factors, such as APOBECs!2* MX family
GTPases®, IFITM3 and TRIM5/22Y. Nevertheless, efforts to broadly and comprehensively

characterize the functional diversification of bat restriction factors, compared to other
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mammals, remain very limited. In particular, conclusions from most functional studies on bat
immunity are primarily drawn from a specific bat species and a virus system. In-depth
comparative and functional studies of bat antiviral effectors based on representative species
are thus needed to decipher the diversity and specificities of chiropteran antiviral immune

mechanisms.

Among the innate antiviral mechanisms, activation of the protein kinase R (PKR) constitutes
one of the first line of mammalian antiviral defense. PKR is a keystone immune sensor and a
broad restriction factor of a multitude of DNA and RNA viral families, such as Poxviridae,
Herpesviridae and Orthomyxoviridae. Upon sensing of viral double-stranded RNA (dsRNA),
PKR phosphorylates the alpha subunit of eukaryotic initiation factor 2a (elF2a), leading to a
potent cap-dependent translational shut down and viral inhibition. The importance of PKR in
immunity is further highlighted by the fact that viruses have, in turn, developed various and
strong antagonism mechanisms to circumvent PKR function*®-?2, One remarkable example is
the mimicry of elF2a by the poxvirus antagonist protein K3, which directly interacts with
PKR to block elF2a phosphorylation®®. Over evolutionary times, PKR has continually been
under pathogen’s pressure, as exemplified by its rapid adaptive evolution in primates and

rabbits1%2425,

In bats, how PKR has genetically and functionally evolved and how its past diversification
contributes to modern bat immunity-virus interplays remain unknown. Here, we report deep
functional adaptive changes and exceptional gene duplications in bat PKR that broaden
escape mechanisms to viral antagonism, including from poxviruses, orthomyxoviruses, and
herpesviruses, and enhance viral control in Myotis bats. Using an evolutionary-guided
functional approach, we show that long-standing genetic conflicts with viral pathogens have
driven the rapid evolution and duplication of bat PKRs, and the resulting adaptive changes

account for modern host-virus antagonism specificity.

Results

PKR has been the target of strong diversifying selection and unusual gene duplication
events in bats

The scarcity of bat genome sequences limits the study of their immunity, their virus-host
interface and evolutionary history. To increase the robustness of our evolutionary analyses of
bat PKRs, we sequenced and cloned additional coding sequences from 15 new bat species

(see Materials and Methods). Overall, 33 bat orthologous sequences of PKR have been
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included in our positive selection analyses, spanning 62 million years of evolution 126, We
compared models that disallow positive selection (models M1 and M7) to those allowing for
positive selection (M2 and M8) using the PAML Codeml package?®’. We found that PKR has
evolved under strong and recurrent positive selection during bat evolution, leading to
significant adaptive signatures at both the gene and the codon levels (PAML codeml M1 vs
M2 and M7 vs M8 p-values = 4.4 x 10 and 7.7 x 107, respectively Table S1).

To determine whether this adaptive evolution is common to all mammals, we extended our
analysis to the four other major mammalian orders: Primata, Rodentia, Artiodactyla and
Carnivora. We showed that rapid and recurrent evolution of PKR is common, with significant
evidence of positive selection in all tested mammals (PAML codeml M1 vs M2 and M7 vs
M8 p-values < 4.2 x 10*and 2.5 x 107, respectively Table S1). However, comparative
analyses suggest more frequent signatures of adaptive changes in bat PKR, as well as marked
differences in the location of the evolutionary footprints comparing to other orders. While
most of the rapidly evolving sites are concentrated in the kinase domain of primate,
artiodactyl and rodent PKRs (Figure 1A), the fast-evolving codons are scattered across bat
PKR, with three remarkable hotspots in the second dsSRNA binding-domain, the linker region,
and the kinase domain (Figure 1A). Because bat lineages may have evolved under different
selective pressures, we used a branch specific model (aBSREL) to test for episodic positive
selection in PKR during bat evolution. We found that several bat lineages have been the
targets of intensive episodic positive selection, in particular in the Yangochiroptera infra-
order (Figure 1B), indicating differential pressure during bat evolution. Extending the branch
analysis to other mammals showed that bat PKRs were among the most important targets of

episodic positive selection across mammals (Figure S1).

Other forms of genetic changes may be adaptive during evolutionary virus-host arms-
races?®%°, Notably, gene duplication and recombination are among the most important
mechanisms underlying the diversification of the mammalian antiviral repertoire. We thus
investigated how the gene encoding bat PKR, EIF2AK2, has evolved at the genomic level.
Analyzing the publicly available genomes, we found distinct PKR-like sequences in the
Myotis bats that suggested gene duplication of EIF24K2 specifically in this chiropteran
lineage. However, because most of the publicly available PKR sequences from Myotis species
are of low quality (i.e. highly fragmented, low coverage), and the PKR locus in the M. myotis
genome’? is incomplete, we sampled seven new Myotis species (M. bechsteinii, M.

emarginatus, M. nigricans, M. riparius, M. myotis, M. mystacinus and M. velifer; see
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Methods for details), and sequenced their complete PKR mRNA transcripts, as well as two
genomic DNA fragments of the EIF24AK2 locus. This allows identification of potential
differences in intronic regions between the putative PKR duplicates, which would be evidence
of authentic genomic duplication and not splicing variants. Combining our results from
MRNA and gDNA data, we found that EIF24AK2 has experienced repeated duplication events
in a species-specific manner, leading to gene copy number variation (CNV) across Myotis
species (Figure 1C, S2). In particular, we detected evidences of PKR duplicates in four Myotis
species (M. nigricans, M. riparius, M. myotis, M. velifer), including a pseudogenized
retrocopy of PKR that is specifically present in the New World clade of Myotis (Figure 1C,
Figure S2-S6). M. myotis encodes two paralogous copies with intact open reading frames
(referred to as PKR1 and PKR2), and one transcript variant (PKR1L) that may be a paralog or
a splicing variant of PKR1 (Figure S3, S4, Figure 1C). In M. velifer, we isolated three distinct
PKR sequences, two of which are paralogs (PKR1 and PKR2), while the third one is an
isoform of PKR2 (Figure S3, S5). The same pattern was found in M. riparius, although the
complete coding sequence of PKR was solely obtained for one copy, while the others were
partial sequences. The other Myotis species (M. bechsteinii, M. emarginatus, M. mystacinus)
had a single copy of PKR, although technical limits could have impaired the detection of PKR
duplicates. The phylogenetic reconstruction of all PKR copies indicated that PKR has
expanded before the diversification of the Myotis genus, 30 MY A ago, which was presumably
followed by independent lineage-specific duplications (Figure 1C, D).

To characterize the genomic localization of EIF2AK2 duplicates, we analyzed the genomic
locus of EIF24K2 in M. velifer from an ongoing genomic sequencing project of the species
(ongoing sequencing project by M. E. Lauterbur and D. Enard). We mapped two EIF2AK2
copies in tandem in the M. velifer draft genome. However, while one copy had an integral
structure spanning from the 5’UTR to the 3’UTR, the second gene lacked the 5’UTR and the
first four exons, probably resulting from technical issues at the assembly step (Figure 1E,
Figure S5). In addition, mRNA expression from RNAseq analyses of PKRs in M. velifer cells
further showed that the two PKR copies are expressed in basal conditions and their expression

is stimulated upon type-1 IFNa treatment (Figure 1E).

Genetic arms-races have shaped a specific bat PKR — poxviral K3 interface
Such extensive molecular and genomic changes in bat PKR could be the result of pathogenic
virus-driven selective pressure. Specifically, because (i) we identified, in bat PKR, a hotspot

of positive selection at residues known to interface with poxvirus antagonist K3 in primate
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PKR®24 and (ii) poxviruses are currently circulating in bats*®33, we investigated the
specificity of bat PKR-poxvirus K3 interface in heterologous virus-host assays®*. On the virus
side, we used a panel of K3 antagonists isolated from (i) Eptesipox virus (EPTV)3, which
naturally infects the bat Eptesicus fuscus, (ii) the archetypal poxvirus vaccinia virus (VACV),
and (iii) the well-known human pathogen variola virus (VARV). On the host side, we tested
the bat PKR duplicated copies and seven orthologs from representative species of chiropteran
divergence. We first used a surrogate yeast system in which the ability of PKR to drive
translational shutoff in presence or absence of active antagonists can be directly assessed by
measuring yeast growth rates %2435, First, we found that the PKR paralogs and orthologs
were all able to shut down protein synthesis in yeast, indicating that bat PKRs, including the
duplicated PKR genes in Myotis, encode for functional proteins and retain their primary
protein synthesis shutdown function (Figure 2A, Figure S7). Second, while the PKR paralogs
had the same phenotype to K3 antagonism, the orthologous PKRs differed in their ability to
escape poxviral K3s in a host species-specific manner (Figure 2A). Finally, we identified
marked differences for PKR antagonism between the tested K3s, revealing virus-specific
determinants of poxvirus K3 antagonism (Figure 2A). To test whether this was also the case
in a mammalian cellular system, we used Hela PKR-KO cells in which we transiently co-
expressed PKR +/- K3, as well as a luciferase expression-plasmid as a reporter system for cell
translation. We obtained similar results (Figure 2C, D), thereby validating the reliability of
our yeast system. In this assay, all PKRs showed comparably strong repression of luciferase
expression, with the exception M. velifer PKR2, which showed somewhat weaker activity
(Figure 2C).

To investigate the genetic determinants underlying these phenotypic differences, we used an
evolutionary-guided approach on both the host and the virus sides. On the host side, because
D. rotundus and M. myotis PKRs displayed opposite phenotypes to EPTV and VARV K3
antagonism, we generated a series of chimeras and mutants between these orthologs, and
tested their capacity to escape EPTV and VARV K3 antagonism (Figure 2A, Figure S8). We
showed that residues 475/476, located in the Helix oG in D. rotundus, drive species-
specificity to variola K3 antagonism (Figure 2A). This determinant is similar to the previously
reported residue 496 in human PKR-VARYV K3 interface?*. However, we further identified a
yet undescribed within-protein epistatic3® interaction between the residues 475-476 and 332-
344 in the kinase insert of D. rotundus PKR (Figure 2A) that represent specific determinants

of susceptibility / resistance to EPTV K3. Swapping these sites significantly reduced K3-
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antagonist resistance of D. rotundus PKR, and conversely in M. myotis PKR, without
impeding their expression and their basal translation shutdown function (Figure 2A, B).
Importantly, these sites were among the fastest evolving codons in bat PKRs — with many
substitutions and indels within the 332-344 amino acid stretch (Figure 2C) — significantly
impacting the predicted 3D structure of bat PKR (Figure 2D). Therefore, accumulated
mutations at these sites are adaptive in the context of bat-virus interactions and drive the host
— poxvirus K3 specificity, supporting that ancient poxviruses that targeted these regions have

been key drivers of inter-species bat PKR adaptation.

On the virus side, the protein alignment of orthopoxvirus K3 sequences revealed a unique
structural C-terminal insertion in EPTV K3 (Figure 3E). To investigate whether this insertion
functionally contributes to bat PKR antagonism, we tested the ability of an EPTV K3 mutant,
which lacks the C-terminal insertion, to antagonize PKRs compared to the wild-type K3. We
found that the truncated K3 had a significantly reduced anti-PKR activity, in a host-specific
manner, without impacting K3 expression (Figure 3F). This shows that the C-terminal
insertion in EPTV K3 is essential for bat PKR antagonism and accounts for species-
specificity. Remarkably, combining these functional assays with a protein-protein docking
model, which was performed with the HDOCK software®’, we showed that the C-terminal
insertion may be involved in PKR antagonism through direct contact with the residues 475-
476 and 340, located in the Helix oG and the kinase insert, respectively (Figure 3G). In
accordance with the functional assays, the protein complex between EPTV K3 and bat PKRs
further depended on the bat PKR sequence and their 3D structure (Figure S9). Therefore, this
C-terminal insertion may reflect counter-adaptation of EPTV K3 to maintain PKR

antagonism.

The PKR paralogs functionally diverge in the ability to escape from poxvirus E3,
cytomegalovirus TRS1 and influenza A virus NS1 antagonists

Because the PKR copies did not show phenotypic differences to poxvirus K3 antagonism, we
tested whether they have evolved differences regarding their susceptibility to other poxvirus
antagonists or to antagonists from others viral families that naturally infect bats or humans. In
our experiments, we included (i) E3 antagonist from EPTV32 and VACV poxviruses, (ii) NS1
antagonist from human influenza A (IAV) H1N1 virus®, (iii) NS5A proteins from human
hepatitis C virus (HCV) and from bat hepaciviruses infecting Otomops martiensseni3® (Omar)
and Peropteryx macrotis3® (Pmac), and (iv) TRS1 from human cytomegalovirus*®. Using the

luciferase reporter assay, we showed that the Myotis bat PKR copies functionally differ in
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their ability to escape the viral antagonists NS1, TRS1 and E3 (Figure 4A-B, Figure S10).
Although the immunoblot analysis showed that PKR2 was more expressed than PKR1 in this
assay, this latter could efficiently escape from the viral antagonists. Importantly, in the case of
VACYV E3 antagonism, the strong intra-species differences between the PKR paralogs were of
the order of magnitude of the inter-species PKR orthologs (Figure S11). Overall, this shows
adaptive duplication of PKR in Myotis bats, which has broadened escape mechanisms to

antagonism from very diverse viral families.

To decipher the underlying determinants of these functional differences, we engineered three
chimeric PKR proteins, by swapping the dsSRNA-binding domain, the linker region, or the
kinase domain of the duplicated copies, and we tested their susceptibility to human influenza
A NS1 antagonism. We showed that the linker region of the PKR paralogs drives the
susceptibility or resistance to NS1, indicating that it is a key determinant for bat PKR
antagonism by NS1 (Figure 4C, D). Remarkably, most of the genetic intra-species differences
between the PKR copies are concentrated in the linker region (Figure 4E). Mapping the
positively selected sites (inferred from the inter-species analyses) on the PKR paralogs, we
found that several of these sites have undergone amino acid replacement in the PKR
duplicates (Figure 4E), including in the linker region. Combined with our functional assays,
these results indicate that (i) ancient viral pathogens from diverse RNA and DNA virus
families may have contributed to the duplication and fixation of Myotis PKR paralogs, and (ii)
the resulting evolutionary patterns in PKR paralogs account for distinct interactions with

modern viral proteins.

Bat PKR duplication leads to differential and potentially additive restriction of poxvirus
and rhabdovirus infections.

The fact that the PKR duplicated copies (i) inhibit cellular translation, (ii) are upregulated
upon IFN stimulation, and (iii) are antagonized by diverse viral proteins suggest that both are
potential antiviral restriction factors. To test this, we performed viral infection assays with a
representative DNA virus and a representative RNA virus.

First, we created T-REx-293 PKR-KO cell lines expressing PKR1 or PKR2 from M. myotis or
M. velifer, or E. fuscus PKR under doxycycline induction. For the infectivity assays with the
DNA virus, we used a vaccinia poxvirus VC-R4* lacking the viral K3 and E3 antagonists
(VACVAK3AE3) and expressing a virus-replication reporter EGFP. We found that the PKR
paralogs significantly differed in their capacity to restrict VC-R4 replication. Whereas M.
myotis and M. velifer PKR2 effectively inhibited VC-R4, as also seen for E. fuscus PKR, M.
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myotis and M. velifer PKR1 had only weak and no effect on the EGFP signals, respectively
(Figure 5A-B). This was the case despite comparable expression of the PKR paralogs (Figure
5C). We further titrated VC-R4 replication in representative cell lines. T-REx-293 cells
expressing E. fuscus PKR and M. velifer PKR2 were not included as they showed the same
level of EGFP suppression as M. myotis PKR2. The titration supported the differences in
EGFP signals in the microscopy images, with M. myotis PKR2 expression conferring a 1,000-
fold reduction in VC-R4 titer, whereas only 3.6- and 1.2-fold titer reductions were observed
for M. myotis PKR1 and M. velifer PKR1, respectively.

Second, to determine whether this pattern was virus dependent, we further tested the antiviral
function of the paralogs against an RNA virus, the vesicular stomatitis virus (VSV). We found
that M. myotis and M. velifer PKR1s and PKR2s could all restrict VSV-GFP infection,
although to varying extents (Figure 5D), indicating that Myotis bats have two VSV-restrictor
PKR copies.

Therefore, PKR duplication may have contributed to the functional diversification and the
potency of the Myotis antiviral repertoire, through distinct functional specialization of the

PKR copies.

Discussion

Combining in-depth phylogenetic and positive selection analyses with functional assays and
experimental infections, we show how past genetic conflicts with pathogenic viruses have
shaped chiropteran host antiviral immunity and susceptibility. In particular, we report
extensive signatures of functional adaptation in PKR during bat evolution, with substantial
molecular changes and genomic duplication, a novelty compared to other mammals. These
adaptive changes now lead to species-specific interactions with contemporary viral pathogens

and account for a specific, broad and potent antiviral response in bats.

In primate PKR, single substitutions at specific residues in the helix aG are key determinants
for vaccinia and variola K3 antagonism*®2, In contrast, the genetic basis and specificity of
bat PKR sensitivity to EPTV K3 relies on a within-protein epistatic interaction® between two
residues in the helix aG (475/476 in D. rotundus) and a stretch of amino acids in the kinase
insert (332-344 in D. rotundus) of PKR. Although the role of this insert in PKR binding
substrate was suggested in a previous study*?, its functional implication in bat PKR-K3
interaction indicates that it contributes to substrate discrimination in bats. Under virus-host

conflicts, the flexible and disordered feature of the kinase insert*® may have been a source of
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evolutionary plasticity allowing drastic changes in PKR while maintaining eIF2a binding. In
line with this, repeated deletions/insertions were found in the kinase insert of several bat
species without negative cost on basal protein shutdown function. Such hotspots of variability
in unstructured loops are also found in other antiviral proteins and are prime targets of viral

antagonism while being essential for antiviral activity*+°,

On the virus side, we showed that EPTV K3 evolved an adaptive Cter insertion that is
essential for species-specific antagonism of bat PKR. This K3 Cter insertion was probably
retained during EPTV evolution because of its increased PKR binding affinity through direct
interaction with the kinase insert and the helix aG. Furthermore, because it increases PKR
antagonism, the K3 insertion may not only drive the host range specificity, but may also
directly or indirectly contribute to EPTV virulence in bat host species. Comparing the EPTV
K3 sequence to all other available mammalian poxvirus K3s showed that this C-terminal
insertion was specific to EPTV. Its 86 amino acid length suggests that it could derive from
gene transfer, as frequently observed in poxviruses*®-48. However, we failed to uncover the
origin of this extension (i.e. no match in blat/blast searches), either from a parental host gene
or from recombination of a viral sequence. One possible explanation is that the C-terminal
sequence of EPTV K3 has substantially diverged from the parental one, such that their
percentage of sequence similarity is negligible or non-existent. Further studies will be
important to determine whether other bat poxviruses have evolved similar adaptive changes

and decipher the functional implication in poxvirus pathogenicity and epidemiology.

Apart from poxviruses, other viral pathogens have certainly contributed to the diversification
of PKR in bats. These mammals are highly diverse and have evolved with many viral
pathogens over million years. Therefore, the evolution of their PKR may reflect the selective
pressure of different ancient epidemics. Notably, the fastest evolving codons in bat PKR map
with specific PKR-virus interfaces in primates, such as influenza virus NS1, cytomegalovirus
TRS1, or hepacivirus NS5A 18449 \which homologs are encoded by bat-borne related viruses.
Here, we found that ancient influenza- and cytomegalovirus- like viruses may have also been
important drivers of PKR adaptation in bats, highlighting the diversity of viral selective
pressures that have contribute to bat PKR evolution. In addition, the genetic differences
between bat and other mammalian PKRs further suggest that specific bat-borne pathogens
may be key actors and/or that related mammalian viruses may have evolved to antagonized

different regions in bats.

10
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Beyond substitutions or indels, we also found that gene duplication has diversified the bat
antiviral repertoire in a lineage-specific manner. While all other studied mammals possess one
single gene encoding PKR, several bat species from the Myotis genus express at least two
functional, genetically divergent copies of PKR. Expansions of genes encoding antiviral
proteins were previously discovered in bat species, including the APOBEC3, TRIM 22/5 and
IFITM3 gene families, as well as the chimeric protein HERC5/6, or BST21416:17:45,50,
Importantly, however, these duplications involve known multigene immune families, which
are prone to gene expansion in many mammals, in contrast to the EIF24K2 (PKR) locus that
is highly conserved in other mammals. Given the pleiotropic and central role of PKR in innate
immunity, the duplication of PKR in Myotis bats reveals that major selective pressures have
shaped bat evolution, leading to specific functional diversification in bat innate defense.

Prior to this study, independent PKR duplications were solely reported in amphibians and
fishes®3, In the latter, a PKR-like protein, containing a Z-DNA binding domain, was
described as a cooperator of fish PKR antiviral activity®>*>°, In Myotis bats, the paralogs
retained the typical structure of the mammalian PKR protein, with two dsRNA-binding
domains linked to a kinase domain, but they genetically differ through multiple amino acid
changes and indels. Because the evolutionary fate of gene duplication depends on the benefits
and costs associated with the duplicated copies®®®’, the fixation of PKR paralogs in Myotis
genome suggests that they provide a functional selective advantage. Using two divergent
RNA and DNA virus models (VSV and VACYV, respectively) and various viral antagonists of
PKR, we demonstrated that the PKR copies that could inhibit protein expression in a
mammalian reporter assay, differed in their capacity to restrict virus replication and escape
viral antagonism. Therefore, the PKR paralogs have retained the basal function of the parental
copy (i.e. translation shutdown), but have evolved specific roles in the host antiviral response,
as reported in other cases of gene duplication (e.g.5%%°). One plausible explanation for this
differential antiviral activity is that restriction potency depends on the virus. Alternatively, the
PKR paralogs may have evolved to fill another functional niche. PKR is positioned upstream
of several important factors, such as the immune transcriptional regulator IRF-1%°, or the
inflammatory transcription factors NF-kB®.:62 and STAT152. Losing one or some of these
features could lower the overall antiviral response of one of the PKR paralogs. Finally,
because PKR undergoes dimerization upon activation — which is essential for eIF2a.
phosphorylation®, it is possible that PKR1 and PKR2 heterodimerize to confer a new

function. Although we only tested the PKR paralogs independently, this remains possible as
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we show that Myotis fibroblasts express the two genes. Thus, one could postulate a
synergistic functional interaction between the paralogs upon viral infection, that could

modulate their function.

Overall, this study brings important clues on the functional diversification of bat antiviral
repertoire. It was suggested that immune tolerance rather than increased viral control plays a
key role in bat immunity!265-%8_ Here, the adaptive changes in bat PKRs increase the antiviral
function and the viral evasion of PKR, which supports an adaptive enhancement for viral
control in some species. This is in line with several studies reporting accelerated rate of
evolution in bat restriction factors, indicating increased defense against virus
infection'®175969 Since each species has its own history of viral exposure, specific viral
communities have certainly led to lineage-specific selection in bat’s antiviral immunity,
highlighting the need to include multiple related species in comparative functional studies.
Therefore, while dampening inflammatory response might be common to bats, strong
episodic adaptations in antiviral factors, driven by ancient viral epidemics, may have shaped

lineage-specific innate immune defenses in bats.

Material and Methods

Bat samples

Sampling was performed in France (Miniopterus schreibersii, Myotis emarginatus, Myotis
myotis, Myotis and Rhinolophus ferrumequinum), French Guiana (Desmodus rotundus, Myotis
bechsteinii, Myotis riparius, Myotis nigricans, Peropteryx macrotis, Pteronotus rubiginosus,
Tonatia saurophila, Natalus tumidirostris, Sturnira hondurensis, Molossus molossus, Noctilio
albiventris and Furipterus horrens) and Gabon (Hipposideros cf. ruber, Rousettus
aegyptiacus). Authorizations were obtained from the Ministry of Ecology, Environment, and
Sustainable development over the period 2015-2020 (approval no. C692660703 from the
Departmental Direction of Population Protection (DDPP, Rhone, France). Our methods for
animal capture and management were approved by the MNHN, the SFEPM and the DEAL-
Guyane. African bat samples were approved by the Gabonese National Ethics Committee
(Authorization N°PROT/0020/20131/SG/CNE). Bat individuals were captured using harp
traps at the entrance of caves or mist-nests hoisted on the forest floor and in the tree canopy.
The individuals were then released after sampling. All samples, including wing membrane

and blood pellet, were conserved at -80°C until RNA extraction.
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In addition to the wild field samples, immortalized fibroblast cells from wing tissue of
Eptesicus fuscus and embryonic fibroblast cell lines from Myotis velifer were generously
provided by the Feschotte Lab (Cornell University)’°. Cells were cultured in high glucose

DMEM supplemented with 20% fetal bovine serum, 1% pen/strep and 1% sodium pyruvate.

De novo sequencing of PKR (EIF24K2) gene

Total genomic RNA was extracted from bat punches, fibroblast cells and blood samples using
Macherey-Nagel Nucleospin RNA and RNA blood Kits, respectively, following the
manufacturer’s protocol. Total RNA was reverse transcribed into complementary DNA
(cDNA) with random primers and oligo(dT), using the SuperScript 1l One-Step RT-PCR
reverse transcription kit (Thermo Fisher Scientific, Poland). Species identification was first
confirmed through PCR amplification and sequencing of Cytochrome B gene (Cytb), using
the primers CytB-F and CytB-L/R" and the PCR protocol in Table S2. PKR mRNA was then
amplified from each species using 30ng of cDNA and different sets of primers (Table S3) that
were specifically designed using an alignment of publicly available PKR sequences. The PCR
mix and conditions are presented in Table S2. PCR products with multiple bands were
excised and purified from gel using the Nucleospin Gel and PCR Clean-up kit from
Macherey-Nagel, or cloned using the NEB® PCR cloning kit (New Englands BioLabs) to
obtain haplotype resolution. Sanger sequencing of PKR was performed by a commercial
company (Genewiz, Azenta Life Sciences, Germany).

Collection of PKR orthologous sequences

To complete our dataset, orthologous coding sequences of bat PKR were retrieved from
Genbank by BLASTNn searches of the “Nucleotide”, “Refseq Genome”, “Transcriptome
Shotgun Assembly” and “Whole-Genome Shotgun Contigs” databases, using the Little
Brown bat (Myotis lucifugus) Refseq coding sequence as query. In the case of unassembled
bat genomes, PKR coding sequence was predicted from the genome contigs using Augustus’?
and GeneWise” with the Little Brown bat Refseq protein as reference. In total, 19 bat PKR
sequences were retrieved from public databases.

PKR coding sequences from primates (n=29), rodents (n=25), artiodactyls (n=23) and
carnivores (n=19) were obtained by tBLASTn searches of the “Nucleotide” database from
Genbank using human (Homo sapiens), mouse (Mus musculus), cow (Bos taurus) and dog

(Canis lupus familiaris) PKR protein sequence as queries, respectively.

Phylogenetic and positive selection analysis of PKR orthologous sequences
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PKR orthologous codon sequences were aligned for each mammalian group separately using
the program PRANK'#, and the alignments were manually curated. We then built a
phylogenetic tree, using the maximum likelihood method implemented in PhyML program™.
Selection of the best substitution model was performed with the Smart Model Selection
(SMS)® program in PhyML and was always: GTR+G+l. Node statistical support was
computed through 1,000 bootstrap replicates. The detection of recombination events was
assessed with GARD'’.

For positive selection analyses, models that disallow positive selection (models M1 and M7)
were compared to those allowing for positive selection (M2 and M8) using the PAML
Codeml package?’, with the following parameters: codon frequencies F61 and F3x4 and
starting omega o (dN/dS ratio) of 0.4. Comparison of each pair of models (M1 vs M2, and
M7 vs M8) was then achieved with likelihood ratio tests. Bayes Empirical Bayes (BEB) of the
dN/dS >1 class in M2 or M8 models was used to assess positive selection at the codon level,
with a posterior probability > 0.95 as significance threshold. The Fast-Unbiased Bayesian
Approximation (FUBAR)’® and the Mixed Effects Model of Evolution (MEME)?®, both
implemented in the HYPHY package, were also run to identify codons under significant
positive selection. To ensure higher specificity, we considered that codons were under
significant positive selection if they were identified by at least two methods. Moreover, to test
if the PKR domains (i.e. the dsRBD, the linker region and the Kinase Domain) have similarly
been targets of positive selection, each domain was separately analyzed using the models M1,
M2, M7 and M8 from the PAML package.

Finally, we determined if and how PKR experienced episodic selection during bat and
mammalian evolution, using the branch-specific analysis aBSREL8%8! implemented in the
HYPHY package. This program allows testing the significance of positive selection and
quantifying the dN/dS ratio for each branch independently. Sequences from perissodactyls
(n=3) and proboscidean (n=1) were also analysed. Tree visualization and annotation were

performed with iTOL webserver (https://itol.embl.de/).

Genomic and (phylo)genetic characterization of PKR paralogs in Myotis

Molecular identification of EIF2AK2 duplication was carried out in tissues from Myotis
species, including M. myotis, M. velifer, M. riparius, M. nigricans, M. mystacinus, M.
emarginatus, and M. bechsteinii. Total RNA and Genomic DNA were extracted using the
Macherey-Nagel Nucleospin RNA tissue and gDNA Kits, respectively, following the

manufacturer’s instructions. Two complementary strategies were then used. First, PKR
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coding sequence was amplified from cDNA using the PKR “universal” primers designed in
this study (Table S3). Second, from gDNA, we PCR amplified the genomic regions
containing exons 1 to 3 (E1-E3), and exons 4 to 6 (E4-E6), of EIF2AK2 to identify potential
differences in intronic regions between the putative PKR duplicates. Following PCR
amplification, all PCR products from cDNA and gDNA were cloned into the pMiniT 2.0
Vector using the NEB cloning kit (New Englands BioLabs) and sequenced to ensure
sequencing of a single DNA molecule.

Phylogenetic reconstruction of the PKR paralogs followed the previously-described
phylogenetic analysis method.

We combined different methods to map and predict the EIF2AK2 locus in the M. velifer
genome. First, we performed a BLASTN search (cut off 10%) with PKR cDNA sequences
from related Myotis species to identify the canonical locus and localization of EIF2AK2 gene
copies. Second, we aligned sequences of proteins and RNA transcripts of PKR from related
bat species on the M. velifer genome using the Fast Statistical Alignment (FSA) software®,
Third, we integrated RNA sequencing (RNAseq) data (see methods below), by mapping the
RNA-seq reads using HISAT2 (v.2.0.0)® . Finally, we de novo predicted the gene structure of
each PKR copy using Augustus’? in single-genome mode with the human gene model. The

final figure was generated with the R library, Gviz.

Interferon (IFN) cell treatment and transcriptomic analyses

M. velifer cells were seeded in 6-well plates. Forty-eight hours later, they were treated or not
with 1,000U/ml of type-I universal IFN (pbl Assay Science). Six hours post-treatment, cells
were collected and total RNA was extracted using Macherey-Nagel Nucleospin RNA. Six
sample replicates (three without interferon treatment and three with) were then sent for library
preparation and sequencing with Illumina NextSeg500, 150-paired-end, to the IGFL (Institut
de génomique fonctionnelle de Lyon) sequencing platform.

We processed the RNA-seq data with the non-annotated draft M. velifer genome. The quality
of the raw data was checked with FastQC and a Q20 threshold, and adapters were removed
using Cutadapt 4.0%*. The quality-controlled reads were then aligned to the M. velifer genome
using HISAT2%. As a complement, we de novo predicted the gene from M. velifer genome
using Augustus, with the human model as reference. We counted the number of reads that
mapped to each gene (predicted by Augustus), in both basal and IFN conditions, with
FeatureCounts (from the R package, RsubRead), and performed a differential analysis using

DESeq2%. From this analysis, we obtained a list of genes with a significantly different
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number of reads between the two conditions. Because the genomic analysis of M. velifer
showed a possible sharing of 5’ exons between the paralogs, we retained the number of reads
from exons that were duplicated and specific to each paralog to assess the expression pattern
of the PKR copies. The final figure representing the number of reads per paralog per

condition was drawn via the R package, ggplot.

Protein structure prediction and docking models

The 3D protein structures of D. rotundus and M. myotis PKR kinase domain, as well as the
eptesipox virus K3 protein, were predicted using the Iterative-Threading ASSEmbly
Refinement (I-TASSER) server®-8, The best model was carefully chosen based on the C-
Score which assesses the quality of the models. The inferred protein structure of PKR was
visualized and designed with Swiss PDB viewer software®®.

Computational docking of bat PKR and eptesipox virus K3 was performed to predict the
complex structure between both proteins, using HDOCK webserver®’. This software uses a
fast Fourier transform (FFT)-based search strategy to model different potential binding means
between the proteins, then each binding mode is evaluated using the scoring function
ITScorePP. The 3D structure models of M. myotis, D. rotundus and M. molossus PKR kinase
domains, as well as eptesipox virus K3, were obtained with I-TASSER. We kept the default
parameters for computation, including a grid spacing set to 1.2 A and the angle interval set to
150A. We retained the first top three models and combined the docking results with our

functional assays for final model selection.

Plasmids

Expression in yeast cells. Bat eptesipox virus®? (Washington strain) K3L and E3L sequences

were synthetized (Genewiz) with an integrated C-terminal HA-epitope tag, and cloned into
the yeast LEUZ integrating plasmid pSB305 which contains a galactose promoter, using the
Xhol and Notl restriction sites. Bat PKR cDNAs from divergent chiropteran families (P.
alecto, R. sinicus, D. rotundus, N. tumidirostris, M. molossus, N. albiventris, M. myotis, E.
fuscus) were cloned into the yeast pGAL expression plasmid, pSB819 (URA), using the Xhol
and Notl restriction sites. The human and gibbon PKR expression vectors were previously
described?®. D. rotundus x M. myotis PKR chimeras were synthetized and sub-cloned into
pSB819. PKR site-specific mutants and epteK3A227-508 were generated by PCR
mutagenesis using the QuickChange Lightning mutagenesis kit (Agilent) and primers holding

the desired mutations/deletions, following the manufacturer’s protocol. PKR mutants and
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chimeras were amino-terminal HA-tagged by PCR, using integrated HA-tag PKR primers
(Table S3).

Expression in human cells. Bat PKR orthologs and paralogs were sub-cloned from pSB819

into the expression vector pSG5, by means of Kpnl and Xhol sites introduced into PKR
primers. Cloning of human PKR was previously described™®. Full length NS5A proteins from
human Hepatitis C Virus (JFH1), bat hepacivirus from O. martiensseni (NC_031947.1°°%) and
bat hepacivirus L from P. macrotis (NC_031916.1°) were synthetized and cloned into the
expression plasmid pPCDNAS3.1+ N-Terminal HA-tag using Bamhl and Notl restriction sites.
The eptesipox virus E3 and vaccinia E3 genes were cloned into the expression vector pSG5.
The human Influenza A virus A/England/195/2009(H1N1) NS1 expressing-plasmid
(PCAGGS V5-tag)®, as well as the human cytomegalovirus TRS1 plasmid (0CDNA3.1 HA-
tag)*°, were kindly provided by Wendy Barclay and Adam Geballe, respectively.

Yeast strains and growth assays

To determine whether bat PKR variants differed in their ability to escape poxviral
antagonism, we used a heterologous yeast growth assay®. This method relies on the
recognition and phosphorylation of yeast elF2a by PKR, which leads to yeast growth arrest.
However, co-expression with poxvirus K3 or E3 that are able to antagonize PKR leads to
growth rescue. Yeast growth assays were performed in two steps.

First, yeast strain H2557 was modified for stable expression of bat poxvirus K3 and E3
proteins following standard yeast transformation protocol®. Eptesipox virus K3 (eptK3), or
eptesipox virus E3 (eptE3) was integrated into H2257 at the LEU2 locus under the gal
promoter, using subcloned pSB305 plasmids linearized with ECORV. The resulted strains
H2557-eptK3, H2557-eptE3, and H2557-pteE3 were confirmed through PCR amplification
and sequencing of K3 and E3, using the universal primers M13 F and M13R. Yeast strains
expressing vaccinia and variola HA-K3, as well as the wild-type control (HM3, with
integrated empty vector) were previously described?*,

Second, the modified yeast strains were transformed with 100ng of PKR expression plasmids
pSB19. For each transformation, four colonies were selected and streaked on S-leu-ura
medium (yeast minimal complete medium with amino acids minus uracil and leucine)
containing 2% glucose (SD) or galactose (SGal), and grown at 30°C for 3 days.
Representative transformants colonies were then grown to saturation in SD-leu-ura medium
and plated in dilution series (D600 3.0, 0.3, 0.03, 0.003) on SD and SGal-leu-ura medium for
3 days. All yeast assays were conducted in biological triplicate experiments.
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Cell lines

HeLa PKR-knockout cells (kindly provided by Adam Geballe*®) were maintained in
Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 5% fetal bovine serum
and 1 pg/ml puromycin (Sigma). RK13+E3L+K3L cells (rabbit)®* were maintained in
DMEM supplemented with 5% fetal bovine serum, 100 1U/mL penicillin/streptomycin, 500
ug/mL geneticin and 300 pg/mL zeocin (Gibco). Wildtype (Invitrogen) and PKR-KO T-REXx-
293 cells (Rothenburg lab, unpublished) were grown in DMEM supplemented with 10% fetal
bovine serum, 100 IU/mL penicillin/streptomycin, 100 pg/ml zeocin and 15 pg/ml blasticidin
(Gibco). The T-REx-293 cells stably transfected by bat PKRs were under constant selection
ofwith 15 pg/ml blasticidin and 50 pg/ml Hygromycin (Invitrogen).

Luciferase Reporter Assays

Luciferase assays were carried-out following the protocol described in?. Briefly, 50,000 Hela
PKR-KO cells were seeded per well in 24-well plates, and transfected 16h post-seeding with
350 ng of PKR expression vector or empty control, 350 ng of viral antagonist expression
plasmid (NS1, NS5A, EPTV E3 or TRS1) or empty control, and 5 ng of FFLuc firefly
luciferase reporter plasmid, using Trans-1T-LT1 (Muris Bio) following the manufacturer’s
protocol. Cells were lysed 48h post-transfection by means of the reporter lysis 5X buffer
(Promega), then the luciferase substrate (Promega) was added following the manufacturer’s
recommendations. Luciferase reporter quantitation was carried out with a LUMIstar omega
microplate reader optima (BMG Labtech). All luciferase assays were conducted in triplicate
in at least five independent experiments. For the luciferase assays with VACV K3 and E3
antagonists, 50,000 Hela PKR-KO cells per well were transfected 24h post-seeding with 200
ng of PKR expression vector, 200 ng VACV E3 expression plasmids (VACV K3 and E3), 50
ng of pGL3 firefly luciferase expression vector (Promega) using GenlJet (Signagen) at a DNA
to GenJet ratio of 1:2 following the manufacturer’s protocol. Cells were lysed 48h post-
transfection with mammalian lysis buffer (GE Healthcare), then the luciferase substrate
(Promega) was added following the manufacturer’s recommendations. Luciferase reporter
quantitation was carried out with a Glomax luminometer (Promega). All luciferase assays

were conducted in triplicate in at least three independent experiments.

Generation of doxycycline-inducible bat PKR-expressing 293 cells

Bat PKRs (E. fuscus, the two M. myotis paralogs and the two M. velifer paralogs) were cloned
into the pcDNAS/FRT/TO expression vector with two C-terminal FLAG tag sequences. T-
REX-293 PKR-KO cells were stably transfected with each bat PKR plasmid by GenJet
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(Signagen) according to the manufacturer’s instructions and polyclonal pools of the stably

transfected cells were selected by their resistance to hygromycin.

Poxvirus infection

Generation of VC-R4, a derivative of VACV Copenhagen strain, was described*'. 500,000 of
T-REX bat PKR expressing cells were seeded per well in 12 wells plates and induced with 1
ug/mL doxycycline for 24h. 48h post-seeding, each well was infected by VC-R4 at MOI of
0.1. Fluorescent pictures were taken with an inverted fluorescent microscope (Leica) at the
indicated time post infection. For the virus replication assay, cells and supernatants were
collected 24h post-infection and subjected to three rounds of freezing at -80 C and thawing at
37 C. Lysates were sonicated for 15s, 50% amplitude (Qsonica Q500). Viruses were titered
by 10-fold serial dilutions on confluent RK13+E3L+K3L cells in 12-well plates. One hour
after infecting RK13+E3L+K3L cells with the dilutions, the medium was replaced with
DMEM containing 1% carboxymethylcellulose (CMC). After 48 hours, cells were stained
with 0.1% crystal violet and counted for plaques. Infections and viral titer were per- formed in
duplicate.

VSV infection

200,000 Hela PKR-KO cells were seeded per well in 12-well plates and transfected with
either empty pSG5 plasmid, M. myotis PKRs or M. velifer PKRs, using Trans-IT-LT1. ISG20
encoding plasmid®? was used as a positive control, because of its established antiviral activity
against VSV. Infection was performed 24h post-transfection, with a VSV-GFP virus at
MOI3%, and cells were fixed at 18hpi with paraformaldehyde (PFA) 4%. Single cell analysis
was performed using BD FACSCanto™ II Flow Cytometer to quantify VSV infectivity as the
percentage of GFP+ cells. Fold-change results are normalized to the empty (no PKR or

ISG20) condition from five independent experiments.

Western blots

To examine the yeast expression of bat PKR and poxvirus K3 proteins, yeast transformants
were grown overnight in 2% glucose S-leu-ura medium, followed by induction with 2%
galactose for 15 h. Cell lysates were treated with 0.1M of Sodium Hydroxide (NaOH) for 5
min, then lysed in 2X SDS-PAGE buffer supplemented with protease inhibitor cocktail
(Roche) and 355 mM B-mercaptoethanol (Sigma) at 95°C for 5 min. PKR was then
precipitated at 65°C for 45 min, frozen overnight, and re-precipitated. Proteins were resolved
by 12% Mini-PROTEAN GTX polyacrylamide gel (Bio-rad), then transferred to PVDF
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membranes. Proteins were probed with rabbit anti-HA (1:1,000 Sigma-Aldrich, H3663) or
anti-pB-actin as loading control (1:10,000 Sigma-Aldrich, A5441) primary antibody, then with
goat anti-rabbit secondary antibody. Blots were visualized using the Image Lab Touch
Software (version 2.0.0.27, Chemidoc Imaging System from Bio-Rad) or film.

In HeLa-KO cells, protein expression was assayed with 400,000 cell per well in six-well
plates and transfected with 1.4 ug of the indicated PKR and viral antagonist expressing-
plasmids. Cells were lysed after 48h with 1% sodium dodecyl sulfate (SDS) in PBS (VWR),
then proteins were separated on 4-12% Mini-PROTEAN GTX polyacrylamide gel (Bio-rad)
and transferred to nitrocellulose membranes. Proteins were resolved and visualized as
described above.

To detect the expression of bat PKRs in the stably transfected T-REx 293 cells, 600,000 cells
were seeded per well in six-well plates and induced by 1 ug/mL of doxycycline 24h post
seeding. Cells were lysed 24h post induction with 1% SDS, then proteins were separated on
10% TGX Fastcast Acrylamide gel (Bio-rad) and transferred to PVDF membranes. Proteins
were probed with mouse anti-FLAG (1:5,000 Sigma-Aldrich, F3165) or anti-f-actin (1:5,000
Sigma-Aldrich, A1978) primary antibody, then with donkey anti-mouse (1:10,000 Fisher
Scientific, 715-035-150) secondary antibody. Images were taken using the iBright Imaging

System (Invitrogen).

Statistical analyses

Expression data were analyzed using Student t-tests and ANOVA, followed by Tukey's post
hoc test for pairwise comparisons, using R. For each pairwise comparison, we ensured that
normality and homoscedasticity assumptions were met for the residuals using,

respectively, Shapiro-Wilk and Levene tests. For each of these tests, the p-value was
considered significant when inferior to 0.05. Error bars in graphics are Standard Error of the
mean (SEM) .

Data availability
All de novo PKR sequences were deposited in GenBank under Accession Numbers [waiting
for accession numbers]. Dataset for Figure 1 with alignments and phylogenetic trees are

publicly-available at https://figshare.com/projects/Datasets for _Jacquet et al 2022/142388 .
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FIGURES

Figure 1. PKR has been the target of strong diversifying positive selection and original
duplication in bats

A. Sites under positive selection in mammalian PKR. Graphic panels represent the posterior
probabilities of positive selection (Bayes empirical Bayes, BEB) (y axis) in the M2 Codeml
model (allowing for positive selection, ® >1) for each codon (x axis) in mammalian PKR.
Red bars indicate the sites identified by both models, M2 and M8, with a BEB posterior
probability greater than 0.95. Numbers in brackets are total species analyzed in each
mammalian order (See Data availability section for alignments and trees). B. Maximum
likelihood phylogenetic tree of bat PKR indicating the branches under significant positive
selection (p-value <0.05, in red) assigned by aBSREL from the HYPHY package. The
numbers in brackets indicate the estimated values of the ® at the branch. The scale bar
indicates the number of substitutions per site . C. Maximum likelihood phylogeny of Myotis
PKR paralogous transcripts, with M. autata, E. fuscus, L. borealis and P. kuhlii as outgroups
(the three latter were collapsed to facilitate visualization). Colors indicate duplicated PKRs
isolated from one species individual. Bootstrap values greater than 0.7 are shown. The scale
bar represents The scale bar indicates the number of substitutions per site. D. Representation
of the canonical locus of EIF2AK2/PKR gene in bats, primates, rodents, carnivores and
artiodactyls. Plain colored arrows represent EIF2AK2 genes, the striped arrow shows the
EIF2AK2 pseudogene, and white arrows are adjacent syntenic genes. The EIF2AK2
paralogous genes in M. myotis and M. velifer are located in tandem in the genome, while the
pseudogene is located outside de canonical locus in the same chromosome. In M. velifer, the
5’UTR and first four exons were not found in the present genome. E. Expression pattern of
PKR duplicates upon basal and IFNa treatment of M. velifer fibroblast cells. Boxplots
represent number of reads in log10 scale for each condition, and each PKR copy. Analyses
were restricted to the exons that are present in both PKR genes.

Figure 2. Species-specificity in bat PKR resistance and poxvirus K3 antagonism

A. Species-specific sensitivity of PKR to distinct poxvirus K3L proteins in yeast assays.
Plasmids expressing PKR paralogous copies (PKR1 and PKR2) and orthologous variants
under a galactose-inducible promoter were introduced into a wild type yeast strain or yeast
strains expressing vaccinia, variola or eptesipox virus K3L. PKR variants from human and

gibbon were used as positive control. Tenfold serial dilutions of transformants were spotted
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on plates containing either 2% glucose (control) or galactose. The Western-Blots for the
expression of PKR and K3 proteins in yeasts are shown in Figure S6. B. Luciferase reporter
assay showing that the PKR orthologs and paralogs inhibit the protein expression at
comparable levels, except M. velifer PKR1 showing slight differences. Luciferase activity was
normalized to the no-PKR condition in which cells were transfected with luciferase and
empty vector C. Luciferase reporter assay confirming the differential sensitivity of PKR
variants to vaccinia K3. Three independent experiments were conducted for bat PKR variants.
Luciferase activity was normalized to the control condition in which cells were transfected
with luciferase, PKR and empty vector (x axis). Error bars indicate Standard error of the
mean, SEM.

Figure 3. Evolutionary-guided functional approach reveals adaptive within-protein
epistasis in bat PKR and a unique C-terminal extension in the bat poxvirus K3.

A. Yeast spot assays of D. rotundus PKR mutants identifying the genetic determinants of
PKR susceptibility to eptesipox virus and variola K3 antagonism. Mutants D1 to D4 are
chimeric proteins between D. rotundus PKR and M. myotis PKR2, including the swap of
amino acids 268-344, 345-380, 381-420, 421-530 in D. rotundus for D1, D2, D3 and D4,
respectively. The Helix aG and kinase insert mutants were generated by site-directed
mutagenesis of D. rotundus PKR, by swapping the corresponding residues from M. myotis
PKR2. B. Representative western blot of PKR and K3 expression in yeast. C. Alignment of
the residues underlying PKR-eptesipox virus K3 interface in the Helix aG and kinase insert of
PKR. Left, species cladogram of the corresponding PKRs. Right, PKR protein alignment,
colors indicate site variations between the sequences as compared to the consensus sequence
with a threshold of 25% (Geneious, Biomatters; blue/red, hydrophilic/hydrophobic residues).
The codon numbers are based on D. rotundus PKR sequence. The triangles indicate the
residues under positive selection. D. 3D protein structure of D. rotundus and M. myotis PKR2
kinase domain, obtained by homology-modeling using I-TASSER and human PKR crystal
structure (pdb 2a19). The residues identified by our yeast assays are colored in red in Helix
aG and in magenta in the kinase insert. E. Multiple alignment and comparison of K3 protein
sequence between divergent poxviruses. Colors indicate site variations between the sequences
compared to the consensus sequence (threshold of 25%). Sequence numbering is based on
eptesipox virus K3. In the right, 3D protein structure of vaccinia (pdb 1luz) and eptesipox
virus K3 inferred by I-TASSER. The specific C-terminal insertion of eptesipox virus K3 is
colored in dark blue. In light blue, residues involved in vaccinia K3-PKR binding®F. Yeast
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spot assays of bat PKRs* challenged with eptesipox virus WT and mutant K3ACter (A85-120
aa). Right, eptesipox virus WT K3 and K3ACter. G. Protein-protein complex structure
between M. myotis PKR2 kinase domain and eptesipox virus K3, inferred by Hdock software.
The kinase domain of PKR is represented in light grey and K3 in black. Residue coloring
according to D (PKR) and E (K3) panels.

*Rsin, Rhinolophus sinicus; Mmol, Molossus molossus, Drot, Desmodus rotundus ; Mmyo,

Myotis myotis.

Figure 4. Functional divergence of the PKR paralogs in their ability to escape from
poxvirus E3, cytomegalovirus TRS1 and influenza A NS1 antagonists

A-B. Relative luciferase activity in cells transfected with or without human PKR, M. myotis
PKR1 or PKR2, in the presence or absence of putative viral antagonists: vaccinia virus E3
(A), and bat hepacivirus HCV NS5 (O. martiensseni and P. macrotis strains), human hepatitis
C virus NS5 (JFH1), human Influenza A virus NS1, human cytomegalovirus TRS1, eptesipox
virus E3 (B). The results shown are mean value of 3 and 5 independent experiments for panel
A and B, respectively. Luciferase activity was normalized to the control condition in which
cells were transfected with luciferase, PKR and empty vector. The error bars represent the
SEM. C. Luciferase reporter assay showing similar translation inhibition by the M. myotis
PKR paralog chimeras, which were generated by swapping the kinase domain (chimera 1),
the linker region (chimera 2) or the dsSRNA domain (chimera 3) of M. myotis PKR1 (black)
with that of PKR2 (grey). Luciferase activity was normalized to the luciferase-only condition.
The graph represents the mean of three independent replicates. D. Luciferase reporter assay
showing the sensitivity of the PKR chimeras to human 1AV NS1 antagonism (mean of three
biological replicates). The error bars are the SEM. Luciferase activity was normalized to the
condition without antagonist. E. Protein sequence alignment of M. myotis and M. velifer PKR
duplicates and potential isoform. The black bars on top of alignment indicate the residues that
differ between the paralogs and have evolved under significant positive selection. Colors
indicate site variations as compared to the consensus within species with a threshold of 25%.

The sequence numbering is based on M. myotis PKR1 sequence.

Figure 5. Bat PKR duplication allows for differential and potential additive antiviral
restriction of poxvirus and rhabdovirus infections

A. T-REx-293 PKR-KO cells stably expressing M. myotis and M. velifer PKR 1 and 2, or E.
fuscus PKR were infected with the VC-R4 (EGFP-VACVAK3LAE3L) at a MOI of 0.1, The
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EGFP expression were imaged 24h post-infection. B. Cells were infected as indicated above.
Viruses in cell lysates were titered in RK13+E3L+K3L cells. Error bars represent the SD
from two independent infections. Fold differences in virus titers obtained with -doxycycline
and +doxycycline are shown. C. Expression of bat PKRs in the stably transfected T-REx-293
PKR-KO cells. Cell lysates were separated on 10% SDS-PAGE gels and analyzed by
immunoblot analysis with anti-FLAG and anti-p-actin antibodies. D. Hela PKR-KO cells
were transfected with or without M. myotis or M. velifer PKR1 or PKR2, or with 1SG20 (as a
positive control of viral restriction). Infection was performed 24h post-transfection with a
VSV-GFP virus at MOI 3, and cells were fixed at 18hpi for flow cytometry analyses.
Infectivity is measured as the ratio of the mean of % EGFP+ cells in each condition relative to
the vector control condition. Values represent mean + SD computed from 5 independent

experiments.
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SUPPLEMENTARY

Supplementary Tables

Table S1. Results of the positive selection analyses comparing models that disallow positive

selection (M1 and M7) to models allowing positive selection (M2 and M8).  p-values

generated from maximum likelihood ratio tests indicate whether the model that allows for

positive selection (models M2 and M8) better fits the data than the nearly neutral one (M1 and

M?7). ® Percentage of codons evolving under positive selection (dN/dS ratio > 1 over the

alignment). -, not significant. “Average dN/dS ratio associated with the classes K3 and K11,

in the Codeml models M2 and M8, respectively, which allow positive selection.

Codeml M1 vs M2

Codeml M7 vs M8

p-valuea |% of PSS [M2 o° |p-valuea | % of PSSh | M2 ac

Chrioptera

Whole gene 4,4E-83 17 3.08 7,7E-86 |20 2.76
dsRNA domains (9-166) |2,2E-22 16 3.11 3,9E-25 |20 2.73
Linker (167-265) 9,8E-27 23 3.60 2,5E-27 |23 3.57
Kinase domain (266-536) | 2,7E-44 16 3.26 6,0E-46 |19 2.92
Carnivors 4,8E-30 25 1.78 2,7E-31 |28 1.72
Cetoartiodactyls 4,2E-04 13 4.30 2,5E-05 |13 4.31
Primates 4,8E-30 16 3.29 2,7E-31 |19 3.09
Rodents 1,4E-24 7 2.90 1,2E-25 |11 2.25
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Table S2. Results from site-specific positive selection analyses, with a posterior probability
(PP) of BEB > 0.95 for the models M2 and M8 from Codeml, > 0.9 for FUBAR, and a p-
value of 0.05 for MEME. Codons in bold were assigned by at least two methods. Codon

numbering is based

on D. rotundus.

M2

M8

FUBAR

MEME FEL

24, 26, 28, 72, 86,
97, 108, 122, 123,

124,125, 127, 138,
143, 159, 165, 169,
171, 177, 179, 181,
228, 230, 231, 235,
251, 253, 256, 258
260, 263, 264, 271
279, 316, 332, 340,
364, 367, 393, 431
433, 437, 444, 469,
470, 473, 476, 484
505, 536

7,24, 26,28, 72, 86
97, 107, 108, 114,
120, 122, 123, 124,
125, 127, 138, 143,
159, 165, 169, 171
177, 179, 181, 182
221, 228, 230, 231
235, 250, 251, 253
256, 258, 260, 263,
264, 267, 271, 279
316, 320, 330, 332,
335, 339, 340, 360,
364, 367, 370, 373
384, 393, 431, 433,
437, 444, 469, 470
473, 476, 484, 505,
536

7,81, 108, 135, 138
@l mv wv @:
258, 260, 330, 335
339,340, 364, 367
473,476, 480, 484,
500

22,74, 75, 81, 82
107, 108, 111, 114,
119, 128, 135, 151
169,171,179, 200
228, 242, 258, 260
265, 270, 289, 301
318, 320, 327, 330
335, 339, 340, 370
380, 406, 427, 431
445, 476, 477, 480
484, 500, 508, 511

81, 84, 108, 111
114, 119, 135, 151
169, 171,179, 216,
228, 232, 254, 258
260, 328, 335, 339
340, 367, 384, 408,
476, 477, 480, 484,
490, 508, 513

Table S3. Primer sets used in the study. The primers listed here are universal to the

chiropteran order or to specific families.

Gene  Primer name Target Specificity Sequence

PKR  pkr_8_F1 UTRS' Chiropteran order 5TYACTGRARRAAGAAATGGC
PKR  PKR_1792_R2 UTR3' Chiropteran order 5'AGGAAAATYRAACATYARAAGCAG
PKR  PKR_1700_R UTR3' Chiropteran order 5'CCCTAGMAGATTTYAGAS

PKR PKR E4 F Exon4 Vespertilionidae 5'TGGACAGAAAGAATATCCTGG
PKR  PKR_E6_R Exon6 Vespertilionidae 5'AAGATGAAAGCACATTGGTAAC
PKR PKR 242 R Exon2 Chiropteran order 5TTTCRABAGYTAATTTGGCTGC
PKR  PKR_56_F1 UTR5' Pteropodidae 5TTACTGRARRAAGAAATGGC
PKR  PKR_1735 R1 UTR3 Pteropodidae 5'’ASAGTTACAGGAAAATCRAAC
PKR  PKR_13 F1 UTR5' Pteropodidae 5'GGAACTGAAAKCCATTTTCTTC
PKR  PKR_1704 R1 UTR3' Pteropodidae 5'RAACATYARAAGCAGGATAC
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Supplementary Figures

Figure S1. PKR has evolved under episodic positive selection across mammals.
Maximum likelihood phylogenetic tree of mammalian PKR showing the branches under
significant positive selection (p-value <0.05, in red) in artiodactyls, carnivores, bats,
perissodactyls, primates, rodents and proboscideans. Analysis was performed using aBSREL
from the HYPHY package. The numbers in brackets indicate the estimated values of the ® at
the branch. The scale bar indicates The scale bar indicates the number of substitutions per

site.

Figure S2. Intra-species characterization of PKR duplication in Myotis species.

In the left, a cladogram representing the Myotis phylogenetic tree, based on the Cytochrome
oxidase | gene. Sequences were retrieved from GenBank and aligned with Prank software.
The PhyML program was used to build the phylogenetic tree, using the best fitting
substitution model (TN93+R) — inferred by the SMS program. The Myotis species that were
analyzed in this study are highlighted. In blue are the publicly available genomes, and in red,
are the newly sampled species in this study. For each analyzed species, the number of PKR

copies fully or partially isolated by PCR — cloning method are indicated.

Figure S3. Protein alignment of M. myotis and M. velifer PKR paralogs.
Visualization was obtained with ESPript®*

Figure S4. Characterization of PKR duplication in Myotis myotis.

PCR amplification of different regions (E1-E2, and E4-E6) of EIF2AK2 gene from M. myotis.
A. Schematic representation of the PCR strategy. Red arrows represent the primers, black
boxes are exons and internal bars are introns. B-C. electrophoresis migration of PCR products
(left) and electropherogram alignment of isolated variants (right) obtained with specific

primers of exons 1 and 2 (B) and exons 4 and 6 (C).

Figure S5. Additional characterization of PKR duplicates in Myotis velifer.

A. Tblastn search of PKR in M. velifer genome indicating the presence of three copies in the
same scaffold (black bar on the bottom). PKR mRNA sequence from M. velifer was used as a
query (blue arrow on top), with a cut-off of 10e%. B-C. Electropherogram alignment of
EIF2A4K?2 sequence exons 1 and 2 (B) and exons 4 and 6 (C) isolated from M. velifer genomic

DNA using specific primers.
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Figure S6. Genomic evidences of PKR duplication and pseudogeneization in New World
Myotis species.

A. PCR amplification of exons 4 to 6, revealing the existence of EIF24K?2 pseudogene in M.
velifer and M. riparius. The electrophoresis migrations of PCR products obtained with
specific primers of exons 4 and 6 are shown. B. Sequence alignment of isolated PKR

pseudogenes, with the presence of multiple stop codons (*).

Figure S7. Expression of bat PKRs, as well as EPTV and VACV Ka3s in yeast spot
assays.

A. PKR ortholog co-expression with EPTV and VACV K3. B. PKR ortholog co-expression
with EPTV K3 or EPTV K3 mutant.

Figure S8. PKR mutants identifying the genetic determinants of PKR susceptibility to
eptesipox virus K3.

Spot assays of D. rotundus PKR mutants identifying the genetic determinants of PKR
susceptibility to eptesipox virus and variola K3 antagonism. The Helix aG and kinase insert
mutants were generated by site-directed mutagenesis of D. rotundus PKR, by swapping the

corresponding residues from M. myotis PKR2.

Figure S9. Protein-protein complex structure between PKR and EPTV Ka3.
Protein-protein complex structure between epetsipoxvirus K3 and D. rotundus, or M.
molossus PKRs inferred by Hdock software. The residues involved in the K3-PKR interface
are colored in red for PKR Helix aG and magenta for kinase insert . In eptesipox virus K3, C-
terminal insertion is colored in dark bue, and other contact residues are in light blue. The
docking model shows, different contact affinity depending on the PKR structure (related to

yeast functional assay, Figure 2).

Figure S10. Immunoblot assaying the expression of bat PKRs and the viral antagonists,
NS5A, NS1 and TRSL1, in luciferase assays.

Despite a two-fold difference between PKR1 and PKR2 (estimated with ImageLab software;
BioRad), PKR1 showed similar levels of translation inhibition (Figure 2).

Figure S11. Luciferase assay showing species-specific sensitivity of PKRs to VACV E3
antagonism.
All bat PKRs variants showed significant level of susceptibility to VACV E3. Three

independent experiments were conducted; values represent the mean of the triplicates.
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Luciferase activity was normalized to the control condition in which cells were transfected

with PKR and empty vector (x axis). Error bars indicate SEM
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Figure S1. PKR has evolved under episodic positive selection across mammals
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Figure S2. Intra-species characterization of PKR duplication in Myotis species
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Figure S3. Protein alignment of M. myotis and M. velifer PKR paralogs
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Figure S4. Characterization of PKR duplication in Myotis myotis
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Figure S5. Additional characterization of PKR duplicates in Myotis velifer
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Figure S6. Genomic evidences of PKR duplication and pseudogeneization in New World Myotis species
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Figure S7. Expression of bat PKRs, as well as eptesipox virus and vaccinia K3s in yeast spot assays
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Figure S8. PKR mutants identifying the genetic determinants of PKR susceptibility to eptesipox virus K3
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Figure S9. Protein-protein complexes between PKR and eptesipox virus K3
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Figure S10. Expression of bat PKRs and the viral antagonists, NS5A, NS1 and TRS1, in the luciferase

assay
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Figure S11. Species-specific sensitivity of PKR to VACV E3 antagonism
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