

1 Invasive streptococcal infection can lead to the generation of cross-strain opsonic
2 antibodies

3 Therese de Neergaard^{1*}, Anna Bläckberg^{1,2}, Hanna Ivarsson¹, Sofia Thomasson¹, Vibha
4 Kumra Ahnlide¹, Sounak Chowdhury¹, Hamed Khakzad³, Johan Malmström¹, Magnus
5 Rasmussen^{1,2}, Pontus Nordenfelt^{1*}

6 *1 Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden. 2 Skåne
7 University Hospital, Department of Infectious Diseases, Lund, Sweden. 3 Laboratory of Protein Design and Immunoengineering (LPDI) - STI
8 - EPFL, Lausanne, Switzerland.*

9
10 *Corresponding authors: therese.de.neergaard@med.lu.se, pontus.nordenfelt@med.lu.se.

11 Running title: Opsonic response in streptococcal infection

12 **Abstract**

13 **Introduction**

14 The human pathogen *Streptococcus pyogenes* causes substantial morbidity and mortality. It is
15 unclear if antibodies developed after infections with this pathogen are opsonic and if they are
16 strain-specific or more broadly protective. Here, we quantified the opsonic antibody response
17 following invasive *S. pyogenes* infection.

18 **Materials and Methods**

19 Four patients with *S. pyogenes* bacteremia between 2018-2020 at Skåne University Hospital in
20 Lund, Sweden, were prospectively enrolled. Acute and convalescent sera were obtained, and
21 the *S. pyogenes* isolates were genome-sequenced (*emm118*, *emm85*, and two *emm1*).
22 Quantitative antibody binding and phagocytosis assays were used to evaluate isolate-dependent
23 opsonic antibody function in response to infection.

24 **Results**

25 Antibody binding increased modestly against the infecting isolate and across *emm* types in
26 convalescent compared to acute sera for all patients. For two patients, phagocytosis increased
27 in convalescent serum for both the infecting isolate and across types. The increase was only
28 across types for one patient, and one had no improvement. No correlation to the clinical
29 outcomes was observed.

30 **Conclusion**

31 Invasive *S. pyogenes* infections result in a modestly increased antibody binding with differential
32 opsonic capacity, both non-functional binding and broadly opsonic binding across types. These
33 findings question the dogma that an invasive infection should lead to a strong type-specific
34 antibody increase rather than a more modest but broadly reactive response, as seen in these
35 patients. Furthermore, our results indicate that an increase in antibody titers might not be
36 indicative of an opsonic response and highlight the importance of evaluating antibody function
37 in *S. pyogenes* infections.

38
39 **Keywords:** *Streptococcus pyogenes*, *emm* type, antibody response, phagocytosis, bacteremia

40

41 Introduction

42

43 *Streptococcus pyogenes*, Group A streptococcus (GAS), is each year estimated to cause more
44 than 700 million mild skin and throat infections and around 600 000 invasive ones such as
45 sepsis and necrotizing fasciitis (Carapetis et al., 2005). The substantial morbidity and mortality
46 caused by *S. pyogenes* makes it important to understand the immune response to this pathogen.

47

48 A crucial part of the defense against pathogens is opsonizing antibodies, which, when bound to
49 the pathogen, enhance its eradication by phagocytosis. However, *S. pyogenes* has evolved
50 multiple strategies to resist phagocytosis (Carlsson et al., 2003; Fischetti, 1989; Staali et al.,
51 2006). A major virulence factor in this process is the streptococcal M protein, encoded by the
52 *emm* gene. M protein can reverse antibody orientation through Fc binding (Åkesson et al., 1994;
53 Nordenfelt et al., 2012), interact with multiple anti-phagocytic proteins (Carlsson et al., 2005;
54 Happonen et al., 2019), and exhibits antigenic diversity through its hypervariable region
55 resulting in >250 *emm* types (Castro & Dorfmueller, 2021). The M protein covers most of the
56 bacterial surface and is an important target for the immune system through type-specific
57 antibodies. These antibodies start to appear around four weeks after a GAS infection (Denny et
58 al., 1957) and persist up to 30 years (Bencivenga et al., 2009; Lancefield, 1959). It is generally
59 believed that immunity is *emm* type-specific and is acquired through the development of
60 protective type-specific antibodies. Initial studies suggested that only antibodies against the
61 hypervariable part of the M protein were opsonic (Jones & Fischetti, 1988), but later studies
62 have reported that antibodies to conserved binding sites can also be opsonic (Bahnan et al.,
63 2021; Pandey et al., 2019; Vohra et al., 2005). These findings indicate the presence of anti-M
64 antibodies, which may convey immunity to more than one *emm* type providing a broader
65 protection. The immune response might also target other parts of the bacteria, such as
66 carbohydrates of the cell wall (Gao et al., 2021), which could convey more general cross-type
67 immunity. Early in life, children and adolescents suffer from recurring GAS infections;
68 however, these infections decrease radically in adulthood. Therefore, it is suggested that
69 through those repeated exposures over time, a more broad and long-term immunity is
70 developed (Pandey et al., 2016).

71

72 Specific antibodies do not always activate immune functions, and antibody responses can be
73 described as opsonic or non-opsonic. In contrast to its opsonic counterpart, a non-opsonic
74 antibody binds to its antigen without contributing to eradicating the pathogen by phagocytosis
75 (Bahnan et al., 2021; Bläckberg et al., 2021; Forthal, 2015). Recently, Bläckberg et al. reported
76 that patients suffering from an invasive *Streptococcus dysgalactiae* infection failed to develop
77 protective opsonic antibodies (Bläckberg et al., 2021), and Uddén et al. found that the
78 generation of non-opsonic antibody responses was correlated to the invasive nature of the
79 *Streptococcus pneumoniae* infection (Uddén et al., 2020). However, it is unknown to what
80 extent this occurs for *S. pyogenes* infections and how important the nature of the infection, and
81 in particular invasive disease, is in developing opsonizing antibodies to *S. pyogenes*.

82

83 To better understand the functional immune response in *S. pyogenes* infections, we assess
84 antibody binding and their opsonic capacity in four patients during and after an invasive *S.*
85 *pyogenes* infection. Interestingly, we report the development of both non-opsonic type-specific
86 antibodies as well as broad opsonic antibody responses across different *emm*-types in these
87 patients.

88

89 **Methods**

90 **Patient inclusion and data collection**

91 Patients with *S. pyogenes* bacteremia in 2018-2020 were prospectively included in the study
92 after obtaining oral and written consent. Acute serum was collected within five days after
93 hospital admission, and convalescent serum was collected after 4-6 weeks. Medical records of
94 patients were reviewed to obtain clinical and epidemiological parameters. The concentration of
95 the immunoglobulins in serum was determined at the Department of Clinical Chemistry in
96 Skåne, Sweden.

97

98 **Ethics**

99 The regional ethics committee approved the study of Lund University (2016/939, with
100 amendment 2018/828).

101

102 **Sequencing**

103 The *S. pyogenes* blood isolates were collected from the Laboratory for Clinical Microbiology,
104 Lund University Hospital Sweden. Whole-genome sequencing was done at the Center for
105 Translational Genomics at Lund University. NextSeq 550 Illumina sequencing was used to
106 sequence the bacterial genomes. The genome sequencing data were searched against the CDC
107 database of M protein families to detect the target M protein sequence. M protein sequences
108 were pairwise aligned with the target M1 protein using EMBOSS Needle web server.

109

110 **Microbe strains**

111 The clinical isolates of *Streptococcus pyogenes* and the lab mutant of *S. pyogenes* SF370 with
112 deficient M protein expression (dM) (Abbot et al., 2007; Ferretti et al., 2001) were statically
113 cultured in Todd Hewitt Broth (Bacto) supplemented with 0.2% yeast extract (Difco) (THY) at
114 37°C and 5% CO₂. They were cultivated to log phase (OD_{600 nm} 0.3-0.4, Ultrospec 10;
115 Amersham Biosciences) before being heat-killed at 80°C for 5 min.

116

117 **Labeling and Opsonization of bacteria**

118 Bacteria in PBS were first stained for 1 h at 37°C with 4 µM Oregon Green 488-X succinimidyl
119 ester (Invitrogen) followed by 20 µg/ml CypHer5E (Cytiva) in Na₂CO₃ for the phagocytosis
120 assay. After staining the bacteria were resuspended in Na-medium (5.6 mM glucose, 127 mM
121 NaCl, 10.8 mM KCl, 2.4 mM KH₂PO₄, 1.6 mM MgSO₄, 10 mM HEPES, 1.8 mM CaCl₂; pH
122 adjusted to 7.3 with NaOH). To disperse any large aggregates, stained bacteria were then
123 sonicated for 4 min (0.5 cycle, 75 A, VialTweeter) followed by determination of concentration
124 using flow cytometry (CytoFlex; Beckman Coulter, lasers: 488 nm, 638 nm, filters: 525/40,
125 660/10)).

126

127 Opsonization was performed on the experiment day with a bacterial concentration of 800 000
128 bacteria/µl at 37°C for 30 min with gentle shaking. Sera were heat-inactivated before
129 opsonization at 56°C for 30 min. The opsonin used besides patient sera were intravenous
130 immunoglobulin pooled from healthy donors (IVIG; Octagam, Octapharma) and a humanized
131 monoclonal IgG that is IgE-specific (Xolair, Omalizumab, Novartis) and thus only binds to M
132 protein via potential Fc binding.

133

134 **Binding assay**

135 Oregon Green stained bacteria were opsonized in a 1:2 serial dilution of sera, IVIG (2mg/ml),
136 and Xolair (1mg/ml) in a final volume of 10 µl. For the assessment across the different isolates,
137 bacteria were double-stained (Oregon Green, CypHer5E) and opsonized with 5% sera or 0.5
138 mg/ml of Xolair or IVIG. After opsonization, unbound antibodies were washed away three

139 times by removing supernatant and resuspend in 250 μ l Na-medium through centrifugation
140 (3000 g, 5 min). Opsonized bacteria were stained with fluorescently labeled antibodies (Alexa
141 Fluor 647-conjugated F(ab')2 Fragment Goat Anti-Human IgG Fab; Jackson ImmunoResearch
142 Laboratories) at 1:50 dilution for 30 min at 37°C. Data were obtained through CytoFlex,
143 acquiring at least 15 000 events. Four separate bacterial colonies per isolate plate were picked
144 and assessed.

145

146 **Affinity model**

147 Binding curves were analyzed using a GAS antibody binding model based on the transfer matrix
148 method for competitive binding described in Kumra Ahnlide et al., 2021. The implementation
149 of this model is available on Github ([10.5281/zenodo.4063760](https://doi.org/10.5281/zenodo.4063760)). Using this model, the binding
150 of polyclonal antibody samples is characterized by the mean and range (95 % CI) of a log-
151 normal distribution of affinities. The geometric means as given in the main figures correspond
152 to the antibody affinity of the polyclonal samples. Binding values were normalized to an
153 interpolated saturation level before being evaluated with the model implementation. Measured
154 binding curves are shown as the mean and standard deviation of data points as described in the
155 figure legends. Affinity values were derived by minimizing the weighted mean squared error
156 of the model output and measured data using a MATLAB minimization function. The accuracy
157 of predicted affinities was estimated using the bootstrap method, where the confidence intervals
158 were calculated from 50 re-samplings of the measured data.

159

160 **Determination of immunoglobulin sub-classes**

161 Mass spectrometry analysis was performed on patient sera to measure the immunoglobulin
162 subclasses. The sample preparation for mass spectrometry is described elsewhere (Chowdhury
163 et al., 2021). In brief, 8 M urea-100 mM ammonium bicarbonate was added to 1 μ l of patient
164 serum for denaturation, and 5 mM Tris(2-carboxyethyl) phosphine hydrochloride (TCEP) was
165 added and incubated for 1 hour at 37°C for reduction, followed by incubation with 10 mM
166 iodoacetamide for alkylation at room temperature for 30 minutes. Samples were diluted in 100
167 mM ammonium bicarbonate and incubated overnight with 0.5 μ g/ μ l sequencing-grade trypsin
168 (Promega) at 37°C, after which the addition of 10% formic acid inactivated trypsin. SOLA μ
169 horseradish peroxidase (HRP) 2 mg/1 ml 96-well plate (Thermo Scientific) was used to
170 concentrate the peptides (according to the manufacturer's instructions). The concentrated
171 peptides were injected into in a Q Exactive HF-X instrument (Thermo-Scientific) connected to
172 an Easy-nLC 1200 instrument (Thermo Scientific). The peptides were analyzed in data-
173 dependent mass-spectrometry (DDA-MS) mode (Chowdhury et al., 2021). In short, the peptides
174 were separated on a 50-cm Easy-Spray column (column temperature 45°C; Thermo Scientific)
175 at a maximum pressure of 8 x 107 Pa with a linear gradient of 4% to 45% acetonitrile in 0.1%
176 formic acid for 65 minutes. One MS full scan (resolution of 60,000 for a m/z 390-12,10) was
177 performed, followed by MS/MS scans (resolution of 15,000) for the 15 most abundant ion
178 signals. Precursor ions with 2 m/z isolation width were fragmented at a normalized collision
179 energy of 30 using higher-energy collisional-induced dissociation (HCD). The automatic gain
180 controls for the full MS scan was set to 3e6 and 1e5 for MS/MS. The DDA data was analyzed
181 in MaxQuant (1.6.10.43) against a database comprising of *Homo sapiens* (UniProt proteome
182 identifier UP000005640), common contaminants from other species, and iRT peptides (Escher
183 et al., 2012). For the search, tryptic digestion with maximum of two missed cleavage was
184 allowed. Carbamidomethylation (C) was set to static modifications, while oxidation (M) was
185 set to variable modifications.

186

187

188

189 **Cell lines**

190 Human monocytic cell line Tamm–Horsfall protein 1 (THP-1) (TIB-202, male; American Type
191 Culture Collection) was cultured in RPMI 1640 medium (Sigma-Aldrich) supplemented with
192 10% FBS (Life Technologies) and 2 mM GlutaMAX (Life Technologies) at 37°C in 5% CO₂.
193 The cell density was kept between 0.2-1.0 x 10⁶ cells/ml with viability over 95% (determined
194 with Erythrosin B (Sigma-Aldrich)), and cells were harvested at 0.5 × 10⁶ cells/ml for the
195 phagocytosis assay.

196

197 **Phagocytosis Assay**

198 The phagocytosis assay was performed and analyzed using the PAN method as described (de
199 Neergaard et al., 2019). Briefly, phagocytosis was performed with 100 000 THP-1 cells in a
200 final volume of 150 µl with different multiplicity of prey (MOP) from 0-400 at 37°C for 30 min
201 with gentle shaking conditions. The bacteria had, as previously described, been fluorescently
202 double-stained and opsonized in either 5% sera or 0.1 mg/ml Xolair. For the assessment across
203 the different isolates, phagocytosis was performed at MOP 80, and the concentration of Xolair
204 and IVIG was 0.5 mg/ml. Phagocytosis was halted by transferring samples to ice and kept cold
205 during data acquisition using CytoFlex. At least 5 000 events of the population of interest were
206 acquired. Ice samples were used as a control for internalization. Free bacteria were analyzed
207 separately to determine the fluorescent intensity of a single bacterial unit and to confirm pH
208 sensitivity of the staining pH was decreased by adding 1 µl of sodium acetate (3 M, pH 5.0).
209 Four different colonies per isolate were assessed.

210

211 **Analysis of flow cytometry data**

212 Flow cytometry data were analyzed using FlowJo version 10.6.2 (TreeStar). THP-1 cells were
213 gated on forward (FSC) and side scatter (SSC) height. Events with extreme negative
214 fluorescence were excluded. THP-1 cells positive for Oregon Green (FITC-H) were defined as
215 associating, and those also positive for CypHer5E (APC-H) were defined as internalizing cells
216 as well. Free bacteria were gated on SSC-H in combination with a positive Oregon Green signal,
217 and doublets were excluded by gating on FSC-H versus FSC-A. Gating strategy is visualized
218 in Supp. Fig 2.

219

220 The data was then further analyzed using the PAN method (de Neergaard et al., 2019) in Prism
221 9.3.1 (GraphPad Software). Inbuilt non-linear analysis tool “Agonist vs. response – Variable
222 slope (four parameters)” was used to create curves and determine MOP₅₀, corresponding to the
223 MOP, which evoked half of the maximal response. One curve was generated per replicate,
224 represented as a mean value in the figures. The persistent association was defined as the
225 percentage of THP-1 cells positive for at least one bacterium either adhered or internalized. In
226 comparison, internalization was defined as THP-1 cells positive for at least one internalized
227 bacterium. Normalization for association was performed by interpolating the median
228 fluorescence intensity (MFI) at MOP₅₀.

229

230 For assessing the individual phagocyte ability, the amount of bacteria associated and
231 internalized was determined by the MFI of an associating THP-1 cell. To convert it into the
232 number of prey per phagocyte, PxP, each fluorescent signal (associated: Oregon Green,
233 internalized: CypHer5E) was divided with the MFI of free bacteria for CypHer5E at pH 5. Since
234 streptococci are typically not present as a single bacterium, a prey unit most likely represents a
235 chain.

236

237

238

239 **Statistics**

240 To compare the acute and convalescent serum effect on binding and phagocytosis of the
241 corresponding isolate, the paired non-parametric Wilcoxon matched-pairs signed-rank test was
242 used. No paring was performed if it had been normalized against acute sera, and the hypothetical
243 value was set to 100. Two-way ANOVA with Šídák's multiple comparisons test was applied
244 when the sera were tested across the different isolates. The alpha value was set to 0.05. For the
245 statistical tests Prism, version 9.3.1 (GraphPad Prism) was used, while data collection and
246 simple calculations were performed using Microsoft Excel 2021 (Microsoft Corporation).

247

248

249 **Results**

250 **Clinical characterizations of patients and bacterial isolates**

251 Four patients (patients A-D (PA-PD)) with *S. pyogenes* bacteremia were enrolled. Their clinical
252 characteristics are presented in Figure 1A. In summary, two females (PB, PC) were infected
253 with isolates of *emm1*, and two males with *emm118* (PA) or *emm85* (PD), respectively. The
254 primary infection foci were skin and soft tissue. Upon admission, all patients were
255 hemodynamically stable, but within 48 h, patient D acquired septic shock (SEPSIS-3 criteria,
256 (Singer et al., 2016)). Patient D's symptoms commenced two weeks before admission, in
257 contrast to the others that almost immediately were admitted to the hospital, suggesting that the
258 serum from this patient could be in a different immune response phase compared to the other
259 acute samples. The patients' immunoglobulin (IgA, IgG, IgM) concentration in serum changed
260 between admission (acute) and six weeks later (convalescent), with the largest difference being
261 an increase in IgG for patients C and D (PA: 9 %, PB: 13 %, PC: 87%, PD 55 %) (Fig. 1B). To
262 determine the subclass distribution of the immunoglobulins, we performed a mass
263 spectrometric analysis of the patients' sera (Fig. 1D). After infection, IgG1 increased for three
264 out of four patients, whereas patient D had more IgG1 in the acute sera. Additionally, for patient
265 C, the IgG distribution shifts to a noticeably higher level of IgG3 in convalescent sera. The *S.*
266 *pyogenes* isolates were sequenced (Supp. Data), and the M protein sequences were compared
267 (Fig. 1C). The M1 isolates (*S. pyogenes* from patient B, SpB, and patient C, SpC) had identical
268 M proteins, but the overall similarity between M1, M85, and M118 was relatively low (30%).
269 However, there was a higher sequence similarity between M85 and M118 when pairwise
270 aligned (59.3 %). In summary, our patient group was small, with different ages and disease
271 severity but similar health status. The infecting agents consist of three different *emm*-types,
272 with two patients infected by the same type.

273

274 **Antibody binding is increased after invasive *S. pyogenes* infection**

275 To determine the effect an invasive *S. pyogenes* infection has on antibody binding, we
276 opsonized each *S. pyogenes* isolate bacteria with the corresponding paired sera. The non-
277 specific monoclonal antibody Xolair was a control for Fc binding, and IVIG was a positive
278 control. To evaluate the contribution of the M protein as an antigen, we included an M protein-
279 deficient *S. pyogenes* mutant, SF370dM (dM). When analyzing the whole curve in the
280 convalescent sera, all patients had a significant increase in IgG bound to the bacteria (Fig. 2A),
281 and already at 0.1 % serum, the differences could be detected (Fig. 2C). Interestingly, the
282 amounts of IgG bound to dM increased from low at low serum concentration to almost the same
283 level as the clinical isolates when measured at the higher concentrations (Fig. 2B). The result
284 thus indicates the presence of both IgGs with high affinities against M proteins and additional
285 antigens in the absence of M protein. To evaluate the relative change of bound IgG's within
286 each patient's sera, the level of IgG bound to the bacteria in convalescent serum was expressed
287 as a fold change to the level of IgG's bound in acute serum (Fig. 2D). The M1 patients (PB,

288 PC) had the largest relative change among the isolates, while patients A and D had almost no
289 difference. Nonetheless, the dM strain had the highest relative increase for each patient.
290

291 To quantify the affinities of the binding IgG against the pathogen, we analyzed the binding
292 curves using a bacteria-antibody binding model (Kumra Ahnlide et al., 2021) (Fig. 2E and Supp.
293 Fig. 1A). Patient C had the highest increase in affinity after infection. However, both patients
294 A and D had higher affinities than patient C already in acute sera. To summarize, antibody
295 binding was increased to the infecting isolate after an invasive *S. pyogenes* infection regardless
296 of *emm* type.
297

298 **Invasive infection leads to a differential opsonic response**

299 To evaluate the dynamics of phagocytosis, we studied it from low to high bacteria-to-cell ratios
300 (multiplicity of prey, MOP). By heat-inactivating the sera, we excluded contribution from the
301 complement system to focus on Fc-mediated phagocytosis. We assessed the phagocytic ability
302 of the phagocyte population based on the portion of phagocytes that can associate with or
303 internalize their prey (defined as cells with at least one internalized bacterial unit) (Fig. 3A-B).
304 In the convalescent serum, the association and internalization were significantly increased for
305 patients A and C compared to acute sera. On average, 50% more phagocytes were associated
306 with bacteria (Fig. 3A), and 75% more phagocytes had internalized at least one bacterium with
307 patient C convalescent serum (Fig. 3B). The increase for patient A was 3% in association and
308 25% internalization. Patient D's acute serum mediated higher association, whereas there was no
309 difference in internalization as compared to convalescent serum. For patient B, there was no
310 significant increase in neither association nor internalization. For dM, there was a significant
311 increase from acute to convalescent sera for each patient in association ability and for all, except
312 patient D, in the internalization ability. This indicates that the increase seen in phagocytosis
313 when comparing convalescent to acute sera can not only be explained by antibodies binding to
314 the M protein.
315

316 In Figure 3C, by analyzing bacterial fluorescence intensities at a single-cell level, we provide
317 an assessment of the phagocytic ability of each phagocyte, meaning its individual ability to
318 adhere to and internalize bacteria. Compared to acute serum as the baseline, an increased
319 association was detected for patients A, C, and D at all MOPs ($p < 0.05$, median increase in %
320 A: 29, C: 42, D: 25) but only at the highest concentration for patient B. Internalization, on the
321 other hand, was only significantly improved for patient A and C (10% and 8.8%, respectively).
322 For all the convalescence sera, dM was significantly more associated with cells than acute sera.
323

324 In Figure 3D, we demonstrate a comparison of the association capacity between the patients'
325 sera in a standardized manner by determining at what MOP 50% of the phagocyte population
326 was associated with bacteria (MOP_{50}). Patients A, B, and C require similar MOP, around 100,
327 while patient D needs less than half to reach 50% association. Only patient C has a clear
328 improvement in association capacity with convalescent sera (the MOP_{50} was halved). At
329 MOP_{50} , serum from patient D not only had the highest number of bacteria interacting with each
330 phagocyte (Fig. 3E) but also the highest bacterial internalization in the phagocytes (Fig. 3D).
331 When comparing convalescent to acute serum, patients A and D slightly increase the portion of
332 phagocytes internalizing bacteria (Fig. 3E). For patients A, C, and D, the individual phagocyte
333 adheres to more bacteria in convalescent sera, while internalization is unaffected. There are no
334 differences for patient B and dM samples on the population or individual level.
335

336 When summarizing the different parameters analyzed, patient C had the most evident
337 improvement in phagocytosis both on population and individual phagocyte level after infection;

338 patient A had some improvement, while patient B had none. Patient D has the highest opsonic
339 ability overall, which remains in the convalescent serum.
340

341 **Infection-induced opsonic antibodies are cross-reactive while non-opsonic response seems 342 to be *emm* type-specific**

343 To determine whether our findings were *emm* type-specific, we evaluated the effects of heat-
344 inactivated sera on binding and phagocytosis across isolates. Overall trends are shown as heat
345 maps (Fig. 4A, 4C), with quantitative analysis in Figures 4B and 4D. The IgG binding was
346 significantly increased in the convalescent sera compared to acute sera across the different
347 isolates, except for SpA (*S. pyogenes* isolate infecting patient A) opsonized with patient D sera
348 where the increase was more modest (Fig. 4A-B). As expected, we see the highest binding to
349 the infecting isolate for sera from patients A and D, but interestingly not for sera from patients
350 B and C, which both were infected with *emm1* strains. In addition, the *emm1* isolates had fewer
351 antibodies bound independent of which sera were tested. The *emm1* isolates were also the least
352 phagocytosed by each patient's serum (Fig. 4C-D). However, there was a significant increase
353 in phagocytosis association for all the isolates opsonized in sera from patients A and C. In contrast,
354 only SpA and SpD were improved for patient B, whereas patient D had no significant increase
355 at all. Similar trends were seen with the antibody controls IVIG and Xolair, but with overall
356 lower levels than the patient sera.
357

358 In Figure 4 E-G we compare the convalescent sera relative to the acute sera. The largest increase
359 in the antibody binding was against the *emm1* isolates (SpB, SpC) for all patients, and patient
360 C had the largest increase in antibody binding for all isolates (Fig 4E). The response in
361 phagocytosis, both at the population (Fig. 4F) and the individual phagocyte level (Fig. 4G), was
362 elevated in the same manner as the phagocytosis association (Fig. 4C-D). Thus, after infection,
363 patient B developed antibodies that were opsonic against isolates of other M types but non-
364 opsonic against its infecting *emm1* isolate (SpB). Nonetheless, serum from patient C, also
365 infected with *emm1*, had increased binding and function against all isolates, including SpB, in
366 convalescence. Hence, opsonic antibodies can be generated after an *emm1* infection. Serum
367 from patient A, infected by the *emm118* isolate, increased antibody binding and phagocytosis
368 across the strains, indicating a broad and improved opsonic antibody response after infection.
369 Serum from the *emm85*-infected patient D maintained a high level of phagocytosis across
370 strains, with no further increase, but with increased levels of antibody binding after infection
371 (Fig. 4 E-G). To summarize (Table 1), after invasive *S. pyogenes* infection, cross-strain opsonic
372 antibodies can be developed. On the other hand, non-opsonic binding antibodies are generated
373 against specific types, and here it is primarily seen with the *emm1* type.
374

375 **Discussion**

376 The generation of opsonizing antibodies is a vital step in developing pathogen-specific
377 immunity. In the present work, we have quantified the opsonic capacity of serum from patients
378 during and after invasive *S. pyogenes* infection. Our results show that a modest increase in
379 antibodies binding to the bacteria occurs after infection. It should be pointed out that this is
380 from a relatively high basal level, as seen when compared to acute samples. However, this
381 increase in binding antibodies does not always lead to an improved functional response in terms
382 of phagocytosis. These findings are consistent with previous studies on *S. pyogenes* immunity,
383 where antibodies binding to the conserved region of the M protein typically did not result in a
384 bactericidal effect (Bahnan et al., 2021; Jones & Fischetti, 1988). One could speculate that the
385 patient generating non-opsonic antibodies (PB) had an immune deficiency. Still, she generated
386 opsonic antibodies toward other *S. pyogenes* types and had no disease record supporting that
387 hypothesis. It was also not specific for *emm1* type infection since the other patient infected with

388 the *S. pyogenes* of the identical type did generate opsonic antibodies. The mechanism behind
389 these two different responses is unknown, and it might be difficult to draw too firm conclusions
390 from a limited set of patients. Still, we speculate that *S. pyogenes* might have mechanisms
391 influencing the immune system so that it generates non-functional antibodies. Our results show
392 that it is important to properly assay both antibody titers and antibody function to characterize
393 an immune response.

394 Interestingly, the opsonic antibodies generated by the patients were cross-reactive and enhanced
395 phagocytosis across types. Even if patients suffering from *S. pyogenes* invasive infection rarely
396 get reinfected (Rasmussen, 2011), suggesting broader protection, *S. pyogenes* immunity is
397 typically described to be type-specific (Jones & Fischetti, 1988). After an invasive infection,
398 patients are expected to have a strong and specific antibody response rather than the modest
399 and cross-reactive response seen in patients studied here. However, during the last decade,
400 studies have reported the development of broadly opsonic antibodies in animal vaccine trials
401 (Dale et al., 2011) and after superficial skin infections in school children (Frost et al., 2017).
402 Furthermore, we recently found a protective human-derived antibody with opsonic function
403 across a broad range of *emm* types (Bahnan et al., 2021). Here, we have provided clinical data
404 on the development of cross-type opsonic antibodies after invasive *S. pyogenes* infection, which
405 to our knowledge, has not previously been described.

406 Nevertheless, generalizations based on our results should be made with care since this study is
407 based on a small study population. Still, the different infecting types in this study (*emm*1,
408 *emm*85, *emm*118) belong to three diverse *emm* groups, A–C, D, and E, respectively (McMillan
409 et al., 2013), so it is reasonable to describe the opsonic response in our patients as broad. Taken
410 together with already published data, we believe this study provides further proof of the
411 development of a general rather than a strictly type-specific *S. pyogenes* immunity after
412 infection.

413 **Acknowledgments**

414 This study acknowledges the Department of Clinical Microbiology, Office for Medical
415 Services, Region Skåne, Lund, Sweden. We also thank Sebastian Wrighton and Arman Izadi
416 for their important technical contribution. TdN was funded by the Royal Physiographic Society.
417 PN was funded by the Swedish Research Council (VR).

418

419

420

421

422 **Figure legends**

423 **Figure 1. The characteristics of the patients and their infecting isolate**

424 (A) The four patients (PA-PD) with invasive *S. pyogenes* infection included in the study. GCS,
425 Glasgow Coma Scale; RR, respiratory rate; Sat, saturation; blood pressure mmHg; HR, heart
426 rate; Hb, hemoglobin g/L; WBC, white blood count $\times 10^9$ /L; CRP, C-reactive protein mg/L;
427 PLC, platelet count $\times 10^9$ /L; Crea, creatinine μ mol/L; PK(INR), prothrombin complex
428 international normalized ratio; Lac, lactate mmol/L. (B) The immunoglobulin concentration of
429 acute (a.s) and convalescent (c.s) sera as reported from the clinical diagnostics data. (C) A
430 multiple sequence alignment and identity percentage of the four detected M protein sequences,
431 including two identical M1 sequences of SpB and SpC, M85-SpD, and M118-SpA. (D) The
432 immunoglobulin (Ig) distribution was determined by mass spectrometry for each patient's
433 serum. The line represents the mean, n = 3. Figure A created with BioRender.com

435

436 **Figure 2. Antibody binding and distribution after invasive GAS infection**

437 (A-E) The acute and convalescent sera from four patients (PA-PD) with *S. pyogenes* invasive
438 infection were assessed. (A-D) The different isolates (Sp) and a strain lacking the M protein
439 (dM) were opsonized in serial dilution of the sera and controls (see color legend). The undiluted
440 concentration was 2 mg/ml for the polyclonal IgG (IVIG) and 1 mg/ml monoclonal non-specific
441 IgG (Xolair). Binding was determined with IgG Fab-specific far-red fluorescent antibodies.
442 Data were acquired through flow cytometry and are presented as mean \pm SD, n = 4. (A-C) The
443 amount of IgG bound to the bacteria isolate (A) or dM (B) for each opsonin expressed in
444 fluorescent intensity of the secondary antibody. Wilcoxon matched-paired signed-rank test was
445 performed on acute vs convalescent binding; p-value < 0.05 *, < 0.01 **. (D) The change in
446 binding for convalescent compared to acute serum expressed in fold increase of bound IgG in
447 acute serum. The baseline set at 1, marked with a line. © Affinities of each serum to M-protein
448 through modeling of binding data. The affinity for sera and IVIG expressed in K_D mean \log_{10}
449 reference nM^{-1} while for Xolair, the M-protein Fc affinity is determined, named K_{DFc} with nM^{-1}
450 as the unit.

451

452 **Figure 3. Assessment of the phagocytic response during infection**

453 (A-E) The acute and convalescent sera from four patients (PA-PD) with *S. pyogenes* invasive
454 infection were assessed. THP-1 cells were incubated (30 min, 150 μ l, MOP 0–400, 37°C) with
455 either the infecting isolate (Sp) or a strain lacking M-protein (dM) after the bacteria were
456 fluorescently doubled stained with a pH-stable (Oregon Green) and a pH-sensitive (CypHer-
457 5E) dye and opsonized in 5 % of the corresponding sera. Data were acquired through flow
458 cytometry and are presented as mean \pm SD, n = 4. (A-B) The percentage of phagocytes in the
459 phagocytic population associating with (A) and internalizing (B) opsonized bacteria for each
460 patient. In A, the average of the fitted persistent association curves is shown, and 50 %
461 association is marked with a line for each curve. Acute vs. convalescent samples were compared
462 with Wilcoxon matched-paired signed-rank test p-value < 0.05 *. (C) The change in the number
463 of bacteria an individual associating phagocyte has associated with and internalized in
464 convalescent compared to acute serum expressed as fold increase of acute serum. The baseline
465 is visualized with a line at 1. The MOP range is 1-400. Wilcoxon signed-rank test was
466 performed p-value < 0.05 *. (D) To the left, the MOP when 50 % of the phagocytic population
467 have associated, called MOP₅₀, based on the curves in A. To the right, the percentage of
468 phagocytes internalizing at MOP₅₀ is shown. (E) The average number of prey units per
469 phagocyte, PxP, and associated with to the left and internalized to the right at MOP₅₀.

470

471

472 **Figure 4. Antibody binding and opsonic function across strain for each patient**

473 (A-G) The acute (a.s) and convalescent (c.s) sera from four patients (PA-PD) with *S. pyogenes*
474 invasive infection were assessed. The different isolates (Sp) were fluorescently double stained
475 with a pH stable (Oregon Green) and a pH-sensitive (CypHer-5E) dye and opsonized in 5 % of
476 each serum. The concentration was 0.5 mg/ml for polyclonal IgG (IVIG) and monoclonal non-
477 specific IgG (Xolair) and without opsonin for negative control. Binding was determined with
478 IgG Fab-specific far-red fluorescent antibodies. Phagocytosis was performed with THP-1 cells
479 incubated (30 min, 150 μ l, MOP 80, 37°C) with each isolate. Data were acquired through flow
480 cytometry and are presented as mean \pm SD, n = 4. (A-D) Heatmaps and histograms visualizing
481 IgG bound to each isolate (A-B) and the percentage of phagocytes associating with the bacteria
482 (C-D). Significance tested with two-way ANOVA and Šídák's multiple comparisons test, p-
483 value < 0.05 *, <0.01 **, 0.001 ***, 0.0001 ****. (E-G) The change in binding (E) and
484 phagocytosis (F-G) for convalescent compared to acute serum for each patient expressed as
485 fold increase of corresponding acute serum. The baseline is visualized with a line at 1. (F)
486 Visualizing the change in what portion of the phagocyte population associated and internalized
487 bacteria while E looks at the change in the individual phagocytes capacity to associate (to the
488 left) and internalize (to the right) bacteria.

489

490 **Supplementary Figure 1.** (A) Quantifying the affinities of each serum to M-protein through
491 modeling of binding data. The affinity for sera and IVIG expressed in K_D mean log10 reference
492 nM $^{-1}$ while for Xolair, the M-protein Fc affinity is determined, named K_{DFc} with nM $^{-1}$ as the
493 unit.

494

495 **Supplementary Figure 2.** (A-B) Gating strategy of flow cytometry data for phagocytes (A)
496 and bacteria (B) using FlowJo. (C-D) The clinical *S. pyogenes* isolates (Sp) opsonized with 0.5
497 mg/ml IVIG with phagocytosis (C: association, D: internalization) either on ice or 37°C. Data
498 were acquired through flow cytometry and are presented as mean \pm SD, n = 4.

499

500 References

501 Abbot, E. L., Smith, W. D., Siou, G. P. S., Chiriboga, C., Smith, R. J., Wilson, J. A., Hirst, B.
502 H., & Kehoe, M. A. (2007). Pili mediate specific adhesion of *Streptococcus pyogenes* to
503 human tonsil and skin. *Cellular Microbiology*, 9(7), 1822–1833.
504 <https://doi.org/10.1111/j.1462-5822.2007.00918.x>

505 Åkesson, P., Schmidt, K. H., Cooney, J., & Björck, L. (1994). M1 protein and protein H:
506 IgGFc- and albumin-binding streptococcal surface proteins encoded by adjacent genes.
507 *The Biochemical Journal*, 300 (Pt 3)(Pt 3), 877–886. <https://doi.org/10.1042/BJ3000877>

508 Bahnan, W., Happonen, L., Khakzad, H., Ahnlide, V. K., Neergaard, T. de, Wrighton, S.,
509 Bratanis, E., Tang, D., Hellmark, T., Björck, L., Shannon, O., Malmström, L.,
510 Malmström, J., & Nordenfelt, P. (2021). Protection induced by a human monoclonal
511 antibody recognizing two different epitopes in a conserved region of streptococcal M
512 proteins. *BioRxiv*, 2021.03.01.433494. <https://doi.org/10.1101/2021.03.01.433494>

513 Bencivenga, J. F., Johnson, D. R., & Kaplan, E. L. (2009). Determination of group a
514 streptococcal anti-M type-specific antibody in sera of rheumatic fever patients after 45
515 years. *Clinical Infectious Diseases*, 49(8), 1237–1239. <https://doi.org/10.1086/605673>

516 Bläckberg, A., de Neergaard, T., Frick, I. M., Nordenfelt, P., Lood, R., & Rasmussen, M.
517 (2021). Lack of Opsonic Antibody Responses to Invasive Infections With *Streptococcus*
518 *dysgalactiae*. *Frontiers in Microbiology*, 12.
519 <https://doi.org/10.3389/FMICB.2021.635591>

520 Carapetis, J. R., Steer, A. C., Mulholland, E. K., & Weber, M. (2005). The global burden of
521 group A streptococcal diseases. *The Lancet Infectious Diseases*, 5(11), 685–694.
522 [https://doi.org/10.1016/S1473-3099\(05\)70267-X](https://doi.org/10.1016/S1473-3099(05)70267-X)

523 Carlsson, F., Bergg, K., St-Carlemalm, M., & Lindahl, G. (2003). Evasion of phagocytosis
524 through cooperation between two ligand-binding regions in *Streptococcus pyogenes* M
525 protein. *The Journal of Experimental Medicine*, 198(7), 1057–1068.
526 <https://doi.org/10.1084/jem.20030543>

527 Carlsson, F., Sandin, C., & Lindahl, G. (2005). Human fibrinogen bound to *Streptococcus*
528 pyogenes M protein inhibits complement deposition via the classical pathway. *Molecular*
529 *Microbiology*, 56(1), 28–39. <https://doi.org/10.1111/j.1365-2958.2005.04527.x>

530 Castro, S. A., & Dorfmüller, H. C. (2021). A brief review on Group A *Streptococcus*
531 pathogenesis and vaccine development. *Royal Society Open Science*, 8(3), 201991.
532 <https://doi.org/10.1098/rsos.201991>

533 Chowdhury, S., Khakzad, H., Bergdahl, G. E., Lood, R., Ekstrom, S., Linke, D., Malmström,
534 L., Happonen, L., & Malmström, J. (2021). *Streptococcus pyogenes* Forms Serotype-
535 and Local Environment-Dependent Interspecies Protein Complexes. *MSystems*, 6(5),
536 e0027121. <https://doi.org/10.1128/mSystems.00271-21>

537 Dale, J. B., Penfound, T. A., Chiang, E. Y., & Walton, W. J. (2011). New 30-valent M
538 protein-based vaccine evokes cross-opsonic antibodies against non-vaccine serotypes of
539 group A streptococci. *Vaccine*, 29(46), 8175–8178.
540 <https://doi.org/10.1016/J.VACCINE.2011.09.005>

541 de Neergaard, T., Sundwall, M., & Nordenfelt, P. (2019). High-sensitivity assessment of
542 phagocytosis by persistent association-based normalization. *BioRxiv*.
543 <https://doi.org/10.1101/827568>

544 Denny, F. W., Perry, W. D., & Wannamaker, L. W. (1957). Type-specific streptococcal
545 antibody. *The Journal of Clinical Investigation*, 36(7), 1092–1100.
546 <https://doi.org/10.1172/JCI103504>

547 Escher, C., Reiter, L., Maclean, B., Ossola, R., Herzog, F., Chilton, J., Maccoss, M. J., &
548 Rinner, O. (2012). Using iRT, a normalized retention time for more targeted

549 measurement of peptides. *Proteomics*, 12(8), 1111–1121.
550 <https://doi.org/10.1002/PMIC.201100463>

551 Ferretti, J. J., McShan, W. M., Ajdic, D., Savic, D. J., Savic, G., Lyon, K., Primeaux, C.,
552 Sezate, S., Suvorov, A. N., Kenton, S., Lai, H. S., Lin, S. P., Qian, Y., Jia, H. G., Najar,
553 F. Z., Ren, Q., Zhu, H., Song, L., White, J., ... McLaughlin, R. (2001). Complete
554 genome sequence of an M1 strain of *Streptococcus pyogenes*. *Proceedings of the
555 National Academy of Sciences of the United States of America*, 98(8), 4658–4663.
556 <https://doi.org/10.1073/PNAS.071559398>

557 Fischetti, V. A. (1989). Streptococcal M protein: molecular design and biological behavior.
558 *Clinical Microbiology Reviews*, 2(3), 285–314. <https://doi.org/10.1128/cmr.2.3.285>

559 Forthal, D. N. (2015). Functions of Antibodies. *Microbiology Spectrum*, 2(4), 1.
560 <https://doi.org/10.1128/9781555817411.ch2>

561 Frost, H. R., Laho, D., Sanderson-Smith, M. L., Licciardi, P., Donath, S., Curtis, N., Kado, J.,
562 Dale, J. B., Steer, A. C., & Smeesters, P. R. (2017). Immune Cross-Opsonization Within
563 emm Clusters Following Group A *Streptococcus* Skin Infection: Broadening the Scope
564 of Type-Specific Immunity. *Clinical Infectious Diseases*, 65(9), 1523–1531.
565 <https://doi.org/10.1093/cid/cix599>

566 Gao, N. J., Lima, E. R., & Nizet, V. (2021). Immunobiology of the classical Lancefield group
567 a streptococcal carbohydrate antigen. *Infection and Immunity*, 89(12).
568 <https://doi.org/10.1128/IAI.00292-21>

569 Happonen, L., Hauri, S., Svensson Birkedal, G., Karlsson, C., de Neergaard, T., Khakzad, H.,
570 Nordenfelt, P., Wikström, M., Wisniewska, M., Björck, L., Malmström, L., &
571 Malmström, J. (2019). A quantitative *Streptococcus pyogenes*–human protein–protein
572 interaction map reveals localization of opsonizing antibodies. *Nature Communications*
573 2019 10:1, 10(1), 1–15. <https://doi.org/10.1038/s41467-019-10583-5>

574 Jones, K. F., & Fischetti, V. A. (1988). The importance of the location of antibody binding on
575 the M6 protein for opsonization and phagocytosis of group A M6 streptococci. *The
576 Journal of Experimental Medicine*, 167(3), 1114–1123.
577 <https://doi.org/10.1084/jem.167.3.1114>

578 Kumra Ahnlide, V., de Neergaard, T., Sundwall, M., Ambjörnsson, T., & Nordenfelt, P.
579 (2021). A Predictive Model of Antibody Binding in the Presence of IgG-Interacting
580 Bacterial Surface Proteins. *Frontiers in Immunology*, 12, 661.
581 <https://doi.org/10.3389/FIMMU.2021.629103/BIBTEX>

582 Lancefield, R. C. (1959). Persistence of type-specific antibodies in man following infection
583 with group A streptococci. *The Journal of Experimental Medicine*, 110(2), 271–292.
584 <https://www.ncbi.nlm.nih.gov/pubmed/13673139>

585 McMillan, D. J., Drèze, P.-A., Vu, T., Bessen, D. E., Guglielmini, J., Steer, A. C., Carapetis,
586 J. R., van Melderden, L., Sriprakash, K. S., & Smeesters, P. R. (2013). Updated model of
587 group A *Streptococcus* M proteins based on a comprehensive worldwide study. *Clinical
588 Microbiology and Infection*, 19(5), E222-9. <https://doi.org/10.1111/1469-0691.12134>

589 Nordenfelt, P., Waldemarson, S., Linder, A., Mörgelin, M., Karlsson, C., Malmström, J., &
590 Björck, L. (2012). Antibody orientation at bacterial surfaces is related to invasive
591 infection. *The Journal of Experimental Medicine*, 209(13), 2367–2381.
592 <https://doi.org/10.1084/jem.20120325>

593 Pandey, M., Calcutt, A., Ozberk, V., Chen, Z., Croxen, M., Powell, J., Langshaw, E., Mills, J.
594 L., Jen, F. E. C., McCluskey, J., Robson, J., Tyrrell, G. J., & Good, M. F. (2019).
595 Antibodies to the conserved region of the M protein and a streptococcal superantigen
596 cooperatively resolve toxic shock-like syndrome in HLA-humanized mice. *Science
597 Advances*, 5(9). <https://doi.org/10.1126/SCIAADV.AAX3013>

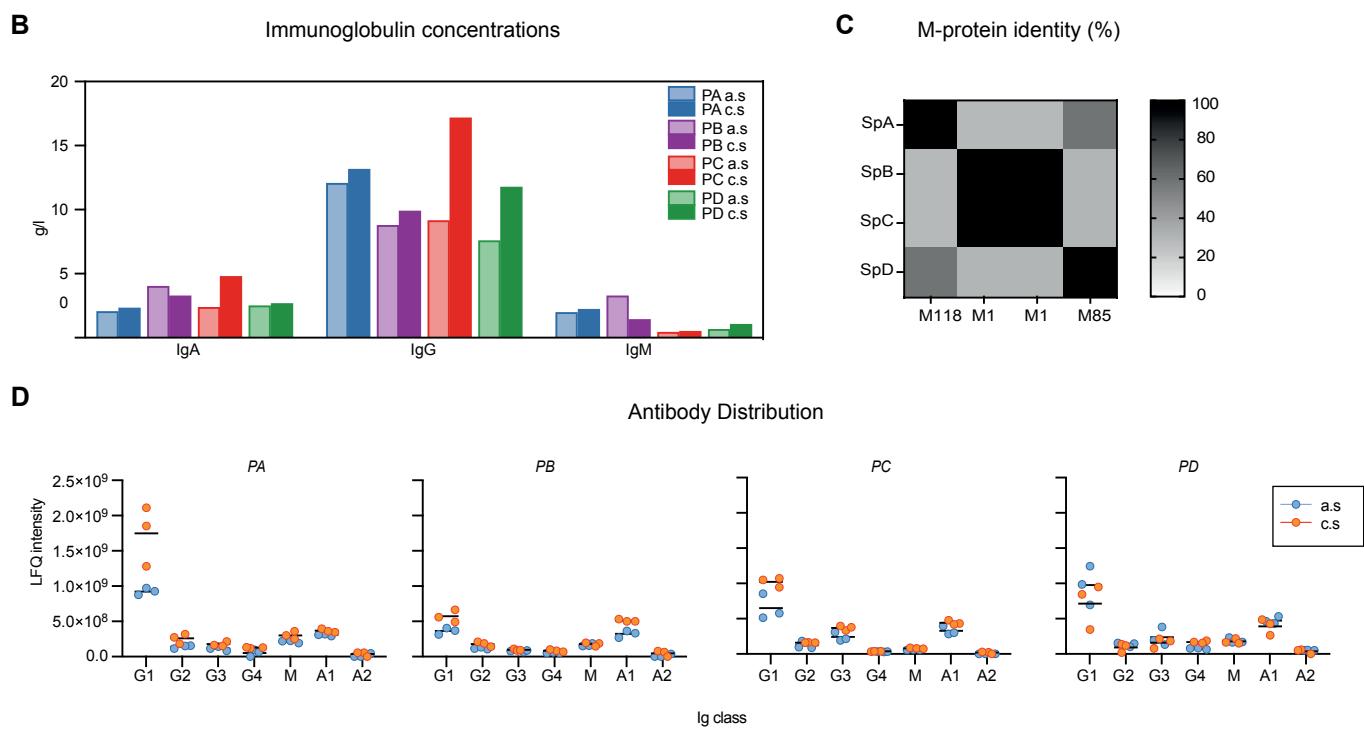
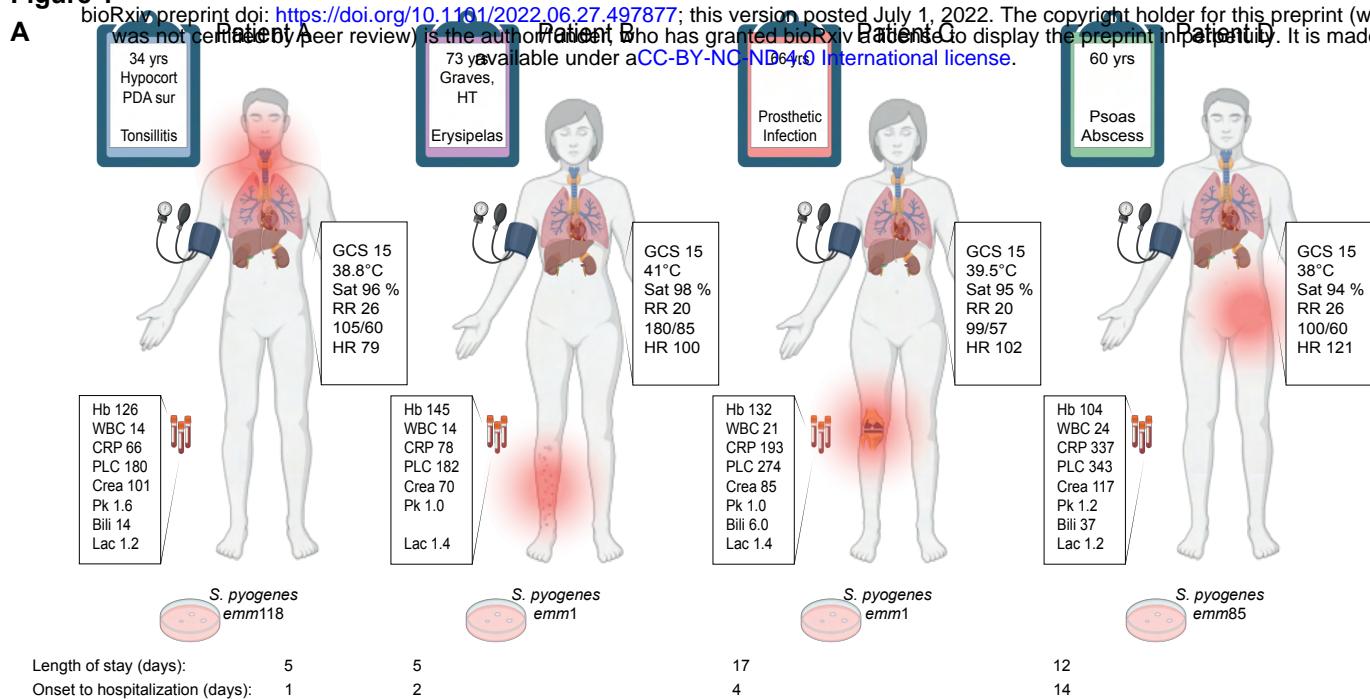
598 Pandey, M., Ozberk, V., Calcutt, A., Langshaw, E., Powell, J., Rivera-Hernandez, T., Ho, M.
599 F., Philips, Z., Batzloff, M. R., & Good, M. F. (2016). Streptococcal Immunity Is
600 Constrained by Lack of Immunological Memory following a Single Episode of
601 Pyoderma. *PLoS Pathogens*, 12(12). <https://doi.org/10.1371/JOURNAL.PPAT.1006122>

602 Rasmussen, M. (2011). Recurrent sepsis caused by *Streptococcus pyogenes*. *Journal of*
603 *Clinical Microbiology*, 49(4), 1671–1673. <https://doi.org/10.1128/JCM.02378-10>

604 Singer, M., Deutschman, C. S., Seymour, C., Shankar-Hari, M., Annane, D., Bauer, M.,
605 Bellomo, R., Bernard, G. R., Chiche, J. D., Coopersmith, C. M., Hotchkiss, R. S., Levy,
606 M. M., Marshall, J. C., Martin, G. S., Opal, S. M., Rubenfeld, G. D., Poll, T. der,
607 Vincent, J. L., & Angus, D. C. (2016). The Third International Consensus Definitions for
608 Sepsis and Septic Shock (Sepsis-3). *JAMA*, 315(8), 801.
609 <https://doi.org/10.1001/JAMA.2016.0287>

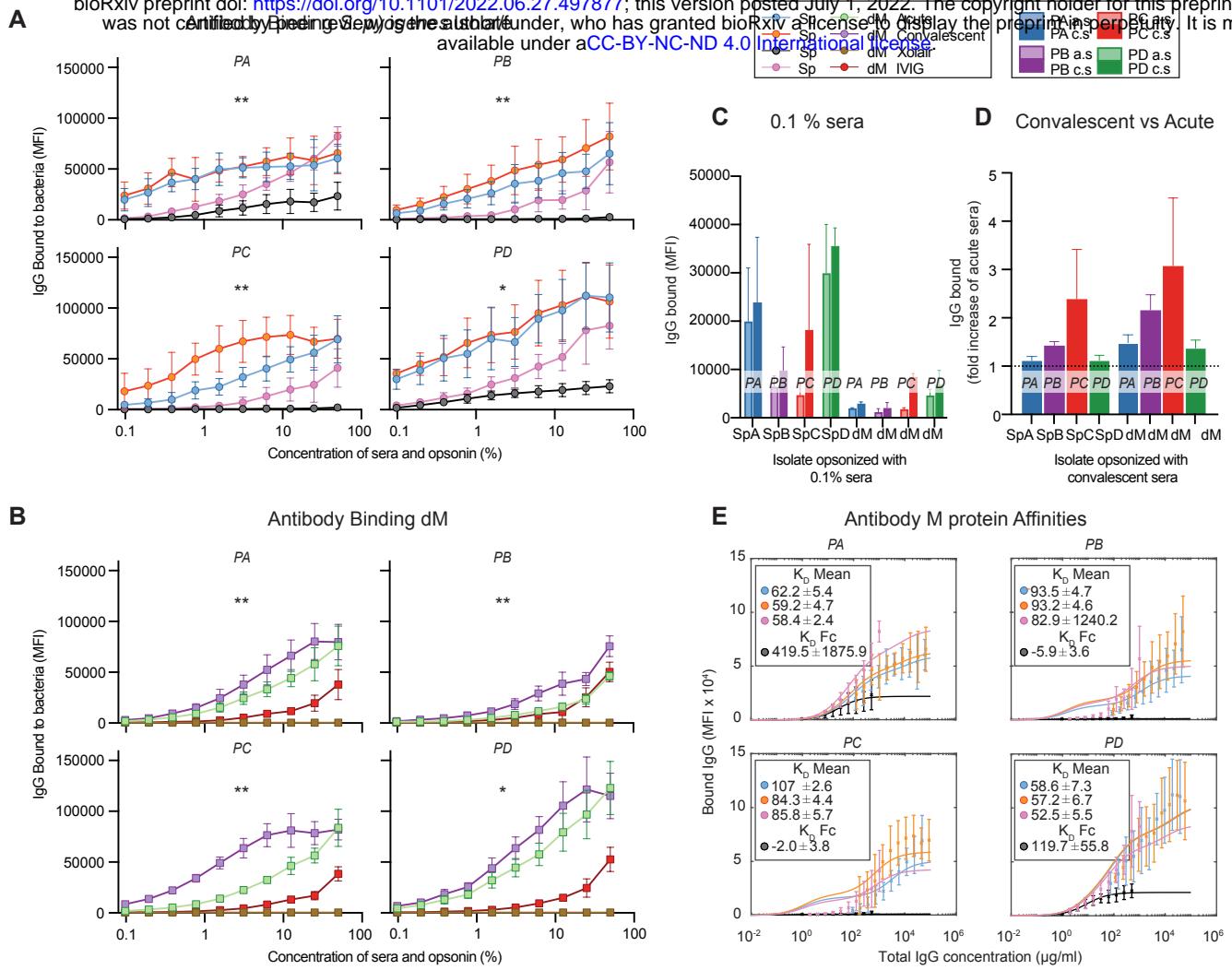
610 software, I. G. (n.d.). *Graph Pad Prism*.

611 Staali, L., Bauer, S., Mörgelin, M., Björck, L., & Tapper, H. (2006). *Streptococcus pyogenes*
612 bacteria modulate membrane traffic in human neutrophils and selectively inhibit
613 azurophilic granule fusion with phagosomes. *Cellular Microbiology*, 8(4), 690–703.
614 <https://doi.org/10.1111/J.1462-5822.2005.00662.X>

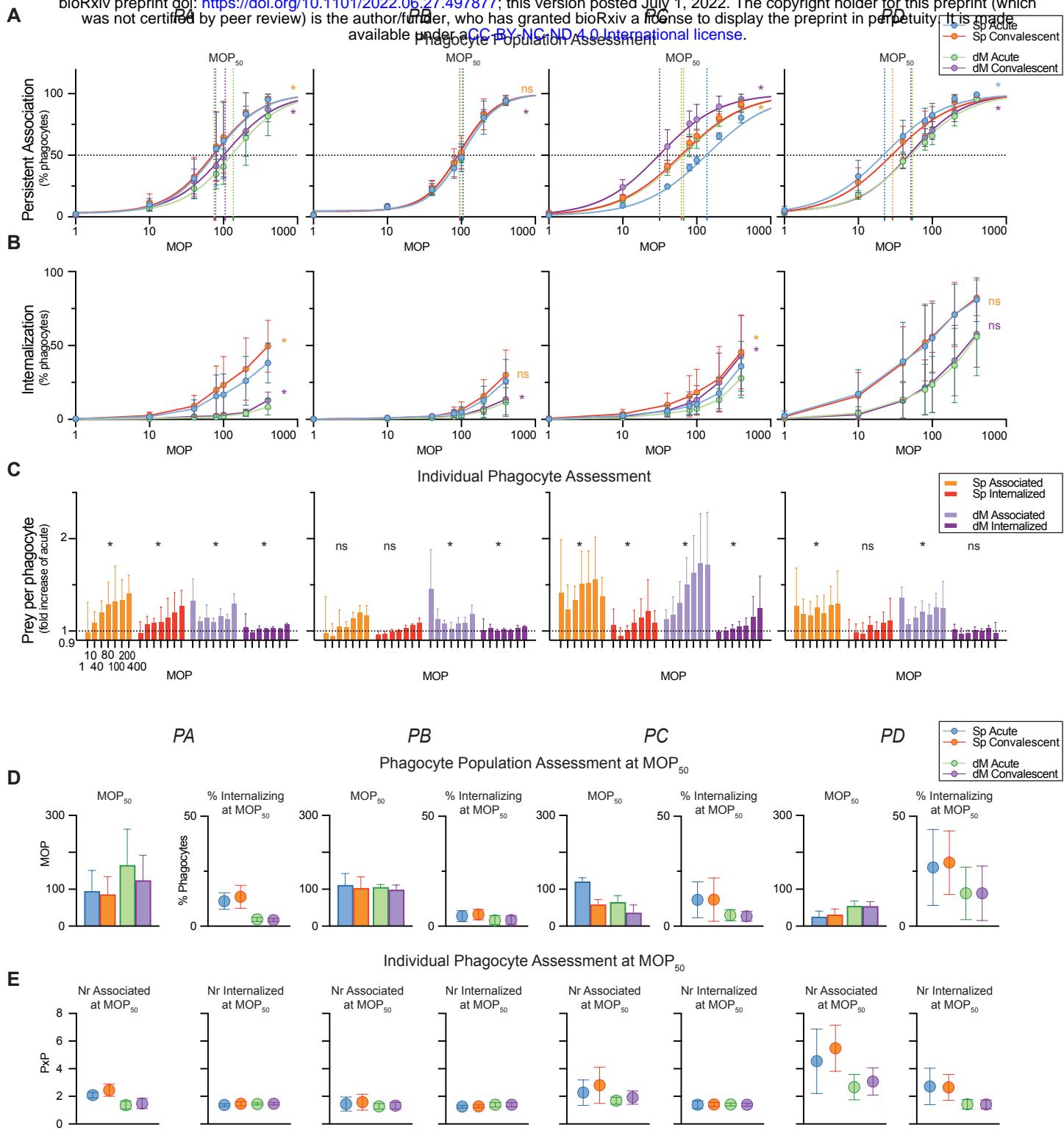


615 Uddén, F., Ahl, J., Littorin, N., Strålin, K., Athlin, S., & Riesbeck, K. (2020). Corrected and
616 Republished from: A Nonfunctional Opsonic Antibody Response Frequently Occurs
617 after Pneumococcal Pneumonia and Is Associated with Invasive Disease. *MSphere*, 5(6).
618 <https://doi.org/10.1128/MSPHERE.01102-20>

619 Vohra, H., Dey, N., Gupta, S., Sharma, A. K., Kumar, R., McMillan, D., & Good, M. F.
620 (2005). M protein conserved region antibodies opsonise multiple strains of *Streptococcus*
621 *pyogenes* with sequence variations in C-repeats. *Research in Microbiology*, 156(4), 575–
622 582. <https://doi.org/10.1016/j.resmic.2004.12.009>

623


Figure 1

bioRxiv preprint doi: <https://doi.org/10.1101/2022.06.27.497877>; this version posted July 1, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.


Figure 2

bioRxiv preprint doi: <https://doi.org/10.1101/2022.06.27.497877>; this version posted July 1, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Figure 3

bioRxiv preprint doi: <https://doi.org/10.1101/2022.06.27.497877>; this version posted July 1, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a [CC-BY-NC-ND 4.0 International license](#).

Figure 4

bioRxiv preprint doi: <https://doi.org/10.1101/2022.06.27.497877>; this version posted July 1, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

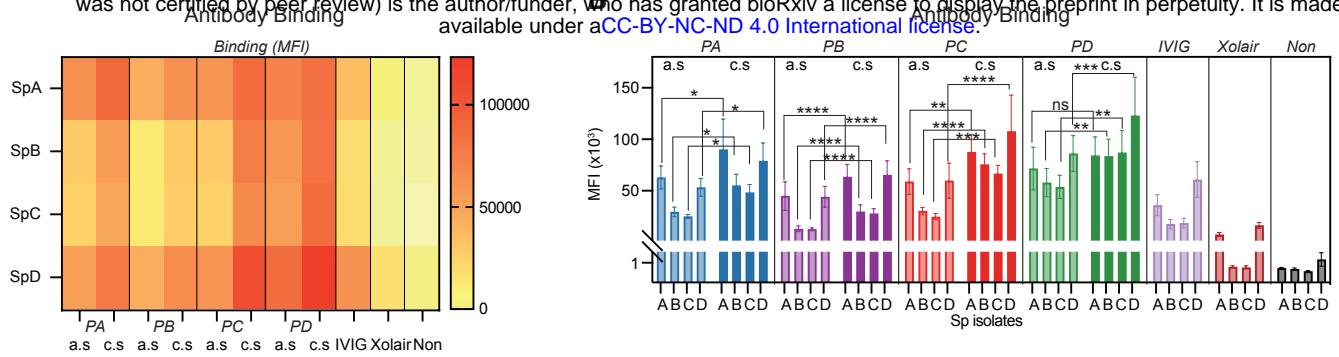
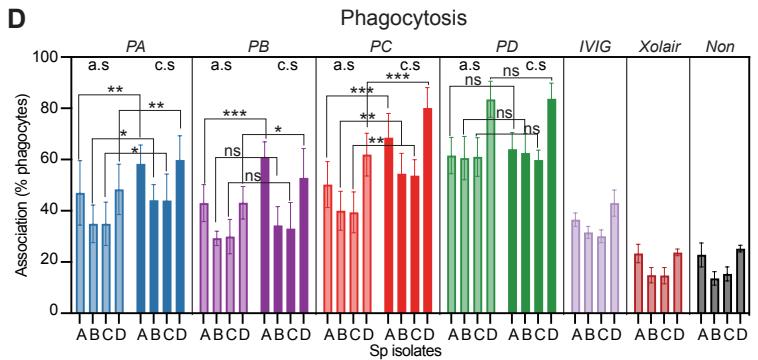
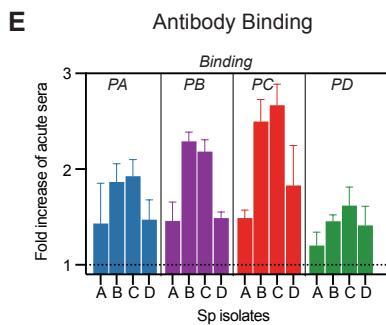
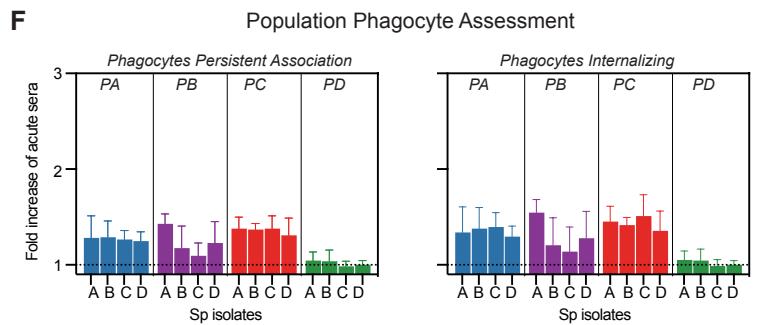
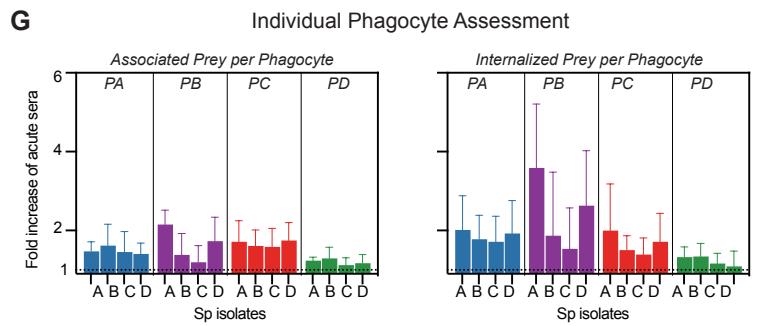





A**C****D****E****F****E,F,G Convalescent vs Acute sera****G**

Table 1 | Adaptive response after *S. pyogenes* infection

Patient	Infecting Isolate <i>emm</i>	<i>Emm</i> Group	Specific Isolate				Cross reactive	
			Binding (MFI x 10 ³)		Phagocytosis (%)		Binding	Phagocytosis
			a.s	c.s	a.s	c.s	c.s	c.s
A	118	E	63	+27 *	47	+11 **	+26 *	+9.23 *
B	1	A-C	13	+17 ****	29	+5.0 ns	+19 ***	+9.73 *
C	1	A-C	25	+42 ***	39	+14 **	+45 ***	+18 ***
D	85	D	86	+37 ***	84	+0.2 ns	+26 **	+1.98 ns

Opsonized in 5 % paired sera, phagocytosis (persistent association) at MOP80.

a.s, acute serum; c.s, convalescence serum; 2way ANOVA p-value < 0.05 *, <0.01 **, 0.001 ***, <0.0001 ****; ns non-significant